4d59d7e00e4269b7d48e628afba14dd69f529a38
[cascardo/linux.git] / drivers / net / ethernet / qlogic / qede / qede_main.c
1 /* QLogic qede NIC Driver
2 * Copyright (c) 2015 QLogic Corporation
3 *
4 * This software is available under the terms of the GNU General Public License
5 * (GPL) Version 2, available from the file COPYING in the main directory of
6 * this source tree.
7 */
8
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/version.h>
12 #include <linux/device.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/skbuff.h>
16 #include <linux/errno.h>
17 #include <linux/list.h>
18 #include <linux/string.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <asm/byteorder.h>
22 #include <asm/param.h>
23 #include <linux/io.h>
24 #include <linux/netdev_features.h>
25 #include <linux/udp.h>
26 #include <linux/tcp.h>
27 #ifdef CONFIG_QEDE_VXLAN
28 #include <net/vxlan.h>
29 #endif
30 #ifdef CONFIG_QEDE_GENEVE
31 #include <net/geneve.h>
32 #endif
33 #include <linux/ip.h>
34 #include <net/ipv6.h>
35 #include <net/tcp.h>
36 #include <linux/if_ether.h>
37 #include <linux/if_vlan.h>
38 #include <linux/pkt_sched.h>
39 #include <linux/ethtool.h>
40 #include <linux/in.h>
41 #include <linux/random.h>
42 #include <net/ip6_checksum.h>
43 #include <linux/bitops.h>
44
45 #include "qede.h"
46
47 static char version[] =
48         "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
49
50 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_MODULE_VERSION);
53
54 static uint debug;
55 module_param(debug, uint, 0);
56 MODULE_PARM_DESC(debug, " Default debug msglevel");
57
58 static const struct qed_eth_ops *qed_ops;
59
60 #define CHIP_NUM_57980S_40              0x1634
61 #define CHIP_NUM_57980S_10              0x1666
62 #define CHIP_NUM_57980S_MF              0x1636
63 #define CHIP_NUM_57980S_100             0x1644
64 #define CHIP_NUM_57980S_50              0x1654
65 #define CHIP_NUM_57980S_25              0x1656
66 #define CHIP_NUM_57980S_IOV             0x1664
67
68 #ifndef PCI_DEVICE_ID_NX2_57980E
69 #define PCI_DEVICE_ID_57980S_40         CHIP_NUM_57980S_40
70 #define PCI_DEVICE_ID_57980S_10         CHIP_NUM_57980S_10
71 #define PCI_DEVICE_ID_57980S_MF         CHIP_NUM_57980S_MF
72 #define PCI_DEVICE_ID_57980S_100        CHIP_NUM_57980S_100
73 #define PCI_DEVICE_ID_57980S_50         CHIP_NUM_57980S_50
74 #define PCI_DEVICE_ID_57980S_25         CHIP_NUM_57980S_25
75 #define PCI_DEVICE_ID_57980S_IOV        CHIP_NUM_57980S_IOV
76 #endif
77
78 enum qede_pci_private {
79         QEDE_PRIVATE_PF,
80         QEDE_PRIVATE_VF
81 };
82
83 static const struct pci_device_id qede_pci_tbl[] = {
84         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
85         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
86         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
87         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
88         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
89         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
90         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
91         { 0 }
92 };
93
94 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
95
96 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
97
98 #define TX_TIMEOUT              (5 * HZ)
99
100 static void qede_remove(struct pci_dev *pdev);
101 static int qede_alloc_rx_buffer(struct qede_dev *edev,
102                                 struct qede_rx_queue *rxq);
103 static void qede_link_update(void *dev, struct qed_link_output *link);
104
105 #ifdef CONFIG_QED_SRIOV
106 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos)
107 {
108         struct qede_dev *edev = netdev_priv(ndev);
109
110         if (vlan > 4095) {
111                 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
112                 return -EINVAL;
113         }
114
115         DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
116                    vlan, vf);
117
118         return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
119 }
120
121 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
122 {
123         struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
124
125         DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
126
127         return edev->ops->iov->configure(edev->cdev, num_vfs_param);
128 }
129 #endif
130
131 static struct pci_driver qede_pci_driver = {
132         .name = "qede",
133         .id_table = qede_pci_tbl,
134         .probe = qede_probe,
135         .remove = qede_remove,
136 #ifdef CONFIG_QED_SRIOV
137         .sriov_configure = qede_sriov_configure,
138 #endif
139 };
140
141 static struct qed_eth_cb_ops qede_ll_ops = {
142         {
143                 .link_update = qede_link_update,
144         },
145 };
146
147 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
148                              void *ptr)
149 {
150         struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
151         struct ethtool_drvinfo drvinfo;
152         struct qede_dev *edev;
153
154         /* Currently only support name change */
155         if (event != NETDEV_CHANGENAME)
156                 goto done;
157
158         /* Check whether this is a qede device */
