powerpc/mm: Move register_process_table() out of ppc_md
[cascardo/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #include <linux/etherdevice.h>
54 #ifdef CONFIG_IGB_DCA
55 #include <linux/dca.h>
56 #endif
57 #include <linux/i2c.h>
58 #include "igb.h"
59
60 #define MAJ 5
61 #define MIN 3
62 #define BUILD 0
63 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
64 __stringify(BUILD) "-k"
65 char igb_driver_name[] = "igb";
66 char igb_driver_version[] = DRV_VERSION;
67 static const char igb_driver_string[] =
68                                 "Intel(R) Gigabit Ethernet Network Driver";
69 static const char igb_copyright[] =
70                                 "Copyright (c) 2007-2014 Intel Corporation.";
71
72 static const struct e1000_info *igb_info_tbl[] = {
73         [board_82575] = &e1000_82575_info,
74 };
75
76 static const struct pci_device_id igb_pci_tbl[] = {
77         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
78         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
79         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
99         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
105         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
106         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
107         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
108         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
109         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
110         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
111         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
112         /* required last entry */
113         {0, }
114 };
115
116 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
117
118 static int igb_setup_all_tx_resources(struct igb_adapter *);
119 static int igb_setup_all_rx_resources(struct igb_adapter *);
120 static void igb_free_all_tx_resources(struct igb_adapter *);
121 static void igb_free_all_rx_resources(struct igb_adapter *);
122 static void igb_setup_mrqc(struct igb_adapter *);
123 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
124 static void igb_remove(struct pci_dev *pdev);
125 static int igb_sw_init(struct igb_adapter *);
126 int igb_open(struct net_device *);
127 int igb_close(struct net_device *);
128 static void igb_configure(struct igb_adapter *);
129 static void igb_configure_tx(struct igb_adapter *);
130 static void igb_configure_rx(struct igb_adapter *);
131 static void igb_clean_all_tx_rings(struct igb_adapter *);
132 static void igb_clean_all_rx_rings(struct igb_adapter *);
133 static void igb_clean_tx_ring(struct igb_ring *);
134 static void igb_clean_rx_ring(struct igb_ring *);
135 static void igb_set_rx_mode(struct net_device *);
136 static void igb_update_phy_info(unsigned long);
137 static void igb_watchdog(unsigned long);
138 static void igb_watchdog_task(struct work_struct *);
139 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
140 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
141                                           struct rtnl_link_stats64 *stats);
142 static int igb_change_mtu(struct net_device *, int);
143 static int igb_set_mac(struct net_device *, void *);
144 static void igb_set_uta(struct igb_adapter *adapter, bool set);
145 static irqreturn_t igb_intr(int irq, void *);
146 static irqreturn_t igb_intr_msi(int irq, void *);
147 static irqreturn_t igb_msix_other(int irq, void *);
148 static irqreturn_t igb_msix_ring(int irq, void *);
149 #ifdef CONFIG_IGB_DCA
150 static void igb_update_dca(struct igb_q_vector *);
151 static void igb_setup_dca(struct igb_adapter *);
152 #endif /* CONFIG_IGB_DCA */
153 static int igb_poll(struct napi_struct *, int);
154 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
155 static int igb_clean_rx_irq(struct igb_q_vector *, int);
156 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
157 static void igb_tx_timeout(struct net_device *);
158 static void igb_reset_task(struct work_struct *);
159 static void igb_vlan_mode(struct net_device *netdev,
160                           netdev_features_t features);
161 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
162 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
163 static void igb_restore_vlan(struct igb_adapter *);
164 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
165 static void igb_ping_all_vfs(struct igb_adapter *);
166 static void igb_msg_task(struct igb_adapter *);
167 static void igb_vmm_control(struct igb_adapter *);
168 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
169 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
170 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
171 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
172                                int vf, u16 vlan, u8 qos);
173 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
174 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
175                                    bool setting);
176 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
177                                  struct ifla_vf_info *ivi);
178 static void igb_check_vf_rate_limit(struct igb_adapter *);
179
180 #ifdef CONFIG_PCI_IOV
181 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
182 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
183 static int igb_disable_sriov(struct pci_dev *dev);
184 static int igb_pci_disable_sriov(struct pci_dev *dev);
185 #endif
186
187 #ifdef CONFIG_PM
188 #ifdef CONFIG_PM_SLEEP
189 static int igb_suspend(struct device *);
190 #endif
191 static int igb_resume(struct device *);
192 static int igb_runtime_suspend(struct device *dev);
193 static int igb_runtime_resume(struct device *dev);
194 static int igb_runtime_idle(struct device *dev);
195 static const struct dev_pm_ops igb_pm_ops = {
196         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
197         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
198                         igb_runtime_idle)
199 };
200 #endif
201 static void igb_shutdown(struct pci_dev *);
202 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
203 #ifdef CONFIG_IGB_DCA
204 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
205 static struct notifier_block dca_notifier = {
206         .notifier_call  = igb_notify_dca,
207         .next           = NULL,
208         .priority       = 0
209 };
210 #endif
211 #ifdef CONFIG_NET_POLL_CONTROLLER
212 /* for netdump / net console */
213 static void igb_netpoll(struct net_device *);
214 #endif
215 #ifdef CONFIG_PCI_IOV
216 static unsigned int max_vfs;
217 module_param(max_vfs, uint, 0);
218 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
219 #endif /* CONFIG_PCI_IOV */
220
221 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
222                      pci_channel_state_t);
223 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
224 static void igb_io_resume(struct pci_dev *);
225
226 static const struct pci_error_handlers igb_err_handler = {
227         .error_detected = igb_io_error_detected,
228         .slot_reset = igb_io_slot_reset,
229         .resume = igb_io_resume,
230 };
231
232 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
233
234 static struct pci_driver igb_driver = {
235         .name     = igb_driver_name,
236         .id_table = igb_pci_tbl,
237         .probe    = igb_probe,
238         .remove   = igb_remove,
239 #ifdef CONFIG_PM
240         .driver.pm = &igb_pm_ops,
241 #endif
242         .shutdown = igb_shutdown,
243         .sriov_configure = igb_pci_sriov_configure,
244         .err_handler = &igb_err_handler
245 };
246
247 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
248 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
249 MODULE_LICENSE("GPL");
250 MODULE_VERSION(DRV_VERSION);
251
252 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
253 static int debug = -1;
254 module_param(debug, int, 0);
255 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
256
257 struct igb_reg_info {
258         u32 ofs;
259         char *name;
260 };
261
262 static const struct igb_reg_info igb_reg_info_tbl[] = {
263
264         /* General Registers */
265         {E1000_CTRL, "CTRL"},
266         {E1000_STATUS, "STATUS"},
267         {E1000_CTRL_EXT, "CTRL_EXT"},
268
269         /* Interrupt Registers */
270         {E1000_ICR, "ICR"},
271
272         /* RX Registers */
273         {E1000_RCTL, "RCTL"},
274         {E1000_RDLEN(0), "RDLEN"},
275         {E1000_RDH(0), "RDH"},
276         {E1000_RDT(0), "RDT"},
277         {E1000_RXDCTL(0), "RXDCTL"},
278         {E1000_RDBAL(0), "RDBAL"},
279         {E1000_RDBAH(0), "RDBAH"},
280
281         /* TX Registers */
282         {E1000_TCTL, "TCTL"},
283         {E1000_TDBAL(0), "TDBAL"},
284         {E1000_TDBAH(0), "TDBAH"},
285         {E1000_TDLEN(0), "TDLEN"},
286         {E1000_TDH(0), "TDH"},
287         {E1000_TDT(0), "TDT"},
288         {E1000_TXDCTL(0), "TXDCTL"},
289         {E1000_TDFH, "TDFH"},
290         {E1000_TDFT, "TDFT"},
291         {E1000_TDFHS, "TDFHS"},
292         {E1000_TDFPC, "TDFPC"},
293
294         /* List Terminator */
295         {}
296 };
297
298 /* igb_regdump - register printout routine */
299 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
300 {
301         int n = 0;
302         char rname[16];
303         u32 regs[8];
304
305         switch (reginfo->ofs) {
306         case E1000_RDLEN(0):
307                 for (n = 0; n < 4; n++)
308                         regs[n] = rd32(E1000_RDLEN(n));
309                 break;
310         case E1000_RDH(0):
311                 for (n = 0; n < 4; n++)
312                         regs[n] = rd32(E1000_RDH(n));
313                 break;
314         case E1000_RDT(0):
315                 for (n = 0; n < 4; n++)
316                         regs[n] = rd32(E1000_RDT(n));
317                 break;
318         case E1000_RXDCTL(0):
319                 for (n = 0; n < 4; n++)
320                         regs[n] = rd32(E1000_RXDCTL(n));
321                 break;
322         case E1000_RDBAL(0):
323                 for (n = 0; n < 4; n++)
324                         regs[n] = rd32(E1000_RDBAL(n));
325                 break;
326         case E1000_RDBAH(0):
327                 for (n = 0; n < 4; n++)
328                         regs[n] = rd32(E1000_RDBAH(n));
329                 break;
330         case E1000_TDBAL(0):
331                 for (n = 0; n < 4; n++)
332                         regs[n] = rd32(E1000_RDBAL(n));
333                 break;
334         case E1000_TDBAH(0):
335                 for (n = 0; n < 4; n++)
336                         regs[n] = rd32(E1000_TDBAH(n));
337                 break;
338         case E1000_TDLEN(0):
339                 for (n = 0; n < 4; n++)
340                         regs[n] = rd32(E1000_TDLEN(n));
341                 break;
342         case E1000_TDH(0):
343                 for (n = 0; n < 4; n++)
344                         regs[n] = rd32(E1000_TDH(n));
345                 break;
346         case E1000_TDT(0):
347                 for (n = 0; n < 4; n++)
348                         regs[n] = rd32(E1000_TDT(n));
349                 break;
350         case E1000_TXDCTL(0):
351                 for (n = 0; n < 4; n++)
352                         regs[n] = rd32(E1000_TXDCTL(n));
353                 break;
354         default:
355                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
356                 return;
357         }
358
359         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
360         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
361                 regs[2], regs[3]);
362 }
363
364 /* igb_dump - Print registers, Tx-rings and Rx-rings */
365 static void igb_dump(struct igb_adapter *adapter)
366 {
367         struct net_device *netdev = adapter->netdev;
368         struct e1000_hw *hw = &adapter->hw;
369         struct igb_reg_info *reginfo;
370         struct igb_ring *tx_ring;
371         union e1000_adv_tx_desc *tx_desc;
372         struct my_u0 { u64 a; u64 b; } *u0;
373         struct igb_ring *rx_ring;
374         union e1000_adv_rx_desc *rx_desc;
375         u32 staterr;
376         u16 i, n;
377
378         if (!netif_msg_hw(adapter))
379                 return;
380
381         /* Print netdevice Info */
382         if (netdev) {
383                 dev_info(&adapter->pdev->dev, "Net device Info\n");
384                 pr_info("Device Name     state            trans_start      last_rx\n");
385                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
386                         netdev->state, dev_trans_start(netdev), netdev->last_rx);
387         }
388
389         /* Print Registers */
390         dev_info(&adapter->pdev->dev, "Register Dump\n");
391         pr_info(" Register Name   Value\n");
392         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
393              reginfo->name; reginfo++) {
394                 igb_regdump(hw, reginfo);
395         }
396
397         /* Print TX Ring Summary */
398         if (!netdev || !netif_running(netdev))
399                 goto exit;
400
401         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
402         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
403         for (n = 0; n < adapter->num_tx_queues; n++) {
404                 struct igb_tx_buffer *buffer_info;
405                 tx_ring = adapter->tx_ring[n];
406                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
407                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
408                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
409                         (u64)dma_unmap_addr(buffer_info, dma),
410                         dma_unmap_len(buffer_info, len),
411                         buffer_info->next_to_watch,
412                         (u64)buffer_info->time_stamp);
413         }
414
415         /* Print TX Rings */
416         if (!netif_msg_tx_done(adapter))
417                 goto rx_ring_summary;
418
419         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
420
421         /* Transmit Descriptor Formats
422          *
423          * Advanced Transmit Descriptor
424          *   +--------------------------------------------------------------+
425          * 0 |         Buffer Address [63:0]                                |
426          *   +--------------------------------------------------------------+
427          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
428          *   +--------------------------------------------------------------+
429          *   63      46 45    40 39 38 36 35 32 31   24             15       0
430          */
431
432         for (n = 0; n < adapter->num_tx_queues; n++) {
433                 tx_ring = adapter->tx_ring[n];
434                 pr_info("------------------------------------\n");
435                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
436                 pr_info("------------------------------------\n");
437                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
438
439                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
440                         const char *next_desc;
441                         struct igb_tx_buffer *buffer_info;
442                         tx_desc = IGB_TX_DESC(tx_ring, i);
443                         buffer_info = &tx_ring->tx_buffer_info[i];
444                         u0 = (struct my_u0 *)tx_desc;
445                         if (i == tx_ring->next_to_use &&
446                             i == tx_ring->next_to_clean)
447                                 next_desc = " NTC/U";
448                         else if (i == tx_ring->next_to_use)
449                                 next_desc = " NTU";
450                         else if (i == tx_ring->next_to_clean)
451                                 next_desc = " NTC";
452                         else
453                                 next_desc = "";
454
455                         pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
456                                 i, le64_to_cpu(u0->a),
457                                 le64_to_cpu(u0->b),
458                                 (u64)dma_unmap_addr(buffer_info, dma),
459                                 dma_unmap_len(buffer_info, len),
460                                 buffer_info->next_to_watch,
461                                 (u64)buffer_info->time_stamp,
462                                 buffer_info->skb, next_desc);
463
464                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
465                                 print_hex_dump(KERN_INFO, "",
466                                         DUMP_PREFIX_ADDRESS,
467                                         16, 1, buffer_info->skb->data,
468                                         dma_unmap_len(buffer_info, len),
469                                         true);
470                 }
471         }
472
473         /* Print RX Rings Summary */
474 rx_ring_summary:
475         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
476         pr_info("Queue [NTU] [NTC]\n");
477         for (n = 0; n < adapter->num_rx_queues; n++) {
478                 rx_ring = adapter->rx_ring[n];
479                 pr_info(" %5d %5X %5X\n",
480                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
481         }
482
483         /* Print RX Rings */
484         if (!netif_msg_rx_status(adapter))
485                 goto exit;
486
487         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
488
489         /* Advanced Receive Descriptor (Read) Format
490          *    63                                           1        0
491          *    +-----------------------------------------------------+
492          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
493          *    +----------------------------------------------+------+
494          *  8 |       Header Buffer Address [63:1]           |  DD  |
495          *    +-----------------------------------------------------+
496          *
497          *
498          * Advanced Receive Descriptor (Write-Back) Format
499          *
500          *   63       48 47    32 31  30      21 20 17 16   4 3     0
501          *   +------------------------------------------------------+
502          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
503          *   | Checksum   Ident  |   |           |    | Type | Type |
504          *   +------------------------------------------------------+
505          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
506          *   +------------------------------------------------------+
507          *   63       48 47    32 31            20 19               0
508          */
509
510         for (n = 0; n < adapter->num_rx_queues; n++) {
511                 rx_ring = adapter->rx_ring[n];
512                 pr_info("------------------------------------\n");
513                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
514                 pr_info("------------------------------------\n");
515                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
516                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
517
518                 for (i = 0; i < rx_ring->count; i++) {
519                         const char *next_desc;
520                         struct igb_rx_buffer *buffer_info;
521                         buffer_info = &rx_ring->rx_buffer_info[i];
522                         rx_desc = IGB_RX_DESC(rx_ring, i);
523                         u0 = (struct my_u0 *)rx_desc;
524                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
525
526                         if (i == rx_ring->next_to_use)
527                                 next_desc = " NTU";
528                         else if (i == rx_ring->next_to_clean)
529                                 next_desc = " NTC";
530                         else
531                                 next_desc = "";
532
533                         if (staterr & E1000_RXD_STAT_DD) {
534                                 /* Descriptor Done */
535                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
536                                         "RWB", i,
537                                         le64_to_cpu(u0->a),
538                                         le64_to_cpu(u0->b),
539                                         next_desc);
540                         } else {
541                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
542                                         "R  ", i,
543                                         le64_to_cpu(u0->a),
544                                         le64_to_cpu(u0->b),
545                                         (u64)buffer_info->dma,
546                                         next_desc);
547
548                                 if (netif_msg_pktdata(adapter) &&
549                                     buffer_info->dma && buffer_info->page) {
550                                         print_hex_dump(KERN_INFO, "",
551                                           DUMP_PREFIX_ADDRESS,
552                                           16, 1,
553                                           page_address(buffer_info->page) +
554                                                       buffer_info->page_offset,
555                                           IGB_RX_BUFSZ, true);
556                                 }
557                         }
558                 }
559         }
560
561 exit:
562         return;
563 }
564
565 /**
566  *  igb_get_i2c_data - Reads the I2C SDA data bit
567  *  @hw: pointer to hardware structure
568  *  @i2cctl: Current value of I2CCTL register
569  *
570  *  Returns the I2C data bit value
571  **/
572 static int igb_get_i2c_data(void *data)
573 {
574         struct igb_adapter *adapter = (struct igb_adapter *)data;
575         struct e1000_hw *hw = &adapter->hw;
576         s32 i2cctl = rd32(E1000_I2CPARAMS);
577
578         return !!(i2cctl & E1000_I2C_DATA_IN);
579 }
580
581 /**
582  *  igb_set_i2c_data - Sets the I2C data bit
583  *  @data: pointer to hardware structure
584  *  @state: I2C data value (0 or 1) to set
585  *
586  *  Sets the I2C data bit
587  **/
588 static void igb_set_i2c_data(void *data, int state)
589 {
590         struct igb_adapter *adapter = (struct igb_adapter *)data;
591         struct e1000_hw *hw = &adapter->hw;
592         s32 i2cctl = rd32(E1000_I2CPARAMS);
593
594         if (state)
595                 i2cctl |= E1000_I2C_DATA_OUT;
596         else
597                 i2cctl &= ~E1000_I2C_DATA_OUT;
598
599         i2cctl &= ~E1000_I2C_DATA_OE_N;
600         i2cctl |= E1000_I2C_CLK_OE_N;
601         wr32(E1000_I2CPARAMS, i2cctl);
602         wrfl();
603
604 }
605
606 /**
607  *  igb_set_i2c_clk - Sets the I2C SCL clock
608  *  @data: pointer to hardware structure
609  *  @state: state to set clock
610  *
611  *  Sets the I2C clock line to state
612  **/
613 static void igb_set_i2c_clk(void *data, int state)
614 {
615         struct igb_adapter *adapter = (struct igb_adapter *)data;
616         struct e1000_hw *hw = &adapter->hw;
617         s32 i2cctl = rd32(E1000_I2CPARAMS);
618
619         if (state) {
620                 i2cctl |= E1000_I2C_CLK_OUT;
621                 i2cctl &= ~E1000_I2C_CLK_OE_N;
622         } else {
623                 i2cctl &= ~E1000_I2C_CLK_OUT;
624                 i2cctl &= ~E1000_I2C_CLK_OE_N;
625         }
626         wr32(E1000_I2CPARAMS, i2cctl);
627         wrfl();
628 }
629
630 /**
631  *  igb_get_i2c_clk - Gets the I2C SCL clock state
632  *  @data: pointer to hardware structure
633  *
634  *  Gets the I2C clock state
635  **/
636 static int igb_get_i2c_clk(void *data)
637 {
638         struct igb_adapter *adapter = (struct igb_adapter *)data;
639         struct e1000_hw *hw = &adapter->hw;
640         s32 i2cctl = rd32(E1000_I2CPARAMS);
641
642         return !!(i2cctl & E1000_I2C_CLK_IN);
643 }
644
645 static const struct i2c_algo_bit_data igb_i2c_algo = {
646         .setsda         = igb_set_i2c_data,
647         .setscl         = igb_set_i2c_clk,
648         .getsda         = igb_get_i2c_data,
649         .getscl         = igb_get_i2c_clk,
650         .udelay         = 5,
651         .timeout        = 20,
652 };
653
654 /**
655  *  igb_get_hw_dev - return device
656  *  @hw: pointer to hardware structure
657  *
658  *  used by hardware layer to print debugging information
659  **/
660 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
661 {
662         struct igb_adapter *adapter = hw->back;
663         return adapter->netdev;
664 }
665
666 /**
667  *  igb_init_module - Driver Registration Routine
668  *
669  *  igb_init_module is the first routine called when the driver is
670  *  loaded. All it does is register with the PCI subsystem.
671  **/
672 static int __init igb_init_module(void)
673 {
674         int ret;
675
676         pr_info("%s - version %s\n",
677                igb_driver_string, igb_driver_version);
678         pr_info("%s\n", igb_copyright);
679
680 #ifdef CONFIG_IGB_DCA
681         dca_register_notify(&dca_notifier);
682 #endif
683         ret = pci_register_driver(&igb_driver);
684         return ret;
685 }
686
687 module_init(igb_init_module);
688
689 /**
690  *  igb_exit_module - Driver Exit Cleanup Routine
691  *
692  *  igb_exit_module is called just before the driver is removed
693  *  from memory.
694  **/
695 static void __exit igb_exit_module(void)
696 {
697 #ifdef CONFIG_IGB_DCA
698         dca_unregister_notify(&dca_notifier);
699 #endif
700         pci_unregister_driver(&igb_driver);
701 }
702
703 module_exit(igb_exit_module);
704
705 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
706 /**
707  *  igb_cache_ring_register - Descriptor ring to register mapping
708  *  @adapter: board private structure to initialize
709  *
710  *  Once we know the feature-set enabled for the device, we'll cache
711  *  the register offset the descriptor ring is assigned to.
712  **/
713 static void igb_cache_ring_register(struct igb_adapter *adapter)
714 {
715         int i = 0, j = 0;
716         u32 rbase_offset = adapter->vfs_allocated_count;
717
718         switch (adapter->hw.mac.type) {
719         case e1000_82576:
720                 /* The queues are allocated for virtualization such that VF 0
721                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
722                  * In order to avoid collision we start at the first free queue
723                  * and continue consuming queues in the same sequence
724                  */
725                 if (adapter->vfs_allocated_count) {
726                         for (; i < adapter->rss_queues; i++)
727                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
728                                                                Q_IDX_82576(i);
729                 }
730                 /* Fall through */
731         case e1000_82575:
732         case e1000_82580:
733         case e1000_i350:
734         case e1000_i354:
735         case e1000_i210:
736         case e1000_i211:
737                 /* Fall through */
738         default:
739                 for (; i < adapter->num_rx_queues; i++)
740                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
741                 for (; j < adapter->num_tx_queues; j++)
742                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
743                 break;
744         }
745 }
746
747 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
748 {
749         struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
750         u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
751         u32 value = 0;
752
753         if (E1000_REMOVED(hw_addr))
754                 return ~value;
755
756         value = readl(&hw_addr[reg]);
757
758         /* reads should not return all F's */
759         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
760                 struct net_device *netdev = igb->netdev;
761                 hw->hw_addr = NULL;
762                 netif_device_detach(netdev);
763                 netdev_err(netdev, "PCIe link lost, device now detached\n");
764         }
765
766         return value;
767 }
768
769 /**
770  *  igb_write_ivar - configure ivar for given MSI-X vector
771  *  @hw: pointer to the HW structure
772  *  @msix_vector: vector number we are allocating to a given ring
773  *  @index: row index of IVAR register to write within IVAR table
774  *  @offset: column offset of in IVAR, should be multiple of 8
775  *
776  *  This function is intended to handle the writing of the IVAR register
777  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
778  *  each containing an cause allocation for an Rx and Tx ring, and a
779  *  variable number of rows depending on the number of queues supported.
780  **/
781 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
782                            int index, int offset)
783 {
784         u32 ivar = array_rd32(E1000_IVAR0, index);
785
786         /* clear any bits that are currently set */
787         ivar &= ~((u32)0xFF << offset);
788
789         /* write vector and valid bit */
790         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
791
792         array_wr32(E1000_IVAR0, index, ivar);
793 }
794
795 #define IGB_N0_QUEUE -1
796 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
797 {
798         struct igb_adapter *adapter = q_vector->adapter;
799         struct e1000_hw *hw = &adapter->hw;
800         int rx_queue = IGB_N0_QUEUE;
801         int tx_queue = IGB_N0_QUEUE;
802         u32 msixbm = 0;
803
804         if (q_vector->rx.ring)
805                 rx_queue = q_vector->rx.ring->reg_idx;
806         if (q_vector->tx.ring)
807                 tx_queue = q_vector->tx.ring->reg_idx;
808
809         switch (hw->mac.type) {
810         case e1000_82575:
811                 /* The 82575 assigns vectors using a bitmask, which matches the
812                  * bitmask for the EICR/EIMS/EIMC registers.  To assign one
813                  * or more queues to a vector, we write the appropriate bits
814                  * into the MSIXBM register for that vector.
815                  */
816                 if (rx_queue > IGB_N0_QUEUE)
817                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
818                 if (tx_queue > IGB_N0_QUEUE)
819                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
820                 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
821                         msixbm |= E1000_EIMS_OTHER;
822                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
823                 q_vector->eims_value = msixbm;
824                 break;
825         case e1000_82576:
826                 /* 82576 uses a table that essentially consists of 2 columns
827                  * with 8 rows.  The ordering is column-major so we use the
828                  * lower 3 bits as the row index, and the 4th bit as the
829                  * column offset.
830                  */
831                 if (rx_queue > IGB_N0_QUEUE)
832                         igb_write_ivar(hw, msix_vector,
833                                        rx_queue & 0x7,
834                                        (rx_queue & 0x8) << 1);
835                 if (tx_queue > IGB_N0_QUEUE)
836                         igb_write_ivar(hw, msix_vector,
837                                        tx_queue & 0x7,
838                                        ((tx_queue & 0x8) << 1) + 8);
839                 q_vector->eims_value = BIT(msix_vector);
840                 break;
841         case e1000_82580:
842         case e1000_i350:
843         case e1000_i354:
844         case e1000_i210:
845         case e1000_i211:
846                 /* On 82580 and newer adapters the scheme is similar to 82576
847                  * however instead of ordering column-major we have things
848                  * ordered row-major.  So we traverse the table by using
849                  * bit 0 as the column offset, and the remaining bits as the
850                  * row index.
851                  */
852                 if (rx_queue > IGB_N0_QUEUE)
853                         igb_write_ivar(hw, msix_vector,
854                                        rx_queue >> 1,
855                                        (rx_queue & 0x1) << 4);
856                 if (tx_queue > IGB_N0_QUEUE)
857                         igb_write_ivar(hw, msix_vector,
858                                        tx_queue >> 1,
859                                        ((tx_queue & 0x1) << 4) + 8);
860                 q_vector->eims_value = BIT(msix_vector);
861                 break;
862         default:
863                 BUG();
864                 break;
865         }
866
867         /* add q_vector eims value to global eims_enable_mask */
868         adapter->eims_enable_mask |= q_vector->eims_value;
869
870         /* configure q_vector to set itr on first interrupt */
871         q_vector->set_itr = 1;
872 }
873
874 /**
875  *  igb_configure_msix - Configure MSI-X hardware
876  *  @adapter: board private structure to initialize
877  *
878  *  igb_configure_msix sets up the hardware to properly
879  *  generate MSI-X interrupts.
880  **/
881 static void igb_configure_msix(struct igb_adapter *adapter)
882 {
883         u32 tmp;
884         int i, vector = 0;
885         struct e1000_hw *hw = &adapter->hw;
886
887         adapter->eims_enable_mask = 0;
888
889         /* set vector for other causes, i.e. link changes */
890         switch (hw->mac.type) {
891         case e1000_82575:
892                 tmp = rd32(E1000_CTRL_EXT);
893                 /* enable MSI-X PBA support*/
894                 tmp |= E1000_CTRL_EXT_PBA_CLR;
895
896                 /* Auto-Mask interrupts upon ICR read. */
897                 tmp |= E1000_CTRL_EXT_EIAME;
898                 tmp |= E1000_CTRL_EXT_IRCA;
899
900                 wr32(E1000_CTRL_EXT, tmp);
901
902                 /* enable msix_other interrupt */
903                 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
904                 adapter->eims_other = E1000_EIMS_OTHER;
905
906                 break;
907
908         case e1000_82576:
909         case e1000_82580:
910         case e1000_i350:
911         case e1000_i354:
912         case e1000_i210:
913         case e1000_i211:
914                 /* Turn on MSI-X capability first, or our settings
915                  * won't stick.  And it will take days to debug.
916                  */
917                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
918                      E1000_GPIE_PBA | E1000_GPIE_EIAME |
919                      E1000_GPIE_NSICR);
920
921                 /* enable msix_other interrupt */
922                 adapter->eims_other = BIT(vector);
923                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
924
925                 wr32(E1000_IVAR_MISC, tmp);
926                 break;
927         default:
928                 /* do nothing, since nothing else supports MSI-X */
929                 break;
930         } /* switch (hw->mac.type) */
931
932         adapter->eims_enable_mask |= adapter->eims_other;
933
934         for (i = 0; i < adapter->num_q_vectors; i++)
935                 igb_assign_vector(adapter->q_vector[i], vector++);
936
937         wrfl();
938 }
939
940 /**
941  *  igb_request_msix - Initialize MSI-X interrupts
942  *  @adapter: board private structure to initialize
943  *
944  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
945  *  kernel.
946  **/
947 static int igb_request_msix(struct igb_adapter *adapter)
948 {
949         struct net_device *netdev = adapter->netdev;
950         int i, err = 0, vector = 0, free_vector = 0;
951
952         err = request_irq(adapter->msix_entries[vector].vector,
953                           igb_msix_other, 0, netdev->name, adapter);
954         if (err)
955                 goto err_out;
956
957         for (i = 0; i < adapter->num_q_vectors; i++) {
958                 struct igb_q_vector *q_vector = adapter->q_vector[i];
959
960                 vector++;
961
962                 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
963
964                 if (q_vector->rx.ring && q_vector->tx.ring)
965                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
966                                 q_vector->rx.ring->queue_index);
967                 else if (q_vector->tx.ring)
968                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
969                                 q_vector->tx.ring->queue_index);
970                 else if (q_vector->rx.ring)
971                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
972                                 q_vector->rx.ring->queue_index);
973                 else
974                         sprintf(q_vector->name, "%s-unused", netdev->name);
975
976                 err = request_irq(adapter->msix_entries[vector].vector,
977                                   igb_msix_ring, 0, q_vector->name,
978                                   q_vector);
979                 if (err)
980                         goto err_free;
981         }
982
983         igb_configure_msix(adapter);
984         return 0;
985
986 err_free:
987         /* free already assigned IRQs */
988         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
989
990         vector--;
991         for (i = 0; i < vector; i++) {
992                 free_irq(adapter->msix_entries[free_vector++].vector,
993                          adapter->q_vector[i]);
994         }
995 err_out:
996         return err;
997 }
998
999 /**
1000  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1001  *  @adapter: board private structure to initialize
1002  *  @v_idx: Index of vector to be freed
1003  *
1004  *  This function frees the memory allocated to the q_vector.
1005  **/
1006 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1007 {
1008         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1009
1010         adapter->q_vector[v_idx] = NULL;
1011
1012         /* igb_get_stats64() might access the rings on this vector,
1013          * we must wait a grace period before freeing it.
1014          */
1015         if (q_vector)
1016                 kfree_rcu(q_vector, rcu);
1017 }
1018
1019 /**
1020  *  igb_reset_q_vector - Reset config for interrupt vector
1021  *  @adapter: board private structure to initialize
1022  *  @v_idx: Index of vector to be reset
1023  *
1024  *  If NAPI is enabled it will delete any references to the
1025  *  NAPI struct. This is preparation for igb_free_q_vector.
1026  **/
1027 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1028 {
1029         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1030
1031         /* Coming from igb_set_interrupt_capability, the vectors are not yet
1032          * allocated. So, q_vector is NULL so we should stop here.
1033          */
1034         if (!q_vector)
1035                 return;
1036
1037         if (q_vector->tx.ring)
1038                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1039
1040         if (q_vector->rx.ring)
1041                 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1042
1043         netif_napi_del(&q_vector->napi);
1044
1045 }
1046
1047 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1048 {
1049         int v_idx = adapter->num_q_vectors;
1050
1051         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1052                 pci_disable_msix(adapter->pdev);
1053         else if (adapter->flags & IGB_FLAG_HAS_MSI)
1054                 pci_disable_msi(adapter->pdev);
1055
1056         while (v_idx--)
1057                 igb_reset_q_vector(adapter, v_idx);
1058 }
1059
1060 /**
1061  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1062  *  @adapter: board private structure to initialize
1063  *
1064  *  This function frees the memory allocated to the q_vectors.  In addition if
1065  *  NAPI is enabled it will delete any references to the NAPI struct prior
1066  *  to freeing the q_vector.
1067  **/
1068 static void igb_free_q_vectors(struct igb_adapter *adapter)
1069 {
1070         int v_idx = adapter->num_q_vectors;
1071
1072         adapter->num_tx_queues = 0;
1073         adapter->num_rx_queues = 0;
1074         adapter->num_q_vectors = 0;
1075
1076         while (v_idx--) {
1077                 igb_reset_q_vector(adapter, v_idx);
1078                 igb_free_q_vector(adapter, v_idx);
1079         }
1080 }
1081
1082 /**
1083  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1084  *  @adapter: board private structure to initialize
1085  *
1086  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1087  *  MSI-X interrupts allocated.
