qed: Don't config min BW on 100g on link flap
[cascardo/linux.git] / drivers / net / ethernet / qlogic / qed / qed_dev.c
1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015 QLogic Corporation
3  *
4  * This software is available under the terms of the GNU General Public License
5  * (GPL) Version 2, available from the file COPYING in the main directory of
6  * this source tree.
7  */
8
9 #include <linux/types.h>
10 #include <asm/byteorder.h>
11 #include <linux/io.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/errno.h>
15 #include <linux/kernel.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/etherdevice.h>
21 #include <linux/qed/qed_chain.h>
22 #include <linux/qed/qed_if.h>
23 #include "qed.h"
24 #include "qed_cxt.h"
25 #include "qed_dcbx.h"
26 #include "qed_dev_api.h"
27 #include "qed_hsi.h"
28 #include "qed_hw.h"
29 #include "qed_init_ops.h"
30 #include "qed_int.h"
31 #include "qed_mcp.h"
32 #include "qed_reg_addr.h"
33 #include "qed_sp.h"
34 #include "qed_sriov.h"
35 #include "qed_vf.h"
36
37 static spinlock_t qm_lock;
38 static bool qm_lock_init = false;
39
40 /* API common to all protocols */
41 enum BAR_ID {
42         BAR_ID_0,       /* used for GRC */
43         BAR_ID_1        /* Used for doorbells */
44 };
45
46 static u32 qed_hw_bar_size(struct qed_hwfn      *p_hwfn,
47                            enum BAR_ID          bar_id)
48 {
49         u32 bar_reg = (bar_id == BAR_ID_0 ?
50                        PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
51         u32 val;
52
53         if (IS_VF(p_hwfn->cdev))
54                 return 1 << 17;
55
56         val = qed_rd(p_hwfn, p_hwfn->p_main_ptt, bar_reg);
57         if (val)
58                 return 1 << (val + 15);
59
60         /* Old MFW initialized above registered only conditionally */
61         if (p_hwfn->cdev->num_hwfns > 1) {
62                 DP_INFO(p_hwfn,
63                         "BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n");
64                         return BAR_ID_0 ? 256 * 1024 : 512 * 1024;
65         } else {
66                 DP_INFO(p_hwfn,
67                         "BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n");
68                         return 512 * 1024;
69         }
70 }
71
72 void qed_init_dp(struct qed_dev *cdev,
73                  u32 dp_module, u8 dp_level)
74 {
75         u32 i;
76
77         cdev->dp_level = dp_level;
78         cdev->dp_module = dp_module;
79         for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
80                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
81
82                 p_hwfn->dp_level = dp_level;
83                 p_hwfn->dp_module = dp_module;
84         }
85 }
86
87 void qed_init_struct(struct qed_dev *cdev)
88 {
89         u8 i;
90
91         for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
92                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
93
94                 p_hwfn->cdev = cdev;
95                 p_hwfn->my_id = i;
96                 p_hwfn->b_active = false;
97
98                 mutex_init(&p_hwfn->dmae_info.mutex);
99         }
100
101         /* hwfn 0 is always active */
102         cdev->hwfns[0].b_active = true;
103
104         /* set the default cache alignment to 128 */
105         cdev->cache_shift = 7;
106 }
107
108 static void qed_qm_info_free(struct qed_hwfn *p_hwfn)
109 {
110         struct qed_qm_info *qm_info = &p_hwfn->qm_info;
111
112         kfree(qm_info->qm_pq_params);
113         qm_info->qm_pq_params = NULL;
114         kfree(qm_info->qm_vport_params);
115         qm_info->qm_vport_params = NULL;
116         kfree(qm_info->qm_port_params);
117         qm_info->qm_port_params = NULL;
118         kfree(qm_info->wfq_data);
119         qm_info->wfq_data = NULL;
120 }
121
122 void qed_resc_free(struct qed_dev *cdev)
123 {
124         int i;
125
126         if (IS_VF(cdev))
127                 return;
128
129         kfree(cdev->fw_data);
130         cdev->fw_data = NULL;
131
132         kfree(cdev->reset_stats);
133
134         for_each_hwfn(cdev, i) {
135                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
136
137                 kfree(p_hwfn->p_tx_cids);
138                 p_hwfn->p_tx_cids = NULL;
139                 kfree(p_hwfn->p_rx_cids);
140                 p_hwfn->p_rx_cids = NULL;
141         }
142
143         for_each_hwfn(cdev, i) {
144                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
145
146                 qed_cxt_mngr_free(p_hwfn);
147                 qed_qm_info_free(p_hwfn);
148                 qed_spq_free(p_hwfn);
149                 qed_eq_free(p_hwfn, p_hwfn->p_eq);
150                 qed_consq_free(p_hwfn, p_hwfn->p_consq);
151                 qed_int_free(p_hwfn);
152                 qed_iov_free(p_hwfn);
153                 qed_dmae_info_free(p_hwfn);
154                 qed_dcbx_info_free(p_hwfn, p_hwfn->p_dcbx_info);
155         }
156 }
157
158 static int qed_init_qm_info(struct qed_hwfn *p_hwfn, bool b_sleepable)
159 {
160         u8 num_vports, vf_offset = 0, i, vport_id, num_ports, curr_queue = 0;
161         struct qed_qm_info *qm_info = &p_hwfn->qm_info;
162         struct init_qm_port_params *p_qm_port;
163         u16 num_pqs, multi_cos_tcs = 1;
164         u8 pf_wfq = qm_info->pf_wfq;
165         u32 pf_rl = qm_info->pf_rl;
166         u16 num_vfs = 0;
167
168 #ifdef CONFIG_QED_SRIOV
169         if (p_hwfn->cdev->p_iov_info)
170                 num_vfs = p_hwfn->cdev->p_iov_info->total_vfs;
171 #endif
172         memset(qm_info, 0, sizeof(*qm_info));
173
174         num_pqs = multi_cos_tcs + num_vfs + 1;  /* The '1' is for pure-LB */
175         num_vports = (u8)RESC_NUM(p_hwfn, QED_VPORT);
176
177         /* Sanity checking that setup requires legal number of resources */
178         if (num_pqs > RESC_NUM(p_hwfn, QED_PQ)) {
179                 DP_ERR(p_hwfn,
180                        "Need too many Physical queues - 0x%04x when only %04x are available\n",
181                        num_pqs, RESC_NUM(p_hwfn, QED_PQ));
182                 return -EINVAL;
183         }
184
185         /* PQs will be arranged as follows: First per-TC PQ then pure-LB quete.
186          */
187         qm_info->qm_pq_params = kcalloc(num_pqs,
188                                         sizeof(struct init_qm_pq_params),
189                                         b_sleepable ? GFP_KERNEL : GFP_ATOMIC);
190         if (!qm_info->qm_pq_params)
191                 goto alloc_err;
192
193         qm_info->qm_vport_params = kcalloc(num_vports,
194                                            sizeof(struct init_qm_vport_params),
195                                            b_sleepable ? GFP_KERNEL
196                                                        : GFP_ATOMIC);
197         if (!qm_info->qm_vport_params)
198                 goto alloc_err;
199
200         qm_info->qm_port_params = kcalloc(MAX_NUM_PORTS,
201                                           sizeof(struct init_qm_port_params),
202                                           b_sleepable ? GFP_KERNEL
203                                                       : GFP_ATOMIC);
204         if (!qm_info->qm_port_params)
205                 goto alloc_err;
206
207         qm_info->wfq_data = kcalloc(num_vports, sizeof(struct qed_wfq_data),
208                                     b_sleepable ? GFP_KERNEL : GFP_ATOMIC);
209         if (!qm_info->wfq_data)
210                 goto alloc_err;
211
212         vport_id = (u8)RESC_START(p_hwfn, QED_VPORT);
213
214         /* First init per-TC PQs */
215         for (i = 0; i < multi_cos_tcs; i++) {
216                 struct init_qm_pq_params *params =
217                     &qm_info->qm_pq_params[curr_queue++];
218
219                 if (p_hwfn->hw_info.personality == QED_PCI_ETH) {
220                         params->vport_id = vport_id;
221                         params->tc_id = p_hwfn->hw_info.non_offload_tc;
222                         params->wrr_group = 1;
223                 } else {
224                         params->vport_id = vport_id;
225                         params->tc_id = p_hwfn->hw_info.offload_tc;
226                         params->wrr_group = 1;
227                 }
228         }
229
230         /* Then init pure-LB PQ */
231         qm_info->pure_lb_pq = curr_queue;
232         qm_info->qm_pq_params[curr_queue].vport_id =
233             (u8) RESC_START(p_hwfn, QED_VPORT);
234         qm_info->qm_pq_params[curr_queue].tc_id = PURE_LB_TC;
235         qm_info->qm_pq_params[curr_queue].wrr_group = 1;
236         curr_queue++;
237
238         qm_info->offload_pq = 0;
239         /* Then init per-VF PQs */
240         vf_offset = curr_queue;
241         for (i = 0; i < num_vfs; i++) {
242                 /* First vport is used by the PF */
243                 qm_info->qm_pq_params[curr_queue].vport_id = vport_id + i + 1;
244                 qm_info->qm_pq_params[curr_queue].tc_id =
245                     p_hwfn->hw_info.non_offload_tc;
246                 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
247                 curr_queue++;
248         }
249
250         qm_info->vf_queues_offset = vf_offset;
251         qm_info->num_pqs = num_pqs;
252         qm_info->num_vports = num_vports;
253
254         /* Initialize qm port parameters */
255         num_ports = p_hwfn->cdev->num_ports_in_engines;
256         for (i = 0; i < num_ports; i++) {
257                 p_qm_port = &qm_info->qm_port_params[i];
258                 p_qm_port->active = 1;
259                 p_qm_port->num_active_phys_tcs = 4;
260                 p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports;
261                 p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
262         }
263
264         qm_info->max_phys_tcs_per_port = NUM_OF_PHYS_TCS;
265
266         qm_info->start_pq = (u16)RESC_START(p_hwfn, QED_PQ);
267
268         qm_info->num_vf_pqs = num_vfs;
269         qm_info->start_vport = (u8) RESC_START(p_hwfn, QED_VPORT);
270
271         for (i = 0; i < qm_info->num_vports; i++)
272                 qm_info->qm_vport_params[i].vport_wfq = 1;
273
274         qm_info->vport_rl_en = 1;
275         qm_info->vport_wfq_en = 1;
276         qm_info->pf_rl = pf_rl;
277         qm_info->pf_wfq = pf_wfq;
278
279         return 0;
280
281 alloc_err:
282         DP_NOTICE(p_hwfn, "Failed to allocate memory for QM params\n");
283         qed_qm_info_free(p_hwfn);
284         return -ENOMEM;
285 }
286
287 /* This function reconfigures the QM pf on the fly.