159         if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
160                 goto done;
161
162         memset(&drvinfo, 0, sizeof(drvinfo));
163         ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
164         if (strcmp(drvinfo.driver, "qede"))
165                 goto done;
166         edev = netdev_priv(ndev);
167
168         /* Notify qed of the name change */
169         if (!edev->ops || !edev->ops->common)
170                 goto done;
171         edev->ops->common->set_id(edev->cdev, edev->ndev->name,
172                                   "qede");
173
174 done:
175         return NOTIFY_DONE;
176 }
177
178 static struct notifier_block qede_netdev_notifier = {
179         .notifier_call = qede_netdev_event,
180 };
181
182 static
183 int __init qede_init(void)
184 {
185         int ret;
186
187         pr_notice("qede_init: %s\n", version);
188
189         qed_ops = qed_get_eth_ops();
190         if (!qed_ops) {
191                 pr_notice("Failed to get qed ethtool operations\n");
192                 return -EINVAL;
193         }
194
195         /* Must register notifier before pci ops, since we might miss
196          * interface rename after pci probe and netdev registeration.
197          */
198         ret = register_netdevice_notifier(&qede_netdev_notifier);
199         if (ret) {
200                 pr_notice("Failed to register netdevice_notifier\n");
201                 qed_put_eth_ops();
202                 return -EINVAL;
203         }
204
205         ret = pci_register_driver(&qede_pci_driver);
206         if (ret) {
207                 pr_notice("Failed to register driver\n");
208                 unregister_netdevice_notifier(&qede_netdev_notifier);
209                 qed_put_eth_ops();
210                 return -EINVAL;
211         }
212
213         return 0;
214 }
215
216 static void __exit qede_cleanup(void)
217 {
218         pr_notice("qede_cleanup called\n");
219
220         unregister_netdevice_notifier(&qede_netdev_notifier);
221         pci_unregister_driver(&qede_pci_driver);
222         qed_put_eth_ops();
223 }
224
225 module_init(qede_init);
226 module_exit(qede_cleanup);
227
228 /* -------------------------------------------------------------------------
229  * START OF FAST-PATH
230  * -------------------------------------------------------------------------
231  */
232
233 /* Unmap the data and free skb */
234 static int qede_free_tx_pkt(struct qede_dev *edev,
235                             struct qede_tx_queue *txq,
236                             int *len)
237 {
238         u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
239         struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
240         struct eth_tx_1st_bd *first_bd;
241         struct eth_tx_bd *tx_data_bd;
242         int bds_consumed = 0;
243         int nbds;
244         bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD;
245         int i, split_bd_len = 0;
246
247         if (unlikely(!skb)) {
248                 DP_ERR(edev,
249                        "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
250                        idx, txq->sw_tx_cons, txq->sw_tx_prod);
251                 return -1;
252         }
253
254         *len = skb->len;
255
256         first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
257
258         bds_consumed++;
259
260         nbds = first_bd->data.nbds;
261
262         if (data_split) {
263                 struct eth_tx_bd *split = (struct eth_tx_bd *)
264                         qed_chain_consume(&txq->tx_pbl);
265                 split_bd_len = BD_UNMAP_LEN(split);
266                 bds_consumed++;
267         }
268         dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
269                        BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
270
271         /* Unmap the data of the skb frags */
272         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
273                 tx_data_bd = (struct eth_tx_bd *)
274                         qed_chain_consume(&txq->tx_pbl);
275                 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
276                                BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
277         }
278
279         while (bds_consumed++ < nbds)
280                 qed_chain_consume(&txq->tx_pbl);
281
282         /* Free skb */
283         dev_kfree_skb_any(skb);
284         txq->sw_tx_ring[idx].skb = NULL;
285         txq->sw_tx_ring[idx].flags = 0;
286
287         return 0;
288 }
289
290 /* Unmap the data and free skb when mapping failed during start_xmit */
291 static void qede_free_failed_tx_pkt(struct qede_dev *edev,
292                                     struct qede_tx_queue *txq,
293                                     struct eth_tx_1st_bd *first_bd,
294                                     int nbd,
295                                     bool data_split)
296 {
297         u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
298         struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
299         struct eth_tx_bd *tx_data_bd;
300         int i, split_bd_len = 0;
301