1088  */
1089 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1090 {
1091         igb_free_q_vectors(adapter);
1092         igb_reset_interrupt_capability(adapter);
1093 }
1094
1095 /**
1096  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1097  *  @adapter: board private structure to initialize
1098  *  @msix: boolean value of MSIX capability
1099  *
1100  *  Attempt to configure interrupts using the best available
1101  *  capabilities of the hardware and kernel.
1102  **/
1103 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1104 {
1105         int err;
1106         int numvecs, i;
1107
1108         if (!msix)
1109                 goto msi_only;
1110         adapter->flags |= IGB_FLAG_HAS_MSIX;
1111
1112         /* Number of supported queues. */
1113         adapter->num_rx_queues = adapter->rss_queues;
1114         if (adapter->vfs_allocated_count)
1115                 adapter->num_tx_queues = 1;
1116         else
1117                 adapter->num_tx_queues = adapter->rss_queues;
1118
1119         /* start with one vector for every Rx queue */
1120         numvecs = adapter->num_rx_queues;
1121
1122         /* if Tx handler is separate add 1 for every Tx queue */
1123         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1124                 numvecs += adapter->num_tx_queues;
1125
1126         /* store the number of vectors reserved for queues */
1127         adapter->num_q_vectors = numvecs;
1128
1129         /* add 1 vector for link status interrupts */
1130         numvecs++;
1131         for (i = 0; i < numvecs; i++)
1132                 adapter->msix_entries[i].entry = i;
1133
1134         err = pci_enable_msix_range(adapter->pdev,
1135                                     adapter->msix_entries,
1136                                     numvecs,
1137                                     numvecs);
1138         if (err > 0)
1139                 return;
1140
1141         igb_reset_interrupt_capability(adapter);
1142
1143         /* If we can't do MSI-X, try MSI */
1144 msi_only:
1145         adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1146 #ifdef CONFIG_PCI_IOV
1147         /* disable SR-IOV for non MSI-X configurations */
1148         if (adapter->vf_data) {
1149                 struct e1000_hw *hw = &adapter->hw;
1150                 /* disable iov and allow time for transactions to clear */
1151                 pci_disable_sriov(adapter->pdev);
1152                 msleep(500);
1153
1154                 kfree(adapter->vf_data);
1155                 adapter->vf_data = NULL;
1156                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1157                 wrfl();
1158                 msleep(100);
1159                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1160         }
1161 #endif
1162         adapter->vfs_allocated_count = 0;
1163         adapter->rss_queues = 1;
1164         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1165         adapter->num_rx_queues = 1;
1166         adapter->num_tx_queues = 1;
1167         adapter->num_q_vectors = 1;
1168         if (!pci_enable_msi(adapter->pdev))
1169                 adapter->flags |= IGB_FLAG_HAS_MSI;
1170 }
1171
1172 static void igb_add_ring(struct igb_ring *ring,
1173                          struct igb_ring_container *head)
1174 {
1175         head->ring = ring;
1176         head->count++;
1177 }
1178
1179 /**
1180  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1181  *  @adapter: board private structure to initialize
1182  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1183  *  @v_idx: index of vector in adapter struct
1184  *  @txr_count: total number of Tx rings to allocate
1185  *  @txr_idx: index of first Tx ring to allocate
1186  *  @rxr_count: total number of Rx rings to allocate
1187  *  @rxr_idx: index of first Rx ring to allocate
1188  *
1189  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1190  **/
1191 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1192                               int v_count, int v_idx,
1193                               int txr_count, int txr_idx,
1194                               int rxr_count, int rxr_idx)
1195 {
1196         struct igb_q_vector *q_vector;
1197         struct igb_ring *ring;
1198         int ring_count, size;
1199
1200         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1201         if (txr_count > 1 || rxr_count > 1)
1202                 return -ENOMEM;
1203
1204         ring_count = txr_count + rxr_count;
1205         size = sizeof(struct igb_q_vector) +
1206                (sizeof(struct igb_ring) * ring_count);
1207
1208         /* allocate q_vector and rings */
1209         q_vector = adapter->q_vector[v_idx];
1210         if (!q_vector) {
1211                 q_vector = kzalloc(size, GFP_KERNEL);
1212         } else if (size > ksize(q_vector)) {
1213                 kfree_rcu(q_vector, rcu);
1214                 q_vector = kzalloc(size, GFP_KERNEL);
1215         } else {
1216                 memset(q_vector, 0, size);
1217         }
1218         if (!q_vector)
1219                 return -ENOMEM;
1220
1221         /* initialize NAPI */
1222         netif_napi_add(adapter->netdev, &q_vector->napi,
1223                        igb_poll, 64);
1224
1225         /* tie q_vector and adapter together */
1226         adapter->q_vector[v_idx] = q_vector;
1227         q_vector->adapter = adapter;
1228
1229         /* initialize work limits */
1230         q_vector->tx.work_limit = adapter->tx_work_limit;
1231
1232         /* initialize ITR configuration */
1233         q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1234         q_vector->itr_val = IGB_START_ITR;
1235
1236         /* initialize pointer to rings */
1237         ring = q_vector->ring;
1238
1239         /* intialize ITR */
1240         if (rxr_count) {
1241                 /* rx or rx/tx vector */
1242                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1243                         q_vector->itr_val = adapter->rx_itr_setting;
1244         } else {
1245                 /* tx only vector */
1246                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1247                         q_vector->itr_val = adapter->tx_itr_setting;
1248         }
1249
1250         if (txr_count) {
1251                 /* assign generic ring traits */
1252                 ring->dev = &adapter->pdev->dev;
1253                 ring->netdev = adapter->netdev;
1254
1255                 /* configure backlink on ring */
1256                 ring->q_vector = q_vector;
1257
1258                 /* update q_vector Tx values */
1259                 igb_add_ring(ring, &q_vector->tx);
1260
1261                 /* For 82575, context index must be unique per ring. */
1262                 if (adapter->hw.mac.type == e1000_82575)
1263                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1264
1265                 /* apply Tx specific ring traits */
1266                 ring->count = adapter->tx_ring_count;
1267                 ring->queue_index = txr_idx;
1268
1269                 u64_stats_init(&ring->tx_syncp);
1270                 u64_stats_init(&ring->tx_syncp2);
1271
1272                 /* assign ring to adapter */
1273                 adapter->tx_ring[txr_idx] = ring;
1274
1275                 /* push pointer to next ring */
1276                 ring++;
1277         }
1278
1279         if (rxr_count) {
1280                 /* assign generic ring traits */
1281                 ring->dev = &adapter->pdev->dev;
1282                 ring->netdev = adapter->netdev;
1283
1284                 /* configure backlink on ring */
1285                 ring->q_vector = q_vector;
1286
1287                 /* update q_vector Rx values */
1288                 igb_add_ring(ring, &q_vector->rx);
1289
1290                 /* set flag indicating ring supports SCTP checksum offload */
1291                 if (adapter->hw.mac.type >= e1000_82576)
1292                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1293
1294                 /* On i350, i354, i210, and i211, loopback VLAN packets
1295                  * have the tag byte-swapped.
1296                  */
1297                 if (adapter->hw.mac.type >= e1000_i350)
1298                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1299
1300                 /* apply Rx specific ring traits */
1301                 ring->count = adapter->rx_ring_count;
1302                 ring->queue_index = rxr_idx;
1303
1304                 u64_stats_init(&ring->rx_syncp);
1305
1306                 /* assign ring to adapter */
1307                 adapter->rx_ring[rxr_idx] = ring;
1308         }
1309
1310         return 0;
1311 }
1312
1313
1314 /**
1315  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1316  *  @adapter: board private structure to initialize
1317  *
1318  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1319  *  return -ENOMEM.
1320  **/
1321 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1322 {
1323         int q_vectors = adapter->num_q_vectors;
1324         int rxr_remaining = adapter->num_rx_queues;
1325         int txr_remaining = adapter->num_tx_queues;
1326         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1327         int err;
1328
1329         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1330                 for (; rxr_remaining; v_idx++) {
1331                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1332                                                  0, 0, 1, rxr_idx);
1333
1334                         if (err)
1335                                 goto err_out;
1336
1337                         /* update counts and index */
1338                         rxr_remaining--;
1339                         rxr_idx++;
1340                 }
1341         }
1342
1343         for (; v_idx < q_vectors; v_idx++) {
1344                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1345                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1346
1347                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1348                                          tqpv, txr_idx, rqpv, rxr_idx);
1349
1350                 if (err)
1351                         goto err_out;
1352
1353                 /* update counts and index */
1354                 rxr_remaining -= rqpv;
1355                 txr_remaining -= tqpv;
1356                 rxr_idx++;
1357                 txr_idx++;
1358         }
1359
1360         return 0;
1361
1362 err_out:
1363         adapter->num_tx_queues = 0;
1364         adapter->num_rx_queues = 0;
1365         adapter->num_q_vectors = 0;
1366
1367         while (v_idx--)
1368                 igb_free_q_vector(adapter, v_idx);
1369
1370         return -ENOMEM;
1371 }
1372
1373 /**
1374  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1375  *  @adapter: board private structure to initialize
1376  *  @msix: boolean value of MSIX capability
1377  *
1378  *  This function initializes the interrupts and allocates all of the queues.
1379  **/
1380 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1381 {
1382         struct pci_dev *pdev = adapter->pdev;
1383         int err;
1384
1385         igb_set_interrupt_capability(adapter, msix);
1386
1387         err = igb_alloc_q_vectors(adapter);
1388         if (err) {
1389                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1390                 goto err_alloc_q_vectors;
1391         }
1392
1393         igb_cache_ring_register(adapter);
1394
1395         return 0;
1396
1397 err_alloc_q_vectors:
1398         igb_reset_interrupt_capability(adapter);
1399         return err;
1400 }
1401
1402 /**
1403  *  igb_request_irq - initialize interrupts
1404  *  @adapter: board private structure to initialize
1405  *
1406  *  Attempts to configure interrupts using the best available
1407  *  capabilities of the hardware and kernel.
1408  **/
1409 static int igb_request_irq(struct igb_adapter *adapter)
1410 {
1411         struct net_device *netdev = adapter->netdev;
1412         struct pci_dev *pdev = adapter->pdev;
1413         int err = 0;
1414
1415         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1416                 err = igb_request_msix(adapter);
1417                 if (!err)
1418                         goto request_done;
1419                 /* fall back to MSI */
1420                 igb_free_all_tx_resources(adapter);
1421                 igb_free_all_rx_resources(adapter);
1422
1423                 igb_clear_interrupt_scheme(adapter);
1424                 err = igb_init_interrupt_scheme(adapter, false);
1425                 if (err)
1426                         goto request_done;
1427
1428                 igb_setup_all_tx_resources(adapter);
1429                 igb_setup_all_rx_resources(adapter);
1430                 igb_configure(adapter);
1431         }
1432
1433         igb_assign_vector(adapter->q_vector[0], 0);
1434
1435         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1436                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1437                                   netdev->name, adapter);
1438                 if (!err)
1439                         goto request_done;
1440
1441                 /* fall back to legacy interrupts */
1442                 igb_reset_interrupt_capability(adapter);
1443                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1444         }
1445
1446         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1447                           netdev->name, adapter);
1448
1449         if (err)
1450                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1451                         err);
1452
1453 request_done:
1454         return err;
1455 }
1456
1457 static void igb_free_irq(struct igb_adapter *adapter)
1458 {
1459         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1460                 int vector = 0, i;
1461
1462                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1463
1464                 for (i = 0; i < adapter->num_q_vectors; i++)
1465                         free_irq(adapter->msix_entries[vector++].vector,
1466                                  adapter->q_vector[i]);
1467         } else {
1468                 free_irq(adapter->pdev->irq, adapter);
1469         }
1470 }
1471
1472 /**
1473  *  igb_irq_disable - Mask off interrupt generation on the NIC
1474  *  @adapter: board private structure
1475  **/
1476 static void igb_irq_disable(struct igb_adapter *adapter)
1477 {
1478         struct e1000_hw *hw = &adapter->hw;
1479
1480         /* we need to be careful when disabling interrupts.  The VFs are also
1481          * mapped into these registers and so clearing the bits can cause
1482          * issues on the VF drivers so we only need to clear what we set
1483          */
1484         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485                 u32 regval = rd32(E1000_EIAM);
1486
1487                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1488                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1489                 regval = rd32(E1000_EIAC);
1490                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1491         }
1492
1493         wr32(E1000_IAM, 0);
1494         wr32(E1000_IMC, ~0);
1495         wrfl();
1496         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1497                 int i;
1498
1499                 for (i = 0; i < adapter->num_q_vectors; i++)
1500                         synchronize_irq(adapter->msix_entries[i].vector);
1501         } else {
1502                 synchronize_irq(adapter->pdev->irq);
1503         }
1504 }
1505
1506 /**
1507  *  igb_irq_enable - Enable default interrupt generation settings
1508  *  @adapter: board private structure
1509  **/
1510 static void igb_irq_enable(struct igb_adapter *adapter)
1511 {
1512         struct e1000_hw *hw = &adapter->hw;
1513
1514         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1515                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1516                 u32 regval = rd32(E1000_EIAC);
1517
1518                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1519                 regval = rd32(E1000_EIAM);
1520                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1521                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1522                 if (adapter->vfs_allocated_count) {
1523                         wr32(E1000_MBVFIMR, 0xFF);
1524                         ims |= E1000_IMS_VMMB;
1525                 }
1526                 wr32(E1000_IMS, ims);
1527         } else {
1528                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1529                                 E1000_IMS_DRSTA);
1530                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1531                                 E1000_IMS_DRSTA);
1532         }
1533 }
1534
1535 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1536 {
1537         struct e1000_hw *hw = &adapter->hw;
1538         u16 pf_id = adapter->vfs_allocated_count;
1539         u16 vid = adapter->hw.mng_cookie.vlan_id;
1540         u16 old_vid = adapter->mng_vlan_id;
1541
1542         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1543                 /* add VID to filter table */
1544                 igb_vfta_set(hw, vid, pf_id, true, true);
1545                 adapter->mng_vlan_id = vid;
1546         } else {
1547                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1548         }
1549
1550         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1551             (vid != old_vid) &&
1552             !test_bit(old_vid, adapter->active_vlans)) {
1553                 /* remove VID from filter table */
1554                 igb_vfta_set(hw, vid, pf_id, false, true);
1555         }
1556 }
1557
1558 /**
1559  *  igb_release_hw_control - release control of the h/w to f/w
1560  *  @adapter: address of board private structure
1561  *
1562  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1563  *  For ASF and Pass Through versions of f/w this means that the
1564  *  driver is no longer loaded.
1565  **/
1566 static void igb_release_hw_control(struct igb_adapter *adapter)
1567 {
1568         struct e1000_hw *hw = &adapter->hw;
1569         u32 ctrl_ext;
1570
1571         /* Let firmware take over control of h/w */
1572         ctrl_ext = rd32(E1000_CTRL_EXT);
1573         wr32(E1000_CTRL_EXT,
1574                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1575 }
1576
1577 /**
1578  *  igb_get_hw_control - get control of the h/w from f/w
1579  *  @adapter: address of board private structure
1580  *
1581  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1582  *  For ASF and Pass Through versions of f/w this means that
1583  *  the driver is loaded.
1584  **/
1585 static void igb_get_hw_control(struct igb_adapter *adapter)
1586 {
1587         struct e1000_hw *hw = &adapter->hw;
1588         u32 ctrl_ext;
1589
1590         /* Let firmware know the driver has taken over */
1591         ctrl_ext = rd32(E1000_CTRL_EXT);
1592         wr32(E1000_CTRL_EXT,
1593                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1594 }
1595
1596 /**
1597  *  igb_configure - configure the hardware for RX and TX
1598  *  @adapter: private board structure
1599  **/
1600 static void igb_configure(struct igb_adapter *adapter)
1601 {
1602         struct net_device *netdev = adapter->netdev;
1603         int i;
1604
1605         igb_get_hw_control(adapter);
1606         igb_set_rx_mode(netdev);
1607
1608         igb_restore_vlan(adapter);
1609
1610         igb_setup_tctl(adapter);
1611         igb_setup_mrqc(adapter);
1612         igb_setup_rctl(adapter);
1613
1614         igb_configure_tx(adapter);
1615         igb_configure_rx(adapter);
1616
1617         igb_rx_fifo_flush_82575(&adapter->hw);
1618
1619         /* call igb_desc_unused which always leaves
1620          * at least 1 descriptor unused to make sure
1621          * next_to_use != next_to_clean
1622          */
1623         for (i = 0; i < adapter->num_rx_queues; i++) {
1624                 struct igb_ring *ring = adapter->rx_ring[i];
1625                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1626         }
1627 }
1628
1629 /**
1630  *  igb_power_up_link - Power up the phy/serdes link
1631  *  @adapter: address of board private structure
1632  **/
1633 void igb_power_up_link(struct igb_adapter *adapter)
1634 {
1635         igb_reset_phy(&adapter->hw);
1636
1637         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1638                 igb_power_up_phy_copper(&adapter->hw);
1639         else
1640                 igb_power_up_serdes_link_82575(&adapter->hw);
1641
1642         igb_setup_link(&adapter->hw);
1643 }
1644
1645 /**
1646  *  igb_power_down_link - Power down the phy/serdes link
1647  *  @adapter: address of board private structure
1648  */
1649 static void igb_power_down_link(struct igb_adapter *adapter)
1650 {
1651         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1652                 igb_power_down_phy_copper_82575(&adapter->hw);
1653         else
1654                 igb_shutdown_serdes_link_82575(&adapter->hw);
1655 }
1656
1657 /**
1658  * Detect and switch function for Media Auto Sense
1659  * @adapter: address of the board private structure
1660  **/
1661 static void igb_check_swap_media(struct igb_adapter *adapter)
1662 {
1663         struct e1000_hw *hw = &adapter->hw;
1664         u32 ctrl_ext, connsw;
1665         bool swap_now = false;
1666
1667         ctrl_ext = rd32(E1000_CTRL_EXT);
1668         connsw = rd32(E1000_CONNSW);
1669
1670         /* need to live swap if current media is copper and we have fiber/serdes
1671          * to go to.
1672          */
1673
1674         if ((hw->phy.media_type == e1000_media_type_copper) &&
1675             (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1676                 swap_now = true;
1677         } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1678                 /* copper signal takes time to appear */
1679                 if (adapter->copper_tries < 4) {
1680                         adapter->copper_tries++;
1681                         connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1682                         wr32(E1000_CONNSW, connsw);
1683                         return;
1684                 } else {
1685                         adapter->copper_tries = 0;
1686                         if ((connsw & E1000_CONNSW_PHYSD) &&
1687                             (!(connsw & E1000_CONNSW_PHY_PDN))) {
1688                                 swap_now = true;
1689                                 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1690                                 wr32(E1000_CONNSW, connsw);
1691                         }
1692                 }
1693         }
1694
1695         if (!swap_now)
1696                 return;
1697
1698         switch (hw->phy.media_type) {
1699         case e1000_media_type_copper:
1700                 netdev_info(adapter->netdev,
1701                         "MAS: changing media to fiber/serdes\n");
1702                 ctrl_ext |=
1703                         E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1704                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1705                 adapter->copper_tries = 0;
1706                 break;
1707         case e1000_media_type_internal_serdes:
1708         case e1000_media_type_fiber:
1709                 netdev_info(adapter->netdev,
1710                         "MAS: changing media to copper\n");
1711                 ctrl_ext &=
1712                         ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1713                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1714                 break;
1715         default:
1716                 /* shouldn't get here during regular operation */
1717                 netdev_err(adapter->netdev,
1718                         "AMS: Invalid media type found, returning\n");
1719                 break;
1720         }
1721         wr32(E1000_CTRL_EXT, ctrl_ext);
1722 }
1723
1724 /**
1725  *  igb_up - Open the interface and prepare it to handle traffic
1726  *  @adapter: board private structure
1727  **/
1728 int igb_up(struct igb_adapter *adapter)
1729 {
1730         struct e1000_hw *hw = &adapter->hw;
1731         int i;
1732
1733         /* hardware has been reset, we need to reload some things */
1734         igb_configure(adapter);
1735
1736         clear_bit(__IGB_DOWN, &adapter->state);
1737
1738         for (i = 0; i < adapter->num_q_vectors; i++)
1739                 napi_enable(&(adapter->q_vector[i]->napi));
1740
1741         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1742                 igb_configure_msix(adapter);
1743         else
1744                 igb_assign_vector(adapter->q_vector[0], 0);
1745
1746         /* Clear any pending interrupts. */
1747         rd32(E1000_ICR);
1748         igb_irq_enable(adapter);
1749
1750         /* notify VFs that reset has been completed */
1751         if (adapter->vfs_allocated_count) {
1752                 u32 reg_data = rd32(E1000_CTRL_EXT);
1753
1754                 reg_data |= E1000_CTRL_EXT_PFRSTD;
1755                 wr32(E1000_CTRL_EXT, reg_data);
1756         }
1757
1758         netif_tx_start_all_queues(adapter->netdev);
1759
1760         /* start the watchdog. */
1761         hw->mac.get_link_status = 1;
1762         schedule_work(&adapter->watchdog_task);
1763
1764         if ((adapter->flags & IGB_FLAG_EEE) &&
1765             (!hw->dev_spec._82575.eee_disable))
1766                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1767
1768         return 0;
1769 }
1770
1771 void igb_down(struct igb_adapter *adapter)
1772 {
1773         struct net_device *netdev = adapter->netdev;
1774         struct e1000_hw *hw = &adapter->hw;
1775         u32 tctl, rctl;
1776         int i;
1777
1778         /* signal that we're down so the interrupt handler does not
1779          * reschedule our watchdog timer
1780          */
1781         set_bit(__IGB_DOWN, &adapter->state);
1782
1783         /* disable receives in the hardware */
1784         rctl = rd32(E1000_RCTL);
1785         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1786         /* flush and sleep below */
1787
1788         netif_carrier_off(netdev);
1789         netif_tx_stop_all_queues(netdev);
1790
1791         /* disable transmits in the hardware */
1792         tctl = rd32(E1000_TCTL);
1793         tctl &= ~E1000_TCTL_EN;
1794         wr32(E1000_TCTL, tctl);
1795         /* flush both disables and wait for them to finish */
1796         wrfl();
1797         usleep_range(10000, 11000);
1798
1799         igb_irq_disable(adapter);
1800
1801         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1802
1803         for (i = 0; i < adapter->num_q_vectors; i++) {
1804                 if (adapter->q_vector[i]) {
1805                         napi_synchronize(&adapter->q_vector[i]->napi);
1806                         napi_disable(&adapter->q_vector[i]->napi);
1807                 }
1808         }
1809
1810         del_timer_sync(&adapter->watchdog_timer);
1811         del_timer_sync(&adapter->phy_info_timer);
1812
1813         /* record the stats before reset*/
1814         spin_lock(&adapter->stats64_lock);
1815         igb_update_stats(adapter, &adapter->stats64);
1816         spin_unlock(&adapter->stats64_lock);
1817
1818         adapter->link_speed = 0;
1819         adapter->link_duplex = 0;
1820
1821         if (!pci_channel_offline(adapter->pdev))
1822                 igb_reset(adapter);
1823
1824         /* clear VLAN promisc flag so VFTA will be updated if necessary */
1825         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
1826
1827         igb_clean_all_tx_rings(adapter);
1828         igb_clean_all_rx_rings(adapter);
1829 #ifdef CONFIG_IGB_DCA
1830
1831         /* since we reset the hardware DCA settings were cleared */
1832         igb_setup_dca(adapter);
1833 #endif
1834 }
1835
1836 void igb_reinit_locked(struct igb_adapter *adapter)
1837 {
1838         WARN_ON(in_interrupt());
1839         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1840                 usleep_range(1000, 2000);
1841         igb_down(adapter);
1842         igb_up(adapter);
1843         clear_bit(__IGB_RESETTING, &adapter->state);
1844 }
1845
1846 /** igb_enable_mas - Media Autosense re-enable after swap
1847  *
1848  * @adapter: adapter struct
1849  **/
1850 static void igb_enable_mas(struct igb_adapter *adapter)
1851 {
1852         struct e1000_hw *hw = &adapter->hw;
1853         u32 connsw = rd32(E1000_CONNSW);
1854
1855         /* configure for SerDes media detect */
1856         if ((hw->phy.media_type == e1000_media_type_copper) &&
1857             (!(connsw & E1000_CONNSW_SERDESD))) {
1858                 connsw |= E1000_CONNSW_ENRGSRC;
1859                 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1860                 wr32(E1000_CONNSW, connsw);
1861                 wrfl();
1862         }
1863 }
1864
1865 void igb_reset(struct igb_adapter *adapter)
1866 {
1867         struct pci_dev *pdev = adapter->pdev;
1868         struct e1000_hw *hw = &adapter->hw;
1869         struct e1000_mac_info *mac = &hw->mac;
1870         struct e1000_fc_info *fc = &hw->fc;
1871         u32 pba, hwm;
1872
1873         /* Repartition Pba for greater than 9k mtu
1874          * To take effect CTRL.RST is required.
1875          */
1876         switch (mac->type) {
1877         case e1000_i350:
1878         case e1000_i354:
1879         case e1000_82580:
1880                 pba = rd32(E1000_RXPBS);
1881                 pba = igb_rxpbs_adjust_82580(pba);
1882                 break;
1883         case e1000_82576:
1884                 pba = rd32(E1000_RXPBS);
1885                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1886                 break;
1887         case e1000_82575:
1888         case e1000_i210:
1889         case e1000_i211:
1890         default:
1891                 pba = E1000_PBA_34K;
1892                 break;
1893         }
1894
1895         if (mac->type == e1000_82575) {
1896                 u32 min_rx_space, min_tx_space, needed_tx_space;
1897
1898                 /* write Rx PBA so that hardware can report correct Tx PBA */
1899                 wr32(E1000_PBA, pba);
1900
1901                 /* To maintain wire speed transmits, the Tx FIFO should be
1902                  * large enough to accommodate two full transmit packets,
1903                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1904                  * the Rx FIFO should be large enough to accommodate at least
1905                  * one full receive packet and is similarly rounded up and
1906                  * expressed in KB.
1907                  */
1908                 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
1909
1910                 /* The Tx FIFO also stores 16 bytes of information about the Tx
1911                  * but don't include Ethernet FCS because hardware appends it.
1912                  * We only need to round down to the nearest 512 byte block
1913                  * count since the value we care about is 2 frames, not 1.
1914                  */
1915                 min_tx_space = adapter->max_frame_size;
1916                 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
1917                 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
1918
1919                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1920                 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
1921
1922                 /* If current Tx allocation is less than the min Tx FIFO size,
1923                  * and the min Tx FIFO size is less than the current Rx FIFO
1924                  * allocation, take space away from current Rx allocation.
1925                  */
1926                 if (needed_tx_space < pba) {
1927                         pba -= needed_tx_space;
1928
1929                         /* if short on Rx space, Rx wins and must trump Tx
1930                          * adjustment
1931                          */
1932                         if (pba < min_rx_space)
1933                                 pba = min_rx_space;
1934                 }
1935
1936                 /* adjust PBA for jumbo frames */
1937                 wr32(E1000_PBA, pba);
1938         }
1939
1940         /* flow control settings
1941          * The high water mark must be low enough to fit one full frame
1942          * after transmitting the pause frame.  As such we must have enough
1943          * space to allow for us to complete our current transmit and then
1944          * receive the frame that is in progress from the link partner.
1945          * Set it to:
1946          * - the full Rx FIFO size minus one full Tx plus one full Rx frame
1947          */
1948         hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
1949
1950         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
1951         fc->low_water = fc->high_water - 16;
1952         fc->pause_time = 0xFFFF;
1953         fc->send_xon = 1;
1954         fc->current_mode = fc->requested_mode;
1955
1956         /* disable receive for all VFs and wait one second */
1957         if (adapter->vfs_allocated_count) {
1958                 int i;
1959
1960                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1961                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1962
1963                 /* ping all the active vfs to let them know we are going down */
1964                 igb_ping_all_vfs(adapter);
1965
1966                 /* disable transmits and receives */
1967                 wr32(E1000_VFRE, 0);
1968                 wr32(E1000_VFTE, 0);
1969         }
1970
1971         /* Allow time for pending master requests to run */
1972         hw->mac.ops.reset_hw(hw);
1973         wr32(E1000_WUC, 0);
1974
1975         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1976                 /* need to resetup here after media swap */
1977                 adapter->ei.get_invariants(hw);
1978                 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1979         }
1980         if ((mac->type == e1000_82575) &&
1981             (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1982                 igb_enable_mas(adapter);
1983         }
1984         if (hw->mac.ops.init_hw(hw))
1985                 dev_err(&pdev->dev, "Hardware Error\n");
1986
1987         /* Flow control settings reset on hardware reset, so guarantee flow
1988          * control is off when forcing speed.
1989          */
1990         if (!hw->mac.autoneg)
1991                 igb_force_mac_fc(hw);
1992
1993         igb_init_dmac(adapter, pba);
1994 #ifdef CONFIG_IGB_HWMON
1995         /* Re-initialize the thermal sensor on i350 devices. */
1996         if (!test_bit(__IGB_DOWN, &adapter->state)) {
1997                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1998                         /* If present, re-initialize the external thermal sensor
1999                          * interface.
2000                          */
2001                         if (adapter->ets)
2002                                 mac->ops.init_thermal_sensor_thresh(hw);
2003                 }
2004         }
2005 #endif
2006         /* Re-establish EEE setting */
2007         if (hw->phy.media_type == e1000_media_type_copper) {
2008                 switch (mac->type) {
2009                 case e1000_i350:
2010                 case e1000_i210:
2011                 case e1000_i211:
2012                         igb_set_eee_i350(hw, true, true);
2013                         break;
2014                 case e1000_i354:
2015                         igb_set_eee_i354(hw, true, true);
2016                         break;
2017                 default:
2018                         break;
2019                 }
2020         }
2021         if (!netif_running(adapter->netdev))
2022                 igb_power_down_link(adapter);
2023
2024         igb_update_mng_vlan(adapter);
2025
2026         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2027         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2028
2029         /* Re-enable PTP, where applicable. */
2030         if (adapter->ptp_flags & IGB_PTP_ENABLED)
2031                 igb_ptp_reset(adapter);
2032
2033         igb_get_phy_info(hw);
2034 }
2035
2036 static netdev_features_t igb_fix_features(struct net_device *netdev,
2037         netdev_features_t features)
2038 {
2039         /* Since there is no support for separate Rx/Tx vlan accel
2040          * enable/disable make sure Tx flag is always in same state as Rx.
2041          */
2042         if (features & NETIF_F_HW_VLAN_CTAG_RX)
2043                 features |= NETIF_F_HW_VLAN_CTAG_TX;
2044         else
2045                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2046
2047         return features;
2048 }
2049
2050 static int igb_set_features(struct net_device *netdev,
2051         netdev_features_t features)
2052 {
2053         netdev_features_t changed = netdev->features ^ features;
2054         struct igb_adapter *adapter = netdev_priv(netdev);
2055
2056         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2057                 igb_vlan_mode(netdev, features);
2058
2059         if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2060                 return 0;
2061
2062         netdev->features = features;
2063
2064         if (netif_running(netdev))
2065                 igb_reinit_locked(adapter);
2066         else
2067                 igb_reset(adapter);
2068
2069         return 0;
2070 }
2071
2072 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2073                            struct net_device *dev,
2074                            const unsigned char *addr, u16 vid,
2075                            u16 flags)
2076 {
2077         /* guarantee we can provide a unique filter for the unicast address */
2078         if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2079                 struct igb_adapter *adapter = netdev_priv(dev);
2080                 struct e1000_hw *hw = &adapter->hw;
2081                 int vfn = adapter->vfs_allocated_count;
2082                 int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2083
2084                 if (netdev_uc_count(dev) >= rar_entries)
2085                         return -ENOMEM;
2086         }
2087
2088         return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2089 }
2090
2091 #define IGB_MAX_MAC_HDR_LEN     127
2092 #define IGB_MAX_NETWORK_HDR_LEN 511
2093
2094 static netdev_features_t
2095 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2096                    netdev_features_t features)
2097 {
2098         unsigned int network_hdr_len, mac_hdr_len;
2099
2100         /* Make certain the headers can be described by a context descriptor */
2101         mac_hdr_len = skb_network_header(skb) - skb->data;
2102         if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2103                 return features & ~(NETIF_F_HW_CSUM |
2104                                     NETIF_F_SCTP_CRC |
2105                                     NETIF_F_HW_VLAN_CTAG_TX |
2106                                     NETIF_F_TSO |
2107                                     NETIF_F_TSO6);
2108
2109         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2110         if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2111                 return features & ~(NETIF_F_HW_CSUM |
2112                                     NETIF_F_SCTP_CRC |
2113                                     NETIF_F_TSO |
2114                                     NETIF_F_TSO6);
2115
2116         /* We can only support IPV4 TSO in tunnels if we can mangle the
2117          * inner IP ID field, so strip TSO if MANGLEID is not supported.