288  * For this purpose we:
289  * 1. reconfigure the QM database
290  * 2. set new values to runtime arrat
291  * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
292  * 4. activate init tool in QM_PF stage
293  * 5. send an sdm_qm_cmd through rbc interface to release the QM
294  */
295 int qed_qm_reconf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
296 {
297         struct qed_qm_info *qm_info = &p_hwfn->qm_info;
298         bool b_rc;
299         int rc;
300
301         /* qm_info is allocated in qed_init_qm_info() which is already called
302          * from qed_resc_alloc() or previous call of qed_qm_reconf().
303          * The allocated size may change each init, so we free it before next
304          * allocation.
305          */
306         qed_qm_info_free(p_hwfn);
307
308         /* initialize qed's qm data structure */
309         rc = qed_init_qm_info(p_hwfn, false);
310         if (rc)
311                 return rc;
312
313         /* stop PF's qm queues */
314         spin_lock_bh(&qm_lock);
315         b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
316                                     qm_info->start_pq, qm_info->num_pqs);
317         spin_unlock_bh(&qm_lock);
318         if (!b_rc)
319                 return -EINVAL;
320
321         /* clear the QM_PF runtime phase leftovers from previous init */
322         qed_init_clear_rt_data(p_hwfn);
323
324         /* prepare QM portion of runtime array */
325         qed_qm_init_pf(p_hwfn);
326
327         /* activate init tool on runtime array */
328         rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
329                           p_hwfn->hw_info.hw_mode);
330         if (rc)
331                 return rc;
332
333         /* start PF's qm queues */
334         spin_lock_bh(&qm_lock);
335         b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
336                                     qm_info->start_pq, qm_info->num_pqs);
337         spin_unlock_bh(&qm_lock);
338         if (!b_rc)
339                 return -EINVAL;
340
341         return 0;
342 }
343
344 int qed_resc_alloc(struct qed_dev *cdev)
345 {
346         struct qed_consq *p_consq;
347         struct qed_eq *p_eq;
348         int i, rc = 0;
349
350         if (IS_VF(cdev))
351                 return rc;
352
353         cdev->fw_data = kzalloc(sizeof(*cdev->fw_data), GFP_KERNEL);
354         if (!cdev->fw_data)
355                 return -ENOMEM;
356
357         /* Allocate Memory for the Queue->CID mapping */
358         for_each_hwfn(cdev, i) {
359                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
360                 int tx_size = sizeof(struct qed_hw_cid_data) *
361                                      RESC_NUM(p_hwfn, QED_L2_QUEUE);
362                 int rx_size = sizeof(struct qed_hw_cid_data) *
363                                      RESC_NUM(p_hwfn, QED_L2_QUEUE);
364
365                 p_hwfn->p_tx_cids = kzalloc(tx_size, GFP_KERNEL);
366                 if (!p_hwfn->p_tx_cids) {
367                         DP_NOTICE(p_hwfn,
368                                   "Failed to allocate memory for Tx Cids\n");
369                         rc = -ENOMEM;
370                         goto alloc_err;
371                 }
372
373                 p_hwfn->p_rx_cids = kzalloc(rx_size, GFP_KERNEL);
374                 if (!p_hwfn->p_rx_cids) {
375                         DP_NOTICE(p_hwfn,
376                                   "Failed to allocate memory for Rx Cids\n");
377                         rc = -ENOMEM;
378                         goto alloc_err;
379                 }
380         }
381
382         for_each_hwfn(cdev, i) {
383                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
384
385                 /* First allocate the context manager structure */
386                 rc = qed_cxt_mngr_alloc(p_hwfn);
387                 if (rc)
388                         goto alloc_err;
389
390                 /* Set the HW cid/tid numbers (in the contest manager)
391                  * Must be done prior to any further computations.
392                  */
393                 rc = qed_cxt_set_pf_params(p_hwfn);
394                 if (rc)
395                         goto alloc_err;
396
397                 /* Prepare and process QM requirements */
398                 rc = qed_init_qm_info(p_hwfn, true);
399                 if (rc)
400                         goto alloc_err;
401
402                 /* Compute the ILT client partition */
403                 rc = qed_cxt_cfg_ilt_compute(p_hwfn);
404                 if (rc)
405                         goto alloc_err;
406
407                 /* CID map / ILT shadow table / T2
408                  * The talbes sizes are determined by the computations above
409                  */
410                 rc = qed_cxt_tables_alloc(p_hwfn);
411                 if (rc)
412                         goto alloc_err;
413
414                 /* SPQ, must follow ILT because initializes SPQ context */
415                 rc = qed_spq_alloc(p_hwfn);
416                 if (rc)
417                         goto alloc_err;
418
419                 /* SP status block allocation */
420                 p_hwfn->p_dpc_ptt = qed_get_reserved_ptt(p_hwfn,
421                                                          RESERVED_PTT_DPC);
422
423                 rc = qed_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
424                 if (rc)
425                         goto alloc_err;
426
427                 rc = qed_iov_alloc(p_hwfn);
428                 if (rc)
429                         goto alloc_err;
430
431                 /* EQ */
432                 p_eq = qed_eq_alloc(p_hwfn, 256);
433                 if (!p_eq) {
434                         rc = -ENOMEM;
435                         goto alloc_err;
436                 }
437                 p_hwfn->p_eq = p_eq;
438
439                 p_consq = qed_consq_alloc(p_hwfn);
440                 if (!p_consq) {
441                         rc = -ENOMEM;
442                         goto alloc_err;
443                 }
444                 p_hwfn->p_consq = p_consq;
445
446                 /* DMA info initialization */
447                 rc = qed_dmae_info_alloc(p_hwfn);
448                 if (rc) {
449                         DP_NOTICE(p_hwfn,
450                                   "Failed to allocate memory for dmae_info structure\n");
451                         goto alloc_err;
452                 }
453
454                 /* DCBX initialization */
455                 rc = qed_dcbx_info_alloc(p_hwfn);
456                 if (rc) {
457                         DP_NOTICE(p_hwfn,
458                                   "Failed to allocate memory for dcbx structure\n");
459                         goto alloc_err;
460                 }
461         }
462
463         cdev->reset_stats = kzalloc(sizeof(*cdev->reset_stats), GFP_KERNEL);
464         if (!cdev->reset_stats) {
465                 DP_NOTICE(cdev, "Failed to allocate reset statistics\n");
466                 rc = -ENOMEM;
467                 goto alloc_err;
468         }
469
470         return 0;
471
472 alloc_err:
473         qed_resc_free(cdev);
474         return rc;
475 }
476
477 void qed_resc_setup(struct qed_dev *cdev)
478 {
479         int i;
480
481         if (IS_VF(cdev))
482                 return;
483
484         for_each_hwfn(cdev, i) {
485                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
486
487                 qed_cxt_mngr_setup(p_hwfn);
488                 qed_spq_setup(p_hwfn);
489                 qed_eq_setup(p_hwfn, p_hwfn->p_eq);
490                 qed_consq_setup(p_hwfn, p_hwfn->p_consq);
491
492                 /* Read shadow of current MFW mailbox */
493                 qed_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
494                 memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
495                        p_hwfn->mcp_info->mfw_mb_cur,
496                        p_hwfn->mcp_info->mfw_mb_length);
497
498                 qed_int_setup(p_hwfn, p_hwfn->p_main_ptt);
499
500                 qed_iov_setup(p_hwfn, p_hwfn->p_main_ptt);
501         }
502 }
503
504 #define FINAL_CLEANUP_POLL_CNT          (100)
505 #define FINAL_CLEANUP_POLL_TIME         (10)
506 int qed_final_cleanup(struct qed_hwfn *p_hwfn,
507                       struct qed_ptt *p_ptt, u16 id, bool is_vf)
508 {
509         u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
510         int rc = -EBUSY;
511
512         addr = GTT_BAR0_MAP_REG_USDM_RAM +
513                 USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
514
515         if (is_vf)
516                 id += 0x10;
517
518         command |= X_FINAL_CLEANUP_AGG_INT <<
519                 SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
520         command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
521         command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
522         command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
523
524         /* Make sure notification is not set before initiating final cleanup */
525         if (REG_RD(p_hwfn, addr)) {
526                 DP_NOTICE(
527                         p_hwfn,
528                         "Unexpected; Found final cleanup notification before initiating final cleanup\n");
529                 REG_WR(p_hwfn, addr, 0);
530         }
531
532         DP_VERBOSE(p_hwfn, QED_MSG_IOV,
533                    "Sending final cleanup for PFVF[%d] [Command %08x\n]",
534                    id, command);
535
536         qed_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
537
538         /* Poll until completion */
539         while (!REG_RD(p_hwfn, addr) && count--)
540                 msleep(FINAL_CLEANUP_POLL_TIME);
541
542         if (REG_RD(p_hwfn, addr))
543                 rc = 0;
544         else
545                 DP_NOTICE(p_hwfn,
546                           "Failed to receive FW final cleanup notification\n");
547
548         /* Cleanup afterwards */
549         REG_WR(p_hwfn, addr, 0);
550
551         return rc;
552 }
553
554 static void qed_calc_hw_mode(struct qed_hwfn *p_hwfn)
555 {
556         int hw_mode = 0;
557
558         hw_mode = (1 << MODE_BB_B0);
559
560         switch (p_hwfn->cdev->num_ports_in_engines) {
561         case 1:
562                 hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
563                 break;
564         case 2:
565                 hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
566                 break;
567         case 4:
568                 hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
569                 break;
570         default:
571                 DP_NOTICE(p_hwfn, "num_ports_in_engine = %d not supported\n",
572                           p_hwfn->cdev->num_ports_in_engines);
573                 return;
574         }
575
576         switch (p_hwfn->cdev->mf_mode) {
577         case QED_MF_DEFAULT:
578         case QED_MF_NPAR:
579                 hw_mode |= 1 << MODE_MF_SI;
580                 break;
581         case QED_MF_OVLAN:
582                 hw_mode |= 1 << MODE_MF_SD;
583                 break;
584         default:
585                 DP_NOTICE(p_hwfn, "Unsupported MF mode, init as DEFAULT\n");
586                 hw_mode |= 1 << MODE_MF_SI;
587         }
588
589         hw_mode |= 1 << MODE_ASIC;
590
591         if (p_hwfn->cdev->num_hwfns > 1)
592                 hw_mode |= 1 << MODE_100G;
593
594         p_hwfn->hw_info.hw_mode = hw_mode;
595
596         DP_VERBOSE(p_hwfn, (NETIF_MSG_PROBE | NETIF_MSG_IFUP),
597                    "Configuring function for hw_mode: 0x%08x\n",
598                    p_hwfn->hw_info.hw_mode);
599 }
600
601 /* Init run time data for all PFs on an engine. */
602 static void qed_init_cau_rt_data(struct qed_dev *cdev)
603 {
604         u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
605         int i, sb_id;
606
607         for_each_hwfn(cdev, i) {
608                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
609                 struct qed_igu_info *p_igu_info;
610                 struct qed_igu_block *p_block;