302         /* Return prod to its position before this skb was handled */
303         qed_chain_set_prod(&txq->tx_pbl,
304                            le16_to_cpu(txq->tx_db.data.bd_prod),
305                            first_bd);
306
307         first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
308
309         if (data_split) {
310                 struct eth_tx_bd *split = (struct eth_tx_bd *)
311                                           qed_chain_produce(&txq->tx_pbl);
312                 split_bd_len = BD_UNMAP_LEN(split);
313                 nbd--;
314         }
315
316         dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
317                        BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
318
319         /* Unmap the data of the skb frags */
320         for (i = 0; i < nbd; i++) {
321                 tx_data_bd = (struct eth_tx_bd *)
322                         qed_chain_produce(&txq->tx_pbl);
323                 if (tx_data_bd->nbytes)
324                         dma_unmap_page(&edev->pdev->dev,
325                                        BD_UNMAP_ADDR(tx_data_bd),
326                                        BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
327         }
328
329         /* Return again prod to its position before this skb was handled */
330         qed_chain_set_prod(&txq->tx_pbl,
331                            le16_to_cpu(txq->tx_db.data.bd_prod),
332                            first_bd);
333
334         /* Free skb */
335         dev_kfree_skb_any(skb);
336         txq->sw_tx_ring[idx].skb = NULL;
337         txq->sw_tx_ring[idx].flags = 0;
338 }
339
340 static u32 qede_xmit_type(struct qede_dev *edev,
341                           struct sk_buff *skb,
342                           int *ipv6_ext)
343 {
344         u32 rc = XMIT_L4_CSUM;
345         __be16 l3_proto;
346
347         if (skb->ip_summed != CHECKSUM_PARTIAL)
348                 return XMIT_PLAIN;
349
350         l3_proto = vlan_get_protocol(skb);
351         if (l3_proto == htons(ETH_P_IPV6) &&
352             (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
353                 *ipv6_ext = 1;
354
355         if (skb->encapsulation)
356                 rc |= XMIT_ENC;
357
358         if (skb_is_gso(skb))
359                 rc |= XMIT_LSO;
360
361         return rc;
362 }
363
364 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
365                                          struct eth_tx_2nd_bd *second_bd,
366                                          struct eth_tx_3rd_bd *third_bd)
367 {
368         u8 l4_proto;
369         u16 bd2_bits1 = 0, bd2_bits2 = 0;
370
371         bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
372
373         bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
374                      ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
375                     << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
376
377         bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
378                       ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
379
380         if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
381                 l4_proto = ipv6_hdr(skb)->nexthdr;
382         else
383                 l4_proto = ip_hdr(skb)->protocol;
384
385         if (l4_proto == IPPROTO_UDP)
386                 bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
387
388         if (third_bd)
389                 third_bd->data.bitfields |=
390                         cpu_to_le16(((tcp_hdrlen(skb) / 4) &
391                                 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
392                                 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
393
394         second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
395         second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
396 }
397
398 static int map_frag_to_bd(struct qede_dev *edev,
399                           skb_frag_t *frag,
400                           struct eth_tx_bd *bd)
401 {
402         dma_addr_t mapping;
403
404         /* Map skb non-linear frag data for DMA */
405         mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0,
406                                    skb_frag_size(frag),
407                                    DMA_TO_DEVICE);
408         if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
409                 DP_NOTICE(edev, "Unable to map frag - dropping packet\n");
410                 return -ENOMEM;
411         }
412
413         /* Setup the data pointer of the frag data */
414         BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
415
416         return 0;
417 }
418
419 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
420 {
421         if (is_encap_pkt)
422                 return (skb_inner_transport_header(skb) +
423                         inner_tcp_hdrlen(skb) - skb->data);
424         else
425                 return (skb_transport_header(skb) +
426                         tcp_hdrlen(skb) - skb->data);
427 }
428
429 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
430 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
431 static bool qede_pkt_req_lin(struct qede_dev *edev, struct sk_buff *skb,
