b26fe267a150982d5a165f510dcb873457f61924
[cascardo/linux.git] / drivers / net / ethernet / qlogic / qed / qed_dev.c
1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015 QLogic Corporation
3  *
4  * This software is available under the terms of the GNU General Public License
5  * (GPL) Version 2, available from the file COPYING in the main directory of
6  * this source tree.
7  */
8
9 #include <linux/types.h>
10 #include <asm/byteorder.h>
11 #include <linux/io.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/errno.h>
15 #include <linux/kernel.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/vmalloc.h>
21 #include <linux/etherdevice.h>
22 #include <linux/qed/qed_chain.h>
23 #include <linux/qed/qed_if.h>
24 #include "qed.h"
25 #include "qed_cxt.h"
26 #include "qed_dcbx.h"
27 #include "qed_dev_api.h"
28 #include "qed_hsi.h"
29 #include "qed_hw.h"
30 #include "qed_init_ops.h"
31 #include "qed_int.h"
32 #include "qed_mcp.h"
33 #include "qed_reg_addr.h"
34 #include "qed_sp.h"
35 #include "qed_sriov.h"
36 #include "qed_vf.h"
37
38 static spinlock_t qm_lock;
39 static bool qm_lock_init = false;
40
41 /* API common to all protocols */
42 enum BAR_ID {
43         BAR_ID_0,       /* used for GRC */
44         BAR_ID_1        /* Used for doorbells */
45 };
46
47 static u32 qed_hw_bar_size(struct qed_hwfn      *p_hwfn,
48                            enum BAR_ID          bar_id)
49 {
50         u32 bar_reg = (bar_id == BAR_ID_0 ?
51                        PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
52         u32 val;
53
54         if (IS_VF(p_hwfn->cdev))
55                 return 1 << 17;
56
57         val = qed_rd(p_hwfn, p_hwfn->p_main_ptt, bar_reg);
58         if (val)
59                 return 1 << (val + 15);
60
61         /* Old MFW initialized above registered only conditionally */
62         if (p_hwfn->cdev->num_hwfns > 1) {
63                 DP_INFO(p_hwfn,
64                         "BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n");
65                         return BAR_ID_0 ? 256 * 1024 : 512 * 1024;
66         } else {
67                 DP_INFO(p_hwfn,
68                         "BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n");
69                         return 512 * 1024;
70         }
71 }
72
73 void qed_init_dp(struct qed_dev *cdev,
74                  u32 dp_module, u8 dp_level)
75 {
76         u32 i;
77
78         cdev->dp_level = dp_level;
79         cdev->dp_module = dp_module;
80         for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
81                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
82
83                 p_hwfn->dp_level = dp_level;
84                 p_hwfn->dp_module = dp_module;
85         }
86 }
87
88 void qed_init_struct(struct qed_dev *cdev)
89 {
90         u8 i;
91
92         for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
93                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
94
95                 p_hwfn->cdev = cdev;
96                 p_hwfn->my_id = i;
97                 p_hwfn->b_active = false;
98
99                 mutex_init(&p_hwfn->dmae_info.mutex);
100         }
101
102         /* hwfn 0 is always active */
103         cdev->hwfns[0].b_active = true;
104
105         /* set the default cache alignment to 128 */
106         cdev->cache_shift = 7;
107 }
108
109 static void qed_qm_info_free(struct qed_hwfn *p_hwfn)
110 {
111         struct qed_qm_info *qm_info = &p_hwfn->qm_info;
112
113         kfree(qm_info->qm_pq_params);
114         qm_info->qm_pq_params = NULL;
115         kfree(qm_info->qm_vport_params);
116         qm_info->qm_vport_params = NULL;
117         kfree(qm_info->qm_port_params);
118         qm_info->qm_port_params = NULL;
119         kfree(qm_info->wfq_data);
120         qm_info->wfq_data = NULL;
121 }
122
123 void qed_resc_free(struct qed_dev *cdev)
124 {
125         int i;
126
127         if (IS_VF(cdev))
128                 return;
129
130         kfree(cdev->fw_data);
131         cdev->fw_data = NULL;
132
133         kfree(cdev->reset_stats);
134
135         for_each_hwfn(cdev, i) {
136                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
137
138                 kfree(p_hwfn->p_tx_cids);
139                 p_hwfn->p_tx_cids = NULL;
140                 kfree(p_hwfn->p_rx_cids);
141                 p_hwfn->p_rx_cids = NULL;
142         }
143
144         for_each_hwfn(cdev, i) {
145                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
146
147                 qed_cxt_mngr_free(p_hwfn);
148                 qed_qm_info_free(p_hwfn);
149                 qed_spq_free(p_hwfn);
150                 qed_eq_free(p_hwfn, p_hwfn->p_eq);
151                 qed_consq_free(p_hwfn, p_hwfn->p_consq);
152                 qed_int_free(p_hwfn);
153                 qed_iov_free(p_hwfn);
154                 qed_dmae_info_free(p_hwfn);
155                 qed_dcbx_info_free(p_hwfn, p_hwfn->p_dcbx_info);
156         }
157 }
158
159 static int qed_init_qm_info(struct qed_hwfn *p_hwfn, bool b_sleepable)
160 {
161         u8 num_vports, vf_offset = 0, i, vport_id, num_ports, curr_queue = 0;
162         struct qed_qm_info *qm_info = &p_hwfn->qm_info;
163         struct init_qm_port_params *p_qm_port;
164         bool init_rdma_offload_pq = false;
165         bool init_pure_ack_pq = false;
166         bool init_ooo_pq = false;
167         u16 num_pqs, multi_cos_tcs = 1;
168         u8 pf_wfq = qm_info->pf_wfq;
169         u32 pf_rl = qm_info->pf_rl;
170         u16 num_pf_rls = 0;
171         u16 num_vfs = 0;
172
173 #ifdef CONFIG_QED_SRIOV
174         if (p_hwfn->cdev->p_iov_info)
175                 num_vfs = p_hwfn->cdev->p_iov_info->total_vfs;
176 #endif
177         memset(qm_info, 0, sizeof(*qm_info));
178
179         num_pqs = multi_cos_tcs + num_vfs + 1;  /* The '1' is for pure-LB */
180         num_vports = (u8)RESC_NUM(p_hwfn, QED_VPORT);
181
182         if (p_hwfn->hw_info.personality == QED_PCI_ETH_ROCE) {
183                 num_pqs++;      /* for RoCE queue */
184                 init_rdma_offload_pq = true;
185                 /* we subtract num_vfs because each require a rate limiter,
186                  * and one default rate limiter
187                  */
188                 if (p_hwfn->pf_params.rdma_pf_params.enable_dcqcn)
189                         num_pf_rls = RESC_NUM(p_hwfn, QED_RL) - num_vfs - 1;
190
191                 num_pqs += num_pf_rls;
192                 qm_info->num_pf_rls = (u8) num_pf_rls;
193         }
194
195         if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
196                 num_pqs += 2;   /* for iSCSI pure-ACK / OOO queue */
197                 init_pure_ack_pq = true;
198                 init_ooo_pq = true;
199         }
200
201         /* Sanity checking that setup requires legal number of resources */
202         if (num_pqs > RESC_NUM(p_hwfn, QED_PQ)) {
203                 DP_ERR(p_hwfn,
204                        "Need too many Physical queues - 0x%04x when only %04x are available\n",
205                        num_pqs, RESC_NUM(p_hwfn, QED_PQ));
206                 return -EINVAL;
207         }
208
209         /* PQs will be arranged as follows: First per-TC PQ then pure-LB quete.
210          */
211         qm_info->qm_pq_params = kcalloc(num_pqs,
212                                         sizeof(struct init_qm_pq_params),
213                                         b_sleepable ? GFP_KERNEL : GFP_ATOMIC);
214         if (!qm_info->qm_pq_params)
215                 goto alloc_err;
216
217         qm_info->qm_vport_params = kcalloc(num_vports,
218                                            sizeof(struct init_qm_vport_params),
219                                            b_sleepable ? GFP_KERNEL
220                                                        : GFP_ATOMIC);
221         if (!qm_info->qm_vport_params)
222                 goto alloc_err;
223
224         qm_info->qm_port_params = kcalloc(MAX_NUM_PORTS,
225                                           sizeof(struct init_qm_port_params),
226                                           b_sleepable ? GFP_KERNEL
227                                                       : GFP_ATOMIC);
228         if (!qm_info->qm_port_params)
229                 goto alloc_err;
230
231         qm_info->wfq_data = kcalloc(num_vports, sizeof(struct qed_wfq_data),
232                                     b_sleepable ? GFP_KERNEL : GFP_ATOMIC);
233         if (!qm_info->wfq_data)
234                 goto alloc_err;
235
236         vport_id = (u8)RESC_START(p_hwfn, QED_VPORT);
237
238         /* First init rate limited queues */
239         for (curr_queue = 0; curr_queue < num_pf_rls; curr_queue++) {
240                 qm_info->qm_pq_params[curr_queue].vport_id = vport_id++;
241                 qm_info->qm_pq_params[curr_queue].tc_id =
242                     p_hwfn->hw_info.non_offload_tc;
243                 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
244                 qm_info->qm_pq_params[curr_queue].rl_valid = 1;
245         }
246
247         /* First init per-TC PQs */
248         for (i = 0; i < multi_cos_tcs; i++) {
249                 struct init_qm_pq_params *params =
250                     &qm_info->qm_pq_params[curr_queue++];
251
252                 if (p_hwfn->hw_info.personality == QED_PCI_ETH_ROCE ||
253                     p_hwfn->hw_info.personality == QED_PCI_ETH) {
254                         params->vport_id = vport_id;
255                         params->tc_id = p_hwfn->hw_info.non_offload_tc;
256                         params->wrr_group = 1;
257                 } else {
258                         params->vport_id = vport_id;
259                         params->tc_id = p_hwfn->hw_info.offload_tc;
260                         params->wrr_group = 1;
261                 }
262         }
263
264         /* Then init pure-LB PQ */
265         qm_info->pure_lb_pq = curr_queue;
266         qm_info->qm_pq_params[curr_queue].vport_id =
267             (u8) RESC_START(p_hwfn, QED_VPORT);
268         qm_info->qm_pq_params[curr_queue].tc_id = PURE_LB_TC;
269         qm_info->qm_pq_params[curr_queue].wrr_group = 1;
270         curr_queue++;
271
272         qm_info->offload_pq = 0;
273         if (init_rdma_offload_pq) {
274                 qm_info->offload_pq = curr_queue;
275                 qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
276                 qm_info->qm_pq_params[curr_queue].tc_id =
277                     p_hwfn->hw_info.offload_tc;
278                 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
279                 curr_queue++;
280         }
281
282         if (init_pure_ack_pq) {
283                 qm_info->pure_ack_pq = curr_queue;
284                 qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
285                 qm_info->qm_pq_params[curr_queue].tc_id =
286                     p_hwfn->hw_info.offload_tc;
287                 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
288                 curr_queue++;
289         }
290
291         if (init_ooo_pq) {
292                 qm_info->ooo_pq = curr_queue;
293                 qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
294                 qm_info->qm_pq_params[curr_queue].tc_id = DCBX_ISCSI_OOO_TC;
295                 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
296                 curr_queue++;
297         }
298
299         /* Then init per-VF PQs */
300         vf_offset = curr_queue;
301         for (i = 0; i < num_vfs; i++) {
302                 /* First vport is used by the PF */
303                 qm_info->qm_pq_params[curr_queue].vport_id = vport_id + i + 1;
304                 qm_info->qm_pq_params[curr_queue].tc_id =
305                     p_hwfn->hw_info.non_offload_tc;
306                 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
307                 qm_info->qm_pq_params[curr_queue].rl_valid = 1;
308                 curr_queue++;
309         }
310
311         qm_info->vf_queues_offset = vf_offset;
312         qm_info->num_pqs = num_pqs;
313         qm_info->num_vports = num_vports;
314
315         /* Initialize qm port parameters */
316         num_ports = p_hwfn->cdev->num_ports_in_engines;
317         for (i = 0; i < num_ports; i++) {
318                 p_qm_port = &qm_info->qm_port_params[i];
319                 p_qm_port->active = 1;
320                 if (num_ports == 4)
321                         p_qm_port->active_phys_tcs = 0x7;
322                 else
323                         p_qm_port->active_phys_tcs = 0x9f;
324                 p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports;
325                 p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
326         }
327
328         qm_info->max_phys_tcs_per_port = NUM_OF_PHYS_TCS;
329
330         qm_info->start_pq = (u16)RESC_START(p_hwfn, QED_PQ);
331
332         qm_info->num_vf_pqs = num_vfs;
333         qm_info->start_vport = (u8) RESC_START(p_hwfn, QED_VPORT);
334
335         for (i = 0; i < qm_info->num_vports; i++)
336                 qm_info->qm_vport_params[i].vport_wfq = 1;
337
338         qm_info->vport_rl_en = 1;
339         qm_info->vport_wfq_en = 1;
340         qm_info->pf_rl = pf_rl;
341         qm_info->pf_wfq = pf_wfq;
342
343         return 0;
344
345 alloc_err:
346         DP_NOTICE(p_hwfn, "Failed to allocate memory for QM params\n");
347         qed_qm_info_free(p_hwfn);
348         return -ENOMEM;
349 }
350
351 /* This function reconfigures the QM pf on the fly.