611                 struct cau_sb_entry sb_entry;
612
613                 p_igu_info = p_hwfn->hw_info.p_igu_info;
614
615                 for (sb_id = 0; sb_id < QED_MAPPING_MEMORY_SIZE(cdev);
616                      sb_id++) {
617                         p_block = &p_igu_info->igu_map.igu_blocks[sb_id];
618                         if (!p_block->is_pf)
619                                 continue;
620
621                         qed_init_cau_sb_entry(p_hwfn, &sb_entry,
622                                               p_block->function_id,
623                                               0, 0);
624                         STORE_RT_REG_AGG(p_hwfn, offset + sb_id * 2,
625                                          sb_entry);
626                 }
627         }
628 }
629
630 static int qed_hw_init_common(struct qed_hwfn *p_hwfn,
631                               struct qed_ptt *p_ptt,
632                               int hw_mode)
633 {
634         struct qed_qm_info *qm_info = &p_hwfn->qm_info;
635         struct qed_qm_common_rt_init_params params;
636         struct qed_dev *cdev = p_hwfn->cdev;
637         u32 concrete_fid;
638         int rc = 0;
639         u8 vf_id;
640
641         qed_init_cau_rt_data(cdev);
642
643         /* Program GTT windows */
644         qed_gtt_init(p_hwfn);
645
646         if (p_hwfn->mcp_info) {
647                 if (p_hwfn->mcp_info->func_info.bandwidth_max)
648                         qm_info->pf_rl_en = 1;
649                 if (p_hwfn->mcp_info->func_info.bandwidth_min)
650                         qm_info->pf_wfq_en = 1;
651         }
652
653         memset(&params, 0, sizeof(params));
654         params.max_ports_per_engine = p_hwfn->cdev->num_ports_in_engines;
655         params.max_phys_tcs_per_port = qm_info->max_phys_tcs_per_port;
656         params.pf_rl_en = qm_info->pf_rl_en;
657         params.pf_wfq_en = qm_info->pf_wfq_en;
658         params.vport_rl_en = qm_info->vport_rl_en;
659         params.vport_wfq_en = qm_info->vport_wfq_en;
660         params.port_params = qm_info->qm_port_params;
661
662         qed_qm_common_rt_init(p_hwfn, &params);
663
664         qed_cxt_hw_init_common(p_hwfn);
665
666         /* Close gate from NIG to BRB/Storm; By default they are open, but
667          * we close them to prevent NIG from passing data to reset blocks.
668          * Should have been done in the ENGINE phase, but init-tool lacks
669          * proper port-pretend capabilities.
670          */
671         qed_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
672         qed_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
673         qed_port_pretend(p_hwfn, p_ptt, p_hwfn->port_id ^ 1);
674         qed_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
675         qed_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
676         qed_port_unpretend(p_hwfn, p_ptt);
677
678         rc = qed_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
679         if (rc != 0)
680                 return rc;
681
682         qed_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
683         qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
684
685         /* Disable relaxed ordering in the PCI config space */
686         qed_wr(p_hwfn, p_ptt, 0x20b4,
687                qed_rd(p_hwfn, p_ptt, 0x20b4) & ~0x10);
688
689         for (vf_id = 0; vf_id < MAX_NUM_VFS_BB; vf_id++) {
690                 concrete_fid = qed_vfid_to_concrete(p_hwfn, vf_id);
691                 qed_fid_pretend(p_hwfn, p_ptt, (u16) concrete_fid);
692                 qed_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
693         }
694         /* pretend to original PF */
695         qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
696
697         return rc;
698 }
699
700 static int qed_hw_init_port(struct qed_hwfn *p_hwfn,
701                             struct qed_ptt *p_ptt,
702                             int hw_mode)
703 {
704         int rc = 0;
705
706         rc = qed_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id,
707                           hw_mode);
708         return rc;
709 }
710
711 static int qed_hw_init_pf(struct qed_hwfn *p_hwfn,
712                           struct qed_ptt *p_ptt,
713                           struct qed_tunn_start_params *p_tunn,
714                           int hw_mode,
715                           bool b_hw_start,
716                           enum qed_int_mode int_mode,
717                           bool allow_npar_tx_switch)
718 {
719         u8 rel_pf_id = p_hwfn->rel_pf_id;
720         int rc = 0;
721
722         if (p_hwfn->mcp_info) {
723                 struct qed_mcp_function_info *p_info;
724
725                 p_info = &p_hwfn->mcp_info->func_info;
726                 if (p_info->bandwidth_min)
727                         p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
728
729                 /* Update rate limit once we'll actually have a link */
730                 p_hwfn->qm_info.pf_rl = 100000;
731         }
732
733         qed_cxt_hw_init_pf(p_hwfn);
734
735         qed_int_igu_init_rt(p_hwfn);
736
737         /* Set VLAN in NIG if needed */
738         if (hw_mode & (1 << MODE_MF_SD)) {
739                 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "Configuring LLH_FUNC_TAG\n");
740                 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
741                 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
742                              p_hwfn->hw_info.ovlan);
743         }
744
745         /* Enable classification by MAC if needed */
746         if (hw_mode & (1 << MODE_MF_SI)) {
747                 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
748                            "Configuring TAGMAC_CLS_TYPE\n");
749                 STORE_RT_REG(p_hwfn,
750                              NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1);
751         }
752
753         /* Protocl Configuration  */
754         STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET, 0);
755         STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET, 0);
756         STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
757
758         /* Cleanup chip from previous driver if such remains exist */
759         rc = qed_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false);
760         if (rc != 0)
761                 return rc;
762
763         /* PF Init sequence */
764         rc = qed_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
765         if (rc)
766                 return rc;
767
768         /* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
769         rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
770         if (rc)
771                 return rc;
772
773         /* Pure runtime initializations - directly to the HW  */
774         qed_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
775
776         if (b_hw_start) {
777                 /* enable interrupts */
778                 qed_int_igu_enable(p_hwfn, p_ptt, int_mode);
779
780                 /* send function start command */
781                 rc = qed_sp_pf_start(p_hwfn, p_tunn, p_hwfn->cdev->mf_mode,
782                                      allow_npar_tx_switch);
783                 if (rc)
784                         DP_NOTICE(p_hwfn, "Function start ramrod failed\n");
785         }
786         return rc;
787 }
788
789 static int qed_change_pci_hwfn(struct qed_hwfn *p_hwfn,
790                                struct qed_ptt *p_ptt,
791                                u8 enable)
792 {
793         u32 delay_idx = 0, val, set_val = enable ? 1 : 0;
794
795         /* Change PF in PXP */
796         qed_wr(p_hwfn, p_ptt,
797                PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
798
799         /* wait until value is set - try for 1 second every 50us */
800         for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
801                 val = qed_rd(p_hwfn, p_ptt,
802                              PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
803                 if (val == set_val)
804                         break;
805
806                 usleep_range(50, 60);
807         }
808
809         if (val != set_val) {
810                 DP_NOTICE(p_hwfn,
811                           "PFID_ENABLE_MASTER wasn't changed after a second\n");
812                 return -EAGAIN;
813         }
814
815         return 0;
816 }
817
818 static void qed_reset_mb_shadow(struct qed_hwfn *p_hwfn,
819                                 struct qed_ptt *p_main_ptt)
820 {
821         /* Read shadow of current MFW mailbox */
822         qed_mcp_read_mb(p_hwfn, p_main_ptt);
823         memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
824                p_hwfn->mcp_info->mfw_mb_cur,
825                p_hwfn->mcp_info->mfw_mb_length);
826 }
827
828 int qed_hw_init(struct qed_dev *cdev,
829                 struct qed_tunn_start_params *p_tunn,
830                 bool b_hw_start,
831                 enum qed_int_mode int_mode,
832                 bool allow_npar_tx_switch,
833                 const u8 *bin_fw_data)
834 {
835         u32 load_code, param;
836         int rc, mfw_rc, i;
837
838         if ((int_mode == QED_INT_MODE_MSI) && (cdev->num_hwfns > 1)) {
839                 DP_NOTICE(cdev, "MSI mode is not supported for CMT devices\n");
840                 return -EINVAL;
841         }
842
843         if (IS_PF(cdev)) {
844                 rc = qed_init_fw_data(cdev, bin_fw_data);
845                 if (rc != 0)
846                         return rc;
847         }
848
849         for_each_hwfn(cdev, i) {
850                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
851
852                 if (IS_VF(cdev)) {
853                         p_hwfn->b_int_enabled = 1;
854                         continue;
855                 }
856
857                 /* Enable DMAE in PXP */
858                 rc = qed_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true);
859
860                 qed_calc_hw_mode(p_hwfn);
861
862                 rc = qed_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt,
863                                       &load_code);
864                 if (rc) {
865                         DP_NOTICE(p_hwfn, "Failed sending LOAD_REQ command\n");
866                         return rc;
867                 }
868
869                 qed_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
870
871                 DP_VERBOSE(p_hwfn, QED_MSG_SP,
872                            "Load request was sent. Resp:0x%x, Load code: 0x%x\n",
873                            rc, load_code);
874
875                 p_hwfn->first_on_engine = (load_code ==
876                                            FW_MSG_CODE_DRV_LOAD_ENGINE);
877
878                 if (!qm_lock_init) {
879                         spin_lock_init(&qm_lock);
880                         qm_lock_init = true;
881                 }
882
883                 switch (load_code) {
884                 case FW_MSG_CODE_DRV_LOAD_ENGINE:
885                         rc = qed_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
886                                                 p_hwfn->hw_info.hw_mode);
887                         if (rc)
888                                 break;
889                 /* Fall into */
890                 case FW_MSG_CODE_DRV_LOAD_PORT:
891                         rc = qed_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
892                                               p_hwfn->hw_info.hw_mode);
893                         if (rc)
894                                 break;
895
896                 /* Fall into */
897                 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
898                         rc = qed_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
899                                             p_tunn, p_hwfn->hw_info.hw_mode,
900                                             b_hw_start, int_mode,
901                                             allow_npar_tx_switch);
902                         break;
903                 default:
904                         rc = -EINVAL;
905                         break;
906                 }
907
908                 if (rc)
909                         DP_NOTICE(p_hwfn,
910                                   "init phase failed for loadcode 0x%x (rc %d)\n",
911                                    load_code, rc);
912
913                 /* ACK mfw regardless of success or failure of initialization */
914                 mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
915                                      DRV_MSG_CODE_LOAD_DONE,
916                                      0, &load_code, &param);
917                 if (rc)
918                         return rc;
919                 if (mfw_rc) {
920                         DP_NOTICE(p_hwfn, "Failed sending LOAD_DONE command\n");
921                         return mfw_rc;
922                 }
923
924                 /* send DCBX attention request command */
925                 DP_VERBOSE(p_hwfn,
926                            QED_MSG_DCB,
927                            "sending phony dcbx set command to trigger DCBx attention handling\n");
928                 mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
929                                      DRV_MSG_CODE_SET_DCBX,
930                                      1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT,
931                                      &load_code, &param);
932                 if (mfw_rc) {
933                         DP_NOTICE(p_hwfn,
934                                   "Failed to send DCBX attention request\n");
935                         return mfw_rc;
936                 }
937
938                 p_hwfn->hw_init_done = true;
939         }
940
941         return 0;
942 }
943
944 #define QED_HW_STOP_RETRY_LIMIT (10)
945 static inline void qed_hw_timers_stop(struct qed_dev *cdev,
946                                       struct qed_hwfn *p_hwfn,
947                                       struct qed_ptt *p_ptt)
948 {
949         int i;
950
951         /* close timers */
952         qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
953         qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
954
955         for (i = 0; i < QED_HW_STOP_RETRY_LIMIT; i++) {
956                 if ((!qed_rd(p_hwfn, p_ptt,
957                              TM_REG_PF_SCAN_ACTIVE_CONN)) &&
958                     (!qed_rd(p_hwfn, p_ptt,
959                              TM_REG_PF_SCAN_ACTIVE_TASK)))
960                         break;
961
962                 /* Dependent on number of connection/tasks, possibly
963                  * 1ms sleep is required between polls
964                  */
965                 usleep_range(1000, 2000);
966         }
967
968         if (i < QED_HW_STOP_RETRY_LIMIT)
969                 return;
970
971         DP_NOTICE(p_hwfn,
972                   "Timers linear scans are not over [Connection %02x Tasks %02x]\n",
973                   (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
974                   (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
975 }
976
977 void qed_hw_timers_stop_all(struct qed_dev *cdev)
978 {
979         int j;
980
981         for_each_hwfn(cdev, j) {
982                 struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
983                 struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
984
985                 qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
986         }
987 }
988
989 int qed_hw_stop(struct qed_dev *cdev)
990 {
991         int rc = 0, t_rc;
992         int j;
993
994         for_each_hwfn(cdev, j) {
995                 struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
996                 struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
997
998                 DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Stopping hw/fw\n");
999
1000                 if (IS_VF(cdev)) {
1001                         qed_vf_pf_int_cleanup(p_hwfn);
1002                         continue;
1003                 }
1004
1005                 /* mark the hw as uninitialized... */
1006                 p_hwfn->hw_init_done = false;
1007
1008                 rc = qed_sp_pf_stop(p_hwfn);
1009                 if (rc)
1010                         DP_NOTICE(p_hwfn,
1011                                   "Failed to close PF against FW. Continue to stop HW to prevent illegal host access by the device\n");
1012
1013                 qed_wr(p_hwfn, p_ptt,
1014                        NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1015
1016                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1017                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1018                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1019                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1020                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1021
1022                 qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
1023
1024                 /* Disable Attention Generation */
1025                 qed_int_igu_disable_int(p_hwfn, p_ptt);
1026
1027                 qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
1028                 qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
1029
1030                 qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
1031
1032                 /* Need to wait 1ms to guarantee SBs are cleared */
1033                 usleep_range(1000, 2000);
1034         }
1035
1036         if (IS_PF(cdev)) {
1037                 /* Disable DMAE in PXP - in CMT, this should only be done for
1038                  * first hw-function, and only after all transactions have
1039                  * stopped for all active hw-functions.
1040                  */
1041                 t_rc = qed_change_pci_hwfn(&cdev->hwfns[0],
1042                                            cdev->hwfns[0].p_main_ptt, false);
1043                 if (t_rc != 0)
1044                         rc = t_rc;
1045         }
1046
1047         return rc;
1048 }
1049
1050 void qed_hw_stop_fastpath(struct qed_dev *cdev)
1051 {
1052         int j;
1053
1054         for_each_hwfn(cdev, j) {
1055                 struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
1056                 struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
1057
1058                 if (IS_VF(cdev)) {
1059                         qed_vf_pf_int_cleanup(p_hwfn);
1060                         continue;
1061                 }
1062
1063                 DP_VERBOSE(p_hwfn,
1064                            NETIF_MSG_IFDOWN,
1065                            "Shutting down the fastpath\n");
1066
1067                 qed_wr(p_hwfn, p_ptt,
1068                        NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1069
1070                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1071                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1072                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1073                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1074                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1075
1076                 qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
1077
1078                 /* Need to wait 1ms to guarantee SBs are cleared */
1079                 usleep_range(1000, 2000);
1080         }
1081 }
1082
1083 void qed_hw_start_fastpath(struct qed_hwfn *p_hwfn)
1084 {
1085         if (IS_VF(p_hwfn->cdev))
1086                 return;
1087
1088         /* Re-open incoming traffic */
1089         qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1090                NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
1091 }
1092
1093 static int qed_reg_assert(struct qed_hwfn *hwfn,
1094                           struct qed_ptt *ptt, u32 reg,
1095                           bool expected)
1096 {
1097         u32 assert_val = qed_rd(hwfn, ptt, reg);
1098
1099         if (assert_val != expected) {
1100                 DP_NOTICE(hwfn, "Value at address 0x%x != 0x%08x\n",
1101                           reg, expected);
1102                 return -EINVAL;
1103         }
1104
1105         return 0;
1106 }
1107
1108 int qed_hw_reset(struct qed_dev *cdev)
1109 {
1110         int rc = 0;
1111         u32 unload_resp, unload_param;
1112         int i;
1113
1114         for_each_hwfn(cdev, i) {
1115                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1116
1117                 if (IS_VF(cdev)) {
1118                         rc = qed_vf_pf_reset(p_hwfn);
1119                         if (rc)
1120                                 return rc;
1121                         continue;
1122                 }
1123
1124                 DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Resetting hw/fw\n");
1125
1126                 /* Check for incorrect states */
1127                 qed_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
1128                                QM_REG_USG_CNT_PF_TX, 0);
1129                 qed_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
1130                                QM_REG_USG_CNT_PF_OTHER, 0);
1131
1132                 /* Disable PF in HW blocks */
1133                 qed_wr(p_hwfn, p_hwfn->p_main_ptt, DORQ_REG_PF_DB_ENABLE, 0);
1134                 qed_wr(p_hwfn, p_hwfn->p_main_ptt, QM_REG_PF_EN, 0);
1135                 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1136                        TCFC_REG_STRONG_ENABLE_PF, 0);
1137                 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1138                        CCFC_REG_STRONG_ENABLE_PF, 0);
1139
1140                 /* Send unload command to MCP */
1141                 rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1142                                  DRV_MSG_CODE_UNLOAD_REQ,
1143                                  DRV_MB_PARAM_UNLOAD_WOL_MCP,
1144                                  &unload_resp, &unload_param);
1145                 if (rc) {
1146                         DP_NOTICE(p_hwfn, "qed_hw_reset: UNLOAD_REQ failed\n");
1147                         unload_resp = FW_MSG_CODE_DRV_UNLOAD_ENGINE;
1148                 }
1149
1150                 rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1151                                  DRV_MSG_CODE_UNLOAD_DONE,
1152                                  0, &unload_resp, &unload_param);
1153                 if (rc) {
1154                         DP_NOTICE(p_hwfn, "qed_hw_reset: UNLOAD_DONE failed\n");
1155                         return rc;
1156                 }
1157         }
1158
1159         return rc;
1160 }
1161
1162 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
1163 static void qed_hw_hwfn_free(struct qed_hwfn *p_hwfn)
1164 {
1165         qed_ptt_pool_free(p_hwfn);
1166         kfree(p_hwfn->hw_info.p_igu_info);
1167 }
1168
1169 /* Setup bar access */
1170 static void qed_hw_hwfn_prepare(struct qed_hwfn *p_hwfn)
1171 {
1172         /* clear indirect access */
1173         qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_88_F0, 0);
1174         qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_8C_F0, 0);
1175         qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_90_F0, 0);
1176         qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_94_F0, 0);
1177
1178         /* Clean Previous errors if such exist */
1179         qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1180                PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR,
1181                1 << p_hwfn->abs_pf_id);
1182
1183         /* enable internal target-read */
1184         qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1185                PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1186 }
1187
1188 static void get_function_id(struct qed_hwfn *p_hwfn)
1189 {
1190         /* ME Register */
1191         p_hwfn->hw_info.opaque_fid = (u16)REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR);
1192
1193         p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
1194
1195         p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