2118          */
2119         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2120                 features &= ~NETIF_F_TSO;
2121
2122         return features;
2123 }
2124
2125 static const struct net_device_ops igb_netdev_ops = {
2126         .ndo_open               = igb_open,
2127         .ndo_stop               = igb_close,
2128         .ndo_start_xmit         = igb_xmit_frame,
2129         .ndo_get_stats64        = igb_get_stats64,
2130         .ndo_set_rx_mode        = igb_set_rx_mode,
2131         .ndo_set_mac_address    = igb_set_mac,
2132         .ndo_change_mtu         = igb_change_mtu,
2133         .ndo_do_ioctl           = igb_ioctl,
2134         .ndo_tx_timeout         = igb_tx_timeout,
2135         .ndo_validate_addr      = eth_validate_addr,
2136         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2137         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2138         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
2139         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
2140         .ndo_set_vf_rate        = igb_ndo_set_vf_bw,
2141         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
2142         .ndo_get_vf_config      = igb_ndo_get_vf_config,
2143 #ifdef CONFIG_NET_POLL_CONTROLLER
2144         .ndo_poll_controller    = igb_netpoll,
2145 #endif
2146         .ndo_fix_features       = igb_fix_features,
2147         .ndo_set_features       = igb_set_features,
2148         .ndo_fdb_add            = igb_ndo_fdb_add,
2149         .ndo_features_check     = igb_features_check,
2150 };
2151
2152 /**
2153  * igb_set_fw_version - Configure version string for ethtool
2154  * @adapter: adapter struct
2155  **/
2156 void igb_set_fw_version(struct igb_adapter *adapter)
2157 {
2158         struct e1000_hw *hw = &adapter->hw;
2159         struct e1000_fw_version fw;
2160
2161         igb_get_fw_version(hw, &fw);
2162
2163         switch (hw->mac.type) {
2164         case e1000_i210:
2165         case e1000_i211:
2166                 if (!(igb_get_flash_presence_i210(hw))) {
2167                         snprintf(adapter->fw_version,
2168                                  sizeof(adapter->fw_version),
2169                                  "%2d.%2d-%d",
2170                                  fw.invm_major, fw.invm_minor,
2171                                  fw.invm_img_type);
2172                         break;
2173                 }
2174                 /* fall through */
2175         default:
2176                 /* if option is rom valid, display its version too */
2177                 if (fw.or_valid) {
2178                         snprintf(adapter->fw_version,
2179                                  sizeof(adapter->fw_version),
2180                                  "%d.%d, 0x%08x, %d.%d.%d",
2181                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2182                                  fw.or_major, fw.or_build, fw.or_patch);
2183                 /* no option rom */
2184                 } else if (fw.etrack_id != 0X0000) {
2185                         snprintf(adapter->fw_version,
2186                             sizeof(adapter->fw_version),
2187                             "%d.%d, 0x%08x",
2188                             fw.eep_major, fw.eep_minor, fw.etrack_id);
2189                 } else {
2190                 snprintf(adapter->fw_version,
2191                     sizeof(adapter->fw_version),
2192                     "%d.%d.%d",
2193                     fw.eep_major, fw.eep_minor, fw.eep_build);
2194                 }
2195                 break;
2196         }
2197 }
2198
2199 /**
2200  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2201  *
2202  * @adapter: adapter struct
2203  **/
2204 static void igb_init_mas(struct igb_adapter *adapter)
2205 {
2206         struct e1000_hw *hw = &adapter->hw;
2207         u16 eeprom_data;
2208
2209         hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2210         switch (hw->bus.func) {
2211         case E1000_FUNC_0:
2212                 if (eeprom_data & IGB_MAS_ENABLE_0) {
2213                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2214                         netdev_info(adapter->netdev,
2215                                 "MAS: Enabling Media Autosense for port %d\n",
2216                                 hw->bus.func);
2217                 }
2218                 break;
2219         case E1000_FUNC_1:
2220                 if (eeprom_data & IGB_MAS_ENABLE_1) {
2221                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2222                         netdev_info(adapter->netdev,
2223                                 "MAS: Enabling Media Autosense for port %d\n",
2224                                 hw->bus.func);
2225                 }
2226                 break;
2227         case E1000_FUNC_2:
2228                 if (eeprom_data & IGB_MAS_ENABLE_2) {
2229                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2230                         netdev_info(adapter->netdev,
2231                                 "MAS: Enabling Media Autosense for port %d\n",
2232                                 hw->bus.func);
2233                 }
2234                 break;
2235         case E1000_FUNC_3:
2236                 if (eeprom_data & IGB_MAS_ENABLE_3) {
2237                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2238                         netdev_info(adapter->netdev,
2239                                 "MAS: Enabling Media Autosense for port %d\n",
2240                                 hw->bus.func);
2241                 }
2242                 break;
2243         default:
2244                 /* Shouldn't get here */
2245                 netdev_err(adapter->netdev,
2246                         "MAS: Invalid port configuration, returning\n");
2247                 break;
2248         }
2249 }
2250
2251 /**
2252  *  igb_init_i2c - Init I2C interface
2253  *  @adapter: pointer to adapter structure
2254  **/
2255 static s32 igb_init_i2c(struct igb_adapter *adapter)
2256 {
2257         s32 status = 0;
2258
2259         /* I2C interface supported on i350 devices */
2260         if (adapter->hw.mac.type != e1000_i350)
2261                 return 0;
2262
2263         /* Initialize the i2c bus which is controlled by the registers.
2264          * This bus will use the i2c_algo_bit structue that implements
2265          * the protocol through toggling of the 4 bits in the register.
2266          */
2267         adapter->i2c_adap.owner = THIS_MODULE;
2268         adapter->i2c_algo = igb_i2c_algo;
2269         adapter->i2c_algo.data = adapter;
2270         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2271         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2272         strlcpy(adapter->i2c_adap.name, "igb BB",
2273                 sizeof(adapter->i2c_adap.name));
2274         status = i2c_bit_add_bus(&adapter->i2c_adap);
2275         return status;
2276 }
2277
2278 /**
2279  *  igb_probe - Device Initialization Routine
2280  *  @pdev: PCI device information struct
2281  *  @ent: entry in igb_pci_tbl
2282  *
2283  *  Returns 0 on success, negative on failure
2284  *
2285  *  igb_probe initializes an adapter identified by a pci_dev structure.
2286  *  The OS initialization, configuring of the adapter private structure,
2287  *  and a hardware reset occur.
2288  **/
2289 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2290 {
2291         struct net_device *netdev;
2292         struct igb_adapter *adapter;
2293         struct e1000_hw *hw;
2294         u16 eeprom_data = 0;
2295         s32 ret_val;
2296         static int global_quad_port_a; /* global quad port a indication */
2297         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2298         int err, pci_using_dac;
2299         u8 part_str[E1000_PBANUM_LENGTH];
2300
2301         /* Catch broken hardware that put the wrong VF device ID in
2302          * the PCIe SR-IOV capability.
2303          */
2304         if (pdev->is_virtfn) {
2305                 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2306                         pci_name(pdev), pdev->vendor, pdev->device);
2307                 return -EINVAL;
2308         }
2309
2310         err = pci_enable_device_mem(pdev);
2311         if (err)
2312                 return err;
2313
2314         pci_using_dac = 0;
2315         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2316         if (!err) {
2317                 pci_using_dac = 1;
2318         } else {
2319                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2320                 if (err) {
2321                         dev_err(&pdev->dev,
2322                                 "No usable DMA configuration, aborting\n");
2323                         goto err_dma;
2324                 }
2325         }
2326
2327         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2328                                            IORESOURCE_MEM),
2329                                            igb_driver_name);
2330         if (err)
2331                 goto err_pci_reg;
2332
2333         pci_enable_pcie_error_reporting(pdev);
2334
2335         pci_set_master(pdev);
2336         pci_save_state(pdev);
2337
2338         err = -ENOMEM;
2339         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2340                                    IGB_MAX_TX_QUEUES);
2341         if (!netdev)
2342                 goto err_alloc_etherdev;
2343
2344         SET_NETDEV_DEV(netdev, &pdev->dev);
2345
2346         pci_set_drvdata(pdev, netdev);
2347         adapter = netdev_priv(netdev);
2348         adapter->netdev = netdev;
2349         adapter->pdev = pdev;
2350         hw = &adapter->hw;
2351         hw->back = adapter;
2352         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2353
2354         err = -EIO;
2355         adapter->io_addr = pci_iomap(pdev, 0, 0);
2356         if (!adapter->io_addr)
2357                 goto err_ioremap;
2358         /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2359         hw->hw_addr = adapter->io_addr;
2360
2361         netdev->netdev_ops = &igb_netdev_ops;
2362         igb_set_ethtool_ops(netdev);
2363         netdev->watchdog_timeo = 5 * HZ;
2364
2365         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2366
2367         netdev->mem_start = pci_resource_start(pdev, 0);
2368         netdev->mem_end = pci_resource_end(pdev, 0);
2369
2370         /* PCI config space info */
2371         hw->vendor_id = pdev->vendor;
2372         hw->device_id = pdev->device;
2373         hw->revision_id = pdev->revision;
2374         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2375         hw->subsystem_device_id = pdev->subsystem_device;
2376
2377         /* Copy the default MAC, PHY and NVM function pointers */
2378         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2379         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2380         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2381         /* Initialize skew-specific constants */
2382         err = ei->get_invariants(hw);
2383         if (err)
2384                 goto err_sw_init;
2385
2386         /* setup the private structure */
2387         err = igb_sw_init(adapter);
2388         if (err)
2389                 goto err_sw_init;
2390
2391         igb_get_bus_info_pcie(hw);
2392
2393         hw->phy.autoneg_wait_to_complete = false;
2394
2395         /* Copper options */
2396         if (hw->phy.media_type == e1000_media_type_copper) {
2397                 hw->phy.mdix = AUTO_ALL_MODES;
2398                 hw->phy.disable_polarity_correction = false;
2399                 hw->phy.ms_type = e1000_ms_hw_default;
2400         }
2401
2402         if (igb_check_reset_block(hw))
2403                 dev_info(&pdev->dev,
2404                         "PHY reset is blocked due to SOL/IDER session.\n");
2405
2406         /* features is initialized to 0 in allocation, it might have bits
2407          * set by igb_sw_init so we should use an or instead of an
2408          * assignment.
2409          */
2410         netdev->features |= NETIF_F_SG |
2411                             NETIF_F_TSO |
2412                             NETIF_F_TSO6 |
2413                             NETIF_F_RXHASH |
2414                             NETIF_F_RXCSUM |
2415                             NETIF_F_HW_CSUM;
2416
2417         if (hw->mac.type >= e1000_82576)
2418                 netdev->features |= NETIF_F_SCTP_CRC;
2419
2420 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2421                                   NETIF_F_GSO_GRE_CSUM | \
2422                                   NETIF_F_GSO_IPXIP4 | \
2423                                   NETIF_F_GSO_IPXIP6 | \
2424                                   NETIF_F_GSO_UDP_TUNNEL | \
2425                                   NETIF_F_GSO_UDP_TUNNEL_CSUM)
2426
2427         netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
2428         netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
2429
2430         /* copy netdev features into list of user selectable features */
2431         netdev->hw_features |= netdev->features |
2432                                NETIF_F_HW_VLAN_CTAG_RX |
2433                                NETIF_F_HW_VLAN_CTAG_TX |
2434                                NETIF_F_RXALL;
2435
2436         if (hw->mac.type >= e1000_i350)
2437                 netdev->hw_features |= NETIF_F_NTUPLE;
2438
2439         if (pci_using_dac)
2440                 netdev->features |= NETIF_F_HIGHDMA;
2441
2442         netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2443         netdev->mpls_features |= NETIF_F_HW_CSUM;
2444         netdev->hw_enc_features |= netdev->vlan_features;
2445
2446         /* set this bit last since it cannot be part of vlan_features */
2447         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2448                             NETIF_F_HW_VLAN_CTAG_RX |
2449                             NETIF_F_HW_VLAN_CTAG_TX;
2450
2451         netdev->priv_flags |= IFF_SUPP_NOFCS;
2452
2453         netdev->priv_flags |= IFF_UNICAST_FLT;
2454
2455         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2456
2457         /* before reading the NVM, reset the controller to put the device in a
2458          * known good starting state
2459          */
2460         hw->mac.ops.reset_hw(hw);
2461
2462         /* make sure the NVM is good , i211/i210 parts can have special NVM
2463          * that doesn't contain a checksum
2464          */
2465         switch (hw->mac.type) {
2466         case e1000_i210:
2467         case e1000_i211:
2468                 if (igb_get_flash_presence_i210(hw)) {
2469                         if (hw->nvm.ops.validate(hw) < 0) {
2470                                 dev_err(&pdev->dev,
2471                                         "The NVM Checksum Is Not Valid\n");
2472                                 err = -EIO;
2473                                 goto err_eeprom;
2474                         }
2475                 }
2476                 break;
2477         default:
2478                 if (hw->nvm.ops.validate(hw) < 0) {
2479                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2480                         err = -EIO;
2481                         goto err_eeprom;
2482                 }
2483                 break;
2484         }
2485
2486         if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
2487                 /* copy the MAC address out of the NVM */
2488                 if (hw->mac.ops.read_mac_addr(hw))
2489                         dev_err(&pdev->dev, "NVM Read Error\n");
2490         }
2491
2492         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2493
2494         if (!is_valid_ether_addr(netdev->dev_addr)) {
2495                 dev_err(&pdev->dev, "Invalid MAC Address\n");
2496                 err = -EIO;
2497                 goto err_eeprom;
2498         }
2499
2500         /* get firmware version for ethtool -i */
2501         igb_set_fw_version(adapter);
2502
2503         /* configure RXPBSIZE and TXPBSIZE */
2504         if (hw->mac.type == e1000_i210) {
2505                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2506                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2507         }
2508
2509         setup_timer(&adapter->watchdog_timer, igb_watchdog,
2510                     (unsigned long) adapter);
2511         setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2512                     (unsigned long) adapter);
2513
2514         INIT_WORK(&adapter->reset_task, igb_reset_task);
2515         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2516
2517         /* Initialize link properties that are user-changeable */
2518         adapter->fc_autoneg = true;
2519         hw->mac.autoneg = true;
2520         hw->phy.autoneg_advertised = 0x2f;
2521
2522         hw->fc.requested_mode = e1000_fc_default;
2523         hw->fc.current_mode = e1000_fc_default;
2524
2525         igb_validate_mdi_setting(hw);
2526
2527         /* By default, support wake on port A */
2528         if (hw->bus.func == 0)
2529                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2530
2531         /* Check the NVM for wake support on non-port A ports */
2532         if (hw->mac.type >= e1000_82580)
2533                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2534                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2535                                  &eeprom_data);
2536         else if (hw->bus.func == 1)
2537                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2538
2539         if (eeprom_data & IGB_EEPROM_APME)
2540                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2541
2542         /* now that we have the eeprom settings, apply the special cases where
2543          * the eeprom may be wrong or the board simply won't support wake on
2544          * lan on a particular port
2545          */
2546         switch (pdev->device) {
2547         case E1000_DEV_ID_82575GB_QUAD_COPPER:
2548                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2549                 break;
2550         case E1000_DEV_ID_82575EB_FIBER_SERDES:
2551         case E1000_DEV_ID_82576_FIBER:
2552         case E1000_DEV_ID_82576_SERDES:
2553                 /* Wake events only supported on port A for dual fiber
2554                  * regardless of eeprom setting
2555                  */
2556                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2557                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2558                 break;
2559         case E1000_DEV_ID_82576_QUAD_COPPER:
2560         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2561                 /* if quad port adapter, disable WoL on all but port A */
2562                 if (global_quad_port_a != 0)
2563                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2564                 else
2565                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2566                 /* Reset for multiple quad port adapters */
2567                 if (++global_quad_port_a == 4)
2568                         global_quad_port_a = 0;
2569                 break;
2570         default:
2571                 /* If the device can't wake, don't set software support */
2572                 if (!device_can_wakeup(&adapter->pdev->dev))
2573                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2574         }
2575
2576         /* initialize the wol settings based on the eeprom settings */
2577         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2578                 adapter->wol |= E1000_WUFC_MAG;
2579
2580         /* Some vendors want WoL disabled by default, but still supported */
2581         if ((hw->mac.type == e1000_i350) &&
2582             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2583                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2584                 adapter->wol = 0;
2585         }
2586
2587         /* Some vendors want the ability to Use the EEPROM setting as
2588          * enable/disable only, and not for capability
2589          */
2590         if (((hw->mac.type == e1000_i350) ||
2591              (hw->mac.type == e1000_i354)) &&
2592             (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
2593                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2594                 adapter->wol = 0;
2595         }
2596         if (hw->mac.type == e1000_i350) {
2597                 if (((pdev->subsystem_device == 0x5001) ||
2598                      (pdev->subsystem_device == 0x5002)) &&
2599                                 (hw->bus.func == 0)) {
2600                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2601                         adapter->wol = 0;
2602                 }
2603                 if (pdev->subsystem_device == 0x1F52)
2604                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2605         }
2606
2607         device_set_wakeup_enable(&adapter->pdev->dev,
2608                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2609
2610         /* reset the hardware with the new settings */
2611         igb_reset(adapter);
2612
2613         /* Init the I2C interface */
2614         err = igb_init_i2c(adapter);
2615         if (err) {
2616                 dev_err(&pdev->dev, "failed to init i2c interface\n");
2617                 goto err_eeprom;
2618         }
2619
2620         /* let the f/w know that the h/w is now under the control of the
2621          * driver.
2622          */
2623         igb_get_hw_control(adapter);
2624
2625         strcpy(netdev->name, "eth%d");
2626         err = register_netdev(netdev);
2627         if (err)
2628                 goto err_register;
2629
2630         /* carrier off reporting is important to ethtool even BEFORE open */
2631         netif_carrier_off(netdev);
2632
2633 #ifdef CONFIG_IGB_DCA
2634         if (dca_add_requester(&pdev->dev) == 0) {
2635                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2636                 dev_info(&pdev->dev, "DCA enabled\n");
2637                 igb_setup_dca(adapter);
2638         }
2639
2640 #endif
2641 #ifdef CONFIG_IGB_HWMON
2642         /* Initialize the thermal sensor on i350 devices. */
2643         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2644                 u16 ets_word;
2645
2646                 /* Read the NVM to determine if this i350 device supports an
2647                  * external thermal sensor.
2648                  */
2649                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2650                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2651                         adapter->ets = true;
2652                 else
2653                         adapter->ets = false;
2654                 if (igb_sysfs_init(adapter))
2655                         dev_err(&pdev->dev,
2656                                 "failed to allocate sysfs resources\n");
2657         } else {
2658                 adapter->ets = false;
2659         }
2660 #endif
2661         /* Check if Media Autosense is enabled */
2662         adapter->ei = *ei;
2663         if (hw->dev_spec._82575.mas_capable)
2664                 igb_init_mas(adapter);
2665
2666         /* do hw tstamp init after resetting */
2667         igb_ptp_init(adapter);
2668
2669         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2670         /* print bus type/speed/width info, not applicable to i354 */
2671         if (hw->mac.type != e1000_i354) {
2672                 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2673                          netdev->name,
2674                          ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2675                           (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2676                            "unknown"),
2677                          ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2678                           "Width x4" :
2679                           (hw->bus.width == e1000_bus_width_pcie_x2) ?
2680                           "Width x2" :
2681                           (hw->bus.width == e1000_bus_width_pcie_x1) ?
2682                           "Width x1" : "unknown"), netdev->dev_addr);
2683         }
2684
2685         if ((hw->mac.type >= e1000_i210 ||
2686              igb_get_flash_presence_i210(hw))) {
2687                 ret_val = igb_read_part_string(hw, part_str,
2688                                                E1000_PBANUM_LENGTH);
2689         } else {
2690                 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2691         }
2692
2693         if (ret_val)
2694                 strcpy(part_str, "Unknown");
2695         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2696         dev_info(&pdev->dev,
2697                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2698                 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2699                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2700                 adapter->num_rx_queues, adapter->num_tx_queues);
2701         if (hw->phy.media_type == e1000_media_type_copper) {
2702                 switch (hw->mac.type) {
2703                 case e1000_i350:
2704                 case e1000_i210:
2705                 case e1000_i211:
2706                         /* Enable EEE for internal copper PHY devices */
2707                         err = igb_set_eee_i350(hw, true, true);
2708                         if ((!err) &&
2709                             (!hw->dev_spec._82575.eee_disable)) {
2710                                 adapter->eee_advert =
2711                                         MDIO_EEE_100TX | MDIO_EEE_1000T;
2712                                 adapter->flags |= IGB_FLAG_EEE;
2713                         }
2714                         break;
2715                 case e1000_i354:
2716                         if ((rd32(E1000_CTRL_EXT) &
2717                             E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2718                                 err = igb_set_eee_i354(hw, true, true);
2719                                 if ((!err) &&
2720                                         (!hw->dev_spec._82575.eee_disable)) {
2721                                         adapter->eee_advert =
2722                                            MDIO_EEE_100TX | MDIO_EEE_1000T;
2723                                         adapter->flags |= IGB_FLAG_EEE;
2724                                 }
2725                         }
2726                         break;
2727                 default:
2728                         break;
2729                 }
2730         }
2731         pm_runtime_put_noidle(&pdev->dev);
2732         return 0;
2733
2734 err_register:
2735         igb_release_hw_control(adapter);
2736         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2737 err_eeprom:
2738         if (!igb_check_reset_block(hw))
2739                 igb_reset_phy(hw);
2740
2741         if (hw->flash_address)
2742                 iounmap(hw->flash_address);
2743 err_sw_init:
2744         kfree(adapter->shadow_vfta);
2745         igb_clear_interrupt_scheme(adapter);
2746 #ifdef CONFIG_PCI_IOV
2747         igb_disable_sriov(pdev);
2748 #endif
2749         pci_iounmap(pdev, adapter->io_addr);
2750 err_ioremap:
2751         free_netdev(netdev);
2752 err_alloc_etherdev:
2753         pci_release_selected_regions(pdev,
2754                                      pci_select_bars(pdev, IORESOURCE_MEM));
2755 err_pci_reg:
2756 err_dma:
2757         pci_disable_device(pdev);
2758         return err;
2759 }
2760
2761 #ifdef CONFIG_PCI_IOV
2762 static int igb_disable_sriov(struct pci_dev *pdev)
2763 {
2764         struct net_device *netdev = pci_get_drvdata(pdev);
2765         struct igb_adapter *adapter = netdev_priv(netdev);
2766         struct e1000_hw *hw = &adapter->hw;
2767
2768         /* reclaim resources allocated to VFs */
2769         if (adapter->vf_data) {
2770                 /* disable iov and allow time for transactions to clear */
2771                 if (pci_vfs_assigned(pdev)) {
2772                         dev_warn(&pdev->dev,
2773                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2774                         return -EPERM;
2775                 } else {
2776                         pci_disable_sriov(pdev);
2777                         msleep(500);
2778                 }
2779
2780                 kfree(adapter->vf_data);
2781                 adapter->vf_data = NULL;
2782                 adapter->vfs_allocated_count = 0;
2783                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2784                 wrfl();
2785                 msleep(100);
2786                 dev_info(&pdev->dev, "IOV Disabled\n");
2787
2788                 /* Re-enable DMA Coalescing flag since IOV is turned off */
2789                 adapter->flags |= IGB_FLAG_DMAC;
2790         }
2791
2792         return 0;
2793 }
2794
2795 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2796 {
2797         struct net_device *netdev = pci_get_drvdata(pdev);
2798         struct igb_adapter *adapter = netdev_priv(netdev);
2799         int old_vfs = pci_num_vf(pdev);
2800         int err = 0;
2801         int i;
2802
2803         if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2804                 err = -EPERM;
2805                 goto out;
2806         }
2807         if (!num_vfs)
2808                 goto out;
2809
2810         if (old_vfs) {
2811                 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2812                          old_vfs, max_vfs);
2813                 adapter->vfs_allocated_count = old_vfs;
2814         } else
2815                 adapter->vfs_allocated_count = num_vfs;
2816
2817         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2818                                 sizeof(struct vf_data_storage), GFP_KERNEL);
2819
2820         /* if allocation failed then we do not support SR-IOV */
2821         if (!adapter->vf_data) {
2822                 adapter->vfs_allocated_count = 0;
2823                 dev_err(&pdev->dev,
2824                         "Unable to allocate memory for VF Data Storage\n");
2825                 err = -ENOMEM;
2826                 goto out;
2827         }
2828
2829         /* only call pci_enable_sriov() if no VFs are allocated already */
2830         if (!old_vfs) {
2831                 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2832                 if (err)
2833                         goto err_out;
2834         }
2835         dev_info(&pdev->dev, "%d VFs allocated\n",
2836                  adapter->vfs_allocated_count);
2837         for (i = 0; i < adapter->vfs_allocated_count; i++)
2838                 igb_vf_configure(adapter, i);
2839
2840         /* DMA Coalescing is not supported in IOV mode. */
2841         adapter->flags &= ~IGB_FLAG_DMAC;
2842         goto out;
2843
2844 err_out:
2845         kfree(adapter->vf_data);
2846         adapter->vf_data = NULL;
2847         adapter->vfs_allocated_count = 0;
2848 out:
2849         return err;
2850 }
2851
2852 #endif
2853 /**
2854  *  igb_remove_i2c - Cleanup  I2C interface
2855  *  @adapter: pointer to adapter structure
2856  **/
2857 static void igb_remove_i2c(struct igb_adapter *adapter)
2858 {
2859         /* free the adapter bus structure */
2860         i2c_del_adapter(&adapter->i2c_adap);
2861 }
2862
2863 /**
2864  *  igb_remove - Device Removal Routine
2865  *  @pdev: PCI device information struct
2866  *
2867  *  igb_remove is called by the PCI subsystem to alert the driver
2868  *  that it should release a PCI device.  The could be caused by a
2869  *  Hot-Plug event, or because the driver is going to be removed from
2870  *  memory.
2871  **/
2872 static void igb_remove(struct pci_dev *pdev)
2873 {
2874         struct net_device *netdev = pci_get_drvdata(pdev);
2875         struct igb_adapter *adapter = netdev_priv(netdev);
2876         struct e1000_hw *hw = &adapter->hw;
2877
2878         pm_runtime_get_noresume(&pdev->dev);
2879 #ifdef CONFIG_IGB_HWMON
2880         igb_sysfs_exit(adapter);
2881 #endif
2882         igb_remove_i2c(adapter);
2883         igb_ptp_stop(adapter);
2884         /* The watchdog timer may be rescheduled, so explicitly
2885          * disable watchdog from being rescheduled.
2886          */
2887         set_bit(__IGB_DOWN, &adapter->state);
2888         del_timer_sync(&adapter->watchdog_timer);
2889         del_timer_sync(&adapter->phy_info_timer);
2890
2891         cancel_work_sync(&adapter->reset_task);
2892         cancel_work_sync(&adapter->watchdog_task);
2893
2894 #ifdef CONFIG_IGB_DCA
2895         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2896                 dev_info(&pdev->dev, "DCA disabled\n");
2897                 dca_remove_requester(&pdev->dev);
2898                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2899                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2900         }
2901 #endif
2902
2903         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
2904          * would have already happened in close and is redundant.
2905          */
2906         igb_release_hw_control(adapter);
2907
2908 #ifdef CONFIG_PCI_IOV
2909         igb_disable_sriov(pdev);
2910 #endif
2911
2912         unregister_netdev(netdev);
2913
2914         igb_clear_interrupt_scheme(adapter);
2915
2916         pci_iounmap(pdev, adapter->io_addr);
2917         if (hw->flash_address)
2918                 iounmap(hw->flash_address);
2919         pci_release_selected_regions(pdev,
2920                                      pci_select_bars(pdev, IORESOURCE_MEM));
2921
2922         kfree(adapter->shadow_vfta);
2923         free_netdev(netdev);
2924
2925         pci_disable_pcie_error_reporting(pdev);
2926
2927         pci_disable_device(pdev);
2928 }
2929
2930 /**
2931  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2932  *  @adapter: board private structure to initialize
2933  *
2934  *  This function initializes the vf specific data storage and then attempts to
2935  *  allocate the VFs.  The reason for ordering it this way is because it is much
2936  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2937  *  the memory for the VFs.
2938  **/
2939 static void igb_probe_vfs(struct igb_adapter *adapter)
2940 {
2941 #ifdef CONFIG_PCI_IOV
2942         struct pci_dev *pdev = adapter->pdev;
2943         struct e1000_hw *hw = &adapter->hw;
2944
2945         /* Virtualization features not supported on i210 family. */
2946         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2947                 return;
2948
2949         /* Of the below we really only want the effect of getting
2950          * IGB_FLAG_HAS_MSIX set (if available), without which
2951          * igb_enable_sriov() has no effect.
2952          */
2953         igb_set_interrupt_capability(adapter, true);
2954         igb_reset_interrupt_capability(adapter);
2955
2956         pci_sriov_set_totalvfs(pdev, 7);
2957         igb_enable_sriov(pdev, max_vfs);
2958
2959 #endif /* CONFIG_PCI_IOV */
2960 }
2961
2962 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2963 {
2964         struct e1000_hw *hw = &adapter->hw;
2965         u32 max_rss_queues;
2966
2967         /* Determine the maximum number of RSS queues supported. */
2968         switch (hw->mac.type) {
2969         case e1000_i211:
2970                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2971                 break;
2972         case e1000_82575:
2973         case e1000_i210:
2974                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2975                 break;
2976         case e1000_i350:
2977                 /* I350 cannot do RSS and SR-IOV at the same time */
2978                 if (!!adapter->vfs_allocated_count) {
2979                         max_rss_queues = 1;
2980                         break;
2981                 }
2982                 /* fall through */
2983         case e1000_82576:
2984                 if (!!adapter->vfs_allocated_count) {
2985                         max_rss_queues = 2;
2986                         break;
2987                 }
2988                 /* fall through */
2989         case e1000_82580:
2990         case e1000_i354:
2991         default:
2992                 max_rss_queues = IGB_MAX_RX_QUEUES;
2993                 break;
2994         }
2995
2996         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2997
2998         igb_set_flag_queue_pairs(adapter, max_rss_queues);
2999 }
3000
3001 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3002                               const u32 max_rss_queues)
3003 {
3004         struct e1000_hw *hw = &adapter->hw;
3005
3006         /* Determine if we need to pair queues. */
3007         switch (hw->mac.type) {
3008         case e1000_82575:
3009         case e1000_i211:
3010                 /* Device supports enough interrupts without queue pairing. */
3011                 break;
3012         case e1000_82576:
3013         case e1000_82580:
3014         case e1000_i350:
3015         case e1000_i354:
3016         case e1000_i210:
3017         default:
3018                 /* If rss_queues > half of max_rss_queues, pair the queues in
3019                  * order to conserve interrupts due to limited supply.
3020                  */
3021                 if (adapter->rss_queues > (max_rss_queues / 2))
3022                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3023                 else
3024                         adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3025                 break;
3026         }
3027 }
3028
3029 /**
3030  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3031  *  @adapter: board private structure to initialize
3032  *
3033  *  igb_sw_init initializes the Adapter private data structure.
3034  *  Fields are initialized based on PCI device information and
3035  *  OS network device settings (MTU size).
3036  **/
3037 static int igb_sw_init(struct igb_adapter *adapter)
3038 {
3039         struct e1000_hw *hw = &adapter->hw;
3040         struct net_device *netdev = adapter->netdev;
3041         struct pci_dev *pdev = adapter->pdev;
3042
3043         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3044
3045         /* set default ring sizes */
3046         adapter->tx_ring_count = IGB_DEFAULT_TXD;
3047         adapter->rx_ring_count = IGB_DEFAULT_RXD;
3048
3049         /* set default ITR values */
3050         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3051         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3052
3053         /* set default work limits */
3054         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3055
3056         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3057                                   VLAN_HLEN;
3058         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3059
3060         spin_lock_init(&adapter->stats64_lock);
3061 #ifdef CONFIG_PCI_IOV
3062         switch (hw->mac.type) {
3063         case e1000_82576:
3064         case e1000_i350:
3065                 if (max_vfs > 7) {
3066                         dev_warn(&pdev->dev,
3067                                  "Maximum of 7 VFs per PF, using max\n");
3068                         max_vfs = adapter->vfs_allocated_count = 7;
3069                 } else
3070                         adapter->vfs_allocated_count = max_vfs;
3071                 if (adapter->vfs_allocated_count)
3072                         dev_warn(&pdev->dev,
3073                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3074                 break;
3075         default:
3076                 break;
3077         }
3078 #endif /* CONFIG_PCI_IOV */
3079
3080         /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3081         adapter->flags |= IGB_FLAG_HAS_MSIX;
3082
3083         igb_probe_vfs(adapter);
3084
3085         igb_init_queue_configuration(adapter);
3086
3087         /* Setup and initialize a copy of the hw vlan table array */
3088         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3089                                        GFP_ATOMIC);
3090
3091         /* This call may decrease the number of queues */
3092         if (igb_init_interrupt_scheme(adapter, true)) {
3093                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3094                 return -ENOMEM;
3095         }
3096
3097         /* Explicitly disable IRQ since the NIC can be in any state. */
3098         igb_irq_disable(adapter);
3099
3100         if (hw->mac.type >= e1000_i350)
3101                 adapter->flags &= ~IGB_FLAG_DMAC;
3102
3103         set_bit(__IGB_DOWN, &adapter->state);
3104         return 0;
3105 }
3106
3107 /**
3108  *  igb_open - Called when a network interface is made active
3109  *  @netdev: network interface device structure
3110  *
3111  *  Returns 0 on success, negative value on failure
3112  *
3113  *  The open entry point is called when a network interface is made
3114  *  active by the system (IFF_UP).  At this point all resources needed
3115  *  for transmit and receive operations are allocated, the interrupt
3116  *  handler is registered with the OS, the watchdog timer is started,
3117  *  and the stack is notified that the interface is ready.