352  * For this purpose we:
353  * 1. reconfigure the QM database
354  * 2. set new values to runtime arrat
355  * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
356  * 4. activate init tool in QM_PF stage
357  * 5. send an sdm_qm_cmd through rbc interface to release the QM
358  */
359 int qed_qm_reconf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
360 {
361         struct qed_qm_info *qm_info = &p_hwfn->qm_info;
362         bool b_rc;
363         int rc;
364
365         /* qm_info is allocated in qed_init_qm_info() which is already called
366          * from qed_resc_alloc() or previous call of qed_qm_reconf().
367          * The allocated size may change each init, so we free it before next
368          * allocation.
369          */
370         qed_qm_info_free(p_hwfn);
371
372         /* initialize qed's qm data structure */
373         rc = qed_init_qm_info(p_hwfn, false);
374         if (rc)
375                 return rc;
376
377         /* stop PF's qm queues */
378         spin_lock_bh(&qm_lock);
379         b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
380                                     qm_info->start_pq, qm_info->num_pqs);
381         spin_unlock_bh(&qm_lock);
382         if (!b_rc)
383                 return -EINVAL;
384
385         /* clear the QM_PF runtime phase leftovers from previous init */
386         qed_init_clear_rt_data(p_hwfn);
387
388         /* prepare QM portion of runtime array */
389         qed_qm_init_pf(p_hwfn);
390
391         /* activate init tool on runtime array */
392         rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
393                           p_hwfn->hw_info.hw_mode);
394         if (rc)
395                 return rc;
396
397         /* start PF's qm queues */
398         spin_lock_bh(&qm_lock);
399         b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
400                                     qm_info->start_pq, qm_info->num_pqs);
401         spin_unlock_bh(&qm_lock);
402         if (!b_rc)
403                 return -EINVAL;
404
405         return 0;
406 }
407
408 int qed_resc_alloc(struct qed_dev *cdev)
409 {
410         struct qed_consq *p_consq;
411         struct qed_eq *p_eq;
412         int i, rc = 0;
413
414         if (IS_VF(cdev))
415                 return rc;
416
417         cdev->fw_data = kzalloc(sizeof(*cdev->fw_data), GFP_KERNEL);
418         if (!cdev->fw_data)
419                 return -ENOMEM;
420
421         /* Allocate Memory for the Queue->CID mapping */
422         for_each_hwfn(cdev, i) {
423                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
424                 int tx_size = sizeof(struct qed_hw_cid_data) *
425                                      RESC_NUM(p_hwfn, QED_L2_QUEUE);
426                 int rx_size = sizeof(struct qed_hw_cid_data) *
427                                      RESC_NUM(p_hwfn, QED_L2_QUEUE);
428
429                 p_hwfn->p_tx_cids = kzalloc(tx_size, GFP_KERNEL);
430                 if (!p_hwfn->p_tx_cids) {
431                         DP_NOTICE(p_hwfn,
432                                   "Failed to allocate memory for Tx Cids\n");
433                         goto alloc_no_mem;
434                 }
435
436                 p_hwfn->p_rx_cids = kzalloc(rx_size, GFP_KERNEL);
437                 if (!p_hwfn->p_rx_cids) {
438                         DP_NOTICE(p_hwfn,
439                                   "Failed to allocate memory for Rx Cids\n");
440                         goto alloc_no_mem;
441                 }
442         }
443
444         for_each_hwfn(cdev, i) {
445                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
446                 u32 n_eqes, num_cons;
447
448                 /* First allocate the context manager structure */
449                 rc = qed_cxt_mngr_alloc(p_hwfn);
450                 if (rc)
451                         goto alloc_err;
452
453                 /* Set the HW cid/tid numbers (in the contest manager)
454                  * Must be done prior to any further computations.
455                  */
456                 rc = qed_cxt_set_pf_params(p_hwfn);
457                 if (rc)
458                         goto alloc_err;
459
460                 /* Prepare and process QM requirements */
461                 rc = qed_init_qm_info(p_hwfn, true);
462                 if (rc)
463                         goto alloc_err;
464
465                 /* Compute the ILT client partition */
466                 rc = qed_cxt_cfg_ilt_compute(p_hwfn);
467                 if (rc)
468                         goto alloc_err;
469
470                 /* CID map / ILT shadow table / T2
471                  * The talbes sizes are determined by the computations above
472                  */
473                 rc = qed_cxt_tables_alloc(p_hwfn);
474                 if (rc)
475                         goto alloc_err;
476
477                 /* SPQ, must follow ILT because initializes SPQ context */
478                 rc = qed_spq_alloc(p_hwfn);
479                 if (rc)
480                         goto alloc_err;
481
482                 /* SP status block allocation */
483                 p_hwfn->p_dpc_ptt = qed_get_reserved_ptt(p_hwfn,
484                                                          RESERVED_PTT_DPC);
485
486                 rc = qed_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
487                 if (rc)
488                         goto alloc_err;
489
490                 rc = qed_iov_alloc(p_hwfn);
491                 if (rc)
492                         goto alloc_err;
493
494                 /* EQ */
495                 n_eqes = qed_chain_get_capacity(&p_hwfn->p_spq->chain);
496                 if (p_hwfn->hw_info.personality == QED_PCI_ETH_ROCE) {
497                         num_cons = qed_cxt_get_proto_cid_count(p_hwfn,
498                                                                PROTOCOLID_ROCE,
499                                                                0) * 2;
500                         n_eqes += num_cons + 2 * MAX_NUM_VFS_BB;
501                 } else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
502                         num_cons =
503                             qed_cxt_get_proto_cid_count(p_hwfn,
504                                                         PROTOCOLID_ISCSI, 0);
505                         n_eqes += 2 * num_cons;
506                 }
507
508                 if (n_eqes > 0xFFFF) {
509                         DP_ERR(p_hwfn,
510                                "Cannot allocate 0x%x EQ elements. The maximum of a u16 chain is 0x%x\n",
511                                n_eqes, 0xFFFF);
512                         goto alloc_err;
513                 }
514
515                 p_eq = qed_eq_alloc(p_hwfn, (u16) n_eqes);
516                 if (!p_eq)
517                         goto alloc_no_mem;
518                 p_hwfn->p_eq = p_eq;
519
520                 p_consq = qed_consq_alloc(p_hwfn);
521                 if (!p_consq)
522                         goto alloc_no_mem;
523                 p_hwfn->p_consq = p_consq;
524
525                 /* DMA info initialization */
526                 rc = qed_dmae_info_alloc(p_hwfn);
527                 if (rc) {
528                         DP_NOTICE(p_hwfn,
529                                   "Failed to allocate memory for dmae_info structure\n");
530                         goto alloc_err;
531                 }
532
533                 /* DCBX initialization */
534                 rc = qed_dcbx_info_alloc(p_hwfn);
535                 if (rc) {
536                         DP_NOTICE(p_hwfn,
537                                   "Failed to allocate memory for dcbx structure\n");
538                         goto alloc_err;
539                 }
540         }
541
542         cdev->reset_stats = kzalloc(sizeof(*cdev->reset_stats), GFP_KERNEL);
543         if (!cdev->reset_stats) {
544                 DP_NOTICE(cdev, "Failed to allocate reset statistics\n");
545                 rc = -ENOMEM;
546                 goto alloc_err;
547         }
548
549         return 0;
550
551 alloc_no_mem:
552         rc = -ENOMEM;
553 alloc_err:
554         qed_resc_free(cdev);
555         return rc;
556 }
557
558 void qed_resc_setup(struct qed_dev *cdev)
559 {
560         int i;
561
562         if (IS_VF(cdev))
563                 return;
564
565         for_each_hwfn(cdev, i) {
566                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
567
568                 qed_cxt_mngr_setup(p_hwfn);
569                 qed_spq_setup(p_hwfn);
570                 qed_eq_setup(p_hwfn, p_hwfn->p_eq);
571                 qed_consq_setup(p_hwfn, p_hwfn->p_consq);
572
573                 /* Read shadow of current MFW mailbox */
574                 qed_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
575                 memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
576                        p_hwfn->mcp_info->mfw_mb_cur,
577                        p_hwfn->mcp_info->mfw_mb_length);
578
579                 qed_int_setup(p_hwfn, p_hwfn->p_main_ptt);
580
581                 qed_iov_setup(p_hwfn, p_hwfn->p_main_ptt);
582         }
583 }
584
585 #define FINAL_CLEANUP_POLL_CNT          (100)
586 #define FINAL_CLEANUP_POLL_TIME         (10)
587 int qed_final_cleanup(struct qed_hwfn *p_hwfn,
588                       struct qed_ptt *p_ptt, u16 id, bool is_vf)
589 {
590         u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
591         int rc = -EBUSY;
592
593         addr = GTT_BAR0_MAP_REG_USDM_RAM +
594                 USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
595
596         if (is_vf)
597                 id += 0x10;
598
599         command |= X_FINAL_CLEANUP_AGG_INT <<
600                 SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
601         command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
602         command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
603         command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
604
605         /* Make sure notification is not set before initiating final cleanup */
606         if (REG_RD(p_hwfn, addr)) {
607                 DP_NOTICE(
608                         p_hwfn,
609                         "Unexpected; Found final cleanup notification before initiating final cleanup\n");
610                 REG_WR(p_hwfn, addr, 0);
611         }
612
613         DP_VERBOSE(p_hwfn, QED_MSG_IOV,
614                    "Sending final cleanup for PFVF[%d] [Command %08x\n]",
615                    id, command);
616
617         qed_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
618
619         /* Poll until completion */
620         while (!REG_RD(p_hwfn, addr) && count--)
621                 msleep(FINAL_CLEANUP_POLL_TIME);
622
623         if (REG_RD(p_hwfn, addr))
624                 rc = 0;
625         else
626                 DP_NOTICE(p_hwfn,
627                           "Failed to receive FW final cleanup notification\n");
628
629         /* Cleanup afterwards */
630         REG_WR(p_hwfn, addr, 0);
631
632         return rc;
633 }
634
635 static void qed_calc_hw_mode(struct qed_hwfn *p_hwfn)
636 {
637         int hw_mode = 0;
638
639         hw_mode = (1 << MODE_BB_B0);
640
641         switch (p_hwfn->cdev->num_ports_in_engines) {
642         case 1:
643                 hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
644                 break;
645         case 2:
646                 hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
647                 break;
648         case 4:
649                 hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
650                 break;
651         default:
652                 DP_NOTICE(p_hwfn, "num_ports_in_engine = %d not supported\n",
653                           p_hwfn->cdev->num_ports_in_engines);
654                 return;
655         }
656
657         switch (p_hwfn->cdev->mf_mode) {
658         case QED_MF_DEFAULT:
659         case QED_MF_NPAR:
660                 hw_mode |= 1 << MODE_MF_SI;
661                 break;
662         case QED_MF_OVLAN:
663                 hw_mode |= 1 << MODE_MF_SD;
664                 break;
665         default:
666                 DP_NOTICE(p_hwfn, "Unsupported MF mode, init as DEFAULT\n");
667                 hw_mode |= 1 << MODE_MF_SI;
668         }
669
670         hw_mode |= 1 << MODE_ASIC;
671
672         if (p_hwfn->cdev->num_hwfns > 1)
673                 hw_mode |= 1 << MODE_100G;
674
675         p_hwfn->hw_info.hw_mode = hw_mode;
676
677         DP_VERBOSE(p_hwfn, (NETIF_MSG_PROBE | NETIF_MSG_IFUP),
678                    "Configuring function for hw_mode: 0x%08x\n",
679                    p_hwfn->hw_info.hw_mode);
680 }
681
682 /* Init run time data for all PFs on an engine. */
683 static void qed_init_cau_rt_data(struct qed_dev *cdev)
684 {
685         u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
686         int i, sb_id;
687
688         for_each_hwfn(cdev, i) {
689                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
690                 struct qed_igu_info *p_igu_info;
691                 struct qed_igu_block *p_block;
692                 struct cau_sb_entry sb_entry;
693
694                 p_igu_info = p_hwfn->hw_info.p_igu_info;
695
696                 for (sb_id = 0; sb_id < QED_MAPPING_MEMORY_SIZE(cdev);
697                      sb_id++) {
698                         p_block = &p_igu_info->igu_map.igu_blocks[sb_id];
699                         if (!p_block->is_pf)
700                                 continue;
701
702                         qed_init_cau_sb_entry(p_hwfn, &sb_entry,
703                                               p_block->function_id,
704                                               0, 0);
705                         STORE_RT_REG_AGG(p_hwfn, offset + sb_id * 2,
706                                          sb_entry);
707                 }
708         }
709 }
710
711 static int qed_hw_init_common(struct qed_hwfn *p_hwfn,
712                               struct qed_ptt *p_ptt,
713                               int hw_mode)
714 {
715         struct qed_qm_info *qm_info = &p_hwfn->qm_info;
716         struct qed_qm_common_rt_init_params params;
717         struct qed_dev *cdev = p_hwfn->cdev;
718         u16 num_pfs, pf_id;
719         u32 concrete_fid;
720         int rc = 0;
721         u8 vf_id;
722
723         qed_init_cau_rt_data(cdev);
724
725         /* Program GTT windows */
726         qed_gtt_init(p_hwfn);
727
728         if (p_hwfn->mcp_info) {
729                 if (p_hwfn->mcp_info->func_info.bandwidth_max)
730                         qm_info->pf_rl_en = 1;
731                 if (p_hwfn->mcp_info->func_info.bandwidth_min)
732                         qm_info->pf_wfq_en = 1;
733         }
734
735         memset(&params, 0, sizeof(params));
736         params.max_ports_per_engine = p_hwfn->cdev->num_ports_in_engines;
737         params.max_phys_tcs_per_port = qm_info->max_phys_tcs_per_port;
738         params.pf_rl_en = qm_info->pf_rl_en;
739         params.pf_wfq_en = qm_info->pf_wfq_en;
740         params.vport_rl_en = qm_info->vport_rl_en;
741         params.vport_wfq_en = qm_info->vport_wfq_en;
742         params.port_params = qm_info->qm_port_params;
743
744         qed_qm_common_rt_init(p_hwfn, &params);
745
746         qed_cxt_hw_init_common(p_hwfn);
747
748         /* Close gate from NIG to BRB/Storm; By default they are open, but
749          * we close them to prevent NIG from passing data to reset blocks.