1196         p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
1197                                       PXP_CONCRETE_FID_PFID);
1198         p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
1199                                     PXP_CONCRETE_FID_PORT);
1200 }
1201
1202 static void qed_hw_set_feat(struct qed_hwfn *p_hwfn)
1203 {
1204         u32 *feat_num = p_hwfn->hw_info.feat_num;
1205         int num_features = 1;
1206
1207         feat_num[QED_PF_L2_QUE] = min_t(u32, RESC_NUM(p_hwfn, QED_SB) /
1208                                                 num_features,
1209                                         RESC_NUM(p_hwfn, QED_L2_QUEUE));
1210         DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE,
1211                    "#PF_L2_QUEUES=%d #SBS=%d num_features=%d\n",
1212                    feat_num[QED_PF_L2_QUE], RESC_NUM(p_hwfn, QED_SB),
1213                    num_features);
1214 }
1215
1216 static void qed_hw_get_resc(struct qed_hwfn *p_hwfn)
1217 {
1218         u32 *resc_start = p_hwfn->hw_info.resc_start;
1219         u8 num_funcs = p_hwfn->num_funcs_on_engine;
1220         u32 *resc_num = p_hwfn->hw_info.resc_num;
1221         struct qed_sb_cnt_info sb_cnt_info;
1222         int i, max_vf_vlan_filters;
1223
1224         memset(&sb_cnt_info, 0, sizeof(sb_cnt_info));
1225
1226 #ifdef CONFIG_QED_SRIOV
1227         max_vf_vlan_filters = QED_ETH_MAX_VF_NUM_VLAN_FILTERS;
1228 #else
1229         max_vf_vlan_filters = 0;
1230 #endif
1231
1232         qed_int_get_num_sbs(p_hwfn, &sb_cnt_info);
1233
1234         resc_num[QED_SB] = min_t(u32,
1235                                  (MAX_SB_PER_PATH_BB / num_funcs),
1236                                  sb_cnt_info.sb_cnt);
1237         resc_num[QED_L2_QUEUE] = MAX_NUM_L2_QUEUES_BB / num_funcs;
1238         resc_num[QED_VPORT] = MAX_NUM_VPORTS_BB / num_funcs;
1239         resc_num[QED_RSS_ENG] = ETH_RSS_ENGINE_NUM_BB / num_funcs;
1240         resc_num[QED_PQ] = MAX_QM_TX_QUEUES_BB / num_funcs;
1241         resc_num[QED_RL] = 8;
1242         resc_num[QED_MAC] = ETH_NUM_MAC_FILTERS / num_funcs;
1243         resc_num[QED_VLAN] = (ETH_NUM_VLAN_FILTERS - 1 /*For vlan0*/) /
1244                              num_funcs;
1245         resc_num[QED_ILT] = 950;
1246
1247         for (i = 0; i < QED_MAX_RESC; i++)
1248                 resc_start[i] = resc_num[i] * p_hwfn->rel_pf_id;
1249
1250         qed_hw_set_feat(p_hwfn);
1251
1252         DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE,
1253                    "The numbers for each resource are:\n"
1254                    "SB = %d start = %d\n"
1255                    "L2_QUEUE = %d start = %d\n"
1256                    "VPORT = %d start = %d\n"
1257                    "PQ = %d start = %d\n"
1258                    "RL = %d start = %d\n"
1259                    "MAC = %d start = %d\n"
1260                    "VLAN = %d start = %d\n"
1261                    "ILT = %d start = %d\n",
1262                    p_hwfn->hw_info.resc_num[QED_SB],
1263                    p_hwfn->hw_info.resc_start[QED_SB],
1264                    p_hwfn->hw_info.resc_num[QED_L2_QUEUE],
1265                    p_hwfn->hw_info.resc_start[QED_L2_QUEUE],
1266                    p_hwfn->hw_info.resc_num[QED_VPORT],
1267                    p_hwfn->hw_info.resc_start[QED_VPORT],
1268                    p_hwfn->hw_info.resc_num[QED_PQ],
1269                    p_hwfn->hw_info.resc_start[QED_PQ],
1270                    p_hwfn->hw_info.resc_num[QED_RL],
1271                    p_hwfn->hw_info.resc_start[QED_RL],
1272                    p_hwfn->hw_info.resc_num[QED_MAC],
1273                    p_hwfn->hw_info.resc_start[QED_MAC],
1274                    p_hwfn->hw_info.resc_num[QED_VLAN],
1275                    p_hwfn->hw_info.resc_start[QED_VLAN],
1276                    p_hwfn->hw_info.resc_num[QED_ILT],
1277                    p_hwfn->hw_info.resc_start[QED_ILT]);
1278 }
1279
1280 static int qed_hw_get_nvm_info(struct qed_hwfn *p_hwfn,
1281                                struct qed_ptt *p_ptt)
1282 {
1283         u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg;
1284         u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
1285         struct qed_mcp_link_params *link;
1286
1287         /* Read global nvm_cfg address */
1288         nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
1289
1290         /* Verify MCP has initialized it */
1291         if (!nvm_cfg_addr) {
1292                 DP_NOTICE(p_hwfn, "Shared memory not initialized\n");
1293                 return -EINVAL;
1294         }
1295
1296         /* Read nvm_cfg1  (Notice this is just offset, and not offsize (TBD) */
1297         nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
1298
1299         addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1300                offsetof(struct nvm_cfg1, glob) +
1301                offsetof(struct nvm_cfg1_glob, core_cfg);
1302
1303         core_cfg = qed_rd(p_hwfn, p_ptt, addr);
1304
1305         switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
1306                 NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
1307         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_2X40G:
1308                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X40G;
1309                 break;
1310         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_2X50G:
1311                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X50G;
1312                 break;
1313         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_1X100G:
1314                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X100G;
1315                 break;
1316         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_4X10G_F:
1317                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_F;
1318                 break;
1319         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_4X10G_E:
1320                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_E;
1321                 break;
1322         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_4X20G:
1323                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X20G;
1324                 break;
1325         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_1X40G:
1326                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X40G;
1327                 break;
1328         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_2X25G:
1329                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X25G;
1330                 break;
1331         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_1X25G:
1332                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X25G;
1333                 break;
1334         default:
1335                 DP_NOTICE(p_hwfn, "Unknown port mode in 0x%08x\n",
1336                           core_cfg);
1337                 break;
1338         }
1339
1340         /* Read default link configuration */
1341         link = &p_hwfn->mcp_info->link_input;
1342         port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1343                         offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
1344         link_temp = qed_rd(p_hwfn, p_ptt,
1345                            port_cfg_addr +
1346                            offsetof(struct nvm_cfg1_port, speed_cap_mask));
1347         link->speed.advertised_speeds =
1348                 link_temp & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
1349
1350         p_hwfn->mcp_info->link_capabilities.speed_capabilities =
1351                                                 link->speed.advertised_speeds;
1352
1353         link_temp = qed_rd(p_hwfn, p_ptt,
1354                            port_cfg_addr +
1355                            offsetof(struct nvm_cfg1_port, link_settings));
1356         switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
1357                 NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
1358         case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
1359                 link->speed.autoneg = true;
1360                 break;
1361         case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
1362                 link->speed.forced_speed = 1000;
1363                 break;
1364         case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
1365                 link->speed.forced_speed = 10000;
1366                 break;
1367         case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
1368                 link->speed.forced_speed = 25000;
1369                 break;
1370         case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
1371                 link->speed.forced_speed = 40000;
1372                 break;
1373         case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
1374                 link->speed.forced_speed = 50000;
1375                 break;
1376         case NVM_CFG1_PORT_DRV_LINK_SPEED_100G:
1377                 link->speed.forced_speed = 100000;
1378                 break;
1379         default:
1380                 DP_NOTICE(p_hwfn, "Unknown Speed in 0x%08x\n",
1381                           link_temp);
1382         }
1383
1384         link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
1385         link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
1386         link->pause.autoneg = !!(link_temp &
1387                                  NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
1388         link->pause.forced_rx = !!(link_temp &
1389                                    NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
1390         link->pause.forced_tx = !!(link_temp &
1391                                    NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
1392         link->loopback_mode = 0;
1393
1394         DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1395                    "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x\n",
1396                    link->speed.forced_speed, link->speed.advertised_speeds,
1397                    link->speed.autoneg, link->pause.autoneg);
1398
1399         /* Read Multi-function information from shmem */
1400         addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1401                offsetof(struct nvm_cfg1, glob) +
1402                offsetof(struct nvm_cfg1_glob, generic_cont0);
1403
1404         generic_cont0 = qed_rd(p_hwfn, p_ptt, addr);
1405
1406         mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
1407                   NVM_CFG1_GLOB_MF_MODE_OFFSET;
1408
1409         switch (mf_mode) {
1410         case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
1411                 p_hwfn->cdev->mf_mode = QED_MF_OVLAN;
1412                 break;
1413         case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
1414                 p_hwfn->cdev->mf_mode = QED_MF_NPAR;
1415                 break;
1416         case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
1417                 p_hwfn->cdev->mf_mode = QED_MF_DEFAULT;
1418                 break;
1419         }
1420         DP_INFO(p_hwfn, "Multi function mode is %08x\n",
1421                 p_hwfn->cdev->mf_mode);
1422
1423         /* Read Multi-function information from shmem */
1424         addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1425                 offsetof(struct nvm_cfg1, glob) +
1426                 offsetof(struct nvm_cfg1_glob, device_capabilities);
1427
1428         device_capabilities = qed_rd(p_hwfn, p_ptt, addr);
1429         if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
1430                 __set_bit(QED_DEV_CAP_ETH,
1431                           &p_hwfn->hw_info.device_capabilities);
1432
1433         return qed_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
1434 }
1435
1436 static void qed_get_num_funcs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1437 {
1438         u32 reg_function_hide, tmp, eng_mask;
1439         u8 num_funcs;
1440
1441         num_funcs = MAX_NUM_PFS_BB;
1442
1443         /* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
1444          * in the other bits are selected.
