intel: Add support for IPv6 IP-in-IP offload
[cascardo/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #include <linux/etherdevice.h>
54 #ifdef CONFIG_IGB_DCA
55 #include <linux/dca.h>
56 #endif
57 #include <linux/i2c.h>
58 #include "igb.h"
59
60 #define MAJ 5
61 #define MIN 3
62 #define BUILD 0
63 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
64 __stringify(BUILD) "-k"
65 char igb_driver_name[] = "igb";
66 char igb_driver_version[] = DRV_VERSION;
67 static const char igb_driver_string[] =
68                                 "Intel(R) Gigabit Ethernet Network Driver";
69 static const char igb_copyright[] =
70                                 "Copyright (c) 2007-2014 Intel Corporation.";
71
72 static const struct e1000_info *igb_info_tbl[] = {
73         [board_82575] = &e1000_82575_info,
74 };
75
76 static const struct pci_device_id igb_pci_tbl[] = {
77         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
78         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
79         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
99         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
105         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
106         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
107         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
108         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
109         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
110         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
111         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
112         /* required last entry */
113         {0, }
114 };
115
116 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
117
118 static int igb_setup_all_tx_resources(struct igb_adapter *);
119 static int igb_setup_all_rx_resources(struct igb_adapter *);
120 static void igb_free_all_tx_resources(struct igb_adapter *);
121 static void igb_free_all_rx_resources(struct igb_adapter *);
122 static void igb_setup_mrqc(struct igb_adapter *);
123 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
124 static void igb_remove(struct pci_dev *pdev);
125 static int igb_sw_init(struct igb_adapter *);
126 int igb_open(struct net_device *);
127 int igb_close(struct net_device *);
128 static void igb_configure(struct igb_adapter *);
129 static void igb_configure_tx(struct igb_adapter *);
130 static void igb_configure_rx(struct igb_adapter *);
131 static void igb_clean_all_tx_rings(struct igb_adapter *);
132 static void igb_clean_all_rx_rings(struct igb_adapter *);
133 static void igb_clean_tx_ring(struct igb_ring *);
134 static void igb_clean_rx_ring(struct igb_ring *);
135 static void igb_set_rx_mode(struct net_device *);
136 static void igb_update_phy_info(unsigned long);
137 static void igb_watchdog(unsigned long);
138 static void igb_watchdog_task(struct work_struct *);
139 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
140 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
141                                           struct rtnl_link_stats64 *stats);
142 static int igb_change_mtu(struct net_device *, int);
143 static int igb_set_mac(struct net_device *, void *);
144 static void igb_set_uta(struct igb_adapter *adapter, bool set);
145 static irqreturn_t igb_intr(int irq, void *);
146 static irqreturn_t igb_intr_msi(int irq, void *);
147 static irqreturn_t igb_msix_other(int irq, void *);
148 static irqreturn_t igb_msix_ring(int irq, void *);
149 #ifdef CONFIG_IGB_DCA
150 static void igb_update_dca(struct igb_q_vector *);
151 static void igb_setup_dca(struct igb_adapter *);
152 #endif /* CONFIG_IGB_DCA */
153 static int igb_poll(struct napi_struct *, int);
154 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
155 static int igb_clean_rx_irq(struct igb_q_vector *, int);
156 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
157 static void igb_tx_timeout(struct net_device *);
158 static void igb_reset_task(struct work_struct *);
159 static void igb_vlan_mode(struct net_device *netdev,
160                           netdev_features_t features);
161 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
162 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
163 static void igb_restore_vlan(struct igb_adapter *);
164 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
165 static void igb_ping_all_vfs(struct igb_adapter *);
166 static void igb_msg_task(struct igb_adapter *);
167 static void igb_vmm_control(struct igb_adapter *);
168 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
169 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
170 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
171 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
172                                int vf, u16 vlan, u8 qos);
173 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
174 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
175                                    bool setting);
176 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
177                                  struct ifla_vf_info *ivi);
178 static void igb_check_vf_rate_limit(struct igb_adapter *);
179
180 #ifdef CONFIG_PCI_IOV
181 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
182 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
183 static int igb_disable_sriov(struct pci_dev *dev);
184 static int igb_pci_disable_sriov(struct pci_dev *dev);
185 #endif
186
187 #ifdef CONFIG_PM
188 #ifdef CONFIG_PM_SLEEP
189 static int igb_suspend(struct device *);
190 #endif
191 static int igb_resume(struct device *);
192 static int igb_runtime_suspend(struct device *dev);
193 static int igb_runtime_resume(struct device *dev);
194 static int igb_runtime_idle(struct device *dev);
195 static const struct dev_pm_ops igb_pm_ops = {
196         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
197         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
198                         igb_runtime_idle)
199 };
200 #endif
201 static void igb_shutdown(struct pci_dev *);
202 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
203 #ifdef CONFIG_IGB_DCA
204 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
205 static struct notifier_block dca_notifier = {
206         .notifier_call  = igb_notify_dca,
207         .next           = NULL,
208         .priority       = 0
209 };
210 #endif
211 #ifdef CONFIG_NET_POLL_CONTROLLER
212 /* for netdump / net console */
213 static void igb_netpoll(struct net_device *);
214 #endif
215 #ifdef CONFIG_PCI_IOV
216 static unsigned int max_vfs;
217 module_param(max_vfs, uint, 0);
218 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
219 #endif /* CONFIG_PCI_IOV */
220
221 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
222                      pci_channel_state_t);
223 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
224 static void igb_io_resume(struct pci_dev *);
225
226 static const struct pci_error_handlers igb_err_handler = {
227         .error_detected = igb_io_error_detected,
228         .slot_reset = igb_io_slot_reset,
229         .resume = igb_io_resume,
230 };
231
232 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
233
234 static struct pci_driver igb_driver = {
235         .name     = igb_driver_name,
236         .id_table = igb_pci_tbl,
237         .probe    = igb_probe,
238         .remove   = igb_remove,
239 #ifdef CONFIG_PM
240         .driver.pm = &igb_pm_ops,
241 #endif
242         .shutdown = igb_shutdown,
243         .sriov_configure = igb_pci_sriov_configure,
244         .err_handler = &igb_err_handler
245 };
246
247 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
248 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
249 MODULE_LICENSE("GPL");
250 MODULE_VERSION(DRV_VERSION);
251
252 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
253 static int debug = -1;
254 module_param(debug, int, 0);
255 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
256
257 struct igb_reg_info {
258         u32 ofs;
259         char *name;
260 };
261
262 static const struct igb_reg_info igb_reg_info_tbl[] = {
263
264         /* General Registers */
265         {E1000_CTRL, "CTRL"},
266         {E1000_STATUS, "STATUS"},
267         {E1000_CTRL_EXT, "CTRL_EXT"},
268
269         /* Interrupt Registers */
270         {E1000_ICR, "ICR"},
271
272         /* RX Registers */
273         {E1000_RCTL, "RCTL"},
274         {E1000_RDLEN(0), "RDLEN"},
275         {E1000_RDH(0), "RDH"},
276         {E1000_RDT(0), "RDT"},
277         {E1000_RXDCTL(0), "RXDCTL"},
278         {E1000_RDBAL(0), "RDBAL"},
279         {E1000_RDBAH(0), "RDBAH"},
280
281         /* TX Registers */
282         {E1000_TCTL, "TCTL"},
283         {E1000_TDBAL(0), "TDBAL"},
284         {E1000_TDBAH(0), "TDBAH"},
285         {E1000_TDLEN(0), "TDLEN"},
286         {E1000_TDH(0), "TDH"},
287         {E1000_TDT(0), "TDT"},
288         {E1000_TXDCTL(0), "TXDCTL"},
289         {E1000_TDFH, "TDFH"},
290         {E1000_TDFT, "TDFT"},
291         {E1000_TDFHS, "TDFHS"},
292         {E1000_TDFPC, "TDFPC"},
293
294         /* List Terminator */
295         {}
296 };
297
298 /* igb_regdump - register printout routine */
299 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
300 {
301         int n = 0;
302         char rname[16];
303         u32 regs[8];
304
305         switch (reginfo->ofs) {
306         case E1000_RDLEN(0):
307                 for (n = 0; n < 4; n++)
308                         regs[n] = rd32(E1000_RDLEN(n));
309                 break;
310         case E1000_RDH(0):
311                 for (n = 0; n < 4; n++)
312                         regs[n] = rd32(E1000_RDH(n));
313                 break;
314         case E1000_RDT(0):
315                 for (n = 0; n < 4; n++)
316                         regs[n] = rd32(E1000_RDT(n));
317                 break;
318         case E1000_RXDCTL(0):
319                 for (n = 0; n < 4; n++)
320                         regs[n] = rd32(E1000_RXDCTL(n));
321                 break;
322         case E1000_RDBAL(0):
323                 for (n = 0; n < 4; n++)
324                         regs[n] = rd32(E1000_RDBAL(n));
325                 break;
326         case E1000_RDBAH(0):
327                 for (n = 0; n < 4; n++)
328                         regs[n] = rd32(E1000_RDBAH(n));
329                 break;
330         case E1000_TDBAL(0):
331                 for (n = 0; n < 4; n++)
332                         regs[n] = rd32(E1000_RDBAL(n));
333                 break;
334         case E1000_TDBAH(0):
335                 for (n = 0; n < 4; n++)
336                         regs[n] = rd32(E1000_TDBAH(n));
337                 break;
338         case E1000_TDLEN(0):
339                 for (n = 0; n < 4; n++)
340                         regs[n] = rd32(E1000_TDLEN(n));
341                 break;
342         case E1000_TDH(0):
343                 for (n = 0; n < 4; n++)
344                         regs[n] = rd32(E1000_TDH(n));
345                 break;
346         case E1000_TDT(0):
347                 for (n = 0; n < 4; n++)
348                         regs[n] = rd32(E1000_TDT(n));
349                 break;
350         case E1000_TXDCTL(0):
351                 for (n = 0; n < 4; n++)
352                         regs[n] = rd32(E1000_TXDCTL(n));
353                 break;
354         default:
355                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
356                 return;
357         }
358
359         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
360         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
361                 regs[2], regs[3]);
362 }
363
364 /* igb_dump - Print registers, Tx-rings and Rx-rings */
365 static void igb_dump(struct igb_adapter *adapter)
366 {
367         struct net_device *netdev = adapter->netdev;
368         struct e1000_hw *hw = &adapter->hw;
369         struct igb_reg_info *reginfo;
370         struct igb_ring *tx_ring;
371         union e1000_adv_tx_desc *tx_desc;
372         struct my_u0 { u64 a; u64 b; } *u0;
373         struct igb_ring *rx_ring;
374         union e1000_adv_rx_desc *rx_desc;
375         u32 staterr;
376         u16 i, n;
377
378         if (!netif_msg_hw(adapter))
379                 return;
380
381         /* Print netdevice Info */
382         if (netdev) {
383                 dev_info(&adapter->pdev->dev, "Net device Info\n");
384                 pr_info("Device Name     state            trans_start      last_rx\n");
385                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
386                         netdev->state, dev_trans_start(netdev), netdev->last_rx);
387         }
388
389         /* Print Registers */
390         dev_info(&adapter->pdev->dev, "Register Dump\n");
391         pr_info(" Register Name   Value\n");
392         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
393              reginfo->name; reginfo++) {
394                 igb_regdump(hw, reginfo);
395         }
396
397         /* Print TX Ring Summary */
398         if (!netdev || !netif_running(netdev))
399                 goto exit;
400
401         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
402         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
403         for (n = 0; n < adapter->num_tx_queues; n++) {
404                 struct igb_tx_buffer *buffer_info;
405                 tx_ring = adapter->tx_ring[n];
406                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
407                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
408                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
409                         (u64)dma_unmap_addr(buffer_info, dma),
410                         dma_unmap_len(buffer_info, len),
411                         buffer_info->next_to_watch,
412                         (u64)buffer_info->time_stamp);
413         }
414
415         /* Print TX Rings */
416         if (!netif_msg_tx_done(adapter))
417                 goto rx_ring_summary;
418
419         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
420
421         /* Transmit Descriptor Formats
422          *
423          * Advanced Transmit Descriptor
424          *   +--------------------------------------------------------------+
425          * 0 |         Buffer Address [63:0]                                |
426          *   +--------------------------------------------------------------+
427          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
428          *   +--------------------------------------------------------------+
429          *   63      46 45    40 39 38 36 35 32 31   24             15       0
430          */
431
432         for (n = 0; n < adapter->num_tx_queues; n++) {
433                 tx_ring = adapter->tx_ring[n];
434                 pr_info("------------------------------------\n");
435                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
436                 pr_info("------------------------------------\n");
437                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
438
439                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
440                         const char *next_desc;
441                         struct igb_tx_buffer *buffer_info;
442                         tx_desc = IGB_TX_DESC(tx_ring, i);
443                         buffer_info = &tx_ring->tx_buffer_info[i];
444                         u0 = (struct my_u0 *)tx_desc;
445                         if (i == tx_ring->next_to_use &&
446                             i == tx_ring->next_to_clean)
447                                 next_desc = " NTC/U";
448                         else if (i == tx_ring->next_to_use)
449                                 next_desc = " NTU";
450                         else if (i == tx_ring->next_to_clean)
451                                 next_desc = " NTC";
452                         else
453                                 next_desc = "";
454
455                         pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
456                                 i, le64_to_cpu(u0->a),
457                                 le64_to_cpu(u0->b),
458                                 (u64)dma_unmap_addr(buffer_info, dma),
459                                 dma_unmap_len(buffer_info, len),
460                                 buffer_info->next_to_watch,
461                                 (u64)buffer_info->time_stamp,
462                                 buffer_info->skb, next_desc);
463
464                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
465                                 print_hex_dump(KERN_INFO, "",
466                                         DUMP_PREFIX_ADDRESS,
467                                         16, 1, buffer_info->skb->data,
468                                         dma_unmap_len(buffer_info, len),
469                                         true);
470                 }
471         }
472
473         /* Print RX Rings Summary */
474 rx_ring_summary:
475         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
476         pr_info("Queue [NTU] [NTC]\n");
477         for (n = 0; n < adapter->num_rx_queues; n++) {
478                 rx_ring = adapter->rx_ring[n];
479                 pr_info(" %5d %5X %5X\n",
480                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
481         }
482
483         /* Print RX Rings */
484         if (!netif_msg_rx_status(adapter))
485                 goto exit;
486
487         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
488
489         /* Advanced Receive Descriptor (Read) Format
490          *    63                                           1        0
491          *    +-----------------------------------------------------+
492          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
493          *    +----------------------------------------------+------+
494          *  8 |       Header Buffer Address [63:1]           |  DD  |
495          *    +-----------------------------------------------------+
496          *
497          *
498          * Advanced Receive Descriptor (Write-Back) Format
499          *
500          *   63       48 47    32 31  30      21 20 17 16   4 3     0
501          *   +------------------------------------------------------+
502          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
503          *   | Checksum   Ident  |   |           |    | Type | Type |
504          *   +------------------------------------------------------+
505          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
506          *   +------------------------------------------------------+
507          *   63       48 47    32 31            20 19               0
508          */
509
510         for (n = 0; n < adapter->num_rx_queues; n++) {
511                 rx_ring = adapter->rx_ring[n];
512                 pr_info("------------------------------------\n");
513                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
514                 pr_info("------------------------------------\n");
515                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
516                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
517
518                 for (i = 0; i < rx_ring->count; i++) {
519                         const char *next_desc;
520                         struct igb_rx_buffer *buffer_info;
521                         buffer_info = &rx_ring->rx_buffer_info[i];
522                         rx_desc = IGB_RX_DESC(rx_ring, i);
523                         u0 = (struct my_u0 *)rx_desc;
524                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
525
526                         if (i == rx_ring->next_to_use)
527                                 next_desc = " NTU";
528                         else if (i == rx_ring->next_to_clean)
529                                 next_desc = " NTC";
530                         else
531                                 next_desc = "";
532
533                         if (staterr & E1000_RXD_STAT_DD) {
534                                 /* Descriptor Done */
535                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
536                                         "RWB", i,
537                                         le64_to_cpu(u0->a),
538                                         le64_to_cpu(u0->b),
539                                         next_desc);
540                         } else {
541                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
542                                         "R  ", i,
543                                         le64_to_cpu(u0->a),
544                                         le64_to_cpu(u0->b),
545                                         (u64)buffer_info->dma,
546                                         next_desc);
547
548                                 if (netif_msg_pktdata(adapter) &&
549                                     buffer_info->dma && buffer_info->page) {
550                                         print_hex_dump(KERN_INFO, "",
551                                           DUMP_PREFIX_ADDRESS,
552                                           16, 1,
553                                           page_address(buffer_info->page) +
554                                                       buffer_info->page_offset,
555                                           IGB_RX_BUFSZ, true);
556                                 }
557                         }
558                 }
559         }
560
561 exit:
562         return;
563 }
564
565 /**
566  *  igb_get_i2c_data - Reads the I2C SDA data bit
567  *  @hw: pointer to hardware structure
568  *  @i2cctl: Current value of I2CCTL register
569  *
570  *  Returns the I2C data bit value
571  **/
572 static int igb_get_i2c_data(void *data)
573 {
574         struct igb_adapter *adapter = (struct igb_adapter *)data;
575         struct e1000_hw *hw = &adapter->hw;
576         s32 i2cctl = rd32(E1000_I2CPARAMS);
577
578         return !!(i2cctl & E1000_I2C_DATA_IN);
579 }
580
581 /**
582  *  igb_set_i2c_data - Sets the I2C data bit
583  *  @data: pointer to hardware structure
584  *  @state: I2C data value (0 or 1) to set
585  *
586  *  Sets the I2C data bit
587  **/
588 static void igb_set_i2c_data(void *data, int state)
589 {
590         struct igb_adapter *adapter = (struct igb_adapter *)data;
591         struct e1000_hw *hw = &adapter->hw;
592         s32 i2cctl = rd32(E1000_I2CPARAMS);
593
594         if (state)
595                 i2cctl |= E1000_I2C_DATA_OUT;
596         else
597                 i2cctl &= ~E1000_I2C_DATA_OUT;
598
599         i2cctl &= ~E1000_I2C_DATA_OE_N;
600         i2cctl |= E1000_I2C_CLK_OE_N;
601         wr32(E1000_I2CPARAMS, i2cctl);
602         wrfl();
603
604 }
605
606 /**
607  *  igb_set_i2c_clk - Sets the I2C SCL clock
608  *  @data: pointer to hardware structure
609  *  @state: state to set clock
610  *
611  *  Sets the I2C clock line to state
612  **/
613 static void igb_set_i2c_clk(void *data, int state)
614 {
615         struct igb_adapter *adapter = (struct igb_adapter *)data;
616         struct e1000_hw *hw = &adapter->hw;
617         s32 i2cctl = rd32(E1000_I2CPARAMS);
618
619         if (state) {
620                 i2cctl |= E1000_I2C_CLK_OUT;
621                 i2cctl &= ~E1000_I2C_CLK_OE_N;
622         } else {
623                 i2cctl &= ~E1000_I2C_CLK_OUT;
624                 i2cctl &= ~E1000_I2C_CLK_OE_N;
625         }
626         wr32(E1000_I2CPARAMS, i2cctl);
627         wrfl();
628 }
629
630 /**
631  *  igb_get_i2c_clk - Gets the I2C SCL clock state
632  *  @data: pointer to hardware structure
633  *
634  *  Gets the I2C clock state
635  **/
636 static int igb_get_i2c_clk(void *data)
637 {
638         struct igb_adapter *adapter = (struct igb_adapter *)data;
639         struct e1000_hw *hw = &adapter->hw;
640         s32 i2cctl = rd32(E1000_I2CPARAMS);
641
642         return !!(i2cctl & E1000_I2C_CLK_IN);
643 }
644
645 static const struct i2c_algo_bit_data igb_i2c_algo = {
646         .setsda         = igb_set_i2c_data,
647         .setscl         = igb_set_i2c_clk,
648         .getsda         = igb_get_i2c_data,
649         .getscl         = igb_get_i2c_clk,
650         .udelay         = 5,
651         .timeout        = 20,
652 };
653
654 /**
655  *  igb_get_hw_dev - return device
656  *  @hw: pointer to hardware structure
657  *
658  *  used by hardware layer to print debugging information
659  **/
660 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
661 {
662         struct igb_adapter *adapter = hw->back;
663         return adapter->netdev;
664 }
665
666 /**
667  *  igb_init_module - Driver Registration Routine
668  *
669  *  igb_init_module is the first routine called when the driver is
670  *  loaded. All it does is register with the PCI subsystem.
671  **/
672 static int __init igb_init_module(void)
673 {
674         int ret;
675
676         pr_info("%s - version %s\n",
677                igb_driver_string, igb_driver_version);
678         pr_info("%s\n", igb_copyright);
679
680 #ifdef CONFIG_IGB_DCA
681         dca_register_notify(&dca_notifier);
682 #endif
683         ret = pci_register_driver(&igb_driver);
684         return ret;
685 }
686
687 module_init(igb_init_module);
688
689 /**
690  *  igb_exit_module - Driver Exit Cleanup Routine
691  *
692  *  igb_exit_module is called just before the driver is removed
693  *  from memory.
694  **/
695 static void __exit igb_exit_module(void)
696 {
697 #ifdef CONFIG_IGB_DCA
698         dca_unregister_notify(&dca_notifier);
699 #endif
700         pci_unregister_driver(&igb_driver);
701 }
702
703 module_exit(igb_exit_module);
704
705 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
706 /**
707  *  igb_cache_ring_register - Descriptor ring to register mapping
708  *  @adapter: board private structure to initialize
709  *
710  *  Once we know the feature-set enabled for the device, we'll cache
711  *  the register offset the descriptor ring is assigned to.
712  **/
713 static void igb_cache_ring_register(struct igb_adapter *adapter)
714 {
715         int i = 0, j = 0;
716         u32 rbase_offset = adapter->vfs_allocated_count;
717
718         switch (adapter->hw.mac.type) {
719         case e1000_82576:
720                 /* The queues are allocated for virtualization such that VF 0
721                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
722                  * In order to avoid collision we start at the first free queue
723                  * and continue consuming queues in the same sequence
724                  */
725                 if (adapter->vfs_allocated_count) {
726                         for (; i < adapter->rss_queues; i++)
727                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
728                                                                Q_IDX_82576(i);
729                 }
730                 /* Fall through */
731         case e1000_82575:
732         case e1000_82580:
733         case e1000_i350:
734         case e1000_i354:
735         case e1000_i210:
736         case e1000_i211:
737                 /* Fall through */
738         default:
739                 for (; i < adapter->num_rx_queues; i++)
740                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
741                 for (; j < adapter->num_tx_queues; j++)
742                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
743                 break;
744         }
745 }
746
747 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
748 {
749         struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
750         u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
751         u32 value = 0;
752
753         if (E1000_REMOVED(hw_addr))
754                 return ~value;
755
756         value = readl(&hw_addr[reg]);
757
758         /* reads should not return all F's */
759         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
760                 struct net_device *netdev = igb->netdev;
761                 hw->hw_addr = NULL;
762                 netif_device_detach(netdev);
763                 netdev_err(netdev, "PCIe link lost, device now detached\n");
764         }
765
766         return value;
767 }
768
769 /**
770  *  igb_write_ivar - configure ivar for given MSI-X vector
771  *  @hw: pointer to the HW structure
772  *  @msix_vector: vector number we are allocating to a given ring
773  *  @index: row index of IVAR register to write within IVAR table
774  *  @offset: column offset of in IVAR, should be multiple of 8
775  *
776  *  This function is intended to handle the writing of the IVAR register
777  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
778  *  each containing an cause allocation for an Rx and Tx ring, and a
779  *  variable number of rows depending on the number of queues supported.
780  **/
781 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
782                            int index, int offset)
783 {
784         u32 ivar = array_rd32(E1000_IVAR0, index);
785
786         /* clear any bits that are currently set */
787         ivar &= ~((u32)0xFF << offset);
788
789         /* write vector and valid bit */
790         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
791
792         array_wr32(E1000_IVAR0, index, ivar);
793 }
794
795 #define IGB_N0_QUEUE -1
796 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
797 {
798         struct igb_adapter *adapter = q_vector->adapter;
799         struct e1000_hw *hw = &adapter->hw;
800         int rx_queue = IGB_N0_QUEUE;
801         int tx_queue = IGB_N0_QUEUE;
802         u32 msixbm = 0;
803
804         if (q_vector->rx.ring)
805                 rx_queue = q_vector->rx.ring->reg_idx;
806         if (q_vector->tx.ring)
807                 tx_queue = q_vector->tx.ring->reg_idx;
808
809         switch (hw->mac.type) {
810         case e1000_82575:
811                 /* The 82575 assigns vectors using a bitmask, which matches the
812                  * bitmask for the EICR/EIMS/EIMC registers.  To assign one
813                  * or more queues to a vector, we write the appropriate bits
814                  * into the MSIXBM register for that vector.
815                  */
816                 if (rx_queue > IGB_N0_QUEUE)
817                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
818                 if (tx_queue > IGB_N0_QUEUE)
819                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
820                 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
821                         msixbm |= E1000_EIMS_OTHER;
822                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
823                 q_vector->eims_value = msixbm;
824                 break;
825         case e1000_82576:
826                 /* 82576 uses a table that essentially consists of 2 columns
827                  * with 8 rows.  The ordering is column-major so we use the
828                  * lower 3 bits as the row index, and the 4th bit as the
829                  * column offset.
830                  */
831                 if (rx_queue > IGB_N0_QUEUE)
832                         igb_write_ivar(hw, msix_vector,
833                                        rx_queue & 0x7,
834                                        (rx_queue & 0x8) << 1);
835                 if (tx_queue > IGB_N0_QUEUE)
836                         igb_write_ivar(hw, msix_vector,
837                                        tx_queue & 0x7,
838                                        ((tx_queue & 0x8) << 1) + 8);
839                 q_vector->eims_value = BIT(msix_vector);
840                 break;
841         case e1000_82580:
842         case e1000_i350:
843         case e1000_i354:
844         case e1000_i210:
845         case e1000_i211:
846                 /* On 82580 and newer adapters the scheme is similar to 82576
847                  * however instead of ordering column-major we have things
848                  * ordered row-major.  So we traverse the table by using
849                  * bit 0 as the column offset, and the remaining bits as the
850                  * row index.
851                  */
852                 if (rx_queue > IGB_N0_QUEUE)
853                         igb_write_ivar(hw, msix_vector,
854                                        rx_queue >> 1,
855                                        (rx_queue & 0x1) << 4);
856                 if (tx_queue > IGB_N0_QUEUE)
857                         igb_write_ivar(hw, msix_vector,
858                                        tx_queue >> 1,
859                                        ((tx_queue & 0x1) << 4) + 8);
860                 q_vector->eims_value = BIT(msix_vector);
861                 break;
862         default:
863                 BUG();
864                 break;
865         }
866
867         /* add q_vector eims value to global eims_enable_mask */
868         adapter->eims_enable_mask |= q_vector->eims_value;
869
870         /* configure q_vector to set itr on first interrupt */
871         q_vector->set_itr = 1;
872 }
873
874 /**
875  *  igb_configure_msix - Configure MSI-X hardware
876  *  @adapter: board private structure to initialize
877  *
878  *  igb_configure_msix sets up the hardware to properly
879  *  generate MSI-X interrupts.
880  **/
881 static void igb_configure_msix(struct igb_adapter *adapter)
882 {
883         u32 tmp;
884         int i, vector = 0;
885         struct e1000_hw *hw = &adapter->hw;
886
887         adapter->eims_enable_mask = 0;
888
889         /* set vector for other causes, i.e. link changes */
890         switch (hw->mac.type) {
891         case e1000_82575:
892                 tmp = rd32(E1000_CTRL_EXT);
893                 /* enable MSI-X PBA support*/
894                 tmp |= E1000_CTRL_EXT_PBA_CLR;
895
896                 /* Auto-Mask interrupts upon ICR read. */
897                 tmp |= E1000_CTRL_EXT_EIAME;
898                 tmp |= E1000_CTRL_EXT_IRCA;
899
900                 wr32(E1000_CTRL_EXT, tmp);
901
902                 /* enable msix_other interrupt */
903                 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
904                 adapter->eims_other = E1000_EIMS_OTHER;
905
906                 break;
907
908         case e1000_82576:
909         case e1000_82580:
910         case e1000_i350:
911         case e1000_i354:
912         case e1000_i210:
913         case e1000_i211:
914                 /* Turn on MSI-X capability first, or our settings
915                  * won't stick.  And it will take days to debug.
916                  */
917                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
918                      E1000_GPIE_PBA | E1000_GPIE_EIAME |
919                      E1000_GPIE_NSICR);
920
921                 /* enable msix_other interrupt */
922                 adapter->eims_other = BIT(vector);
923                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
924
925                 wr32(E1000_IVAR_MISC, tmp);
926                 break;
927         default:
928                 /* do nothing, since nothing else supports MSI-X */
929                 break;
930         } /* switch (hw->mac.type) */
931
932         adapter->eims_enable_mask |= adapter->eims_other;
933
934         for (i = 0; i < adapter->num_q_vectors; i++)
935                 igb_assign_vector(adapter->q_vector[i], vector++);
936
937         wrfl();
938 }
939
940 /**
941  *  igb_request_msix - Initialize MSI-X interrupts
942  *  @adapter: board private structure to initialize
943  *
944  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
945  *  kernel.
946  **/
947 static int igb_request_msix(struct igb_adapter *adapter)
948 {
949         struct net_device *netdev = adapter->netdev;
950         int i, err = 0, vector = 0, free_vector = 0;
951
952         err = request_irq(adapter->msix_entries[vector].vector,
953                           igb_msix_other, 0, netdev->name, adapter);
954         if (err)
955                 goto err_out;
956
957         for (i = 0; i < adapter->num_q_vectors; i++) {
958                 struct igb_q_vector *q_vector = adapter->q_vector[i];
959
960                 vector++;
961
962                 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
963
964                 if (q_vector->rx.ring && q_vector->tx.ring)
965                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
966                                 q_vector->rx.ring->queue_index);
967                 else if (q_vector->tx.ring)
968                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
969                                 q_vector->tx.ring->queue_index);
970                 else if (q_vector->rx.ring)
971                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
972                                 q_vector->rx.ring->queue_index);
973                 else
974                         sprintf(q_vector->name, "%s-unused", netdev->name);
975
976                 err = request_irq(adapter->msix_entries[vector].vector,
977                                   igb_msix_ring, 0, q_vector->name,
978                                   q_vector);
979                 if (err)
980                         goto err_free;
981         }
982
983         igb_configure_msix(adapter);
984         return 0;
985
986 err_free:
987         /* free already assigned IRQs */
988         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
989
990         vector--;
991         for (i = 0; i < vector; i++) {
992                 free_irq(adapter->msix_entries[free_vector++].vector,
993                          adapter->q_vector[i]);
994         }
995 err_out:
996         return err;
997 }
998
999 /**
1000  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1001  *  @adapter: board private structure to initialize
1002  *  @v_idx: Index of vector to be freed
1003  *
1004  *  This function frees the memory allocated to the q_vector.
1005  **/
1006 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1007 {
1008         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1009
1010         adapter->q_vector[v_idx] = NULL;
1011
1012         /* igb_get_stats64() might access the rings on this vector,
1013          * we must wait a grace period before freeing it.
1014          */
1015         if (q_vector)
1016                 kfree_rcu(q_vector, rcu);
1017 }
1018
1019 /**
1020  *  igb_reset_q_vector - Reset config for interrupt vector
1021  *  @adapter: board private structure to initialize
1022  *  @v_idx: Index of vector to be reset
1023  *
1024  *  If NAPI is enabled it will delete any references to the
1025  *  NAPI struct. This is preparation for igb_free_q_vector.
1026  **/
1027 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1028 {
1029         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1030
1031         /* Coming from igb_set_interrupt_capability, the vectors are not yet
1032          * allocated. So, q_vector is NULL so we should stop here.
1033          */
1034         if (!q_vector)
1035                 return;
1036
1037         if (q_vector->tx.ring)
1038                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1039
1040         if (q_vector->rx.ring)
1041                 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1042
1043         netif_napi_del(&q_vector->napi);
1044
1045 }
1046
1047 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1048 {
1049         int v_idx = adapter->num_q_vectors;
1050
1051         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1052                 pci_disable_msix(adapter->pdev);
1053         else if (adapter->flags & IGB_FLAG_HAS_MSI)
1054                 pci_disable_msi(adapter->pdev);
1055
1056         while (v_idx--)
1057                 igb_reset_q_vector(adapter, v_idx);
1058 }
1059
1060 /**
1061  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1062  *  @adapter: board private structure to initialize
1063  *
1064  *  This function frees the memory allocated to the q_vectors.  In addition if
1065  *  NAPI is enabled it will delete any references to the NAPI struct prior
1066  *  to freeing the q_vector.
1067  **/
1068 static void igb_free_q_vectors(struct igb_adapter *adapter)
1069 {
1070         int v_idx = adapter->num_q_vectors;
1071
1072         adapter->num_tx_queues = 0;
1073         adapter->num_rx_queues = 0;
1074         adapter->num_q_vectors = 0;
1075
1076         while (v_idx--) {
1077                 igb_reset_q_vector(adapter, v_idx);
1078                 igb_free_q_vector(adapter, v_idx);
1079         }
1080 }
1081
1082 /**
1083  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1084  *  @adapter: board private structure to initialize
1085  *
1086  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1087  *  MSI-X interrupts allocated.