750          * Should have been done in the ENGINE phase, but init-tool lacks
751          * proper port-pretend capabilities.
752          */
753         qed_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
754         qed_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
755         qed_port_pretend(p_hwfn, p_ptt, p_hwfn->port_id ^ 1);
756         qed_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
757         qed_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
758         qed_port_unpretend(p_hwfn, p_ptt);
759
760         rc = qed_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
761         if (rc != 0)
762                 return rc;
763
764         qed_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
765         qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
766
767         if (QED_IS_BB(p_hwfn->cdev)) {
768                 num_pfs = NUM_OF_ENG_PFS(p_hwfn->cdev);
769                 for (pf_id = 0; pf_id < num_pfs; pf_id++) {
770                         qed_fid_pretend(p_hwfn, p_ptt, pf_id);
771                         qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
772                         qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
773                 }
774                 /* pretend to original PF */
775                 qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
776         }
777
778         for (vf_id = 0; vf_id < MAX_NUM_VFS_BB; vf_id++) {
779                 concrete_fid = qed_vfid_to_concrete(p_hwfn, vf_id);
780                 qed_fid_pretend(p_hwfn, p_ptt, (u16) concrete_fid);
781                 qed_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
782         }
783         /* pretend to original PF */
784         qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
785
786         return rc;
787 }
788
789 static int qed_hw_init_port(struct qed_hwfn *p_hwfn,
790                             struct qed_ptt *p_ptt,
791                             int hw_mode)
792 {
793         int rc = 0;
794
795         rc = qed_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id, hw_mode);
796         if (rc != 0)
797                 return rc;
798
799         if (hw_mode & (1 << MODE_MF_SI)) {
800                 u8 pf_id = 0;
801
802                 if (!qed_hw_init_first_eth(p_hwfn, p_ptt, &pf_id)) {
803                         DP_VERBOSE(p_hwfn, NETIF_MSG_IFUP,
804                                    "PF[%08x] is first eth on engine\n", pf_id);
805
806                         /* We should have configured BIT for ppfid, i.e., the
807                          * relative function number in the port. But there's a
808                          * bug in LLH in BB where the ppfid is actually engine
809                          * based, so we need to take this into account.
810                          */
811                         qed_wr(p_hwfn, p_ptt,
812                                NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR, 1 << pf_id);
813                 }
814
815                 /* Take the protocol-based hit vector if there is a hit,
816                  * otherwise take the other vector.
817                  */
818                 qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_CLS_TYPE_DUALMODE, 0x2);
819         }
820         return rc;
821 }
822
823 static int qed_hw_init_pf(struct qed_hwfn *p_hwfn,
824                           struct qed_ptt *p_ptt,
825                           struct qed_tunn_start_params *p_tunn,
826                           int hw_mode,
827                           bool b_hw_start,
828                           enum qed_int_mode int_mode,
829                           bool allow_npar_tx_switch)
830 {
831         u8 rel_pf_id = p_hwfn->rel_pf_id;
832         int rc = 0;
833
834         if (p_hwfn->mcp_info) {
835                 struct qed_mcp_function_info *p_info;
836
837                 p_info = &p_hwfn->mcp_info->func_info;
838                 if (p_info->bandwidth_min)
839                         p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
840
841                 /* Update rate limit once we'll actually have a link */
842                 p_hwfn->qm_info.pf_rl = 100000;
843         }
844
845         qed_cxt_hw_init_pf(p_hwfn);
846
847         qed_int_igu_init_rt(p_hwfn);
848
849         /* Set VLAN in NIG if needed */
850         if (hw_mode & (1 << MODE_MF_SD)) {
851                 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "Configuring LLH_FUNC_TAG\n");
852                 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
853                 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
854                              p_hwfn->hw_info.ovlan);
855         }
856
857         /* Enable classification by MAC if needed */
858         if (hw_mode & (1 << MODE_MF_SI)) {
859                 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
860                            "Configuring TAGMAC_CLS_TYPE\n");
861                 STORE_RT_REG(p_hwfn,
862                              NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1);
863         }
864
865         /* Protocl Configuration  */
866         STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
867                      (p_hwfn->hw_info.personality == QED_PCI_ISCSI) ? 1 : 0);
868         STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET, 0);
869         STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
870
871         /* Cleanup chip from previous driver if such remains exist */
872         rc = qed_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false);
873         if (rc != 0)
874                 return rc;
875
876         /* PF Init sequence */
877         rc = qed_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
878         if (rc)
879                 return rc;
880
881         /* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
882         rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
883         if (rc)
884                 return rc;
885
886         /* Pure runtime initializations - directly to the HW  */
887         qed_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
888
889         if (hw_mode & (1 << MODE_MF_SI)) {
890                 u8 pf_id = 0;
891                 u32 val;
892
893                 if (!qed_hw_init_first_eth(p_hwfn, p_ptt, &pf_id)) {
894                         if (p_hwfn->rel_pf_id == pf_id) {
895                                 DP_VERBOSE(p_hwfn, NETIF_MSG_IFUP,
896                                            "PF[%d] is first ETH on engine\n",
897                                            pf_id);
898                                 val = 1;
899                         }
900                         qed_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, val);
901                 }
902         }
903
904         if (b_hw_start) {
905                 /* enable interrupts */
906                 qed_int_igu_enable(p_hwfn, p_ptt, int_mode);
907
908                 /* send function start command */
909                 rc = qed_sp_pf_start(p_hwfn, p_tunn, p_hwfn->cdev->mf_mode,
910                                      allow_npar_tx_switch);
911                 if (rc)
912                         DP_NOTICE(p_hwfn, "Function start ramrod failed\n");
913         }
914         return rc;
915 }
916
917 static int qed_change_pci_hwfn(struct qed_hwfn *p_hwfn,
918                                struct qed_ptt *p_ptt,
919                                u8 enable)
920 {
921         u32 delay_idx = 0, val, set_val = enable ? 1 : 0;
922
923         /* Change PF in PXP */
924         qed_wr(p_hwfn, p_ptt,
925                PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
926
927         /* wait until value is set - try for 1 second every 50us */
928         for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
929                 val = qed_rd(p_hwfn, p_ptt,
930                              PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
931                 if (val == set_val)
932                         break;
933
934                 usleep_range(50, 60);
935         }
936
937         if (val != set_val) {
938                 DP_NOTICE(p_hwfn,
939                           "PFID_ENABLE_MASTER wasn't changed after a second\n");
940                 return -EAGAIN;
941         }
942
943         return 0;
944 }
945
946 static void qed_reset_mb_shadow(struct qed_hwfn *p_hwfn,
947                                 struct qed_ptt *p_main_ptt)
948 {
949         /* Read shadow of current MFW mailbox */
950         qed_mcp_read_mb(p_hwfn, p_main_ptt);
951         memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
952                p_hwfn->mcp_info->mfw_mb_cur,
953                p_hwfn->mcp_info->mfw_mb_length);
954 }
955
956 int qed_hw_init(struct qed_dev *cdev,
957                 struct qed_tunn_start_params *p_tunn,
958                 bool b_hw_start,
959                 enum qed_int_mode int_mode,
960                 bool allow_npar_tx_switch,
961                 const u8 *bin_fw_data)
962 {
963         u32 load_code, param;
964         int rc, mfw_rc, i;
965
966         if ((int_mode == QED_INT_MODE_MSI) && (cdev->num_hwfns > 1)) {
967                 DP_NOTICE(cdev, "MSI mode is not supported for CMT devices\n");
968                 return -EINVAL;
969         }
970
971         if (IS_PF(cdev)) {
972                 rc = qed_init_fw_data(cdev, bin_fw_data);
973                 if (rc != 0)
974                         return rc;
975         }
976
977         for_each_hwfn(cdev, i) {
978                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
979
980                 if (IS_VF(cdev)) {
981                         p_hwfn->b_int_enabled = 1;
982                         continue;
983                 }
984
985                 /* Enable DMAE in PXP */
986                 rc = qed_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true);
987
988                 qed_calc_hw_mode(p_hwfn);
989
990                 rc = qed_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt,
991                                       &load_code);
992                 if (rc) {
993                         DP_NOTICE(p_hwfn, "Failed sending LOAD_REQ command\n");
994                         return rc;
995                 }
996
997                 qed_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
998
999                 DP_VERBOSE(p_hwfn, QED_MSG_SP,
1000                            "Load request was sent. Resp:0x%x, Load code: 0x%x\n",
1001                            rc, load_code);
1002
1003                 p_hwfn->first_on_engine = (load_code ==
1004                                            FW_MSG_CODE_DRV_LOAD_ENGINE);
1005
1006                 if (!qm_lock_init) {
1007                         spin_lock_init(&qm_lock);
1008                         qm_lock_init = true;
1009                 }
1010
1011                 switch (load_code) {
1012                 case FW_MSG_CODE_DRV_LOAD_ENGINE:
1013                         rc = qed_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
1014                                                 p_hwfn->hw_info.hw_mode);
1015                         if (rc)
1016                                 break;
1017                 /* Fall into */
1018                 case FW_MSG_CODE_DRV_LOAD_PORT:
1019                         rc = qed_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
1020                                               p_hwfn->hw_info.hw_mode);
1021                         if (rc)
1022                                 break;
1023
1024                 /* Fall into */
1025                 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
1026                         rc = qed_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
1027                                             p_tunn, p_hwfn->hw_info.hw_mode,
1028                                             b_hw_start, int_mode,
1029                                             allow_npar_tx_switch);
1030                         break;
1031                 default:
1032                         rc = -EINVAL;
1033                         break;
1034                 }
1035
1036                 if (rc)
1037                         DP_NOTICE(p_hwfn,
1038                                   "init phase failed for loadcode 0x%x (rc %d)\n",
1039                                    load_code, rc);
1040
1041                 /* ACK mfw regardless of success or failure of initialization */
1042                 mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1043                                      DRV_MSG_CODE_LOAD_DONE,
1044                                      0, &load_code, &param);
1045                 if (rc)
1046                         return rc;
1047                 if (mfw_rc) {
1048                         DP_NOTICE(p_hwfn, "Failed sending LOAD_DONE command\n");
1049                         return mfw_rc;
1050                 }
1051
1052                 /* send DCBX attention request command */
1053                 DP_VERBOSE(p_hwfn,
1054                            QED_MSG_DCB,
1055                            "sending phony dcbx set command to trigger DCBx attention handling\n");