1445          * Bits 1-15 are for functions 1-15, respectively, and their value is
1446          * '0' only for enabled functions (function 0 always exists and
1447          * enabled).
1448          * In case of CMT, only the "even" functions are enabled, and thus the
1449          * number of functions for both hwfns is learnt from the same bits.
1450          */
1451         reg_function_hide = qed_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE);
1452
1453         if (reg_function_hide & 0x1) {
1454                 if (QED_PATH_ID(p_hwfn) && p_hwfn->cdev->num_hwfns == 1) {
1455                         num_funcs = 0;
1456                         eng_mask = 0xaaaa;
1457                 } else {
1458                         num_funcs = 1;
1459                         eng_mask = 0x5554;
1460                 }
1461
1462                 /* Get the number of the enabled functions on the engine */
1463                 tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
1464                 while (tmp) {
1465                         if (tmp & 0x1)
1466                                 num_funcs++;
1467                         tmp >>= 0x1;
1468                 }
1469         }
1470
1471         p_hwfn->num_funcs_on_engine = num_funcs;
1472
1473         DP_VERBOSE(p_hwfn,
1474                    NETIF_MSG_PROBE,
1475                    "PF [rel_id %d, abs_id %d] within the %d enabled functions on the engine\n",
1476                    p_hwfn->rel_pf_id,
1477                    p_hwfn->abs_pf_id,
1478                    p_hwfn->num_funcs_on_engine);
1479 }
1480
1481 static int
1482 qed_get_hw_info(struct qed_hwfn *p_hwfn,
1483                 struct qed_ptt *p_ptt,
1484                 enum qed_pci_personality personality)
1485 {
1486         u32 port_mode;
1487         int rc;
1488
1489         /* Since all information is common, only first hwfns should do this */
1490         if (IS_LEAD_HWFN(p_hwfn)) {
1491                 rc = qed_iov_hw_info(p_hwfn);
1492                 if (rc)
1493                         return rc;
1494         }
1495
1496         /* Read the port mode */
1497         port_mode = qed_rd(p_hwfn, p_ptt,
1498                            CNIG_REG_NW_PORT_MODE_BB_B0);
1499
1500         if (port_mode < 3) {
1501                 p_hwfn->cdev->num_ports_in_engines = 1;
1502         } else if (port_mode <= 5) {
1503                 p_hwfn->cdev->num_ports_in_engines = 2;
1504         } else {
1505                 DP_NOTICE(p_hwfn, "PORT MODE: %d not supported\n",
1506                           p_hwfn->cdev->num_ports_in_engines);
1507
1508                 /* Default num_ports_in_engines to something */
1509                 p_hwfn->cdev->num_ports_in_engines = 1;
1510         }
1511
1512         qed_hw_get_nvm_info(p_hwfn, p_ptt);
1513
1514         rc = qed_int_igu_read_cam(p_hwfn, p_ptt);
1515         if (rc)
1516                 return rc;
1517
1518         if (qed_mcp_is_init(p_hwfn))
1519                 ether_addr_copy(p_hwfn->hw_info.hw_mac_addr,
1520                                 p_hwfn->mcp_info->func_info.mac);
1521         else
1522                 eth_random_addr(p_hwfn->hw_info.hw_mac_addr);
1523
1524         if (qed_mcp_is_init(p_hwfn)) {
1525                 if (p_hwfn->mcp_info->func_info.ovlan != QED_MCP_VLAN_UNSET)
1526                         p_hwfn->hw_info.ovlan =
1527                                 p_hwfn->mcp_info->func_info.ovlan;
1528
1529                 qed_mcp_cmd_port_init(p_hwfn, p_ptt);
1530         }
1531
1532         if (qed_mcp_is_init(p_hwfn)) {
1533                 enum qed_pci_personality protocol;
1534
1535                 protocol = p_hwfn->mcp_info->func_info.protocol;
1536                 p_hwfn->hw_info.personality = protocol;
1537         }
1538
1539         qed_get_num_funcs(p_hwfn, p_ptt);
1540
1541         qed_hw_get_resc(p_hwfn);
1542
1543         return rc;
1544 }
1545
1546 static int qed_get_dev_info(struct qed_dev *cdev)
1547 {
1548         struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
1549         u32 tmp;
1550
1551         /* Read Vendor Id / Device Id */
1552         pci_read_config_word(cdev->pdev, PCI_VENDOR_ID,
1553                              &cdev->vendor_id);
1554         pci_read_config_word(cdev->pdev, PCI_DEVICE_ID,
1555                              &cdev->device_id);
1556         cdev->chip_num = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1557                                      MISCS_REG_CHIP_NUM);
1558         cdev->chip_rev = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1559                                      MISCS_REG_CHIP_REV);
1560         MASK_FIELD(CHIP_REV, cdev->chip_rev);
1561
1562         cdev->type = QED_DEV_TYPE_BB;
1563         /* Learn number of HW-functions */
1564         tmp = qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1565                      MISCS_REG_CMT_ENABLED_FOR_PAIR);
1566
1567         if (tmp & (1 << p_hwfn->rel_pf_id)) {
1568                 DP_NOTICE(cdev->hwfns, "device in CMT mode\n");
1569                 cdev->num_hwfns = 2;
1570         } else {
1571                 cdev->num_hwfns = 1;
1572         }
1573
1574         cdev->chip_bond_id = qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1575                                     MISCS_REG_CHIP_TEST_REG) >> 4;
1576         MASK_FIELD(CHIP_BOND_ID, cdev->chip_bond_id);
1577         cdev->chip_metal = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1578                                        MISCS_REG_CHIP_METAL);
1579         MASK_FIELD(CHIP_METAL, cdev->chip_metal);
1580
1581         DP_INFO(cdev->hwfns,
1582                 "Chip details - Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n",
1583                 cdev->chip_num, cdev->chip_rev,
1584                 cdev->chip_bond_id, cdev->chip_metal);
1585
1586         if (QED_IS_BB(cdev) && CHIP_REV_IS_A0(cdev)) {
1587                 DP_NOTICE(cdev->hwfns,
1588                           "The chip type/rev (BB A0) is not supported!\n");
1589                 return -EINVAL;
1590         }
1591
1592         return 0;
1593 }
1594
1595 static int qed_hw_prepare_single(struct qed_hwfn *p_hwfn,
1596                                  void __iomem *p_regview,
1597                                  void __iomem *p_doorbells,
1598                                  enum qed_pci_personality personality)
1599 {
1600         int rc = 0;
1601
1602         /* Split PCI bars evenly between hwfns */
1603         p_hwfn->regview = p_regview;
1604         p_hwfn->doorbells = p_doorbells;
1605
1606         if (IS_VF(p_hwfn->cdev))
1607                 return qed_vf_hw_prepare(p_hwfn);
1608
1609         /* Validate that chip access is feasible */
1610         if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
1611                 DP_ERR(p_hwfn,
1612                        "Reading the ME register returns all Fs; Preventing further chip access\n");
1613                 return -EINVAL;
1614         }
1615
1616         get_function_id(p_hwfn);
1617
1618         /* Allocate PTT pool */
1619         rc = qed_ptt_pool_alloc(p_hwfn);
1620         if (rc) {
1621                 DP_NOTICE(p_hwfn, "Failed to prepare hwfn's hw\n");
1622                 goto err0;
1623         }
1624
1625         /* Allocate the main PTT */
1626         p_hwfn->p_main_ptt = qed_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
1627
1628         /* First hwfn learns basic information, e.g., number of hwfns */
1629         if (!p_hwfn->my_id) {
1630                 rc = qed_get_dev_info(p_hwfn->cdev);
1631                 if (rc != 0)
1632                         goto err1;
1633         }
1634
1635         qed_hw_hwfn_prepare(p_hwfn);
1636
1637         /* Initialize MCP structure */
1638         rc = qed_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
1639         if (rc) {
1640                 DP_NOTICE(p_hwfn, "Failed initializing mcp command\n");
1641                 goto err1;
1642         }
1643
1644         /* Read the device configuration information from the HW and SHMEM */
1645         rc = qed_get_hw_info(p_hwfn, p_hwfn->p_main_ptt, personality);
1646         if (rc) {
1647                 DP_NOTICE(p_hwfn, "Failed to get HW information\n");
1648                 goto err2;
1649         }
1650
1651         /* Allocate the init RT array and initialize the init-ops engine */
1652         rc = qed_init_alloc(p_hwfn);
1653         if (rc) {
1654                 DP_NOTICE(p_hwfn, "Failed to allocate the init array\n");
1655                 goto err2;
1656         }
1657
1658         return rc;
1659 err2:
1660         if (IS_LEAD_HWFN(p_hwfn))
1661                 qed_iov_free_hw_info(p_hwfn->cdev);
1662         qed_mcp_free(p_hwfn);
1663 err1:
1664         qed_hw_hwfn_free(p_hwfn);
1665 err0:
1666         return rc;
1667 }
1668
1669 int qed_hw_prepare(struct qed_dev *cdev,
1670                    int personality)
1671 {
1672         struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
1673         int rc;
1674
1675         /* Store the precompiled init data ptrs */
1676         if (IS_PF(cdev))
1677                 qed_init_iro_array(cdev);
1678
1679         /* Initialize the first hwfn - will learn number of hwfns */
1680         rc = qed_hw_prepare_single(p_hwfn,
1681                                    cdev->regview,
1682                                    cdev->doorbells, personality);
1683         if (rc)
1684                 return rc;
1685
1686         personality = p_hwfn->hw_info.personality;
1687
1688         /* Initialize the rest of the hwfns */
1689         if (cdev->num_hwfns > 1) {
1690                 void __iomem *p_regview, *p_doorbell;
1691                 u8 __iomem *addr;
1692
1693                 /* adjust bar offset for second engine */
1694                 addr = cdev->regview + qed_hw_bar_size(p_hwfn, BAR_ID_0) / 2;
1695                 p_regview = addr;
1696
1697                 /* adjust doorbell bar offset for second engine */
1698                 addr = cdev->doorbells + qed_hw_bar_size(p_hwfn, BAR_ID_1) / 2;
1699                 p_doorbell = addr;
1700
1701                 /* prepare second hw function */
1702                 rc = qed_hw_prepare_single(&cdev->hwfns[1], p_regview,
1703                                            p_doorbell, personality);
1704
1705                 /* in case of error, need to free the previously
1706                  * initiliazed hwfn 0.