1088  */
1089 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1090 {
1091         igb_free_q_vectors(adapter);
1092         igb_reset_interrupt_capability(adapter);
1093 }
1094
1095 /**
1096  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1097  *  @adapter: board private structure to initialize
1098  *  @msix: boolean value of MSIX capability
1099  *
1100  *  Attempt to configure interrupts using the best available
1101  *  capabilities of the hardware and kernel.
1102  **/
1103 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1104 {
1105         int err;
1106         int numvecs, i;
1107
1108         if (!msix)
1109                 goto msi_only;
1110         adapter->flags |= IGB_FLAG_HAS_MSIX;
1111
1112         /* Number of supported queues. */
1113         adapter->num_rx_queues = adapter->rss_queues;
1114         if (adapter->vfs_allocated_count)
1115                 adapter->num_tx_queues = 1;
1116         else
1117                 adapter->num_tx_queues = adapter->rss_queues;
1118
1119         /* start with one vector for every Rx queue */
1120         numvecs = adapter->num_rx_queues;
1121
1122         /* if Tx handler is separate add 1 for every Tx queue */
1123         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1124                 numvecs += adapter->num_tx_queues;
1125
1126         /* store the number of vectors reserved for queues */
1127         adapter->num_q_vectors = numvecs;
1128
1129         /* add 1 vector for link status interrupts */
1130         numvecs++;
1131         for (i = 0; i < numvecs; i++)
1132                 adapter->msix_entries[i].entry = i;
1133
1134         err = pci_enable_msix_range(adapter->pdev,
1135                                     adapter->msix_entries,
1136                                     numvecs,
1137                                     numvecs);
1138         if (err > 0)
1139                 return;
1140
1141         igb_reset_interrupt_capability(adapter);
1142
1143         /* If we can't do MSI-X, try MSI */
1144 msi_only:
1145         adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1146 #ifdef CONFIG_PCI_IOV
1147         /* disable SR-IOV for non MSI-X configurations */
1148         if (adapter->vf_data) {
1149                 struct e1000_hw *hw = &adapter->hw;
1150                 /* disable iov and allow time for transactions to clear */
1151                 pci_disable_sriov(adapter->pdev);
1152                 msleep(500);
1153
1154                 kfree(adapter->vf_data);
1155                 adapter->vf_data = NULL;
1156                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1157                 wrfl();
1158                 msleep(100);
1159                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1160         }
1161 #endif
1162         adapter->vfs_allocated_count = 0;
1163         adapter->rss_queues = 1;
1164         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1165         adapter->num_rx_queues = 1;
1166         adapter->num_tx_queues = 1;
1167         adapter->num_q_vectors = 1;
1168         if (!pci_enable_msi(adapter->pdev))
1169                 adapter->flags |= IGB_FLAG_HAS_MSI;
1170 }
1171
1172 static void igb_add_ring(struct igb_ring *ring,
1173                          struct igb_ring_container *head)
1174 {
1175         head->ring = ring;
1176         head->count++;
1177 }
1178
1179 /**
1180  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1181  *  @adapter: board private structure to initialize
1182  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1183  *  @v_idx: index of vector in adapter struct
1184  *  @txr_count: total number of Tx rings to allocate
1185  *  @txr_idx: index of first Tx ring to allocate
1186  *  @rxr_count: total number of Rx rings to allocate
1187  *  @rxr_idx: index of first Rx ring to allocate
1188  *
1189  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1190  **/
1191 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1192                               int v_count, int v_idx,
1193                               int txr_count, int txr_idx,
1194                               int rxr_count, int rxr_idx)
1195 {
1196         struct igb_q_vector *q_vector;
1197         struct igb_ring *ring;
1198         int ring_count, size;
1199
1200         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1201         if (txr_count > 1 || rxr_count > 1)
1202                 return -ENOMEM;
1203
1204         ring_count = txr_count + rxr_count;
1205         size = sizeof(struct igb_q_vector) +
1206                (sizeof(struct igb_ring) * ring_count);
1207
1208         /* allocate q_vector and rings */
1209         q_vector = adapter->q_vector[v_idx];
1210         if (!q_vector) {
1211                 q_vector = kzalloc(size, GFP_KERNEL);
1212         } else if (size > ksize(q_vector)) {
1213                 kfree_rcu(q_vector, rcu);
1214                 q_vector = kzalloc(size, GFP_KERNEL);
1215         } else {
1216                 memset(q_vector, 0, size);
1217         }
1218         if (!q_vector)
1219                 return -ENOMEM;
1220
1221         /* initialize NAPI */
1222         netif_napi_add(adapter->netdev, &q_vector->napi,
1223                        igb_poll, 64);
1224
1225         /* tie q_vector and adapter together */
1226         adapter->q_vector[v_idx] = q_vector;
1227         q_vector->adapter = adapter;
1228
1229         /* initialize work limits */
1230         q_vector->tx.work_limit = adapter->tx_work_limit;
1231
1232         /* initialize ITR configuration */
1233         q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1234         q_vector->itr_val = IGB_START_ITR;
1235
1236         /* initialize pointer to rings */
1237         ring = q_vector->ring;
1238
1239         /* intialize ITR */
1240         if (rxr_count) {
1241                 /* rx or rx/tx vector */
1242                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1243                         q_vector->itr_val = adapter->rx_itr_setting;
1244         } else {
1245                 /* tx only vector */
1246                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1247                         q_vector->itr_val = adapter->tx_itr_setting;
1248         }
1249
1250         if (txr_count) {
1251                 /* assign generic ring traits */
1252                 ring->dev = &adapter->pdev->dev;
1253                 ring->netdev = adapter->netdev;
1254
1255                 /* configure backlink on ring */
1256                 ring->q_vector = q_vector;
1257
1258                 /* update q_vector Tx values */
1259                 igb_add_ring(ring, &q_vector->tx);
1260
1261                 /* For 82575, context index must be unique per ring. */
1262                 if (adapter->hw.mac.type == e1000_82575)
1263                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1264
1265                 /* apply Tx specific ring traits */
1266                 ring->count = adapter->tx_ring_count;
1267                 ring->queue_index = txr_idx;
1268
1269                 u64_stats_init(&ring->tx_syncp);
1270                 u64_stats_init(&ring->tx_syncp2);
1271
1272                 /* assign ring to adapter */
1273                 adapter->tx_ring[txr_idx] = ring;
1274
1275                 /* push pointer to next ring */
1276                 ring++;
1277         }
1278
1279         if (rxr_count) {
1280                 /* assign generic ring traits */
1281                 ring->dev = &adapter->pdev->dev;
1282                 ring->netdev = adapter->netdev;
1283
1284                 /* configure backlink on ring */
1285                 ring->q_vector = q_vector;
1286
1287                 /* update q_vector Rx values */
1288                 igb_add_ring(ring, &q_vector->rx);
1289
1290                 /* set flag indicating ring supports SCTP checksum offload */
1291                 if (adapter->hw.mac.type >= e1000_82576)
1292                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1293
1294                 /* On i350, i354, i210, and i211, loopback VLAN packets
1295                  * have the tag byte-swapped.
1296                  */
1297                 if (adapter->hw.mac.type >= e1000_i350)
1298                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1299
1300                 /* apply Rx specific ring traits */
1301                 ring->count = adapter->rx_ring_count;
1302                 ring->queue_index = rxr_idx;
1303
1304                 u64_stats_init(&ring->rx_syncp);
1305
1306                 /* assign ring to adapter */
1307                 adapter->rx_ring[rxr_idx] = ring;
1308         }
1309
1310         return 0;
1311 }
1312
1313
1314 /**
1315  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1316  *  @adapter: board private structure to initialize
1317  *
1318  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1319  *  return -ENOMEM.
1320  **/
1321 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1322 {
1323         int q_vectors = adapter->num_q_vectors;
1324         int rxr_remaining = adapter->num_rx_queues;
1325         int txr_remaining = adapter->num_tx_queues;
1326         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1327         int err;
1328
1329         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1330                 for (; rxr_remaining; v_idx++) {
1331                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1332                                                  0, 0, 1, rxr_idx);
1333
1334                         if (err)
1335                                 goto err_out;
1336
1337                         /* update counts and index */
1338                         rxr_remaining--;
1339                         rxr_idx++;
1340                 }
1341         }
1342
1343         for (; v_idx < q_vectors; v_idx++) {
1344                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1345                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1346
1347                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1348                                          tqpv, txr_idx, rqpv, rxr_idx);
1349
1350                 if (err)
1351                         goto err_out;
1352
1353                 /* update counts and index */
1354                 rxr_remaining -= rqpv;
1355                 txr_remaining -= tqpv;
1356                 rxr_idx++;
1357                 txr_idx++;
1358         }
1359
1360         return 0;
1361
1362 err_out:
1363         adapter->num_tx_queues = 0;
1364         adapter->num_rx_queues = 0;
1365         adapter->num_q_vectors = 0;
1366
1367         while (v_idx--)
1368                 igb_free_q_vector(adapter, v_idx);
1369
1370         return -ENOMEM;
1371 }
1372
1373 /**
1374  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1375  *  @adapter: board private structure to initialize
1376  *  @msix: boolean value of MSIX capability
1377  *
1378  *  This function initializes the interrupts and allocates all of the queues.
1379  **/
1380 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1381 {
1382         struct pci_dev *pdev = adapter->pdev;
1383         int err;
1384
1385         igb_set_interrupt_capability(adapter, msix);
1386
1387         err = igb_alloc_q_vectors(adapter);
1388         if (err) {
1389                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1390                 goto err_alloc_q_vectors;
1391         }
1392
1393         igb_cache_ring_register(adapter);
1394
1395         return 0;
1396
1397 err_alloc_q_vectors:
1398         igb_reset_interrupt_capability(adapter);
1399         return err;
1400 }
1401
1402 /**
1403  *  igb_request_irq - initialize interrupts
1404  *  @adapter: board private structure to initialize
1405  *
1406  *  Attempts to configure interrupts using the best available
1407  *  capabilities of the hardware and kernel.
1408  **/
1409 static int igb_request_irq(struct igb_adapter *adapter)
1410 {
1411         struct net_device *netdev = adapter->netdev;
1412         struct pci_dev *pdev = adapter->pdev;
1413         int err = 0;
1414
1415         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1416                 err = igb_request_msix(adapter);
1417                 if (!err)
1418                         goto request_done;
1419                 /* fall back to MSI */
1420                 igb_free_all_tx_resources(adapter);
1421                 igb_free_all_rx_resources(adapter);
1422
1423                 igb_clear_interrupt_scheme(adapter);
1424                 err = igb_init_interrupt_scheme(adapter, false);
1425                 if (err)
1426                         goto request_done;
1427
1428                 igb_setup_all_tx_resources(adapter);
1429                 igb_setup_all_rx_resources(adapter);
1430                 igb_configure(adapter);
1431         }
1432
1433         igb_assign_vector(adapter->q_vector[0], 0);
1434
1435         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1436                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1437                                   netdev->name, adapter);
1438                 if (!err)
1439                         goto request_done;
1440
1441                 /* fall back to legacy interrupts */
1442                 igb_reset_interrupt_capability(adapter);
1443                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1444         }
1445
1446         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1447                           netdev->name, adapter);
1448
1449         if (err)
1450                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1451                         err);
1452
1453 request_done:
1454         return err;
1455 }
1456
1457 static void igb_free_irq(struct igb_adapter *adapter)
1458 {
1459         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1460                 int vector = 0, i;
1461
1462                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1463
1464                 for (i = 0; i < adapter->num_q_vectors; i++)
1465                         free_irq(adapter->msix_entries[vector++].vector,
1466                                  adapter->q_vector[i]);
1467         } else {
1468                 free_irq(adapter->pdev->irq, adapter);
1469         }
1470 }
1471
1472 /**
1473  *  igb_irq_disable - Mask off interrupt generation on the NIC
1474  *  @adapter: board private structure
1475  **/
1476 static void igb_irq_disable(struct igb_adapter *adapter)
1477 {
1478         struct e1000_hw *hw = &adapter->hw;
1479
1480         /* we need to be careful when disabling interrupts.  The VFs are also
1481          * mapped into these registers and so clearing the bits can cause
1482          * issues on the VF drivers so we only need to clear what we set
1483          */
1484         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485                 u32 regval = rd32(E1000_EIAM);
1486
1487                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1488                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1489                 regval = rd32(E1000_EIAC);
1490                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1491         }
1492
1493         wr32(E1000_IAM, 0);
1494         wr32(E1000_IMC, ~0);
1495         wrfl();
1496         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1497                 int i;
1498
1499                 for (i = 0; i < adapter->num_q_vectors; i++)
1500                         synchronize_irq(adapter->msix_entries[i].vector);
1501         } else {
1502                 synchronize_irq(adapter->pdev->irq);
1503         }
1504 }
1505
1506 /**
1507  *  igb_irq_enable - Enable default interrupt generation settings
1508  *  @adapter: board private structure
1509  **/
1510 static void igb_irq_enable(struct igb_adapter *adapter)
1511 {
1512         struct e1000_hw *hw = &adapter->hw;
1513
1514         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1515                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1516                 u32 regval = rd32(E1000_EIAC);
1517
1518                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1519                 regval = rd32(E1000_EIAM);
1520                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1521                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1522                 if (adapter->vfs_allocated_count) {
1523                         wr32(E1000_MBVFIMR, 0xFF);
1524                         ims |= E1000_IMS_VMMB;
1525                 }
1526                 wr32(E1000_IMS, ims);
1527         } else {
1528                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1529                                 E1000_IMS_DRSTA);
1530                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1531                                 E1000_IMS_DRSTA);
1532         }
1533 }
1534
1535 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1536 {
1537         struct e1000_hw *hw = &adapter->hw;
1538         u16 pf_id = adapter->vfs_allocated_count;
1539         u16 vid = adapter->hw.mng_cookie.vlan_id;
1540         u16 old_vid = adapter->mng_vlan_id;
1541
1542         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1543                 /* add VID to filter table */
1544                 igb_vfta_set(hw, vid, pf_id, true, true);
1545                 adapter->mng_vlan_id = vid;
1546         } else {
1547                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1548         }
1549
1550         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1551             (vid != old_vid) &&
1552             !test_bit(old_vid, adapter->active_vlans)) {
1553                 /* remove VID from filter table */
1554                 igb_vfta_set(hw, vid, pf_id, false, true);
1555         }
1556 }
1557
1558 /**
1559  *  igb_release_hw_control - release control of the h/w to f/w
1560  *  @adapter: address of board private structure
1561  *
1562  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1563  *  For ASF and Pass Through versions of f/w this means that the
1564  *  driver is no longer loaded.
1565  **/
1566 static void igb_release_hw_control(struct igb_adapter *adapter)
1567 {
1568         struct e1000_hw *hw = &adapter->hw;
1569         u32 ctrl_ext;
1570
1571         /* Let firmware take over control of h/w */
1572         ctrl_ext = rd32(E1000_CTRL_EXT);
1573         wr32(E1000_CTRL_EXT,
1574                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1575 }
1576
1577 /**
1578  *  igb_get_hw_control - get control of the h/w from f/w
1579  *  @adapter: address of board private structure
1580  *
1581  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1582  *  For ASF and Pass Through versions of f/w this means that
1583  *  the driver is loaded.
1584  **/
1585 static void igb_get_hw_control(struct igb_adapter *adapter)
1586 {
1587         struct e1000_hw *hw = &adapter->hw;
1588         u32 ctrl_ext;
1589
1590         /* Let firmware know the driver has taken over */
1591         ctrl_ext = rd32(E1000_CTRL_EXT);
1592         wr32(E1000_CTRL_EXT,
1593                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1594 }
1595
1596 /**
1597  *  igb_configure - configure the hardware for RX and TX
1598  *  @adapter: private board structure
1599  **/
1600 static void igb_configure(struct igb_adapter *adapter)
1601 {
1602         struct net_device *netdev = adapter->netdev;
1603         int i;
1604
1605         igb_get_hw_control(adapter);
1606         igb_set_rx_mode(netdev);
1607
1608         igb_restore_vlan(adapter);
1609
1610         igb_setup_tctl(adapter);
1611         igb_setup_mrqc(adapter);
1612         igb_setup_rctl(adapter);
1613
1614         igb_configure_tx(adapter);
1615         igb_configure_rx(adapter);
1616
1617         igb_rx_fifo_flush_82575(&adapter->hw);
1618
1619         /* call igb_desc_unused which always leaves
1620          * at least 1 descriptor unused to make sure
1621          * next_to_use != next_to_clean
1622          */
1623         for (i = 0; i < adapter->num_rx_queues; i++) {
1624                 struct igb_ring *ring = adapter->rx_ring[i];
1625                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1626         }
1627 }
1628
1629 /**
1630  *  igb_power_up_link - Power up the phy/serdes link
1631  *  @adapter: address of board private structure
1632  **/
1633 void igb_power_up_link(struct igb_adapter *adapter)
1634 {
1635         igb_reset_phy(&adapter->hw);
1636
1637         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1638                 igb_power_up_phy_copper(&adapter->hw);
1639         else
1640                 igb_power_up_serdes_link_82575(&adapter->hw);
1641
1642         igb_setup_link(&adapter->hw);
1643 }
1644
1645 /**
1646  *  igb_power_down_link - Power down the phy/serdes link
1647  *  @adapter: address of board private structure
1648  */
1649 static void igb_power_down_link(struct igb_adapter *adapter)
1650 {
1651         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1652                 igb_power_down_phy_copper_82575(&adapter->hw);
1653         else
1654                 igb_shutdown_serdes_link_82575(&adapter->hw);
1655 }
1656
1657 /**
1658  * Detect and switch function for Media Auto Sense
1659  * @adapter: address of the board private structure
1660  **/
1661 static void igb_check_swap_media(struct igb_adapter *adapter)
1662 {
1663         struct e1000_hw *hw = &adapter->hw;
1664         u32 ctrl_ext, connsw;
1665         bool swap_now = false;
1666
1667         ctrl_ext = rd32(E1000_CTRL_EXT);
1668         connsw = rd32(E1000_CONNSW);
1669
1670         /* need to live swap if current media is copper and we have fiber/serdes
1671          * to go to.
1672          */
1673
1674         if ((hw->phy.media_type == e1000_media_type_copper) &&
1675             (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1676                 swap_now = true;
1677         } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1678                 /* copper signal takes time to appear */
1679                 if (adapter->copper_tries < 4) {
1680                         adapter->copper_tries++;
1681                         connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1682                         wr32(E1000_CONNSW, connsw);
1683                         return;
1684                 } else {
1685                         adapter->copper_tries = 0;
1686                         if ((connsw & E1000_CONNSW_PHYSD) &&
1687                             (!(connsw & E1000_CONNSW_PHY_PDN))) {
1688                                 swap_now = true;
1689                                 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1690                                 wr32(E1000_CONNSW, connsw);
1691                         }
1692                 }
1693         }
1694
1695         if (!swap_now)
1696                 return;
1697
1698         switch (hw->phy.media_type) {
1699         case e1000_media_type_copper:
1700                 netdev_info(adapter->netdev,
1701                         "MAS: changing media to fiber/serdes\n");
1702                 ctrl_ext |=
1703                         E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1704                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1705                 adapter->copper_tries = 0;
1706                 break;
1707         case e1000_media_type_internal_serdes:
1708         case e1000_media_type_fiber:
1709                 netdev_info(adapter->netdev,
1710                         "MAS: changing media to copper\n");
1711                 ctrl_ext &=
1712                         ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1713                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1714                 break;
1715         default:
1716                 /* shouldn't get here during regular operation */
1717                 netdev_err(adapter->netdev,
1718                         "AMS: Invalid media type found, returning\n");
1719                 break;
1720         }
1721         wr32(E1000_CTRL_EXT, ctrl_ext);
1722 }
1723
1724 /**
1725  *  igb_up - Open the interface and prepare it to handle traffic
1726  *  @adapter: board private structure
1727  **/
1728 int igb_up(struct igb_adapter *adapter)
1729 {
1730         struct e1000_hw *hw = &adapter->hw;
1731         int i;
1732
1733         /* hardware has been reset, we need to reload some things */
1734         igb_configure(adapter);
1735
1736         clear_bit(__IGB_DOWN, &adapter->state);
1737
1738         for (i = 0; i < adapter->num_q_vectors; i++)
1739                 napi_enable(&(adapter->q_vector[i]->napi));
1740
1741         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1742                 igb_configure_msix(adapter);
1743         else
1744                 igb_assign_vector(adapter->q_vector[0], 0);
1745
1746         /* Clear any pending interrupts. */
1747         rd32(E1000_ICR);
1748         igb_irq_enable(adapter);
1749
1750         /* notify VFs that reset has been completed */
1751         if (adapter->vfs_allocated_count) {
1752                 u32 reg_data = rd32(E1000_CTRL_EXT);
1753
1754                 reg_data |= E1000_CTRL_EXT_PFRSTD;
1755                 wr32(E1000_CTRL_EXT, reg_data);
1756         }
1757
1758         netif_tx_start_all_queues(adapter->netdev);
1759
1760         /* start the watchdog. */
1761         hw->mac.get_link_status = 1;
1762         schedule_work(&adapter->watchdog_task);
1763
1764         if ((adapter->flags & IGB_FLAG_EEE) &&
1765             (!hw->dev_spec._82575.eee_disable))
1766                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1767
1768         return 0;
1769 }
1770
1771 void igb_down(struct igb_adapter *adapter)
1772 {
1773         struct net_device *netdev = adapter->netdev;
1774         struct e1000_hw *hw = &adapter->hw;
1775         u32 tctl, rctl;
1776         int i;
1777
1778         /* signal that we're down so the interrupt handler does not
1779          * reschedule our watchdog timer
1780          */
1781         set_bit(__IGB_DOWN, &adapter->state);
1782
1783         /* disable receives in the hardware */
1784         rctl = rd32(E1000_RCTL);
1785         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1786         /* flush and sleep below */
1787
1788         netif_carrier_off(netdev);
1789         netif_tx_stop_all_queues(netdev);
1790
1791         /* disable transmits in the hardware */
1792         tctl = rd32(E1000_TCTL);
1793         tctl &= ~E1000_TCTL_EN;
1794         wr32(E1000_TCTL, tctl);
1795         /* flush both disables and wait for them to finish */
1796         wrfl();
1797         usleep_range(10000, 11000);
1798
1799         igb_irq_disable(adapter);
1800
1801         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1802
1803         for (i = 0; i < adapter->num_q_vectors; i++) {
1804                 if (adapter->q_vector[i]) {
1805                         napi_synchronize(&adapter->q_vector[i]->napi);
1806                         napi_disable(&adapter->q_vector[i]->napi);
1807                 }
1808         }
1809
1810         del_timer_sync(&adapter->watchdog_timer);
1811         del_timer_sync(&adapter->phy_info_timer);
1812
1813         /* record the stats before reset*/
1814         spin_lock(&adapter->stats64_lock);
1815         igb_update_stats(adapter, &adapter->stats64);
1816         spin_unlock(&adapter->stats64_lock);
1817
1818         adapter->link_speed = 0;
1819         adapter->link_duplex = 0;
1820
1821         if (!pci_channel_offline(adapter->pdev))
1822                 igb_reset(adapter);
1823
1824         /* clear VLAN promisc flag so VFTA will be updated if necessary */
1825         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
1826
1827         igb_clean_all_tx_rings(adapter);
1828         igb_clean_all_rx_rings(adapter);
1829 #ifdef CONFIG_IGB_DCA
1830
1831         /* since we reset the hardware DCA settings were cleared */
1832         igb_setup_dca(adapter);
1833 #endif
1834 }
1835
1836 void igb_reinit_locked(struct igb_adapter *adapter)
1837 {
1838         WARN_ON(in_interrupt());
1839         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1840                 usleep_range(1000, 2000);
1841         igb_down(adapter);
1842         igb_up(adapter);
1843         clear_bit(__IGB_RESETTING, &adapter->state);
1844 }
1845
1846 /** igb_enable_mas - Media Autosense re-enable after swap
1847  *
1848  * @adapter: adapter struct
1849  **/
1850 static void igb_enable_mas(struct igb_adapter *adapter)
1851 {
1852         struct e1000_hw *hw = &adapter->hw;
1853         u32 connsw = rd32(E1000_CONNSW);
1854
1855         /* configure for SerDes media detect */
1856         if ((hw->phy.media_type == e1000_media_type_copper) &&
1857             (!(connsw & E1000_CONNSW_SERDESD))) {
1858                 connsw |= E1000_CONNSW_ENRGSRC;
1859                 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1860                 wr32(E1000_CONNSW, connsw);
1861                 wrfl();
1862         }
1863 }
1864
1865 void igb_reset(struct igb_adapter *adapter)
1866 {
1867         struct pci_dev *pdev = adapter->pdev;
1868         struct e1000_hw *hw = &adapter->hw;
1869         struct e1000_mac_info *mac = &hw->mac;
1870         struct e1000_fc_info *fc = &hw->fc;
1871         u32 pba, hwm;
1872
1873         /* Repartition Pba for greater than 9k mtu
1874          * To take effect CTRL.RST is required.
1875          */
1876         switch (mac->type) {
1877         case e1000_i350:
1878         case e1000_i354:
1879         case e1000_82580:
1880                 pba = rd32(E1000_RXPBS);
1881                 pba = igb_rxpbs_adjust_82580(pba);
1882                 break;
1883         case e1000_82576:
1884                 pba = rd32(E1000_RXPBS);
1885                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1886                 break;
1887         case e1000_82575:
1888         case e1000_i210:
1889         case e1000_i211:
1890         default:
1891                 pba = E1000_PBA_34K;
1892                 break;
1893         }
1894
1895         if (mac->type == e1000_82575) {
1896                 u32 min_rx_space, min_tx_space, needed_tx_space;
1897
1898                 /* write Rx PBA so that hardware can report correct Tx PBA */
1899                 wr32(E1000_PBA, pba);
1900
1901                 /* To maintain wire speed transmits, the Tx FIFO should be
1902                  * large enough to accommodate two full transmit packets,
1903                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1904                  * the Rx FIFO should be large enough to accommodate at least
1905                  * one full receive packet and is similarly rounded up and
1906                  * expressed in KB.
1907                  */
1908                 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
1909
1910                 /* The Tx FIFO also stores 16 bytes of information about the Tx
1911                  * but don't include Ethernet FCS because hardware appends it.
1912                  * We only need to round down to the nearest 512 byte block
1913                  * count since the value we care about is 2 frames, not 1.
1914                  */
1915                 min_tx_space = adapter->max_frame_size;
1916                 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
1917                 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
1918
1919                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1920                 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
1921
1922                 /* If current Tx allocation is less than the min Tx FIFO size,
1923                  * and the min Tx FIFO size is less than the current Rx FIFO
1924                  * allocation, take space away from current Rx allocation.
1925                  */
1926                 if (needed_tx_space < pba) {
1927                         pba -= needed_tx_space;
1928
1929                         /* if short on Rx space, Rx wins and must trump Tx
1930                          * adjustment
1931                          */
1932                         if (pba < min_rx_space)
1933                                 pba = min_rx_space;
1934                 }
1935
1936                 /* adjust PBA for jumbo frames */
1937                 wr32(E1000_PBA, pba);
1938         }
1939
1940         /* flow control settings
1941          * The high water mark must be low enough to fit one full frame
1942          * after transmitting the pause frame.  As such we must have enough
1943          * space to allow for us to complete our current transmit and then
1944          * receive the frame that is in progress from the link partner.
1945          * Set it to:
1946          * - the full Rx FIFO size minus one full Tx plus one full Rx frame
1947          */
1948         hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
1949
1950         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
1951         fc->low_water = fc->high_water - 16;
1952         fc->pause_time = 0xFFFF;
1953         fc->send_xon = 1;
1954         fc->current_mode = fc->requested_mode;
1955
1956         /* disable receive for all VFs and wait one second */
1957         if (adapter->vfs_allocated_count) {
1958                 int i;
1959
1960                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1961                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1962
1963                 /* ping all the active vfs to let them know we are going down */
1964                 igb_ping_all_vfs(adapter);
1965
1966                 /* disable transmits and receives */
1967                 wr32(E1000_VFRE, 0);
1968                 wr32(E1000_VFTE, 0);
1969         }
1970
1971         /* Allow time for pending master requests to run */
1972         hw->mac.ops.reset_hw(hw);
1973         wr32(E1000_WUC, 0);
1974
1975         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1976                 /* need to resetup here after media swap */
1977                 adapter->ei.get_invariants(hw);
1978                 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1979         }
1980         if ((mac->type == e1000_82575) &&
1981             (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1982                 igb_enable_mas(adapter);
1983         }
1984         if (hw->mac.ops.init_hw(hw))
1985                 dev_err(&pdev->dev, "Hardware Error\n");
1986
1987         /* Flow control settings reset on hardware reset, so guarantee flow
1988          * control is off when forcing speed.
1989          */
1990         if (!hw->mac.autoneg)
1991                 igb_force_mac_fc(hw);
1992
1993         igb_init_dmac(adapter, pba);
1994 #ifdef CONFIG_IGB_HWMON
1995         /* Re-initialize the thermal sensor on i350 devices. */
1996         if (!test_bit(__IGB_DOWN, &adapter->state)) {
1997                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1998                         /* If present, re-initialize the external thermal sensor
1999                          * interface.
2000                          */
2001                         if (adapter->ets)
2002                                 mac->ops.init_thermal_sensor_thresh(hw);
2003                 }
2004         }
2005 #endif
2006         /* Re-establish EEE setting */
2007         if (hw->phy.media_type == e1000_media_type_copper) {
2008                 switch (mac->type) {
2009                 case e1000_i350:
2010                 case e1000_i210:
2011                 case e1000_i211:
2012                         igb_set_eee_i350(hw, true, true);
2013                         break;
2014                 case e1000_i354:
2015                         igb_set_eee_i354(hw, true, true);
2016                         break;
2017                 default:
2018                         break;
2019                 }
2020         }
2021         if (!netif_running(adapter->netdev))
2022                 igb_power_down_link(adapter);
2023
2024         igb_update_mng_vlan(adapter);
2025
2026         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2027         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2028
2029         /* Re-enable PTP, where applicable. */
2030         igb_ptp_reset(adapter);
2031
2032         igb_get_phy_info(hw);
2033 }
2034
2035 static netdev_features_t igb_fix_features(struct net_device *netdev,
2036         netdev_features_t features)
2037 {
2038         /* Since there is no support for separate Rx/Tx vlan accel
2039          * enable/disable make sure Tx flag is always in same state as Rx.
2040          */
2041         if (features & NETIF_F_HW_VLAN_CTAG_RX)
2042                 features |= NETIF_F_HW_VLAN_CTAG_TX;
2043         else
2044                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2045
2046         return features;
2047 }
2048
2049 static int igb_set_features(struct net_device *netdev,
2050         netdev_features_t features)
2051 {
2052         netdev_features_t changed = netdev->features ^ features;
2053         struct igb_adapter *adapter = netdev_priv(netdev);
2054
2055         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2056                 igb_vlan_mode(netdev, features);
2057
2058         if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2059                 return 0;
2060
2061         netdev->features = features;
2062
2063         if (netif_running(netdev))
2064                 igb_reinit_locked(adapter);
2065         else
2066                 igb_reset(adapter);
2067
2068         return 0;
2069 }
2070
2071 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2072                            struct net_device *dev,
2073                            const unsigned char *addr, u16 vid,
2074                            u16 flags)
2075 {
2076         /* guarantee we can provide a unique filter for the unicast address */
2077         if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2078                 struct igb_adapter *adapter = netdev_priv(dev);
2079                 struct e1000_hw *hw = &adapter->hw;
2080                 int vfn = adapter->vfs_allocated_count;
2081                 int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2082
2083                 if (netdev_uc_count(dev) >= rar_entries)
2084                         return -ENOMEM;
2085         }
2086
2087         return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2088 }
2089
2090 #define IGB_MAX_MAC_HDR_LEN     127
2091 #define IGB_MAX_NETWORK_HDR_LEN 511
2092
2093 static netdev_features_t
2094 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2095                    netdev_features_t features)
2096 {
2097         unsigned int network_hdr_len, mac_hdr_len;
2098
2099         /* Make certain the headers can be described by a context descriptor */
2100         mac_hdr_len = skb_network_header(skb) - skb->data;
2101         if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2102                 return features & ~(NETIF_F_HW_CSUM |
2103                                     NETIF_F_SCTP_CRC |
2104                                     NETIF_F_HW_VLAN_CTAG_TX |
2105                                     NETIF_F_TSO |
2106                                     NETIF_F_TSO6);
2107
2108         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2109         if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2110                 return features & ~(NETIF_F_HW_CSUM |
2111                                     NETIF_F_SCTP_CRC |
2112                                     NETIF_F_TSO |
2113                                     NETIF_F_TSO6);
2114
2115         /* We can only support IPV4 TSO in tunnels if we can mangle the
2116          * inner IP ID field, so strip TSO if MANGLEID is not supported.