1056                 mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1057                                      DRV_MSG_CODE_SET_DCBX,
1058                                      1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT,
1059                                      &load_code, &param);
1060                 if (mfw_rc) {
1061                         DP_NOTICE(p_hwfn,
1062                                   "Failed to send DCBX attention request\n");
1063                         return mfw_rc;
1064                 }
1065
1066                 p_hwfn->hw_init_done = true;
1067         }
1068
1069         return 0;
1070 }
1071
1072 #define QED_HW_STOP_RETRY_LIMIT (10)
1073 static inline void qed_hw_timers_stop(struct qed_dev *cdev,
1074                                       struct qed_hwfn *p_hwfn,
1075                                       struct qed_ptt *p_ptt)
1076 {
1077         int i;
1078
1079         /* close timers */
1080         qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
1081         qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
1082
1083         for (i = 0; i < QED_HW_STOP_RETRY_LIMIT; i++) {
1084                 if ((!qed_rd(p_hwfn, p_ptt,
1085                              TM_REG_PF_SCAN_ACTIVE_CONN)) &&
1086                     (!qed_rd(p_hwfn, p_ptt,
1087                              TM_REG_PF_SCAN_ACTIVE_TASK)))
1088                         break;
1089
1090                 /* Dependent on number of connection/tasks, possibly
1091                  * 1ms sleep is required between polls
1092                  */
1093                 usleep_range(1000, 2000);
1094         }
1095
1096         if (i < QED_HW_STOP_RETRY_LIMIT)
1097                 return;
1098
1099         DP_NOTICE(p_hwfn,
1100                   "Timers linear scans are not over [Connection %02x Tasks %02x]\n",
1101                   (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
1102                   (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
1103 }
1104
1105 void qed_hw_timers_stop_all(struct qed_dev *cdev)
1106 {
1107         int j;
1108
1109         for_each_hwfn(cdev, j) {
1110                 struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
1111                 struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
1112
1113                 qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
1114         }
1115 }
1116
1117 int qed_hw_stop(struct qed_dev *cdev)
1118 {
1119         int rc = 0, t_rc;
1120         int j;
1121
1122         for_each_hwfn(cdev, j) {
1123                 struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
1124                 struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
1125
1126                 DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Stopping hw/fw\n");
1127
1128                 if (IS_VF(cdev)) {
1129                         qed_vf_pf_int_cleanup(p_hwfn);
1130                         continue;
1131                 }
1132
1133                 /* mark the hw as uninitialized... */
1134                 p_hwfn->hw_init_done = false;
1135
1136                 rc = qed_sp_pf_stop(p_hwfn);
1137                 if (rc)
1138                         DP_NOTICE(p_hwfn,
1139                                   "Failed to close PF against FW. Continue to stop HW to prevent illegal host access by the device\n");
1140
1141                 qed_wr(p_hwfn, p_ptt,
1142                        NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1143
1144                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1145                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1146                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1147                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1148                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1149
1150                 qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
1151
1152                 /* Disable Attention Generation */
1153                 qed_int_igu_disable_int(p_hwfn, p_ptt);
1154
1155                 qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
1156                 qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
1157
1158                 qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
1159
1160                 /* Need to wait 1ms to guarantee SBs are cleared */
1161                 usleep_range(1000, 2000);
1162         }
1163
1164         if (IS_PF(cdev)) {
1165                 /* Disable DMAE in PXP - in CMT, this should only be done for
1166                  * first hw-function, and only after all transactions have
1167                  * stopped for all active hw-functions.
1168                  */
1169                 t_rc = qed_change_pci_hwfn(&cdev->hwfns[0],
1170                                            cdev->hwfns[0].p_main_ptt, false);
1171                 if (t_rc != 0)
1172                         rc = t_rc;
1173         }
1174
1175         return rc;
1176 }
1177
1178 void qed_hw_stop_fastpath(struct qed_dev *cdev)
1179 {
1180         int j;
1181
1182         for_each_hwfn(cdev, j) {
1183                 struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
1184                 struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
1185
1186                 if (IS_VF(cdev)) {
1187                         qed_vf_pf_int_cleanup(p_hwfn);
1188                         continue;
1189                 }
1190
1191                 DP_VERBOSE(p_hwfn,
1192                            NETIF_MSG_IFDOWN,
1193                            "Shutting down the fastpath\n");
1194
1195                 qed_wr(p_hwfn, p_ptt,
1196                        NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1197
1198                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1199                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1200                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1201                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1202                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1203
1204                 qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
1205
1206                 /* Need to wait 1ms to guarantee SBs are cleared */
1207                 usleep_range(1000, 2000);
1208         }
1209 }
1210
1211 void qed_hw_start_fastpath(struct qed_hwfn *p_hwfn)
1212 {
1213         if (IS_VF(p_hwfn->cdev))
1214                 return;
1215
1216         /* Re-open incoming traffic */
1217         qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1218                NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
1219 }
1220
1221 static int qed_reg_assert(struct qed_hwfn *hwfn,
1222                           struct qed_ptt *ptt, u32 reg,
1223                           bool expected)
1224 {
1225         u32 assert_val = qed_rd(hwfn, ptt, reg);
1226
1227         if (assert_val != expected) {
1228                 DP_NOTICE(hwfn, "Value at address 0x%x != 0x%08x\n",
1229                           reg, expected);
1230                 return -EINVAL;
1231         }
1232
1233         return 0;
1234 }
1235
1236 int qed_hw_reset(struct qed_dev *cdev)
1237 {
1238         int rc = 0;
1239         u32 unload_resp, unload_param;
1240         int i;
1241
1242         for_each_hwfn(cdev, i) {
1243                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1244
1245                 if (IS_VF(cdev)) {
1246                         rc = qed_vf_pf_reset(p_hwfn);
1247                         if (rc)
1248                                 return rc;
1249                         continue;
1250                 }
1251
1252                 DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Resetting hw/fw\n");
1253
1254                 /* Check for incorrect states */
1255                 qed_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
1256                                QM_REG_USG_CNT_PF_TX, 0);
1257                 qed_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
1258                                QM_REG_USG_CNT_PF_OTHER, 0);
1259
1260                 /* Disable PF in HW blocks */
1261                 qed_wr(p_hwfn, p_hwfn->p_main_ptt, DORQ_REG_PF_DB_ENABLE, 0);
1262                 qed_wr(p_hwfn, p_hwfn->p_main_ptt, QM_REG_PF_EN, 0);
1263                 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1264                        TCFC_REG_STRONG_ENABLE_PF, 0);
1265                 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1266                        CCFC_REG_STRONG_ENABLE_PF, 0);
1267
1268                 /* Send unload command to MCP */
1269                 rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1270                                  DRV_MSG_CODE_UNLOAD_REQ,
1271                                  DRV_MB_PARAM_UNLOAD_WOL_MCP,
1272                                  &unload_resp, &unload_param);
1273                 if (rc) {
1274                         DP_NOTICE(p_hwfn, "qed_hw_reset: UNLOAD_REQ failed\n");
1275                         unload_resp = FW_MSG_CODE_DRV_UNLOAD_ENGINE;
1276                 }
1277
1278                 rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1279                                  DRV_MSG_CODE_UNLOAD_DONE,
1280                                  0, &unload_resp, &unload_param);
1281                 if (rc) {
1282                         DP_NOTICE(p_hwfn, "qed_hw_reset: UNLOAD_DONE failed\n");
1283                         return rc;
1284                 }
1285         }
1286
1287         return rc;
1288 }
1289
1290 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
1291 static void qed_hw_hwfn_free(struct qed_hwfn *p_hwfn)
1292 {
1293         qed_ptt_pool_free(p_hwfn);
1294         kfree(p_hwfn->hw_info.p_igu_info);
1295 }
1296
1297 /* Setup bar access */
1298 static void qed_hw_hwfn_prepare(struct qed_hwfn *p_hwfn)
1299 {
1300         /* clear indirect access */
1301         qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_88_F0, 0);
1302         qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_8C_F0, 0);
1303         qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_90_F0, 0);
1304         qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_94_F0, 0);
1305
1306         /* Clean Previous errors if such exist */
1307         qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1308                PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR,
1309                1 << p_hwfn->abs_pf_id);
1310
1311         /* enable internal target-read */
1312         qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1313                PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1314 }
1315
1316 static void get_function_id(struct qed_hwfn *p_hwfn)
1317 {
1318         /* ME Register */
1319         p_hwfn->hw_info.opaque_fid = (u16)REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR);
1320
1321         p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
1322
1323         p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
1324         p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
1325                                       PXP_CONCRETE_FID_PFID);
1326         p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
1327                                     PXP_CONCRETE_FID_PORT);
1328 }
1329
1330 static void qed_hw_set_feat(struct qed_hwfn *p_hwfn)
1331 {
1332         u32 *feat_num = p_hwfn->hw_info.feat_num;
1333         int num_features = 1;
1334
1335         feat_num[QED_PF_L2_QUE] = min_t(u32, RESC_NUM(p_hwfn, QED_SB) /
1336                                                 num_features,
1337                                         RESC_NUM(p_hwfn, QED_L2_QUEUE));
1338         DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE,
1339                    "#PF_L2_QUEUES=%d #SBS=%d num_features=%d\n",
1340                    feat_num[QED_PF_L2_QUE], RESC_NUM(p_hwfn, QED_SB),
1341                    num_features);
1342 }
1343
1344 static int qed_hw_get_resc(struct qed_hwfn *p_hwfn)
1345 {
1346         u8 enabled_func_idx = p_hwfn->enabled_func_idx;
1347         u32 *resc_start = p_hwfn->hw_info.resc_start;
1348         u8 num_funcs = p_hwfn->num_funcs_on_engine;
1349         u32 *resc_num = p_hwfn->hw_info.resc_num;
1350         struct qed_sb_cnt_info sb_cnt_info;
1351         int i, max_vf_vlan_filters;
1352
1353         memset(&sb_cnt_info, 0, sizeof(sb_cnt_info));
1354
1355 #ifdef CONFIG_QED_SRIOV
1356         max_vf_vlan_filters = QED_ETH_MAX_VF_NUM_VLAN_FILTERS;
1357 #else
1358         max_vf_vlan_filters = 0;
1359 #endif
1360
1361         qed_int_get_num_sbs(p_hwfn, &sb_cnt_info);
1362
1363         resc_num[QED_SB] = min_t(u32,
1364                                  (MAX_SB_PER_PATH_BB / num_funcs),
1365                                  sb_cnt_info.sb_cnt);
1366         resc_num[QED_L2_QUEUE] = MAX_NUM_L2_QUEUES_BB / num_funcs;
1367         resc_num[QED_VPORT] = MAX_NUM_VPORTS_BB / num_funcs;
1368         resc_num[QED_RSS_ENG] = ETH_RSS_ENGINE_NUM_BB / num_funcs;
1369         resc_num[QED_PQ] = MAX_QM_TX_QUEUES_BB / num_funcs;
1370         resc_num[QED_RL] = min_t(u32, 64, resc_num[QED_VPORT]);
1371         resc_num[QED_MAC] = ETH_NUM_MAC_FILTERS / num_funcs;
1372         resc_num[QED_VLAN] = (ETH_NUM_VLAN_FILTERS - 1 /*For vlan0*/) /