3118  **/
3119 static int __igb_open(struct net_device *netdev, bool resuming)
3120 {
3121         struct igb_adapter *adapter = netdev_priv(netdev);
3122         struct e1000_hw *hw = &adapter->hw;
3123         struct pci_dev *pdev = adapter->pdev;
3124         int err;
3125         int i;
3126
3127         /* disallow open during test */
3128         if (test_bit(__IGB_TESTING, &adapter->state)) {
3129                 WARN_ON(resuming);
3130                 return -EBUSY;
3131         }
3132
3133         if (!resuming)
3134                 pm_runtime_get_sync(&pdev->dev);
3135
3136         netif_carrier_off(netdev);
3137
3138         /* allocate transmit descriptors */
3139         err = igb_setup_all_tx_resources(adapter);
3140         if (err)
3141                 goto err_setup_tx;
3142
3143         /* allocate receive descriptors */
3144         err = igb_setup_all_rx_resources(adapter);
3145         if (err)
3146                 goto err_setup_rx;
3147
3148         igb_power_up_link(adapter);
3149
3150         /* before we allocate an interrupt, we must be ready to handle it.
3151          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3152          * as soon as we call pci_request_irq, so we have to setup our
3153          * clean_rx handler before we do so.
3154          */
3155         igb_configure(adapter);
3156
3157         err = igb_request_irq(adapter);
3158         if (err)
3159                 goto err_req_irq;
3160
3161         /* Notify the stack of the actual queue counts. */
3162         err = netif_set_real_num_tx_queues(adapter->netdev,
3163                                            adapter->num_tx_queues);
3164         if (err)
3165                 goto err_set_queues;
3166
3167         err = netif_set_real_num_rx_queues(adapter->netdev,
3168                                            adapter->num_rx_queues);
3169         if (err)
3170                 goto err_set_queues;
3171
3172         /* From here on the code is the same as igb_up() */
3173         clear_bit(__IGB_DOWN, &adapter->state);
3174
3175         for (i = 0; i < adapter->num_q_vectors; i++)
3176                 napi_enable(&(adapter->q_vector[i]->napi));
3177
3178         /* Clear any pending interrupts. */
3179         rd32(E1000_ICR);
3180
3181         igb_irq_enable(adapter);
3182
3183         /* notify VFs that reset has been completed */
3184         if (adapter->vfs_allocated_count) {
3185                 u32 reg_data = rd32(E1000_CTRL_EXT);
3186
3187                 reg_data |= E1000_CTRL_EXT_PFRSTD;
3188                 wr32(E1000_CTRL_EXT, reg_data);
3189         }
3190
3191         netif_tx_start_all_queues(netdev);
3192
3193         if (!resuming)
3194                 pm_runtime_put(&pdev->dev);
3195
3196         /* start the watchdog. */
3197         hw->mac.get_link_status = 1;
3198         schedule_work(&adapter->watchdog_task);
3199
3200         return 0;
3201
3202 err_set_queues:
3203         igb_free_irq(adapter);
3204 err_req_irq:
3205         igb_release_hw_control(adapter);
3206         igb_power_down_link(adapter);
3207         igb_free_all_rx_resources(adapter);
3208 err_setup_rx:
3209         igb_free_all_tx_resources(adapter);
3210 err_setup_tx:
3211         igb_reset(adapter);
3212         if (!resuming)
3213                 pm_runtime_put(&pdev->dev);
3214
3215         return err;
3216 }
3217
3218 int igb_open(struct net_device *netdev)
3219 {
3220         return __igb_open(netdev, false);
3221 }
3222
3223 /**
3224  *  igb_close - Disables a network interface
3225  *  @netdev: network interface device structure
3226  *
3227  *  Returns 0, this is not allowed to fail
3228  *
3229  *  The close entry point is called when an interface is de-activated
3230  *  by the OS.  The hardware is still under the driver's control, but
3231  *  needs to be disabled.  A global MAC reset is issued to stop the
3232  *  hardware, and all transmit and receive resources are freed.
3233  **/
3234 static int __igb_close(struct net_device *netdev, bool suspending)
3235 {
3236         struct igb_adapter *adapter = netdev_priv(netdev);
3237         struct pci_dev *pdev = adapter->pdev;
3238
3239         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3240
3241         if (!suspending)
3242                 pm_runtime_get_sync(&pdev->dev);
3243
3244         igb_down(adapter);
3245         igb_free_irq(adapter);
3246
3247         igb_free_all_tx_resources(adapter);
3248         igb_free_all_rx_resources(adapter);
3249
3250         if (!suspending)
3251                 pm_runtime_put_sync(&pdev->dev);
3252         return 0;
3253 }
3254
3255 int igb_close(struct net_device *netdev)
3256 {
3257         return __igb_close(netdev, false);
3258 }
3259
3260 /**
3261  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3262  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3263  *
3264  *  Return 0 on success, negative on failure
3265  **/
3266 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3267 {
3268         struct device *dev = tx_ring->dev;
3269         int size;
3270
3271         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3272
3273         tx_ring->tx_buffer_info = vzalloc(size);
3274         if (!tx_ring->tx_buffer_info)
3275                 goto err;
3276
3277         /* round up to nearest 4K */
3278         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3279         tx_ring->size = ALIGN(tx_ring->size, 4096);
3280
3281         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3282                                            &tx_ring->dma, GFP_KERNEL);
3283         if (!tx_ring->desc)
3284                 goto err;
3285
3286         tx_ring->next_to_use = 0;
3287         tx_ring->next_to_clean = 0;
3288
3289         return 0;
3290
3291 err:
3292         vfree(tx_ring->tx_buffer_info);
3293         tx_ring->tx_buffer_info = NULL;
3294         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3295         return -ENOMEM;
3296 }
3297
3298 /**
3299  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3300  *                               (Descriptors) for all queues
3301  *  @adapter: board private structure
3302  *
3303  *  Return 0 on success, negative on failure
3304  **/
3305 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3306 {
3307         struct pci_dev *pdev = adapter->pdev;
3308         int i, err = 0;
3309
3310         for (i = 0; i < adapter->num_tx_queues; i++) {
3311                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3312                 if (err) {
3313                         dev_err(&pdev->dev,
3314                                 "Allocation for Tx Queue %u failed\n", i);
3315                         for (i--; i >= 0; i--)
3316                                 igb_free_tx_resources(adapter->tx_ring[i]);
3317                         break;
3318                 }
3319         }
3320
3321         return err;
3322 }
3323
3324 /**
3325  *  igb_setup_tctl - configure the transmit control registers
3326  *  @adapter: Board private structure
3327  **/
3328 void igb_setup_tctl(struct igb_adapter *adapter)
3329 {
3330         struct e1000_hw *hw = &adapter->hw;
3331         u32 tctl;
3332
3333         /* disable queue 0 which is enabled by default on 82575 and 82576 */
3334         wr32(E1000_TXDCTL(0), 0);
3335
3336         /* Program the Transmit Control Register */
3337         tctl = rd32(E1000_TCTL);
3338         tctl &= ~E1000_TCTL_CT;
3339         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3340                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3341
3342         igb_config_collision_dist(hw);
3343
3344         /* Enable transmits */
3345         tctl |= E1000_TCTL_EN;
3346
3347         wr32(E1000_TCTL, tctl);
3348 }
3349
3350 /**
3351  *  igb_configure_tx_ring - Configure transmit ring after Reset
3352  *  @adapter: board private structure
3353  *  @ring: tx ring to configure
3354  *
3355  *  Configure a transmit ring after a reset.
3356  **/
3357 void igb_configure_tx_ring(struct igb_adapter *adapter,
3358                            struct igb_ring *ring)
3359 {
3360         struct e1000_hw *hw = &adapter->hw;
3361         u32 txdctl = 0;
3362         u64 tdba = ring->dma;
3363         int reg_idx = ring->reg_idx;
3364
3365         /* disable the queue */
3366         wr32(E1000_TXDCTL(reg_idx), 0);
3367         wrfl();
3368         mdelay(10);
3369
3370         wr32(E1000_TDLEN(reg_idx),
3371              ring->count * sizeof(union e1000_adv_tx_desc));
3372         wr32(E1000_TDBAL(reg_idx),
3373              tdba & 0x00000000ffffffffULL);
3374         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3375
3376         ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3377         wr32(E1000_TDH(reg_idx), 0);
3378         writel(0, ring->tail);
3379
3380         txdctl |= IGB_TX_PTHRESH;
3381         txdctl |= IGB_TX_HTHRESH << 8;
3382         txdctl |= IGB_TX_WTHRESH << 16;
3383
3384         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3385         wr32(E1000_TXDCTL(reg_idx), txdctl);
3386 }
3387
3388 /**
3389  *  igb_configure_tx - Configure transmit Unit after Reset
3390  *  @adapter: board private structure
3391  *
3392  *  Configure the Tx unit of the MAC after a reset.
3393  **/
3394 static void igb_configure_tx(struct igb_adapter *adapter)
3395 {
3396         int i;
3397
3398         for (i = 0; i < adapter->num_tx_queues; i++)
3399                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3400 }
3401
3402 /**
3403  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3404  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3405  *
3406  *  Returns 0 on success, negative on failure
3407  **/
3408 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3409 {
3410         struct device *dev = rx_ring->dev;
3411         int size;
3412
3413         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3414
3415         rx_ring->rx_buffer_info = vzalloc(size);
3416         if (!rx_ring->rx_buffer_info)
3417                 goto err;
3418
3419         /* Round up to nearest 4K */
3420         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3421         rx_ring->size = ALIGN(rx_ring->size, 4096);
3422
3423         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3424                                            &rx_ring->dma, GFP_KERNEL);
3425         if (!rx_ring->desc)
3426                 goto err;
3427
3428         rx_ring->next_to_alloc = 0;
3429         rx_ring->next_to_clean = 0;
3430         rx_ring->next_to_use = 0;
3431
3432         return 0;
3433
3434 err:
3435         vfree(rx_ring->rx_buffer_info);
3436         rx_ring->rx_buffer_info = NULL;
3437         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3438         return -ENOMEM;
3439 }
3440
3441 /**
3442  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3443  *                               (Descriptors) for all queues
3444  *  @adapter: board private structure
3445  *
3446  *  Return 0 on success, negative on failure
3447  **/
3448 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3449 {
3450         struct pci_dev *pdev = adapter->pdev;
3451         int i, err = 0;
3452
3453         for (i = 0; i < adapter->num_rx_queues; i++) {
3454                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3455                 if (err) {
3456                         dev_err(&pdev->dev,
3457                                 "Allocation for Rx Queue %u failed\n", i);
3458                         for (i--; i >= 0; i--)
3459                                 igb_free_rx_resources(adapter->rx_ring[i]);
3460                         break;
3461                 }
3462         }
3463
3464         return err;
3465 }
3466
3467 /**
3468  *  igb_setup_mrqc - configure the multiple receive queue control registers
3469  *  @adapter: Board private structure
3470  **/
3471 static void igb_setup_mrqc(struct igb_adapter *adapter)
3472 {
3473         struct e1000_hw *hw = &adapter->hw;
3474         u32 mrqc, rxcsum;
3475         u32 j, num_rx_queues;
3476         u32 rss_key[10];
3477
3478         netdev_rss_key_fill(rss_key, sizeof(rss_key));
3479         for (j = 0; j < 10; j++)
3480                 wr32(E1000_RSSRK(j), rss_key[j]);
3481
3482         num_rx_queues = adapter->rss_queues;
3483
3484         switch (hw->mac.type) {
3485         case e1000_82576:
3486                 /* 82576 supports 2 RSS queues for SR-IOV */
3487                 if (adapter->vfs_allocated_count)
3488                         num_rx_queues = 2;
3489                 break;
3490         default:
3491                 break;
3492         }
3493
3494         if (adapter->rss_indir_tbl_init != num_rx_queues) {
3495                 for (j = 0; j < IGB_RETA_SIZE; j++)
3496                         adapter->rss_indir_tbl[j] =
3497                         (j * num_rx_queues) / IGB_RETA_SIZE;
3498                 adapter->rss_indir_tbl_init = num_rx_queues;
3499         }
3500         igb_write_rss_indir_tbl(adapter);
3501
3502         /* Disable raw packet checksumming so that RSS hash is placed in
3503          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3504          * offloads as they are enabled by default
3505          */
3506         rxcsum = rd32(E1000_RXCSUM);
3507         rxcsum |= E1000_RXCSUM_PCSD;
3508
3509         if (adapter->hw.mac.type >= e1000_82576)
3510                 /* Enable Receive Checksum Offload for SCTP */
3511                 rxcsum |= E1000_RXCSUM_CRCOFL;
3512
3513         /* Don't need to set TUOFL or IPOFL, they default to 1 */
3514         wr32(E1000_RXCSUM, rxcsum);
3515
3516         /* Generate RSS hash based on packet types, TCP/UDP
3517          * port numbers and/or IPv4/v6 src and dst addresses
3518          */
3519         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3520                E1000_MRQC_RSS_FIELD_IPV4_TCP |
3521                E1000_MRQC_RSS_FIELD_IPV6 |
3522                E1000_MRQC_RSS_FIELD_IPV6_TCP |
3523                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3524
3525         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3526                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3527         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3528                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3529
3530         /* If VMDq is enabled then we set the appropriate mode for that, else
3531          * we default to RSS so that an RSS hash is calculated per packet even
3532          * if we are only using one queue
3533          */
3534         if (adapter->vfs_allocated_count) {
3535                 if (hw->mac.type > e1000_82575) {
3536                         /* Set the default pool for the PF's first queue */
3537                         u32 vtctl = rd32(E1000_VT_CTL);
3538
3539                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3540                                    E1000_VT_CTL_DISABLE_DEF_POOL);
3541                         vtctl |= adapter->vfs_allocated_count <<
3542                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3543                         wr32(E1000_VT_CTL, vtctl);
3544                 }
3545                 if (adapter->rss_queues > 1)
3546                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
3547                 else
3548                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
3549         } else {
3550                 if (hw->mac.type != e1000_i211)
3551                         mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
3552         }
3553         igb_vmm_control(adapter);
3554
3555         wr32(E1000_MRQC, mrqc);
3556 }
3557
3558 /**
3559  *  igb_setup_rctl - configure the receive control registers
3560  *  @adapter: Board private structure
3561  **/
3562 void igb_setup_rctl(struct igb_adapter *adapter)
3563 {
3564         struct e1000_hw *hw = &adapter->hw;
3565         u32 rctl;
3566
3567         rctl = rd32(E1000_RCTL);
3568
3569         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3570         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3571
3572         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3573                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3574
3575         /* enable stripping of CRC. It's unlikely this will break BMC
3576          * redirection as it did with e1000. Newer features require
3577          * that the HW strips the CRC.
3578          */
3579         rctl |= E1000_RCTL_SECRC;
3580
3581         /* disable store bad packets and clear size bits. */
3582         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3583
3584         /* enable LPE to allow for reception of jumbo frames */
3585         rctl |= E1000_RCTL_LPE;
3586
3587         /* disable queue 0 to prevent tail write w/o re-config */
3588         wr32(E1000_RXDCTL(0), 0);
3589
3590         /* Attention!!!  For SR-IOV PF driver operations you must enable
3591          * queue drop for all VF and PF queues to prevent head of line blocking
3592          * if an un-trusted VF does not provide descriptors to hardware.
3593          */
3594         if (adapter->vfs_allocated_count) {
3595                 /* set all queue drop enable bits */
3596                 wr32(E1000_QDE, ALL_QUEUES);
3597         }
3598
3599         /* This is useful for sniffing bad packets. */
3600         if (adapter->netdev->features & NETIF_F_RXALL) {
3601                 /* UPE and MPE will be handled by normal PROMISC logic
3602                  * in e1000e_set_rx_mode
3603                  */
3604                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3605                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
3606                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3607
3608                 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
3609                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3610                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3611                  * and that breaks VLANs.
3612                  */
3613         }
3614
3615         wr32(E1000_RCTL, rctl);
3616 }
3617
3618 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3619                                    int vfn)
3620 {
3621         struct e1000_hw *hw = &adapter->hw;
3622         u32 vmolr;
3623
3624         if (size > MAX_JUMBO_FRAME_SIZE)
3625                 size = MAX_JUMBO_FRAME_SIZE;
3626
3627         vmolr = rd32(E1000_VMOLR(vfn));
3628         vmolr &= ~E1000_VMOLR_RLPML_MASK;
3629         vmolr |= size | E1000_VMOLR_LPE;
3630         wr32(E1000_VMOLR(vfn), vmolr);
3631
3632         return 0;
3633 }
3634
3635 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
3636                                          int vfn, bool enable)
3637 {
3638         struct e1000_hw *hw = &adapter->hw;
3639         u32 val, reg;
3640
3641         if (hw->mac.type < e1000_82576)
3642                 return;
3643
3644         if (hw->mac.type == e1000_i350)
3645                 reg = E1000_DVMOLR(vfn);
3646         else
3647                 reg = E1000_VMOLR(vfn);
3648
3649         val = rd32(reg);
3650         if (enable)
3651                 val |= E1000_VMOLR_STRVLAN;
3652         else
3653                 val &= ~(E1000_VMOLR_STRVLAN);
3654         wr32(reg, val);
3655 }
3656
3657 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3658                                  int vfn, bool aupe)
3659 {
3660         struct e1000_hw *hw = &adapter->hw;
3661         u32 vmolr;
3662
3663         /* This register exists only on 82576 and newer so if we are older then
3664          * we should exit and do nothing
3665          */
3666         if (hw->mac.type < e1000_82576)
3667                 return;
3668
3669         vmolr = rd32(E1000_VMOLR(vfn));
3670         if (aupe)
3671                 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3672         else
3673                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3674
3675         /* clear all bits that might not be set */
3676         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3677
3678         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3679                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3680         /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3681          * multicast packets
3682          */
3683         if (vfn <= adapter->vfs_allocated_count)
3684                 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3685
3686         wr32(E1000_VMOLR(vfn), vmolr);
3687 }
3688
3689 /**
3690  *  igb_configure_rx_ring - Configure a receive ring after Reset
3691  *  @adapter: board private structure
3692  *  @ring: receive ring to be configured
3693  *
3694  *  Configure the Rx unit of the MAC after a reset.
3695  **/
3696 void igb_configure_rx_ring(struct igb_adapter *adapter,
3697                            struct igb_ring *ring)
3698 {
3699         struct e1000_hw *hw = &adapter->hw;
3700         u64 rdba = ring->dma;
3701         int reg_idx = ring->reg_idx;
3702         u32 srrctl = 0, rxdctl = 0;
3703
3704         /* disable the queue */
3705         wr32(E1000_RXDCTL(reg_idx), 0);
3706
3707         /* Set DMA base address registers */
3708         wr32(E1000_RDBAL(reg_idx),
3709              rdba & 0x00000000ffffffffULL);
3710         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3711         wr32(E1000_RDLEN(reg_idx),
3712              ring->count * sizeof(union e1000_adv_rx_desc));
3713
3714         /* initialize head and tail */
3715         ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3716         wr32(E1000_RDH(reg_idx), 0);
3717         writel(0, ring->tail);
3718
3719         /* set descriptor configuration */
3720         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3721         srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3722         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3723         if (hw->mac.type >= e1000_82580)
3724                 srrctl |= E1000_SRRCTL_TIMESTAMP;
3725         /* Only set Drop Enable if we are supporting multiple queues */
3726         if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3727                 srrctl |= E1000_SRRCTL_DROP_EN;
3728
3729         wr32(E1000_SRRCTL(reg_idx), srrctl);
3730
3731         /* set filtering for VMDQ pools */
3732         igb_set_vmolr(adapter, reg_idx & 0x7, true);
3733
3734         rxdctl |= IGB_RX_PTHRESH;
3735         rxdctl |= IGB_RX_HTHRESH << 8;
3736         rxdctl |= IGB_RX_WTHRESH << 16;
3737
3738         /* enable receive descriptor fetching */
3739         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3740         wr32(E1000_RXDCTL(reg_idx), rxdctl);
3741 }
3742
3743 /**
3744  *  igb_configure_rx - Configure receive Unit after Reset
3745  *  @adapter: board private structure
3746  *
3747  *  Configure the Rx unit of the MAC after a reset.
3748  **/
3749 static void igb_configure_rx(struct igb_adapter *adapter)
3750 {
3751         int i;
3752
3753         /* set the correct pool for the PF default MAC address in entry 0 */
3754         igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3755                          adapter->vfs_allocated_count);
3756
3757         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3758          * the Base and Length of the Rx Descriptor Ring
3759          */
3760         for (i = 0; i < adapter->num_rx_queues; i++)
3761                 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3762 }
3763
3764 /**
3765  *  igb_free_tx_resources - Free Tx Resources per Queue
3766  *  @tx_ring: Tx descriptor ring for a specific queue
3767  *
3768  *  Free all transmit software resources
3769  **/
3770 void igb_free_tx_resources(struct igb_ring *tx_ring)
3771 {
3772         igb_clean_tx_ring(tx_ring);
3773
3774         vfree(tx_ring->tx_buffer_info);
3775         tx_ring->tx_buffer_info = NULL;
3776
3777         /* if not set, then don't free */
3778         if (!tx_ring->desc)
3779                 return;
3780
3781         dma_free_coherent(tx_ring->dev, tx_ring->size,
3782                           tx_ring->desc, tx_ring->dma);
3783
3784         tx_ring->desc = NULL;
3785 }
3786
3787 /**
3788  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3789  *  @adapter: board private structure
3790  *
3791  *  Free all transmit software resources
3792  **/
3793 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3794 {
3795         int i;
3796
3797         for (i = 0; i < adapter->num_tx_queues; i++)
3798                 if (adapter->tx_ring[i])
3799                         igb_free_tx_resources(adapter->tx_ring[i]);
3800 }
3801
3802 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3803                                     struct igb_tx_buffer *tx_buffer)
3804 {
3805         if (tx_buffer->skb) {
3806                 dev_kfree_skb_any(tx_buffer->skb);
3807                 if (dma_unmap_len(tx_buffer, len))
3808                         dma_unmap_single(ring->dev,
3809                                          dma_unmap_addr(tx_buffer, dma),
3810                                          dma_unmap_len(tx_buffer, len),
3811                                          DMA_TO_DEVICE);
3812         } else if (dma_unmap_len(tx_buffer, len)) {
3813                 dma_unmap_page(ring->dev,
3814                                dma_unmap_addr(tx_buffer, dma),
3815                                dma_unmap_len(tx_buffer, len),
3816                                DMA_TO_DEVICE);
3817         }
3818         tx_buffer->next_to_watch = NULL;
3819         tx_buffer->skb = NULL;
3820         dma_unmap_len_set(tx_buffer, len, 0);
3821         /* buffer_info must be completely set up in the transmit path */
3822 }
3823
3824 /**
3825  *  igb_clean_tx_ring - Free Tx Buffers
3826  *  @tx_ring: ring to be cleaned
3827  **/
3828 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3829 {
3830         struct igb_tx_buffer *buffer_info;
3831         unsigned long size;
3832         u16 i;
3833
3834         if (!tx_ring->tx_buffer_info)
3835                 return;
3836         /* Free all the Tx ring sk_buffs */
3837
3838         for (i = 0; i < tx_ring->count; i++) {
3839                 buffer_info = &tx_ring->tx_buffer_info[i];
3840                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3841         }
3842
3843         netdev_tx_reset_queue(txring_txq(tx_ring));
3844
3845         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3846         memset(tx_ring->tx_buffer_info, 0, size);
3847
3848         /* Zero out the descriptor ring */
3849         memset(tx_ring->desc, 0, tx_ring->size);
3850
3851         tx_ring->next_to_use = 0;
3852         tx_ring->next_to_clean = 0;
3853 }
3854
3855 /**
3856  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3857  *  @adapter: board private structure
3858  **/
3859 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3860 {
3861         int i;
3862
3863         for (i = 0; i < adapter->num_tx_queues; i++)
3864                 if (adapter->tx_ring[i])
3865                         igb_clean_tx_ring(adapter->tx_ring[i]);
3866 }
3867
3868 /**
3869  *  igb_free_rx_resources - Free Rx Resources
3870  *  @rx_ring: ring to clean the resources from
3871  *
3872  *  Free all receive software resources
3873  **/
3874 void igb_free_rx_resources(struct igb_ring *rx_ring)
3875 {
3876         igb_clean_rx_ring(rx_ring);
3877
3878         vfree(rx_ring->rx_buffer_info);
3879         rx_ring->rx_buffer_info = NULL;
3880
3881         /* if not set, then don't free */
3882         if (!rx_ring->desc)
3883                 return;
3884
3885         dma_free_coherent(rx_ring->dev, rx_ring->size,
3886                           rx_ring->desc, rx_ring->dma);
3887
3888         rx_ring->desc = NULL;
3889 }
3890
3891 /**
3892  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3893  *  @adapter: board private structure
3894  *
3895  *  Free all receive software resources
3896  **/
3897 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3898 {
3899         int i;
3900
3901         for (i = 0; i < adapter->num_rx_queues; i++)
3902                 if (adapter->rx_ring[i])
3903                         igb_free_rx_resources(adapter->rx_ring[i]);
3904 }
3905
3906 /**
3907  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3908  *  @rx_ring: ring to free buffers from
3909  **/
3910 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3911 {
3912         unsigned long size;
3913         u16 i;
3914
3915         if (rx_ring->skb)
3916                 dev_kfree_skb(rx_ring->skb);
3917         rx_ring->skb = NULL;
3918
3919         if (!rx_ring->rx_buffer_info)
3920                 return;
3921
3922         /* Free all the Rx ring sk_buffs */
3923         for (i = 0; i < rx_ring->count; i++) {
3924                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3925
3926                 if (!buffer_info->page)
3927                         continue;
3928
3929                 dma_unmap_page(rx_ring->dev,
3930                                buffer_info->dma,
3931                                PAGE_SIZE,
3932                                DMA_FROM_DEVICE);
3933                 __free_page(buffer_info->page);
3934
3935                 buffer_info->page = NULL;
3936         }
3937
3938         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3939         memset(rx_ring->rx_buffer_info, 0, size);
3940
3941         /* Zero out the descriptor ring */
3942         memset(rx_ring->desc, 0, rx_ring->size);
3943
3944         rx_ring->next_to_alloc = 0;
3945         rx_ring->next_to_clean = 0;
3946         rx_ring->next_to_use = 0;
3947 }
3948
3949 /**
3950  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3951  *  @adapter: board private structure
3952  **/
3953 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3954 {
3955         int i;
3956
3957         for (i = 0; i < adapter->num_rx_queues; i++)
3958                 if (adapter->rx_ring[i])
3959                         igb_clean_rx_ring(adapter->rx_ring[i]);
3960 }
3961
3962 /**
3963  *  igb_set_mac - Change the Ethernet Address of the NIC
3964  *  @netdev: network interface device structure
3965  *  @p: pointer to an address structure
3966  *
3967  *  Returns 0 on success, negative on failure
3968  **/
3969 static int igb_set_mac(struct net_device *netdev, void *p)
3970 {
3971         struct igb_adapter *adapter = netdev_priv(netdev);
3972         struct e1000_hw *hw = &adapter->hw;
3973         struct sockaddr *addr = p;
3974
3975         if (!is_valid_ether_addr(addr->sa_data))
3976                 return -EADDRNOTAVAIL;
3977
3978         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3979         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3980
3981         /* set the correct pool for the new PF MAC address in entry 0 */
3982         igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3983                          adapter->vfs_allocated_count);
3984
3985         return 0;
3986 }
3987
3988 /**
3989  *  igb_write_mc_addr_list - write multicast addresses to MTA
3990  *  @netdev: network interface device structure
3991  *
3992  *  Writes multicast address list to the MTA hash table.
3993  *  Returns: -ENOMEM on failure
3994  *           0 on no addresses written
3995  *           X on writing X addresses to MTA
3996  **/
3997 static int igb_write_mc_addr_list(struct net_device *netdev)
3998 {
3999         struct igb_adapter *adapter = netdev_priv(netdev);
4000         struct e1000_hw *hw = &adapter->hw;
4001         struct netdev_hw_addr *ha;
4002         u8  *mta_list;
4003         int i;
4004
4005         if (netdev_mc_empty(netdev)) {
4006                 /* nothing to program, so clear mc list */
4007                 igb_update_mc_addr_list(hw, NULL, 0);
4008                 igb_restore_vf_multicasts(adapter);
4009                 return 0;
4010         }
4011
4012         mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
4013         if (!mta_list)
4014                 return -ENOMEM;
4015
4016         /* The shared function expects a packed array of only addresses. */
4017         i = 0;
4018         netdev_for_each_mc_addr(ha, netdev)
4019                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4020
4021         igb_update_mc_addr_list(hw, mta_list, i);
4022         kfree(mta_list);
4023
4024         return netdev_mc_count(netdev);
4025 }
4026
4027 /**
4028  *  igb_write_uc_addr_list - write unicast addresses to RAR table
4029  *  @netdev: network interface device structure
4030  *
4031  *  Writes unicast address list to the RAR table.
4032  *  Returns: -ENOMEM on failure/insufficient address space
4033  *           0 on no addresses written
4034  *           X on writing X addresses to the RAR table
4035  **/
4036 static int igb_write_uc_addr_list(struct net_device *netdev)
4037 {
4038         struct igb_adapter *adapter = netdev_priv(netdev);
4039         struct e1000_hw *hw = &adapter->hw;
4040         unsigned int vfn = adapter->vfs_allocated_count;
4041         unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
4042         int count = 0;
4043
4044         /* return ENOMEM indicating insufficient memory for addresses */
4045         if (netdev_uc_count(netdev) > rar_entries)
4046                 return -ENOMEM;
4047
4048         if (!netdev_uc_empty(netdev) && rar_entries) {
4049                 struct netdev_hw_addr *ha;
4050
4051                 netdev_for_each_uc_addr(ha, netdev) {
4052                         if (!rar_entries)
4053                                 break;
4054                         igb_rar_set_qsel(adapter, ha->addr,
4055                                          rar_entries--,
4056                                          vfn);
4057                         count++;
4058                 }
4059         }
4060         /* write the addresses in reverse order to avoid write combining */
4061         for (; rar_entries > 0 ; rar_entries--) {
4062                 wr32(E1000_RAH(rar_entries), 0);
4063                 wr32(E1000_RAL(rar_entries), 0);
4064         }
4065         wrfl();
4066
4067         return count;
4068 }
4069
4070 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4071 {
4072         struct e1000_hw *hw = &adapter->hw;
4073         u32 i, pf_id;
4074
4075         switch (hw->mac.type) {
4076         case e1000_i210:
4077         case e1000_i211:
4078         case e1000_i350:
4079                 /* VLAN filtering needed for VLAN prio filter */
4080                 if (adapter->netdev->features & NETIF_F_NTUPLE)
4081                         break;
4082                 /* fall through */
4083         case e1000_82576:
4084         case e1000_82580:
4085         case e1000_i354:
4086                 /* VLAN filtering needed for pool filtering */
4087                 if (adapter->vfs_allocated_count)
4088                         break;
4089                 /* fall through */
4090         default:
4091                 return 1;
4092         }
4093
4094         /* We are already in VLAN promisc, nothing to do */
4095         if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4096                 return 0;
4097
4098         if (!adapter->vfs_allocated_count)
4099                 goto set_vfta;
4100
4101         /* Add PF to all active pools */
4102         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4103
4104         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4105                 u32 vlvf = rd32(E1000_VLVF(i));
4106
4107                 vlvf |= BIT(pf_id);
4108                 wr32(E1000_VLVF(i), vlvf);
4109         }
4110
4111 set_vfta:
4112         /* Set all bits in the VLAN filter table array */
4113         for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4114                 hw->mac.ops.write_vfta(hw, i, ~0U);
4115
4116         /* Set flag so we don't redo unnecessary work */
4117         adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4118
4119         return 0;
4120 }
4121
4122 #define VFTA_BLOCK_SIZE 8
4123 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4124 {
4125         struct e1000_hw *hw = &adapter->hw;
4126         u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4127         u32 vid_start = vfta_offset * 32;
4128         u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4129         u32 i, vid, word, bits, pf_id;
4130
4131         /* guarantee that we don't scrub out management VLAN */
4132         vid = adapter->mng_vlan_id;
4133         if (vid >= vid_start && vid < vid_end)
4134                 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4135
4136         if (!adapter->vfs_allocated_count)
4137                 goto set_vfta;
4138
4139         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4140
4141         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4142                 u32 vlvf = rd32(E1000_VLVF(i));
4143
4144                 /* pull VLAN ID from VLVF */
4145                 vid = vlvf & VLAN_VID_MASK;
4146
4147                 /* only concern ourselves with a certain range */
4148                 if (vid < vid_start || vid >= vid_end)
4149                         continue;
4150
4151                 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4152                         /* record VLAN ID in VFTA */
4153                         vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4154
4155                         /* if PF is part of this then continue */
4156                         if (test_bit(vid, adapter->active_vlans))
4157                                 continue;
4158                 }
4159
4160                 /* remove PF from the pool */
4161                 bits = ~BIT(pf_id);
4162                 bits &= rd32(E1000_VLVF(i));
4163                 wr32(E1000_VLVF(i), bits);
4164         }
4165
4166 set_vfta:
4167         /* extract values from active_vlans and write back to VFTA */
4168         for (i = VFTA_BLOCK_SIZE; i--;) {
4169                 vid = (vfta_offset + i) * 32;
4170                 word = vid / BITS_PER_LONG;
4171                 bits = vid % BITS_PER_LONG;
4172
4173                 vfta[i] |= adapter->active_vlans[word] >> bits;
4174
4175                 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4176         }
4177 }
4178
4179 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4180 {
4181         u32 i;
4182
4183         /* We are not in VLAN promisc, nothing to do */
4184         if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4185                 return;
4186
4187         /* Set flag so we don't redo unnecessary work */
4188         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4189
4190         for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4191                 igb_scrub_vfta(adapter, i);
4192 }
4193
4194 /**
4195  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4196  *  @netdev: network interface device structure
4197  *
4198  *  The set_rx_mode entry point is called whenever the unicast or multicast
4199  *  address lists or the network interface flags are updated.  This routine is
4200  *  responsible for configuring the hardware for proper unicast, multicast,
4201  *  promiscuous mode, and all-multi behavior.