2117          */
2118         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2119                 features &= ~NETIF_F_TSO;
2120
2121         return features;
2122 }
2123
2124 static const struct net_device_ops igb_netdev_ops = {
2125         .ndo_open               = igb_open,
2126         .ndo_stop               = igb_close,
2127         .ndo_start_xmit         = igb_xmit_frame,
2128         .ndo_get_stats64        = igb_get_stats64,
2129         .ndo_set_rx_mode        = igb_set_rx_mode,
2130         .ndo_set_mac_address    = igb_set_mac,
2131         .ndo_change_mtu         = igb_change_mtu,
2132         .ndo_do_ioctl           = igb_ioctl,
2133         .ndo_tx_timeout         = igb_tx_timeout,
2134         .ndo_validate_addr      = eth_validate_addr,
2135         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2136         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2137         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
2138         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
2139         .ndo_set_vf_rate        = igb_ndo_set_vf_bw,
2140         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
2141         .ndo_get_vf_config      = igb_ndo_get_vf_config,
2142 #ifdef CONFIG_NET_POLL_CONTROLLER
2143         .ndo_poll_controller    = igb_netpoll,
2144 #endif
2145         .ndo_fix_features       = igb_fix_features,
2146         .ndo_set_features       = igb_set_features,
2147         .ndo_fdb_add            = igb_ndo_fdb_add,
2148         .ndo_features_check     = igb_features_check,
2149 };
2150
2151 /**
2152  * igb_set_fw_version - Configure version string for ethtool
2153  * @adapter: adapter struct
2154  **/
2155 void igb_set_fw_version(struct igb_adapter *adapter)
2156 {
2157         struct e1000_hw *hw = &adapter->hw;
2158         struct e1000_fw_version fw;
2159
2160         igb_get_fw_version(hw, &fw);
2161
2162         switch (hw->mac.type) {
2163         case e1000_i210:
2164         case e1000_i211:
2165                 if (!(igb_get_flash_presence_i210(hw))) {
2166                         snprintf(adapter->fw_version,
2167                                  sizeof(adapter->fw_version),
2168                                  "%2d.%2d-%d",
2169                                  fw.invm_major, fw.invm_minor,
2170                                  fw.invm_img_type);
2171                         break;
2172                 }
2173                 /* fall through */
2174         default:
2175                 /* if option is rom valid, display its version too */
2176                 if (fw.or_valid) {
2177                         snprintf(adapter->fw_version,
2178                                  sizeof(adapter->fw_version),
2179                                  "%d.%d, 0x%08x, %d.%d.%d",
2180                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2181                                  fw.or_major, fw.or_build, fw.or_patch);
2182                 /* no option rom */
2183                 } else if (fw.etrack_id != 0X0000) {
2184                         snprintf(adapter->fw_version,
2185                             sizeof(adapter->fw_version),
2186                             "%d.%d, 0x%08x",
2187                             fw.eep_major, fw.eep_minor, fw.etrack_id);
2188                 } else {
2189                 snprintf(adapter->fw_version,
2190                     sizeof(adapter->fw_version),
2191                     "%d.%d.%d",
2192                     fw.eep_major, fw.eep_minor, fw.eep_build);
2193                 }
2194                 break;
2195         }
2196 }
2197
2198 /**
2199  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2200  *
2201  * @adapter: adapter struct
2202  **/
2203 static void igb_init_mas(struct igb_adapter *adapter)
2204 {
2205         struct e1000_hw *hw = &adapter->hw;
2206         u16 eeprom_data;
2207
2208         hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2209         switch (hw->bus.func) {
2210         case E1000_FUNC_0:
2211                 if (eeprom_data & IGB_MAS_ENABLE_0) {
2212                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2213                         netdev_info(adapter->netdev,
2214                                 "MAS: Enabling Media Autosense for port %d\n",
2215                                 hw->bus.func);
2216                 }
2217                 break;
2218         case E1000_FUNC_1:
2219                 if (eeprom_data & IGB_MAS_ENABLE_1) {
2220                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2221                         netdev_info(adapter->netdev,
2222                                 "MAS: Enabling Media Autosense for port %d\n",
2223                                 hw->bus.func);
2224                 }
2225                 break;
2226         case E1000_FUNC_2:
2227                 if (eeprom_data & IGB_MAS_ENABLE_2) {
2228                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2229                         netdev_info(adapter->netdev,
2230                                 "MAS: Enabling Media Autosense for port %d\n",
2231                                 hw->bus.func);
2232                 }
2233                 break;
2234         case E1000_FUNC_3:
2235                 if (eeprom_data & IGB_MAS_ENABLE_3) {
2236                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2237                         netdev_info(adapter->netdev,
2238                                 "MAS: Enabling Media Autosense for port %d\n",
2239                                 hw->bus.func);
2240                 }
2241                 break;
2242         default:
2243                 /* Shouldn't get here */
2244                 netdev_err(adapter->netdev,
2245                         "MAS: Invalid port configuration, returning\n");
2246                 break;
2247         }
2248 }
2249
2250 /**
2251  *  igb_init_i2c - Init I2C interface
2252  *  @adapter: pointer to adapter structure
2253  **/
2254 static s32 igb_init_i2c(struct igb_adapter *adapter)
2255 {
2256         s32 status = 0;
2257
2258         /* I2C interface supported on i350 devices */
2259         if (adapter->hw.mac.type != e1000_i350)
2260                 return 0;
2261
2262         /* Initialize the i2c bus which is controlled by the registers.
2263          * This bus will use the i2c_algo_bit structue that implements
2264          * the protocol through toggling of the 4 bits in the register.
2265          */
2266         adapter->i2c_adap.owner = THIS_MODULE;
2267         adapter->i2c_algo = igb_i2c_algo;
2268         adapter->i2c_algo.data = adapter;
2269         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2270         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2271         strlcpy(adapter->i2c_adap.name, "igb BB",
2272                 sizeof(adapter->i2c_adap.name));
2273         status = i2c_bit_add_bus(&adapter->i2c_adap);
2274         return status;
2275 }
2276
2277 /**
2278  *  igb_probe - Device Initialization Routine
2279  *  @pdev: PCI device information struct
2280  *  @ent: entry in igb_pci_tbl
2281  *
2282  *  Returns 0 on success, negative on failure
2283  *
2284  *  igb_probe initializes an adapter identified by a pci_dev structure.
2285  *  The OS initialization, configuring of the adapter private structure,
2286  *  and a hardware reset occur.
2287  **/
2288 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2289 {
2290         struct net_device *netdev;
2291         struct igb_adapter *adapter;
2292         struct e1000_hw *hw;
2293         u16 eeprom_data = 0;
2294         s32 ret_val;
2295         static int global_quad_port_a; /* global quad port a indication */
2296         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2297         int err, pci_using_dac;
2298         u8 part_str[E1000_PBANUM_LENGTH];
2299
2300         /* Catch broken hardware that put the wrong VF device ID in
2301          * the PCIe SR-IOV capability.
2302          */
2303         if (pdev->is_virtfn) {
2304                 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2305                         pci_name(pdev), pdev->vendor, pdev->device);
2306                 return -EINVAL;
2307         }
2308
2309         err = pci_enable_device_mem(pdev);
2310         if (err)
2311                 return err;
2312
2313         pci_using_dac = 0;
2314         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2315         if (!err) {
2316                 pci_using_dac = 1;
2317         } else {
2318                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2319                 if (err) {
2320                         dev_err(&pdev->dev,
2321                                 "No usable DMA configuration, aborting\n");
2322                         goto err_dma;
2323                 }
2324         }
2325
2326         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2327                                            IORESOURCE_MEM),
2328                                            igb_driver_name);
2329         if (err)
2330                 goto err_pci_reg;
2331
2332         pci_enable_pcie_error_reporting(pdev);
2333
2334         pci_set_master(pdev);
2335         pci_save_state(pdev);
2336
2337         err = -ENOMEM;
2338         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2339                                    IGB_MAX_TX_QUEUES);
2340         if (!netdev)
2341                 goto err_alloc_etherdev;
2342
2343         SET_NETDEV_DEV(netdev, &pdev->dev);
2344
2345         pci_set_drvdata(pdev, netdev);
2346         adapter = netdev_priv(netdev);
2347         adapter->netdev = netdev;
2348         adapter->pdev = pdev;
2349         hw = &adapter->hw;
2350         hw->back = adapter;
2351         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2352
2353         err = -EIO;
2354         adapter->io_addr = pci_iomap(pdev, 0, 0);
2355         if (!adapter->io_addr)
2356                 goto err_ioremap;
2357         /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2358         hw->hw_addr = adapter->io_addr;
2359
2360         netdev->netdev_ops = &igb_netdev_ops;
2361         igb_set_ethtool_ops(netdev);
2362         netdev->watchdog_timeo = 5 * HZ;
2363
2364         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2365
2366         netdev->mem_start = pci_resource_start(pdev, 0);
2367         netdev->mem_end = pci_resource_end(pdev, 0);
2368
2369         /* PCI config space info */
2370         hw->vendor_id = pdev->vendor;
2371         hw->device_id = pdev->device;
2372         hw->revision_id = pdev->revision;
2373         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2374         hw->subsystem_device_id = pdev->subsystem_device;
2375
2376         /* Copy the default MAC, PHY and NVM function pointers */
2377         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2378         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2379         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2380         /* Initialize skew-specific constants */
2381         err = ei->get_invariants(hw);
2382         if (err)
2383                 goto err_sw_init;
2384
2385         /* setup the private structure */
2386         err = igb_sw_init(adapter);
2387         if (err)
2388                 goto err_sw_init;
2389
2390         igb_get_bus_info_pcie(hw);
2391
2392         hw->phy.autoneg_wait_to_complete = false;
2393
2394         /* Copper options */
2395         if (hw->phy.media_type == e1000_media_type_copper) {
2396                 hw->phy.mdix = AUTO_ALL_MODES;
2397                 hw->phy.disable_polarity_correction = false;
2398                 hw->phy.ms_type = e1000_ms_hw_default;
2399         }
2400
2401         if (igb_check_reset_block(hw))
2402                 dev_info(&pdev->dev,
2403                         "PHY reset is blocked due to SOL/IDER session.\n");
2404
2405         /* features is initialized to 0 in allocation, it might have bits
2406          * set by igb_sw_init so we should use an or instead of an
2407          * assignment.
2408          */
2409         netdev->features |= NETIF_F_SG |
2410                             NETIF_F_TSO |
2411                             NETIF_F_TSO6 |
2412                             NETIF_F_RXHASH |
2413                             NETIF_F_RXCSUM |
2414                             NETIF_F_HW_CSUM;
2415
2416         if (hw->mac.type >= e1000_82576)
2417                 netdev->features |= NETIF_F_SCTP_CRC;
2418
2419 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2420                                   NETIF_F_GSO_GRE_CSUM | \
2421                                   NETIF_F_GSO_IPXIP4 | \
2422                                   NETIF_F_GSO_IPXIP6 | \
2423                                   NETIF_F_GSO_UDP_TUNNEL | \
2424                                   NETIF_F_GSO_UDP_TUNNEL_CSUM)
2425
2426         netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
2427         netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
2428
2429         /* copy netdev features into list of user selectable features */
2430         netdev->hw_features |= netdev->features |
2431                                NETIF_F_HW_VLAN_CTAG_RX |
2432                                NETIF_F_HW_VLAN_CTAG_TX |
2433                                NETIF_F_RXALL;
2434
2435         if (hw->mac.type >= e1000_i350)
2436                 netdev->hw_features |= NETIF_F_NTUPLE;
2437
2438         if (pci_using_dac)
2439                 netdev->features |= NETIF_F_HIGHDMA;
2440
2441         netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2442         netdev->mpls_features |= NETIF_F_HW_CSUM;
2443         netdev->hw_enc_features |= netdev->vlan_features;
2444
2445         /* set this bit last since it cannot be part of vlan_features */
2446         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2447                             NETIF_F_HW_VLAN_CTAG_RX |
2448                             NETIF_F_HW_VLAN_CTAG_TX;
2449
2450         netdev->priv_flags |= IFF_SUPP_NOFCS;
2451
2452         netdev->priv_flags |= IFF_UNICAST_FLT;
2453
2454         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2455
2456         /* before reading the NVM, reset the controller to put the device in a
2457          * known good starting state
2458          */
2459         hw->mac.ops.reset_hw(hw);
2460
2461         /* make sure the NVM is good , i211/i210 parts can have special NVM
2462          * that doesn't contain a checksum
2463          */
2464         switch (hw->mac.type) {
2465         case e1000_i210:
2466         case e1000_i211:
2467                 if (igb_get_flash_presence_i210(hw)) {
2468                         if (hw->nvm.ops.validate(hw) < 0) {
2469                                 dev_err(&pdev->dev,
2470                                         "The NVM Checksum Is Not Valid\n");
2471                                 err = -EIO;
2472                                 goto err_eeprom;
2473                         }
2474                 }
2475                 break;
2476         default:
2477                 if (hw->nvm.ops.validate(hw) < 0) {
2478                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2479                         err = -EIO;
2480                         goto err_eeprom;
2481                 }
2482                 break;
2483         }
2484
2485         if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
2486                 /* copy the MAC address out of the NVM */
2487                 if (hw->mac.ops.read_mac_addr(hw))
2488                         dev_err(&pdev->dev, "NVM Read Error\n");
2489         }
2490
2491         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2492
2493         if (!is_valid_ether_addr(netdev->dev_addr)) {
2494                 dev_err(&pdev->dev, "Invalid MAC Address\n");
2495                 err = -EIO;
2496                 goto err_eeprom;
2497         }
2498
2499         /* get firmware version for ethtool -i */
2500         igb_set_fw_version(adapter);
2501
2502         /* configure RXPBSIZE and TXPBSIZE */
2503         if (hw->mac.type == e1000_i210) {
2504                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2505                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2506         }
2507
2508         setup_timer(&adapter->watchdog_timer, igb_watchdog,
2509                     (unsigned long) adapter);
2510         setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2511                     (unsigned long) adapter);
2512
2513         INIT_WORK(&adapter->reset_task, igb_reset_task);
2514         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2515
2516         /* Initialize link properties that are user-changeable */
2517         adapter->fc_autoneg = true;
2518         hw->mac.autoneg = true;
2519         hw->phy.autoneg_advertised = 0x2f;
2520
2521         hw->fc.requested_mode = e1000_fc_default;
2522         hw->fc.current_mode = e1000_fc_default;
2523
2524         igb_validate_mdi_setting(hw);
2525
2526         /* By default, support wake on port A */
2527         if (hw->bus.func == 0)
2528                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2529
2530         /* Check the NVM for wake support on non-port A ports */
2531         if (hw->mac.type >= e1000_82580)
2532                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2533                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2534                                  &eeprom_data);
2535         else if (hw->bus.func == 1)
2536                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2537
2538         if (eeprom_data & IGB_EEPROM_APME)
2539                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2540
2541         /* now that we have the eeprom settings, apply the special cases where
2542          * the eeprom may be wrong or the board simply won't support wake on
2543          * lan on a particular port
2544          */
2545         switch (pdev->device) {
2546         case E1000_DEV_ID_82575GB_QUAD_COPPER:
2547                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2548                 break;
2549         case E1000_DEV_ID_82575EB_FIBER_SERDES:
2550         case E1000_DEV_ID_82576_FIBER:
2551         case E1000_DEV_ID_82576_SERDES:
2552                 /* Wake events only supported on port A for dual fiber
2553                  * regardless of eeprom setting
2554                  */
2555                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2556                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2557                 break;
2558         case E1000_DEV_ID_82576_QUAD_COPPER:
2559         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2560                 /* if quad port adapter, disable WoL on all but port A */
2561                 if (global_quad_port_a != 0)
2562                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2563                 else
2564                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2565                 /* Reset for multiple quad port adapters */
2566                 if (++global_quad_port_a == 4)
2567                         global_quad_port_a = 0;
2568                 break;
2569         default:
2570                 /* If the device can't wake, don't set software support */
2571                 if (!device_can_wakeup(&adapter->pdev->dev))
2572                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2573         }
2574
2575         /* initialize the wol settings based on the eeprom settings */
2576         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2577                 adapter->wol |= E1000_WUFC_MAG;
2578
2579         /* Some vendors want WoL disabled by default, but still supported */
2580         if ((hw->mac.type == e1000_i350) &&
2581             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2582                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2583                 adapter->wol = 0;
2584         }
2585
2586         /* Some vendors want the ability to Use the EEPROM setting as
2587          * enable/disable only, and not for capability
2588          */
2589         if (((hw->mac.type == e1000_i350) ||
2590              (hw->mac.type == e1000_i354)) &&
2591             (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
2592                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2593                 adapter->wol = 0;
2594         }
2595         if (hw->mac.type == e1000_i350) {
2596                 if (((pdev->subsystem_device == 0x5001) ||
2597                      (pdev->subsystem_device == 0x5002)) &&
2598                                 (hw->bus.func == 0)) {
2599                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2600                         adapter->wol = 0;
2601                 }
2602                 if (pdev->subsystem_device == 0x1F52)
2603                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2604         }
2605
2606         device_set_wakeup_enable(&adapter->pdev->dev,
2607                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2608
2609         /* reset the hardware with the new settings */
2610         igb_reset(adapter);
2611
2612         /* Init the I2C interface */
2613         err = igb_init_i2c(adapter);
2614         if (err) {
2615                 dev_err(&pdev->dev, "failed to init i2c interface\n");
2616                 goto err_eeprom;
2617         }
2618
2619         /* let the f/w know that the h/w is now under the control of the
2620          * driver.
2621          */
2622         igb_get_hw_control(adapter);
2623
2624         strcpy(netdev->name, "eth%d");
2625         err = register_netdev(netdev);
2626         if (err)
2627                 goto err_register;
2628
2629         /* carrier off reporting is important to ethtool even BEFORE open */
2630         netif_carrier_off(netdev);
2631
2632 #ifdef CONFIG_IGB_DCA
2633         if (dca_add_requester(&pdev->dev) == 0) {
2634                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2635                 dev_info(&pdev->dev, "DCA enabled\n");
2636                 igb_setup_dca(adapter);
2637         }
2638
2639 #endif
2640 #ifdef CONFIG_IGB_HWMON
2641         /* Initialize the thermal sensor on i350 devices. */
2642         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2643                 u16 ets_word;
2644
2645                 /* Read the NVM to determine if this i350 device supports an
2646                  * external thermal sensor.
2647                  */
2648                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2649                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2650                         adapter->ets = true;
2651                 else
2652                         adapter->ets = false;
2653                 if (igb_sysfs_init(adapter))
2654                         dev_err(&pdev->dev,
2655                                 "failed to allocate sysfs resources\n");
2656         } else {
2657                 adapter->ets = false;
2658         }
2659 #endif
2660         /* Check if Media Autosense is enabled */
2661         adapter->ei = *ei;
2662         if (hw->dev_spec._82575.mas_capable)
2663                 igb_init_mas(adapter);
2664
2665         /* do hw tstamp init after resetting */
2666         igb_ptp_init(adapter);
2667
2668         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2669         /* print bus type/speed/width info, not applicable to i354 */
2670         if (hw->mac.type != e1000_i354) {
2671                 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2672                          netdev->name,
2673                          ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2674                           (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2675                            "unknown"),
2676                          ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2677                           "Width x4" :
2678                           (hw->bus.width == e1000_bus_width_pcie_x2) ?
2679                           "Width x2" :
2680                           (hw->bus.width == e1000_bus_width_pcie_x1) ?
2681                           "Width x1" : "unknown"), netdev->dev_addr);
2682         }
2683
2684         if ((hw->mac.type >= e1000_i210 ||
2685              igb_get_flash_presence_i210(hw))) {
2686                 ret_val = igb_read_part_string(hw, part_str,
2687                                                E1000_PBANUM_LENGTH);
2688         } else {
2689                 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2690         }
2691
2692         if (ret_val)
2693                 strcpy(part_str, "Unknown");
2694         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2695         dev_info(&pdev->dev,
2696                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2697                 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2698                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2699                 adapter->num_rx_queues, adapter->num_tx_queues);
2700         if (hw->phy.media_type == e1000_media_type_copper) {
2701                 switch (hw->mac.type) {
2702                 case e1000_i350:
2703                 case e1000_i210:
2704                 case e1000_i211:
2705                         /* Enable EEE for internal copper PHY devices */
2706                         err = igb_set_eee_i350(hw, true, true);
2707                         if ((!err) &&
2708                             (!hw->dev_spec._82575.eee_disable)) {
2709                                 adapter->eee_advert =
2710                                         MDIO_EEE_100TX | MDIO_EEE_1000T;
2711                                 adapter->flags |= IGB_FLAG_EEE;
2712                         }
2713                         break;
2714                 case e1000_i354:
2715                         if ((rd32(E1000_CTRL_EXT) &
2716                             E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2717                                 err = igb_set_eee_i354(hw, true, true);
2718                                 if ((!err) &&
2719                                         (!hw->dev_spec._82575.eee_disable)) {
2720                                         adapter->eee_advert =
2721                                            MDIO_EEE_100TX | MDIO_EEE_1000T;
2722                                         adapter->flags |= IGB_FLAG_EEE;
2723                                 }
2724                         }
2725                         break;
2726                 default:
2727                         break;
2728                 }
2729         }
2730         pm_runtime_put_noidle(&pdev->dev);
2731         return 0;
2732
2733 err_register:
2734         igb_release_hw_control(adapter);
2735         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2736 err_eeprom:
2737         if (!igb_check_reset_block(hw))
2738                 igb_reset_phy(hw);
2739
2740         if (hw->flash_address)
2741                 iounmap(hw->flash_address);
2742 err_sw_init:
2743         kfree(adapter->shadow_vfta);
2744         igb_clear_interrupt_scheme(adapter);
2745 #ifdef CONFIG_PCI_IOV
2746         igb_disable_sriov(pdev);
2747 #endif
2748         pci_iounmap(pdev, adapter->io_addr);
2749 err_ioremap:
2750         free_netdev(netdev);
2751 err_alloc_etherdev:
2752         pci_release_selected_regions(pdev,
2753                                      pci_select_bars(pdev, IORESOURCE_MEM));
2754 err_pci_reg:
2755 err_dma:
2756         pci_disable_device(pdev);
2757         return err;
2758 }
2759
2760 #ifdef CONFIG_PCI_IOV
2761 static int igb_disable_sriov(struct pci_dev *pdev)
2762 {
2763         struct net_device *netdev = pci_get_drvdata(pdev);
2764         struct igb_adapter *adapter = netdev_priv(netdev);
2765         struct e1000_hw *hw = &adapter->hw;
2766
2767         /* reclaim resources allocated to VFs */
2768         if (adapter->vf_data) {
2769                 /* disable iov and allow time for transactions to clear */
2770                 if (pci_vfs_assigned(pdev)) {
2771                         dev_warn(&pdev->dev,
2772                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2773                         return -EPERM;
2774                 } else {
2775                         pci_disable_sriov(pdev);
2776                         msleep(500);
2777                 }
2778
2779                 kfree(adapter->vf_data);
2780                 adapter->vf_data = NULL;
2781                 adapter->vfs_allocated_count = 0;
2782                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2783                 wrfl();
2784                 msleep(100);
2785                 dev_info(&pdev->dev, "IOV Disabled\n");
2786
2787                 /* Re-enable DMA Coalescing flag since IOV is turned off */
2788                 adapter->flags |= IGB_FLAG_DMAC;
2789         }
2790
2791         return 0;
2792 }
2793
2794 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2795 {
2796         struct net_device *netdev = pci_get_drvdata(pdev);
2797         struct igb_adapter *adapter = netdev_priv(netdev);
2798         int old_vfs = pci_num_vf(pdev);
2799         int err = 0;
2800         int i;
2801
2802         if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2803                 err = -EPERM;
2804                 goto out;
2805         }
2806         if (!num_vfs)
2807                 goto out;
2808
2809         if (old_vfs) {
2810                 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2811                          old_vfs, max_vfs);
2812                 adapter->vfs_allocated_count = old_vfs;
2813         } else
2814                 adapter->vfs_allocated_count = num_vfs;
2815
2816         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2817                                 sizeof(struct vf_data_storage), GFP_KERNEL);
2818
2819         /* if allocation failed then we do not support SR-IOV */
2820         if (!adapter->vf_data) {
2821                 adapter->vfs_allocated_count = 0;
2822                 dev_err(&pdev->dev,
2823                         "Unable to allocate memory for VF Data Storage\n");
2824                 err = -ENOMEM;
2825                 goto out;
2826         }
2827
2828         /* only call pci_enable_sriov() if no VFs are allocated already */
2829         if (!old_vfs) {
2830                 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2831                 if (err)
2832                         goto err_out;
2833         }
2834         dev_info(&pdev->dev, "%d VFs allocated\n",
2835                  adapter->vfs_allocated_count);
2836         for (i = 0; i < adapter->vfs_allocated_count; i++)
2837                 igb_vf_configure(adapter, i);
2838
2839         /* DMA Coalescing is not supported in IOV mode. */
2840         adapter->flags &= ~IGB_FLAG_DMAC;
2841         goto out;
2842
2843 err_out:
2844         kfree(adapter->vf_data);
2845         adapter->vf_data = NULL;
2846         adapter->vfs_allocated_count = 0;
2847 out:
2848         return err;
2849 }
2850
2851 #endif
2852 /**
2853  *  igb_remove_i2c - Cleanup  I2C interface
2854  *  @adapter: pointer to adapter structure
2855  **/
2856 static void igb_remove_i2c(struct igb_adapter *adapter)
2857 {
2858         /* free the adapter bus structure */
2859         i2c_del_adapter(&adapter->i2c_adap);
2860 }
2861
2862 /**
2863  *  igb_remove - Device Removal Routine
2864  *  @pdev: PCI device information struct
2865  *
2866  *  igb_remove is called by the PCI subsystem to alert the driver
2867  *  that it should release a PCI device.  The could be caused by a
2868  *  Hot-Plug event, or because the driver is going to be removed from
2869  *  memory.
2870  **/
2871 static void igb_remove(struct pci_dev *pdev)
2872 {
2873         struct net_device *netdev = pci_get_drvdata(pdev);
2874         struct igb_adapter *adapter = netdev_priv(netdev);
2875         struct e1000_hw *hw = &adapter->hw;
2876
2877         pm_runtime_get_noresume(&pdev->dev);
2878 #ifdef CONFIG_IGB_HWMON
2879         igb_sysfs_exit(adapter);
2880 #endif
2881         igb_remove_i2c(adapter);
2882         igb_ptp_stop(adapter);
2883         /* The watchdog timer may be rescheduled, so explicitly
2884          * disable watchdog from being rescheduled.
2885          */
2886         set_bit(__IGB_DOWN, &adapter->state);
2887         del_timer_sync(&adapter->watchdog_timer);
2888         del_timer_sync(&adapter->phy_info_timer);
2889
2890         cancel_work_sync(&adapter->reset_task);
2891         cancel_work_sync(&adapter->watchdog_task);
2892
2893 #ifdef CONFIG_IGB_DCA
2894         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2895                 dev_info(&pdev->dev, "DCA disabled\n");
2896                 dca_remove_requester(&pdev->dev);
2897                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2898                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2899         }
2900 #endif
2901
2902         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
2903          * would have already happened in close and is redundant.
2904          */
2905         igb_release_hw_control(adapter);
2906
2907 #ifdef CONFIG_PCI_IOV
2908         igb_disable_sriov(pdev);
2909 #endif
2910
2911         unregister_netdev(netdev);
2912
2913         igb_clear_interrupt_scheme(adapter);
2914
2915         pci_iounmap(pdev, adapter->io_addr);
2916         if (hw->flash_address)
2917                 iounmap(hw->flash_address);
2918         pci_release_selected_regions(pdev,
2919                                      pci_select_bars(pdev, IORESOURCE_MEM));
2920
2921         kfree(adapter->shadow_vfta);
2922         free_netdev(netdev);
2923
2924         pci_disable_pcie_error_reporting(pdev);
2925
2926         pci_disable_device(pdev);
2927 }
2928
2929 /**
2930  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2931  *  @adapter: board private structure to initialize
2932  *
2933  *  This function initializes the vf specific data storage and then attempts to
2934  *  allocate the VFs.  The reason for ordering it this way is because it is much
2935  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2936  *  the memory for the VFs.
2937  **/
2938 static void igb_probe_vfs(struct igb_adapter *adapter)
2939 {
2940 #ifdef CONFIG_PCI_IOV
2941         struct pci_dev *pdev = adapter->pdev;
2942         struct e1000_hw *hw = &adapter->hw;
2943
2944         /* Virtualization features not supported on i210 family. */
2945         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2946                 return;
2947
2948         /* Of the below we really only want the effect of getting
2949          * IGB_FLAG_HAS_MSIX set (if available), without which
2950          * igb_enable_sriov() has no effect.
2951          */
2952         igb_set_interrupt_capability(adapter, true);
2953         igb_reset_interrupt_capability(adapter);
2954
2955         pci_sriov_set_totalvfs(pdev, 7);
2956         igb_enable_sriov(pdev, max_vfs);
2957
2958 #endif /* CONFIG_PCI_IOV */
2959 }
2960
2961 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2962 {
2963         struct e1000_hw *hw = &adapter->hw;
2964         u32 max_rss_queues;
2965
2966         /* Determine the maximum number of RSS queues supported. */
2967         switch (hw->mac.type) {
2968         case e1000_i211:
2969                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2970                 break;
2971         case e1000_82575:
2972         case e1000_i210:
2973                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2974                 break;
2975         case e1000_i350:
2976                 /* I350 cannot do RSS and SR-IOV at the same time */
2977                 if (!!adapter->vfs_allocated_count) {
2978                         max_rss_queues = 1;
2979                         break;
2980                 }
2981                 /* fall through */
2982         case e1000_82576:
2983                 if (!!adapter->vfs_allocated_count) {
2984                         max_rss_queues = 2;
2985                         break;
2986                 }
2987                 /* fall through */
2988         case e1000_82580:
2989         case e1000_i354:
2990         default:
2991                 max_rss_queues = IGB_MAX_RX_QUEUES;
2992                 break;
2993         }
2994
2995         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2996
2997         igb_set_flag_queue_pairs(adapter, max_rss_queues);
2998 }
2999
3000 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3001                               const u32 max_rss_queues)
3002 {
3003         struct e1000_hw *hw = &adapter->hw;
3004
3005         /* Determine if we need to pair queues. */
3006         switch (hw->mac.type) {
3007         case e1000_82575:
3008         case e1000_i211:
3009                 /* Device supports enough interrupts without queue pairing. */
3010                 break;
3011         case e1000_82576:
3012         case e1000_82580:
3013         case e1000_i350:
3014         case e1000_i354:
3015         case e1000_i210:
3016         default:
3017                 /* If rss_queues > half of max_rss_queues, pair the queues in
3018                  * order to conserve interrupts due to limited supply.
3019                  */
3020                 if (adapter->rss_queues > (max_rss_queues / 2))
3021                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3022                 else
3023                         adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3024                 break;
3025         }
3026 }
3027
3028 /**
3029  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3030  *  @adapter: board private structure to initialize
3031  *
3032  *  igb_sw_init initializes the Adapter private data structure.
3033  *  Fields are initialized based on PCI device information and
3034  *  OS network device settings (MTU size).
3035  **/
3036 static int igb_sw_init(struct igb_adapter *adapter)
3037 {
3038         struct e1000_hw *hw = &adapter->hw;
3039         struct net_device *netdev = adapter->netdev;
3040         struct pci_dev *pdev = adapter->pdev;
3041
3042         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3043
3044         /* set default ring sizes */
3045         adapter->tx_ring_count = IGB_DEFAULT_TXD;
3046         adapter->rx_ring_count = IGB_DEFAULT_RXD;
3047
3048         /* set default ITR values */
3049         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3050         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3051
3052         /* set default work limits */
3053         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3054
3055         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3056                                   VLAN_HLEN;
3057         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3058
3059         spin_lock_init(&adapter->stats64_lock);
3060 #ifdef CONFIG_PCI_IOV
3061         switch (hw->mac.type) {
3062         case e1000_82576:
3063         case e1000_i350:
3064                 if (max_vfs > 7) {
3065                         dev_warn(&pdev->dev,
3066                                  "Maximum of 7 VFs per PF, using max\n");
3067                         max_vfs = adapter->vfs_allocated_count = 7;
3068                 } else
3069                         adapter->vfs_allocated_count = max_vfs;
3070                 if (adapter->vfs_allocated_count)
3071                         dev_warn(&pdev->dev,
3072                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3073                 break;
3074         default:
3075                 break;
3076         }
3077 #endif /* CONFIG_PCI_IOV */
3078
3079         /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3080         adapter->flags |= IGB_FLAG_HAS_MSIX;
3081
3082         igb_probe_vfs(adapter);
3083
3084         igb_init_queue_configuration(adapter);
3085
3086         /* Setup and initialize a copy of the hw vlan table array */
3087         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3088                                        GFP_ATOMIC);
3089
3090         /* This call may decrease the number of queues */
3091         if (igb_init_interrupt_scheme(adapter, true)) {
3092                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3093                 return -ENOMEM;
3094         }
3095
3096         /* Explicitly disable IRQ since the NIC can be in any state. */
3097         igb_irq_disable(adapter);
3098
3099         if (hw->mac.type >= e1000_i350)
3100                 adapter->flags &= ~IGB_FLAG_DMAC;
3101
3102         set_bit(__IGB_DOWN, &adapter->state);
3103         return 0;
3104 }
3105
3106 /**
3107  *  igb_open - Called when a network interface is made active
3108  *  @netdev: network interface device structure
3109  *
3110  *  Returns 0 on success, negative value on failure
3111  *
3112  *  The open entry point is called when a network interface is made
3113  *  active by the system (IFF_UP).  At this point all resources needed
3114  *  for transmit and receive operations are allocated, the interrupt
3115  *  handler is registered with the OS, the watchdog timer is started,
3116  *  and the stack is notified that the interface is ready.