1373                              num_funcs;
1374         resc_num[QED_ILT] = PXP_NUM_ILT_RECORDS_BB / num_funcs;
1375
1376         for (i = 0; i < QED_MAX_RESC; i++)
1377                 resc_start[i] = resc_num[i] * enabled_func_idx;
1378
1379         /* Sanity for ILT */
1380         if (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_BB) {
1381                 DP_NOTICE(p_hwfn, "Can't assign ILT pages [%08x,...,%08x]\n",
1382                           RESC_START(p_hwfn, QED_ILT),
1383                           RESC_END(p_hwfn, QED_ILT) - 1);
1384                 return -EINVAL;
1385         }
1386
1387         qed_hw_set_feat(p_hwfn);
1388
1389         DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE,
1390                    "The numbers for each resource are:\n"
1391                    "SB = %d start = %d\n"
1392                    "L2_QUEUE = %d start = %d\n"
1393                    "VPORT = %d start = %d\n"
1394                    "PQ = %d start = %d\n"
1395                    "RL = %d start = %d\n"
1396                    "MAC = %d start = %d\n"
1397                    "VLAN = %d start = %d\n"
1398                    "ILT = %d start = %d\n",
1399                    p_hwfn->hw_info.resc_num[QED_SB],
1400                    p_hwfn->hw_info.resc_start[QED_SB],
1401                    p_hwfn->hw_info.resc_num[QED_L2_QUEUE],
1402                    p_hwfn->hw_info.resc_start[QED_L2_QUEUE],
1403                    p_hwfn->hw_info.resc_num[QED_VPORT],
1404                    p_hwfn->hw_info.resc_start[QED_VPORT],
1405                    p_hwfn->hw_info.resc_num[QED_PQ],
1406                    p_hwfn->hw_info.resc_start[QED_PQ],
1407                    p_hwfn->hw_info.resc_num[QED_RL],
1408                    p_hwfn->hw_info.resc_start[QED_RL],
1409                    p_hwfn->hw_info.resc_num[QED_MAC],
1410                    p_hwfn->hw_info.resc_start[QED_MAC],
1411                    p_hwfn->hw_info.resc_num[QED_VLAN],
1412                    p_hwfn->hw_info.resc_start[QED_VLAN],
1413                    p_hwfn->hw_info.resc_num[QED_ILT],
1414                    p_hwfn->hw_info.resc_start[QED_ILT]);
1415
1416         return 0;
1417 }
1418
1419 static int qed_hw_get_nvm_info(struct qed_hwfn *p_hwfn,
1420                                struct qed_ptt *p_ptt)
1421 {
1422         u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg;
1423         u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
1424         struct qed_mcp_link_params *link;
1425
1426         /* Read global nvm_cfg address */
1427         nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
1428
1429         /* Verify MCP has initialized it */
1430         if (!nvm_cfg_addr) {
1431                 DP_NOTICE(p_hwfn, "Shared memory not initialized\n");
1432                 return -EINVAL;
1433         }
1434
1435         /* Read nvm_cfg1  (Notice this is just offset, and not offsize (TBD) */
1436         nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
1437
1438         addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1439                offsetof(struct nvm_cfg1, glob) +
1440                offsetof(struct nvm_cfg1_glob, core_cfg);
1441
1442         core_cfg = qed_rd(p_hwfn, p_ptt, addr);
1443
1444         switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
1445                 NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
1446         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
1447                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X40G;
1448                 break;
1449         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
1450                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X50G;
1451                 break;
1452         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
1453                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X100G;
1454                 break;
1455         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
1456                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_F;
1457                 break;
1458         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
1459                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_E;
1460                 break;
1461         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
1462                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X20G;
1463                 break;
1464         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
1465                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X40G;
1466                 break;
1467         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
1468                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X25G;
1469                 break;
1470         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
1471                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X25G;
1472                 break;
1473         default:
1474                 DP_NOTICE(p_hwfn, "Unknown port mode in 0x%08x\n",
1475                           core_cfg);
1476                 break;
1477         }
1478
1479         /* Read default link configuration */
1480         link = &p_hwfn->mcp_info->link_input;
1481         port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1482                         offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
1483         link_temp = qed_rd(p_hwfn, p_ptt,
1484                            port_cfg_addr +
1485                            offsetof(struct nvm_cfg1_port, speed_cap_mask));
1486         link->speed.advertised_speeds =
1487                 link_temp & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
1488
1489         p_hwfn->mcp_info->link_capabilities.speed_capabilities =
1490                                                 link->speed.advertised_speeds;
1491
1492         link_temp = qed_rd(p_hwfn, p_ptt,
1493                            port_cfg_addr +
1494                            offsetof(struct nvm_cfg1_port, link_settings));
1495         switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
1496                 NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
1497         case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
1498                 link->speed.autoneg = true;
1499                 break;
1500         case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
1501                 link->speed.forced_speed = 1000;
1502                 break;
1503         case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
1504                 link->speed.forced_speed = 10000;
1505                 break;
1506         case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
1507                 link->speed.forced_speed = 25000;
1508                 break;
1509         case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
1510                 link->speed.forced_speed = 40000;
1511                 break;
1512         case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
1513                 link->speed.forced_speed = 50000;
1514                 break;
1515         case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
1516                 link->speed.forced_speed = 100000;
1517                 break;
1518         default:
1519                 DP_NOTICE(p_hwfn, "Unknown Speed in 0x%08x\n",
1520                           link_temp);
1521         }
1522
1523         link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
1524         link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
1525         link->pause.autoneg = !!(link_temp &
1526                                  NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
1527         link->pause.forced_rx = !!(link_temp &
1528                                    NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
1529         link->pause.forced_tx = !!(link_temp &
1530                                    NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
1531         link->loopback_mode = 0;
1532
1533         DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1534                    "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x\n",
1535                    link->speed.forced_speed, link->speed.advertised_speeds,
1536                    link->speed.autoneg, link->pause.autoneg);
1537
1538         /* Read Multi-function information from shmem */
1539         addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1540                offsetof(struct nvm_cfg1, glob) +
1541                offsetof(struct nvm_cfg1_glob, generic_cont0);
1542
1543         generic_cont0 = qed_rd(p_hwfn, p_ptt, addr);
1544
1545         mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
1546                   NVM_CFG1_GLOB_MF_MODE_OFFSET;
1547
1548         switch (mf_mode) {
1549         case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
1550                 p_hwfn->cdev->mf_mode = QED_MF_OVLAN;
1551                 break;
1552         case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
1553                 p_hwfn->cdev->mf_mode = QED_MF_NPAR;
1554                 break;
1555         case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
1556                 p_hwfn->cdev->mf_mode = QED_MF_DEFAULT;
1557                 break;
1558         }
1559         DP_INFO(p_hwfn, "Multi function mode is %08x\n",
1560                 p_hwfn->cdev->mf_mode);
1561
1562         /* Read Multi-function information from shmem */
1563         addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1564                 offsetof(struct nvm_cfg1, glob) +
1565                 offsetof(struct nvm_cfg1_glob, device_capabilities);
1566
1567         device_capabilities = qed_rd(p_hwfn, p_ptt, addr);
1568         if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
1569                 __set_bit(QED_DEV_CAP_ETH,
1570                           &p_hwfn->hw_info.device_capabilities);
1571         if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
1572                 __set_bit(QED_DEV_CAP_ISCSI,
1573                           &p_hwfn->hw_info.device_capabilities);
1574         if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
1575                 __set_bit(QED_DEV_CAP_ROCE,
1576                           &p_hwfn->hw_info.device_capabilities);
1577
1578         return qed_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
1579 }
1580
1581 static void qed_get_num_funcs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1582 {
1583         u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
1584         u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
1585
1586         num_funcs = MAX_NUM_PFS_BB;
1587
1588         /* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
1589          * in the other bits are selected.
1590          * Bits 1-15 are for functions 1-15, respectively, and their value is
1591          * '0' only for enabled functions (function 0 always exists and
1592          * enabled).
1593          * In case of CMT, only the "even" functions are enabled, and thus the
1594          * number of functions for both hwfns is learnt from the same bits.
1595          */
1596         reg_function_hide = qed_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE);
1597
1598         if (reg_function_hide & 0x1) {
1599                 if (QED_PATH_ID(p_hwfn) && p_hwfn->cdev->num_hwfns == 1) {
1600                         num_funcs = 0;
1601                         eng_mask = 0xaaaa;
1602                 } else {
1603                         num_funcs = 1;
1604                         eng_mask = 0x5554;
1605                 }
1606
1607                 /* Get the number of the enabled functions on the engine */
1608                 tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
1609                 while (tmp) {
1610                         if (tmp & 0x1)
1611                                 num_funcs++;
1612                         tmp >>= 0x1;
1613                 }
1614
1615                 /* Get the PF index within the enabled functions */
1616                 low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
1617                 tmp = reg_function_hide & eng_mask & low_pfs_mask;
1618                 while (tmp) {
1619                         if (tmp & 0x1)
1620                                 enabled_func_idx--;
1621                         tmp >>= 0x1;
1622                 }
1623         }
1624
1625         p_hwfn->num_funcs_on_engine = num_funcs;
1626         p_hwfn->enabled_func_idx = enabled_func_idx;
1627
1628         DP_VERBOSE(p_hwfn,
1629                    NETIF_MSG_PROBE,
1630                    "PF [rel_id %d, abs_id %d] within the %d enabled functions on the engine\n",
1631                    p_hwfn->rel_pf_id,
1632                    p_hwfn->abs_pf_id,
1633                    p_hwfn->num_funcs_on_engine);
1634 }
1635
1636 static int
1637 qed_get_hw_info(struct qed_hwfn *p_hwfn,
1638                 struct qed_ptt *p_ptt,
1639                 enum qed_pci_personality personality)
1640 {
1641         u32 port_mode;
1642         int rc;
1643
1644         /* Since all information is common, only first hwfns should do this */
1645         if (IS_LEAD_HWFN(p_hwfn)) {
1646                 rc = qed_iov_hw_info(p_hwfn);