4202  **/
4203 static void igb_set_rx_mode(struct net_device *netdev)
4204 {
4205         struct igb_adapter *adapter = netdev_priv(netdev);
4206         struct e1000_hw *hw = &adapter->hw;
4207         unsigned int vfn = adapter->vfs_allocated_count;
4208         u32 rctl = 0, vmolr = 0;
4209         int count;
4210
4211         /* Check for Promiscuous and All Multicast modes */
4212         if (netdev->flags & IFF_PROMISC) {
4213                 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4214                 vmolr |= E1000_VMOLR_MPME;
4215
4216                 /* enable use of UTA filter to force packets to default pool */
4217                 if (hw->mac.type == e1000_82576)
4218                         vmolr |= E1000_VMOLR_ROPE;
4219         } else {
4220                 if (netdev->flags & IFF_ALLMULTI) {
4221                         rctl |= E1000_RCTL_MPE;
4222                         vmolr |= E1000_VMOLR_MPME;
4223                 } else {
4224                         /* Write addresses to the MTA, if the attempt fails
4225                          * then we should just turn on promiscuous mode so
4226                          * that we can at least receive multicast traffic
4227                          */
4228                         count = igb_write_mc_addr_list(netdev);
4229                         if (count < 0) {
4230                                 rctl |= E1000_RCTL_MPE;
4231                                 vmolr |= E1000_VMOLR_MPME;
4232                         } else if (count) {
4233                                 vmolr |= E1000_VMOLR_ROMPE;
4234                         }
4235                 }
4236         }
4237
4238         /* Write addresses to available RAR registers, if there is not
4239          * sufficient space to store all the addresses then enable
4240          * unicast promiscuous mode
4241          */
4242         count = igb_write_uc_addr_list(netdev);
4243         if (count < 0) {
4244                 rctl |= E1000_RCTL_UPE;
4245                 vmolr |= E1000_VMOLR_ROPE;
4246         }
4247
4248         /* enable VLAN filtering by default */
4249         rctl |= E1000_RCTL_VFE;
4250
4251         /* disable VLAN filtering for modes that require it */
4252         if ((netdev->flags & IFF_PROMISC) ||
4253             (netdev->features & NETIF_F_RXALL)) {
4254                 /* if we fail to set all rules then just clear VFE */
4255                 if (igb_vlan_promisc_enable(adapter))
4256                         rctl &= ~E1000_RCTL_VFE;
4257         } else {
4258                 igb_vlan_promisc_disable(adapter);
4259         }
4260
4261         /* update state of unicast, multicast, and VLAN filtering modes */
4262         rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
4263                                      E1000_RCTL_VFE);
4264         wr32(E1000_RCTL, rctl);
4265
4266         /* In order to support SR-IOV and eventually VMDq it is necessary to set
4267          * the VMOLR to enable the appropriate modes.  Without this workaround
4268          * we will have issues with VLAN tag stripping not being done for frames
4269          * that are only arriving because we are the default pool
4270          */
4271         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4272                 return;
4273
4274         /* set UTA to appropriate mode */
4275         igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
4276
4277         vmolr |= rd32(E1000_VMOLR(vfn)) &
4278                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4279
4280         /* enable Rx jumbo frames, no need for restriction */
4281         vmolr &= ~E1000_VMOLR_RLPML_MASK;
4282         vmolr |= MAX_JUMBO_FRAME_SIZE | E1000_VMOLR_LPE;
4283
4284         wr32(E1000_VMOLR(vfn), vmolr);
4285         wr32(E1000_RLPML, MAX_JUMBO_FRAME_SIZE);
4286
4287         igb_restore_vf_multicasts(adapter);
4288 }
4289
4290 static void igb_check_wvbr(struct igb_adapter *adapter)
4291 {
4292         struct e1000_hw *hw = &adapter->hw;
4293         u32 wvbr = 0;
4294
4295         switch (hw->mac.type) {
4296         case e1000_82576:
4297         case e1000_i350:
4298                 wvbr = rd32(E1000_WVBR);
4299                 if (!wvbr)
4300                         return;
4301                 break;
4302         default:
4303                 break;
4304         }
4305
4306         adapter->wvbr |= wvbr;
4307 }
4308
4309 #define IGB_STAGGERED_QUEUE_OFFSET 8
4310
4311 static void igb_spoof_check(struct igb_adapter *adapter)
4312 {
4313         int j;
4314
4315         if (!adapter->wvbr)
4316                 return;
4317
4318         for (j = 0; j < adapter->vfs_allocated_count; j++) {
4319                 if (adapter->wvbr & BIT(j) ||
4320                     adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
4321                         dev_warn(&adapter->pdev->dev,
4322                                 "Spoof event(s) detected on VF %d\n", j);
4323                         adapter->wvbr &=
4324                                 ~(BIT(j) |
4325                                   BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
4326                 }
4327         }
4328 }
4329
4330 /* Need to wait a few seconds after link up to get diagnostic information from
4331  * the phy
4332  */
4333 static void igb_update_phy_info(unsigned long data)
4334 {
4335         struct igb_adapter *adapter = (struct igb_adapter *) data;
4336         igb_get_phy_info(&adapter->hw);
4337 }
4338
4339 /**
4340  *  igb_has_link - check shared code for link and determine up/down
4341  *  @adapter: pointer to driver private info
4342  **/
4343 bool igb_has_link(struct igb_adapter *adapter)
4344 {
4345         struct e1000_hw *hw = &adapter->hw;
4346         bool link_active = false;
4347
4348         /* get_link_status is set on LSC (link status) interrupt or
4349          * rx sequence error interrupt.  get_link_status will stay
4350          * false until the e1000_check_for_link establishes link
4351          * for copper adapters ONLY
4352          */
4353         switch (hw->phy.media_type) {
4354         case e1000_media_type_copper:
4355                 if (!hw->mac.get_link_status)
4356                         return true;
4357         case e1000_media_type_internal_serdes:
4358                 hw->mac.ops.check_for_link(hw);
4359                 link_active = !hw->mac.get_link_status;
4360                 break;
4361         default:
4362         case e1000_media_type_unknown:
4363                 break;
4364         }
4365
4366         if (((hw->mac.type == e1000_i210) ||
4367              (hw->mac.type == e1000_i211)) &&
4368              (hw->phy.id == I210_I_PHY_ID)) {
4369                 if (!netif_carrier_ok(adapter->netdev)) {
4370                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4371                 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4372                         adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4373                         adapter->link_check_timeout = jiffies;
4374                 }
4375         }
4376
4377         return link_active;
4378 }
4379
4380 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4381 {
4382         bool ret = false;
4383         u32 ctrl_ext, thstat;
4384
4385         /* check for thermal sensor event on i350 copper only */
4386         if (hw->mac.type == e1000_i350) {
4387                 thstat = rd32(E1000_THSTAT);
4388                 ctrl_ext = rd32(E1000_CTRL_EXT);
4389
4390                 if ((hw->phy.media_type == e1000_media_type_copper) &&
4391                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4392                         ret = !!(thstat & event);
4393         }
4394
4395         return ret;
4396 }
4397
4398 /**
4399  *  igb_check_lvmmc - check for malformed packets received
4400  *  and indicated in LVMMC register
4401  *  @adapter: pointer to adapter
4402  **/
4403 static void igb_check_lvmmc(struct igb_adapter *adapter)
4404 {
4405         struct e1000_hw *hw = &adapter->hw;
4406         u32 lvmmc;
4407
4408         lvmmc = rd32(E1000_LVMMC);
4409         if (lvmmc) {
4410                 if (unlikely(net_ratelimit())) {
4411                         netdev_warn(adapter->netdev,
4412                                     "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4413                                     lvmmc);
4414                 }
4415         }
4416 }
4417
4418 /**
4419  *  igb_watchdog - Timer Call-back
4420  *  @data: pointer to adapter cast into an unsigned long
4421  **/
4422 static void igb_watchdog(unsigned long data)
4423 {
4424         struct igb_adapter *adapter = (struct igb_adapter *)data;
4425         /* Do the rest outside of interrupt context */
4426         schedule_work(&adapter->watchdog_task);
4427 }
4428
4429 static void igb_watchdog_task(struct work_struct *work)
4430 {
4431         struct igb_adapter *adapter = container_of(work,
4432                                                    struct igb_adapter,
4433                                                    watchdog_task);
4434         struct e1000_hw *hw = &adapter->hw;
4435         struct e1000_phy_info *phy = &hw->phy;
4436         struct net_device *netdev = adapter->netdev;
4437         u32 link;
4438         int i;
4439         u32 connsw;
4440         u16 phy_data, retry_count = 20;
4441
4442         link = igb_has_link(adapter);
4443
4444         if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4445                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4446                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4447                 else
4448                         link = false;
4449         }
4450
4451         /* Force link down if we have fiber to swap to */
4452         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4453                 if (hw->phy.media_type == e1000_media_type_copper) {
4454                         connsw = rd32(E1000_CONNSW);
4455                         if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4456                                 link = 0;
4457                 }
4458         }
4459         if (link) {
4460                 /* Perform a reset if the media type changed. */
4461                 if (hw->dev_spec._82575.media_changed) {
4462                         hw->dev_spec._82575.media_changed = false;
4463                         adapter->flags |= IGB_FLAG_MEDIA_RESET;
4464                         igb_reset(adapter);
4465                 }
4466                 /* Cancel scheduled suspend requests. */
4467                 pm_runtime_resume(netdev->dev.parent);
4468
4469                 if (!netif_carrier_ok(netdev)) {
4470                         u32 ctrl;
4471
4472                         hw->mac.ops.get_speed_and_duplex(hw,
4473                                                          &adapter->link_speed,
4474                                                          &adapter->link_duplex);
4475
4476                         ctrl = rd32(E1000_CTRL);
4477                         /* Links status message must follow this format */
4478                         netdev_info(netdev,
4479                                "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4480                                netdev->name,
4481                                adapter->link_speed,
4482                                adapter->link_duplex == FULL_DUPLEX ?
4483                                "Full" : "Half",
4484                                (ctrl & E1000_CTRL_TFCE) &&
4485                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4486                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4487                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4488
4489                         /* disable EEE if enabled */
4490                         if ((adapter->flags & IGB_FLAG_EEE) &&
4491                                 (adapter->link_duplex == HALF_DUPLEX)) {
4492                                 dev_info(&adapter->pdev->dev,
4493                                 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4494                                 adapter->hw.dev_spec._82575.eee_disable = true;
4495                                 adapter->flags &= ~IGB_FLAG_EEE;
4496                         }
4497
4498                         /* check if SmartSpeed worked */
4499                         igb_check_downshift(hw);
4500                         if (phy->speed_downgraded)
4501                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4502
4503                         /* check for thermal sensor event */
4504                         if (igb_thermal_sensor_event(hw,
4505                             E1000_THSTAT_LINK_THROTTLE))
4506                                 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4507
4508                         /* adjust timeout factor according to speed/duplex */
4509                         adapter->tx_timeout_factor = 1;
4510                         switch (adapter->link_speed) {
4511                         case SPEED_10:
4512                                 adapter->tx_timeout_factor = 14;
4513                                 break;
4514                         case SPEED_100:
4515                                 /* maybe add some timeout factor ? */
4516                                 break;
4517                         }
4518
4519                         if (adapter->link_speed != SPEED_1000)
4520                                 goto no_wait;
4521
4522                         /* wait for Remote receiver status OK */
4523 retry_read_status:
4524                         if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
4525                                               &phy_data)) {
4526                                 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4527                                     retry_count) {
4528                                         msleep(100);
4529                                         retry_count--;
4530                                         goto retry_read_status;
4531                                 } else if (!retry_count) {
4532                                         dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
4533                                 }
4534                         } else {
4535                                 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
4536                         }
4537 no_wait:
4538                         netif_carrier_on(netdev);
4539
4540                         igb_ping_all_vfs(adapter);
4541                         igb_check_vf_rate_limit(adapter);
4542
4543                         /* link state has changed, schedule phy info update */
4544                         if (!test_bit(__IGB_DOWN, &adapter->state))
4545                                 mod_timer(&adapter->phy_info_timer,
4546                                           round_jiffies(jiffies + 2 * HZ));
4547                 }
4548         } else {
4549                 if (netif_carrier_ok(netdev)) {
4550                         adapter->link_speed = 0;
4551                         adapter->link_duplex = 0;
4552
4553                         /* check for thermal sensor event */
4554                         if (igb_thermal_sensor_event(hw,
4555                             E1000_THSTAT_PWR_DOWN)) {
4556                                 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4557                         }
4558
4559                         /* Links status message must follow this format */
4560                         netdev_info(netdev, "igb: %s NIC Link is Down\n",
4561                                netdev->name);
4562                         netif_carrier_off(netdev);
4563
4564                         igb_ping_all_vfs(adapter);
4565
4566                         /* link state has changed, schedule phy info update */
4567                         if (!test_bit(__IGB_DOWN, &adapter->state))
4568                                 mod_timer(&adapter->phy_info_timer,
4569                                           round_jiffies(jiffies + 2 * HZ));
4570
4571                         /* link is down, time to check for alternate media */
4572                         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4573                                 igb_check_swap_media(adapter);
4574                                 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4575                                         schedule_work(&adapter->reset_task);
4576                                         /* return immediately */
4577                                         return;
4578                                 }
4579                         }
4580                         pm_schedule_suspend(netdev->dev.parent,
4581                                             MSEC_PER_SEC * 5);
4582
4583                 /* also check for alternate media here */
4584                 } else if (!netif_carrier_ok(netdev) &&
4585                            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4586                         igb_check_swap_media(adapter);
4587                         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4588                                 schedule_work(&adapter->reset_task);
4589                                 /* return immediately */
4590                                 return;
4591                         }
4592                 }
4593         }
4594
4595         spin_lock(&adapter->stats64_lock);
4596         igb_update_stats(adapter, &adapter->stats64);
4597         spin_unlock(&adapter->stats64_lock);
4598
4599         for (i = 0; i < adapter->num_tx_queues; i++) {
4600                 struct igb_ring *tx_ring = adapter->tx_ring[i];
4601                 if (!netif_carrier_ok(netdev)) {
4602                         /* We've lost link, so the controller stops DMA,
4603                          * but we've got queued Tx work that's never going
4604                          * to get done, so reset controller to flush Tx.
4605                          * (Do the reset outside of interrupt context).
4606                          */
4607                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4608                                 adapter->tx_timeout_count++;
4609                                 schedule_work(&adapter->reset_task);
4610                                 /* return immediately since reset is imminent */
4611                                 return;
4612                         }
4613                 }
4614
4615                 /* Force detection of hung controller every watchdog period */
4616                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4617         }
4618
4619         /* Cause software interrupt to ensure Rx ring is cleaned */
4620         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4621                 u32 eics = 0;
4622
4623                 for (i = 0; i < adapter->num_q_vectors; i++)
4624                         eics |= adapter->q_vector[i]->eims_value;
4625                 wr32(E1000_EICS, eics);
4626         } else {
4627                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4628         }
4629
4630         igb_spoof_check(adapter);
4631         igb_ptp_rx_hang(adapter);
4632
4633         /* Check LVMMC register on i350/i354 only */
4634         if ((adapter->hw.mac.type == e1000_i350) ||
4635             (adapter->hw.mac.type == e1000_i354))
4636                 igb_check_lvmmc(adapter);
4637
4638         /* Reset the timer */
4639         if (!test_bit(__IGB_DOWN, &adapter->state)) {
4640                 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4641                         mod_timer(&adapter->watchdog_timer,
4642                                   round_jiffies(jiffies +  HZ));
4643                 else
4644                         mod_timer(&adapter->watchdog_timer,
4645                                   round_jiffies(jiffies + 2 * HZ));
4646         }
4647 }
4648
4649 enum latency_range {
4650         lowest_latency = 0,
4651         low_latency = 1,
4652         bulk_latency = 2,
4653         latency_invalid = 255
4654 };
4655
4656 /**
4657  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4658  *  @q_vector: pointer to q_vector
4659  *
4660  *  Stores a new ITR value based on strictly on packet size.  This
4661  *  algorithm is less sophisticated than that used in igb_update_itr,
4662  *  due to the difficulty of synchronizing statistics across multiple
4663  *  receive rings.  The divisors and thresholds used by this function
4664  *  were determined based on theoretical maximum wire speed and testing
4665  *  data, in order to minimize response time while increasing bulk
4666  *  throughput.
4667  *  This functionality is controlled by ethtool's coalescing settings.
4668  *  NOTE:  This function is called only when operating in a multiqueue
4669  *         receive environment.
4670  **/
4671 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4672 {
4673         int new_val = q_vector->itr_val;
4674         int avg_wire_size = 0;
4675         struct igb_adapter *adapter = q_vector->adapter;
4676         unsigned int packets;
4677
4678         /* For non-gigabit speeds, just fix the interrupt rate at 4000
4679          * ints/sec - ITR timer value of 120 ticks.
4680          */
4681         if (adapter->link_speed != SPEED_1000) {
4682                 new_val = IGB_4K_ITR;
4683                 goto set_itr_val;
4684         }
4685
4686         packets = q_vector->rx.total_packets;
4687         if (packets)
4688                 avg_wire_size = q_vector->rx.total_bytes / packets;
4689
4690         packets = q_vector->tx.total_packets;
4691         if (packets)
4692                 avg_wire_size = max_t(u32, avg_wire_size,
4693                                       q_vector->tx.total_bytes / packets);
4694
4695         /* if avg_wire_size isn't set no work was done */
4696         if (!avg_wire_size)
4697                 goto clear_counts;
4698
4699         /* Add 24 bytes to size to account for CRC, preamble, and gap */
4700         avg_wire_size += 24;
4701
4702         /* Don't starve jumbo frames */
4703         avg_wire_size = min(avg_wire_size, 3000);
4704
4705         /* Give a little boost to mid-size frames */
4706         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4707                 new_val = avg_wire_size / 3;
4708         else
4709                 new_val = avg_wire_size / 2;
4710
4711         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4712         if (new_val < IGB_20K_ITR &&
4713             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4714              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4715                 new_val = IGB_20K_ITR;
4716
4717 set_itr_val:
4718         if (new_val != q_vector->itr_val) {
4719                 q_vector->itr_val = new_val;
4720                 q_vector->set_itr = 1;
4721         }
4722 clear_counts:
4723         q_vector->rx.total_bytes = 0;
4724         q_vector->rx.total_packets = 0;
4725         q_vector->tx.total_bytes = 0;
4726         q_vector->tx.total_packets = 0;
4727 }
4728
4729 /**
4730  *  igb_update_itr - update the dynamic ITR value based on statistics
4731  *  @q_vector: pointer to q_vector
4732  *  @ring_container: ring info to update the itr for
4733  *
4734  *  Stores a new ITR value based on packets and byte
4735  *  counts during the last interrupt.  The advantage of per interrupt
4736  *  computation is faster updates and more accurate ITR for the current
4737  *  traffic pattern.  Constants in this function were computed
4738  *  based on theoretical maximum wire speed and thresholds were set based
4739  *  on testing data as well as attempting to minimize response time
4740  *  while increasing bulk throughput.
4741  *  This functionality is controlled by ethtool's coalescing settings.
4742  *  NOTE:  These calculations are only valid when operating in a single-
4743  *         queue environment.
4744  **/
4745 static void igb_update_itr(struct igb_q_vector *q_vector,
4746                            struct igb_ring_container *ring_container)
4747 {
4748         unsigned int packets = ring_container->total_packets;
4749         unsigned int bytes = ring_container->total_bytes;
4750         u8 itrval = ring_container->itr;
4751
4752         /* no packets, exit with status unchanged */
4753         if (packets == 0)
4754                 return;
4755
4756         switch (itrval) {
4757         case lowest_latency:
4758                 /* handle TSO and jumbo frames */
4759                 if (bytes/packets > 8000)
4760                         itrval = bulk_latency;
4761                 else if ((packets < 5) && (bytes > 512))
4762                         itrval = low_latency;
4763                 break;
4764         case low_latency:  /* 50 usec aka 20000 ints/s */
4765                 if (bytes > 10000) {
4766                         /* this if handles the TSO accounting */
4767                         if (bytes/packets > 8000)
4768                                 itrval = bulk_latency;
4769                         else if ((packets < 10) || ((bytes/packets) > 1200))
4770                                 itrval = bulk_latency;
4771                         else if ((packets > 35))
4772                                 itrval = lowest_latency;
4773                 } else if (bytes/packets > 2000) {
4774                         itrval = bulk_latency;
4775                 } else if (packets <= 2 && bytes < 512) {
4776                         itrval = lowest_latency;
4777                 }
4778                 break;
4779         case bulk_latency: /* 250 usec aka 4000 ints/s */
4780                 if (bytes > 25000) {
4781                         if (packets > 35)
4782                                 itrval = low_latency;
4783                 } else if (bytes < 1500) {
4784                         itrval = low_latency;
4785                 }
4786                 break;
4787         }
4788
4789         /* clear work counters since we have the values we need */
4790         ring_container->total_bytes = 0;
4791         ring_container->total_packets = 0;
4792
4793         /* write updated itr to ring container */
4794         ring_container->itr = itrval;
4795 }
4796
4797 static void igb_set_itr(struct igb_q_vector *q_vector)
4798 {
4799         struct igb_adapter *adapter = q_vector->adapter;
4800         u32 new_itr = q_vector->itr_val;
4801         u8 current_itr = 0;
4802
4803         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4804         if (adapter->link_speed != SPEED_1000) {
4805                 current_itr = 0;
4806                 new_itr = IGB_4K_ITR;
4807                 goto set_itr_now;
4808         }
4809
4810         igb_update_itr(q_vector, &q_vector->tx);
4811         igb_update_itr(q_vector, &q_vector->rx);
4812
4813         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4814
4815         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4816         if (current_itr == lowest_latency &&
4817             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4818              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4819                 current_itr = low_latency;
4820
4821         switch (current_itr) {
4822         /* counts and packets in update_itr are dependent on these numbers */
4823         case lowest_latency:
4824                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4825                 break;
4826         case low_latency:
4827                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4828                 break;
4829         case bulk_latency:
4830                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4831                 break;
4832         default:
4833                 break;
4834         }
4835
4836 set_itr_now:
4837         if (new_itr != q_vector->itr_val) {
4838                 /* this attempts to bias the interrupt rate towards Bulk
4839                  * by adding intermediate steps when interrupt rate is
4840                  * increasing
4841                  */
4842                 new_itr = new_itr > q_vector->itr_val ?
4843                           max((new_itr * q_vector->itr_val) /
4844                           (new_itr + (q_vector->itr_val >> 2)),
4845                           new_itr) : new_itr;
4846                 /* Don't write the value here; it resets the adapter's
4847                  * internal timer, and causes us to delay far longer than
4848                  * we should between interrupts.  Instead, we write the ITR
4849                  * value at the beginning of the next interrupt so the timing
4850                  * ends up being correct.
4851                  */
4852                 q_vector->itr_val = new_itr;
4853                 q_vector->set_itr = 1;
4854         }
4855 }
4856
4857 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4858                             u32 type_tucmd, u32 mss_l4len_idx)
4859 {
4860         struct e1000_adv_tx_context_desc *context_desc;
4861         u16 i = tx_ring->next_to_use;
4862
4863         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4864
4865         i++;
4866         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4867
4868         /* set bits to identify this as an advanced context descriptor */
4869         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4870
4871         /* For 82575, context index must be unique per ring. */
4872         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4873                 mss_l4len_idx |= tx_ring->reg_idx << 4;
4874
4875         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
4876         context_desc->seqnum_seed       = 0;
4877         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
4878         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
4879 }
4880
4881 static int igb_tso(struct igb_ring *tx_ring,
4882                    struct igb_tx_buffer *first,
4883                    u8 *hdr_len)
4884 {
4885         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
4886         struct sk_buff *skb = first->skb;
4887         union {
4888                 struct iphdr *v4;
4889                 struct ipv6hdr *v6;
4890                 unsigned char *hdr;
4891         } ip;
4892         union {
4893                 struct tcphdr *tcp;
4894                 unsigned char *hdr;
4895         } l4;
4896         u32 paylen, l4_offset;
4897         int err;
4898
4899         if (skb->ip_summed != CHECKSUM_PARTIAL)
4900                 return 0;
4901
4902         if (!skb_is_gso(skb))
4903                 return 0;
4904
4905         err = skb_cow_head(skb, 0);
4906         if (err < 0)
4907                 return err;
4908
4909         ip.hdr = skb_network_header(skb);
4910         l4.hdr = skb_checksum_start(skb);
4911
4912         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4913         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4914
4915         /* initialize outer IP header fields */
4916         if (ip.v4->version == 4) {
4917                 /* IP header will have to cancel out any data that
4918                  * is not a part of the outer IP header
4919                  */
4920                 ip.v4->check = csum_fold(csum_add(lco_csum(skb),
4921                                                   csum_unfold(l4.tcp->check)));
4922                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4923
4924                 ip.v4->tot_len = 0;
4925                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4926                                    IGB_TX_FLAGS_CSUM |
4927                                    IGB_TX_FLAGS_IPV4;
4928         } else {
4929                 ip.v6->payload_len = 0;
4930                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4931                                    IGB_TX_FLAGS_CSUM;
4932         }
4933
4934         /* determine offset of inner transport header */
4935         l4_offset = l4.hdr - skb->data;
4936
4937         /* compute length of segmentation header */
4938         *hdr_len = (l4.tcp->doff * 4) + l4_offset;
4939
4940         /* remove payload length from inner checksum */
4941         paylen = skb->len - l4_offset;
4942         csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
4943
4944         /* update gso size and bytecount with header size */
4945         first->gso_segs = skb_shinfo(skb)->gso_segs;
4946         first->bytecount += (first->gso_segs - 1) * *hdr_len;
4947
4948         /* MSS L4LEN IDX */
4949         mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
4950         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4951
4952         /* VLAN MACLEN IPLEN */
4953         vlan_macip_lens = l4.hdr - ip.hdr;
4954         vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
4955         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4956
4957         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4958
4959         return 1;
4960 }
4961
4962 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
4963 {
4964         unsigned int offset = 0;
4965
4966         ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
4967
4968         return offset == skb_checksum_start_offset(skb);
4969 }
4970
4971 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4972 {
4973         struct sk_buff *skb = first->skb;
4974         u32 vlan_macip_lens = 0;
4975         u32 type_tucmd = 0;
4976
4977         if (skb->ip_summed != CHECKSUM_PARTIAL) {
4978 csum_failed:
4979                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4980                         return;
4981                 goto no_csum;
4982         }
4983
4984         switch (skb->csum_offset) {
4985         case offsetof(struct tcphdr, check):
4986                 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4987                 /* fall through */
4988         case offsetof(struct udphdr, check):
4989                 break;
4990         case offsetof(struct sctphdr, checksum):
4991                 /* validate that this is actually an SCTP request */
4992                 if (((first->protocol == htons(ETH_P_IP)) &&
4993                      (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
4994                     ((first->protocol == htons(ETH_P_IPV6)) &&
4995                      igb_ipv6_csum_is_sctp(skb))) {
4996                         type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
4997                         break;
4998                 }
4999         default:
5000                 skb_checksum_help(skb);
5001                 goto csum_failed;
5002         }
5003
5004         /* update TX checksum flag */
5005         first->tx_flags |= IGB_TX_FLAGS_CSUM;
5006         vlan_macip_lens = skb_checksum_start_offset(skb) -
5007                           skb_network_offset(skb);
5008 no_csum:
5009         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5010         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5011
5012         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
5013 }
5014
5015 #define IGB_SET_FLAG(_input, _flag, _result) \
5016         ((_flag <= _result) ? \
5017          ((u32)(_input & _flag) * (_result / _flag)) : \
5018          ((u32)(_input & _flag) / (_flag / _result)))
5019
5020 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5021 {
5022         /* set type for advanced descriptor with frame checksum insertion */
5023         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5024                        E1000_ADVTXD_DCMD_DEXT |
5025                        E1000_ADVTXD_DCMD_IFCS;
5026
5027         /* set HW vlan bit if vlan is present */
5028         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5029                                  (E1000_ADVTXD_DCMD_VLE));
5030
5031         /* set segmentation bits for TSO */
5032         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5033                                  (E1000_ADVTXD_DCMD_TSE));
5034
5035         /* set timestamp bit if present */
5036         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5037                                  (E1000_ADVTXD_MAC_TSTAMP));
5038
5039         /* insert frame checksum */
5040         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5041
5042         return cmd_type;
5043 }
5044
5045 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5046                                  union e1000_adv_tx_desc *tx_desc,
5047                                  u32 tx_flags, unsigned int paylen)
5048 {
5049         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5050
5051         /* 82575 requires a unique index per ring */
5052         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5053                 olinfo_status |= tx_ring->reg_idx << 4;
5054
5055         /* insert L4 checksum */
5056         olinfo_status |= IGB_SET_FLAG(tx_flags,
5057                                       IGB_TX_FLAGS_CSUM,
5058                                       (E1000_TXD_POPTS_TXSM << 8));
5059
5060         /* insert IPv4 checksum */
5061         olinfo_status |= IGB_SET_FLAG(tx_flags,
5062                                       IGB_TX_FLAGS_IPV4,
5063                                       (E1000_TXD_POPTS_IXSM << 8));
5064
5065         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5066 }
5067
5068 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5069 {
5070         struct net_device *netdev = tx_ring->netdev;
5071
5072         netif_stop_subqueue(netdev, tx_ring->queue_index);
5073
5074         /* Herbert's original patch had:
5075          *  smp_mb__after_netif_stop_queue();
5076          * but since that doesn't exist yet, just open code it.
5077          */
5078         smp_mb();
5079
5080         /* We need to check again in a case another CPU has just
5081          * made room available.
5082          */
5083         if (igb_desc_unused(tx_ring) < size)
5084                 return -EBUSY;
5085
5086         /* A reprieve! */
5087         netif_wake_subqueue(netdev, tx_ring->queue_index);
5088
5089         u64_stats_update_begin(&tx_ring->tx_syncp2);
5090         tx_ring->tx_stats.restart_queue2++;
5091         u64_stats_update_end(&tx_ring->tx_syncp2);
5092
5093         return 0;
5094 }
5095
5096 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5097 {
5098         if (igb_desc_unused(tx_ring) >= size)
5099                 return 0;
5100         return __igb_maybe_stop_tx(tx_ring, size);
5101 }
5102
5103 static void igb_tx_map(struct igb_ring *tx_ring,
5104                        struct igb_tx_buffer *first,
5105                        const u8 hdr_len)
5106 {
5107         struct sk_buff *skb = first->skb;
5108         struct igb_tx_buffer *tx_buffer;
5109         union e1000_adv_tx_desc *tx_desc;
5110         struct skb_frag_struct *frag;
5111         dma_addr_t dma;
5112         unsigned int data_len, size;
5113         u32 tx_flags = first->tx_flags;
5114         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5115         u16 i = tx_ring->next_to_use;
5116
5117         tx_desc = IGB_TX_DESC(tx_ring, i);
5118
5119         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5120
5121         size = skb_headlen(skb);
5122         data_len = skb->data_len;
5123
5124         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5125
5126         tx_buffer = first;
5127
5128         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5129                 if (dma_mapping_error(tx_ring->dev, dma))
5130                         goto dma_error;
5131
5132                 /* record length, and DMA address */
5133                 dma_unmap_len_set(tx_buffer, len, size);
5134                 dma_unmap_addr_set(tx_buffer, dma, dma);
5135
5136                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5137
5138                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5139                         tx_desc->read.cmd_type_len =
5140                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5141
5142                         i++;
5143                         tx_desc++;
5144                         if (i == tx_ring->count) {
5145                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
5146                                 i = 0;
5147                         }
5148                         tx_desc->read.olinfo_status = 0;
5149
5150                         dma += IGB_MAX_DATA_PER_TXD;
5151                         size -= IGB_MAX_DATA_PER_TXD;
5152
5153                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
5154                 }
5155
5156                 if (likely(!data_len))
5157                         break;
5158
5159                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5160
5161                 i++;
5162                 tx_desc++;
5163                 if (i == tx_ring->count) {
5164                         tx_desc = IGB_TX_DESC(tx_ring, 0);
5165                         i = 0;
5166                 }
5167                 tx_desc->read.olinfo_status = 0;
5168
5169                 size = skb_frag_size(frag);
5170                 data_len -= size;
5171
5172                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5173                                        size, DMA_TO_DEVICE);
5174
5175                 tx_buffer = &tx_ring->tx_buffer_info[i];
5176         }
5177
5178         /* write last descriptor with RS and EOP bits */
5179         cmd_type |= size | IGB_TXD_DCMD;
5180         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5181
5182         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5183
5184         /* set the timestamp */
5185         first->time_stamp = jiffies;
5186
5187         /* Force memory writes to complete before letting h/w know there
5188          * are new descriptors to fetch.  (Only applicable for weak-ordered
5189          * memory model archs, such as IA-64).
5190          *
5191          * We also need this memory barrier to make certain all of the
5192          * status bits have been updated before next_to_watch is written.