3117  **/
3118 static int __igb_open(struct net_device *netdev, bool resuming)
3119 {
3120         struct igb_adapter *adapter = netdev_priv(netdev);
3121         struct e1000_hw *hw = &adapter->hw;
3122         struct pci_dev *pdev = adapter->pdev;
3123         int err;
3124         int i;
3125
3126         /* disallow open during test */
3127         if (test_bit(__IGB_TESTING, &adapter->state)) {
3128                 WARN_ON(resuming);
3129                 return -EBUSY;
3130         }
3131
3132         if (!resuming)
3133                 pm_runtime_get_sync(&pdev->dev);
3134
3135         netif_carrier_off(netdev);
3136
3137         /* allocate transmit descriptors */
3138         err = igb_setup_all_tx_resources(adapter);
3139         if (err)
3140                 goto err_setup_tx;
3141
3142         /* allocate receive descriptors */
3143         err = igb_setup_all_rx_resources(adapter);
3144         if (err)
3145                 goto err_setup_rx;
3146
3147         igb_power_up_link(adapter);
3148
3149         /* before we allocate an interrupt, we must be ready to handle it.
3150          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3151          * as soon as we call pci_request_irq, so we have to setup our
3152          * clean_rx handler before we do so.
3153          */
3154         igb_configure(adapter);
3155
3156         err = igb_request_irq(adapter);
3157         if (err)
3158                 goto err_req_irq;
3159
3160         /* Notify the stack of the actual queue counts. */
3161         err = netif_set_real_num_tx_queues(adapter->netdev,
3162                                            adapter->num_tx_queues);
3163         if (err)
3164                 goto err_set_queues;
3165
3166         err = netif_set_real_num_rx_queues(adapter->netdev,
3167                                            adapter->num_rx_queues);
3168         if (err)
3169                 goto err_set_queues;
3170
3171         /* From here on the code is the same as igb_up() */
3172         clear_bit(__IGB_DOWN, &adapter->state);
3173
3174         for (i = 0; i < adapter->num_q_vectors; i++)
3175                 napi_enable(&(adapter->q_vector[i]->napi));
3176
3177         /* Clear any pending interrupts. */
3178         rd32(E1000_ICR);
3179
3180         igb_irq_enable(adapter);
3181
3182         /* notify VFs that reset has been completed */
3183         if (adapter->vfs_allocated_count) {
3184                 u32 reg_data = rd32(E1000_CTRL_EXT);
3185
3186                 reg_data |= E1000_CTRL_EXT_PFRSTD;
3187                 wr32(E1000_CTRL_EXT, reg_data);
3188         }
3189
3190         netif_tx_start_all_queues(netdev);
3191
3192         if (!resuming)
3193                 pm_runtime_put(&pdev->dev);
3194
3195         /* start the watchdog. */
3196         hw->mac.get_link_status = 1;
3197         schedule_work(&adapter->watchdog_task);
3198
3199         return 0;
3200
3201 err_set_queues:
3202         igb_free_irq(adapter);
3203 err_req_irq:
3204         igb_release_hw_control(adapter);
3205         igb_power_down_link(adapter);
3206         igb_free_all_rx_resources(adapter);
3207 err_setup_rx:
3208         igb_free_all_tx_resources(adapter);
3209 err_setup_tx:
3210         igb_reset(adapter);
3211         if (!resuming)
3212                 pm_runtime_put(&pdev->dev);
3213
3214         return err;
3215 }
3216
3217 int igb_open(struct net_device *netdev)
3218 {
3219         return __igb_open(netdev, false);
3220 }
3221
3222 /**
3223  *  igb_close - Disables a network interface
3224  *  @netdev: network interface device structure
3225  *
3226  *  Returns 0, this is not allowed to fail
3227  *
3228  *  The close entry point is called when an interface is de-activated
3229  *  by the OS.  The hardware is still under the driver's control, but
3230  *  needs to be disabled.  A global MAC reset is issued to stop the
3231  *  hardware, and all transmit and receive resources are freed.
3232  **/
3233 static int __igb_close(struct net_device *netdev, bool suspending)
3234 {
3235         struct igb_adapter *adapter = netdev_priv(netdev);
3236         struct pci_dev *pdev = adapter->pdev;
3237
3238         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3239
3240         if (!suspending)
3241                 pm_runtime_get_sync(&pdev->dev);
3242
3243         igb_down(adapter);
3244         igb_free_irq(adapter);
3245
3246         igb_free_all_tx_resources(adapter);
3247         igb_free_all_rx_resources(adapter);
3248
3249         if (!suspending)
3250                 pm_runtime_put_sync(&pdev->dev);
3251         return 0;
3252 }
3253
3254 int igb_close(struct net_device *netdev)
3255 {
3256         return __igb_close(netdev, false);
3257 }
3258
3259 /**
3260  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3261  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3262  *
3263  *  Return 0 on success, negative on failure
3264  **/
3265 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3266 {
3267         struct device *dev = tx_ring->dev;
3268         int size;
3269
3270         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3271
3272         tx_ring->tx_buffer_info = vzalloc(size);
3273         if (!tx_ring->tx_buffer_info)
3274                 goto err;
3275
3276         /* round up to nearest 4K */
3277         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3278         tx_ring->size = ALIGN(tx_ring->size, 4096);
3279
3280         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3281                                            &tx_ring->dma, GFP_KERNEL);
3282         if (!tx_ring->desc)
3283                 goto err;
3284
3285         tx_ring->next_to_use = 0;
3286         tx_ring->next_to_clean = 0;
3287
3288         return 0;
3289
3290 err:
3291         vfree(tx_ring->tx_buffer_info);
3292         tx_ring->tx_buffer_info = NULL;
3293         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3294         return -ENOMEM;
3295 }
3296
3297 /**
3298  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3299  *                               (Descriptors) for all queues
3300  *  @adapter: board private structure
3301  *
3302  *  Return 0 on success, negative on failure
3303  **/
3304 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3305 {
3306         struct pci_dev *pdev = adapter->pdev;
3307         int i, err = 0;
3308
3309         for (i = 0; i < adapter->num_tx_queues; i++) {
3310                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3311                 if (err) {
3312                         dev_err(&pdev->dev,
3313                                 "Allocation for Tx Queue %u failed\n", i);
3314                         for (i--; i >= 0; i--)
3315                                 igb_free_tx_resources(adapter->tx_ring[i]);
3316                         break;
3317                 }
3318         }
3319
3320         return err;
3321 }
3322
3323 /**
3324  *  igb_setup_tctl - configure the transmit control registers
3325  *  @adapter: Board private structure
3326  **/
3327 void igb_setup_tctl(struct igb_adapter *adapter)
3328 {
3329         struct e1000_hw *hw = &adapter->hw;
3330         u32 tctl;
3331
3332         /* disable queue 0 which is enabled by default on 82575 and 82576 */
3333         wr32(E1000_TXDCTL(0), 0);
3334
3335         /* Program the Transmit Control Register */
3336         tctl = rd32(E1000_TCTL);
3337         tctl &= ~E1000_TCTL_CT;
3338         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3339                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3340
3341         igb_config_collision_dist(hw);
3342
3343         /* Enable transmits */
3344         tctl |= E1000_TCTL_EN;
3345
3346         wr32(E1000_TCTL, tctl);
3347 }
3348
3349 /**
3350  *  igb_configure_tx_ring - Configure transmit ring after Reset
3351  *  @adapter: board private structure
3352  *  @ring: tx ring to configure
3353  *
3354  *  Configure a transmit ring after a reset.
3355  **/
3356 void igb_configure_tx_ring(struct igb_adapter *adapter,
3357                            struct igb_ring *ring)
3358 {
3359         struct e1000_hw *hw = &adapter->hw;
3360         u32 txdctl = 0;
3361         u64 tdba = ring->dma;
3362         int reg_idx = ring->reg_idx;
3363
3364         /* disable the queue */
3365         wr32(E1000_TXDCTL(reg_idx), 0);
3366         wrfl();
3367         mdelay(10);
3368
3369         wr32(E1000_TDLEN(reg_idx),
3370              ring->count * sizeof(union e1000_adv_tx_desc));
3371         wr32(E1000_TDBAL(reg_idx),
3372              tdba & 0x00000000ffffffffULL);
3373         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3374
3375         ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3376         wr32(E1000_TDH(reg_idx), 0);
3377         writel(0, ring->tail);
3378
3379         txdctl |= IGB_TX_PTHRESH;
3380         txdctl |= IGB_TX_HTHRESH << 8;
3381         txdctl |= IGB_TX_WTHRESH << 16;
3382
3383         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3384         wr32(E1000_TXDCTL(reg_idx), txdctl);
3385 }
3386
3387 /**
3388  *  igb_configure_tx - Configure transmit Unit after Reset
3389  *  @adapter: board private structure
3390  *
3391  *  Configure the Tx unit of the MAC after a reset.
3392  **/
3393 static void igb_configure_tx(struct igb_adapter *adapter)
3394 {
3395         int i;
3396
3397         for (i = 0; i < adapter->num_tx_queues; i++)
3398                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3399 }
3400
3401 /**
3402  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3403  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3404  *
3405  *  Returns 0 on success, negative on failure
3406  **/
3407 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3408 {
3409         struct device *dev = rx_ring->dev;
3410         int size;
3411
3412         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3413
3414         rx_ring->rx_buffer_info = vzalloc(size);
3415         if (!rx_ring->rx_buffer_info)
3416                 goto err;
3417
3418         /* Round up to nearest 4K */
3419         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3420         rx_ring->size = ALIGN(rx_ring->size, 4096);
3421
3422         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3423                                            &rx_ring->dma, GFP_KERNEL);
3424         if (!rx_ring->desc)
3425                 goto err;
3426
3427         rx_ring->next_to_alloc = 0;
3428         rx_ring->next_to_clean = 0;
3429         rx_ring->next_to_use = 0;
3430
3431         return 0;
3432
3433 err:
3434         vfree(rx_ring->rx_buffer_info);
3435         rx_ring->rx_buffer_info = NULL;
3436         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3437         return -ENOMEM;
3438 }
3439
3440 /**
3441  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3442  *                               (Descriptors) for all queues
3443  *  @adapter: board private structure
3444  *
3445  *  Return 0 on success, negative on failure
3446  **/
3447 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3448 {
3449         struct pci_dev *pdev = adapter->pdev;
3450         int i, err = 0;
3451
3452         for (i = 0; i < adapter->num_rx_queues; i++) {
3453                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3454                 if (err) {
3455                         dev_err(&pdev->dev,
3456                                 "Allocation for Rx Queue %u failed\n", i);
3457                         for (i--; i >= 0; i--)
3458                                 igb_free_rx_resources(adapter->rx_ring[i]);
3459                         break;
3460                 }
3461         }
3462
3463         return err;
3464 }
3465
3466 /**
3467  *  igb_setup_mrqc - configure the multiple receive queue control registers
3468  *  @adapter: Board private structure
3469  **/
3470 static void igb_setup_mrqc(struct igb_adapter *adapter)
3471 {
3472         struct e1000_hw *hw = &adapter->hw;
3473         u32 mrqc, rxcsum;
3474         u32 j, num_rx_queues;
3475         u32 rss_key[10];
3476
3477         netdev_rss_key_fill(rss_key, sizeof(rss_key));
3478         for (j = 0; j < 10; j++)
3479                 wr32(E1000_RSSRK(j), rss_key[j]);
3480
3481         num_rx_queues = adapter->rss_queues;
3482
3483         switch (hw->mac.type) {
3484         case e1000_82576:
3485                 /* 82576 supports 2 RSS queues for SR-IOV */
3486                 if (adapter->vfs_allocated_count)
3487                         num_rx_queues = 2;
3488                 break;
3489         default:
3490                 break;
3491         }
3492
3493         if (adapter->rss_indir_tbl_init != num_rx_queues) {
3494                 for (j = 0; j < IGB_RETA_SIZE; j++)
3495                         adapter->rss_indir_tbl[j] =
3496                         (j * num_rx_queues) / IGB_RETA_SIZE;
3497                 adapter->rss_indir_tbl_init = num_rx_queues;
3498         }
3499         igb_write_rss_indir_tbl(adapter);
3500
3501         /* Disable raw packet checksumming so that RSS hash is placed in
3502          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3503          * offloads as they are enabled by default
3504          */
3505         rxcsum = rd32(E1000_RXCSUM);
3506         rxcsum |= E1000_RXCSUM_PCSD;
3507
3508         if (adapter->hw.mac.type >= e1000_82576)
3509                 /* Enable Receive Checksum Offload for SCTP */
3510                 rxcsum |= E1000_RXCSUM_CRCOFL;
3511
3512         /* Don't need to set TUOFL or IPOFL, they default to 1 */
3513         wr32(E1000_RXCSUM, rxcsum);
3514
3515         /* Generate RSS hash based on packet types, TCP/UDP
3516          * port numbers and/or IPv4/v6 src and dst addresses
3517          */
3518         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3519                E1000_MRQC_RSS_FIELD_IPV4_TCP |
3520                E1000_MRQC_RSS_FIELD_IPV6 |
3521                E1000_MRQC_RSS_FIELD_IPV6_TCP |
3522                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3523
3524         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3525                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3526         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3527                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3528
3529         /* If VMDq is enabled then we set the appropriate mode for that, else
3530          * we default to RSS so that an RSS hash is calculated per packet even
3531          * if we are only using one queue
3532          */
3533         if (adapter->vfs_allocated_count) {
3534                 if (hw->mac.type > e1000_82575) {
3535                         /* Set the default pool for the PF's first queue */
3536                         u32 vtctl = rd32(E1000_VT_CTL);
3537
3538                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3539                                    E1000_VT_CTL_DISABLE_DEF_POOL);
3540                         vtctl |= adapter->vfs_allocated_count <<
3541                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3542                         wr32(E1000_VT_CTL, vtctl);
3543                 }
3544                 if (adapter->rss_queues > 1)
3545                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
3546                 else
3547                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
3548         } else {
3549                 if (hw->mac.type != e1000_i211)
3550                         mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
3551         }
3552         igb_vmm_control(adapter);
3553
3554         wr32(E1000_MRQC, mrqc);
3555 }
3556
3557 /**
3558  *  igb_setup_rctl - configure the receive control registers
3559  *  @adapter: Board private structure
3560  **/
3561 void igb_setup_rctl(struct igb_adapter *adapter)
3562 {
3563         struct e1000_hw *hw = &adapter->hw;
3564         u32 rctl;
3565
3566         rctl = rd32(E1000_RCTL);
3567
3568         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3569         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3570
3571         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3572                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3573
3574         /* enable stripping of CRC. It's unlikely this will break BMC
3575          * redirection as it did with e1000. Newer features require
3576          * that the HW strips the CRC.
3577          */
3578         rctl |= E1000_RCTL_SECRC;
3579
3580         /* disable store bad packets and clear size bits. */
3581         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3582
3583         /* enable LPE to allow for reception of jumbo frames */
3584         rctl |= E1000_RCTL_LPE;
3585
3586         /* disable queue 0 to prevent tail write w/o re-config */
3587         wr32(E1000_RXDCTL(0), 0);
3588
3589         /* Attention!!!  For SR-IOV PF driver operations you must enable
3590          * queue drop for all VF and PF queues to prevent head of line blocking
3591          * if an un-trusted VF does not provide descriptors to hardware.
3592          */
3593         if (adapter->vfs_allocated_count) {
3594                 /* set all queue drop enable bits */
3595                 wr32(E1000_QDE, ALL_QUEUES);
3596         }
3597
3598         /* This is useful for sniffing bad packets. */
3599         if (adapter->netdev->features & NETIF_F_RXALL) {
3600                 /* UPE and MPE will be handled by normal PROMISC logic
3601                  * in e1000e_set_rx_mode
3602                  */
3603                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3604                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
3605                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3606
3607                 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
3608                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3609                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3610                  * and that breaks VLANs.
3611                  */
3612         }
3613
3614         wr32(E1000_RCTL, rctl);
3615 }
3616
3617 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3618                                    int vfn)
3619 {
3620         struct e1000_hw *hw = &adapter->hw;
3621         u32 vmolr;
3622
3623         if (size > MAX_JUMBO_FRAME_SIZE)
3624                 size = MAX_JUMBO_FRAME_SIZE;
3625
3626         vmolr = rd32(E1000_VMOLR(vfn));
3627         vmolr &= ~E1000_VMOLR_RLPML_MASK;
3628         vmolr |= size | E1000_VMOLR_LPE;
3629         wr32(E1000_VMOLR(vfn), vmolr);
3630
3631         return 0;
3632 }
3633
3634 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
3635                                          int vfn, bool enable)
3636 {
3637         struct e1000_hw *hw = &adapter->hw;
3638         u32 val, reg;
3639
3640         if (hw->mac.type < e1000_82576)
3641                 return;
3642
3643         if (hw->mac.type == e1000_i350)
3644                 reg = E1000_DVMOLR(vfn);
3645         else
3646                 reg = E1000_VMOLR(vfn);
3647
3648         val = rd32(reg);
3649         if (enable)
3650                 val |= E1000_VMOLR_STRVLAN;
3651         else
3652                 val &= ~(E1000_VMOLR_STRVLAN);
3653         wr32(reg, val);
3654 }
3655
3656 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3657                                  int vfn, bool aupe)
3658 {
3659         struct e1000_hw *hw = &adapter->hw;
3660         u32 vmolr;
3661
3662         /* This register exists only on 82576 and newer so if we are older then
3663          * we should exit and do nothing
3664          */
3665         if (hw->mac.type < e1000_82576)
3666                 return;
3667
3668         vmolr = rd32(E1000_VMOLR(vfn));
3669         if (aupe)
3670                 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3671         else
3672                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3673
3674         /* clear all bits that might not be set */
3675         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3676
3677         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3678                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3679         /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3680          * multicast packets
3681          */
3682         if (vfn <= adapter->vfs_allocated_count)
3683                 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3684
3685         wr32(E1000_VMOLR(vfn), vmolr);
3686 }
3687
3688 /**
3689  *  igb_configure_rx_ring - Configure a receive ring after Reset
3690  *  @adapter: board private structure
3691  *  @ring: receive ring to be configured
3692  *
3693  *  Configure the Rx unit of the MAC after a reset.
3694  **/
3695 void igb_configure_rx_ring(struct igb_adapter *adapter,
3696                            struct igb_ring *ring)
3697 {
3698         struct e1000_hw *hw = &adapter->hw;
3699         u64 rdba = ring->dma;
3700         int reg_idx = ring->reg_idx;
3701         u32 srrctl = 0, rxdctl = 0;
3702
3703         /* disable the queue */
3704         wr32(E1000_RXDCTL(reg_idx), 0);
3705
3706         /* Set DMA base address registers */
3707         wr32(E1000_RDBAL(reg_idx),
3708              rdba & 0x00000000ffffffffULL);
3709         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3710         wr32(E1000_RDLEN(reg_idx),
3711              ring->count * sizeof(union e1000_adv_rx_desc));
3712
3713         /* initialize head and tail */
3714         ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3715         wr32(E1000_RDH(reg_idx), 0);
3716         writel(0, ring->tail);
3717
3718         /* set descriptor configuration */
3719         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3720         srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3721         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3722         if (hw->mac.type >= e1000_82580)
3723                 srrctl |= E1000_SRRCTL_TIMESTAMP;
3724         /* Only set Drop Enable if we are supporting multiple queues */
3725         if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3726                 srrctl |= E1000_SRRCTL_DROP_EN;
3727
3728         wr32(E1000_SRRCTL(reg_idx), srrctl);
3729
3730         /* set filtering for VMDQ pools */
3731         igb_set_vmolr(adapter, reg_idx & 0x7, true);
3732
3733         rxdctl |= IGB_RX_PTHRESH;
3734         rxdctl |= IGB_RX_HTHRESH << 8;
3735         rxdctl |= IGB_RX_WTHRESH << 16;
3736
3737         /* enable receive descriptor fetching */
3738         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3739         wr32(E1000_RXDCTL(reg_idx), rxdctl);
3740 }
3741
3742 /**
3743  *  igb_configure_rx - Configure receive Unit after Reset
3744  *  @adapter: board private structure
3745  *
3746  *  Configure the Rx unit of the MAC after a reset.
3747  **/
3748 static void igb_configure_rx(struct igb_adapter *adapter)
3749 {
3750         int i;
3751
3752         /* set the correct pool for the PF default MAC address in entry 0 */
3753         igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3754                          adapter->vfs_allocated_count);
3755
3756         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3757          * the Base and Length of the Rx Descriptor Ring
3758          */
3759         for (i = 0; i < adapter->num_rx_queues; i++)
3760                 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3761 }
3762
3763 /**
3764  *  igb_free_tx_resources - Free Tx Resources per Queue
3765  *  @tx_ring: Tx descriptor ring for a specific queue
3766  *
3767  *  Free all transmit software resources
3768  **/
3769 void igb_free_tx_resources(struct igb_ring *tx_ring)
3770 {
3771         igb_clean_tx_ring(tx_ring);
3772
3773         vfree(tx_ring->tx_buffer_info);
3774         tx_ring->tx_buffer_info = NULL;
3775
3776         /* if not set, then don't free */
3777         if (!tx_ring->desc)
3778                 return;
3779
3780         dma_free_coherent(tx_ring->dev, tx_ring->size,
3781                           tx_ring->desc, tx_ring->dma);
3782
3783         tx_ring->desc = NULL;
3784 }
3785
3786 /**
3787  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3788  *  @adapter: board private structure
3789  *
3790  *  Free all transmit software resources
3791  **/
3792 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3793 {
3794         int i;
3795
3796         for (i = 0; i < adapter->num_tx_queues; i++)
3797                 if (adapter->tx_ring[i])
3798                         igb_free_tx_resources(adapter->tx_ring[i]);
3799 }
3800
3801 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3802                                     struct igb_tx_buffer *tx_buffer)
3803 {
3804         if (tx_buffer->skb) {
3805                 dev_kfree_skb_any(tx_buffer->skb);
3806                 if (dma_unmap_len(tx_buffer, len))
3807                         dma_unmap_single(ring->dev,
3808                                          dma_unmap_addr(tx_buffer, dma),
3809                                          dma_unmap_len(tx_buffer, len),
3810                                          DMA_TO_DEVICE);
3811         } else if (dma_unmap_len(tx_buffer, len)) {
3812                 dma_unmap_page(ring->dev,
3813                                dma_unmap_addr(tx_buffer, dma),
3814                                dma_unmap_len(tx_buffer, len),
3815                                DMA_TO_DEVICE);
3816         }
3817         tx_buffer->next_to_watch = NULL;
3818         tx_buffer->skb = NULL;
3819         dma_unmap_len_set(tx_buffer, len, 0);
3820         /* buffer_info must be completely set up in the transmit path */
3821 }
3822
3823 /**
3824  *  igb_clean_tx_ring - Free Tx Buffers
3825  *  @tx_ring: ring to be cleaned
3826  **/
3827 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3828 {
3829         struct igb_tx_buffer *buffer_info;
3830         unsigned long size;
3831         u16 i;
3832
3833         if (!tx_ring->tx_buffer_info)
3834                 return;
3835         /* Free all the Tx ring sk_buffs */
3836
3837         for (i = 0; i < tx_ring->count; i++) {
3838                 buffer_info = &tx_ring->tx_buffer_info[i];
3839                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3840         }
3841
3842         netdev_tx_reset_queue(txring_txq(tx_ring));
3843
3844         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3845         memset(tx_ring->tx_buffer_info, 0, size);
3846
3847         /* Zero out the descriptor ring */
3848         memset(tx_ring->desc, 0, tx_ring->size);
3849
3850         tx_ring->next_to_use = 0;
3851         tx_ring->next_to_clean = 0;
3852 }
3853
3854 /**
3855  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3856  *  @adapter: board private structure
3857  **/
3858 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3859 {
3860         int i;
3861
3862         for (i = 0; i < adapter->num_tx_queues; i++)
3863                 if (adapter->tx_ring[i])
3864                         igb_clean_tx_ring(adapter->tx_ring[i]);
3865 }
3866
3867 /**
3868  *  igb_free_rx_resources - Free Rx Resources
3869  *  @rx_ring: ring to clean the resources from
3870  *
3871  *  Free all receive software resources
3872  **/
3873 void igb_free_rx_resources(struct igb_ring *rx_ring)
3874 {
3875         igb_clean_rx_ring(rx_ring);
3876
3877         vfree(rx_ring->rx_buffer_info);
3878         rx_ring->rx_buffer_info = NULL;
3879
3880         /* if not set, then don't free */
3881         if (!rx_ring->desc)
3882                 return;
3883
3884         dma_free_coherent(rx_ring->dev, rx_ring->size,
3885                           rx_ring->desc, rx_ring->dma);
3886
3887         rx_ring->desc = NULL;
3888 }
3889
3890 /**
3891  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3892  *  @adapter: board private structure
3893  *
3894  *  Free all receive software resources
3895  **/
3896 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3897 {
3898         int i;
3899
3900         for (i = 0; i < adapter->num_rx_queues; i++)
3901                 if (adapter->rx_ring[i])
3902                         igb_free_rx_resources(adapter->rx_ring[i]);
3903 }
3904
3905 /**
3906  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3907  *  @rx_ring: ring to free buffers from
3908  **/
3909 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3910 {
3911         unsigned long size;
3912         u16 i;
3913
3914         if (rx_ring->skb)
3915                 dev_kfree_skb(rx_ring->skb);
3916         rx_ring->skb = NULL;
3917
3918         if (!rx_ring->rx_buffer_info)
3919                 return;
3920
3921         /* Free all the Rx ring sk_buffs */
3922         for (i = 0; i < rx_ring->count; i++) {
3923                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3924
3925                 if (!buffer_info->page)
3926                         continue;
3927
3928                 dma_unmap_page(rx_ring->dev,
3929                                buffer_info->dma,
3930                                PAGE_SIZE,
3931                                DMA_FROM_DEVICE);
3932                 __free_page(buffer_info->page);
3933
3934                 buffer_info->page = NULL;
3935         }
3936
3937         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3938         memset(rx_ring->rx_buffer_info, 0, size);
3939
3940         /* Zero out the descriptor ring */
3941         memset(rx_ring->desc, 0, rx_ring->size);
3942
3943         rx_ring->next_to_alloc = 0;
3944         rx_ring->next_to_clean = 0;
3945         rx_ring->next_to_use = 0;
3946 }
3947
3948 /**
3949  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3950  *  @adapter: board private structure
3951  **/
3952 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3953 {
3954         int i;
3955
3956         for (i = 0; i < adapter->num_rx_queues; i++)
3957                 if (adapter->rx_ring[i])
3958                         igb_clean_rx_ring(adapter->rx_ring[i]);
3959 }
3960
3961 /**
3962  *  igb_set_mac - Change the Ethernet Address of the NIC
3963  *  @netdev: network interface device structure
3964  *  @p: pointer to an address structure
3965  *
3966  *  Returns 0 on success, negative on failure
3967  **/
3968 static int igb_set_mac(struct net_device *netdev, void *p)
3969 {
3970         struct igb_adapter *adapter = netdev_priv(netdev);
3971         struct e1000_hw *hw = &adapter->hw;
3972         struct sockaddr *addr = p;
3973
3974         if (!is_valid_ether_addr(addr->sa_data))
3975                 return -EADDRNOTAVAIL;
3976
3977         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3978         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3979
3980         /* set the correct pool for the new PF MAC address in entry 0 */
3981         igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3982                          adapter->vfs_allocated_count);
3983
3984         return 0;
3985 }
3986
3987 /**
3988  *  igb_write_mc_addr_list - write multicast addresses to MTA
3989  *  @netdev: network interface device structure
3990  *
3991  *  Writes multicast address list to the MTA hash table.
3992  *  Returns: -ENOMEM on failure
3993  *           0 on no addresses written
3994  *           X on writing X addresses to MTA
3995  **/
3996 static int igb_write_mc_addr_list(struct net_device *netdev)
3997 {
3998         struct igb_adapter *adapter = netdev_priv(netdev);
3999         struct e1000_hw *hw = &adapter->hw;
4000         struct netdev_hw_addr *ha;
4001         u8  *mta_list;
4002         int i;
4003
4004         if (netdev_mc_empty(netdev)) {
4005                 /* nothing to program, so clear mc list */
4006                 igb_update_mc_addr_list(hw, NULL, 0);
4007                 igb_restore_vf_multicasts(adapter);
4008                 return 0;
4009         }
4010
4011         mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
4012         if (!mta_list)
4013                 return -ENOMEM;
4014
4015         /* The shared function expects a packed array of only addresses. */
4016         i = 0;
4017         netdev_for_each_mc_addr(ha, netdev)
4018                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4019
4020         igb_update_mc_addr_list(hw, mta_list, i);
4021         kfree(mta_list);
4022
4023         return netdev_mc_count(netdev);
4024 }
4025
4026 /**
4027  *  igb_write_uc_addr_list - write unicast addresses to RAR table
4028  *  @netdev: network interface device structure
4029  *
4030  *  Writes unicast address list to the RAR table.
4031  *  Returns: -ENOMEM on failure/insufficient address space
4032  *           0 on no addresses written
4033  *           X on writing X addresses to the RAR table
4034  **/
4035 static int igb_write_uc_addr_list(struct net_device *netdev)
4036 {
4037         struct igb_adapter *adapter = netdev_priv(netdev);
4038         struct e1000_hw *hw = &adapter->hw;
4039         unsigned int vfn = adapter->vfs_allocated_count;
4040         unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
4041         int count = 0;
4042
4043         /* return ENOMEM indicating insufficient memory for addresses */
4044         if (netdev_uc_count(netdev) > rar_entries)
4045                 return -ENOMEM;
4046
4047         if (!netdev_uc_empty(netdev) && rar_entries) {
4048                 struct netdev_hw_addr *ha;
4049
4050                 netdev_for_each_uc_addr(ha, netdev) {
4051                         if (!rar_entries)
4052                                 break;
4053                         igb_rar_set_qsel(adapter, ha->addr,
4054                                          rar_entries--,
4055                                          vfn);
4056                         count++;
4057                 }
4058         }
4059         /* write the addresses in reverse order to avoid write combining */
4060         for (; rar_entries > 0 ; rar_entries--) {
4061                 wr32(E1000_RAH(rar_entries), 0);
4062                 wr32(E1000_RAL(rar_entries), 0);
4063         }
4064         wrfl();
4065
4066         return count;
4067 }
4068
4069 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4070 {
4071         struct e1000_hw *hw = &adapter->hw;
4072         u32 i, pf_id;
4073
4074         switch (hw->mac.type) {
4075         case e1000_i210:
4076         case e1000_i211:
4077         case e1000_i350:
4078                 /* VLAN filtering needed for VLAN prio filter */
4079                 if (adapter->netdev->features & NETIF_F_NTUPLE)
4080                         break;
4081                 /* fall through */
4082         case e1000_82576:
4083         case e1000_82580:
4084         case e1000_i354:
4085                 /* VLAN filtering needed for pool filtering */
4086                 if (adapter->vfs_allocated_count)
4087                         break;
4088                 /* fall through */
4089         default:
4090                 return 1;
4091         }
4092
4093         /* We are already in VLAN promisc, nothing to do */
4094         if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4095                 return 0;
4096
4097         if (!adapter->vfs_allocated_count)
4098                 goto set_vfta;
4099
4100         /* Add PF to all active pools */
4101         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4102
4103         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4104                 u32 vlvf = rd32(E1000_VLVF(i));
4105
4106                 vlvf |= BIT(pf_id);
4107                 wr32(E1000_VLVF(i), vlvf);
4108         }
4109
4110 set_vfta:
4111         /* Set all bits in the VLAN filter table array */
4112         for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4113                 hw->mac.ops.write_vfta(hw, i, ~0U);
4114
4115         /* Set flag so we don't redo unnecessary work */
4116         adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4117
4118         return 0;
4119 }
4120
4121 #define VFTA_BLOCK_SIZE 8
4122 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4123 {
4124         struct e1000_hw *hw = &adapter->hw;
4125         u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4126         u32 vid_start = vfta_offset * 32;
4127         u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4128         u32 i, vid, word, bits, pf_id;
4129
4130         /* guarantee that we don't scrub out management VLAN */
4131         vid = adapter->mng_vlan_id;
4132         if (vid >= vid_start && vid < vid_end)
4133                 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4134
4135         if (!adapter->vfs_allocated_count)
4136                 goto set_vfta;
4137
4138         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4139
4140         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4141                 u32 vlvf = rd32(E1000_VLVF(i));
4142
4143                 /* pull VLAN ID from VLVF */
4144                 vid = vlvf & VLAN_VID_MASK;
4145
4146                 /* only concern ourselves with a certain range */
4147                 if (vid < vid_start || vid >= vid_end)
4148                         continue;
4149
4150                 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4151                         /* record VLAN ID in VFTA */
4152                         vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4153
4154                         /* if PF is part of this then continue */
4155                         if (test_bit(vid, adapter->active_vlans))
4156                                 continue;
4157                 }
4158
4159                 /* remove PF from the pool */
4160                 bits = ~BIT(pf_id);
4161                 bits &= rd32(E1000_VLVF(i));
4162                 wr32(E1000_VLVF(i), bits);
4163         }
4164
4165 set_vfta:
4166         /* extract values from active_vlans and write back to VFTA */
4167         for (i = VFTA_BLOCK_SIZE; i--;) {
4168                 vid = (vfta_offset + i) * 32;
4169                 word = vid / BITS_PER_LONG;
4170                 bits = vid % BITS_PER_LONG;
4171
4172                 vfta[i] |= adapter->active_vlans[word] >> bits;
4173
4174                 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4175         }
4176 }
4177
4178 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4179 {
4180         u32 i;
4181
4182         /* We are not in VLAN promisc, nothing to do */
4183         if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4184                 return;
4185
4186         /* Set flag so we don't redo unnecessary work */
4187         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4188
4189         for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4190                 igb_scrub_vfta(adapter, i);
4191 }
4192
4193 /**
4194  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4195  *  @netdev: network interface device structure
4196  *
4197  *  The set_rx_mode entry point is called whenever the unicast or multicast
4198  *  address lists or the network interface flags are updated.  This routine is
4199  *  responsible for configuring the hardware for proper unicast, multicast,
4200  *  promiscuous mode, and all-multi behavior.