1647                 if (rc)
1648                         return rc;
1649         }
1650
1651         /* Read the port mode */
1652         port_mode = qed_rd(p_hwfn, p_ptt,
1653                            CNIG_REG_NW_PORT_MODE_BB_B0);
1654
1655         if (port_mode < 3) {
1656                 p_hwfn->cdev->num_ports_in_engines = 1;
1657         } else if (port_mode <= 5) {
1658                 p_hwfn->cdev->num_ports_in_engines = 2;
1659         } else {
1660                 DP_NOTICE(p_hwfn, "PORT MODE: %d not supported\n",
1661                           p_hwfn->cdev->num_ports_in_engines);
1662
1663                 /* Default num_ports_in_engines to something */
1664                 p_hwfn->cdev->num_ports_in_engines = 1;
1665         }
1666
1667         qed_hw_get_nvm_info(p_hwfn, p_ptt);
1668
1669         rc = qed_int_igu_read_cam(p_hwfn, p_ptt);
1670         if (rc)
1671                 return rc;
1672
1673         if (qed_mcp_is_init(p_hwfn))
1674                 ether_addr_copy(p_hwfn->hw_info.hw_mac_addr,
1675                                 p_hwfn->mcp_info->func_info.mac);
1676         else
1677                 eth_random_addr(p_hwfn->hw_info.hw_mac_addr);
1678
1679         if (qed_mcp_is_init(p_hwfn)) {
1680                 if (p_hwfn->mcp_info->func_info.ovlan != QED_MCP_VLAN_UNSET)
1681                         p_hwfn->hw_info.ovlan =
1682                                 p_hwfn->mcp_info->func_info.ovlan;
1683
1684                 qed_mcp_cmd_port_init(p_hwfn, p_ptt);
1685         }
1686
1687         if (qed_mcp_is_init(p_hwfn)) {
1688                 enum qed_pci_personality protocol;
1689
1690                 protocol = p_hwfn->mcp_info->func_info.protocol;
1691                 p_hwfn->hw_info.personality = protocol;
1692         }
1693
1694         qed_get_num_funcs(p_hwfn, p_ptt);
1695
1696         return qed_hw_get_resc(p_hwfn);
1697 }
1698
1699 static int qed_get_dev_info(struct qed_dev *cdev)
1700 {
1701         struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
1702         u32 tmp;
1703
1704         /* Read Vendor Id / Device Id */
1705         pci_read_config_word(cdev->pdev, PCI_VENDOR_ID,
1706                              &cdev->vendor_id);
1707         pci_read_config_word(cdev->pdev, PCI_DEVICE_ID,
1708                              &cdev->device_id);
1709         cdev->chip_num = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1710                                      MISCS_REG_CHIP_NUM);
1711         cdev->chip_rev = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1712                                      MISCS_REG_CHIP_REV);
1713         MASK_FIELD(CHIP_REV, cdev->chip_rev);
1714
1715         cdev->type = QED_DEV_TYPE_BB;
1716         /* Learn number of HW-functions */
1717         tmp = qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1718                      MISCS_REG_CMT_ENABLED_FOR_PAIR);
1719
1720         if (tmp & (1 << p_hwfn->rel_pf_id)) {
1721                 DP_NOTICE(cdev->hwfns, "device in CMT mode\n");
1722                 cdev->num_hwfns = 2;
1723         } else {
1724                 cdev->num_hwfns = 1;
1725         }
1726
1727         cdev->chip_bond_id = qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1728                                     MISCS_REG_CHIP_TEST_REG) >> 4;
1729         MASK_FIELD(CHIP_BOND_ID, cdev->chip_bond_id);
1730         cdev->chip_metal = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1731                                        MISCS_REG_CHIP_METAL);
1732         MASK_FIELD(CHIP_METAL, cdev->chip_metal);
1733
1734         DP_INFO(cdev->hwfns,
1735                 "Chip details - Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n",
1736                 cdev->chip_num, cdev->chip_rev,
1737                 cdev->chip_bond_id, cdev->chip_metal);
1738
1739         if (QED_IS_BB(cdev) && CHIP_REV_IS_A0(cdev)) {
1740                 DP_NOTICE(cdev->hwfns,
1741                           "The chip type/rev (BB A0) is not supported!\n");
1742                 return -EINVAL;
1743         }
1744
1745         return 0;
1746 }
1747
1748 static int qed_hw_prepare_single(struct qed_hwfn *p_hwfn,
1749                                  void __iomem *p_regview,
1750                                  void __iomem *p_doorbells,
1751                                  enum qed_pci_personality personality)
1752 {
1753         int rc = 0;
1754
1755         /* Split PCI bars evenly between hwfns */
1756         p_hwfn->regview = p_regview;
1757         p_hwfn->doorbells = p_doorbells;
1758
1759         if (IS_VF(p_hwfn->cdev))
1760                 return qed_vf_hw_prepare(p_hwfn);
1761
1762         /* Validate that chip access is feasible */
1763         if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
1764                 DP_ERR(p_hwfn,
1765                        "Reading the ME register returns all Fs; Preventing further chip access\n");
1766                 return -EINVAL;
1767         }
1768
1769         get_function_id(p_hwfn);
1770
1771         /* Allocate PTT pool */
1772         rc = qed_ptt_pool_alloc(p_hwfn);
1773         if (rc) {
1774                 DP_NOTICE(p_hwfn, "Failed to prepare hwfn's hw\n");
1775                 goto err0;
1776         }
1777
1778         /* Allocate the main PTT */
1779         p_hwfn->p_main_ptt = qed_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
1780
1781         /* First hwfn learns basic information, e.g., number of hwfns */
1782         if (!p_hwfn->my_id) {
1783                 rc = qed_get_dev_info(p_hwfn->cdev);
1784                 if (rc != 0)
1785                         goto err1;
1786         }
1787
1788         qed_hw_hwfn_prepare(p_hwfn);
1789
1790         /* Initialize MCP structure */
1791         rc = qed_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
1792         if (rc) {
1793                 DP_NOTICE(p_hwfn, "Failed initializing mcp command\n");
1794                 goto err1;
1795         }
1796
1797         /* Read the device configuration information from the HW and SHMEM */
1798         rc = qed_get_hw_info(p_hwfn, p_hwfn->p_main_ptt, personality);
1799         if (rc) {
1800                 DP_NOTICE(p_hwfn, "Failed to get HW information\n");
1801                 goto err2;
1802         }
1803
1804         /* Allocate the init RT array and initialize the init-ops engine */
1805         rc = qed_init_alloc(p_hwfn);
1806         if (rc) {
1807                 DP_NOTICE(p_hwfn, "Failed to allocate the init array\n");
1808                 goto err2;
1809         }
1810
1811         return rc;
1812 err2:
1813         if (IS_LEAD_HWFN(p_hwfn))
1814                 qed_iov_free_hw_info(p_hwfn->cdev);
1815         qed_mcp_free(p_hwfn);
1816 err1:
1817         qed_hw_hwfn_free(p_hwfn);
1818 err0:
1819         return rc;
1820 }
1821
1822 int qed_hw_prepare(struct qed_dev *cdev,
1823                    int personality)
1824 {
1825         struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
1826         int rc;
1827
1828         /* Store the precompiled init data ptrs */
1829         if (IS_PF(cdev))
1830                 qed_init_iro_array(cdev);
1831
1832         /* Initialize the first hwfn - will learn number of hwfns */
1833         rc = qed_hw_prepare_single(p_hwfn,
1834                                    cdev->regview,
1835                                    cdev->doorbells, personality);
1836         if (rc)
1837                 return rc;
1838
1839         personality = p_hwfn->hw_info.personality;
1840
1841         /* Initialize the rest of the hwfns */
1842         if (cdev->num_hwfns > 1) {
1843                 void __iomem *p_regview, *p_doorbell;
1844                 u8 __iomem *addr;
1845
1846                 /* adjust bar offset for second engine */
1847                 addr = cdev->regview + qed_hw_bar_size(p_hwfn, BAR_ID_0) / 2;
1848                 p_regview = addr;
1849
1850                 /* adjust doorbell bar offset for second engine */
1851                 addr = cdev->doorbells + qed_hw_bar_size(p_hwfn, BAR_ID_1) / 2;
1852                 p_doorbell = addr;
1853
1854                 /* prepare second hw function */
1855                 rc = qed_hw_prepare_single(&cdev->hwfns[1], p_regview,
1856                                            p_doorbell, personality);
1857
1858                 /* in case of error, need to free the previously
1859                  * initiliazed hwfn 0.
1860                  */
1861                 if (rc) {
1862                         if (IS_PF(cdev)) {
1863                                 qed_init_free(p_hwfn);
1864                                 qed_mcp_free(p_hwfn);
1865                                 qed_hw_hwfn_free(p_hwfn);
1866                         }
1867                 }
1868         }
1869
1870         return rc;
1871 }
1872
1873 void qed_hw_remove(struct qed_dev *cdev)
1874 {
1875         int i;
1876
1877         for_each_hwfn(cdev, i) {
1878                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1879
1880                 if (IS_VF(cdev)) {
1881                         qed_vf_pf_release(p_hwfn);
1882                         continue;
1883                 }
1884
1885                 qed_init_free(p_hwfn);
1886                 qed_hw_hwfn_free(p_hwfn);
1887                 qed_mcp_free(p_hwfn);
1888         }
1889
1890         qed_iov_free_hw_info(cdev);
1891 }
1892
1893 static void qed_chain_free_next_ptr(struct qed_dev *cdev,
1894                                     struct qed_chain *p_chain)
1895 {
1896         void *p_virt = p_chain->p_virt_addr, *p_virt_next = NULL;
1897         dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
1898         struct qed_chain_next *p_next;
1899         u32 size, i;
1900
1901         if (!p_virt)
1902                 return;
1903
1904         size = p_chain->elem_size * p_chain->usable_per_page;
1905
1906         for (i = 0; i < p_chain->page_cnt; i++) {
1907                 if (!p_virt)
1908                         break;
1909
1910                 p_next = (struct qed_chain_next *)((u8 *)p_virt + size);
1911                 p_virt_next = p_next->next_virt;
1912                 p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
1913
1914                 dma_free_coherent(&cdev->pdev->dev,
1915                                   QED_CHAIN_PAGE_SIZE, p_virt, p_phys);
1916
1917                 p_virt = p_virt_next;
1918                 p_phys = p_phys_next;
1919         }
1920 }
1921
1922 static void qed_chain_free_single(struct qed_dev *cdev,
1923                                   struct qed_chain *p_chain)
1924 {
1925         if (!p_chain->p_virt_addr)
1926                 return;
1927
1928         dma_free_coherent(&cdev->pdev->dev,
1929                           QED_CHAIN_PAGE_SIZE,
1930                           p_chain->p_virt_addr, p_chain->p_phys_addr);
1931 }
1932
1933 static void qed_chain_free_pbl(struct qed_dev *cdev, struct qed_chain *p_chain)
1934 {
1935         void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
1936         u32 page_cnt = p_chain->page_cnt, i, pbl_size;
1937         u8 *p_pbl_virt = p_chain->pbl.p_virt_table;
1938
1939         if (!pp_virt_addr_tbl)
1940                 return;
1941
1942         if (!p_chain->pbl.p_virt_table)
1943                 goto out;
1944
1945         for (i = 0; i < page_cnt; i++) {
1946                 if (!pp_virt_addr_tbl[i])
1947                         break;
1948
1949                 dma_free_coherent(&cdev->pdev->dev,
1950                                   QED_CHAIN_PAGE_SIZE,
1951                                   pp_virt_addr_tbl[i],
1952                                   *(dma_addr_t *)p_pbl_virt);
1953
1954                 p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE;
1955         }
1956
1957         pbl_size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
1958         dma_free_coherent(&cdev->pdev->dev,
1959                           pbl_size,
1960                           p_chain->pbl.p_virt_table, p_chain->pbl.p_phys_table);
1961 out:
1962         vfree(p_chain->pbl.pp_virt_addr_tbl);
1963 }
1964
1965 void qed_chain_free(struct qed_dev *cdev, struct qed_chain *p_chain)
1966 {
1967         switch (p_chain->mode) {
1968         case QED_CHAIN_MODE_NEXT_PTR:
1969                 qed_chain_free_next_ptr(cdev, p_chain);
1970                 break;
1971         case QED_CHAIN_MODE_SINGLE:
1972                 qed_chain_free_single(cdev, p_chain);
1973                 break;
1974         case QED_CHAIN_MODE_PBL:
1975                 qed_chain_free_pbl(cdev, p_chain);
1976                 break;
1977         }
1978 }
1979
1980 static int
1981 qed_chain_alloc_sanity_check(struct qed_dev *cdev,
1982                              enum qed_chain_cnt_type cnt_type,
1983                              size_t elem_size, u32 page_cnt)
1984 {
1985         u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
1986
1987         /* The actual chain size can be larger than the maximal possible value
1988          * after rounding up the requested elements number to pages, and after
1989          * taking into acount the unusuable elements (next-ptr elements).
1990          * The size of a "u16" chain can be (U16_MAX + 1) since the chain
1991          * size/capacity fields are of a u32 type.