5193          */
5194         wmb();
5195
5196         /* set next_to_watch value indicating a packet is present */
5197         first->next_to_watch = tx_desc;
5198
5199         i++;
5200         if (i == tx_ring->count)
5201                 i = 0;
5202
5203         tx_ring->next_to_use = i;
5204
5205         /* Make sure there is space in the ring for the next send. */
5206         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5207
5208         if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
5209                 writel(i, tx_ring->tail);
5210
5211                 /* we need this if more than one processor can write to our tail
5212                  * at a time, it synchronizes IO on IA64/Altix systems
5213                  */
5214                 mmiowb();
5215         }
5216         return;
5217
5218 dma_error:
5219         dev_err(tx_ring->dev, "TX DMA map failed\n");
5220
5221         /* clear dma mappings for failed tx_buffer_info map */
5222         for (;;) {
5223                 tx_buffer = &tx_ring->tx_buffer_info[i];
5224                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
5225                 if (tx_buffer == first)
5226                         break;
5227                 if (i == 0)
5228                         i = tx_ring->count;
5229                 i--;
5230         }
5231
5232         tx_ring->next_to_use = i;
5233 }
5234
5235 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5236                                 struct igb_ring *tx_ring)
5237 {
5238         struct igb_tx_buffer *first;
5239         int tso;
5240         u32 tx_flags = 0;
5241         unsigned short f;
5242         u16 count = TXD_USE_COUNT(skb_headlen(skb));
5243         __be16 protocol = vlan_get_protocol(skb);
5244         u8 hdr_len = 0;
5245
5246         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5247          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5248          *       + 2 desc gap to keep tail from touching head,
5249          *       + 1 desc for context descriptor,
5250          * otherwise try next time
5251          */
5252         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5253                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5254
5255         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5256                 /* this is a hard error */
5257                 return NETDEV_TX_BUSY;
5258         }
5259
5260         /* record the location of the first descriptor for this packet */
5261         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5262         first->skb = skb;
5263         first->bytecount = skb->len;
5264         first->gso_segs = 1;
5265
5266         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5267                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5268
5269                 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5270                                            &adapter->state)) {
5271                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5272                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
5273
5274                         adapter->ptp_tx_skb = skb_get(skb);
5275                         adapter->ptp_tx_start = jiffies;
5276                         if (adapter->hw.mac.type == e1000_82576)
5277                                 schedule_work(&adapter->ptp_tx_work);
5278                 }
5279         }
5280
5281         skb_tx_timestamp(skb);
5282
5283         if (skb_vlan_tag_present(skb)) {
5284                 tx_flags |= IGB_TX_FLAGS_VLAN;
5285                 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5286         }
5287
5288         /* record initial flags and protocol */
5289         first->tx_flags = tx_flags;
5290         first->protocol = protocol;
5291
5292         tso = igb_tso(tx_ring, first, &hdr_len);
5293         if (tso < 0)
5294                 goto out_drop;
5295         else if (!tso)
5296                 igb_tx_csum(tx_ring, first);
5297
5298         igb_tx_map(tx_ring, first, hdr_len);
5299
5300         return NETDEV_TX_OK;
5301
5302 out_drop:
5303         igb_unmap_and_free_tx_resource(tx_ring, first);
5304
5305         return NETDEV_TX_OK;
5306 }
5307
5308 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5309                                                     struct sk_buff *skb)
5310 {
5311         unsigned int r_idx = skb->queue_mapping;
5312
5313         if (r_idx >= adapter->num_tx_queues)
5314                 r_idx = r_idx % adapter->num_tx_queues;
5315
5316         return adapter->tx_ring[r_idx];
5317 }
5318
5319 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5320                                   struct net_device *netdev)
5321 {
5322         struct igb_adapter *adapter = netdev_priv(netdev);
5323
5324         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5325          * in order to meet this minimum size requirement.
5326          */
5327         if (skb_put_padto(skb, 17))
5328                 return NETDEV_TX_OK;
5329
5330         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5331 }
5332
5333 /**
5334  *  igb_tx_timeout - Respond to a Tx Hang
5335  *  @netdev: network interface device structure
5336  **/
5337 static void igb_tx_timeout(struct net_device *netdev)
5338 {
5339         struct igb_adapter *adapter = netdev_priv(netdev);
5340         struct e1000_hw *hw = &adapter->hw;
5341
5342         /* Do the reset outside of interrupt context */
5343         adapter->tx_timeout_count++;
5344
5345         if (hw->mac.type >= e1000_82580)
5346                 hw->dev_spec._82575.global_device_reset = true;
5347
5348         schedule_work(&adapter->reset_task);
5349         wr32(E1000_EICS,
5350              (adapter->eims_enable_mask & ~adapter->eims_other));
5351 }
5352
5353 static void igb_reset_task(struct work_struct *work)
5354 {
5355         struct igb_adapter *adapter;
5356         adapter = container_of(work, struct igb_adapter, reset_task);
5357
5358         igb_dump(adapter);
5359         netdev_err(adapter->netdev, "Reset adapter\n");
5360         igb_reinit_locked(adapter);
5361 }
5362
5363 /**
5364  *  igb_get_stats64 - Get System Network Statistics
5365  *  @netdev: network interface device structure
5366  *  @stats: rtnl_link_stats64 pointer
5367  **/
5368 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5369                                                 struct rtnl_link_stats64 *stats)
5370 {
5371         struct igb_adapter *adapter = netdev_priv(netdev);
5372
5373         spin_lock(&adapter->stats64_lock);
5374         igb_update_stats(adapter, &adapter->stats64);
5375         memcpy(stats, &adapter->stats64, sizeof(*stats));
5376         spin_unlock(&adapter->stats64_lock);
5377
5378         return stats;
5379 }
5380
5381 /**
5382  *  igb_change_mtu - Change the Maximum Transfer Unit
5383  *  @netdev: network interface device structure
5384  *  @new_mtu: new value for maximum frame size
5385  *
5386  *  Returns 0 on success, negative on failure
5387  **/
5388 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5389 {
5390         struct igb_adapter *adapter = netdev_priv(netdev);
5391         struct pci_dev *pdev = adapter->pdev;
5392         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5393
5394         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5395                 dev_err(&pdev->dev, "Invalid MTU setting\n");
5396                 return -EINVAL;
5397         }
5398
5399 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5400         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5401                 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5402                 return -EINVAL;
5403         }
5404
5405         /* adjust max frame to be at least the size of a standard frame */
5406         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5407                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5408
5409         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5410                 usleep_range(1000, 2000);
5411
5412         /* igb_down has a dependency on max_frame_size */
5413         adapter->max_frame_size = max_frame;
5414
5415         if (netif_running(netdev))
5416                 igb_down(adapter);
5417
5418         dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5419                  netdev->mtu, new_mtu);
5420         netdev->mtu = new_mtu;
5421
5422         if (netif_running(netdev))
5423                 igb_up(adapter);
5424         else
5425                 igb_reset(adapter);
5426
5427         clear_bit(__IGB_RESETTING, &adapter->state);
5428
5429         return 0;
5430 }
5431
5432 /**
5433  *  igb_update_stats - Update the board statistics counters
5434  *  @adapter: board private structure
5435  **/
5436 void igb_update_stats(struct igb_adapter *adapter,
5437                       struct rtnl_link_stats64 *net_stats)
5438 {
5439         struct e1000_hw *hw = &adapter->hw;
5440         struct pci_dev *pdev = adapter->pdev;
5441         u32 reg, mpc;
5442         int i;
5443         u64 bytes, packets;
5444         unsigned int start;
5445         u64 _bytes, _packets;
5446
5447         /* Prevent stats update while adapter is being reset, or if the pci
5448          * connection is down.
5449          */
5450         if (adapter->link_speed == 0)
5451                 return;
5452         if (pci_channel_offline(pdev))
5453                 return;
5454
5455         bytes = 0;
5456         packets = 0;
5457
5458         rcu_read_lock();
5459         for (i = 0; i < adapter->num_rx_queues; i++) {
5460                 struct igb_ring *ring = adapter->rx_ring[i];
5461                 u32 rqdpc = rd32(E1000_RQDPC(i));
5462                 if (hw->mac.type >= e1000_i210)
5463                         wr32(E1000_RQDPC(i), 0);
5464
5465                 if (rqdpc) {
5466                         ring->rx_stats.drops += rqdpc;
5467                         net_stats->rx_fifo_errors += rqdpc;
5468                 }
5469
5470                 do {
5471                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5472                         _bytes = ring->rx_stats.bytes;
5473                         _packets = ring->rx_stats.packets;
5474                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5475                 bytes += _bytes;
5476                 packets += _packets;
5477         }
5478
5479         net_stats->rx_bytes = bytes;
5480         net_stats->rx_packets = packets;
5481
5482         bytes = 0;
5483         packets = 0;
5484         for (i = 0; i < adapter->num_tx_queues; i++) {
5485                 struct igb_ring *ring = adapter->tx_ring[i];
5486                 do {
5487                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5488                         _bytes = ring->tx_stats.bytes;
5489                         _packets = ring->tx_stats.packets;
5490                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5491                 bytes += _bytes;
5492                 packets += _packets;
5493         }
5494         net_stats->tx_bytes = bytes;
5495         net_stats->tx_packets = packets;
5496         rcu_read_unlock();
5497
5498         /* read stats registers */
5499         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5500         adapter->stats.gprc += rd32(E1000_GPRC);
5501         adapter->stats.gorc += rd32(E1000_GORCL);
5502         rd32(E1000_GORCH); /* clear GORCL */
5503         adapter->stats.bprc += rd32(E1000_BPRC);
5504         adapter->stats.mprc += rd32(E1000_MPRC);
5505         adapter->stats.roc += rd32(E1000_ROC);
5506
5507         adapter->stats.prc64 += rd32(E1000_PRC64);
5508         adapter->stats.prc127 += rd32(E1000_PRC127);
5509         adapter->stats.prc255 += rd32(E1000_PRC255);
5510         adapter->stats.prc511 += rd32(E1000_PRC511);
5511         adapter->stats.prc1023 += rd32(E1000_PRC1023);
5512         adapter->stats.prc1522 += rd32(E1000_PRC1522);
5513         adapter->stats.symerrs += rd32(E1000_SYMERRS);
5514         adapter->stats.sec += rd32(E1000_SEC);
5515
5516         mpc = rd32(E1000_MPC);
5517         adapter->stats.mpc += mpc;
5518         net_stats->rx_fifo_errors += mpc;
5519         adapter->stats.scc += rd32(E1000_SCC);
5520         adapter->stats.ecol += rd32(E1000_ECOL);
5521         adapter->stats.mcc += rd32(E1000_MCC);
5522         adapter->stats.latecol += rd32(E1000_LATECOL);
5523         adapter->stats.dc += rd32(E1000_DC);
5524         adapter->stats.rlec += rd32(E1000_RLEC);
5525         adapter->stats.xonrxc += rd32(E1000_XONRXC);
5526         adapter->stats.xontxc += rd32(E1000_XONTXC);
5527         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5528         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5529         adapter->stats.fcruc += rd32(E1000_FCRUC);
5530         adapter->stats.gptc += rd32(E1000_GPTC);
5531         adapter->stats.gotc += rd32(E1000_GOTCL);
5532         rd32(E1000_GOTCH); /* clear GOTCL */
5533         adapter->stats.rnbc += rd32(E1000_RNBC);
5534         adapter->stats.ruc += rd32(E1000_RUC);
5535         adapter->stats.rfc += rd32(E1000_RFC);
5536         adapter->stats.rjc += rd32(E1000_RJC);
5537         adapter->stats.tor += rd32(E1000_TORH);
5538         adapter->stats.tot += rd32(E1000_TOTH);
5539         adapter->stats.tpr += rd32(E1000_TPR);
5540
5541         adapter->stats.ptc64 += rd32(E1000_PTC64);
5542         adapter->stats.ptc127 += rd32(E1000_PTC127);
5543         adapter->stats.ptc255 += rd32(E1000_PTC255);
5544         adapter->stats.ptc511 += rd32(E1000_PTC511);
5545         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5546         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5547
5548         adapter->stats.mptc += rd32(E1000_MPTC);
5549         adapter->stats.bptc += rd32(E1000_BPTC);
5550
5551         adapter->stats.tpt += rd32(E1000_TPT);
5552         adapter->stats.colc += rd32(E1000_COLC);
5553
5554         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5555         /* read internal phy specific stats */
5556         reg = rd32(E1000_CTRL_EXT);
5557         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5558                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5559
5560                 /* this stat has invalid values on i210/i211 */
5561                 if ((hw->mac.type != e1000_i210) &&
5562                     (hw->mac.type != e1000_i211))
5563                         adapter->stats.tncrs += rd32(E1000_TNCRS);
5564         }
5565
5566         adapter->stats.tsctc += rd32(E1000_TSCTC);
5567         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5568
5569         adapter->stats.iac += rd32(E1000_IAC);
5570         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5571         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5572         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5573         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5574         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5575         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5576         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5577         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5578
5579         /* Fill out the OS statistics structure */
5580         net_stats->multicast = adapter->stats.mprc;
5581         net_stats->collisions = adapter->stats.colc;
5582
5583         /* Rx Errors */
5584
5585         /* RLEC on some newer hardware can be incorrect so build
5586          * our own version based on RUC and ROC
5587          */
5588         net_stats->rx_errors = adapter->stats.rxerrc +
5589                 adapter->stats.crcerrs + adapter->stats.algnerrc +
5590                 adapter->stats.ruc + adapter->stats.roc +
5591                 adapter->stats.cexterr;
5592         net_stats->rx_length_errors = adapter->stats.ruc +
5593                                       adapter->stats.roc;
5594         net_stats->rx_crc_errors = adapter->stats.crcerrs;
5595         net_stats->rx_frame_errors = adapter->stats.algnerrc;
5596         net_stats->rx_missed_errors = adapter->stats.mpc;
5597
5598         /* Tx Errors */
5599         net_stats->tx_errors = adapter->stats.ecol +
5600                                adapter->stats.latecol;
5601         net_stats->tx_aborted_errors = adapter->stats.ecol;
5602         net_stats->tx_window_errors = adapter->stats.latecol;
5603         net_stats->tx_carrier_errors = adapter->stats.tncrs;
5604
5605         /* Tx Dropped needs to be maintained elsewhere */
5606
5607         /* Management Stats */
5608         adapter->stats.mgptc += rd32(E1000_MGTPTC);
5609         adapter->stats.mgprc += rd32(E1000_MGTPRC);
5610         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5611
5612         /* OS2BMC Stats */
5613         reg = rd32(E1000_MANC);
5614         if (reg & E1000_MANC_EN_BMC2OS) {
5615                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5616                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5617                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5618                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5619         }
5620 }
5621
5622 static void igb_tsync_interrupt(struct igb_adapter *adapter)
5623 {
5624         struct e1000_hw *hw = &adapter->hw;
5625         struct ptp_clock_event event;
5626         struct timespec64 ts;
5627         u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5628
5629         if (tsicr & TSINTR_SYS_WRAP) {
5630                 event.type = PTP_CLOCK_PPS;
5631                 if (adapter->ptp_caps.pps)
5632                         ptp_clock_event(adapter->ptp_clock, &event);
5633                 else
5634                         dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5635                 ack |= TSINTR_SYS_WRAP;
5636         }
5637
5638         if (tsicr & E1000_TSICR_TXTS) {
5639                 /* retrieve hardware timestamp */
5640                 schedule_work(&adapter->ptp_tx_work);
5641                 ack |= E1000_TSICR_TXTS;
5642         }
5643
5644         if (tsicr & TSINTR_TT0) {
5645                 spin_lock(&adapter->tmreg_lock);
5646                 ts = timespec64_add(adapter->perout[0].start,
5647                                     adapter->perout[0].period);
5648                 /* u32 conversion of tv_sec is safe until y2106 */
5649                 wr32(E1000_TRGTTIML0, ts.tv_nsec);
5650                 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
5651                 tsauxc = rd32(E1000_TSAUXC);
5652                 tsauxc |= TSAUXC_EN_TT0;
5653                 wr32(E1000_TSAUXC, tsauxc);
5654                 adapter->perout[0].start = ts;
5655                 spin_unlock(&adapter->tmreg_lock);
5656                 ack |= TSINTR_TT0;
5657         }
5658
5659         if (tsicr & TSINTR_TT1) {
5660                 spin_lock(&adapter->tmreg_lock);
5661                 ts = timespec64_add(adapter->perout[1].start,
5662                                     adapter->perout[1].period);
5663                 wr32(E1000_TRGTTIML1, ts.tv_nsec);
5664                 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
5665                 tsauxc = rd32(E1000_TSAUXC);
5666                 tsauxc |= TSAUXC_EN_TT1;
5667                 wr32(E1000_TSAUXC, tsauxc);
5668                 adapter->perout[1].start = ts;
5669                 spin_unlock(&adapter->tmreg_lock);
5670                 ack |= TSINTR_TT1;
5671         }
5672
5673         if (tsicr & TSINTR_AUTT0) {
5674                 nsec = rd32(E1000_AUXSTMPL0);
5675                 sec  = rd32(E1000_AUXSTMPH0);
5676                 event.type = PTP_CLOCK_EXTTS;
5677                 event.index = 0;
5678                 event.timestamp = sec * 1000000000ULL + nsec;
5679                 ptp_clock_event(adapter->ptp_clock, &event);
5680                 ack |= TSINTR_AUTT0;
5681         }
5682
5683         if (tsicr & TSINTR_AUTT1) {
5684                 nsec = rd32(E1000_AUXSTMPL1);
5685                 sec  = rd32(E1000_AUXSTMPH1);
5686                 event.type = PTP_CLOCK_EXTTS;
5687                 event.index = 1;
5688                 event.timestamp = sec * 1000000000ULL + nsec;
5689                 ptp_clock_event(adapter->ptp_clock, &event);
5690                 ack |= TSINTR_AUTT1;
5691         }
5692
5693         /* acknowledge the interrupts */
5694         wr32(E1000_TSICR, ack);
5695 }
5696
5697 static irqreturn_t igb_msix_other(int irq, void *data)
5698 {
5699         struct igb_adapter *adapter = data;
5700         struct e1000_hw *hw = &adapter->hw;
5701         u32 icr = rd32(E1000_ICR);
5702         /* reading ICR causes bit 31 of EICR to be cleared */
5703
5704         if (icr & E1000_ICR_DRSTA)
5705                 schedule_work(&adapter->reset_task);
5706
5707         if (icr & E1000_ICR_DOUTSYNC) {
5708                 /* HW is reporting DMA is out of sync */
5709                 adapter->stats.doosync++;
5710                 /* The DMA Out of Sync is also indication of a spoof event
5711                  * in IOV mode. Check the Wrong VM Behavior register to
5712                  * see if it is really a spoof event.
5713                  */
5714                 igb_check_wvbr(adapter);
5715         }
5716
5717         /* Check for a mailbox event */
5718         if (icr & E1000_ICR_VMMB)
5719                 igb_msg_task(adapter);
5720
5721         if (icr & E1000_ICR_LSC) {
5722                 hw->mac.get_link_status = 1;
5723                 /* guard against interrupt when we're going down */
5724                 if (!test_bit(__IGB_DOWN, &adapter->state))
5725                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5726         }
5727
5728         if (icr & E1000_ICR_TS)
5729                 igb_tsync_interrupt(adapter);
5730
5731         wr32(E1000_EIMS, adapter->eims_other);
5732
5733         return IRQ_HANDLED;
5734 }
5735
5736 static void igb_write_itr(struct igb_q_vector *q_vector)
5737 {
5738         struct igb_adapter *adapter = q_vector->adapter;
5739         u32 itr_val = q_vector->itr_val & 0x7FFC;
5740
5741         if (!q_vector->set_itr)
5742                 return;
5743
5744         if (!itr_val)
5745                 itr_val = 0x4;
5746
5747         if (adapter->hw.mac.type == e1000_82575)
5748                 itr_val |= itr_val << 16;
5749         else
5750                 itr_val |= E1000_EITR_CNT_IGNR;
5751
5752         writel(itr_val, q_vector->itr_register);
5753         q_vector->set_itr = 0;
5754 }
5755
5756 static irqreturn_t igb_msix_ring(int irq, void *data)
5757 {
5758         struct igb_q_vector *q_vector = data;
5759
5760         /* Write the ITR value calculated from the previous interrupt. */
5761         igb_write_itr(q_vector);
5762
5763         napi_schedule(&q_vector->napi);
5764
5765         return IRQ_HANDLED;
5766 }
5767
5768 #ifdef CONFIG_IGB_DCA
5769 static void igb_update_tx_dca(struct igb_adapter *adapter,
5770                               struct igb_ring *tx_ring,
5771                               int cpu)
5772 {
5773         struct e1000_hw *hw = &adapter->hw;
5774         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5775
5776         if (hw->mac.type != e1000_82575)
5777                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5778
5779         /* We can enable relaxed ordering for reads, but not writes when
5780          * DCA is enabled.  This is due to a known issue in some chipsets
5781          * which will cause the DCA tag to be cleared.
5782          */
5783         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5784                   E1000_DCA_TXCTRL_DATA_RRO_EN |
5785                   E1000_DCA_TXCTRL_DESC_DCA_EN;
5786
5787         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5788 }
5789
5790 static void igb_update_rx_dca(struct igb_adapter *adapter,
5791                               struct igb_ring *rx_ring,
5792                               int cpu)
5793 {
5794         struct e1000_hw *hw = &adapter->hw;
5795         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5796
5797         if (hw->mac.type != e1000_82575)
5798                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5799
5800         /* We can enable relaxed ordering for reads, but not writes when
5801          * DCA is enabled.  This is due to a known issue in some chipsets
5802          * which will cause the DCA tag to be cleared.
5803          */
5804         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5805                   E1000_DCA_RXCTRL_DESC_DCA_EN;
5806
5807         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5808 }
5809
5810 static void igb_update_dca(struct igb_q_vector *q_vector)
5811 {
5812         struct igb_adapter *adapter = q_vector->adapter;
5813         int cpu = get_cpu();
5814
5815         if (q_vector->cpu == cpu)
5816                 goto out_no_update;
5817
5818         if (q_vector->tx.ring)
5819                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5820
5821         if (q_vector->rx.ring)
5822                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5823
5824         q_vector->cpu = cpu;
5825 out_no_update:
5826         put_cpu();
5827 }
5828
5829 static void igb_setup_dca(struct igb_adapter *adapter)
5830 {
5831         struct e1000_hw *hw = &adapter->hw;
5832         int i;
5833
5834         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5835                 return;
5836
5837         /* Always use CB2 mode, difference is masked in the CB driver. */
5838         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5839
5840         for (i = 0; i < adapter->num_q_vectors; i++) {
5841                 adapter->q_vector[i]->cpu = -1;
5842                 igb_update_dca(adapter->q_vector[i]);
5843         }
5844 }
5845
5846 static int __igb_notify_dca(struct device *dev, void *data)
5847 {
5848         struct net_device *netdev = dev_get_drvdata(dev);
5849         struct igb_adapter *adapter = netdev_priv(netdev);
5850         struct pci_dev *pdev = adapter->pdev;
5851         struct e1000_hw *hw = &adapter->hw;
5852         unsigned long event = *(unsigned long *)data;
5853
5854         switch (event) {
5855         case DCA_PROVIDER_ADD:
5856                 /* if already enabled, don't do it again */
5857                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5858                         break;
5859                 if (dca_add_requester(dev) == 0) {
5860                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
5861                         dev_info(&pdev->dev, "DCA enabled\n");
5862                         igb_setup_dca(adapter);
5863                         break;
5864                 }
5865                 /* Fall Through since DCA is disabled. */
5866         case DCA_PROVIDER_REMOVE:
5867                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5868                         /* without this a class_device is left
5869                          * hanging around in the sysfs model
5870                          */
5871                         dca_remove_requester(dev);
5872                         dev_info(&pdev->dev, "DCA disabled\n");
5873                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5874                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5875                 }
5876                 break;
5877         }
5878
5879         return 0;
5880 }
5881
5882 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5883                           void *p)
5884 {
5885         int ret_val;
5886
5887         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5888                                          __igb_notify_dca);
5889
5890         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5891 }
5892 #endif /* CONFIG_IGB_DCA */
5893
5894 #ifdef CONFIG_PCI_IOV
5895 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5896 {
5897         unsigned char mac_addr[ETH_ALEN];
5898
5899         eth_zero_addr(mac_addr);
5900         igb_set_vf_mac(adapter, vf, mac_addr);
5901
5902         /* By default spoof check is enabled for all VFs */
5903         adapter->vf_data[vf].spoofchk_enabled = true;
5904
5905         return 0;
5906 }
5907
5908 #endif
5909 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5910 {
5911         struct e1000_hw *hw = &adapter->hw;
5912         u32 ping;
5913         int i;
5914
5915         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5916                 ping = E1000_PF_CONTROL_MSG;
5917                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5918                         ping |= E1000_VT_MSGTYPE_CTS;
5919                 igb_write_mbx(hw, &ping, 1, i);
5920         }
5921 }
5922
5923 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5924 {
5925         struct e1000_hw *hw = &adapter->hw;
5926         u32 vmolr = rd32(E1000_VMOLR(vf));
5927         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5928
5929         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5930                             IGB_VF_FLAG_MULTI_PROMISC);
5931         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5932
5933         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5934                 vmolr |= E1000_VMOLR_MPME;
5935                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5936                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5937         } else {
5938                 /* if we have hashes and we are clearing a multicast promisc
5939                  * flag we need to write the hashes to the MTA as this step
5940                  * was previously skipped
5941                  */
5942                 if (vf_data->num_vf_mc_hashes > 30) {
5943                         vmolr |= E1000_VMOLR_MPME;
5944                 } else if (vf_data->num_vf_mc_hashes) {
5945                         int j;
5946
5947                         vmolr |= E1000_VMOLR_ROMPE;
5948                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5949                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5950                 }
5951         }
5952
5953         wr32(E1000_VMOLR(vf), vmolr);
5954
5955         /* there are flags left unprocessed, likely not supported */
5956         if (*msgbuf & E1000_VT_MSGINFO_MASK)
5957                 return -EINVAL;
5958
5959         return 0;
5960 }
5961
5962 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5963                                   u32 *msgbuf, u32 vf)
5964 {
5965         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5966         u16 *hash_list = (u16 *)&msgbuf[1];
5967         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5968         int i;
5969
5970         /* salt away the number of multicast addresses assigned
5971          * to this VF for later use to restore when the PF multi cast
5972          * list changes
5973          */
5974         vf_data->num_vf_mc_hashes = n;
5975
5976         /* only up to 30 hash values supported */
5977         if (n > 30)
5978                 n = 30;
5979
5980         /* store the hashes for later use */
5981         for (i = 0; i < n; i++)
5982                 vf_data->vf_mc_hashes[i] = hash_list[i];
5983
5984         /* Flush and reset the mta with the new values */
5985         igb_set_rx_mode(adapter->netdev);
5986
5987         return 0;
5988 }
5989
5990 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5991 {
5992         struct e1000_hw *hw = &adapter->hw;
5993         struct vf_data_storage *vf_data;
5994         int i, j;
5995
5996         for (i = 0; i < adapter->vfs_allocated_count; i++) {
5997                 u32 vmolr = rd32(E1000_VMOLR(i));
5998
5999                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6000
6001                 vf_data = &adapter->vf_data[i];
6002
6003                 if ((vf_data->num_vf_mc_hashes > 30) ||
6004                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6005                         vmolr |= E1000_VMOLR_MPME;
6006                 } else if (vf_data->num_vf_mc_hashes) {
6007                         vmolr |= E1000_VMOLR_ROMPE;
6008                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6009                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6010                 }
6011                 wr32(E1000_VMOLR(i), vmolr);
6012         }
6013 }
6014
6015 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6016 {
6017         struct e1000_hw *hw = &adapter->hw;
6018         u32 pool_mask, vlvf_mask, i;
6019
6020         /* create mask for VF and other pools */
6021         pool_mask = E1000_VLVF_POOLSEL_MASK;
6022         vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6023
6024         /* drop PF from pool bits */
6025         pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6026                              adapter->vfs_allocated_count);
6027
6028         /* Find the vlan filter for this id */
6029         for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6030                 u32 vlvf = rd32(E1000_VLVF(i));
6031                 u32 vfta_mask, vid, vfta;
6032
6033                 /* remove the vf from the pool */
6034                 if (!(vlvf & vlvf_mask))
6035                         continue;
6036
6037                 /* clear out bit from VLVF */
6038                 vlvf ^= vlvf_mask;
6039
6040                 /* if other pools are present, just remove ourselves */
6041                 if (vlvf & pool_mask)
6042                         goto update_vlvfb;
6043
6044                 /* if PF is present, leave VFTA */
6045                 if (vlvf & E1000_VLVF_POOLSEL_MASK)
6046                         goto update_vlvf;
6047
6048                 vid = vlvf & E1000_VLVF_VLANID_MASK;
6049                 vfta_mask = BIT(vid % 32);
6050
6051                 /* clear bit from VFTA */
6052                 vfta = adapter->shadow_vfta[vid / 32];
6053                 if (vfta & vfta_mask)
6054                         hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6055 update_vlvf:
6056                 /* clear pool selection enable */
6057                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6058                         vlvf &= E1000_VLVF_POOLSEL_MASK;
6059                 else
6060                         vlvf = 0;
6061 update_vlvfb:
6062                 /* clear pool bits */
6063                 wr32(E1000_VLVF(i), vlvf);
6064         }
6065 }
6066
6067 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6068 {
6069         u32 vlvf;
6070         int idx;
6071
6072         /* short cut the special case */
6073         if (vlan == 0)
6074                 return 0;
6075
6076         /* Search for the VLAN id in the VLVF entries */
6077         for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6078                 vlvf = rd32(E1000_VLVF(idx));
6079                 if ((vlvf & VLAN_VID_MASK) == vlan)
6080                         break;
6081         }
6082
6083         return idx;
6084 }
6085
6086 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6087 {
6088         struct e1000_hw *hw = &adapter->hw;
6089         u32 bits, pf_id;
6090         int idx;
6091
6092         idx = igb_find_vlvf_entry(hw, vid);
6093         if (!idx)
6094                 return;
6095
6096         /* See if any other pools are set for this VLAN filter
6097          * entry other than the PF.
6098          */
6099         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6100         bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6101         bits &= rd32(E1000_VLVF(idx));
6102
6103         /* Disable the filter so this falls into the default pool. */
6104         if (!bits) {
6105                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6106                         wr32(E1000_VLVF(idx), BIT(pf_id));
6107                 else
6108                         wr32(E1000_VLVF(idx), 0);
6109         }
6110 }
6111
6112 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6113                            bool add, u32 vf)
6114 {
6115         int pf_id = adapter->vfs_allocated_count;
6116         struct e1000_hw *hw = &adapter->hw;
6117         int err;
6118
6119         /* If VLAN overlaps with one the PF is currently monitoring make
6120          * sure that we are able to allocate a VLVF entry.  This may be
6121          * redundant but it guarantees PF will maintain visibility to
6122          * the VLAN.
6123          */
6124         if (add && test_bit(vid, adapter->active_vlans)) {
6125                 err = igb_vfta_set(hw, vid, pf_id, true, false);
6126                 if (err)
6127                         return err;
6128         }
6129
6130         err = igb_vfta_set(hw, vid, vf, add, false);
6131
6132         if (add && !err)
6133                 return err;
6134
6135         /* If we failed to add the VF VLAN or we are removing the VF VLAN
6136          * we may need to drop the PF pool bit in order to allow us to free
6137          * up the VLVF resources.