4201  **/
4202 static void igb_set_rx_mode(struct net_device *netdev)
4203 {
4204         struct igb_adapter *adapter = netdev_priv(netdev);
4205         struct e1000_hw *hw = &adapter->hw;
4206         unsigned int vfn = adapter->vfs_allocated_count;
4207         u32 rctl = 0, vmolr = 0;
4208         int count;
4209
4210         /* Check for Promiscuous and All Multicast modes */
4211         if (netdev->flags & IFF_PROMISC) {
4212                 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4213                 vmolr |= E1000_VMOLR_MPME;
4214
4215                 /* enable use of UTA filter to force packets to default pool */
4216                 if (hw->mac.type == e1000_82576)
4217                         vmolr |= E1000_VMOLR_ROPE;
4218         } else {
4219                 if (netdev->flags & IFF_ALLMULTI) {
4220                         rctl |= E1000_RCTL_MPE;
4221                         vmolr |= E1000_VMOLR_MPME;
4222                 } else {
4223                         /* Write addresses to the MTA, if the attempt fails
4224                          * then we should just turn on promiscuous mode so
4225                          * that we can at least receive multicast traffic
4226                          */
4227                         count = igb_write_mc_addr_list(netdev);
4228                         if (count < 0) {
4229                                 rctl |= E1000_RCTL_MPE;
4230                                 vmolr |= E1000_VMOLR_MPME;
4231                         } else if (count) {
4232                                 vmolr |= E1000_VMOLR_ROMPE;
4233                         }
4234                 }
4235         }
4236
4237         /* Write addresses to available RAR registers, if there is not
4238          * sufficient space to store all the addresses then enable
4239          * unicast promiscuous mode
4240          */
4241         count = igb_write_uc_addr_list(netdev);
4242         if (count < 0) {
4243                 rctl |= E1000_RCTL_UPE;
4244                 vmolr |= E1000_VMOLR_ROPE;
4245         }
4246
4247         /* enable VLAN filtering by default */
4248         rctl |= E1000_RCTL_VFE;
4249
4250         /* disable VLAN filtering for modes that require it */
4251         if ((netdev->flags & IFF_PROMISC) ||
4252             (netdev->features & NETIF_F_RXALL)) {
4253                 /* if we fail to set all rules then just clear VFE */
4254                 if (igb_vlan_promisc_enable(adapter))
4255                         rctl &= ~E1000_RCTL_VFE;
4256         } else {
4257                 igb_vlan_promisc_disable(adapter);
4258         }
4259
4260         /* update state of unicast, multicast, and VLAN filtering modes */
4261         rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
4262                                      E1000_RCTL_VFE);
4263         wr32(E1000_RCTL, rctl);
4264
4265         /* In order to support SR-IOV and eventually VMDq it is necessary to set
4266          * the VMOLR to enable the appropriate modes.  Without this workaround
4267          * we will have issues with VLAN tag stripping not being done for frames
4268          * that are only arriving because we are the default pool
4269          */
4270         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4271                 return;
4272
4273         /* set UTA to appropriate mode */
4274         igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
4275
4276         vmolr |= rd32(E1000_VMOLR(vfn)) &
4277                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4278
4279         /* enable Rx jumbo frames, no need for restriction */
4280         vmolr &= ~E1000_VMOLR_RLPML_MASK;
4281         vmolr |= MAX_JUMBO_FRAME_SIZE | E1000_VMOLR_LPE;
4282
4283         wr32(E1000_VMOLR(vfn), vmolr);
4284         wr32(E1000_RLPML, MAX_JUMBO_FRAME_SIZE);
4285
4286         igb_restore_vf_multicasts(adapter);
4287 }
4288
4289 static void igb_check_wvbr(struct igb_adapter *adapter)
4290 {
4291         struct e1000_hw *hw = &adapter->hw;
4292         u32 wvbr = 0;
4293
4294         switch (hw->mac.type) {
4295         case e1000_82576:
4296         case e1000_i350:
4297                 wvbr = rd32(E1000_WVBR);
4298                 if (!wvbr)
4299                         return;
4300                 break;
4301         default:
4302                 break;
4303         }
4304
4305         adapter->wvbr |= wvbr;
4306 }
4307
4308 #define IGB_STAGGERED_QUEUE_OFFSET 8
4309
4310 static void igb_spoof_check(struct igb_adapter *adapter)
4311 {
4312         int j;
4313
4314         if (!adapter->wvbr)
4315                 return;
4316
4317         for (j = 0; j < adapter->vfs_allocated_count; j++) {
4318                 if (adapter->wvbr & BIT(j) ||
4319                     adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
4320                         dev_warn(&adapter->pdev->dev,
4321                                 "Spoof event(s) detected on VF %d\n", j);
4322                         adapter->wvbr &=
4323                                 ~(BIT(j) |
4324                                   BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
4325                 }
4326         }
4327 }
4328
4329 /* Need to wait a few seconds after link up to get diagnostic information from
4330  * the phy
4331  */
4332 static void igb_update_phy_info(unsigned long data)
4333 {
4334         struct igb_adapter *adapter = (struct igb_adapter *) data;
4335         igb_get_phy_info(&adapter->hw);
4336 }
4337
4338 /**
4339  *  igb_has_link - check shared code for link and determine up/down
4340  *  @adapter: pointer to driver private info
4341  **/
4342 bool igb_has_link(struct igb_adapter *adapter)
4343 {
4344         struct e1000_hw *hw = &adapter->hw;
4345         bool link_active = false;
4346
4347         /* get_link_status is set on LSC (link status) interrupt or
4348          * rx sequence error interrupt.  get_link_status will stay
4349          * false until the e1000_check_for_link establishes link
4350          * for copper adapters ONLY
4351          */
4352         switch (hw->phy.media_type) {
4353         case e1000_media_type_copper:
4354                 if (!hw->mac.get_link_status)
4355                         return true;
4356         case e1000_media_type_internal_serdes:
4357                 hw->mac.ops.check_for_link(hw);
4358                 link_active = !hw->mac.get_link_status;
4359                 break;
4360         default:
4361         case e1000_media_type_unknown:
4362                 break;
4363         }
4364
4365         if (((hw->mac.type == e1000_i210) ||
4366              (hw->mac.type == e1000_i211)) &&
4367              (hw->phy.id == I210_I_PHY_ID)) {
4368                 if (!netif_carrier_ok(adapter->netdev)) {
4369                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4370                 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4371                         adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4372                         adapter->link_check_timeout = jiffies;
4373                 }
4374         }
4375
4376         return link_active;
4377 }
4378
4379 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4380 {
4381         bool ret = false;
4382         u32 ctrl_ext, thstat;
4383
4384         /* check for thermal sensor event on i350 copper only */
4385         if (hw->mac.type == e1000_i350) {
4386                 thstat = rd32(E1000_THSTAT);
4387                 ctrl_ext = rd32(E1000_CTRL_EXT);
4388
4389                 if ((hw->phy.media_type == e1000_media_type_copper) &&
4390                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4391                         ret = !!(thstat & event);
4392         }
4393
4394         return ret;
4395 }
4396
4397 /**
4398  *  igb_check_lvmmc - check for malformed packets received
4399  *  and indicated in LVMMC register
4400  *  @adapter: pointer to adapter
4401  **/
4402 static void igb_check_lvmmc(struct igb_adapter *adapter)
4403 {
4404         struct e1000_hw *hw = &adapter->hw;
4405         u32 lvmmc;
4406
4407         lvmmc = rd32(E1000_LVMMC);
4408         if (lvmmc) {
4409                 if (unlikely(net_ratelimit())) {
4410                         netdev_warn(adapter->netdev,
4411                                     "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4412                                     lvmmc);
4413                 }
4414         }
4415 }
4416
4417 /**
4418  *  igb_watchdog - Timer Call-back
4419  *  @data: pointer to adapter cast into an unsigned long
4420  **/
4421 static void igb_watchdog(unsigned long data)
4422 {
4423         struct igb_adapter *adapter = (struct igb_adapter *)data;
4424         /* Do the rest outside of interrupt context */
4425         schedule_work(&adapter->watchdog_task);
4426 }
4427
4428 static void igb_watchdog_task(struct work_struct *work)
4429 {
4430         struct igb_adapter *adapter = container_of(work,
4431                                                    struct igb_adapter,
4432                                                    watchdog_task);
4433         struct e1000_hw *hw = &adapter->hw;
4434         struct e1000_phy_info *phy = &hw->phy;
4435         struct net_device *netdev = adapter->netdev;
4436         u32 link;
4437         int i;
4438         u32 connsw;
4439         u16 phy_data, retry_count = 20;
4440
4441         link = igb_has_link(adapter);
4442
4443         if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4444                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4445                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4446                 else
4447                         link = false;
4448         }
4449
4450         /* Force link down if we have fiber to swap to */
4451         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4452                 if (hw->phy.media_type == e1000_media_type_copper) {
4453                         connsw = rd32(E1000_CONNSW);
4454                         if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4455                                 link = 0;
4456                 }
4457         }
4458         if (link) {
4459                 /* Perform a reset if the media type changed. */
4460                 if (hw->dev_spec._82575.media_changed) {
4461                         hw->dev_spec._82575.media_changed = false;
4462                         adapter->flags |= IGB_FLAG_MEDIA_RESET;
4463                         igb_reset(adapter);
4464                 }
4465                 /* Cancel scheduled suspend requests. */
4466                 pm_runtime_resume(netdev->dev.parent);
4467
4468                 if (!netif_carrier_ok(netdev)) {
4469                         u32 ctrl;
4470
4471                         hw->mac.ops.get_speed_and_duplex(hw,
4472                                                          &adapter->link_speed,
4473                                                          &adapter->link_duplex);
4474
4475                         ctrl = rd32(E1000_CTRL);
4476                         /* Links status message must follow this format */
4477                         netdev_info(netdev,
4478                                "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4479                                netdev->name,
4480                                adapter->link_speed,
4481                                adapter->link_duplex == FULL_DUPLEX ?
4482                                "Full" : "Half",
4483                                (ctrl & E1000_CTRL_TFCE) &&
4484                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4485                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4486                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4487
4488                         /* disable EEE if enabled */
4489                         if ((adapter->flags & IGB_FLAG_EEE) &&
4490                                 (adapter->link_duplex == HALF_DUPLEX)) {
4491                                 dev_info(&adapter->pdev->dev,
4492                                 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4493                                 adapter->hw.dev_spec._82575.eee_disable = true;
4494                                 adapter->flags &= ~IGB_FLAG_EEE;
4495                         }
4496
4497                         /* check if SmartSpeed worked */
4498                         igb_check_downshift(hw);
4499                         if (phy->speed_downgraded)
4500                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4501
4502                         /* check for thermal sensor event */
4503                         if (igb_thermal_sensor_event(hw,
4504                             E1000_THSTAT_LINK_THROTTLE))
4505                                 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4506
4507                         /* adjust timeout factor according to speed/duplex */
4508                         adapter->tx_timeout_factor = 1;
4509                         switch (adapter->link_speed) {
4510                         case SPEED_10:
4511                                 adapter->tx_timeout_factor = 14;
4512                                 break;
4513                         case SPEED_100:
4514                                 /* maybe add some timeout factor ? */
4515                                 break;
4516                         }
4517
4518                         if (adapter->link_speed != SPEED_1000)
4519                                 goto no_wait;
4520
4521                         /* wait for Remote receiver status OK */
4522 retry_read_status:
4523                         if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
4524                                               &phy_data)) {
4525                                 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4526                                     retry_count) {
4527                                         msleep(100);
4528                                         retry_count--;
4529                                         goto retry_read_status;
4530                                 } else if (!retry_count) {
4531                                         dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
4532                                 }
4533                         } else {
4534                                 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
4535                         }
4536 no_wait:
4537                         netif_carrier_on(netdev);
4538
4539                         igb_ping_all_vfs(adapter);
4540                         igb_check_vf_rate_limit(adapter);
4541
4542                         /* link state has changed, schedule phy info update */
4543                         if (!test_bit(__IGB_DOWN, &adapter->state))
4544                                 mod_timer(&adapter->phy_info_timer,
4545                                           round_jiffies(jiffies + 2 * HZ));
4546                 }
4547         } else {
4548                 if (netif_carrier_ok(netdev)) {
4549                         adapter->link_speed = 0;
4550                         adapter->link_duplex = 0;
4551
4552                         /* check for thermal sensor event */
4553                         if (igb_thermal_sensor_event(hw,
4554                             E1000_THSTAT_PWR_DOWN)) {
4555                                 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4556                         }
4557
4558                         /* Links status message must follow this format */
4559                         netdev_info(netdev, "igb: %s NIC Link is Down\n",
4560                                netdev->name);
4561                         netif_carrier_off(netdev);
4562
4563                         igb_ping_all_vfs(adapter);
4564
4565                         /* link state has changed, schedule phy info update */
4566                         if (!test_bit(__IGB_DOWN, &adapter->state))
4567                                 mod_timer(&adapter->phy_info_timer,
4568                                           round_jiffies(jiffies + 2 * HZ));
4569
4570                         /* link is down, time to check for alternate media */
4571                         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4572                                 igb_check_swap_media(adapter);
4573                                 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4574                                         schedule_work(&adapter->reset_task);
4575                                         /* return immediately */
4576                                         return;
4577                                 }
4578                         }
4579                         pm_schedule_suspend(netdev->dev.parent,
4580                                             MSEC_PER_SEC * 5);
4581
4582                 /* also check for alternate media here */
4583                 } else if (!netif_carrier_ok(netdev) &&
4584                            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4585                         igb_check_swap_media(adapter);
4586                         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4587                                 schedule_work(&adapter->reset_task);
4588                                 /* return immediately */
4589                                 return;
4590                         }
4591                 }
4592         }
4593
4594         spin_lock(&adapter->stats64_lock);
4595         igb_update_stats(adapter, &adapter->stats64);
4596         spin_unlock(&adapter->stats64_lock);
4597
4598         for (i = 0; i < adapter->num_tx_queues; i++) {
4599                 struct igb_ring *tx_ring = adapter->tx_ring[i];
4600                 if (!netif_carrier_ok(netdev)) {
4601                         /* We've lost link, so the controller stops DMA,
4602                          * but we've got queued Tx work that's never going
4603                          * to get done, so reset controller to flush Tx.
4604                          * (Do the reset outside of interrupt context).
4605                          */
4606                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4607                                 adapter->tx_timeout_count++;
4608                                 schedule_work(&adapter->reset_task);
4609                                 /* return immediately since reset is imminent */
4610                                 return;
4611                         }
4612                 }
4613
4614                 /* Force detection of hung controller every watchdog period */
4615                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4616         }
4617
4618         /* Cause software interrupt to ensure Rx ring is cleaned */
4619         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4620                 u32 eics = 0;
4621
4622                 for (i = 0; i < adapter->num_q_vectors; i++)
4623                         eics |= adapter->q_vector[i]->eims_value;
4624                 wr32(E1000_EICS, eics);
4625         } else {
4626                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4627         }
4628
4629         igb_spoof_check(adapter);
4630         igb_ptp_rx_hang(adapter);
4631
4632         /* Check LVMMC register on i350/i354 only */
4633         if ((adapter->hw.mac.type == e1000_i350) ||
4634             (adapter->hw.mac.type == e1000_i354))
4635                 igb_check_lvmmc(adapter);
4636
4637         /* Reset the timer */
4638         if (!test_bit(__IGB_DOWN, &adapter->state)) {
4639                 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4640                         mod_timer(&adapter->watchdog_timer,
4641                                   round_jiffies(jiffies +  HZ));
4642                 else
4643                         mod_timer(&adapter->watchdog_timer,
4644                                   round_jiffies(jiffies + 2 * HZ));
4645         }
4646 }
4647
4648 enum latency_range {
4649         lowest_latency = 0,
4650         low_latency = 1,
4651         bulk_latency = 2,
4652         latency_invalid = 255
4653 };
4654
4655 /**
4656  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4657  *  @q_vector: pointer to q_vector
4658  *
4659  *  Stores a new ITR value based on strictly on packet size.  This
4660  *  algorithm is less sophisticated than that used in igb_update_itr,
4661  *  due to the difficulty of synchronizing statistics across multiple
4662  *  receive rings.  The divisors and thresholds used by this function
4663  *  were determined based on theoretical maximum wire speed and testing
4664  *  data, in order to minimize response time while increasing bulk
4665  *  throughput.
4666  *  This functionality is controlled by ethtool's coalescing settings.
4667  *  NOTE:  This function is called only when operating in a multiqueue
4668  *         receive environment.
4669  **/
4670 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4671 {
4672         int new_val = q_vector->itr_val;
4673         int avg_wire_size = 0;
4674         struct igb_adapter *adapter = q_vector->adapter;
4675         unsigned int packets;
4676
4677         /* For non-gigabit speeds, just fix the interrupt rate at 4000
4678          * ints/sec - ITR timer value of 120 ticks.
4679          */
4680         if (adapter->link_speed != SPEED_1000) {
4681                 new_val = IGB_4K_ITR;
4682                 goto set_itr_val;
4683         }
4684
4685         packets = q_vector->rx.total_packets;
4686         if (packets)
4687                 avg_wire_size = q_vector->rx.total_bytes / packets;
4688
4689         packets = q_vector->tx.total_packets;
4690         if (packets)
4691                 avg_wire_size = max_t(u32, avg_wire_size,
4692                                       q_vector->tx.total_bytes / packets);
4693
4694         /* if avg_wire_size isn't set no work was done */
4695         if (!avg_wire_size)
4696                 goto clear_counts;
4697
4698         /* Add 24 bytes to size to account for CRC, preamble, and gap */
4699         avg_wire_size += 24;
4700
4701         /* Don't starve jumbo frames */
4702         avg_wire_size = min(avg_wire_size, 3000);
4703
4704         /* Give a little boost to mid-size frames */
4705         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4706                 new_val = avg_wire_size / 3;
4707         else
4708                 new_val = avg_wire_size / 2;
4709
4710         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4711         if (new_val < IGB_20K_ITR &&
4712             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4713              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4714                 new_val = IGB_20K_ITR;
4715
4716 set_itr_val:
4717         if (new_val != q_vector->itr_val) {
4718                 q_vector->itr_val = new_val;
4719                 q_vector->set_itr = 1;
4720         }
4721 clear_counts:
4722         q_vector->rx.total_bytes = 0;
4723         q_vector->rx.total_packets = 0;
4724         q_vector->tx.total_bytes = 0;
4725         q_vector->tx.total_packets = 0;
4726 }
4727
4728 /**
4729  *  igb_update_itr - update the dynamic ITR value based on statistics
4730  *  @q_vector: pointer to q_vector
4731  *  @ring_container: ring info to update the itr for
4732  *
4733  *  Stores a new ITR value based on packets and byte
4734  *  counts during the last interrupt.  The advantage of per interrupt
4735  *  computation is faster updates and more accurate ITR for the current
4736  *  traffic pattern.  Constants in this function were computed
4737  *  based on theoretical maximum wire speed and thresholds were set based
4738  *  on testing data as well as attempting to minimize response time
4739  *  while increasing bulk throughput.
4740  *  This functionality is controlled by ethtool's coalescing settings.
4741  *  NOTE:  These calculations are only valid when operating in a single-
4742  *         queue environment.
4743  **/
4744 static void igb_update_itr(struct igb_q_vector *q_vector,
4745                            struct igb_ring_container *ring_container)
4746 {
4747         unsigned int packets = ring_container->total_packets;
4748         unsigned int bytes = ring_container->total_bytes;
4749         u8 itrval = ring_container->itr;
4750
4751         /* no packets, exit with status unchanged */
4752         if (packets == 0)
4753                 return;
4754
4755         switch (itrval) {
4756         case lowest_latency:
4757                 /* handle TSO and jumbo frames */
4758                 if (bytes/packets > 8000)
4759                         itrval = bulk_latency;
4760                 else if ((packets < 5) && (bytes > 512))
4761                         itrval = low_latency;
4762                 break;
4763         case low_latency:  /* 50 usec aka 20000 ints/s */
4764                 if (bytes > 10000) {
4765                         /* this if handles the TSO accounting */
4766                         if (bytes/packets > 8000)
4767                                 itrval = bulk_latency;
4768                         else if ((packets < 10) || ((bytes/packets) > 1200))
4769                                 itrval = bulk_latency;
4770                         else if ((packets > 35))
4771                                 itrval = lowest_latency;
4772                 } else if (bytes/packets > 2000) {
4773                         itrval = bulk_latency;
4774                 } else if (packets <= 2 && bytes < 512) {
4775                         itrval = lowest_latency;
4776                 }
4777                 break;
4778         case bulk_latency: /* 250 usec aka 4000 ints/s */
4779                 if (bytes > 25000) {
4780                         if (packets > 35)
4781                                 itrval = low_latency;
4782                 } else if (bytes < 1500) {
4783                         itrval = low_latency;
4784                 }
4785                 break;
4786         }
4787
4788         /* clear work counters since we have the values we need */
4789         ring_container->total_bytes = 0;
4790         ring_container->total_packets = 0;
4791
4792         /* write updated itr to ring container */
4793         ring_container->itr = itrval;
4794 }
4795
4796 static void igb_set_itr(struct igb_q_vector *q_vector)
4797 {
4798         struct igb_adapter *adapter = q_vector->adapter;
4799         u32 new_itr = q_vector->itr_val;
4800         u8 current_itr = 0;
4801
4802         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4803         if (adapter->link_speed != SPEED_1000) {
4804                 current_itr = 0;
4805                 new_itr = IGB_4K_ITR;
4806                 goto set_itr_now;
4807         }
4808
4809         igb_update_itr(q_vector, &q_vector->tx);
4810         igb_update_itr(q_vector, &q_vector->rx);
4811
4812         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4813
4814         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4815         if (current_itr == lowest_latency &&
4816             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4817              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4818                 current_itr = low_latency;
4819
4820         switch (current_itr) {
4821         /* counts and packets in update_itr are dependent on these numbers */
4822         case lowest_latency:
4823                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4824                 break;
4825         case low_latency:
4826                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4827                 break;
4828         case bulk_latency:
4829                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4830                 break;
4831         default:
4832                 break;
4833         }
4834
4835 set_itr_now:
4836         if (new_itr != q_vector->itr_val) {
4837                 /* this attempts to bias the interrupt rate towards Bulk
4838                  * by adding intermediate steps when interrupt rate is
4839                  * increasing
4840                  */
4841                 new_itr = new_itr > q_vector->itr_val ?
4842                           max((new_itr * q_vector->itr_val) /
4843                           (new_itr + (q_vector->itr_val >> 2)),
4844                           new_itr) : new_itr;
4845                 /* Don't write the value here; it resets the adapter's
4846                  * internal timer, and causes us to delay far longer than
4847                  * we should between interrupts.  Instead, we write the ITR
4848                  * value at the beginning of the next interrupt so the timing
4849                  * ends up being correct.
4850                  */
4851                 q_vector->itr_val = new_itr;
4852                 q_vector->set_itr = 1;
4853         }
4854 }
4855
4856 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4857                             u32 type_tucmd, u32 mss_l4len_idx)
4858 {
4859         struct e1000_adv_tx_context_desc *context_desc;
4860         u16 i = tx_ring->next_to_use;
4861
4862         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4863
4864         i++;
4865         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4866
4867         /* set bits to identify this as an advanced context descriptor */
4868         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4869
4870         /* For 82575, context index must be unique per ring. */
4871         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4872                 mss_l4len_idx |= tx_ring->reg_idx << 4;
4873
4874         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
4875         context_desc->seqnum_seed       = 0;
4876         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
4877         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
4878 }
4879
4880 static int igb_tso(struct igb_ring *tx_ring,
4881                    struct igb_tx_buffer *first,
4882                    u8 *hdr_len)
4883 {
4884         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
4885         struct sk_buff *skb = first->skb;
4886         union {
4887                 struct iphdr *v4;
4888                 struct ipv6hdr *v6;
4889                 unsigned char *hdr;
4890         } ip;
4891         union {
4892                 struct tcphdr *tcp;
4893                 unsigned char *hdr;
4894         } l4;
4895         u32 paylen, l4_offset;
4896         int err;
4897
4898         if (skb->ip_summed != CHECKSUM_PARTIAL)
4899                 return 0;
4900
4901         if (!skb_is_gso(skb))
4902                 return 0;
4903
4904         err = skb_cow_head(skb, 0);
4905         if (err < 0)
4906                 return err;
4907
4908         ip.hdr = skb_network_header(skb);
4909         l4.hdr = skb_checksum_start(skb);
4910
4911         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4912         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4913
4914         /* initialize outer IP header fields */
4915         if (ip.v4->version == 4) {
4916                 /* IP header will have to cancel out any data that
4917                  * is not a part of the outer IP header
4918                  */
4919                 ip.v4->check = csum_fold(csum_add(lco_csum(skb),
4920                                                   csum_unfold(l4.tcp->check)));
4921                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4922
4923                 ip.v4->tot_len = 0;
4924                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4925                                    IGB_TX_FLAGS_CSUM |
4926                                    IGB_TX_FLAGS_IPV4;
4927         } else {
4928                 ip.v6->payload_len = 0;
4929                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4930                                    IGB_TX_FLAGS_CSUM;
4931         }
4932
4933         /* determine offset of inner transport header */
4934         l4_offset = l4.hdr - skb->data;
4935
4936         /* compute length of segmentation header */
4937         *hdr_len = (l4.tcp->doff * 4) + l4_offset;
4938
4939         /* remove payload length from inner checksum */
4940         paylen = skb->len - l4_offset;
4941         csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
4942
4943         /* update gso size and bytecount with header size */
4944         first->gso_segs = skb_shinfo(skb)->gso_segs;
4945         first->bytecount += (first->gso_segs - 1) * *hdr_len;
4946
4947         /* MSS L4LEN IDX */
4948         mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
4949         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4950
4951         /* VLAN MACLEN IPLEN */
4952         vlan_macip_lens = l4.hdr - ip.hdr;
4953         vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
4954         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4955
4956         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4957
4958         return 1;
4959 }
4960
4961 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
4962 {
4963         unsigned int offset = 0;
4964
4965         ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
4966
4967         return offset == skb_checksum_start_offset(skb);
4968 }
4969
4970 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4971 {
4972         struct sk_buff *skb = first->skb;
4973         u32 vlan_macip_lens = 0;
4974         u32 type_tucmd = 0;
4975
4976         if (skb->ip_summed != CHECKSUM_PARTIAL) {
4977 csum_failed:
4978                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4979                         return;
4980                 goto no_csum;
4981         }
4982
4983         switch (skb->csum_offset) {
4984         case offsetof(struct tcphdr, check):
4985                 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4986                 /* fall through */
4987         case offsetof(struct udphdr, check):
4988                 break;
4989         case offsetof(struct sctphdr, checksum):
4990                 /* validate that this is actually an SCTP request */
4991                 if (((first->protocol == htons(ETH_P_IP)) &&
4992                      (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
4993                     ((first->protocol == htons(ETH_P_IPV6)) &&
4994                      igb_ipv6_csum_is_sctp(skb))) {
4995                         type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
4996                         break;
4997                 }
4998         default:
4999                 skb_checksum_help(skb);
5000                 goto csum_failed;
5001         }
5002
5003         /* update TX checksum flag */
5004         first->tx_flags |= IGB_TX_FLAGS_CSUM;
5005         vlan_macip_lens = skb_checksum_start_offset(skb) -
5006                           skb_network_offset(skb);
5007 no_csum:
5008         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5009         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5010
5011         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
5012 }
5013
5014 #define IGB_SET_FLAG(_input, _flag, _result) \
5015         ((_flag <= _result) ? \
5016          ((u32)(_input & _flag) * (_result / _flag)) : \
5017          ((u32)(_input & _flag) / (_flag / _result)))
5018
5019 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5020 {
5021         /* set type for advanced descriptor with frame checksum insertion */
5022         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5023                        E1000_ADVTXD_DCMD_DEXT |
5024                        E1000_ADVTXD_DCMD_IFCS;
5025
5026         /* set HW vlan bit if vlan is present */
5027         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5028                                  (E1000_ADVTXD_DCMD_VLE));
5029
5030         /* set segmentation bits for TSO */
5031         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5032                                  (E1000_ADVTXD_DCMD_TSE));
5033
5034         /* set timestamp bit if present */
5035         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5036                                  (E1000_ADVTXD_MAC_TSTAMP));
5037
5038         /* insert frame checksum */
5039         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5040
5041         return cmd_type;
5042 }
5043
5044 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5045                                  union e1000_adv_tx_desc *tx_desc,
5046                                  u32 tx_flags, unsigned int paylen)
5047 {
5048         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5049
5050         /* 82575 requires a unique index per ring */
5051         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5052                 olinfo_status |= tx_ring->reg_idx << 4;
5053
5054         /* insert L4 checksum */
5055         olinfo_status |= IGB_SET_FLAG(tx_flags,
5056                                       IGB_TX_FLAGS_CSUM,
5057                                       (E1000_TXD_POPTS_TXSM << 8));
5058
5059         /* insert IPv4 checksum */
5060         olinfo_status |= IGB_SET_FLAG(tx_flags,
5061                                       IGB_TX_FLAGS_IPV4,
5062                                       (E1000_TXD_POPTS_IXSM << 8));
5063
5064         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5065 }
5066
5067 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5068 {
5069         struct net_device *netdev = tx_ring->netdev;
5070
5071         netif_stop_subqueue(netdev, tx_ring->queue_index);
5072
5073         /* Herbert's original patch had:
5074          *  smp_mb__after_netif_stop_queue();
5075          * but since that doesn't exist yet, just open code it.
5076          */
5077         smp_mb();
5078
5079         /* We need to check again in a case another CPU has just
5080          * made room available.
5081          */
5082         if (igb_desc_unused(tx_ring) < size)
5083                 return -EBUSY;
5084
5085         /* A reprieve! */
5086         netif_wake_subqueue(netdev, tx_ring->queue_index);
5087
5088         u64_stats_update_begin(&tx_ring->tx_syncp2);
5089         tx_ring->tx_stats.restart_queue2++;
5090         u64_stats_update_end(&tx_ring->tx_syncp2);
5091
5092         return 0;
5093 }
5094
5095 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5096 {
5097         if (igb_desc_unused(tx_ring) >= size)
5098                 return 0;
5099         return __igb_maybe_stop_tx(tx_ring, size);
5100 }
5101
5102 static void igb_tx_map(struct igb_ring *tx_ring,
5103                        struct igb_tx_buffer *first,
5104                        const u8 hdr_len)
5105 {
5106         struct sk_buff *skb = first->skb;
5107         struct igb_tx_buffer *tx_buffer;
5108         union e1000_adv_tx_desc *tx_desc;
5109         struct skb_frag_struct *frag;
5110         dma_addr_t dma;
5111         unsigned int data_len, size;
5112         u32 tx_flags = first->tx_flags;
5113         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5114         u16 i = tx_ring->next_to_use;
5115
5116         tx_desc = IGB_TX_DESC(tx_ring, i);
5117
5118         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5119
5120         size = skb_headlen(skb);
5121         data_len = skb->data_len;
5122
5123         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5124
5125         tx_buffer = first;
5126
5127         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5128                 if (dma_mapping_error(tx_ring->dev, dma))
5129                         goto dma_error;
5130
5131                 /* record length, and DMA address */
5132                 dma_unmap_len_set(tx_buffer, len, size);
5133                 dma_unmap_addr_set(tx_buffer, dma, dma);
5134
5135                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5136
5137                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5138                         tx_desc->read.cmd_type_len =
5139                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5140
5141                         i++;
5142                         tx_desc++;
5143                         if (i == tx_ring->count) {
5144                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
5145                                 i = 0;
5146                         }
5147                         tx_desc->read.olinfo_status = 0;
5148
5149                         dma += IGB_MAX_DATA_PER_TXD;
5150                         size -= IGB_MAX_DATA_PER_TXD;
5151
5152                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
5153                 }
5154
5155                 if (likely(!data_len))
5156                         break;
5157
5158                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5159
5160                 i++;
5161                 tx_desc++;
5162                 if (i == tx_ring->count) {
5163                         tx_desc = IGB_TX_DESC(tx_ring, 0);
5164                         i = 0;
5165                 }
5166                 tx_desc->read.olinfo_status = 0;
5167
5168                 size = skb_frag_size(frag);
5169                 data_len -= size;
5170
5171                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5172                                        size, DMA_TO_DEVICE);
5173
5174                 tx_buffer = &tx_ring->tx_buffer_info[i];
5175         }
5176
5177         /* write last descriptor with RS and EOP bits */
5178         cmd_type |= size | IGB_TXD_DCMD;
5179         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5180
5181         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5182
5183         /* set the timestamp */
5184         first->time_stamp = jiffies;
5185
5186         /* Force memory writes to complete before letting h/w know there
5187          * are new descriptors to fetch.  (Only applicable for weak-ordered
5188          * memory model archs, such as IA-64).
5189          *
5190          * We also need this memory barrier to make certain all of the
5191          * status bits have been updated before next_to_watch is written.