1992          */
1993         if ((cnt_type == QED_CHAIN_CNT_TYPE_U16 &&
1994              chain_size > 0x10000) ||
1995             (cnt_type == QED_CHAIN_CNT_TYPE_U32 &&
1996              chain_size > 0x100000000ULL)) {
1997                 DP_NOTICE(cdev,
1998                           "The actual chain size (0x%llx) is larger than the maximal possible value\n",
1999                           chain_size);
2000                 return -EINVAL;
2001         }
2002
2003         return 0;
2004 }
2005
2006 static int
2007 qed_chain_alloc_next_ptr(struct qed_dev *cdev, struct qed_chain *p_chain)
2008 {
2009         void *p_virt = NULL, *p_virt_prev = NULL;
2010         dma_addr_t p_phys = 0;
2011         u32 i;
2012
2013         for (i = 0; i < p_chain->page_cnt; i++) {
2014                 p_virt = dma_alloc_coherent(&cdev->pdev->dev,
2015                                             QED_CHAIN_PAGE_SIZE,
2016                                             &p_phys, GFP_KERNEL);
2017                 if (!p_virt) {
2018                         DP_NOTICE(cdev, "Failed to allocate chain memory\n");
2019                         return -ENOMEM;
2020                 }
2021
2022                 if (i == 0) {
2023                         qed_chain_init_mem(p_chain, p_virt, p_phys);
2024                         qed_chain_reset(p_chain);
2025                 } else {
2026                         qed_chain_init_next_ptr_elem(p_chain, p_virt_prev,
2027                                                      p_virt, p_phys);
2028                 }
2029
2030                 p_virt_prev = p_virt;
2031         }
2032         /* Last page's next element should point to the beginning of the
2033          * chain.
2034          */
2035         qed_chain_init_next_ptr_elem(p_chain, p_virt_prev,
2036                                      p_chain->p_virt_addr,
2037                                      p_chain->p_phys_addr);
2038
2039         return 0;
2040 }
2041
2042 static int
2043 qed_chain_alloc_single(struct qed_dev *cdev, struct qed_chain *p_chain)
2044 {
2045         dma_addr_t p_phys = 0;
2046         void *p_virt = NULL;
2047
2048         p_virt = dma_alloc_coherent(&cdev->pdev->dev,
2049                                     QED_CHAIN_PAGE_SIZE, &p_phys, GFP_KERNEL);
2050         if (!p_virt) {
2051                 DP_NOTICE(cdev, "Failed to allocate chain memory\n");
2052                 return -ENOMEM;
2053         }
2054
2055         qed_chain_init_mem(p_chain, p_virt, p_phys);
2056         qed_chain_reset(p_chain);
2057
2058         return 0;
2059 }
2060
2061 static int qed_chain_alloc_pbl(struct qed_dev *cdev, struct qed_chain *p_chain)
2062 {
2063         u32 page_cnt = p_chain->page_cnt, size, i;
2064         dma_addr_t p_phys = 0, p_pbl_phys = 0;
2065         void **pp_virt_addr_tbl = NULL;
2066         u8 *p_pbl_virt = NULL;
2067         void *p_virt = NULL;
2068
2069         size = page_cnt * sizeof(*pp_virt_addr_tbl);
2070         pp_virt_addr_tbl = vmalloc(size);
2071         if (!pp_virt_addr_tbl) {
2072                 DP_NOTICE(cdev,
2073                           "Failed to allocate memory for the chain virtual addresses table\n");
2074                 return -ENOMEM;
2075         }
2076         memset(pp_virt_addr_tbl, 0, size);
2077
2078         /* The allocation of the PBL table is done with its full size, since it
2079          * is expected to be successive.
2080          * qed_chain_init_pbl_mem() is called even in a case of an allocation
2081          * failure, since pp_virt_addr_tbl was previously allocated, and it
2082          * should be saved to allow its freeing during the error flow.
2083          */
2084         size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
2085         p_pbl_virt = dma_alloc_coherent(&cdev->pdev->dev,
2086                                         size, &p_pbl_phys, GFP_KERNEL);
2087         qed_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
2088                                pp_virt_addr_tbl);
2089         if (!p_pbl_virt) {
2090                 DP_NOTICE(cdev, "Failed to allocate chain pbl memory\n");
2091                 return -ENOMEM;
2092         }
2093
2094         for (i = 0; i < page_cnt; i++) {
2095                 p_virt = dma_alloc_coherent(&cdev->pdev->dev,
2096                                             QED_CHAIN_PAGE_SIZE,
2097                                             &p_phys, GFP_KERNEL);
2098                 if (!p_virt) {
2099                         DP_NOTICE(cdev, "Failed to allocate chain memory\n");
2100                         return -ENOMEM;
2101                 }
2102
2103                 if (i == 0) {
2104                         qed_chain_init_mem(p_chain, p_virt, p_phys);
2105                         qed_chain_reset(p_chain);
2106                 }
2107
2108                 /* Fill the PBL table with the physical address of the page */
2109                 *(dma_addr_t *)p_pbl_virt = p_phys;
2110                 /* Keep the virtual address of the page */
2111                 p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
2112
2113                 p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE;
2114         }
2115
2116         return 0;
2117 }
2118
2119 int qed_chain_alloc(struct qed_dev *cdev,
2120                     enum qed_chain_use_mode intended_use,
2121                     enum qed_chain_mode mode,
2122                     enum qed_chain_cnt_type cnt_type,
2123                     u32 num_elems, size_t elem_size, struct qed_chain *p_chain)
2124 {
2125         u32 page_cnt;
2126         int rc = 0;
2127
2128         if (mode == QED_CHAIN_MODE_SINGLE)
2129                 page_cnt = 1;
2130         else
2131                 page_cnt = QED_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
2132
2133         rc = qed_chain_alloc_sanity_check(cdev, cnt_type, elem_size, page_cnt);
2134         if (rc) {
2135                 DP_NOTICE(cdev,
2136                           "Cannot allocate a chain with the given arguments:\n"
2137                           "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
2138                           intended_use, mode, cnt_type, num_elems, elem_size);
2139                 return rc;
2140         }
2141
2142         qed_chain_init_params(p_chain, page_cnt, (u8) elem_size, intended_use,
2143                               mode, cnt_type);
2144
2145         switch (mode) {
2146         case QED_CHAIN_MODE_NEXT_PTR:
2147                 rc = qed_chain_alloc_next_ptr(cdev, p_chain);
2148                 break;
2149         case QED_CHAIN_MODE_SINGLE:
2150                 rc = qed_chain_alloc_single(cdev, p_chain);
2151                 break;
2152         case QED_CHAIN_MODE_PBL:
2153                 rc = qed_chain_alloc_pbl(cdev, p_chain);
2154                 break;
2155         }
2156         if (rc)
2157                 goto nomem;
2158
2159         return 0;
2160
2161 nomem:
2162         qed_chain_free(cdev, p_chain);
2163         return rc;
2164 }
2165
2166 int qed_fw_l2_queue(struct qed_hwfn *p_hwfn, u16 src_id, u16 *dst_id)
2167 {
2168         if (src_id >= RESC_NUM(p_hwfn, QED_L2_QUEUE)) {
2169                 u16 min, max;
2170
2171                 min = (u16) RESC_START(p_hwfn, QED_L2_QUEUE);
2172                 max = min + RESC_NUM(p_hwfn, QED_L2_QUEUE);
2173                 DP_NOTICE(p_hwfn,
2174                           "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
2175                           src_id, min, max);
2176
2177                 return -EINVAL;
2178         }
2179
2180         *dst_id = RESC_START(p_hwfn, QED_L2_QUEUE) + src_id;
2181
2182         return 0;
2183 }
2184
2185 int qed_fw_vport(struct qed_hwfn *p_hwfn,
2186                  u8 src_id, u8 *dst_id)
2187 {
2188         if (src_id >= RESC_NUM(p_hwfn, QED_VPORT)) {
2189                 u8 min, max;
2190
2191                 min = (u8)RESC_START(p_hwfn, QED_VPORT);
2192                 max = min + RESC_NUM(p_hwfn, QED_VPORT);
2193                 DP_NOTICE(p_hwfn,
2194                           "vport id [%d] is not valid, available indices [%d - %d]\n",
2195                           src_id, min, max);
2196
2197                 return -EINVAL;
2198         }
2199
2200         *dst_id = RESC_START(p_hwfn, QED_VPORT) + src_id;
2201
2202         return 0;
2203 }
2204
2205 int qed_fw_rss_eng(struct qed_hwfn *p_hwfn,
2206                    u8 src_id, u8 *dst_id)
2207 {
2208         if (src_id >= RESC_NUM(p_hwfn, QED_RSS_ENG)) {
2209                 u8 min, max;
2210
2211                 min = (u8)RESC_START(p_hwfn, QED_RSS_ENG);
2212                 max = min + RESC_NUM(p_hwfn, QED_RSS_ENG);
2213                 DP_NOTICE(p_hwfn,
2214                           "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
2215                           src_id, min, max);
2216
2217                 return -EINVAL;
2218         }
2219
2220         *dst_id = RESC_START(p_hwfn, QED_RSS_ENG) + src_id;
2221
2222         return 0;
2223 }
2224
2225 static int qed_set_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2226                             u32 hw_addr, void *p_eth_qzone,
2227                             size_t eth_qzone_size, u8 timeset)
2228 {
2229         struct coalescing_timeset *p_coal_timeset;
2230
2231         if (p_hwfn->cdev->int_coalescing_mode != QED_COAL_MODE_ENABLE) {
2232                 DP_NOTICE(p_hwfn, "Coalescing configuration not enabled\n");
2233                 return -EINVAL;
2234         }
2235
2236         p_coal_timeset = p_eth_qzone;
2237         memset(p_coal_timeset, 0, eth_qzone_size);
2238         SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
2239         SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
2240         qed_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
2241
2242         return 0;
2243 }
2244
2245 int qed_set_rxq_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2246                          u16 coalesce, u8 qid, u16 sb_id)
2247 {
2248         struct ustorm_eth_queue_zone eth_qzone;
2249         u8 timeset, timer_res;
2250         u16 fw_qid = 0;
2251         u32 address;
2252         int rc;
2253
2254         /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
2255         if (coalesce <= 0x7F) {
2256                 timer_res = 0;
2257         } else if (coalesce <= 0xFF) {
2258                 timer_res = 1;
2259         } else if (coalesce <= 0x1FF) {
2260                 timer_res = 2;
2261         } else {
2262                 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
2263                 return -EINVAL;
2264         }
2265         timeset = (u8)(coalesce >> timer_res);
2266
2267         rc = qed_fw_l2_queue(p_hwfn, (u16)qid, &fw_qid);
2268         if (rc)
2269                 return rc;
2270
2271         rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, false);
2272         if (rc)
2273                 goto out;
2274
2275         address = BAR0_MAP_REG_USDM_RAM + USTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid);
2276
2277         rc = qed_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
2278                               sizeof(struct ustorm_eth_queue_zone), timeset);
2279         if (rc)
2280                 goto out;
2281
2282         p_hwfn->cdev->rx_coalesce_usecs = coalesce;
2283 out:
2284         return rc;
2285 }
2286
2287 int qed_set_txq_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2288                          u16 coalesce, u8 qid, u16 sb_id)
2289 {
2290         struct xstorm_eth_queue_zone eth_qzone;
2291         u8 timeset, timer_res;
2292         u16 fw_qid = 0;
2293         u32 address;
2294         int rc;
2295
2296         /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
2297         if (coalesce <= 0x7F) {
2298                 timer_res = 0;
2299         } else if (coalesce <= 0xFF) {
2300                 timer_res = 1;
2301         } else if (coalesce <= 0x1FF) {
2302                 timer_res = 2;
2303         } else {
2304                 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
2305                 return -EINVAL;
2306         }
2307         timeset = (u8)(coalesce >> timer_res);
2308
2309         rc = qed_fw_l2_queue(p_hwfn, (u16)qid, &fw_qid);
2310         if (rc)
2311                 return rc;
2312
2313         rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, true);
2314         if (rc)
2315                 goto out;
2316
2317         address = BAR0_MAP_REG_XSDM_RAM + XSTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid);
2318
2319         rc = qed_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
2320                               sizeof(struct xstorm_eth_queue_zone), timeset);
2321         if (rc)
2322                 goto out;
2323
2324         p_hwfn->cdev->tx_coalesce_usecs = coalesce;
2325 out:
2326         return rc;
2327 }
2328
2329 /* Calculate final WFQ values for all vports and configure them.