6138          */
6139         if (test_bit(vid, adapter->active_vlans) ||
6140             (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6141                 igb_update_pf_vlvf(adapter, vid);
6142
6143         return err;
6144 }
6145
6146 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6147 {
6148         struct e1000_hw *hw = &adapter->hw;
6149
6150         if (vid)
6151                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6152         else
6153                 wr32(E1000_VMVIR(vf), 0);
6154 }
6155
6156 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6157                                 u16 vlan, u8 qos)
6158 {
6159         int err;
6160
6161         err = igb_set_vf_vlan(adapter, vlan, true, vf);
6162         if (err)
6163                 return err;
6164
6165         igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6166         igb_set_vmolr(adapter, vf, !vlan);
6167
6168         /* revoke access to previous VLAN */
6169         if (vlan != adapter->vf_data[vf].pf_vlan)
6170                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6171                                 false, vf);
6172
6173         adapter->vf_data[vf].pf_vlan = vlan;
6174         adapter->vf_data[vf].pf_qos = qos;
6175         igb_set_vf_vlan_strip(adapter, vf, true);
6176         dev_info(&adapter->pdev->dev,
6177                  "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6178         if (test_bit(__IGB_DOWN, &adapter->state)) {
6179                 dev_warn(&adapter->pdev->dev,
6180                          "The VF VLAN has been set, but the PF device is not up.\n");
6181                 dev_warn(&adapter->pdev->dev,
6182                          "Bring the PF device up before attempting to use the VF device.\n");
6183         }
6184
6185         return err;
6186 }
6187
6188 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
6189 {
6190         /* Restore tagless access via VLAN 0 */
6191         igb_set_vf_vlan(adapter, 0, true, vf);
6192
6193         igb_set_vmvir(adapter, 0, vf);
6194         igb_set_vmolr(adapter, vf, true);
6195
6196         /* Remove any PF assigned VLAN */
6197         if (adapter->vf_data[vf].pf_vlan)
6198                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6199                                 false, vf);
6200
6201         adapter->vf_data[vf].pf_vlan = 0;
6202         adapter->vf_data[vf].pf_qos = 0;
6203         igb_set_vf_vlan_strip(adapter, vf, false);
6204
6205         return 0;
6206 }
6207
6208 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
6209                                int vf, u16 vlan, u8 qos)
6210 {
6211         struct igb_adapter *adapter = netdev_priv(netdev);
6212
6213         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
6214                 return -EINVAL;
6215
6216         return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
6217                                igb_disable_port_vlan(adapter, vf);
6218 }
6219
6220 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6221 {
6222         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6223         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6224         int ret;
6225
6226         if (adapter->vf_data[vf].pf_vlan)
6227                 return -1;
6228
6229         /* VLAN 0 is a special case, don't allow it to be removed */
6230         if (!vid && !add)
6231                 return 0;
6232
6233         ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
6234         if (!ret)
6235                 igb_set_vf_vlan_strip(adapter, vf, !!vid);
6236         return ret;
6237 }
6238
6239 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6240 {
6241         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6242
6243         /* clear flags - except flag that indicates PF has set the MAC */
6244         vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
6245         vf_data->last_nack = jiffies;
6246
6247         /* reset vlans for device */
6248         igb_clear_vf_vfta(adapter, vf);
6249         igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
6250         igb_set_vmvir(adapter, vf_data->pf_vlan |
6251                                (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
6252         igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
6253         igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
6254
6255         /* reset multicast table array for vf */
6256         adapter->vf_data[vf].num_vf_mc_hashes = 0;
6257
6258         /* Flush and reset the mta with the new values */
6259         igb_set_rx_mode(adapter->netdev);
6260 }
6261
6262 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6263 {
6264         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6265
6266         /* clear mac address as we were hotplug removed/added */
6267         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6268                 eth_zero_addr(vf_mac);
6269
6270         /* process remaining reset events */
6271         igb_vf_reset(adapter, vf);
6272 }
6273
6274 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6275 {
6276         struct e1000_hw *hw = &adapter->hw;
6277         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6278         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6279         u32 reg, msgbuf[3];
6280         u8 *addr = (u8 *)(&msgbuf[1]);
6281
6282         /* process all the same items cleared in a function level reset */
6283         igb_vf_reset(adapter, vf);
6284
6285         /* set vf mac address */
6286         igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6287
6288         /* enable transmit and receive for vf */
6289         reg = rd32(E1000_VFTE);
6290         wr32(E1000_VFTE, reg | BIT(vf));
6291         reg = rd32(E1000_VFRE);
6292         wr32(E1000_VFRE, reg | BIT(vf));
6293
6294         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6295
6296         /* reply to reset with ack and vf mac address */
6297         if (!is_zero_ether_addr(vf_mac)) {
6298                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6299                 memcpy(addr, vf_mac, ETH_ALEN);
6300         } else {
6301                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6302         }
6303         igb_write_mbx(hw, msgbuf, 3, vf);
6304 }
6305
6306 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6307 {
6308         /* The VF MAC Address is stored in a packed array of bytes
6309          * starting at the second 32 bit word of the msg array
6310          */
6311         unsigned char *addr = (char *)&msg[1];
6312         int err = -1;
6313
6314         if (is_valid_ether_addr(addr))
6315                 err = igb_set_vf_mac(adapter, vf, addr);
6316
6317         return err;
6318 }
6319
6320 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6321 {
6322         struct e1000_hw *hw = &adapter->hw;
6323         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6324         u32 msg = E1000_VT_MSGTYPE_NACK;
6325
6326         /* if device isn't clear to send it shouldn't be reading either */
6327         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6328             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6329                 igb_write_mbx(hw, &msg, 1, vf);
6330                 vf_data->last_nack = jiffies;
6331         }
6332 }
6333
6334 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6335 {
6336         struct pci_dev *pdev = adapter->pdev;
6337         u32 msgbuf[E1000_VFMAILBOX_SIZE];
6338         struct e1000_hw *hw = &adapter->hw;
6339         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6340         s32 retval;
6341
6342         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6343
6344         if (retval) {
6345                 /* if receive failed revoke VF CTS stats and restart init */
6346                 dev_err(&pdev->dev, "Error receiving message from VF\n");
6347                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6348                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6349                         return;
6350                 goto out;
6351         }
6352
6353         /* this is a message we already processed, do nothing */
6354         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6355                 return;
6356
6357         /* until the vf completes a reset it should not be
6358          * allowed to start any configuration.
6359          */
6360         if (msgbuf[0] == E1000_VF_RESET) {
6361                 igb_vf_reset_msg(adapter, vf);
6362                 return;
6363         }
6364
6365         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6366                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6367                         return;
6368                 retval = -1;
6369                 goto out;
6370         }
6371
6372         switch ((msgbuf[0] & 0xFFFF)) {
6373         case E1000_VF_SET_MAC_ADDR:
6374                 retval = -EINVAL;
6375                 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6376                         retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6377                 else
6378                         dev_warn(&pdev->dev,
6379                                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6380                                  vf);
6381                 break;
6382         case E1000_VF_SET_PROMISC:
6383                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6384                 break;
6385         case E1000_VF_SET_MULTICAST:
6386                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6387                 break;
6388         case E1000_VF_SET_LPE:
6389                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6390                 break;
6391         case E1000_VF_SET_VLAN:
6392                 retval = -1;
6393                 if (vf_data->pf_vlan)
6394                         dev_warn(&pdev->dev,
6395                                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6396                                  vf);
6397                 else
6398                         retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
6399                 break;
6400         default:
6401                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6402                 retval = -1;
6403                 break;
6404         }
6405
6406         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6407 out:
6408         /* notify the VF of the results of what it sent us */
6409         if (retval)
6410                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6411         else
6412                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6413
6414         igb_write_mbx(hw, msgbuf, 1, vf);
6415 }
6416
6417 static void igb_msg_task(struct igb_adapter *adapter)
6418 {
6419         struct e1000_hw *hw = &adapter->hw;
6420         u32 vf;
6421
6422         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6423                 /* process any reset requests */
6424                 if (!igb_check_for_rst(hw, vf))
6425                         igb_vf_reset_event(adapter, vf);
6426
6427                 /* process any messages pending */
6428                 if (!igb_check_for_msg(hw, vf))
6429                         igb_rcv_msg_from_vf(adapter, vf);
6430
6431                 /* process any acks */
6432                 if (!igb_check_for_ack(hw, vf))
6433                         igb_rcv_ack_from_vf(adapter, vf);
6434         }
6435 }
6436
6437 /**
6438  *  igb_set_uta - Set unicast filter table address
6439  *  @adapter: board private structure
6440  *  @set: boolean indicating if we are setting or clearing bits
6441  *
6442  *  The unicast table address is a register array of 32-bit registers.
6443  *  The table is meant to be used in a way similar to how the MTA is used
6444  *  however due to certain limitations in the hardware it is necessary to
6445  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6446  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6447  **/
6448 static void igb_set_uta(struct igb_adapter *adapter, bool set)
6449 {
6450         struct e1000_hw *hw = &adapter->hw;
6451         u32 uta = set ? ~0 : 0;
6452         int i;
6453
6454         /* we only need to do this if VMDq is enabled */
6455         if (!adapter->vfs_allocated_count)
6456                 return;
6457
6458         for (i = hw->mac.uta_reg_count; i--;)
6459                 array_wr32(E1000_UTA, i, uta);
6460 }
6461
6462 /**
6463  *  igb_intr_msi - Interrupt Handler
6464  *  @irq: interrupt number
6465  *  @data: pointer to a network interface device structure
6466  **/
6467 static irqreturn_t igb_intr_msi(int irq, void *data)
6468 {
6469         struct igb_adapter *adapter = data;
6470         struct igb_q_vector *q_vector = adapter->q_vector[0];
6471         struct e1000_hw *hw = &adapter->hw;
6472         /* read ICR disables interrupts using IAM */
6473         u32 icr = rd32(E1000_ICR);
6474
6475         igb_write_itr(q_vector);
6476
6477         if (icr & E1000_ICR_DRSTA)
6478                 schedule_work(&adapter->reset_task);
6479
6480         if (icr & E1000_ICR_DOUTSYNC) {
6481                 /* HW is reporting DMA is out of sync */
6482                 adapter->stats.doosync++;
6483         }
6484
6485         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6486                 hw->mac.get_link_status = 1;
6487                 if (!test_bit(__IGB_DOWN, &adapter->state))
6488                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6489         }
6490
6491         if (icr & E1000_ICR_TS)
6492                 igb_tsync_interrupt(adapter);
6493
6494         napi_schedule(&q_vector->napi);
6495
6496         return IRQ_HANDLED;
6497 }
6498
6499 /**
6500  *  igb_intr - Legacy Interrupt Handler
6501  *  @irq: interrupt number
6502  *  @data: pointer to a network interface device structure
6503  **/
6504 static irqreturn_t igb_intr(int irq, void *data)
6505 {
6506         struct igb_adapter *adapter = data;
6507         struct igb_q_vector *q_vector = adapter->q_vector[0];
6508         struct e1000_hw *hw = &adapter->hw;
6509         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6510          * need for the IMC write
6511          */
6512         u32 icr = rd32(E1000_ICR);
6513
6514         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6515          * not set, then the adapter didn't send an interrupt
6516          */
6517         if (!(icr & E1000_ICR_INT_ASSERTED))
6518                 return IRQ_NONE;
6519
6520         igb_write_itr(q_vector);
6521
6522         if (icr & E1000_ICR_DRSTA)
6523                 schedule_work(&adapter->reset_task);
6524
6525         if (icr & E1000_ICR_DOUTSYNC) {
6526                 /* HW is reporting DMA is out of sync */
6527                 adapter->stats.doosync++;
6528         }
6529
6530         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6531                 hw->mac.get_link_status = 1;
6532                 /* guard against interrupt when we're going down */
6533                 if (!test_bit(__IGB_DOWN, &adapter->state))
6534                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6535         }
6536
6537         if (icr & E1000_ICR_TS)
6538                 igb_tsync_interrupt(adapter);
6539
6540         napi_schedule(&q_vector->napi);
6541
6542         return IRQ_HANDLED;
6543 }
6544
6545 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6546 {
6547         struct igb_adapter *adapter = q_vector->adapter;
6548         struct e1000_hw *hw = &adapter->hw;
6549
6550         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6551             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6552                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6553                         igb_set_itr(q_vector);
6554                 else
6555                         igb_update_ring_itr(q_vector);
6556         }
6557
6558         if (!test_bit(__IGB_DOWN, &adapter->state)) {
6559                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6560                         wr32(E1000_EIMS, q_vector->eims_value);
6561                 else
6562                         igb_irq_enable(adapter);
6563         }
6564 }
6565
6566 /**
6567  *  igb_poll - NAPI Rx polling callback
6568  *  @napi: napi polling structure
6569  *  @budget: count of how many packets we should handle
6570  **/
6571 static int igb_poll(struct napi_struct *napi, int budget)
6572 {
6573         struct igb_q_vector *q_vector = container_of(napi,
6574                                                      struct igb_q_vector,
6575                                                      napi);
6576         bool clean_complete = true;
6577         int work_done = 0;
6578
6579 #ifdef CONFIG_IGB_DCA
6580         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6581                 igb_update_dca(q_vector);
6582 #endif
6583         if (q_vector->tx.ring)
6584                 clean_complete = igb_clean_tx_irq(q_vector, budget);
6585
6586         if (q_vector->rx.ring) {
6587                 int cleaned = igb_clean_rx_irq(q_vector, budget);
6588
6589                 work_done += cleaned;
6590                 if (cleaned >= budget)
6591                         clean_complete = false;
6592         }
6593
6594         /* If all work not completed, return budget and keep polling */
6595         if (!clean_complete)
6596                 return budget;
6597
6598         /* If not enough Rx work done, exit the polling mode */
6599         napi_complete_done(napi, work_done);
6600         igb_ring_irq_enable(q_vector);
6601
6602         return 0;
6603 }
6604
6605 /**
6606  *  igb_clean_tx_irq - Reclaim resources after transmit completes
6607  *  @q_vector: pointer to q_vector containing needed info
6608  *  @napi_budget: Used to determine if we are in netpoll
6609  *
6610  *  returns true if ring is completely cleaned
6611  **/
6612 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
6613 {
6614         struct igb_adapter *adapter = q_vector->adapter;
6615         struct igb_ring *tx_ring = q_vector->tx.ring;
6616         struct igb_tx_buffer *tx_buffer;
6617         union e1000_adv_tx_desc *tx_desc;
6618         unsigned int total_bytes = 0, total_packets = 0;
6619         unsigned int budget = q_vector->tx.work_limit;
6620         unsigned int i = tx_ring->next_to_clean;
6621
6622         if (test_bit(__IGB_DOWN, &adapter->state))
6623                 return true;
6624
6625         tx_buffer = &tx_ring->tx_buffer_info[i];
6626         tx_desc = IGB_TX_DESC(tx_ring, i);
6627         i -= tx_ring->count;
6628
6629         do {
6630                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6631
6632                 /* if next_to_watch is not set then there is no work pending */
6633                 if (!eop_desc)
6634                         break;
6635
6636                 /* prevent any other reads prior to eop_desc */
6637                 read_barrier_depends();
6638
6639                 /* if DD is not set pending work has not been completed */
6640                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6641                         break;
6642
6643                 /* clear next_to_watch to prevent false hangs */
6644                 tx_buffer->next_to_watch = NULL;
6645
6646                 /* update the statistics for this packet */
6647                 total_bytes += tx_buffer->bytecount;
6648                 total_packets += tx_buffer->gso_segs;
6649
6650                 /* free the skb */
6651                 napi_consume_skb(tx_buffer->skb, napi_budget);
6652
6653                 /* unmap skb header data */
6654                 dma_unmap_single(tx_ring->dev,
6655                                  dma_unmap_addr(tx_buffer, dma),
6656                                  dma_unmap_len(tx_buffer, len),
6657                                  DMA_TO_DEVICE);
6658
6659                 /* clear tx_buffer data */
6660                 tx_buffer->skb = NULL;
6661                 dma_unmap_len_set(tx_buffer, len, 0);
6662
6663                 /* clear last DMA location and unmap remaining buffers */
6664                 while (tx_desc != eop_desc) {
6665                         tx_buffer++;
6666                         tx_desc++;
6667                         i++;
6668                         if (unlikely(!i)) {
6669                                 i -= tx_ring->count;
6670                                 tx_buffer = tx_ring->tx_buffer_info;
6671                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
6672                         }
6673
6674                         /* unmap any remaining paged data */
6675                         if (dma_unmap_len(tx_buffer, len)) {
6676                                 dma_unmap_page(tx_ring->dev,
6677                                                dma_unmap_addr(tx_buffer, dma),
6678                                                dma_unmap_len(tx_buffer, len),
6679                                                DMA_TO_DEVICE);
6680                                 dma_unmap_len_set(tx_buffer, len, 0);
6681                         }
6682                 }
6683
6684                 /* move us one more past the eop_desc for start of next pkt */
6685                 tx_buffer++;
6686                 tx_desc++;
6687                 i++;
6688                 if (unlikely(!i)) {
6689                         i -= tx_ring->count;
6690                         tx_buffer = tx_ring->tx_buffer_info;
6691                         tx_desc = IGB_TX_DESC(tx_ring, 0);
6692                 }
6693
6694                 /* issue prefetch for next Tx descriptor */
6695                 prefetch(tx_desc);
6696
6697                 /* update budget accounting */
6698                 budget--;
6699         } while (likely(budget));
6700
6701         netdev_tx_completed_queue(txring_txq(tx_ring),
6702                                   total_packets, total_bytes);
6703         i += tx_ring->count;
6704         tx_ring->next_to_clean = i;
6705         u64_stats_update_begin(&tx_ring->tx_syncp);
6706         tx_ring->tx_stats.bytes += total_bytes;
6707         tx_ring->tx_stats.packets += total_packets;
6708         u64_stats_update_end(&tx_ring->tx_syncp);
6709         q_vector->tx.total_bytes += total_bytes;
6710         q_vector->tx.total_packets += total_packets;
6711
6712         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6713                 struct e1000_hw *hw = &adapter->hw;
6714
6715                 /* Detect a transmit hang in hardware, this serializes the
6716                  * check with the clearing of time_stamp and movement of i
6717                  */
6718                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6719                 if (tx_buffer->next_to_watch &&
6720                     time_after(jiffies, tx_buffer->time_stamp +
6721                                (adapter->tx_timeout_factor * HZ)) &&
6722                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6723
6724                         /* detected Tx unit hang */
6725                         dev_err(tx_ring->dev,
6726                                 "Detected Tx Unit Hang\n"
6727                                 "  Tx Queue             <%d>\n"
6728                                 "  TDH                  <%x>\n"
6729                                 "  TDT                  <%x>\n"
6730                                 "  next_to_use          <%x>\n"
6731                                 "  next_to_clean        <%x>\n"
6732                                 "buffer_info[next_to_clean]\n"
6733                                 "  time_stamp           <%lx>\n"
6734                                 "  next_to_watch        <%p>\n"
6735                                 "  jiffies              <%lx>\n"
6736                                 "  desc.status          <%x>\n",
6737                                 tx_ring->queue_index,
6738                                 rd32(E1000_TDH(tx_ring->reg_idx)),
6739                                 readl(tx_ring->tail),
6740                                 tx_ring->next_to_use,
6741                                 tx_ring->next_to_clean,
6742                                 tx_buffer->time_stamp,
6743                                 tx_buffer->next_to_watch,
6744                                 jiffies,
6745                                 tx_buffer->next_to_watch->wb.status);
6746                         netif_stop_subqueue(tx_ring->netdev,
6747                                             tx_ring->queue_index);
6748
6749                         /* we are about to reset, no point in enabling stuff */
6750                         return true;
6751                 }
6752         }
6753
6754 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6755         if (unlikely(total_packets &&
6756             netif_carrier_ok(tx_ring->netdev) &&
6757             igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6758                 /* Make sure that anybody stopping the queue after this
6759                  * sees the new next_to_clean.
6760                  */
6761                 smp_mb();
6762                 if (__netif_subqueue_stopped(tx_ring->netdev,
6763                                              tx_ring->queue_index) &&
6764                     !(test_bit(__IGB_DOWN, &adapter->state))) {
6765                         netif_wake_subqueue(tx_ring->netdev,
6766                                             tx_ring->queue_index);
6767
6768                         u64_stats_update_begin(&tx_ring->tx_syncp);
6769                         tx_ring->tx_stats.restart_queue++;
6770                         u64_stats_update_end(&tx_ring->tx_syncp);
6771                 }
6772         }
6773
6774         return !!budget;
6775 }
6776
6777 /**
6778  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6779  *  @rx_ring: rx descriptor ring to store buffers on
6780  *  @old_buff: donor buffer to have page reused
6781  *
6782  *  Synchronizes page for reuse by the adapter
6783  **/
6784 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6785                               struct igb_rx_buffer *old_buff)
6786 {
6787         struct igb_rx_buffer *new_buff;
6788         u16 nta = rx_ring->next_to_alloc;
6789
6790         new_buff = &rx_ring->rx_buffer_info[nta];
6791
6792         /* update, and store next to alloc */
6793         nta++;
6794         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6795
6796         /* transfer page from old buffer to new buffer */
6797         *new_buff = *old_buff;
6798
6799         /* sync the buffer for use by the device */
6800         dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6801                                          old_buff->page_offset,
6802                                          IGB_RX_BUFSZ,
6803                                          DMA_FROM_DEVICE);
6804 }
6805
6806 static inline bool igb_page_is_reserved(struct page *page)
6807 {
6808         return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
6809 }
6810
6811 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6812                                   struct page *page,
6813                                   unsigned int truesize)
6814 {
6815         /* avoid re-using remote pages */
6816         if (unlikely(igb_page_is_reserved(page)))
6817                 return false;
6818
6819 #if (PAGE_SIZE < 8192)
6820         /* if we are only owner of page we can reuse it */
6821         if (unlikely(page_count(page) != 1))
6822                 return false;
6823
6824         /* flip page offset to other buffer */
6825         rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6826 #else
6827         /* move offset up to the next cache line */
6828         rx_buffer->page_offset += truesize;
6829
6830         if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6831                 return false;
6832 #endif
6833
6834         /* Even if we own the page, we are not allowed to use atomic_set()
6835          * This would break get_page_unless_zero() users.
6836          */
6837         page_ref_inc(page);
6838
6839         return true;
6840 }
6841
6842 /**
6843  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6844  *  @rx_ring: rx descriptor ring to transact packets on
6845  *  @rx_buffer: buffer containing page to add
6846  *  @rx_desc: descriptor containing length of buffer written by hardware
6847  *  @skb: sk_buff to place the data into
6848  *
6849  *  This function will add the data contained in rx_buffer->page to the skb.
6850  *  This is done either through a direct copy if the data in the buffer is
6851  *  less than the skb header size, otherwise it will just attach the page as
6852  *  a frag to the skb.
6853  *
6854  *  The function will then update the page offset if necessary and return
6855  *  true if the buffer can be reused by the adapter.
6856  **/
6857 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6858                             struct igb_rx_buffer *rx_buffer,
6859                             unsigned int size,
6860                             union e1000_adv_rx_desc *rx_desc,
6861                             struct sk_buff *skb)
6862 {
6863         struct page *page = rx_buffer->page;
6864         unsigned char *va = page_address(page) + rx_buffer->page_offset;
6865 #if (PAGE_SIZE < 8192)
6866         unsigned int truesize = IGB_RX_BUFSZ;
6867 #else
6868         unsigned int truesize = SKB_DATA_ALIGN(size);
6869 #endif
6870         unsigned int pull_len;
6871
6872         if (unlikely(skb_is_nonlinear(skb)))
6873                 goto add_tail_frag;
6874
6875         if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
6876                 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6877                 va += IGB_TS_HDR_LEN;
6878                 size -= IGB_TS_HDR_LEN;
6879         }
6880
6881         if (likely(size <= IGB_RX_HDR_LEN)) {
6882                 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6883
6884                 /* page is not reserved, we can reuse buffer as-is */
6885                 if (likely(!igb_page_is_reserved(page)))
6886                         return true;
6887
6888                 /* this page cannot be reused so discard it */
6889                 __free_page(page);
6890                 return false;
6891         }
6892
6893         /* we need the header to contain the greater of either ETH_HLEN or
6894          * 60 bytes if the skb->len is less than 60 for skb_pad.
6895          */
6896         pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6897
6898         /* align pull length to size of long to optimize memcpy performance */
6899         memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
6900
6901         /* update all of the pointers */
6902         va += pull_len;
6903         size -= pull_len;
6904
6905 add_tail_frag:
6906         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6907                         (unsigned long)va & ~PAGE_MASK, size, truesize);
6908
6909         return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6910 }
6911
6912 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6913                                            union e1000_adv_rx_desc *rx_desc,
6914                                            struct sk_buff *skb)
6915 {
6916         unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6917         struct igb_rx_buffer *rx_buffer;
6918         struct page *page;
6919
6920         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6921         page = rx_buffer->page;
6922         prefetchw(page);
6923
6924         if (likely(!skb)) {
6925                 void *page_addr = page_address(page) +
6926                                   rx_buffer->page_offset;
6927
6928                 /* prefetch first cache line of first page */
6929                 prefetch(page_addr);
6930 #if L1_CACHE_BYTES < 128
6931                 prefetch(page_addr + L1_CACHE_BYTES);
6932 #endif
6933
6934                 /* allocate a skb to store the frags */
6935                 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6936                 if (unlikely(!skb)) {
6937                         rx_ring->rx_stats.alloc_failed++;
6938                         return NULL;
6939                 }
6940
6941                 /* we will be copying header into skb->data in
6942                  * pskb_may_pull so it is in our interest to prefetch
6943                  * it now to avoid a possible cache miss
6944                  */
6945                 prefetchw(skb->data);
6946         }
6947
6948         /* we are reusing so sync this buffer for CPU use */
6949         dma_sync_single_range_for_cpu(rx_ring->dev,
6950                                       rx_buffer->dma,
6951                                       rx_buffer->page_offset,
6952                                       size,
6953                                       DMA_FROM_DEVICE);
6954
6955         /* pull page into skb */
6956         if (igb_add_rx_frag(rx_ring, rx_buffer, size, rx_desc, skb)) {
6957                 /* hand second half of page back to the ring */
6958                 igb_reuse_rx_page(rx_ring, rx_buffer);
6959         } else {
6960                 /* we are not reusing the buffer so unmap it */
6961                 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6962                                PAGE_SIZE, DMA_FROM_DEVICE);
6963         }
6964
6965         /* clear contents of rx_buffer */
6966         rx_buffer->page = NULL;
6967
6968         return skb;
6969 }
6970
6971 static inline void igb_rx_checksum(struct igb_ring *ring,
6972                                    union e1000_adv_rx_desc *rx_desc,
6973                                    struct sk_buff *skb)
6974 {
6975         skb_checksum_none_assert(skb);
6976
6977         /* Ignore Checksum bit is set */
6978         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6979                 return;
6980
6981         /* Rx checksum disabled via ethtool */
6982         if (!(ring->netdev->features & NETIF_F_RXCSUM))
6983                 return;
6984
6985         /* TCP/UDP checksum error bit is set */
6986         if (igb_test_staterr(rx_desc,
6987                              E1000_RXDEXT_STATERR_TCPE |
6988                              E1000_RXDEXT_STATERR_IPE)) {
6989                 /* work around errata with sctp packets where the TCPE aka
6990                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6991                  * packets, (aka let the stack check the crc32c)
6992                  */
6993                 if (!((skb->len == 60) &&
6994                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6995                         u64_stats_update_begin(&ring->rx_syncp);
6996                         ring->rx_stats.csum_err++;
6997                         u64_stats_update_end(&ring->rx_syncp);
6998                 }
6999                 /* let the stack verify checksum errors */
7000                 return;
7001         }
7002         /* It must be a TCP or UDP packet with a valid checksum */
7003         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
7004                                       E1000_RXD_STAT_UDPCS))
7005                 skb->ip_summed = CHECKSUM_UNNECESSARY;
7006
7007         dev_dbg(ring->dev, "cksum success: bits %08X\n",
7008                 le32_to_cpu(rx_desc->wb.upper.status_error));
7009 }
7010
7011 static inline void igb_rx_hash(struct igb_ring *ring,
7012                                union e1000_adv_rx_desc *rx_desc,
7013                                struct sk_buff *skb)
7014 {
7015         if (ring->netdev->features & NETIF_F_RXHASH)
7016                 skb_set_hash(skb,
7017                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
7018                              PKT_HASH_TYPE_L3);
7019 }
7020
7021 /**
7022  *  igb_is_non_eop - process handling of non-EOP buffers
7023  *  @rx_ring: Rx ring being processed
7024  *  @rx_desc: Rx descriptor for current buffer
7025  *  @skb: current socket buffer containing buffer in progress
7026  *
7027  *  This function updates next to clean.  If the buffer is an EOP buffer
7028  *  this function exits returning false, otherwise it will place the
7029  *  sk_buff in the next buffer to be chained and return true indicating
7030  *  that this is in fact a non-EOP buffer.
7031  **/
7032 static bool igb_is_non_eop(struct igb_ring *rx_ring,
7033                            union e1000_adv_rx_desc *rx_desc)
7034 {
7035         u32 ntc = rx_ring->next_to_clean + 1;
7036
7037         /* fetch, update, and store next to clean */
7038         ntc = (ntc < rx_ring->count) ? ntc : 0;
7039         rx_ring->next_to_clean = ntc;
7040
7041         prefetch(IGB_RX_DESC(rx_ring, ntc));
7042
7043         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
7044                 return false;
7045
7046         return true;
7047 }
7048
7049 /**
7050  *  igb_cleanup_headers - Correct corrupted or empty headers
7051  *  @rx_ring: rx descriptor ring packet is being transacted on
7052  *  @rx_desc: pointer to the EOP Rx descriptor
7053  *  @skb: pointer to current skb being fixed
7054  *
7055  *  Address the case where we are pulling data in on pages only
7056  *  and as such no data is present in the skb header.
7057  *
7058  *  In addition if skb is not at least 60 bytes we need to pad it so that
7059  *  it is large enough to qualify as a valid Ethernet frame.
7060  *
7061  *  Returns true if an error was encountered and skb was freed.
7062  **/
7063 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
7064                                 union e1000_adv_rx_desc *rx_desc,
7065                                 struct sk_buff *skb)
7066 {
7067         if (unlikely((igb_test_staterr(rx_desc,
7068                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
7069                 struct net_device *netdev = rx_ring->netdev;
7070                 if (!(netdev->features & NETIF_F_RXALL)) {
7071                         dev_kfree_skb_any(skb);
7072                         return true;
7073                 }
7074         }
7075
7076         /* if eth_skb_pad returns an error the skb was freed */
7077         if (eth_skb_pad(skb))
7078                 return true;
7079
7080         return false;
7081 }
7082
7083 /**
7084  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
7085  *  @rx_ring: rx descriptor ring packet is being transacted on
7086  *  @rx_desc: pointer to the EOP Rx descriptor
7087  *  @skb: pointer to current skb being populated
7088  *
7089  *  This function checks the ring, descriptor, and packet information in
7090  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
7091  *  other fields within the skb.
7092  **/
7093 static void igb_process_skb_fields(struct igb_ring *rx_ring,
7094                                    union e1000_adv_rx_desc *rx_desc,
7095                                    struct sk_buff *skb)
7096 {
7097         struct net_device *dev = rx_ring->netdev;
7098
7099         igb_rx_hash(rx_ring, rx_desc, skb);
7100
7101         igb_rx_checksum(rx_ring, rx_desc, skb);
7102
7103         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
7104             !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
7105                 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
7106
7107         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
7108             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7109                 u16 vid;
7110
7111                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7112                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7113                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7114                 else
7115                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7116
7117                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
7118         }
7119
7120         skb_record_rx_queue(skb, rx_ring->queue_index);
7121
7122         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
7123 }
7124
7125 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
7126 {
7127         struct igb_ring *rx_ring = q_vector->rx.ring;
7128         struct sk_buff *skb = rx_ring->skb;
7129         unsigned int total_bytes = 0, total_packets = 0;
7130         u16 cleaned_count = igb_desc_unused(rx_ring);
7131
7132         while (likely(total_packets < budget)) {
7133                 union e1000_adv_rx_desc *rx_desc;
7134
7135                 /* return some buffers to hardware, one at a time is too slow */
7136                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7137                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
7138                         cleaned_count = 0;
7139                 }
7140
7141                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7142
7143                 if (!rx_desc->wb.upper.status_error)
7144                         break;
7145
7146                 /* This memory barrier is needed to keep us from reading
7147                  * any other fields out of the rx_desc until we know the
7148                  * descriptor has been written back
7149                  */
7150                 dma_rmb();
7151
7152                 /* retrieve a buffer from the ring */
7153                 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7154
7155                 /* exit if we failed to retrieve a buffer */
7156                 if (!skb)
7157                         break;
7158
7159                 cleaned_count++;
7160
7161                 /* fetch next buffer in frame if non-eop */
7162                 if (igb_is_non_eop(rx_ring, rx_desc))
7163                         continue;
7164
7165                 /* verify the packet layout is correct */
7166                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7167                         skb = NULL;
7168                         continue;
7169                 }
7170
7171                 /* probably a little skewed due to removing CRC */
7172                 total_bytes += skb->len;
7173
7174                 /* populate checksum, timestamp, VLAN, and protocol */
7175                 igb_process_skb_fields(rx_ring, rx_desc, skb);
7176
7177                 napi_gro_receive(&q_vector->napi, skb);
7178
7179                 /* reset skb pointer */
7180                 skb = NULL;
7181
7182                 /* update budget accounting */
7183                 total_packets++;
7184         }
7185
7186         /* place incomplete frames back on ring for completion */
7187         rx_ring->skb = skb;
7188
7189         u64_stats_update_begin(&rx_ring->rx_syncp);
7190         rx_ring->rx_stats.packets += total_packets;
7191         rx_ring->rx_stats.bytes += total_bytes;
7192         u64_stats_update_end(&rx_ring->rx_syncp);
7193         q_vector->rx.total_packets += total_packets;
7194         q_vector->rx.total_bytes += total_bytes;
7195
7196         if (cleaned_count)
7197                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7198
7199         return total_packets;
7200 }
7201
7202 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7203                                   struct igb_rx_buffer *bi)
7204 {
7205         struct page *page = bi->page;
7206         dma_addr_t dma;
7207
7208         /* since we are recycling buffers we should seldom need to alloc */
7209         if (likely(page))
7210                 return true;
7211
7212         /* alloc new page for storage */
7213         page = dev_alloc_page();
7214         if (unlikely(!page)) {
7215                 rx_ring->rx_stats.alloc_failed++;
7216                 return false;
7217         }
7218
7219         /* map page for use */
7220         dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7221
7222         /* if mapping failed free memory back to system since
7223          * there isn't much point in holding memory we can't use
7224          */
7225         if (dma_mapping_error(rx_ring->dev, dma)) {
7226                 __free_page(page);
7227
7228                 rx_ring->rx_stats.alloc_failed++;
7229                 return false;
7230         }
7231
7232         bi->dma = dma;
7233         bi->page = page;
7234         bi->page_offset = 0;
7235
7236         return true;
7237 }
7238
7239 /**
7240  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7241  *  @adapter: address of board private structure
7242  **/
7243 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7244 {
7245         union e1000_adv_rx_desc *rx_desc;
7246         struct igb_rx_buffer *bi;
7247         u16 i = rx_ring->next_to_use;
7248
7249         /* nothing to do */
7250         if (!cleaned_count)
7251                 return;
7252
7253         rx_desc = IGB_RX_DESC(rx_ring, i);
7254         bi = &rx_ring->rx_buffer_info[i];
7255         i -= rx_ring->count;
7256
7257         do {
7258                 if (!igb_alloc_mapped_page(rx_ring, bi))
7259                         break;
7260
7261                 /* Refresh the desc even if buffer_addrs didn't change
7262                  * because each write-back erases this info.