5192          */
5193         wmb();
5194
5195         /* set next_to_watch value indicating a packet is present */
5196         first->next_to_watch = tx_desc;
5197
5198         i++;
5199         if (i == tx_ring->count)
5200                 i = 0;
5201
5202         tx_ring->next_to_use = i;
5203
5204         /* Make sure there is space in the ring for the next send. */
5205         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5206
5207         if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
5208                 writel(i, tx_ring->tail);
5209
5210                 /* we need this if more than one processor can write to our tail
5211                  * at a time, it synchronizes IO on IA64/Altix systems
5212                  */
5213                 mmiowb();
5214         }
5215         return;
5216
5217 dma_error:
5218         dev_err(tx_ring->dev, "TX DMA map failed\n");
5219
5220         /* clear dma mappings for failed tx_buffer_info map */
5221         for (;;) {
5222                 tx_buffer = &tx_ring->tx_buffer_info[i];
5223                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
5224                 if (tx_buffer == first)
5225                         break;
5226                 if (i == 0)
5227                         i = tx_ring->count;
5228                 i--;
5229         }
5230
5231         tx_ring->next_to_use = i;
5232 }
5233
5234 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5235                                 struct igb_ring *tx_ring)
5236 {
5237         struct igb_tx_buffer *first;
5238         int tso;
5239         u32 tx_flags = 0;
5240         unsigned short f;
5241         u16 count = TXD_USE_COUNT(skb_headlen(skb));
5242         __be16 protocol = vlan_get_protocol(skb);
5243         u8 hdr_len = 0;
5244
5245         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5246          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5247          *       + 2 desc gap to keep tail from touching head,
5248          *       + 1 desc for context descriptor,
5249          * otherwise try next time
5250          */
5251         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5252                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5253
5254         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5255                 /* this is a hard error */
5256                 return NETDEV_TX_BUSY;
5257         }
5258
5259         /* record the location of the first descriptor for this packet */
5260         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5261         first->skb = skb;
5262         first->bytecount = skb->len;
5263         first->gso_segs = 1;
5264
5265         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5266                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5267
5268                 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5269                                            &adapter->state)) {
5270                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5271                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
5272
5273                         adapter->ptp_tx_skb = skb_get(skb);
5274                         adapter->ptp_tx_start = jiffies;
5275                         if (adapter->hw.mac.type == e1000_82576)
5276                                 schedule_work(&adapter->ptp_tx_work);
5277                 }
5278         }
5279
5280         skb_tx_timestamp(skb);
5281
5282         if (skb_vlan_tag_present(skb)) {
5283                 tx_flags |= IGB_TX_FLAGS_VLAN;
5284                 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5285         }
5286
5287         /* record initial flags and protocol */
5288         first->tx_flags = tx_flags;
5289         first->protocol = protocol;
5290
5291         tso = igb_tso(tx_ring, first, &hdr_len);
5292         if (tso < 0)
5293                 goto out_drop;
5294         else if (!tso)
5295                 igb_tx_csum(tx_ring, first);
5296
5297         igb_tx_map(tx_ring, first, hdr_len);
5298
5299         return NETDEV_TX_OK;
5300
5301 out_drop:
5302         igb_unmap_and_free_tx_resource(tx_ring, first);
5303
5304         return NETDEV_TX_OK;
5305 }
5306
5307 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5308                                                     struct sk_buff *skb)
5309 {
5310         unsigned int r_idx = skb->queue_mapping;
5311
5312         if (r_idx >= adapter->num_tx_queues)
5313                 r_idx = r_idx % adapter->num_tx_queues;
5314
5315         return adapter->tx_ring[r_idx];
5316 }
5317
5318 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5319                                   struct net_device *netdev)
5320 {
5321         struct igb_adapter *adapter = netdev_priv(netdev);
5322
5323         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5324          * in order to meet this minimum size requirement.
5325          */
5326         if (skb_put_padto(skb, 17))
5327                 return NETDEV_TX_OK;
5328
5329         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5330 }
5331
5332 /**
5333  *  igb_tx_timeout - Respond to a Tx Hang
5334  *  @netdev: network interface device structure
5335  **/
5336 static void igb_tx_timeout(struct net_device *netdev)
5337 {
5338         struct igb_adapter *adapter = netdev_priv(netdev);
5339         struct e1000_hw *hw = &adapter->hw;
5340
5341         /* Do the reset outside of interrupt context */
5342         adapter->tx_timeout_count++;
5343
5344         if (hw->mac.type >= e1000_82580)
5345                 hw->dev_spec._82575.global_device_reset = true;
5346
5347         schedule_work(&adapter->reset_task);
5348         wr32(E1000_EICS,
5349              (adapter->eims_enable_mask & ~adapter->eims_other));
5350 }
5351
5352 static void igb_reset_task(struct work_struct *work)
5353 {
5354         struct igb_adapter *adapter;
5355         adapter = container_of(work, struct igb_adapter, reset_task);
5356
5357         igb_dump(adapter);
5358         netdev_err(adapter->netdev, "Reset adapter\n");
5359         igb_reinit_locked(adapter);
5360 }
5361
5362 /**
5363  *  igb_get_stats64 - Get System Network Statistics
5364  *  @netdev: network interface device structure
5365  *  @stats: rtnl_link_stats64 pointer
5366  **/
5367 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5368                                                 struct rtnl_link_stats64 *stats)
5369 {
5370         struct igb_adapter *adapter = netdev_priv(netdev);
5371
5372         spin_lock(&adapter->stats64_lock);
5373         igb_update_stats(adapter, &adapter->stats64);
5374         memcpy(stats, &adapter->stats64, sizeof(*stats));
5375         spin_unlock(&adapter->stats64_lock);
5376
5377         return stats;
5378 }
5379
5380 /**
5381  *  igb_change_mtu - Change the Maximum Transfer Unit
5382  *  @netdev: network interface device structure
5383  *  @new_mtu: new value for maximum frame size
5384  *
5385  *  Returns 0 on success, negative on failure
5386  **/
5387 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5388 {
5389         struct igb_adapter *adapter = netdev_priv(netdev);
5390         struct pci_dev *pdev = adapter->pdev;
5391         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5392
5393         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5394                 dev_err(&pdev->dev, "Invalid MTU setting\n");
5395                 return -EINVAL;
5396         }
5397
5398 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5399         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5400                 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5401                 return -EINVAL;
5402         }
5403
5404         /* adjust max frame to be at least the size of a standard frame */
5405         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5406                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5407
5408         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5409                 usleep_range(1000, 2000);
5410
5411         /* igb_down has a dependency on max_frame_size */
5412         adapter->max_frame_size = max_frame;
5413
5414         if (netif_running(netdev))
5415                 igb_down(adapter);
5416
5417         dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5418                  netdev->mtu, new_mtu);
5419         netdev->mtu = new_mtu;
5420
5421         if (netif_running(netdev))
5422                 igb_up(adapter);
5423         else
5424                 igb_reset(adapter);
5425
5426         clear_bit(__IGB_RESETTING, &adapter->state);
5427
5428         return 0;
5429 }
5430
5431 /**
5432  *  igb_update_stats - Update the board statistics counters
5433  *  @adapter: board private structure
5434  **/
5435 void igb_update_stats(struct igb_adapter *adapter,
5436                       struct rtnl_link_stats64 *net_stats)
5437 {
5438         struct e1000_hw *hw = &adapter->hw;
5439         struct pci_dev *pdev = adapter->pdev;
5440         u32 reg, mpc;
5441         int i;
5442         u64 bytes, packets;
5443         unsigned int start;
5444         u64 _bytes, _packets;
5445
5446         /* Prevent stats update while adapter is being reset, or if the pci
5447          * connection is down.
5448          */
5449         if (adapter->link_speed == 0)
5450                 return;
5451         if (pci_channel_offline(pdev))
5452                 return;
5453
5454         bytes = 0;
5455         packets = 0;
5456
5457         rcu_read_lock();
5458         for (i = 0; i < adapter->num_rx_queues; i++) {
5459                 struct igb_ring *ring = adapter->rx_ring[i];
5460                 u32 rqdpc = rd32(E1000_RQDPC(i));
5461                 if (hw->mac.type >= e1000_i210)
5462                         wr32(E1000_RQDPC(i), 0);
5463
5464                 if (rqdpc) {
5465                         ring->rx_stats.drops += rqdpc;
5466                         net_stats->rx_fifo_errors += rqdpc;
5467                 }
5468
5469                 do {
5470                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5471                         _bytes = ring->rx_stats.bytes;
5472                         _packets = ring->rx_stats.packets;
5473                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5474                 bytes += _bytes;
5475                 packets += _packets;
5476         }
5477
5478         net_stats->rx_bytes = bytes;
5479         net_stats->rx_packets = packets;
5480
5481         bytes = 0;
5482         packets = 0;
5483         for (i = 0; i < adapter->num_tx_queues; i++) {
5484                 struct igb_ring *ring = adapter->tx_ring[i];
5485                 do {
5486                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5487                         _bytes = ring->tx_stats.bytes;
5488                         _packets = ring->tx_stats.packets;
5489                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5490                 bytes += _bytes;
5491                 packets += _packets;
5492         }
5493         net_stats->tx_bytes = bytes;
5494         net_stats->tx_packets = packets;
5495         rcu_read_unlock();
5496
5497         /* read stats registers */
5498         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5499         adapter->stats.gprc += rd32(E1000_GPRC);
5500         adapter->stats.gorc += rd32(E1000_GORCL);
5501         rd32(E1000_GORCH); /* clear GORCL */
5502         adapter->stats.bprc += rd32(E1000_BPRC);
5503         adapter->stats.mprc += rd32(E1000_MPRC);
5504         adapter->stats.roc += rd32(E1000_ROC);
5505
5506         adapter->stats.prc64 += rd32(E1000_PRC64);
5507         adapter->stats.prc127 += rd32(E1000_PRC127);
5508         adapter->stats.prc255 += rd32(E1000_PRC255);
5509         adapter->stats.prc511 += rd32(E1000_PRC511);
5510         adapter->stats.prc1023 += rd32(E1000_PRC1023);
5511         adapter->stats.prc1522 += rd32(E1000_PRC1522);
5512         adapter->stats.symerrs += rd32(E1000_SYMERRS);
5513         adapter->stats.sec += rd32(E1000_SEC);
5514
5515         mpc = rd32(E1000_MPC);
5516         adapter->stats.mpc += mpc;
5517         net_stats->rx_fifo_errors += mpc;
5518         adapter->stats.scc += rd32(E1000_SCC);
5519         adapter->stats.ecol += rd32(E1000_ECOL);
5520         adapter->stats.mcc += rd32(E1000_MCC);
5521         adapter->stats.latecol += rd32(E1000_LATECOL);
5522         adapter->stats.dc += rd32(E1000_DC);
5523         adapter->stats.rlec += rd32(E1000_RLEC);
5524         adapter->stats.xonrxc += rd32(E1000_XONRXC);
5525         adapter->stats.xontxc += rd32(E1000_XONTXC);
5526         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5527         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5528         adapter->stats.fcruc += rd32(E1000_FCRUC);
5529         adapter->stats.gptc += rd32(E1000_GPTC);
5530         adapter->stats.gotc += rd32(E1000_GOTCL);
5531         rd32(E1000_GOTCH); /* clear GOTCL */
5532         adapter->stats.rnbc += rd32(E1000_RNBC);
5533         adapter->stats.ruc += rd32(E1000_RUC);
5534         adapter->stats.rfc += rd32(E1000_RFC);
5535         adapter->stats.rjc += rd32(E1000_RJC);
5536         adapter->stats.tor += rd32(E1000_TORH);
5537         adapter->stats.tot += rd32(E1000_TOTH);
5538         adapter->stats.tpr += rd32(E1000_TPR);
5539
5540         adapter->stats.ptc64 += rd32(E1000_PTC64);
5541         adapter->stats.ptc127 += rd32(E1000_PTC127);
5542         adapter->stats.ptc255 += rd32(E1000_PTC255);
5543         adapter->stats.ptc511 += rd32(E1000_PTC511);
5544         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5545         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5546
5547         adapter->stats.mptc += rd32(E1000_MPTC);
5548         adapter->stats.bptc += rd32(E1000_BPTC);
5549
5550         adapter->stats.tpt += rd32(E1000_TPT);
5551         adapter->stats.colc += rd32(E1000_COLC);
5552
5553         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5554         /* read internal phy specific stats */
5555         reg = rd32(E1000_CTRL_EXT);
5556         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5557                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5558
5559                 /* this stat has invalid values on i210/i211 */
5560                 if ((hw->mac.type != e1000_i210) &&
5561                     (hw->mac.type != e1000_i211))
5562                         adapter->stats.tncrs += rd32(E1000_TNCRS);
5563         }
5564
5565         adapter->stats.tsctc += rd32(E1000_TSCTC);
5566         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5567
5568         adapter->stats.iac += rd32(E1000_IAC);
5569         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5570         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5571         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5572         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5573         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5574         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5575         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5576         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5577
5578         /* Fill out the OS statistics structure */
5579         net_stats->multicast = adapter->stats.mprc;
5580         net_stats->collisions = adapter->stats.colc;
5581
5582         /* Rx Errors */
5583
5584         /* RLEC on some newer hardware can be incorrect so build
5585          * our own version based on RUC and ROC
5586          */
5587         net_stats->rx_errors = adapter->stats.rxerrc +
5588                 adapter->stats.crcerrs + adapter->stats.algnerrc +
5589                 adapter->stats.ruc + adapter->stats.roc +
5590                 adapter->stats.cexterr;
5591         net_stats->rx_length_errors = adapter->stats.ruc +
5592                                       adapter->stats.roc;
5593         net_stats->rx_crc_errors = adapter->stats.crcerrs;
5594         net_stats->rx_frame_errors = adapter->stats.algnerrc;
5595         net_stats->rx_missed_errors = adapter->stats.mpc;
5596
5597         /* Tx Errors */
5598         net_stats->tx_errors = adapter->stats.ecol +
5599                                adapter->stats.latecol;
5600         net_stats->tx_aborted_errors = adapter->stats.ecol;
5601         net_stats->tx_window_errors = adapter->stats.latecol;
5602         net_stats->tx_carrier_errors = adapter->stats.tncrs;
5603
5604         /* Tx Dropped needs to be maintained elsewhere */
5605
5606         /* Management Stats */
5607         adapter->stats.mgptc += rd32(E1000_MGTPTC);
5608         adapter->stats.mgprc += rd32(E1000_MGTPRC);
5609         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5610
5611         /* OS2BMC Stats */
5612         reg = rd32(E1000_MANC);
5613         if (reg & E1000_MANC_EN_BMC2OS) {
5614                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5615                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5616                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5617                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5618         }
5619 }
5620
5621 static void igb_tsync_interrupt(struct igb_adapter *adapter)
5622 {
5623         struct e1000_hw *hw = &adapter->hw;
5624         struct ptp_clock_event event;
5625         struct timespec64 ts;
5626         u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5627
5628         if (tsicr & TSINTR_SYS_WRAP) {
5629                 event.type = PTP_CLOCK_PPS;
5630                 if (adapter->ptp_caps.pps)
5631                         ptp_clock_event(adapter->ptp_clock, &event);
5632                 else
5633                         dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5634                 ack |= TSINTR_SYS_WRAP;
5635         }
5636
5637         if (tsicr & E1000_TSICR_TXTS) {
5638                 /* retrieve hardware timestamp */
5639                 schedule_work(&adapter->ptp_tx_work);
5640                 ack |= E1000_TSICR_TXTS;
5641         }
5642
5643         if (tsicr & TSINTR_TT0) {
5644                 spin_lock(&adapter->tmreg_lock);
5645                 ts = timespec64_add(adapter->perout[0].start,
5646                                     adapter->perout[0].period);
5647                 /* u32 conversion of tv_sec is safe until y2106 */
5648                 wr32(E1000_TRGTTIML0, ts.tv_nsec);
5649                 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
5650                 tsauxc = rd32(E1000_TSAUXC);
5651                 tsauxc |= TSAUXC_EN_TT0;
5652                 wr32(E1000_TSAUXC, tsauxc);
5653                 adapter->perout[0].start = ts;
5654                 spin_unlock(&adapter->tmreg_lock);
5655                 ack |= TSINTR_TT0;
5656         }
5657
5658         if (tsicr & TSINTR_TT1) {
5659                 spin_lock(&adapter->tmreg_lock);
5660                 ts = timespec64_add(adapter->perout[1].start,
5661                                     adapter->perout[1].period);
5662                 wr32(E1000_TRGTTIML1, ts.tv_nsec);
5663                 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
5664                 tsauxc = rd32(E1000_TSAUXC);
5665                 tsauxc |= TSAUXC_EN_TT1;
5666                 wr32(E1000_TSAUXC, tsauxc);
5667                 adapter->perout[1].start = ts;
5668                 spin_unlock(&adapter->tmreg_lock);
5669                 ack |= TSINTR_TT1;
5670         }
5671
5672         if (tsicr & TSINTR_AUTT0) {
5673                 nsec = rd32(E1000_AUXSTMPL0);
5674                 sec  = rd32(E1000_AUXSTMPH0);
5675                 event.type = PTP_CLOCK_EXTTS;
5676                 event.index = 0;
5677                 event.timestamp = sec * 1000000000ULL + nsec;
5678                 ptp_clock_event(adapter->ptp_clock, &event);
5679                 ack |= TSINTR_AUTT0;
5680         }
5681
5682         if (tsicr & TSINTR_AUTT1) {
5683                 nsec = rd32(E1000_AUXSTMPL1);
5684                 sec  = rd32(E1000_AUXSTMPH1);
5685                 event.type = PTP_CLOCK_EXTTS;
5686                 event.index = 1;
5687                 event.timestamp = sec * 1000000000ULL + nsec;
5688                 ptp_clock_event(adapter->ptp_clock, &event);
5689                 ack |= TSINTR_AUTT1;
5690         }
5691
5692         /* acknowledge the interrupts */
5693         wr32(E1000_TSICR, ack);
5694 }
5695
5696 static irqreturn_t igb_msix_other(int irq, void *data)
5697 {
5698         struct igb_adapter *adapter = data;
5699         struct e1000_hw *hw = &adapter->hw;
5700         u32 icr = rd32(E1000_ICR);
5701         /* reading ICR causes bit 31 of EICR to be cleared */
5702
5703         if (icr & E1000_ICR_DRSTA)
5704                 schedule_work(&adapter->reset_task);
5705
5706         if (icr & E1000_ICR_DOUTSYNC) {
5707                 /* HW is reporting DMA is out of sync */
5708                 adapter->stats.doosync++;
5709                 /* The DMA Out of Sync is also indication of a spoof event
5710                  * in IOV mode. Check the Wrong VM Behavior register to
5711                  * see if it is really a spoof event.
5712                  */
5713                 igb_check_wvbr(adapter);
5714         }
5715
5716         /* Check for a mailbox event */
5717         if (icr & E1000_ICR_VMMB)
5718                 igb_msg_task(adapter);
5719
5720         if (icr & E1000_ICR_LSC) {
5721                 hw->mac.get_link_status = 1;
5722                 /* guard against interrupt when we're going down */
5723                 if (!test_bit(__IGB_DOWN, &adapter->state))
5724                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5725         }
5726
5727         if (icr & E1000_ICR_TS)
5728                 igb_tsync_interrupt(adapter);
5729
5730         wr32(E1000_EIMS, adapter->eims_other);
5731
5732         return IRQ_HANDLED;
5733 }
5734
5735 static void igb_write_itr(struct igb_q_vector *q_vector)
5736 {
5737         struct igb_adapter *adapter = q_vector->adapter;
5738         u32 itr_val = q_vector->itr_val & 0x7FFC;
5739
5740         if (!q_vector->set_itr)
5741                 return;
5742
5743         if (!itr_val)
5744                 itr_val = 0x4;
5745
5746         if (adapter->hw.mac.type == e1000_82575)
5747                 itr_val |= itr_val << 16;
5748         else
5749                 itr_val |= E1000_EITR_CNT_IGNR;
5750
5751         writel(itr_val, q_vector->itr_register);
5752         q_vector->set_itr = 0;
5753 }
5754
5755 static irqreturn_t igb_msix_ring(int irq, void *data)
5756 {
5757         struct igb_q_vector *q_vector = data;
5758
5759         /* Write the ITR value calculated from the previous interrupt. */
5760         igb_write_itr(q_vector);
5761
5762         napi_schedule(&q_vector->napi);
5763
5764         return IRQ_HANDLED;
5765 }
5766
5767 #ifdef CONFIG_IGB_DCA
5768 static void igb_update_tx_dca(struct igb_adapter *adapter,
5769                               struct igb_ring *tx_ring,
5770                               int cpu)
5771 {
5772         struct e1000_hw *hw = &adapter->hw;
5773         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5774
5775         if (hw->mac.type != e1000_82575)
5776                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5777
5778         /* We can enable relaxed ordering for reads, but not writes when
5779          * DCA is enabled.  This is due to a known issue in some chipsets
5780          * which will cause the DCA tag to be cleared.
5781          */
5782         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5783                   E1000_DCA_TXCTRL_DATA_RRO_EN |
5784                   E1000_DCA_TXCTRL_DESC_DCA_EN;
5785
5786         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5787 }
5788
5789 static void igb_update_rx_dca(struct igb_adapter *adapter,
5790                               struct igb_ring *rx_ring,
5791                               int cpu)
5792 {
5793         struct e1000_hw *hw = &adapter->hw;
5794         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5795
5796         if (hw->mac.type != e1000_82575)
5797                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5798
5799         /* We can enable relaxed ordering for reads, but not writes when
5800          * DCA is enabled.  This is due to a known issue in some chipsets
5801          * which will cause the DCA tag to be cleared.
5802          */
5803         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5804                   E1000_DCA_RXCTRL_DESC_DCA_EN;
5805
5806         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5807 }
5808
5809 static void igb_update_dca(struct igb_q_vector *q_vector)
5810 {
5811         struct igb_adapter *adapter = q_vector->adapter;
5812         int cpu = get_cpu();
5813
5814         if (q_vector->cpu == cpu)
5815                 goto out_no_update;
5816
5817         if (q_vector->tx.ring)
5818                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5819
5820         if (q_vector->rx.ring)
5821                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5822
5823         q_vector->cpu = cpu;
5824 out_no_update:
5825         put_cpu();
5826 }
5827
5828 static void igb_setup_dca(struct igb_adapter *adapter)
5829 {
5830         struct e1000_hw *hw = &adapter->hw;
5831         int i;
5832
5833         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5834                 return;
5835
5836         /* Always use CB2 mode, difference is masked in the CB driver. */
5837         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5838
5839         for (i = 0; i < adapter->num_q_vectors; i++) {
5840                 adapter->q_vector[i]->cpu = -1;
5841                 igb_update_dca(adapter->q_vector[i]);
5842         }
5843 }
5844
5845 static int __igb_notify_dca(struct device *dev, void *data)
5846 {
5847         struct net_device *netdev = dev_get_drvdata(dev);
5848         struct igb_adapter *adapter = netdev_priv(netdev);
5849         struct pci_dev *pdev = adapter->pdev;
5850         struct e1000_hw *hw = &adapter->hw;
5851         unsigned long event = *(unsigned long *)data;
5852
5853         switch (event) {
5854         case DCA_PROVIDER_ADD:
5855                 /* if already enabled, don't do it again */
5856                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5857                         break;
5858                 if (dca_add_requester(dev) == 0) {
5859                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
5860                         dev_info(&pdev->dev, "DCA enabled\n");
5861                         igb_setup_dca(adapter);
5862                         break;
5863                 }
5864                 /* Fall Through since DCA is disabled. */
5865         case DCA_PROVIDER_REMOVE:
5866                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5867                         /* without this a class_device is left
5868                          * hanging around in the sysfs model
5869                          */
5870                         dca_remove_requester(dev);
5871                         dev_info(&pdev->dev, "DCA disabled\n");
5872                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5873                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5874                 }
5875                 break;
5876         }
5877
5878         return 0;
5879 }
5880
5881 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5882                           void *p)
5883 {
5884         int ret_val;
5885
5886         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5887                                          __igb_notify_dca);
5888
5889         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5890 }
5891 #endif /* CONFIG_IGB_DCA */
5892
5893 #ifdef CONFIG_PCI_IOV
5894 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5895 {
5896         unsigned char mac_addr[ETH_ALEN];
5897
5898         eth_zero_addr(mac_addr);
5899         igb_set_vf_mac(adapter, vf, mac_addr);
5900
5901         /* By default spoof check is enabled for all VFs */
5902         adapter->vf_data[vf].spoofchk_enabled = true;
5903
5904         return 0;
5905 }
5906
5907 #endif
5908 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5909 {
5910         struct e1000_hw *hw = &adapter->hw;
5911         u32 ping;
5912         int i;
5913
5914         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5915                 ping = E1000_PF_CONTROL_MSG;
5916                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5917                         ping |= E1000_VT_MSGTYPE_CTS;
5918                 igb_write_mbx(hw, &ping, 1, i);
5919         }
5920 }
5921
5922 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5923 {
5924         struct e1000_hw *hw = &adapter->hw;
5925         u32 vmolr = rd32(E1000_VMOLR(vf));
5926         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5927
5928         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5929                             IGB_VF_FLAG_MULTI_PROMISC);
5930         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5931
5932         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5933                 vmolr |= E1000_VMOLR_MPME;
5934                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5935                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5936         } else {
5937                 /* if we have hashes and we are clearing a multicast promisc
5938                  * flag we need to write the hashes to the MTA as this step
5939                  * was previously skipped
5940                  */
5941                 if (vf_data->num_vf_mc_hashes > 30) {
5942                         vmolr |= E1000_VMOLR_MPME;
5943                 } else if (vf_data->num_vf_mc_hashes) {
5944                         int j;
5945
5946                         vmolr |= E1000_VMOLR_ROMPE;
5947                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5948                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5949                 }
5950         }
5951
5952         wr32(E1000_VMOLR(vf), vmolr);
5953
5954         /* there are flags left unprocessed, likely not supported */
5955         if (*msgbuf & E1000_VT_MSGINFO_MASK)
5956                 return -EINVAL;
5957
5958         return 0;
5959 }
5960
5961 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5962                                   u32 *msgbuf, u32 vf)
5963 {
5964         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5965         u16 *hash_list = (u16 *)&msgbuf[1];
5966         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5967         int i;
5968
5969         /* salt away the number of multicast addresses assigned
5970          * to this VF for later use to restore when the PF multi cast
5971          * list changes
5972          */
5973         vf_data->num_vf_mc_hashes = n;
5974
5975         /* only up to 30 hash values supported */
5976         if (n > 30)
5977                 n = 30;
5978
5979         /* store the hashes for later use */
5980         for (i = 0; i < n; i++)
5981                 vf_data->vf_mc_hashes[i] = hash_list[i];
5982
5983         /* Flush and reset the mta with the new values */
5984         igb_set_rx_mode(adapter->netdev);
5985
5986         return 0;
5987 }
5988
5989 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5990 {
5991         struct e1000_hw *hw = &adapter->hw;
5992         struct vf_data_storage *vf_data;
5993         int i, j;
5994
5995         for (i = 0; i < adapter->vfs_allocated_count; i++) {
5996                 u32 vmolr = rd32(E1000_VMOLR(i));
5997
5998                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5999
6000                 vf_data = &adapter->vf_data[i];
6001
6002                 if ((vf_data->num_vf_mc_hashes > 30) ||
6003                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6004                         vmolr |= E1000_VMOLR_MPME;
6005                 } else if (vf_data->num_vf_mc_hashes) {
6006                         vmolr |= E1000_VMOLR_ROMPE;
6007                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6008                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6009                 }
6010                 wr32(E1000_VMOLR(i), vmolr);
6011         }
6012 }
6013
6014 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6015 {
6016         struct e1000_hw *hw = &adapter->hw;
6017         u32 pool_mask, vlvf_mask, i;
6018
6019         /* create mask for VF and other pools */
6020         pool_mask = E1000_VLVF_POOLSEL_MASK;
6021         vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6022
6023         /* drop PF from pool bits */
6024         pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6025                              adapter->vfs_allocated_count);
6026
6027         /* Find the vlan filter for this id */
6028         for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6029                 u32 vlvf = rd32(E1000_VLVF(i));
6030                 u32 vfta_mask, vid, vfta;
6031
6032                 /* remove the vf from the pool */
6033                 if (!(vlvf & vlvf_mask))
6034                         continue;
6035
6036                 /* clear out bit from VLVF */
6037                 vlvf ^= vlvf_mask;
6038
6039                 /* if other pools are present, just remove ourselves */
6040                 if (vlvf & pool_mask)
6041                         goto update_vlvfb;
6042
6043                 /* if PF is present, leave VFTA */
6044                 if (vlvf & E1000_VLVF_POOLSEL_MASK)
6045                         goto update_vlvf;
6046
6047                 vid = vlvf & E1000_VLVF_VLANID_MASK;
6048                 vfta_mask = BIT(vid % 32);
6049
6050                 /* clear bit from VFTA */
6051                 vfta = adapter->shadow_vfta[vid / 32];
6052                 if (vfta & vfta_mask)
6053                         hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6054 update_vlvf:
6055                 /* clear pool selection enable */
6056                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6057                         vlvf &= E1000_VLVF_POOLSEL_MASK;
6058                 else
6059                         vlvf = 0;
6060 update_vlvfb:
6061                 /* clear pool bits */
6062                 wr32(E1000_VLVF(i), vlvf);
6063         }
6064 }
6065
6066 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6067 {
6068         u32 vlvf;
6069         int idx;
6070
6071         /* short cut the special case */
6072         if (vlan == 0)
6073                 return 0;
6074
6075         /* Search for the VLAN id in the VLVF entries */
6076         for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6077                 vlvf = rd32(E1000_VLVF(idx));
6078                 if ((vlvf & VLAN_VID_MASK) == vlan)
6079                         break;
6080         }
6081
6082         return idx;
6083 }
6084
6085 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6086 {
6087         struct e1000_hw *hw = &adapter->hw;
6088         u32 bits, pf_id;
6089         int idx;
6090
6091         idx = igb_find_vlvf_entry(hw, vid);
6092         if (!idx)
6093                 return;
6094
6095         /* See if any other pools are set for this VLAN filter
6096          * entry other than the PF.
6097          */
6098         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6099         bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6100         bits &= rd32(E1000_VLVF(idx));
6101
6102         /* Disable the filter so this falls into the default pool. */
6103         if (!bits) {
6104                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6105                         wr32(E1000_VLVF(idx), BIT(pf_id));
6106                 else
6107                         wr32(E1000_VLVF(idx), 0);
6108         }
6109 }
6110
6111 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6112                            bool add, u32 vf)
6113 {
6114         int pf_id = adapter->vfs_allocated_count;
6115         struct e1000_hw *hw = &adapter->hw;
6116         int err;
6117
6118         /* If VLAN overlaps with one the PF is currently monitoring make
6119          * sure that we are able to allocate a VLVF entry.  This may be
6120          * redundant but it guarantees PF will maintain visibility to
6121          * the VLAN.
6122          */
6123         if (add && test_bit(vid, adapter->active_vlans)) {
6124                 err = igb_vfta_set(hw, vid, pf_id, true, false);
6125                 if (err)
6126                         return err;
6127         }
6128
6129         err = igb_vfta_set(hw, vid, vf, add, false);
6130
6131         if (add && !err)
6132                 return err;
6133
6134         /* If we failed to add the VF VLAN or we are removing the VF VLAN
6135          * we may need to drop the PF pool bit in order to allow us to free
6136          * up the VLVF resources.