1707                  */
1708                 if (rc) {
1709                         if (IS_PF(cdev)) {
1710                                 qed_init_free(p_hwfn);
1711                                 qed_mcp_free(p_hwfn);
1712                                 qed_hw_hwfn_free(p_hwfn);
1713                         }
1714                 }
1715         }
1716
1717         return rc;
1718 }
1719
1720 void qed_hw_remove(struct qed_dev *cdev)
1721 {
1722         int i;
1723
1724         for_each_hwfn(cdev, i) {
1725                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1726
1727                 if (IS_VF(cdev)) {
1728                         qed_vf_pf_release(p_hwfn);
1729                         continue;
1730                 }
1731
1732                 qed_init_free(p_hwfn);
1733                 qed_hw_hwfn_free(p_hwfn);
1734                 qed_mcp_free(p_hwfn);
1735         }
1736
1737         qed_iov_free_hw_info(cdev);
1738 }
1739
1740 int qed_chain_alloc(struct qed_dev *cdev,
1741                     enum qed_chain_use_mode intended_use,
1742                     enum qed_chain_mode mode,
1743                     u16 num_elems,
1744                     size_t elem_size,
1745                     struct qed_chain *p_chain)
1746 {
1747         dma_addr_t p_pbl_phys = 0;
1748         void *p_pbl_virt = NULL;
1749         dma_addr_t p_phys = 0;
1750         void *p_virt = NULL;
1751         u16 page_cnt = 0;
1752         size_t size;
1753
1754         if (mode == QED_CHAIN_MODE_SINGLE)
1755                 page_cnt = 1;
1756         else
1757                 page_cnt = QED_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
1758
1759         size = page_cnt * QED_CHAIN_PAGE_SIZE;
1760         p_virt = dma_alloc_coherent(&cdev->pdev->dev,
1761                                     size, &p_phys, GFP_KERNEL);
1762         if (!p_virt) {
1763                 DP_NOTICE(cdev, "Failed to allocate chain mem\n");
1764                 goto nomem;
1765         }
1766
1767         if (mode == QED_CHAIN_MODE_PBL) {
1768                 size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
1769                 p_pbl_virt = dma_alloc_coherent(&cdev->pdev->dev,
1770                                                 size, &p_pbl_phys,
1771                                                 GFP_KERNEL);
1772                 if (!p_pbl_virt) {
1773                         DP_NOTICE(cdev, "Failed to allocate chain pbl mem\n");
1774                         goto nomem;
1775                 }
1776
1777                 qed_chain_pbl_init(p_chain, p_virt, p_phys, page_cnt,
1778                                    (u8)elem_size, intended_use,
1779                                    p_pbl_phys, p_pbl_virt);
1780         } else {
1781                 qed_chain_init(p_chain, p_virt, p_phys, page_cnt,
1782                                (u8)elem_size, intended_use, mode);
1783         }
1784
1785         return 0;
1786
1787 nomem:
1788         dma_free_coherent(&cdev->pdev->dev,
1789                           page_cnt * QED_CHAIN_PAGE_SIZE,
1790                           p_virt, p_phys);
1791         dma_free_coherent(&cdev->pdev->dev,
1792                           page_cnt * QED_CHAIN_PBL_ENTRY_SIZE,
1793                           p_pbl_virt, p_pbl_phys);
1794
1795         return -ENOMEM;
1796 }
1797
1798 void qed_chain_free(struct qed_dev *cdev,
1799                     struct qed_chain *p_chain)
1800 {
1801         size_t size;
1802
1803         if (!p_chain->p_virt_addr)
1804                 return;
1805
1806         if (p_chain->mode == QED_CHAIN_MODE_PBL) {
1807                 size = p_chain->page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
1808                 dma_free_coherent(&cdev->pdev->dev, size,
1809                                   p_chain->pbl.p_virt_table,
1810                                   p_chain->pbl.p_phys_table);
1811         }
1812
1813         size = p_chain->page_cnt * QED_CHAIN_PAGE_SIZE;
1814         dma_free_coherent(&cdev->pdev->dev, size,
1815                           p_chain->p_virt_addr,
1816                           p_chain->p_phys_addr);
1817 }
1818
1819 int qed_fw_l2_queue(struct qed_hwfn *p_hwfn,
1820                     u16 src_id, u16 *dst_id)
1821 {
1822         if (src_id >= RESC_NUM(p_hwfn, QED_L2_QUEUE)) {
1823                 u16 min, max;
1824
1825                 min = (u16)RESC_START(p_hwfn, QED_L2_QUEUE);
1826                 max = min + RESC_NUM(p_hwfn, QED_L2_QUEUE);
1827                 DP_NOTICE(p_hwfn,
1828                           "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
1829                           src_id, min, max);
1830
1831                 return -EINVAL;
1832         }
1833
1834         *dst_id = RESC_START(p_hwfn, QED_L2_QUEUE) + src_id;
1835
1836         return 0;
1837 }
1838
1839 int qed_fw_vport(struct qed_hwfn *p_hwfn,
1840                  u8 src_id, u8 *dst_id)
1841 {
1842         if (src_id >= RESC_NUM(p_hwfn, QED_VPORT)) {
1843                 u8 min, max;
1844
1845                 min = (u8)RESC_START(p_hwfn, QED_VPORT);
1846                 max = min + RESC_NUM(p_hwfn, QED_VPORT);
1847                 DP_NOTICE(p_hwfn,
1848                           "vport id [%d] is not valid, available indices [%d - %d]\n",
1849                           src_id, min, max);
1850
1851                 return -EINVAL;
1852         }
1853
1854         *dst_id = RESC_START(p_hwfn, QED_VPORT) + src_id;
1855
1856         return 0;
1857 }
1858
1859 int qed_fw_rss_eng(struct qed_hwfn *p_hwfn,
1860                    u8 src_id, u8 *dst_id)
1861 {
1862         if (src_id >= RESC_NUM(p_hwfn, QED_RSS_ENG)) {
1863                 u8 min, max;
1864
1865                 min = (u8)RESC_START(p_hwfn, QED_RSS_ENG);
1866                 max = min + RESC_NUM(p_hwfn, QED_RSS_ENG);
1867                 DP_NOTICE(p_hwfn,
1868                           "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
1869                           src_id, min, max);
1870
1871                 return -EINVAL;
1872         }
1873
1874         *dst_id = RESC_START(p_hwfn, QED_RSS_ENG) + src_id;
1875
1876         return 0;
1877 }
1878
1879 /* Calculate final WFQ values for all vports and configure them.
1880  * After this configuration each vport will have
1881  * approx min rate =  min_pf_rate * (vport_wfq / QED_WFQ_UNIT)
1882  */
1883 static void qed_configure_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
1884                                              struct qed_ptt *p_ptt,
1885                                              u32 min_pf_rate)
1886 {
1887         struct init_qm_vport_params *vport_params;
1888         int i;
1889
1890         vport_params = p_hwfn->qm_info.qm_vport_params;
1891
1892         for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
1893                 u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
1894
1895                 vport_params[i].vport_wfq = (wfq_speed * QED_WFQ_UNIT) /
1896                                                 min_pf_rate;
1897                 qed_init_vport_wfq(p_hwfn, p_ptt,
1898                                    vport_params[i].first_tx_pq_id,
1899                                    vport_params[i].vport_wfq);
1900         }
1901 }
1902
1903 static void qed_init_wfq_default_param(struct qed_hwfn *p_hwfn,
1904                                        u32 min_pf_rate)
1905
1906 {
1907         int i;
1908
1909         for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
1910                 p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
1911 }
1912
1913 static void qed_disable_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
1914                                            struct qed_ptt *p_ptt,
1915                                            u32 min_pf_rate)
1916 {
1917         struct init_qm_vport_params *vport_params;
1918         int i;
1919
1920         vport_params = p_hwfn->qm_info.qm_vport_params;
1921
1922         for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
1923                 qed_init_wfq_default_param(p_hwfn, min_pf_rate);
1924                 qed_init_vport_wfq(p_hwfn, p_ptt,
1925                                    vport_params[i].first_tx_pq_id,
1926                                    vport_params[i].vport_wfq);
1927         }
1928 }
1929
1930 /* This function performs several validations for WFQ
1931  * configuration and required min rate for a given vport
1932  * 1. req_rate must be greater than one percent of min_pf_rate.
1933  * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
1934  *    rates to get less than one percent of min_pf_rate.