7263                  */
7264                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7265
7266                 rx_desc++;
7267                 bi++;
7268                 i++;
7269                 if (unlikely(!i)) {
7270                         rx_desc = IGB_RX_DESC(rx_ring, 0);
7271                         bi = rx_ring->rx_buffer_info;
7272                         i -= rx_ring->count;
7273                 }
7274
7275                 /* clear the status bits for the next_to_use descriptor */
7276                 rx_desc->wb.upper.status_error = 0;
7277
7278                 cleaned_count--;
7279         } while (cleaned_count);
7280
7281         i += rx_ring->count;
7282
7283         if (rx_ring->next_to_use != i) {
7284                 /* record the next descriptor to use */
7285                 rx_ring->next_to_use = i;
7286
7287                 /* update next to alloc since we have filled the ring */
7288                 rx_ring->next_to_alloc = i;
7289
7290                 /* Force memory writes to complete before letting h/w
7291                  * know there are new descriptors to fetch.  (Only
7292                  * applicable for weak-ordered memory model archs,
7293                  * such as IA-64).
7294                  */
7295                 wmb();
7296                 writel(i, rx_ring->tail);
7297         }
7298 }
7299
7300 /**
7301  * igb_mii_ioctl -
7302  * @netdev:
7303  * @ifreq:
7304  * @cmd:
7305  **/
7306 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7307 {
7308         struct igb_adapter *adapter = netdev_priv(netdev);
7309         struct mii_ioctl_data *data = if_mii(ifr);
7310
7311         if (adapter->hw.phy.media_type != e1000_media_type_copper)
7312                 return -EOPNOTSUPP;
7313
7314         switch (cmd) {
7315         case SIOCGMIIPHY:
7316                 data->phy_id = adapter->hw.phy.addr;
7317                 break;
7318         case SIOCGMIIREG:
7319                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7320                                      &data->val_out))
7321                         return -EIO;
7322                 break;
7323         case SIOCSMIIREG:
7324         default:
7325                 return -EOPNOTSUPP;
7326         }
7327         return 0;
7328 }
7329
7330 /**
7331  * igb_ioctl -
7332  * @netdev:
7333  * @ifreq:
7334  * @cmd:
7335  **/
7336 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7337 {
7338         switch (cmd) {
7339         case SIOCGMIIPHY:
7340         case SIOCGMIIREG:
7341         case SIOCSMIIREG:
7342                 return igb_mii_ioctl(netdev, ifr, cmd);
7343         case SIOCGHWTSTAMP:
7344                 return igb_ptp_get_ts_config(netdev, ifr);
7345         case SIOCSHWTSTAMP:
7346                 return igb_ptp_set_ts_config(netdev, ifr);
7347         default:
7348                 return -EOPNOTSUPP;
7349         }
7350 }
7351
7352 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7353 {
7354         struct igb_adapter *adapter = hw->back;
7355
7356         pci_read_config_word(adapter->pdev, reg, value);
7357 }
7358
7359 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7360 {
7361         struct igb_adapter *adapter = hw->back;
7362
7363         pci_write_config_word(adapter->pdev, reg, *value);
7364 }
7365
7366 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7367 {
7368         struct igb_adapter *adapter = hw->back;
7369
7370         if (pcie_capability_read_word(adapter->pdev, reg, value))
7371                 return -E1000_ERR_CONFIG;
7372
7373         return 0;
7374 }
7375
7376 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7377 {
7378         struct igb_adapter *adapter = hw->back;
7379
7380         if (pcie_capability_write_word(adapter->pdev, reg, *value))
7381                 return -E1000_ERR_CONFIG;
7382
7383         return 0;
7384 }
7385
7386 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7387 {
7388         struct igb_adapter *adapter = netdev_priv(netdev);
7389         struct e1000_hw *hw = &adapter->hw;
7390         u32 ctrl, rctl;
7391         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7392
7393         if (enable) {
7394                 /* enable VLAN tag insert/strip */
7395                 ctrl = rd32(E1000_CTRL);
7396                 ctrl |= E1000_CTRL_VME;
7397                 wr32(E1000_CTRL, ctrl);
7398
7399                 /* Disable CFI check */
7400                 rctl = rd32(E1000_RCTL);
7401                 rctl &= ~E1000_RCTL_CFIEN;
7402                 wr32(E1000_RCTL, rctl);
7403         } else {
7404                 /* disable VLAN tag insert/strip */
7405                 ctrl = rd32(E1000_CTRL);
7406                 ctrl &= ~E1000_CTRL_VME;
7407                 wr32(E1000_CTRL, ctrl);
7408         }
7409
7410         igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
7411 }
7412
7413 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7414                                __be16 proto, u16 vid)
7415 {
7416         struct igb_adapter *adapter = netdev_priv(netdev);
7417         struct e1000_hw *hw = &adapter->hw;
7418         int pf_id = adapter->vfs_allocated_count;
7419
7420         /* add the filter since PF can receive vlans w/o entry in vlvf */
7421         if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7422                 igb_vfta_set(hw, vid, pf_id, true, !!vid);
7423
7424         set_bit(vid, adapter->active_vlans);
7425
7426         return 0;
7427 }
7428
7429 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7430                                 __be16 proto, u16 vid)
7431 {
7432         struct igb_adapter *adapter = netdev_priv(netdev);
7433         int pf_id = adapter->vfs_allocated_count;
7434         struct e1000_hw *hw = &adapter->hw;
7435
7436         /* remove VID from filter table */
7437         if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7438                 igb_vfta_set(hw, vid, pf_id, false, true);
7439
7440         clear_bit(vid, adapter->active_vlans);
7441
7442         return 0;
7443 }
7444
7445 static void igb_restore_vlan(struct igb_adapter *adapter)
7446 {
7447         u16 vid = 1;
7448
7449         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7450         igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
7451
7452         for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
7453                 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7454 }
7455
7456 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7457 {
7458         struct pci_dev *pdev = adapter->pdev;
7459         struct e1000_mac_info *mac = &adapter->hw.mac;
7460
7461         mac->autoneg = 0;
7462
7463         /* Make sure dplx is at most 1 bit and lsb of speed is not set
7464          * for the switch() below to work
7465          */
7466         if ((spd & 1) || (dplx & ~1))
7467                 goto err_inval;
7468
7469         /* Fiber NIC's only allow 1000 gbps Full duplex
7470          * and 100Mbps Full duplex for 100baseFx sfp
7471          */
7472         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7473                 switch (spd + dplx) {
7474                 case SPEED_10 + DUPLEX_HALF:
7475                 case SPEED_10 + DUPLEX_FULL:
7476                 case SPEED_100 + DUPLEX_HALF:
7477                         goto err_inval;
7478                 default:
7479                         break;
7480                 }
7481         }
7482
7483         switch (spd + dplx) {
7484         case SPEED_10 + DUPLEX_HALF:
7485                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7486                 break;
7487         case SPEED_10 + DUPLEX_FULL:
7488                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7489                 break;
7490         case SPEED_100 + DUPLEX_HALF:
7491                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7492                 break;
7493         case SPEED_100 + DUPLEX_FULL:
7494                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7495                 break;
7496         case SPEED_1000 + DUPLEX_FULL:
7497                 mac->autoneg = 1;
7498                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7499                 break;
7500         case SPEED_1000 + DUPLEX_HALF: /* not supported */
7501         default:
7502                 goto err_inval;
7503         }
7504
7505         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7506         adapter->hw.phy.mdix = AUTO_ALL_MODES;
7507
7508         return 0;
7509
7510 err_inval:
7511         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7512         return -EINVAL;
7513 }
7514
7515 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7516                           bool runtime)
7517 {
7518         struct net_device *netdev = pci_get_drvdata(pdev);
7519         struct igb_adapter *adapter = netdev_priv(netdev);
7520         struct e1000_hw *hw = &adapter->hw;
7521         u32 ctrl, rctl, status;
7522         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7523 #ifdef CONFIG_PM
7524         int retval = 0;
7525 #endif
7526
7527         netif_device_detach(netdev);
7528
7529         if (netif_running(netdev))
7530                 __igb_close(netdev, true);
7531
7532         igb_ptp_suspend(adapter);
7533
7534         igb_clear_interrupt_scheme(adapter);
7535
7536 #ifdef CONFIG_PM
7537         retval = pci_save_state(pdev);
7538         if (retval)
7539                 return retval;
7540 #endif
7541
7542         status = rd32(E1000_STATUS);
7543         if (status & E1000_STATUS_LU)
7544                 wufc &= ~E1000_WUFC_LNKC;
7545
7546         if (wufc) {
7547                 igb_setup_rctl(adapter);
7548                 igb_set_rx_mode(netdev);
7549
7550                 /* turn on all-multi mode if wake on multicast is enabled */
7551                 if (wufc & E1000_WUFC_MC) {
7552                         rctl = rd32(E1000_RCTL);
7553                         rctl |= E1000_RCTL_MPE;
7554                         wr32(E1000_RCTL, rctl);
7555                 }
7556
7557                 ctrl = rd32(E1000_CTRL);
7558                 /* advertise wake from D3Cold */
7559                 #define E1000_CTRL_ADVD3WUC 0x00100000
7560                 /* phy power management enable */
7561                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7562                 ctrl |= E1000_CTRL_ADVD3WUC;
7563                 wr32(E1000_CTRL, ctrl);
7564
7565                 /* Allow time for pending master requests to run */
7566                 igb_disable_pcie_master(hw);
7567
7568                 wr32(E1000_WUC, E1000_WUC_PME_EN);
7569                 wr32(E1000_WUFC, wufc);
7570         } else {
7571                 wr32(E1000_WUC, 0);
7572                 wr32(E1000_WUFC, 0);
7573         }
7574
7575         *enable_wake = wufc || adapter->en_mng_pt;
7576         if (!*enable_wake)
7577                 igb_power_down_link(adapter);
7578         else
7579                 igb_power_up_link(adapter);
7580
7581         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7582          * would have already happened in close and is redundant.
7583          */
7584         igb_release_hw_control(adapter);
7585
7586         pci_disable_device(pdev);
7587
7588         return 0;
7589 }
7590
7591 #ifdef CONFIG_PM
7592 #ifdef CONFIG_PM_SLEEP
7593 static int igb_suspend(struct device *dev)
7594 {
7595         int retval;
7596         bool wake;
7597         struct pci_dev *pdev = to_pci_dev(dev);
7598
7599         retval = __igb_shutdown(pdev, &wake, 0);
7600         if (retval)
7601                 return retval;
7602
7603         if (wake) {
7604                 pci_prepare_to_sleep(pdev);
7605         } else {
7606                 pci_wake_from_d3(pdev, false);
7607                 pci_set_power_state(pdev, PCI_D3hot);
7608         }
7609
7610         return 0;
7611 }
7612 #endif /* CONFIG_PM_SLEEP */
7613
7614 static int igb_resume(struct device *dev)
7615 {
7616         struct pci_dev *pdev = to_pci_dev(dev);
7617         struct net_device *netdev = pci_get_drvdata(pdev);
7618         struct igb_adapter *adapter = netdev_priv(netdev);
7619         struct e1000_hw *hw = &adapter->hw;
7620         u32 err;
7621
7622         pci_set_power_state(pdev, PCI_D0);
7623         pci_restore_state(pdev);
7624         pci_save_state(pdev);
7625
7626         if (!pci_device_is_present(pdev))
7627                 return -ENODEV;
7628         err = pci_enable_device_mem(pdev);
7629         if (err) {
7630                 dev_err(&pdev->dev,
7631                         "igb: Cannot enable PCI device from suspend\n");
7632                 return err;
7633         }
7634         pci_set_master(pdev);
7635
7636         pci_enable_wake(pdev, PCI_D3hot, 0);
7637         pci_enable_wake(pdev, PCI_D3cold, 0);
7638
7639         if (igb_init_interrupt_scheme(adapter, true)) {
7640                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7641                 return -ENOMEM;
7642         }
7643
7644         igb_reset(adapter);
7645
7646         /* let the f/w know that the h/w is now under the control of the
7647          * driver.
7648          */
7649         igb_get_hw_control(adapter);
7650
7651         wr32(E1000_WUS, ~0);
7652
7653         if (netdev->flags & IFF_UP) {
7654                 rtnl_lock();
7655                 err = __igb_open(netdev, true);
7656                 rtnl_unlock();
7657                 if (err)
7658                         return err;
7659         }
7660
7661         netif_device_attach(netdev);
7662         return 0;
7663 }
7664
7665 static int igb_runtime_idle(struct device *dev)
7666 {
7667         struct pci_dev *pdev = to_pci_dev(dev);
7668         struct net_device *netdev = pci_get_drvdata(pdev);
7669         struct igb_adapter *adapter = netdev_priv(netdev);
7670
7671         if (!igb_has_link(adapter))
7672                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7673
7674         return -EBUSY;
7675 }
7676
7677 static int igb_runtime_suspend(struct device *dev)
7678 {
7679         struct pci_dev *pdev = to_pci_dev(dev);
7680         int retval;
7681         bool wake;
7682
7683         retval = __igb_shutdown(pdev, &wake, 1);
7684         if (retval)
7685                 return retval;
7686
7687         if (wake) {
7688                 pci_prepare_to_sleep(pdev);
7689         } else {
7690                 pci_wake_from_d3(pdev, false);
7691                 pci_set_power_state(pdev, PCI_D3hot);
7692         }
7693
7694         return 0;
7695 }
7696
7697 static int igb_runtime_resume(struct device *dev)
7698 {
7699         return igb_resume(dev);
7700 }
7701 #endif /* CONFIG_PM */
7702
7703 static void igb_shutdown(struct pci_dev *pdev)
7704 {
7705         bool wake;
7706
7707         __igb_shutdown(pdev, &wake, 0);
7708
7709         if (system_state == SYSTEM_POWER_OFF) {
7710                 pci_wake_from_d3(pdev, wake);
7711                 pci_set_power_state(pdev, PCI_D3hot);
7712         }
7713 }
7714
7715 #ifdef CONFIG_PCI_IOV
7716 static int igb_sriov_reinit(struct pci_dev *dev)
7717 {
7718         struct net_device *netdev = pci_get_drvdata(dev);
7719         struct igb_adapter *adapter = netdev_priv(netdev);
7720         struct pci_dev *pdev = adapter->pdev;
7721
7722         rtnl_lock();
7723
7724         if (netif_running(netdev))
7725                 igb_close(netdev);
7726         else
7727                 igb_reset(adapter);
7728
7729         igb_clear_interrupt_scheme(adapter);
7730
7731         igb_init_queue_configuration(adapter);
7732
7733         if (igb_init_interrupt_scheme(adapter, true)) {
7734                 rtnl_unlock();
7735                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7736                 return -ENOMEM;
7737         }
7738
7739         if (netif_running(netdev))
7740                 igb_open(netdev);
7741
7742         rtnl_unlock();
7743
7744         return 0;
7745 }
7746
7747 static int igb_pci_disable_sriov(struct pci_dev *dev)
7748 {
7749         int err = igb_disable_sriov(dev);
7750
7751         if (!err)
7752                 err = igb_sriov_reinit(dev);
7753
7754         return err;
7755 }
7756
7757 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7758 {
7759         int err = igb_enable_sriov(dev, num_vfs);
7760
7761         if (err)
7762                 goto out;
7763
7764         err = igb_sriov_reinit(dev);
7765         if (!err)
7766                 return num_vfs;
7767
7768 out:
7769         return err;
7770 }
7771
7772 #endif
7773 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7774 {
7775 #ifdef CONFIG_PCI_IOV
7776         if (num_vfs == 0)
7777                 return igb_pci_disable_sriov(dev);
7778         else
7779                 return igb_pci_enable_sriov(dev, num_vfs);
7780 #endif
7781         return 0;
7782 }
7783
7784 #ifdef CONFIG_NET_POLL_CONTROLLER
7785 /* Polling 'interrupt' - used by things like netconsole to send skbs
7786  * without having to re-enable interrupts. It's not called while
7787  * the interrupt routine is executing.
7788  */
7789 static void igb_netpoll(struct net_device *netdev)
7790 {
7791         struct igb_adapter *adapter = netdev_priv(netdev);
7792         struct e1000_hw *hw = &adapter->hw;
7793         struct igb_q_vector *q_vector;
7794         int i;
7795
7796         for (i = 0; i < adapter->num_q_vectors; i++) {
7797                 q_vector = adapter->q_vector[i];
7798                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7799                         wr32(E1000_EIMC, q_vector->eims_value);
7800                 else
7801                         igb_irq_disable(adapter);
7802                 napi_schedule(&q_vector->napi);
7803         }
7804 }
7805 #endif /* CONFIG_NET_POLL_CONTROLLER */
7806
7807 /**
7808  *  igb_io_error_detected - called when PCI error is detected
7809  *  @pdev: Pointer to PCI device
7810  *  @state: The current pci connection state
7811  *
7812  *  This function is called after a PCI bus error affecting
7813  *  this device has been detected.
7814  **/
7815 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7816                                               pci_channel_state_t state)
7817 {
7818         struct net_device *netdev = pci_get_drvdata(pdev);
7819         struct igb_adapter *adapter = netdev_priv(netdev);
7820
7821         netif_device_detach(netdev);
7822
7823         if (state == pci_channel_io_perm_failure)
7824                 return PCI_ERS_RESULT_DISCONNECT;
7825
7826         if (netif_running(netdev))
7827                 igb_down(adapter);
7828         pci_disable_device(pdev);
7829
7830         /* Request a slot slot reset. */
7831         return PCI_ERS_RESULT_NEED_RESET;
7832 }
7833
7834 /**
7835  *  igb_io_slot_reset - called after the pci bus has been reset.
7836  *  @pdev: Pointer to PCI device
7837  *
7838  *  Restart the card from scratch, as if from a cold-boot. Implementation
7839  *  resembles the first-half of the igb_resume routine.
7840  **/
7841 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7842 {
7843         struct net_device *netdev = pci_get_drvdata(pdev);
7844         struct igb_adapter *adapter = netdev_priv(netdev);
7845         struct e1000_hw *hw = &adapter->hw;
7846         pci_ers_result_t result;
7847         int err;
7848
7849         if (pci_enable_device_mem(pdev)) {
7850                 dev_err(&pdev->dev,
7851                         "Cannot re-enable PCI device after reset.\n");
7852                 result = PCI_ERS_RESULT_DISCONNECT;
7853         } else {
7854                 pci_set_master(pdev);
7855                 pci_restore_state(pdev);
7856                 pci_save_state(pdev);
7857
7858                 pci_enable_wake(pdev, PCI_D3hot, 0);
7859                 pci_enable_wake(pdev, PCI_D3cold, 0);
7860
7861                 igb_reset(adapter);
7862                 wr32(E1000_WUS, ~0);
7863                 result = PCI_ERS_RESULT_RECOVERED;
7864         }
7865
7866         err = pci_cleanup_aer_uncorrect_error_status(pdev);
7867         if (err) {
7868                 dev_err(&pdev->dev,
7869                         "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7870                         err);
7871                 /* non-fatal, continue */
7872         }
7873
7874         return result;
7875 }
7876
7877 /**
7878  *  igb_io_resume - called when traffic can start flowing again.
7879  *  @pdev: Pointer to PCI device
7880  *
7881  *  This callback is called when the error recovery driver tells us that
7882  *  its OK to resume normal operation. Implementation resembles the
7883  *  second-half of the igb_resume routine.
7884  */
7885 static void igb_io_resume(struct pci_dev *pdev)
7886 {
7887         struct net_device *netdev = pci_get_drvdata(pdev);
7888         struct igb_adapter *adapter = netdev_priv(netdev);
7889
7890         if (netif_running(netdev)) {
7891                 if (igb_up(adapter)) {
7892                         dev_err(&pdev->dev, "igb_up failed after reset\n");
7893                         return;
7894                 }
7895         }
7896
7897         netif_device_attach(netdev);
7898
7899         /* let the f/w know that the h/w is now under the control of the
7900          * driver.
7901          */
7902         igb_get_hw_control(adapter);
7903 }
7904
7905 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7906                              u8 qsel)
7907 {
7908         struct e1000_hw *hw = &adapter->hw;
7909         u32 rar_low, rar_high;
7910
7911         /* HW expects these to be in network order when they are plugged
7912          * into the registers which are little endian.  In order to guarantee
7913          * that ordering we need to do an leXX_to_cpup here in order to be
7914          * ready for the byteswap that occurs with writel
7915          */
7916         rar_low = le32_to_cpup((__le32 *)(addr));
7917         rar_high = le16_to_cpup((__le16 *)(addr + 4));
7918
7919         /* Indicate to hardware the Address is Valid. */
7920         rar_high |= E1000_RAH_AV;
7921
7922         if (hw->mac.type == e1000_82575)
7923                 rar_high |= E1000_RAH_POOL_1 * qsel;
7924         else
7925                 rar_high |= E1000_RAH_POOL_1 << qsel;
7926
7927         wr32(E1000_RAL(index), rar_low);
7928         wrfl();
7929         wr32(E1000_RAH(index), rar_high);
7930         wrfl();
7931 }
7932
7933 static int igb_set_vf_mac(struct igb_adapter *adapter,
7934                           int vf, unsigned char *mac_addr)
7935 {
7936         struct e1000_hw *hw = &adapter->hw;
7937         /* VF MAC addresses start at end of receive addresses and moves
7938          * towards the first, as a result a collision should not be possible
7939          */
7940         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7941
7942         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7943
7944         igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7945
7946         return 0;
7947 }
7948
7949 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7950 {
7951         struct igb_adapter *adapter = netdev_priv(netdev);
7952         if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7953                 return -EINVAL;
7954         adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7955         dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7956         dev_info(&adapter->pdev->dev,
7957                  "Reload the VF driver to make this change effective.");
7958         if (test_bit(__IGB_DOWN, &adapter->state)) {
7959                 dev_warn(&adapter->pdev->dev,
7960                          "The VF MAC address has been set, but the PF device is not up.\n");
7961                 dev_warn(&adapter->pdev->dev,
7962                          "Bring the PF device up before attempting to use the VF device.\n");
7963         }
7964         return igb_set_vf_mac(adapter, vf, mac);
7965 }
7966
7967 static int igb_link_mbps(int internal_link_speed)
7968 {
7969         switch (internal_link_speed) {
7970         case SPEED_100:
7971                 return 100;
7972         case SPEED_1000:
7973                 return 1000;
7974         default:
7975                 return 0;
7976         }
7977 }
7978
7979 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7980                                   int link_speed)
7981 {
7982         int rf_dec, rf_int;
7983         u32 bcnrc_val;
7984
7985         if (tx_rate != 0) {
7986                 /* Calculate the rate factor values to set */
7987                 rf_int = link_speed / tx_rate;
7988                 rf_dec = (link_speed - (rf_int * tx_rate));
7989                 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
7990                          tx_rate;
7991
7992                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7993                 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7994                               E1000_RTTBCNRC_RF_INT_MASK);
7995                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7996         } else {
7997                 bcnrc_val = 0;
7998         }
7999
8000         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
8001         /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
8002          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
8003          */
8004         wr32(E1000_RTTBCNRM, 0x14);
8005         wr32(E1000_RTTBCNRC, bcnrc_val);
8006 }
8007
8008 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
8009 {
8010         int actual_link_speed, i;
8011         bool reset_rate = false;
8012
8013         /* VF TX rate limit was not set or not supported */
8014         if ((adapter->vf_rate_link_speed == 0) ||
8015             (adapter->hw.mac.type != e1000_82576))
8016                 return;
8017
8018         actual_link_speed = igb_link_mbps(adapter->link_speed);
8019         if (actual_link_speed != adapter->vf_rate_link_speed) {
8020                 reset_rate = true;
8021                 adapter->vf_rate_link_speed = 0;
8022                 dev_info(&adapter->pdev->dev,
8023                          "Link speed has been changed. VF Transmit rate is disabled\n");
8024         }
8025
8026         for (i = 0; i < adapter->vfs_allocated_count; i++) {
8027                 if (reset_rate)
8028                         adapter->vf_data[i].tx_rate = 0;
8029
8030                 igb_set_vf_rate_limit(&adapter->hw, i,
8031                                       adapter->vf_data[i].tx_rate,
8032                                       actual_link_speed);
8033         }
8034 }
8035
8036 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
8037                              int min_tx_rate, int max_tx_rate)
8038 {
8039         struct igb_adapter *adapter = netdev_priv(netdev);
8040         struct e1000_hw *hw = &adapter->hw;
8041         int actual_link_speed;
8042
8043         if (hw->mac.type != e1000_82576)
8044                 return -EOPNOTSUPP;
8045
8046         if (min_tx_rate)
8047                 return -EINVAL;
8048
8049         actual_link_speed = igb_link_mbps(adapter->link_speed);
8050         if ((vf >= adapter->vfs_allocated_count) ||
8051             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
8052             (max_tx_rate < 0) ||
8053             (max_tx_rate > actual_link_speed))
8054                 return -EINVAL;
8055
8056         adapter->vf_rate_link_speed = actual_link_speed;
8057         adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
8058         igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
8059
8060         return 0;
8061 }
8062
8063 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
8064                                    bool setting)
8065 {
8066         struct igb_adapter *adapter = netdev_priv(netdev);
8067         struct e1000_hw *hw = &adapter->hw;
8068         u32 reg_val, reg_offset;
8069
8070         if (!adapter->vfs_allocated_count)
8071                 return -EOPNOTSUPP;
8072
8073         if (vf >= adapter->vfs_allocated_count)
8074                 return -EINVAL;
8075
8076         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
8077         reg_val = rd32(reg_offset);
8078         if (setting)
8079                 reg_val |= (BIT(vf) |
8080                             BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8081         else
8082                 reg_val &= ~(BIT(vf) |
8083                              BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8084         wr32(reg_offset, reg_val);
8085
8086         adapter->vf_data[vf].spoofchk_enabled = setting;
8087         return 0;
8088 }
8089
8090 static int igb_ndo_get_vf_config(struct net_device *netdev,
8091                                  int vf, struct ifla_vf_info *ivi)
8092 {
8093         struct igb_adapter *adapter = netdev_priv(netdev);
8094         if (vf >= adapter->vfs_allocated_count)
8095                 return -EINVAL;
8096         ivi->vf = vf;
8097         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
8098         ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
8099         ivi->min_tx_rate = 0;
8100         ivi->vlan = adapter->vf_data[vf].pf_vlan;
8101         ivi->qos = adapter->vf_data[vf].pf_qos;
8102         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8103         return 0;
8104 }
8105
8106 static void igb_vmm_control(struct igb_adapter *adapter)
8107 {
8108         struct e1000_hw *hw = &adapter->hw;
8109         u32 reg;
8110
8111         switch (hw->mac.type) {
8112         case e1000_82575:
8113         case e1000_i210:
8114         case e1000_i211:
8115         case e1000_i354:
8116         default:
8117                 /* replication is not supported for 82575 */
8118                 return;
8119         case e1000_82576:
8120                 /* notify HW that the MAC is adding vlan tags */
8121                 reg = rd32(E1000_DTXCTL);
8122                 reg |= E1000_DTXCTL_VLAN_ADDED;
8123                 wr32(E1000_DTXCTL, reg);
8124                 /* Fall through */
8125         case e1000_82580:
8126                 /* enable replication vlan tag stripping */
8127                 reg = rd32(E1000_RPLOLR);
8128                 reg |= E1000_RPLOLR_STRVLAN;
8129                 wr32(E1000_RPLOLR, reg);
8130                 /* Fall through */
8131         case e1000_i350:
8132                 /* none of the above registers are supported by i350 */
8133                 break;
8134         }
8135
8136         if (adapter->vfs_allocated_count) {
8137                 igb_vmdq_set_loopback_pf(hw, true);
8138                 igb_vmdq_set_replication_pf(hw, true);
8139                 igb_vmdq_set_anti_spoofing_pf(hw, true,
8140                                               adapter->vfs_allocated_count);
8141         } else {
8142                 igb_vmdq_set_loopback_pf(hw, false);
8143                 igb_vmdq_set_replication_pf(hw, false);
8144         }
8145 }
8146
8147 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
8148 {
8149         struct e1000_hw *hw = &adapter->hw;
8150         u32 dmac_thr;
8151         u16 hwm;
8152
8153         if (hw->mac.type > e1000_82580) {
8154                 if (adapter->flags & IGB_FLAG_DMAC) {
8155                         u32 reg;
8156
8157                         /* force threshold to 0. */
8158                         wr32(E1000_DMCTXTH, 0);
8159
8160                         /* DMA Coalescing high water mark needs to be greater
8161                          * than the Rx threshold. Set hwm to PBA - max frame
8162                          * size in 16B units, capping it at PBA - 6KB.
8163                          */
8164                         hwm = 64 * (pba - 6);
8165                         reg = rd32(E1000_FCRTC);
8166                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8167                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8168                                 & E1000_FCRTC_RTH_COAL_MASK);
8169                         wr32(E1000_FCRTC, reg);
8170
8171                         /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8172                          * frame size, capping it at PBA - 10KB.
8173                          */
8174                         dmac_thr = pba - 10;
8175                         reg = rd32(E1000_DMACR);
8176                         reg &= ~E1000_DMACR_DMACTHR_MASK;
8177                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8178                                 & E1000_DMACR_DMACTHR_MASK);
8179
8180                         /* transition to L0x or L1 if available..*/
8181                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8182
8183                         /* watchdog timer= +-1000 usec in 32usec intervals */
8184                         reg |= (1000 >> 5);
8185
8186                         /* Disable BMC-to-OS Watchdog Enable */
8187                         if (hw->mac.type != e1000_i354)
8188                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8189
8190                         wr32(E1000_DMACR, reg);
8191
8192                         /* no lower threshold to disable
8193                          * coalescing(smart fifb)-UTRESH=0
8194                          */
8195                         wr32(E1000_DMCRTRH, 0);
8196
8197                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8198
8199                         wr32(E1000_DMCTLX, reg);
8200
8201                         /* free space in tx packet buffer to wake from
8202                          * DMA coal
8203                          */
8204                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8205                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8206
8207                         /* make low power state decision controlled
8208                          * by DMA coal
8209                          */
8210                         reg = rd32(E1000_PCIEMISC);
8211                         reg &= ~E1000_PCIEMISC_LX_DECISION;
8212                         wr32(E1000_PCIEMISC, reg);
8213                 } /* endif adapter->dmac is not disabled */
8214         } else if (hw->mac.type == e1000_82580) {
8215                 u32 reg = rd32(E1000_PCIEMISC);
8216
8217                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8218                 wr32(E1000_DMACR, 0);
8219         }
8220 }
8221
8222 /**
8223  *  igb_read_i2c_byte - Reads 8 bit word over I2C
8224  *  @hw: pointer to hardware structure
8225  *  @byte_offset: byte offset to read
8226  *  @dev_addr: device address
8227  *  @data: value read
8228  *
8229  *  Performs byte read operation over I2C interface at
8230  *  a specified device address.
8231  **/
8232 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8233                       u8 dev_addr, u8 *data)
8234 {
8235         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8236         struct i2c_client *this_client = adapter->i2c_client;
8237         s32 status;
8238         u16 swfw_mask = 0;
8239
8240         if (!this_client)
8241                 return E1000_ERR_I2C;
8242
8243         swfw_mask = E1000_SWFW_PHY0_SM;
8244
8245         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8246                 return E1000_ERR_SWFW_SYNC;
8247
8248         status = i2c_smbus_read_byte_data(this_client, byte_offset);
8249         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8250
8251         if (status < 0)
8252                 return E1000_ERR_I2C;
8253         else {
8254                 *data = status;
8255                 return 0;
8256         }
8257 }
8258
8259 /**
8260  *  igb_write_i2c_byte - Writes 8 bit word over I2C
8261  *  @hw: pointer to hardware structure
8262  *  @byte_offset: byte offset to write
8263  *  @dev_addr: device address
8264  *  @data: value to write
8265  *
8266  *  Performs byte write operation over I2C interface at
8267  *  a specified device address.
8268  **/
8269 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8270                        u8 dev_addr, u8 data)
8271 {
8272         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8273         struct i2c_client *this_client = adapter->i2c_client;
8274         s32 status;
8275         u16 swfw_mask = E1000_SWFW_PHY0_SM;
8276
8277         if (!this_client)
8278                 return E1000_ERR_I2C;
8279
8280         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8281                 return E1000_ERR_SWFW_SYNC;
8282         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8283         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8284
8285         if (status)
8286                 return E1000_ERR_I2C;
8287         else
8288                 return 0;
8289
8290 }
8291
8292 int igb_reinit_queues(struct igb_adapter *adapter)
8293 {
8294         struct net_device *netdev = adapter->netdev;
8295         struct pci_dev *pdev = adapter->pdev;
8296         int err = 0;
8297
8298         if (netif_running(netdev))
8299                 igb_close(netdev);
8300
8301         igb_reset_interrupt_capability(adapter);
8302
8303         if (igb_init_interrupt_scheme(adapter, true)) {
8304                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8305                 return -ENOMEM;
8306         }
8307
8308         if (netif_running(netdev))
8309                 err = igb_open(netdev);
8310
8311         return err;
8312 }
8313 /* igb_main.c */