6137          */
6138         if (test_bit(vid, adapter->active_vlans) ||
6139             (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6140                 igb_update_pf_vlvf(adapter, vid);
6141
6142         return err;
6143 }
6144
6145 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6146 {
6147         struct e1000_hw *hw = &adapter->hw;
6148
6149         if (vid)
6150                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6151         else
6152                 wr32(E1000_VMVIR(vf), 0);
6153 }
6154
6155 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6156                                 u16 vlan, u8 qos)
6157 {
6158         int err;
6159
6160         err = igb_set_vf_vlan(adapter, vlan, true, vf);
6161         if (err)
6162                 return err;
6163
6164         igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6165         igb_set_vmolr(adapter, vf, !vlan);
6166
6167         /* revoke access to previous VLAN */
6168         if (vlan != adapter->vf_data[vf].pf_vlan)
6169                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6170                                 false, vf);
6171
6172         adapter->vf_data[vf].pf_vlan = vlan;
6173         adapter->vf_data[vf].pf_qos = qos;
6174         igb_set_vf_vlan_strip(adapter, vf, true);
6175         dev_info(&adapter->pdev->dev,
6176                  "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6177         if (test_bit(__IGB_DOWN, &adapter->state)) {
6178                 dev_warn(&adapter->pdev->dev,
6179                          "The VF VLAN has been set, but the PF device is not up.\n");
6180                 dev_warn(&adapter->pdev->dev,
6181                          "Bring the PF device up before attempting to use the VF device.\n");
6182         }
6183
6184         return err;
6185 }
6186
6187 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
6188 {
6189         /* Restore tagless access via VLAN 0 */
6190         igb_set_vf_vlan(adapter, 0, true, vf);
6191
6192         igb_set_vmvir(adapter, 0, vf);
6193         igb_set_vmolr(adapter, vf, true);
6194
6195         /* Remove any PF assigned VLAN */
6196         if (adapter->vf_data[vf].pf_vlan)
6197                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6198                                 false, vf);
6199
6200         adapter->vf_data[vf].pf_vlan = 0;
6201         adapter->vf_data[vf].pf_qos = 0;
6202         igb_set_vf_vlan_strip(adapter, vf, false);
6203
6204         return 0;
6205 }
6206
6207 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
6208                                int vf, u16 vlan, u8 qos)
6209 {
6210         struct igb_adapter *adapter = netdev_priv(netdev);
6211
6212         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
6213                 return -EINVAL;
6214
6215         return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
6216                                igb_disable_port_vlan(adapter, vf);
6217 }
6218
6219 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6220 {
6221         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6222         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6223         int ret;
6224
6225         if (adapter->vf_data[vf].pf_vlan)
6226                 return -1;
6227
6228         /* VLAN 0 is a special case, don't allow it to be removed */
6229         if (!vid && !add)
6230                 return 0;
6231
6232         ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
6233         if (!ret)
6234                 igb_set_vf_vlan_strip(adapter, vf, !!vid);
6235         return ret;
6236 }
6237
6238 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6239 {
6240         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6241
6242         /* clear flags - except flag that indicates PF has set the MAC */
6243         vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
6244         vf_data->last_nack = jiffies;
6245
6246         /* reset vlans for device */
6247         igb_clear_vf_vfta(adapter, vf);
6248         igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
6249         igb_set_vmvir(adapter, vf_data->pf_vlan |
6250                                (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
6251         igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
6252         igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
6253
6254         /* reset multicast table array for vf */
6255         adapter->vf_data[vf].num_vf_mc_hashes = 0;
6256
6257         /* Flush and reset the mta with the new values */
6258         igb_set_rx_mode(adapter->netdev);
6259 }
6260
6261 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6262 {
6263         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6264
6265         /* clear mac address as we were hotplug removed/added */
6266         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6267                 eth_zero_addr(vf_mac);
6268
6269         /* process remaining reset events */
6270         igb_vf_reset(adapter, vf);
6271 }
6272
6273 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6274 {
6275         struct e1000_hw *hw = &adapter->hw;
6276         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6277         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6278         u32 reg, msgbuf[3];
6279         u8 *addr = (u8 *)(&msgbuf[1]);
6280
6281         /* process all the same items cleared in a function level reset */
6282         igb_vf_reset(adapter, vf);
6283
6284         /* set vf mac address */
6285         igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6286
6287         /* enable transmit and receive for vf */
6288         reg = rd32(E1000_VFTE);
6289         wr32(E1000_VFTE, reg | BIT(vf));
6290         reg = rd32(E1000_VFRE);
6291         wr32(E1000_VFRE, reg | BIT(vf));
6292
6293         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6294
6295         /* reply to reset with ack and vf mac address */
6296         if (!is_zero_ether_addr(vf_mac)) {
6297                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6298                 memcpy(addr, vf_mac, ETH_ALEN);
6299         } else {
6300                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6301         }
6302         igb_write_mbx(hw, msgbuf, 3, vf);
6303 }
6304
6305 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6306 {
6307         /* The VF MAC Address is stored in a packed array of bytes
6308          * starting at the second 32 bit word of the msg array
6309          */
6310         unsigned char *addr = (char *)&msg[1];
6311         int err = -1;
6312
6313         if (is_valid_ether_addr(addr))
6314                 err = igb_set_vf_mac(adapter, vf, addr);
6315
6316         return err;
6317 }
6318
6319 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6320 {
6321         struct e1000_hw *hw = &adapter->hw;
6322         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6323         u32 msg = E1000_VT_MSGTYPE_NACK;
6324
6325         /* if device isn't clear to send it shouldn't be reading either */
6326         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6327             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6328                 igb_write_mbx(hw, &msg, 1, vf);
6329                 vf_data->last_nack = jiffies;
6330         }
6331 }
6332
6333 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6334 {
6335         struct pci_dev *pdev = adapter->pdev;
6336         u32 msgbuf[E1000_VFMAILBOX_SIZE];
6337         struct e1000_hw *hw = &adapter->hw;
6338         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6339         s32 retval;
6340
6341         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6342
6343         if (retval) {
6344                 /* if receive failed revoke VF CTS stats and restart init */
6345                 dev_err(&pdev->dev, "Error receiving message from VF\n");
6346                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6347                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6348                         return;
6349                 goto out;
6350         }
6351
6352         /* this is a message we already processed, do nothing */
6353         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6354                 return;
6355
6356         /* until the vf completes a reset it should not be
6357          * allowed to start any configuration.
6358          */
6359         if (msgbuf[0] == E1000_VF_RESET) {
6360                 igb_vf_reset_msg(adapter, vf);
6361                 return;
6362         }
6363
6364         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6365                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6366                         return;
6367                 retval = -1;
6368                 goto out;
6369         }
6370
6371         switch ((msgbuf[0] & 0xFFFF)) {
6372         case E1000_VF_SET_MAC_ADDR:
6373                 retval = -EINVAL;
6374                 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6375                         retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6376                 else
6377                         dev_warn(&pdev->dev,
6378                                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6379                                  vf);
6380                 break;
6381         case E1000_VF_SET_PROMISC:
6382                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6383                 break;
6384         case E1000_VF_SET_MULTICAST:
6385                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6386                 break;
6387         case E1000_VF_SET_LPE:
6388                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6389                 break;
6390         case E1000_VF_SET_VLAN:
6391                 retval = -1;
6392                 if (vf_data->pf_vlan)
6393                         dev_warn(&pdev->dev,
6394                                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6395                                  vf);
6396                 else
6397                         retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
6398                 break;
6399         default:
6400                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6401                 retval = -1;
6402                 break;
6403         }
6404
6405         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6406 out:
6407         /* notify the VF of the results of what it sent us */
6408         if (retval)
6409                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6410         else
6411                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6412
6413         igb_write_mbx(hw, msgbuf, 1, vf);
6414 }
6415
6416 static void igb_msg_task(struct igb_adapter *adapter)
6417 {
6418         struct e1000_hw *hw = &adapter->hw;
6419         u32 vf;
6420
6421         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6422                 /* process any reset requests */
6423                 if (!igb_check_for_rst(hw, vf))
6424                         igb_vf_reset_event(adapter, vf);
6425
6426                 /* process any messages pending */
6427                 if (!igb_check_for_msg(hw, vf))
6428                         igb_rcv_msg_from_vf(adapter, vf);
6429
6430                 /* process any acks */
6431                 if (!igb_check_for_ack(hw, vf))
6432                         igb_rcv_ack_from_vf(adapter, vf);
6433         }
6434 }
6435
6436 /**
6437  *  igb_set_uta - Set unicast filter table address
6438  *  @adapter: board private structure
6439  *  @set: boolean indicating if we are setting or clearing bits
6440  *
6441  *  The unicast table address is a register array of 32-bit registers.
6442  *  The table is meant to be used in a way similar to how the MTA is used
6443  *  however due to certain limitations in the hardware it is necessary to
6444  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6445  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6446  **/
6447 static void igb_set_uta(struct igb_adapter *adapter, bool set)
6448 {
6449         struct e1000_hw *hw = &adapter->hw;
6450         u32 uta = set ? ~0 : 0;
6451         int i;
6452
6453         /* we only need to do this if VMDq is enabled */
6454         if (!adapter->vfs_allocated_count)
6455                 return;
6456
6457         for (i = hw->mac.uta_reg_count; i--;)
6458                 array_wr32(E1000_UTA, i, uta);
6459 }
6460
6461 /**
6462  *  igb_intr_msi - Interrupt Handler
6463  *  @irq: interrupt number
6464  *  @data: pointer to a network interface device structure
6465  **/
6466 static irqreturn_t igb_intr_msi(int irq, void *data)
6467 {
6468         struct igb_adapter *adapter = data;
6469         struct igb_q_vector *q_vector = adapter->q_vector[0];
6470         struct e1000_hw *hw = &adapter->hw;
6471         /* read ICR disables interrupts using IAM */
6472         u32 icr = rd32(E1000_ICR);
6473
6474         igb_write_itr(q_vector);
6475
6476         if (icr & E1000_ICR_DRSTA)
6477                 schedule_work(&adapter->reset_task);
6478
6479         if (icr & E1000_ICR_DOUTSYNC) {
6480                 /* HW is reporting DMA is out of sync */
6481                 adapter->stats.doosync++;
6482         }
6483
6484         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6485                 hw->mac.get_link_status = 1;
6486                 if (!test_bit(__IGB_DOWN, &adapter->state))
6487                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6488         }
6489
6490         if (icr & E1000_ICR_TS)
6491                 igb_tsync_interrupt(adapter);
6492
6493         napi_schedule(&q_vector->napi);
6494
6495         return IRQ_HANDLED;
6496 }
6497
6498 /**
6499  *  igb_intr - Legacy Interrupt Handler
6500  *  @irq: interrupt number
6501  *  @data: pointer to a network interface device structure
6502  **/
6503 static irqreturn_t igb_intr(int irq, void *data)
6504 {
6505         struct igb_adapter *adapter = data;
6506         struct igb_q_vector *q_vector = adapter->q_vector[0];
6507         struct e1000_hw *hw = &adapter->hw;
6508         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6509          * need for the IMC write
6510          */
6511         u32 icr = rd32(E1000_ICR);
6512
6513         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6514          * not set, then the adapter didn't send an interrupt
6515          */
6516         if (!(icr & E1000_ICR_INT_ASSERTED))
6517                 return IRQ_NONE;
6518
6519         igb_write_itr(q_vector);
6520
6521         if (icr & E1000_ICR_DRSTA)
6522                 schedule_work(&adapter->reset_task);
6523
6524         if (icr & E1000_ICR_DOUTSYNC) {
6525                 /* HW is reporting DMA is out of sync */
6526                 adapter->stats.doosync++;
6527         }
6528
6529         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6530                 hw->mac.get_link_status = 1;
6531                 /* guard against interrupt when we're going down */
6532                 if (!test_bit(__IGB_DOWN, &adapter->state))
6533                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6534         }
6535
6536         if (icr & E1000_ICR_TS)
6537                 igb_tsync_interrupt(adapter);
6538
6539         napi_schedule(&q_vector->napi);
6540
6541         return IRQ_HANDLED;
6542 }
6543
6544 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6545 {
6546         struct igb_adapter *adapter = q_vector->adapter;
6547         struct e1000_hw *hw = &adapter->hw;
6548
6549         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6550             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6551                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6552                         igb_set_itr(q_vector);
6553                 else
6554                         igb_update_ring_itr(q_vector);
6555         }
6556
6557         if (!test_bit(__IGB_DOWN, &adapter->state)) {
6558                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6559                         wr32(E1000_EIMS, q_vector->eims_value);
6560                 else
6561                         igb_irq_enable(adapter);
6562         }
6563 }
6564
6565 /**
6566  *  igb_poll - NAPI Rx polling callback
6567  *  @napi: napi polling structure
6568  *  @budget: count of how many packets we should handle
6569  **/
6570 static int igb_poll(struct napi_struct *napi, int budget)
6571 {
6572         struct igb_q_vector *q_vector = container_of(napi,
6573                                                      struct igb_q_vector,
6574                                                      napi);
6575         bool clean_complete = true;
6576         int work_done = 0;
6577
6578 #ifdef CONFIG_IGB_DCA
6579         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6580                 igb_update_dca(q_vector);
6581 #endif
6582         if (q_vector->tx.ring)
6583                 clean_complete = igb_clean_tx_irq(q_vector, budget);
6584
6585         if (q_vector->rx.ring) {
6586                 int cleaned = igb_clean_rx_irq(q_vector, budget);
6587
6588                 work_done += cleaned;
6589                 if (cleaned >= budget)
6590                         clean_complete = false;
6591         }
6592
6593         /* If all work not completed, return budget and keep polling */
6594         if (!clean_complete)
6595                 return budget;
6596
6597         /* If not enough Rx work done, exit the polling mode */
6598         napi_complete_done(napi, work_done);
6599         igb_ring_irq_enable(q_vector);
6600
6601         return 0;
6602 }
6603
6604 /**
6605  *  igb_clean_tx_irq - Reclaim resources after transmit completes
6606  *  @q_vector: pointer to q_vector containing needed info
6607  *  @napi_budget: Used to determine if we are in netpoll
6608  *
6609  *  returns true if ring is completely cleaned
6610  **/
6611 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
6612 {
6613         struct igb_adapter *adapter = q_vector->adapter;
6614         struct igb_ring *tx_ring = q_vector->tx.ring;
6615         struct igb_tx_buffer *tx_buffer;
6616         union e1000_adv_tx_desc *tx_desc;
6617         unsigned int total_bytes = 0, total_packets = 0;
6618         unsigned int budget = q_vector->tx.work_limit;
6619         unsigned int i = tx_ring->next_to_clean;
6620
6621         if (test_bit(__IGB_DOWN, &adapter->state))
6622                 return true;
6623
6624         tx_buffer = &tx_ring->tx_buffer_info[i];
6625         tx_desc = IGB_TX_DESC(tx_ring, i);
6626         i -= tx_ring->count;
6627
6628         do {
6629                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6630
6631                 /* if next_to_watch is not set then there is no work pending */
6632                 if (!eop_desc)
6633                         break;
6634
6635                 /* prevent any other reads prior to eop_desc */
6636                 read_barrier_depends();
6637
6638                 /* if DD is not set pending work has not been completed */
6639                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6640                         break;
6641
6642                 /* clear next_to_watch to prevent false hangs */
6643                 tx_buffer->next_to_watch = NULL;
6644
6645                 /* update the statistics for this packet */
6646                 total_bytes += tx_buffer->bytecount;
6647                 total_packets += tx_buffer->gso_segs;
6648
6649                 /* free the skb */
6650                 napi_consume_skb(tx_buffer->skb, napi_budget);
6651
6652                 /* unmap skb header data */
6653                 dma_unmap_single(tx_ring->dev,
6654                                  dma_unmap_addr(tx_buffer, dma),
6655                                  dma_unmap_len(tx_buffer, len),
6656                                  DMA_TO_DEVICE);
6657
6658                 /* clear tx_buffer data */
6659                 tx_buffer->skb = NULL;
6660                 dma_unmap_len_set(tx_buffer, len, 0);
6661
6662                 /* clear last DMA location and unmap remaining buffers */
6663                 while (tx_desc != eop_desc) {
6664                         tx_buffer++;
6665                         tx_desc++;
6666                         i++;
6667                         if (unlikely(!i)) {
6668                                 i -= tx_ring->count;
6669                                 tx_buffer = tx_ring->tx_buffer_info;
6670                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
6671                         }
6672
6673                         /* unmap any remaining paged data */
6674                         if (dma_unmap_len(tx_buffer, len)) {
6675                                 dma_unmap_page(tx_ring->dev,
6676                                                dma_unmap_addr(tx_buffer, dma),
6677                                                dma_unmap_len(tx_buffer, len),
6678                                                DMA_TO_DEVICE);
6679                                 dma_unmap_len_set(tx_buffer, len, 0);
6680                         }
6681                 }
6682
6683                 /* move us one more past the eop_desc for start of next pkt */
6684                 tx_buffer++;
6685                 tx_desc++;
6686                 i++;
6687                 if (unlikely(!i)) {
6688                         i -= tx_ring->count;
6689                         tx_buffer = tx_ring->tx_buffer_info;
6690                         tx_desc = IGB_TX_DESC(tx_ring, 0);
6691                 }
6692
6693                 /* issue prefetch for next Tx descriptor */
6694                 prefetch(tx_desc);
6695
6696                 /* update budget accounting */
6697                 budget--;
6698         } while (likely(budget));
6699
6700         netdev_tx_completed_queue(txring_txq(tx_ring),
6701                                   total_packets, total_bytes);
6702         i += tx_ring->count;
6703         tx_ring->next_to_clean = i;
6704         u64_stats_update_begin(&tx_ring->tx_syncp);
6705         tx_ring->tx_stats.bytes += total_bytes;
6706         tx_ring->tx_stats.packets += total_packets;
6707         u64_stats_update_end(&tx_ring->tx_syncp);
6708         q_vector->tx.total_bytes += total_bytes;
6709         q_vector->tx.total_packets += total_packets;
6710
6711         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6712                 struct e1000_hw *hw = &adapter->hw;
6713
6714                 /* Detect a transmit hang in hardware, this serializes the
6715                  * check with the clearing of time_stamp and movement of i
6716                  */
6717                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6718                 if (tx_buffer->next_to_watch &&
6719                     time_after(jiffies, tx_buffer->time_stamp +
6720                                (adapter->tx_timeout_factor * HZ)) &&
6721                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6722
6723                         /* detected Tx unit hang */
6724                         dev_err(tx_ring->dev,
6725                                 "Detected Tx Unit Hang\n"
6726                                 "  Tx Queue             <%d>\n"
6727                                 "  TDH                  <%x>\n"
6728                                 "  TDT                  <%x>\n"
6729                                 "  next_to_use          <%x>\n"
6730                                 "  next_to_clean        <%x>\n"
6731                                 "buffer_info[next_to_clean]\n"
6732                                 "  time_stamp           <%lx>\n"
6733                                 "  next_to_watch        <%p>\n"
6734                                 "  jiffies              <%lx>\n"
6735                                 "  desc.status          <%x>\n",
6736                                 tx_ring->queue_index,
6737                                 rd32(E1000_TDH(tx_ring->reg_idx)),
6738                                 readl(tx_ring->tail),
6739                                 tx_ring->next_to_use,
6740                                 tx_ring->next_to_clean,
6741                                 tx_buffer->time_stamp,
6742                                 tx_buffer->next_to_watch,
6743                                 jiffies,
6744                                 tx_buffer->next_to_watch->wb.status);
6745                         netif_stop_subqueue(tx_ring->netdev,
6746                                             tx_ring->queue_index);
6747
6748                         /* we are about to reset, no point in enabling stuff */
6749                         return true;
6750                 }
6751         }
6752
6753 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6754         if (unlikely(total_packets &&
6755             netif_carrier_ok(tx_ring->netdev) &&
6756             igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6757                 /* Make sure that anybody stopping the queue after this
6758                  * sees the new next_to_clean.
6759                  */
6760                 smp_mb();
6761                 if (__netif_subqueue_stopped(tx_ring->netdev,
6762                                              tx_ring->queue_index) &&
6763                     !(test_bit(__IGB_DOWN, &adapter->state))) {
6764                         netif_wake_subqueue(tx_ring->netdev,
6765                                             tx_ring->queue_index);
6766
6767                         u64_stats_update_begin(&tx_ring->tx_syncp);
6768                         tx_ring->tx_stats.restart_queue++;
6769                         u64_stats_update_end(&tx_ring->tx_syncp);
6770                 }
6771         }
6772
6773         return !!budget;
6774 }
6775
6776 /**
6777  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6778  *  @rx_ring: rx descriptor ring to store buffers on
6779  *  @old_buff: donor buffer to have page reused
6780  *
6781  *  Synchronizes page for reuse by the adapter
6782  **/
6783 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6784                               struct igb_rx_buffer *old_buff)
6785 {
6786         struct igb_rx_buffer *new_buff;
6787         u16 nta = rx_ring->next_to_alloc;
6788
6789         new_buff = &rx_ring->rx_buffer_info[nta];
6790
6791         /* update, and store next to alloc */
6792         nta++;
6793         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6794
6795         /* transfer page from old buffer to new buffer */
6796         *new_buff = *old_buff;
6797
6798         /* sync the buffer for use by the device */
6799         dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6800                                          old_buff->page_offset,
6801                                          IGB_RX_BUFSZ,
6802                                          DMA_FROM_DEVICE);
6803 }
6804
6805 static inline bool igb_page_is_reserved(struct page *page)
6806 {
6807         return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
6808 }
6809
6810 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6811                                   struct page *page,
6812                                   unsigned int truesize)
6813 {
6814         /* avoid re-using remote pages */
6815         if (unlikely(igb_page_is_reserved(page)))
6816                 return false;
6817
6818 #if (PAGE_SIZE < 8192)
6819         /* if we are only owner of page we can reuse it */
6820         if (unlikely(page_count(page) != 1))
6821                 return false;
6822
6823         /* flip page offset to other buffer */
6824         rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6825 #else
6826         /* move offset up to the next cache line */
6827         rx_buffer->page_offset += truesize;
6828
6829         if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6830                 return false;
6831 #endif
6832
6833         /* Even if we own the page, we are not allowed to use atomic_set()
6834          * This would break get_page_unless_zero() users.
6835          */
6836         page_ref_inc(page);
6837
6838         return true;
6839 }
6840
6841 /**
6842  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6843  *  @rx_ring: rx descriptor ring to transact packets on
6844  *  @rx_buffer: buffer containing page to add
6845  *  @rx_desc: descriptor containing length of buffer written by hardware
6846  *  @skb: sk_buff to place the data into
6847  *
6848  *  This function will add the data contained in rx_buffer->page to the skb.
6849  *  This is done either through a direct copy if the data in the buffer is
6850  *  less than the skb header size, otherwise it will just attach the page as
6851  *  a frag to the skb.
6852  *
6853  *  The function will then update the page offset if necessary and return
6854  *  true if the buffer can be reused by the adapter.
6855  **/
6856 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6857                             struct igb_rx_buffer *rx_buffer,
6858                             union e1000_adv_rx_desc *rx_desc,
6859                             struct sk_buff *skb)
6860 {
6861         struct page *page = rx_buffer->page;
6862         unsigned char *va = page_address(page) + rx_buffer->page_offset;
6863         unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6864 #if (PAGE_SIZE < 8192)
6865         unsigned int truesize = IGB_RX_BUFSZ;
6866 #else
6867         unsigned int truesize = SKB_DATA_ALIGN(size);
6868 #endif
6869         unsigned int pull_len;
6870
6871         if (unlikely(skb_is_nonlinear(skb)))
6872                 goto add_tail_frag;
6873
6874         if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
6875                 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6876                 va += IGB_TS_HDR_LEN;
6877                 size -= IGB_TS_HDR_LEN;
6878         }
6879
6880         if (likely(size <= IGB_RX_HDR_LEN)) {
6881                 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6882
6883                 /* page is not reserved, we can reuse buffer as-is */
6884                 if (likely(!igb_page_is_reserved(page)))
6885                         return true;
6886
6887                 /* this page cannot be reused so discard it */
6888                 __free_page(page);
6889                 return false;
6890         }
6891
6892         /* we need the header to contain the greater of either ETH_HLEN or
6893          * 60 bytes if the skb->len is less than 60 for skb_pad.
6894          */
6895         pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6896
6897         /* align pull length to size of long to optimize memcpy performance */
6898         memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
6899
6900         /* update all of the pointers */
6901         va += pull_len;
6902         size -= pull_len;
6903
6904 add_tail_frag:
6905         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6906                         (unsigned long)va & ~PAGE_MASK, size, truesize);
6907
6908         return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6909 }
6910
6911 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6912                                            union e1000_adv_rx_desc *rx_desc,
6913                                            struct sk_buff *skb)
6914 {
6915         struct igb_rx_buffer *rx_buffer;
6916         struct page *page;
6917
6918         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6919         page = rx_buffer->page;
6920         prefetchw(page);
6921
6922         if (likely(!skb)) {
6923                 void *page_addr = page_address(page) +
6924                                   rx_buffer->page_offset;
6925
6926                 /* prefetch first cache line of first page */
6927                 prefetch(page_addr);
6928 #if L1_CACHE_BYTES < 128
6929                 prefetch(page_addr + L1_CACHE_BYTES);
6930 #endif
6931
6932                 /* allocate a skb to store the frags */
6933                 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6934                 if (unlikely(!skb)) {
6935                         rx_ring->rx_stats.alloc_failed++;
6936                         return NULL;
6937                 }
6938
6939                 /* we will be copying header into skb->data in
6940                  * pskb_may_pull so it is in our interest to prefetch
6941                  * it now to avoid a possible cache miss
6942                  */
6943                 prefetchw(skb->data);
6944         }
6945
6946         /* we are reusing so sync this buffer for CPU use */
6947         dma_sync_single_range_for_cpu(rx_ring->dev,
6948                                       rx_buffer->dma,
6949                                       rx_buffer->page_offset,
6950                                       IGB_RX_BUFSZ,
6951                                       DMA_FROM_DEVICE);
6952
6953         /* pull page into skb */
6954         if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6955                 /* hand second half of page back to the ring */
6956                 igb_reuse_rx_page(rx_ring, rx_buffer);
6957         } else {
6958                 /* we are not reusing the buffer so unmap it */
6959                 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6960                                PAGE_SIZE, DMA_FROM_DEVICE);
6961         }
6962
6963         /* clear contents of rx_buffer */
6964         rx_buffer->page = NULL;
6965
6966         return skb;
6967 }
6968
6969 static inline void igb_rx_checksum(struct igb_ring *ring,
6970                                    union e1000_adv_rx_desc *rx_desc,
6971                                    struct sk_buff *skb)
6972 {
6973         skb_checksum_none_assert(skb);
6974
6975         /* Ignore Checksum bit is set */
6976         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6977                 return;
6978
6979         /* Rx checksum disabled via ethtool */
6980         if (!(ring->netdev->features & NETIF_F_RXCSUM))
6981                 return;
6982
6983         /* TCP/UDP checksum error bit is set */
6984         if (igb_test_staterr(rx_desc,
6985                              E1000_RXDEXT_STATERR_TCPE |
6986                              E1000_RXDEXT_STATERR_IPE)) {
6987                 /* work around errata with sctp packets where the TCPE aka
6988                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6989                  * packets, (aka let the stack check the crc32c)
6990                  */
6991                 if (!((skb->len == 60) &&
6992                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6993                         u64_stats_update_begin(&ring->rx_syncp);
6994                         ring->rx_stats.csum_err++;
6995                         u64_stats_update_end(&ring->rx_syncp);
6996                 }
6997                 /* let the stack verify checksum errors */
6998                 return;
6999         }
7000         /* It must be a TCP or UDP packet with a valid checksum */
7001         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
7002                                       E1000_RXD_STAT_UDPCS))
7003                 skb->ip_summed = CHECKSUM_UNNECESSARY;
7004
7005         dev_dbg(ring->dev, "cksum success: bits %08X\n",
7006                 le32_to_cpu(rx_desc->wb.upper.status_error));
7007 }
7008
7009 static inline void igb_rx_hash(struct igb_ring *ring,
7010                                union e1000_adv_rx_desc *rx_desc,
7011                                struct sk_buff *skb)
7012 {
7013         if (ring->netdev->features & NETIF_F_RXHASH)
7014                 skb_set_hash(skb,
7015                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
7016                              PKT_HASH_TYPE_L3);
7017 }
7018
7019 /**
7020  *  igb_is_non_eop - process handling of non-EOP buffers
7021  *  @rx_ring: Rx ring being processed
7022  *  @rx_desc: Rx descriptor for current buffer
7023  *  @skb: current socket buffer containing buffer in progress
7024  *
7025  *  This function updates next to clean.  If the buffer is an EOP buffer
7026  *  this function exits returning false, otherwise it will place the
7027  *  sk_buff in the next buffer to be chained and return true indicating
7028  *  that this is in fact a non-EOP buffer.
7029  **/
7030 static bool igb_is_non_eop(struct igb_ring *rx_ring,
7031                            union e1000_adv_rx_desc *rx_desc)
7032 {
7033         u32 ntc = rx_ring->next_to_clean + 1;
7034
7035         /* fetch, update, and store next to clean */
7036         ntc = (ntc < rx_ring->count) ? ntc : 0;
7037         rx_ring->next_to_clean = ntc;
7038
7039         prefetch(IGB_RX_DESC(rx_ring, ntc));
7040
7041         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
7042                 return false;
7043
7044         return true;
7045 }
7046
7047 /**
7048  *  igb_cleanup_headers - Correct corrupted or empty headers
7049  *  @rx_ring: rx descriptor ring packet is being transacted on
7050  *  @rx_desc: pointer to the EOP Rx descriptor
7051  *  @skb: pointer to current skb being fixed
7052  *
7053  *  Address the case where we are pulling data in on pages only
7054  *  and as such no data is present in the skb header.
7055  *
7056  *  In addition if skb is not at least 60 bytes we need to pad it so that
7057  *  it is large enough to qualify as a valid Ethernet frame.
7058  *
7059  *  Returns true if an error was encountered and skb was freed.
7060  **/
7061 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
7062                                 union e1000_adv_rx_desc *rx_desc,
7063                                 struct sk_buff *skb)
7064 {
7065         if (unlikely((igb_test_staterr(rx_desc,
7066                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
7067                 struct net_device *netdev = rx_ring->netdev;
7068                 if (!(netdev->features & NETIF_F_RXALL)) {
7069                         dev_kfree_skb_any(skb);
7070                         return true;
7071                 }
7072         }
7073
7074         /* if eth_skb_pad returns an error the skb was freed */
7075         if (eth_skb_pad(skb))
7076                 return true;
7077
7078         return false;
7079 }
7080
7081 /**
7082  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
7083  *  @rx_ring: rx descriptor ring packet is being transacted on
7084  *  @rx_desc: pointer to the EOP Rx descriptor
7085  *  @skb: pointer to current skb being populated
7086  *
7087  *  This function checks the ring, descriptor, and packet information in
7088  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
7089  *  other fields within the skb.
7090  **/
7091 static void igb_process_skb_fields(struct igb_ring *rx_ring,
7092                                    union e1000_adv_rx_desc *rx_desc,
7093                                    struct sk_buff *skb)
7094 {
7095         struct net_device *dev = rx_ring->netdev;
7096
7097         igb_rx_hash(rx_ring, rx_desc, skb);
7098
7099         igb_rx_checksum(rx_ring, rx_desc, skb);
7100
7101         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
7102             !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
7103                 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
7104
7105         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
7106             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7107                 u16 vid;
7108
7109                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7110                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7111                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7112                 else
7113                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7114
7115                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
7116         }
7117
7118         skb_record_rx_queue(skb, rx_ring->queue_index);
7119
7120         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
7121 }
7122
7123 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
7124 {
7125         struct igb_ring *rx_ring = q_vector->rx.ring;
7126         struct sk_buff *skb = rx_ring->skb;
7127         unsigned int total_bytes = 0, total_packets = 0;
7128         u16 cleaned_count = igb_desc_unused(rx_ring);
7129
7130         while (likely(total_packets < budget)) {
7131                 union e1000_adv_rx_desc *rx_desc;
7132
7133                 /* return some buffers to hardware, one at a time is too slow */
7134                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7135                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
7136                         cleaned_count = 0;
7137                 }
7138
7139                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7140
7141                 if (!rx_desc->wb.upper.status_error)
7142                         break;
7143
7144                 /* This memory barrier is needed to keep us from reading
7145                  * any other fields out of the rx_desc until we know the
7146                  * descriptor has been written back
7147                  */
7148                 dma_rmb();
7149
7150                 /* retrieve a buffer from the ring */
7151                 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7152
7153                 /* exit if we failed to retrieve a buffer */
7154                 if (!skb)
7155                         break;
7156
7157                 cleaned_count++;
7158
7159                 /* fetch next buffer in frame if non-eop */
7160                 if (igb_is_non_eop(rx_ring, rx_desc))
7161                         continue;
7162
7163                 /* verify the packet layout is correct */
7164                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7165                         skb = NULL;
7166                         continue;
7167                 }
7168
7169                 /* probably a little skewed due to removing CRC */
7170                 total_bytes += skb->len;
7171
7172                 /* populate checksum, timestamp, VLAN, and protocol */
7173                 igb_process_skb_fields(rx_ring, rx_desc, skb);
7174
7175                 napi_gro_receive(&q_vector->napi, skb);
7176
7177                 /* reset skb pointer */
7178                 skb = NULL;
7179
7180                 /* update budget accounting */
7181                 total_packets++;
7182         }
7183
7184         /* place incomplete frames back on ring for completion */
7185         rx_ring->skb = skb;
7186
7187         u64_stats_update_begin(&rx_ring->rx_syncp);
7188         rx_ring->rx_stats.packets += total_packets;
7189         rx_ring->rx_stats.bytes += total_bytes;
7190         u64_stats_update_end(&rx_ring->rx_syncp);
7191         q_vector->rx.total_packets += total_packets;
7192         q_vector->rx.total_bytes += total_bytes;
7193
7194         if (cleaned_count)
7195                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7196
7197         return total_packets;
7198 }
7199
7200 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7201                                   struct igb_rx_buffer *bi)
7202 {
7203         struct page *page = bi->page;
7204         dma_addr_t dma;
7205
7206         /* since we are recycling buffers we should seldom need to alloc */
7207         if (likely(page))
7208                 return true;
7209
7210         /* alloc new page for storage */
7211         page = dev_alloc_page();
7212         if (unlikely(!page)) {
7213                 rx_ring->rx_stats.alloc_failed++;
7214                 return false;
7215         }
7216
7217         /* map page for use */
7218         dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7219
7220         /* if mapping failed free memory back to system since
7221          * there isn't much point in holding memory we can't use
7222          */
7223         if (dma_mapping_error(rx_ring->dev, dma)) {
7224                 __free_page(page);
7225
7226                 rx_ring->rx_stats.alloc_failed++;
7227                 return false;
7228         }
7229
7230         bi->dma = dma;
7231         bi->page = page;
7232         bi->page_offset = 0;
7233
7234         return true;
7235 }
7236
7237 /**
7238  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7239  *  @adapter: address of board private structure
7240  **/
7241 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7242 {
7243         union e1000_adv_rx_desc *rx_desc;
7244         struct igb_rx_buffer *bi;
7245         u16 i = rx_ring->next_to_use;
7246
7247         /* nothing to do */
7248         if (!cleaned_count)
7249                 return;
7250
7251         rx_desc = IGB_RX_DESC(rx_ring, i);
7252         bi = &rx_ring->rx_buffer_info[i];
7253         i -= rx_ring->count;
7254
7255         do {
7256                 if (!igb_alloc_mapped_page(rx_ring, bi))
7257                         break;
7258
7259                 /* Refresh the desc even if buffer_addrs didn't change
7260                  * because each write-back erases this info.