2330  * After this configuration each vport will have
2331  * approx min rate =  min_pf_rate * (vport_wfq / QED_WFQ_UNIT)
2332  */
2333 static void qed_configure_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
2334                                              struct qed_ptt *p_ptt,
2335                                              u32 min_pf_rate)
2336 {
2337         struct init_qm_vport_params *vport_params;
2338         int i;
2339
2340         vport_params = p_hwfn->qm_info.qm_vport_params;
2341
2342         for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
2343                 u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
2344
2345                 vport_params[i].vport_wfq = (wfq_speed * QED_WFQ_UNIT) /
2346                                                 min_pf_rate;
2347                 qed_init_vport_wfq(p_hwfn, p_ptt,
2348                                    vport_params[i].first_tx_pq_id,
2349                                    vport_params[i].vport_wfq);
2350         }
2351 }
2352
2353 static void qed_init_wfq_default_param(struct qed_hwfn *p_hwfn,
2354                                        u32 min_pf_rate)
2355
2356 {
2357         int i;
2358
2359         for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
2360                 p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
2361 }
2362
2363 static void qed_disable_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
2364                                            struct qed_ptt *p_ptt,
2365                                            u32 min_pf_rate)
2366 {
2367         struct init_qm_vport_params *vport_params;
2368         int i;
2369
2370         vport_params = p_hwfn->qm_info.qm_vport_params;
2371
2372         for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
2373                 qed_init_wfq_default_param(p_hwfn, min_pf_rate);
2374                 qed_init_vport_wfq(p_hwfn, p_ptt,
2375                                    vport_params[i].first_tx_pq_id,
2376                                    vport_params[i].vport_wfq);
2377         }
2378 }
2379
2380 /* This function performs several validations for WFQ
2381  * configuration and required min rate for a given vport
2382  * 1. req_rate must be greater than one percent of min_pf_rate.
2383  * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
2384  *    rates to get less than one percent of min_pf_rate.
2385  * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
2386  */
2387 static int qed_init_wfq_param(struct qed_hwfn *p_hwfn,
2388                               u16 vport_id, u32 req_rate,
2389                               u32 min_pf_rate)
2390 {
2391         u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
2392         int non_requested_count = 0, req_count = 0, i, num_vports;
2393
2394         num_vports = p_hwfn->qm_info.num_vports;
2395
2396         /* Accounting for the vports which are configured for WFQ explicitly */
2397         for (i = 0; i < num_vports; i++) {
2398                 u32 tmp_speed;
2399
2400                 if ((i != vport_id) &&
2401                     p_hwfn->qm_info.wfq_data[i].configured) {
2402                         req_count++;
2403                         tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
2404                         total_req_min_rate += tmp_speed;
2405                 }
2406         }
2407
2408         /* Include current vport data as well */
2409         req_count++;
2410         total_req_min_rate += req_rate;
2411         non_requested_count = num_vports - req_count;
2412
2413         if (req_rate < min_pf_rate / QED_WFQ_UNIT) {
2414                 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2415                            "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
2416                            vport_id, req_rate, min_pf_rate);
2417                 return -EINVAL;
2418         }
2419
2420         if (num_vports > QED_WFQ_UNIT) {
2421                 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2422                            "Number of vports is greater than %d\n",
2423                            QED_WFQ_UNIT);
2424                 return -EINVAL;
2425         }
2426
2427         if (total_req_min_rate > min_pf_rate) {
2428                 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2429                            "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
2430                            total_req_min_rate, min_pf_rate);
2431                 return -EINVAL;
2432         }
2433
2434         total_left_rate = min_pf_rate - total_req_min_rate;
2435
2436         left_rate_per_vp = total_left_rate / non_requested_count;
2437         if (left_rate_per_vp <  min_pf_rate / QED_WFQ_UNIT) {
2438                 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2439                            "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
2440                            left_rate_per_vp, min_pf_rate);
2441                 return -EINVAL;
2442         }
2443
2444         p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
2445         p_hwfn->qm_info.wfq_data[vport_id].configured = true;
2446
2447         for (i = 0; i < num_vports; i++) {
2448                 if (p_hwfn->qm_info.wfq_data[i].configured)
2449                         continue;
2450
2451                 p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
2452         }
2453
2454         return 0;
2455 }
2456
2457 static int __qed_configure_vport_wfq(struct qed_hwfn *p_hwfn,
2458                                      struct qed_ptt *p_ptt, u16 vp_id, u32 rate)
2459 {
2460         struct qed_mcp_link_state *p_link;
2461         int rc = 0;
2462
2463         p_link = &p_hwfn->cdev->hwfns[0].mcp_info->link_output;
2464
2465         if (!p_link->min_pf_rate) {
2466                 p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
2467                 p_hwfn->qm_info.wfq_data[vp_id].configured = true;
2468                 return rc;
2469         }
2470
2471         rc = qed_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
2472
2473         if (rc == 0)
2474                 qed_configure_wfq_for_all_vports(p_hwfn, p_ptt,
2475                                                  p_link->min_pf_rate);
2476         else
2477                 DP_NOTICE(p_hwfn,
2478                           "Validation failed while configuring min rate\n");
2479
2480         return rc;
2481 }
2482
2483 static int __qed_configure_vp_wfq_on_link_change(struct qed_hwfn *p_hwfn,
2484                                                  struct qed_ptt *p_ptt,
2485                                                  u32 min_pf_rate)
2486 {
2487         bool use_wfq = false;
2488         int rc = 0;
2489         u16 i;
2490
2491         /* Validate all pre configured vports for wfq */
2492         for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
2493                 u32 rate;
2494
2495                 if (!p_hwfn->qm_info.wfq_data[i].configured)
2496                         continue;
2497
2498                 rate = p_hwfn->qm_info.wfq_data[i].min_speed;
2499                 use_wfq = true;
2500
2501                 rc = qed_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
2502                 if (rc) {
2503                         DP_NOTICE(p_hwfn,
2504                                   "WFQ validation failed while configuring min rate\n");
2505                         break;
2506                 }
2507         }
2508
2509         if (!rc && use_wfq)
2510                 qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
2511         else
2512                 qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
2513
2514         return rc;
2515 }
2516
2517 /* Main API for qed clients to configure vport min rate.
2518  * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
2519  * rate - Speed in Mbps needs to be assigned to a given vport.
2520  */
2521 int qed_configure_vport_wfq(struct qed_dev *cdev, u16 vp_id, u32 rate)
2522 {
2523         int i, rc = -EINVAL;
2524
2525         /* Currently not supported; Might change in future */
2526         if (cdev->num_hwfns > 1) {
2527                 DP_NOTICE(cdev,
2528                           "WFQ configuration is not supported for this device\n");
2529                 return rc;
2530         }
2531
2532         for_each_hwfn(cdev, i) {
2533                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2534                 struct qed_ptt *p_ptt;
2535
2536                 p_ptt = qed_ptt_acquire(p_hwfn);
2537                 if (!p_ptt)
2538                         return -EBUSY;
2539
2540                 rc = __qed_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
2541
2542                 if (!rc) {
2543                         qed_ptt_release(p_hwfn, p_ptt);
2544                         return rc;
2545                 }
2546
2547                 qed_ptt_release(p_hwfn, p_ptt);
2548         }
2549
2550         return rc;
2551 }
2552
2553 /* API to configure WFQ from mcp link change */
2554 void qed_configure_vp_wfq_on_link_change(struct qed_dev *cdev, u32 min_pf_rate)
2555 {
2556         int i;
2557
2558         if (cdev->num_hwfns > 1) {
2559                 DP_VERBOSE(cdev,
2560                            NETIF_MSG_LINK,
2561                            "WFQ configuration is not supported for this device\n");
2562                 return;
2563         }
2564
2565         for_each_hwfn(cdev, i) {
2566                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2567
2568                 __qed_configure_vp_wfq_on_link_change(p_hwfn,
2569                                                       p_hwfn->p_dpc_ptt,
2570                                                       min_pf_rate);
2571         }
2572 }
2573
2574 int __qed_configure_pf_max_bandwidth(struct qed_hwfn *p_hwfn,
2575                                      struct qed_ptt *p_ptt,
2576                                      struct qed_mcp_link_state *p_link,
2577                                      u8 max_bw)
2578 {
2579         int rc = 0;
2580
2581         p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
2582
2583         if (!p_link->line_speed && (max_bw != 100))
2584                 return rc;
2585
2586         p_link->speed = (p_link->line_speed * max_bw) / 100;
2587         p_hwfn->qm_info.pf_rl = p_link->speed;
2588
2589         /* Since the limiter also affects Tx-switched traffic, we don't want it
2590          * to limit such traffic in case there's no actual limit.
2591          * In that case, set limit to imaginary high boundary.
2592          */
2593         if (max_bw == 100)
2594                 p_hwfn->qm_info.pf_rl = 100000;
2595
2596         rc = qed_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
2597                             p_hwfn->qm_info.pf_rl);
2598
2599         DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2600                    "Configured MAX bandwidth to be %08x Mb/sec\n",
2601                    p_link->speed);
2602
2603         return rc;
2604 }
2605
2606 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
2607 int qed_configure_pf_max_bandwidth(struct qed_dev *cdev, u8 max_bw)
2608 {
2609         int i, rc = -EINVAL;
2610
2611         if (max_bw < 1 || max_bw > 100) {
2612                 DP_NOTICE(cdev, "PF max bw valid range is [1-100]\n");
2613                 return rc;
2614         }
2615
2616         for_each_hwfn(cdev, i) {
2617                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2618                 struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
2619                 struct qed_mcp_link_state *p_link;
2620                 struct qed_ptt *p_ptt;
2621
2622                 p_link = &p_lead->mcp_info->link_output;
2623
2624                 p_ptt = qed_ptt_acquire(p_hwfn);
2625                 if (!p_ptt)
2626                         return -EBUSY;
2627
2628                 rc = __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt,
2629                                                       p_link, max_bw);
2630
2631                 qed_ptt_release(p_hwfn, p_ptt);
2632
2633                 if (rc)
2634                         break;
2635         }
2636
2637         return rc;
2638 }
2639
2640 int __qed_configure_pf_min_bandwidth(struct qed_hwfn *p_hwfn,
2641                                      struct qed_ptt *p_ptt,
2642                                      struct qed_mcp_link_state *p_link,
2643                                      u8 min_bw)
2644 {
2645         int rc = 0;
2646
2647         p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
2648         p_hwfn->qm_info.pf_wfq = min_bw;
2649
2650         if (!p_link->line_speed)
2651                 return rc;
2652
2653         p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
2654
2655         rc = qed_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
2656
2657         DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2658                    "Configured MIN bandwidth to be %d Mb/sec\n",
2659                    p_link->min_pf_rate);
2660
2661         return rc;
2662 }
2663
2664 /* Main API to configure PF min bandwidth where bw range is [1-100] */
2665 int qed_configure_pf_min_bandwidth(struct qed_dev *cdev, u8 min_bw)
2666 {
2667         int i, rc = -EINVAL;
2668
2669         if (min_bw < 1 || min_bw > 100) {
2670                 DP_NOTICE(cdev, "PF min bw valid range is [1-100]\n");
2671                 return rc;
2672         }
2673
2674         for_each_hwfn(cdev, i) {
2675                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2676                 struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
2677                 struct qed_mcp_link_state *p_link;
2678                 struct qed_ptt *p_ptt;
2679
2680                 p_link = &p_lead->mcp_info->link_output;
2681
2682                 p_ptt = qed_ptt_acquire(p_hwfn);
2683                 if (!p_ptt)
2684                         return -EBUSY;
2685
2686                 rc = __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt,
2687                                                       p_link, min_bw);
2688                 if (rc) {
2689                         qed_ptt_release(p_hwfn, p_ptt);
2690                         return rc;
2691                 }
2692
2693                 if (p_link->min_pf_rate) {
2694                         u32 min_rate = p_link->min_pf_rate;
2695
2696                         rc = __qed_configure_vp_wfq_on_link_change(p_hwfn,
2697                                                                    p_ptt,
2698                                                                    min_rate);
2699                 }
2700
2701                 qed_ptt_release(p_hwfn, p_ptt);
2702         }
2703
2704         return rc;
2705 }
2706
2707 void qed_clean_wfq_db(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2708 {
2709         struct qed_mcp_link_state *p_link;
2710
2711         p_link = &p_hwfn->mcp_info->link_output;
2712
2713         if (p_link->min_pf_rate)
2714                 qed_disable_wfq_for_all_vports(p_hwfn, p_ptt,
2715                                                p_link->min_pf_rate);
2716
2717         memset(p_hwfn->qm_info.wfq_data, 0,
2718                sizeof(*p_hwfn->qm_info.wfq_data) * p_hwfn->qm_info.num_vports);
2719 }