1935  * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
1936  */
1937 static int qed_init_wfq_param(struct qed_hwfn *p_hwfn,
1938                               u16 vport_id, u32 req_rate,
1939                               u32 min_pf_rate)
1940 {
1941         u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
1942         int non_requested_count = 0, req_count = 0, i, num_vports;
1943
1944         num_vports = p_hwfn->qm_info.num_vports;
1945
1946         /* Accounting for the vports which are configured for WFQ explicitly */
1947         for (i = 0; i < num_vports; i++) {
1948                 u32 tmp_speed;
1949
1950                 if ((i != vport_id) &&
1951                     p_hwfn->qm_info.wfq_data[i].configured) {
1952                         req_count++;
1953                         tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
1954                         total_req_min_rate += tmp_speed;
1955                 }
1956         }
1957
1958         /* Include current vport data as well */
1959         req_count++;
1960         total_req_min_rate += req_rate;
1961         non_requested_count = num_vports - req_count;
1962
1963         if (req_rate < min_pf_rate / QED_WFQ_UNIT) {
1964                 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1965                            "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
1966                            vport_id, req_rate, min_pf_rate);
1967                 return -EINVAL;
1968         }
1969
1970         if (num_vports > QED_WFQ_UNIT) {
1971                 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1972                            "Number of vports is greater than %d\n",
1973                            QED_WFQ_UNIT);
1974                 return -EINVAL;
1975         }
1976
1977         if (total_req_min_rate > min_pf_rate) {
1978                 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1979                            "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
1980                            total_req_min_rate, min_pf_rate);
1981                 return -EINVAL;
1982         }
1983
1984         total_left_rate = min_pf_rate - total_req_min_rate;
1985
1986         left_rate_per_vp = total_left_rate / non_requested_count;
1987         if (left_rate_per_vp <  min_pf_rate / QED_WFQ_UNIT) {
1988                 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1989                            "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
1990                            left_rate_per_vp, min_pf_rate);
1991                 return -EINVAL;
1992         }
1993
1994         p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
1995         p_hwfn->qm_info.wfq_data[vport_id].configured = true;
1996
1997         for (i = 0; i < num_vports; i++) {
1998                 if (p_hwfn->qm_info.wfq_data[i].configured)
1999                         continue;
2000
2001                 p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
2002         }
2003
2004         return 0;
2005 }
2006
2007 static int __qed_configure_vport_wfq(struct qed_hwfn *p_hwfn,
2008                                      struct qed_ptt *p_ptt, u16 vp_id, u32 rate)
2009 {
2010         struct qed_mcp_link_state *p_link;
2011         int rc = 0;
2012
2013         p_link = &p_hwfn->cdev->hwfns[0].mcp_info->link_output;
2014
2015         if (!p_link->min_pf_rate) {
2016                 p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
2017                 p_hwfn->qm_info.wfq_data[vp_id].configured = true;
2018                 return rc;
2019         }
2020
2021         rc = qed_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
2022
2023         if (rc == 0)
2024                 qed_configure_wfq_for_all_vports(p_hwfn, p_ptt,
2025                                                  p_link->min_pf_rate);
2026         else
2027                 DP_NOTICE(p_hwfn,
2028                           "Validation failed while configuring min rate\n");
2029
2030         return rc;
2031 }
2032
2033 static int __qed_configure_vp_wfq_on_link_change(struct qed_hwfn *p_hwfn,
2034                                                  struct qed_ptt *p_ptt,
2035                                                  u32 min_pf_rate)
2036 {
2037         bool use_wfq = false;
2038         int rc = 0;
2039         u16 i;
2040
2041         /* Validate all pre configured vports for wfq */
2042         for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
2043                 u32 rate;
2044
2045                 if (!p_hwfn->qm_info.wfq_data[i].configured)
2046                         continue;
2047
2048                 rate = p_hwfn->qm_info.wfq_data[i].min_speed;
2049                 use_wfq = true;
2050
2051                 rc = qed_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
2052                 if (rc) {
2053                         DP_NOTICE(p_hwfn,
2054                                   "WFQ validation failed while configuring min rate\n");
2055                         break;
2056                 }
2057         }
2058
2059         if (!rc && use_wfq)
2060                 qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
2061         else
2062                 qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
2063
2064         return rc;
2065 }
2066
2067 /* Main API for qed clients to configure vport min rate.
2068  * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
2069  * rate - Speed in Mbps needs to be assigned to a given vport.
2070  */
2071 int qed_configure_vport_wfq(struct qed_dev *cdev, u16 vp_id, u32 rate)
2072 {
2073         int i, rc = -EINVAL;
2074
2075         /* Currently not supported; Might change in future */
2076         if (cdev->num_hwfns > 1) {
2077                 DP_NOTICE(cdev,
2078                           "WFQ configuration is not supported for this device\n");
2079                 return rc;
2080         }
2081
2082         for_each_hwfn(cdev, i) {
2083                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2084                 struct qed_ptt *p_ptt;
2085
2086                 p_ptt = qed_ptt_acquire(p_hwfn);
2087                 if (!p_ptt)
2088                         return -EBUSY;
2089
2090                 rc = __qed_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
2091
2092                 if (!rc) {
2093                         qed_ptt_release(p_hwfn, p_ptt);
2094                         return rc;
2095                 }
2096
2097                 qed_ptt_release(p_hwfn, p_ptt);
2098         }
2099
2100         return rc;
2101 }
2102
2103 /* API to configure WFQ from mcp link change */
2104 void qed_configure_vp_wfq_on_link_change(struct qed_dev *cdev, u32 min_pf_rate)
2105 {
2106         int i;
2107
2108         if (cdev->num_hwfns > 1) {
2109                 DP_VERBOSE(cdev,
2110                            NETIF_MSG_LINK,
2111                            "WFQ configuration is not supported for this device\n");
2112                 return;
2113         }
2114
2115         for_each_hwfn(cdev, i) {
2116                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2117
2118                 __qed_configure_vp_wfq_on_link_change(p_hwfn,
2119                                                       p_hwfn->p_dpc_ptt,
2120                                                       min_pf_rate);
2121         }
2122 }
2123
2124 int __qed_configure_pf_max_bandwidth(struct qed_hwfn *p_hwfn,
2125                                      struct qed_ptt *p_ptt,
2126                                      struct qed_mcp_link_state *p_link,
2127                                      u8 max_bw)
2128 {
2129         int rc = 0;
2130
2131         p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
2132
2133         if (!p_link->line_speed && (max_bw != 100))
2134                 return rc;
2135
2136         p_link->speed = (p_link->line_speed * max_bw) / 100;
2137         p_hwfn->qm_info.pf_rl = p_link->speed;
2138
2139         /* Since the limiter also affects Tx-switched traffic, we don't want it
2140          * to limit such traffic in case there's no actual limit.
2141          * In that case, set limit to imaginary high boundary.
2142          */
2143         if (max_bw == 100)
2144                 p_hwfn->qm_info.pf_rl = 100000;
2145
2146         rc = qed_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
2147                             p_hwfn->qm_info.pf_rl);
2148
2149         DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2150                    "Configured MAX bandwidth to be %08x Mb/sec\n",
2151                    p_link->speed);
2152
2153         return rc;
2154 }
2155
2156 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
2157 int qed_configure_pf_max_bandwidth(struct qed_dev *cdev, u8 max_bw)
2158 {
2159         int i, rc = -EINVAL;
2160
2161         if (max_bw < 1 || max_bw > 100) {
2162                 DP_NOTICE(cdev, "PF max bw valid range is [1-100]\n");
2163                 return rc;
2164         }
2165
2166         for_each_hwfn(cdev, i) {
2167                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2168                 struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
2169                 struct qed_mcp_link_state *p_link;
2170                 struct qed_ptt *p_ptt;
2171
2172                 p_link = &p_lead->mcp_info->link_output;
2173
2174                 p_ptt = qed_ptt_acquire(p_hwfn);
2175                 if (!p_ptt)
2176                         return -EBUSY;
2177
2178                 rc = __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt,
2179                                                       p_link, max_bw);
2180
2181                 qed_ptt_release(p_hwfn, p_ptt);
2182
2183                 if (rc)
2184                         break;
2185         }
2186
2187         return rc;
2188 }
2189
2190 int __qed_configure_pf_min_bandwidth(struct qed_hwfn *p_hwfn,
2191                                      struct qed_ptt *p_ptt,
2192                                      struct qed_mcp_link_state *p_link,
2193                                      u8 min_bw)
2194 {
2195         int rc = 0;
2196
2197         p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
2198         p_hwfn->qm_info.pf_wfq = min_bw;
2199
2200         if (!p_link->line_speed)
2201                 return rc;
2202
2203         p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
2204
2205         rc = qed_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
2206
2207         DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2208                    "Configured MIN bandwidth to be %d Mb/sec\n",
2209                    p_link->min_pf_rate);
2210
2211         return rc;
2212 }
2213
2214 /* Main API to configure PF min bandwidth where bw range is [1-100] */
2215 int qed_configure_pf_min_bandwidth(struct qed_dev *cdev, u8 min_bw)
2216 {
2217         int i, rc = -EINVAL;
2218
2219         if (min_bw < 1 || min_bw > 100) {
2220                 DP_NOTICE(cdev, "PF min bw valid range is [1-100]\n");
2221                 return rc;
2222         }
2223
2224         for_each_hwfn(cdev, i) {
2225                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2226                 struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
2227                 struct qed_mcp_link_state *p_link;
2228                 struct qed_ptt *p_ptt;
2229
2230                 p_link = &p_lead->mcp_info->link_output;
2231
2232                 p_ptt = qed_ptt_acquire(p_hwfn);
2233                 if (!p_ptt)
2234                         return -EBUSY;
2235
2236                 rc = __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt,
2237                                                       p_link, min_bw);
2238                 if (rc) {
2239                         qed_ptt_release(p_hwfn, p_ptt);
2240                         return rc;
2241                 }
2242
2243                 if (p_link->min_pf_rate) {
2244                         u32 min_rate = p_link->min_pf_rate;
2245
2246                         rc = __qed_configure_vp_wfq_on_link_change(p_hwfn,
2247                                                                    p_ptt,
2248                                                                    min_rate);
2249                 }
2250
2251                 qed_ptt_release(p_hwfn, p_ptt);
2252         }
2253
2254         return rc;
2255 }
2256
2257 void qed_clean_wfq_db(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2258 {
2259         struct qed_mcp_link_state *p_link;
2260
2261         p_link = &p_hwfn->mcp_info->link_output;
2262
2263         if (p_link->min_pf_rate)
2264                 qed_disable_wfq_for_all_vports(p_hwfn, p_ptt,
2265                                                p_link->min_pf_rate);
2266
2267         memset(p_hwfn->qm_info.wfq_data, 0,
2268                sizeof(*p_hwfn->qm_info.wfq_data) * p_hwfn->qm_info.num_vports);
2269 }