7261                  */
7262                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7263
7264                 rx_desc++;
7265                 bi++;
7266                 i++;
7267                 if (unlikely(!i)) {
7268                         rx_desc = IGB_RX_DESC(rx_ring, 0);
7269                         bi = rx_ring->rx_buffer_info;
7270                         i -= rx_ring->count;
7271                 }
7272
7273                 /* clear the status bits for the next_to_use descriptor */
7274                 rx_desc->wb.upper.status_error = 0;
7275
7276                 cleaned_count--;
7277         } while (cleaned_count);
7278
7279         i += rx_ring->count;
7280
7281         if (rx_ring->next_to_use != i) {
7282                 /* record the next descriptor to use */
7283                 rx_ring->next_to_use = i;
7284
7285                 /* update next to alloc since we have filled the ring */
7286                 rx_ring->next_to_alloc = i;
7287
7288                 /* Force memory writes to complete before letting h/w
7289                  * know there are new descriptors to fetch.  (Only
7290                  * applicable for weak-ordered memory model archs,
7291                  * such as IA-64).
7292                  */
7293                 wmb();
7294                 writel(i, rx_ring->tail);
7295         }
7296 }
7297
7298 /**
7299  * igb_mii_ioctl -
7300  * @netdev:
7301  * @ifreq:
7302  * @cmd:
7303  **/
7304 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7305 {
7306         struct igb_adapter *adapter = netdev_priv(netdev);
7307         struct mii_ioctl_data *data = if_mii(ifr);
7308
7309         if (adapter->hw.phy.media_type != e1000_media_type_copper)
7310                 return -EOPNOTSUPP;
7311
7312         switch (cmd) {
7313         case SIOCGMIIPHY:
7314                 data->phy_id = adapter->hw.phy.addr;
7315                 break;
7316         case SIOCGMIIREG:
7317                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7318                                      &data->val_out))
7319                         return -EIO;
7320                 break;
7321         case SIOCSMIIREG:
7322         default:
7323                 return -EOPNOTSUPP;
7324         }
7325         return 0;
7326 }
7327
7328 /**
7329  * igb_ioctl -
7330  * @netdev:
7331  * @ifreq:
7332  * @cmd:
7333  **/
7334 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7335 {
7336         switch (cmd) {
7337         case SIOCGMIIPHY:
7338         case SIOCGMIIREG:
7339         case SIOCSMIIREG:
7340                 return igb_mii_ioctl(netdev, ifr, cmd);
7341         case SIOCGHWTSTAMP:
7342                 return igb_ptp_get_ts_config(netdev, ifr);
7343         case SIOCSHWTSTAMP:
7344                 return igb_ptp_set_ts_config(netdev, ifr);
7345         default:
7346                 return -EOPNOTSUPP;
7347         }
7348 }
7349
7350 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7351 {
7352         struct igb_adapter *adapter = hw->back;
7353
7354         pci_read_config_word(adapter->pdev, reg, value);
7355 }
7356
7357 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7358 {
7359         struct igb_adapter *adapter = hw->back;
7360
7361         pci_write_config_word(adapter->pdev, reg, *value);
7362 }
7363
7364 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7365 {
7366         struct igb_adapter *adapter = hw->back;
7367
7368         if (pcie_capability_read_word(adapter->pdev, reg, value))
7369                 return -E1000_ERR_CONFIG;
7370
7371         return 0;
7372 }
7373
7374 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7375 {
7376         struct igb_adapter *adapter = hw->back;
7377
7378         if (pcie_capability_write_word(adapter->pdev, reg, *value))
7379                 return -E1000_ERR_CONFIG;
7380
7381         return 0;
7382 }
7383
7384 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7385 {
7386         struct igb_adapter *adapter = netdev_priv(netdev);
7387         struct e1000_hw *hw = &adapter->hw;
7388         u32 ctrl, rctl;
7389         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7390
7391         if (enable) {
7392                 /* enable VLAN tag insert/strip */
7393                 ctrl = rd32(E1000_CTRL);
7394                 ctrl |= E1000_CTRL_VME;
7395                 wr32(E1000_CTRL, ctrl);
7396
7397                 /* Disable CFI check */
7398                 rctl = rd32(E1000_RCTL);
7399                 rctl &= ~E1000_RCTL_CFIEN;
7400                 wr32(E1000_RCTL, rctl);
7401         } else {
7402                 /* disable VLAN tag insert/strip */
7403                 ctrl = rd32(E1000_CTRL);
7404                 ctrl &= ~E1000_CTRL_VME;
7405                 wr32(E1000_CTRL, ctrl);
7406         }
7407
7408         igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
7409 }
7410
7411 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7412                                __be16 proto, u16 vid)
7413 {
7414         struct igb_adapter *adapter = netdev_priv(netdev);
7415         struct e1000_hw *hw = &adapter->hw;
7416         int pf_id = adapter->vfs_allocated_count;
7417
7418         /* add the filter since PF can receive vlans w/o entry in vlvf */
7419         if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7420                 igb_vfta_set(hw, vid, pf_id, true, !!vid);
7421
7422         set_bit(vid, adapter->active_vlans);
7423
7424         return 0;
7425 }
7426
7427 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7428                                 __be16 proto, u16 vid)
7429 {
7430         struct igb_adapter *adapter = netdev_priv(netdev);
7431         int pf_id = adapter->vfs_allocated_count;
7432         struct e1000_hw *hw = &adapter->hw;
7433
7434         /* remove VID from filter table */
7435         if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7436                 igb_vfta_set(hw, vid, pf_id, false, true);
7437
7438         clear_bit(vid, adapter->active_vlans);
7439
7440         return 0;
7441 }
7442
7443 static void igb_restore_vlan(struct igb_adapter *adapter)
7444 {
7445         u16 vid = 1;
7446
7447         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7448         igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
7449
7450         for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
7451                 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7452 }
7453
7454 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7455 {
7456         struct pci_dev *pdev = adapter->pdev;
7457         struct e1000_mac_info *mac = &adapter->hw.mac;
7458
7459         mac->autoneg = 0;
7460
7461         /* Make sure dplx is at most 1 bit and lsb of speed is not set
7462          * for the switch() below to work
7463          */
7464         if ((spd & 1) || (dplx & ~1))
7465                 goto err_inval;
7466
7467         /* Fiber NIC's only allow 1000 gbps Full duplex
7468          * and 100Mbps Full duplex for 100baseFx sfp
7469          */
7470         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7471                 switch (spd + dplx) {
7472                 case SPEED_10 + DUPLEX_HALF:
7473                 case SPEED_10 + DUPLEX_FULL:
7474                 case SPEED_100 + DUPLEX_HALF:
7475                         goto err_inval;
7476                 default:
7477                         break;
7478                 }
7479         }
7480
7481         switch (spd + dplx) {
7482         case SPEED_10 + DUPLEX_HALF:
7483                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7484                 break;
7485         case SPEED_10 + DUPLEX_FULL:
7486                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7487                 break;
7488         case SPEED_100 + DUPLEX_HALF:
7489                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7490                 break;
7491         case SPEED_100 + DUPLEX_FULL:
7492                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7493                 break;
7494         case SPEED_1000 + DUPLEX_FULL:
7495                 mac->autoneg = 1;
7496                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7497                 break;
7498         case SPEED_1000 + DUPLEX_HALF: /* not supported */
7499         default:
7500                 goto err_inval;
7501         }
7502
7503         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7504         adapter->hw.phy.mdix = AUTO_ALL_MODES;
7505
7506         return 0;
7507
7508 err_inval:
7509         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7510         return -EINVAL;
7511 }
7512
7513 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7514                           bool runtime)
7515 {
7516         struct net_device *netdev = pci_get_drvdata(pdev);
7517         struct igb_adapter *adapter = netdev_priv(netdev);
7518         struct e1000_hw *hw = &adapter->hw;
7519         u32 ctrl, rctl, status;
7520         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7521 #ifdef CONFIG_PM
7522         int retval = 0;
7523 #endif
7524
7525         netif_device_detach(netdev);
7526
7527         if (netif_running(netdev))
7528                 __igb_close(netdev, true);
7529
7530         igb_clear_interrupt_scheme(adapter);
7531
7532 #ifdef CONFIG_PM
7533         retval = pci_save_state(pdev);
7534         if (retval)
7535                 return retval;
7536 #endif
7537
7538         status = rd32(E1000_STATUS);
7539         if (status & E1000_STATUS_LU)
7540                 wufc &= ~E1000_WUFC_LNKC;
7541
7542         if (wufc) {
7543                 igb_setup_rctl(adapter);
7544                 igb_set_rx_mode(netdev);
7545
7546                 /* turn on all-multi mode if wake on multicast is enabled */
7547                 if (wufc & E1000_WUFC_MC) {
7548                         rctl = rd32(E1000_RCTL);
7549                         rctl |= E1000_RCTL_MPE;
7550                         wr32(E1000_RCTL, rctl);
7551                 }
7552
7553                 ctrl = rd32(E1000_CTRL);
7554                 /* advertise wake from D3Cold */
7555                 #define E1000_CTRL_ADVD3WUC 0x00100000
7556                 /* phy power management enable */
7557                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7558                 ctrl |= E1000_CTRL_ADVD3WUC;
7559                 wr32(E1000_CTRL, ctrl);
7560
7561                 /* Allow time for pending master requests to run */
7562                 igb_disable_pcie_master(hw);
7563
7564                 wr32(E1000_WUC, E1000_WUC_PME_EN);
7565                 wr32(E1000_WUFC, wufc);
7566         } else {
7567                 wr32(E1000_WUC, 0);
7568                 wr32(E1000_WUFC, 0);
7569         }
7570
7571         *enable_wake = wufc || adapter->en_mng_pt;
7572         if (!*enable_wake)
7573                 igb_power_down_link(adapter);
7574         else
7575                 igb_power_up_link(adapter);
7576
7577         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7578          * would have already happened in close and is redundant.
7579          */
7580         igb_release_hw_control(adapter);
7581
7582         pci_disable_device(pdev);
7583
7584         return 0;
7585 }
7586
7587 #ifdef CONFIG_PM
7588 #ifdef CONFIG_PM_SLEEP
7589 static int igb_suspend(struct device *dev)
7590 {
7591         int retval;
7592         bool wake;
7593         struct pci_dev *pdev = to_pci_dev(dev);
7594
7595         retval = __igb_shutdown(pdev, &wake, 0);
7596         if (retval)
7597                 return retval;
7598
7599         if (wake) {
7600                 pci_prepare_to_sleep(pdev);
7601         } else {
7602                 pci_wake_from_d3(pdev, false);
7603                 pci_set_power_state(pdev, PCI_D3hot);
7604         }
7605
7606         return 0;
7607 }
7608 #endif /* CONFIG_PM_SLEEP */
7609
7610 static int igb_resume(struct device *dev)
7611 {
7612         struct pci_dev *pdev = to_pci_dev(dev);
7613         struct net_device *netdev = pci_get_drvdata(pdev);
7614         struct igb_adapter *adapter = netdev_priv(netdev);
7615         struct e1000_hw *hw = &adapter->hw;
7616         u32 err;
7617
7618         pci_set_power_state(pdev, PCI_D0);
7619         pci_restore_state(pdev);
7620         pci_save_state(pdev);
7621
7622         if (!pci_device_is_present(pdev))
7623                 return -ENODEV;
7624         err = pci_enable_device_mem(pdev);
7625         if (err) {
7626                 dev_err(&pdev->dev,
7627                         "igb: Cannot enable PCI device from suspend\n");
7628                 return err;
7629         }
7630         pci_set_master(pdev);
7631
7632         pci_enable_wake(pdev, PCI_D3hot, 0);
7633         pci_enable_wake(pdev, PCI_D3cold, 0);
7634
7635         if (igb_init_interrupt_scheme(adapter, true)) {
7636                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7637                 return -ENOMEM;
7638         }
7639
7640         igb_reset(adapter);
7641
7642         /* let the f/w know that the h/w is now under the control of the
7643          * driver.
7644          */
7645         igb_get_hw_control(adapter);
7646
7647         wr32(E1000_WUS, ~0);
7648
7649         if (netdev->flags & IFF_UP) {
7650                 rtnl_lock();
7651                 err = __igb_open(netdev, true);
7652                 rtnl_unlock();
7653                 if (err)
7654                         return err;
7655         }
7656
7657         netif_device_attach(netdev);
7658         return 0;
7659 }
7660
7661 static int igb_runtime_idle(struct device *dev)
7662 {
7663         struct pci_dev *pdev = to_pci_dev(dev);
7664         struct net_device *netdev = pci_get_drvdata(pdev);
7665         struct igb_adapter *adapter = netdev_priv(netdev);
7666
7667         if (!igb_has_link(adapter))
7668                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7669
7670         return -EBUSY;
7671 }
7672
7673 static int igb_runtime_suspend(struct device *dev)
7674 {
7675         struct pci_dev *pdev = to_pci_dev(dev);
7676         int retval;
7677         bool wake;
7678
7679         retval = __igb_shutdown(pdev, &wake, 1);
7680         if (retval)
7681                 return retval;
7682
7683         if (wake) {
7684                 pci_prepare_to_sleep(pdev);
7685         } else {
7686                 pci_wake_from_d3(pdev, false);
7687                 pci_set_power_state(pdev, PCI_D3hot);
7688         }
7689
7690         return 0;
7691 }
7692
7693 static int igb_runtime_resume(struct device *dev)
7694 {
7695         return igb_resume(dev);
7696 }
7697 #endif /* CONFIG_PM */
7698
7699 static void igb_shutdown(struct pci_dev *pdev)
7700 {
7701         bool wake;
7702
7703         __igb_shutdown(pdev, &wake, 0);
7704
7705         if (system_state == SYSTEM_POWER_OFF) {
7706                 pci_wake_from_d3(pdev, wake);
7707                 pci_set_power_state(pdev, PCI_D3hot);
7708         }
7709 }
7710
7711 #ifdef CONFIG_PCI_IOV
7712 static int igb_sriov_reinit(struct pci_dev *dev)
7713 {
7714         struct net_device *netdev = pci_get_drvdata(dev);
7715         struct igb_adapter *adapter = netdev_priv(netdev);
7716         struct pci_dev *pdev = adapter->pdev;
7717
7718         rtnl_lock();
7719
7720         if (netif_running(netdev))
7721                 igb_close(netdev);
7722         else
7723                 igb_reset(adapter);
7724
7725         igb_clear_interrupt_scheme(adapter);
7726
7727         igb_init_queue_configuration(adapter);
7728
7729         if (igb_init_interrupt_scheme(adapter, true)) {
7730                 rtnl_unlock();
7731                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7732                 return -ENOMEM;
7733         }
7734
7735         if (netif_running(netdev))
7736                 igb_open(netdev);
7737
7738         rtnl_unlock();
7739
7740         return 0;
7741 }
7742
7743 static int igb_pci_disable_sriov(struct pci_dev *dev)
7744 {
7745         int err = igb_disable_sriov(dev);
7746
7747         if (!err)
7748                 err = igb_sriov_reinit(dev);
7749
7750         return err;
7751 }
7752
7753 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7754 {
7755         int err = igb_enable_sriov(dev, num_vfs);
7756
7757         if (err)
7758                 goto out;
7759
7760         err = igb_sriov_reinit(dev);
7761         if (!err)
7762                 return num_vfs;
7763
7764 out:
7765         return err;
7766 }
7767
7768 #endif
7769 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7770 {
7771 #ifdef CONFIG_PCI_IOV
7772         if (num_vfs == 0)
7773                 return igb_pci_disable_sriov(dev);
7774         else
7775                 return igb_pci_enable_sriov(dev, num_vfs);
7776 #endif
7777         return 0;
7778 }
7779
7780 #ifdef CONFIG_NET_POLL_CONTROLLER
7781 /* Polling 'interrupt' - used by things like netconsole to send skbs
7782  * without having to re-enable interrupts. It's not called while
7783  * the interrupt routine is executing.
7784  */
7785 static void igb_netpoll(struct net_device *netdev)
7786 {
7787         struct igb_adapter *adapter = netdev_priv(netdev);
7788         struct e1000_hw *hw = &adapter->hw;
7789         struct igb_q_vector *q_vector;
7790         int i;
7791
7792         for (i = 0; i < adapter->num_q_vectors; i++) {
7793                 q_vector = adapter->q_vector[i];
7794                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7795                         wr32(E1000_EIMC, q_vector->eims_value);
7796                 else
7797                         igb_irq_disable(adapter);
7798                 napi_schedule(&q_vector->napi);
7799         }
7800 }
7801 #endif /* CONFIG_NET_POLL_CONTROLLER */
7802
7803 /**
7804  *  igb_io_error_detected - called when PCI error is detected
7805  *  @pdev: Pointer to PCI device
7806  *  @state: The current pci connection state
7807  *
7808  *  This function is called after a PCI bus error affecting
7809  *  this device has been detected.
7810  **/
7811 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7812                                               pci_channel_state_t state)
7813 {
7814         struct net_device *netdev = pci_get_drvdata(pdev);
7815         struct igb_adapter *adapter = netdev_priv(netdev);
7816
7817         netif_device_detach(netdev);
7818
7819         if (state == pci_channel_io_perm_failure)
7820                 return PCI_ERS_RESULT_DISCONNECT;
7821
7822         if (netif_running(netdev))
7823                 igb_down(adapter);
7824         pci_disable_device(pdev);
7825
7826         /* Request a slot slot reset. */
7827         return PCI_ERS_RESULT_NEED_RESET;
7828 }
7829
7830 /**
7831  *  igb_io_slot_reset - called after the pci bus has been reset.
7832  *  @pdev: Pointer to PCI device
7833  *
7834  *  Restart the card from scratch, as if from a cold-boot. Implementation
7835  *  resembles the first-half of the igb_resume routine.
7836  **/
7837 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7838 {
7839         struct net_device *netdev = pci_get_drvdata(pdev);
7840         struct igb_adapter *adapter = netdev_priv(netdev);
7841         struct e1000_hw *hw = &adapter->hw;
7842         pci_ers_result_t result;
7843         int err;
7844
7845         if (pci_enable_device_mem(pdev)) {
7846                 dev_err(&pdev->dev,
7847                         "Cannot re-enable PCI device after reset.\n");
7848                 result = PCI_ERS_RESULT_DISCONNECT;
7849         } else {
7850                 pci_set_master(pdev);
7851                 pci_restore_state(pdev);
7852                 pci_save_state(pdev);
7853
7854                 pci_enable_wake(pdev, PCI_D3hot, 0);
7855                 pci_enable_wake(pdev, PCI_D3cold, 0);
7856
7857                 igb_reset(adapter);
7858                 wr32(E1000_WUS, ~0);
7859                 result = PCI_ERS_RESULT_RECOVERED;
7860         }
7861
7862         err = pci_cleanup_aer_uncorrect_error_status(pdev);
7863         if (err) {
7864                 dev_err(&pdev->dev,
7865                         "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7866                         err);
7867                 /* non-fatal, continue */
7868         }
7869
7870         return result;
7871 }
7872
7873 /**
7874  *  igb_io_resume - called when traffic can start flowing again.
7875  *  @pdev: Pointer to PCI device
7876  *
7877  *  This callback is called when the error recovery driver tells us that
7878  *  its OK to resume normal operation. Implementation resembles the
7879  *  second-half of the igb_resume routine.
7880  */
7881 static void igb_io_resume(struct pci_dev *pdev)
7882 {
7883         struct net_device *netdev = pci_get_drvdata(pdev);
7884         struct igb_adapter *adapter = netdev_priv(netdev);
7885
7886         if (netif_running(netdev)) {
7887                 if (igb_up(adapter)) {
7888                         dev_err(&pdev->dev, "igb_up failed after reset\n");
7889                         return;
7890                 }
7891         }
7892
7893         netif_device_attach(netdev);
7894
7895         /* let the f/w know that the h/w is now under the control of the
7896          * driver.
7897          */
7898         igb_get_hw_control(adapter);
7899 }
7900
7901 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7902                              u8 qsel)
7903 {
7904         struct e1000_hw *hw = &adapter->hw;
7905         u32 rar_low, rar_high;
7906
7907         /* HW expects these to be in network order when they are plugged
7908          * into the registers which are little endian.  In order to guarantee
7909          * that ordering we need to do an leXX_to_cpup here in order to be
7910          * ready for the byteswap that occurs with writel
7911          */
7912         rar_low = le32_to_cpup((__le32 *)(addr));
7913         rar_high = le16_to_cpup((__le16 *)(addr + 4));
7914
7915         /* Indicate to hardware the Address is Valid. */
7916         rar_high |= E1000_RAH_AV;
7917
7918         if (hw->mac.type == e1000_82575)
7919                 rar_high |= E1000_RAH_POOL_1 * qsel;
7920         else
7921                 rar_high |= E1000_RAH_POOL_1 << qsel;
7922
7923         wr32(E1000_RAL(index), rar_low);
7924         wrfl();
7925         wr32(E1000_RAH(index), rar_high);
7926         wrfl();
7927 }
7928
7929 static int igb_set_vf_mac(struct igb_adapter *adapter,
7930                           int vf, unsigned char *mac_addr)
7931 {
7932         struct e1000_hw *hw = &adapter->hw;
7933         /* VF MAC addresses start at end of receive addresses and moves
7934          * towards the first, as a result a collision should not be possible
7935          */
7936         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7937
7938         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7939
7940         igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7941
7942         return 0;
7943 }
7944
7945 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7946 {
7947         struct igb_adapter *adapter = netdev_priv(netdev);
7948         if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7949                 return -EINVAL;
7950         adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7951         dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7952         dev_info(&adapter->pdev->dev,
7953                  "Reload the VF driver to make this change effective.");
7954         if (test_bit(__IGB_DOWN, &adapter->state)) {
7955                 dev_warn(&adapter->pdev->dev,
7956                          "The VF MAC address has been set, but the PF device is not up.\n");
7957                 dev_warn(&adapter->pdev->dev,
7958                          "Bring the PF device up before attempting to use the VF device.\n");
7959         }
7960         return igb_set_vf_mac(adapter, vf, mac);
7961 }
7962
7963 static int igb_link_mbps(int internal_link_speed)
7964 {
7965         switch (internal_link_speed) {
7966         case SPEED_100:
7967                 return 100;
7968         case SPEED_1000:
7969                 return 1000;
7970         default:
7971                 return 0;
7972         }
7973 }
7974
7975 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7976                                   int link_speed)
7977 {
7978         int rf_dec, rf_int;
7979         u32 bcnrc_val;
7980
7981         if (tx_rate != 0) {
7982                 /* Calculate the rate factor values to set */
7983                 rf_int = link_speed / tx_rate;
7984                 rf_dec = (link_speed - (rf_int * tx_rate));
7985                 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
7986                          tx_rate;
7987
7988                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7989                 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7990                               E1000_RTTBCNRC_RF_INT_MASK);
7991                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7992         } else {
7993                 bcnrc_val = 0;
7994         }
7995
7996         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7997         /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7998          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7999          */
8000         wr32(E1000_RTTBCNRM, 0x14);
8001         wr32(E1000_RTTBCNRC, bcnrc_val);
8002 }
8003
8004 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
8005 {
8006         int actual_link_speed, i;
8007         bool reset_rate = false;
8008
8009         /* VF TX rate limit was not set or not supported */
8010         if ((adapter->vf_rate_link_speed == 0) ||
8011             (adapter->hw.mac.type != e1000_82576))
8012                 return;
8013
8014         actual_link_speed = igb_link_mbps(adapter->link_speed);
8015         if (actual_link_speed != adapter->vf_rate_link_speed) {
8016                 reset_rate = true;
8017                 adapter->vf_rate_link_speed = 0;
8018                 dev_info(&adapter->pdev->dev,
8019                          "Link speed has been changed. VF Transmit rate is disabled\n");
8020         }
8021
8022         for (i = 0; i < adapter->vfs_allocated_count; i++) {
8023                 if (reset_rate)
8024                         adapter->vf_data[i].tx_rate = 0;
8025
8026                 igb_set_vf_rate_limit(&adapter->hw, i,
8027                                       adapter->vf_data[i].tx_rate,
8028                                       actual_link_speed);
8029         }
8030 }
8031
8032 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
8033                              int min_tx_rate, int max_tx_rate)
8034 {
8035         struct igb_adapter *adapter = netdev_priv(netdev);
8036         struct e1000_hw *hw = &adapter->hw;
8037         int actual_link_speed;
8038
8039         if (hw->mac.type != e1000_82576)
8040                 return -EOPNOTSUPP;
8041
8042         if (min_tx_rate)
8043                 return -EINVAL;
8044
8045         actual_link_speed = igb_link_mbps(adapter->link_speed);
8046         if ((vf >= adapter->vfs_allocated_count) ||
8047             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
8048             (max_tx_rate < 0) ||
8049             (max_tx_rate > actual_link_speed))
8050                 return -EINVAL;
8051
8052         adapter->vf_rate_link_speed = actual_link_speed;
8053         adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
8054         igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
8055
8056         return 0;
8057 }
8058
8059 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
8060                                    bool setting)
8061 {
8062         struct igb_adapter *adapter = netdev_priv(netdev);
8063         struct e1000_hw *hw = &adapter->hw;
8064         u32 reg_val, reg_offset;
8065
8066         if (!adapter->vfs_allocated_count)
8067                 return -EOPNOTSUPP;
8068
8069         if (vf >= adapter->vfs_allocated_count)
8070                 return -EINVAL;
8071
8072         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
8073         reg_val = rd32(reg_offset);
8074         if (setting)
8075                 reg_val |= (BIT(vf) |
8076                             BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8077         else
8078                 reg_val &= ~(BIT(vf) |
8079                              BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8080         wr32(reg_offset, reg_val);
8081
8082         adapter->vf_data[vf].spoofchk_enabled = setting;
8083         return 0;
8084 }
8085
8086 static int igb_ndo_get_vf_config(struct net_device *netdev,
8087                                  int vf, struct ifla_vf_info *ivi)
8088 {
8089         struct igb_adapter *adapter = netdev_priv(netdev);
8090         if (vf >= adapter->vfs_allocated_count)
8091                 return -EINVAL;
8092         ivi->vf = vf;
8093         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
8094         ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
8095         ivi->min_tx_rate = 0;
8096         ivi->vlan = adapter->vf_data[vf].pf_vlan;
8097         ivi->qos = adapter->vf_data[vf].pf_qos;
8098         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8099         return 0;
8100 }
8101
8102 static void igb_vmm_control(struct igb_adapter *adapter)
8103 {
8104         struct e1000_hw *hw = &adapter->hw;
8105         u32 reg;
8106
8107         switch (hw->mac.type) {
8108         case e1000_82575:
8109         case e1000_i210:
8110         case e1000_i211:
8111         case e1000_i354:
8112         default:
8113                 /* replication is not supported for 82575 */
8114                 return;
8115         case e1000_82576:
8116                 /* notify HW that the MAC is adding vlan tags */
8117                 reg = rd32(E1000_DTXCTL);
8118                 reg |= E1000_DTXCTL_VLAN_ADDED;
8119                 wr32(E1000_DTXCTL, reg);
8120                 /* Fall through */
8121         case e1000_82580:
8122                 /* enable replication vlan tag stripping */
8123                 reg = rd32(E1000_RPLOLR);
8124                 reg |= E1000_RPLOLR_STRVLAN;
8125                 wr32(E1000_RPLOLR, reg);
8126                 /* Fall through */
8127         case e1000_i350:
8128                 /* none of the above registers are supported by i350 */
8129                 break;
8130         }
8131
8132         if (adapter->vfs_allocated_count) {
8133                 igb_vmdq_set_loopback_pf(hw, true);
8134                 igb_vmdq_set_replication_pf(hw, true);
8135                 igb_vmdq_set_anti_spoofing_pf(hw, true,
8136                                               adapter->vfs_allocated_count);
8137         } else {
8138                 igb_vmdq_set_loopback_pf(hw, false);
8139                 igb_vmdq_set_replication_pf(hw, false);
8140         }
8141 }
8142
8143 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
8144 {
8145         struct e1000_hw *hw = &adapter->hw;
8146         u32 dmac_thr;
8147         u16 hwm;
8148
8149         if (hw->mac.type > e1000_82580) {
8150                 if (adapter->flags & IGB_FLAG_DMAC) {
8151                         u32 reg;
8152
8153                         /* force threshold to 0. */
8154                         wr32(E1000_DMCTXTH, 0);
8155
8156                         /* DMA Coalescing high water mark needs to be greater
8157                          * than the Rx threshold. Set hwm to PBA - max frame
8158                          * size in 16B units, capping it at PBA - 6KB.
8159                          */
8160                         hwm = 64 * (pba - 6);
8161                         reg = rd32(E1000_FCRTC);
8162                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8163                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8164                                 & E1000_FCRTC_RTH_COAL_MASK);
8165                         wr32(E1000_FCRTC, reg);
8166
8167                         /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8168                          * frame size, capping it at PBA - 10KB.
8169                          */
8170                         dmac_thr = pba - 10;
8171                         reg = rd32(E1000_DMACR);
8172                         reg &= ~E1000_DMACR_DMACTHR_MASK;
8173                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8174                                 & E1000_DMACR_DMACTHR_MASK);
8175
8176                         /* transition to L0x or L1 if available..*/
8177                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8178
8179                         /* watchdog timer= +-1000 usec in 32usec intervals */
8180                         reg |= (1000 >> 5);
8181
8182                         /* Disable BMC-to-OS Watchdog Enable */
8183                         if (hw->mac.type != e1000_i354)
8184                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8185
8186                         wr32(E1000_DMACR, reg);
8187
8188                         /* no lower threshold to disable
8189                          * coalescing(smart fifb)-UTRESH=0
8190                          */
8191                         wr32(E1000_DMCRTRH, 0);
8192
8193                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8194
8195                         wr32(E1000_DMCTLX, reg);
8196
8197                         /* free space in tx packet buffer to wake from
8198                          * DMA coal
8199                          */
8200                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8201                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8202
8203                         /* make low power state decision controlled
8204                          * by DMA coal
8205                          */
8206                         reg = rd32(E1000_PCIEMISC);
8207                         reg &= ~E1000_PCIEMISC_LX_DECISION;
8208                         wr32(E1000_PCIEMISC, reg);
8209                 } /* endif adapter->dmac is not disabled */
8210         } else if (hw->mac.type == e1000_82580) {
8211                 u32 reg = rd32(E1000_PCIEMISC);
8212
8213                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8214                 wr32(E1000_DMACR, 0);
8215         }
8216 }
8217
8218 /**
8219  *  igb_read_i2c_byte - Reads 8 bit word over I2C
8220  *  @hw: pointer to hardware structure
8221  *  @byte_offset: byte offset to read
8222  *  @dev_addr: device address
8223  *  @data: value read
8224  *
8225  *  Performs byte read operation over I2C interface at
8226  *  a specified device address.
8227  **/
8228 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8229                       u8 dev_addr, u8 *data)
8230 {
8231         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8232         struct i2c_client *this_client = adapter->i2c_client;
8233         s32 status;
8234         u16 swfw_mask = 0;
8235
8236         if (!this_client)
8237                 return E1000_ERR_I2C;
8238
8239         swfw_mask = E1000_SWFW_PHY0_SM;
8240
8241         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8242                 return E1000_ERR_SWFW_SYNC;
8243
8244         status = i2c_smbus_read_byte_data(this_client, byte_offset);
8245         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8246
8247         if (status < 0)
8248                 return E1000_ERR_I2C;
8249         else {
8250                 *data = status;
8251                 return 0;
8252         }
8253 }
8254
8255 /**
8256  *  igb_write_i2c_byte - Writes 8 bit word over I2C
8257  *  @hw: pointer to hardware structure
8258  *  @byte_offset: byte offset to write
8259  *  @dev_addr: device address
8260  *  @data: value to write
8261  *
8262  *  Performs byte write operation over I2C interface at
8263  *  a specified device address.
8264  **/
8265 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8266                        u8 dev_addr, u8 data)
8267 {
8268         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8269         struct i2c_client *this_client = adapter->i2c_client;
8270         s32 status;
8271         u16 swfw_mask = E1000_SWFW_PHY0_SM;
8272
8273         if (!this_client)
8274                 return E1000_ERR_I2C;
8275
8276         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8277                 return E1000_ERR_SWFW_SYNC;
8278         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8279         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8280
8281         if (status)
8282                 return E1000_ERR_I2C;
8283         else
8284                 return 0;
8285
8286 }
8287
8288 int igb_reinit_queues(struct igb_adapter *adapter)
8289 {
8290         struct net_device *netdev = adapter->netdev;
8291         struct pci_dev *pdev = adapter->pdev;
8292         int err = 0;
8293
8294         if (netif_running(netdev))
8295                 igb_close(netdev);
8296
8297         igb_reset_interrupt_capability(adapter);
8298
8299         if (igb_init_interrupt_scheme(adapter, true)) {
8300                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8301                 return -ENOMEM;
8302         }
8303
8304         if (netif_running(netdev))
8305                 err = igb_open(netdev);
8306
8307         return err;
8308 }
8309 /* igb_main.c */