432                              u8 xmit_type)
433 {
434         int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
435
436         if (xmit_type & XMIT_LSO) {
437                 int hlen;
438
439                 hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
440
441                 /* linear payload would require its own BD */
442                 if (skb_headlen(skb) > hlen)
443                         allowed_frags--;
444         }
445
446         return (skb_shinfo(skb)->nr_frags > allowed_frags);
447 }
448 #endif
449
450 /* Main transmit function */
451 static
452 netdev_tx_t qede_start_xmit(struct sk_buff *skb,
453                             struct net_device *ndev)
454 {
455         struct qede_dev *edev = netdev_priv(ndev);
456         struct netdev_queue *netdev_txq;
457         struct qede_tx_queue *txq;
458         struct eth_tx_1st_bd *first_bd;
459         struct eth_tx_2nd_bd *second_bd = NULL;
460         struct eth_tx_3rd_bd *third_bd = NULL;
461         struct eth_tx_bd *tx_data_bd = NULL;
462         u16 txq_index;
463         u8 nbd = 0;
464         dma_addr_t mapping;
465         int rc, frag_idx = 0, ipv6_ext = 0;
466         u8 xmit_type;
467         u16 idx;
468         u16 hlen;
469         bool data_split = false;
470
471         /* Get tx-queue context and netdev index */
472         txq_index = skb_get_queue_mapping(skb);
473         WARN_ON(txq_index >= QEDE_TSS_CNT(edev));
474         txq = QEDE_TX_QUEUE(edev, txq_index);
475         netdev_txq = netdev_get_tx_queue(ndev, txq_index);
476
477         WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) <
478                                (MAX_SKB_FRAGS + 1));
479
480         xmit_type = qede_xmit_type(edev, skb, &ipv6_ext);
481
482 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
483         if (qede_pkt_req_lin(edev, skb, xmit_type)) {
484                 if (skb_linearize(skb)) {
485                         DP_NOTICE(edev,
486                                   "SKB linearization failed - silently dropping this SKB\n");
487                         dev_kfree_skb_any(skb);
488                         return NETDEV_TX_OK;
489                 }
490         }
491 #endif
492
493         /* Fill the entry in the SW ring and the BDs in the FW ring */
494         idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
495         txq->sw_tx_ring[idx].skb = skb;
496         first_bd = (struct eth_tx_1st_bd *)
497                    qed_chain_produce(&txq->tx_pbl);
498         memset(first_bd, 0, sizeof(*first_bd));
499         first_bd->data.bd_flags.bitfields =
500                 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
501
502         /* Map skb linear data for DMA and set in the first BD */
503         mapping = dma_map_single(&edev->pdev->dev, skb->data,
504                                  skb_headlen(skb), DMA_TO_DEVICE);
505         if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
506                 DP_NOTICE(edev, "SKB mapping failed\n");
507                 qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false);
508                 return NETDEV_TX_OK;
509         }
510         nbd++;
511         BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
512
513         /* In case there is IPv6 with extension headers or LSO we need 2nd and
514          * 3rd BDs.
515          */
516         if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
517                 second_bd = (struct eth_tx_2nd_bd *)
518                         qed_chain_produce(&txq->tx_pbl);
519                 memset(second_bd, 0, sizeof(*second_bd));
520
521                 nbd++;
522                 third_bd = (struct eth_tx_3rd_bd *)
523                         qed_chain_produce(&txq->tx_pbl);
524                 memset(third_bd, 0, sizeof(*third_bd));
525
526                 nbd++;
527                 /* We need to fill in additional data in second_bd... */
528                 tx_data_bd = (struct eth_tx_bd *)second_bd;
529         }
530
531         if (skb_vlan_tag_present(skb)) {
532                 first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
533                 first_bd->data.bd_flags.bitfields |=
534                         1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
535         }
536
537         /* Fill the parsing flags & params according to the requested offload */
538         if (xmit_type & XMIT_L4_CSUM) {
539                 u16 temp = 1 << ETH_TX_DATA_1ST_BD_TUNN_CFG_OVERRIDE_SHIFT;
540
541                 /* We don't re-calculate IP checksum as it is already done by
542                  * the upper stack
543                  */
544                 first_bd->data.bd_flags.bitfields |=
545                         1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
546
547                 if (xmit_type & XMIT_ENC) {
548                         first_bd->data.bd_flags.bitfields |=
549                                 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
550                 } else {
551                         /* In cases when OS doesn't indicate for inner offloads
552                          * when packet is tunnelled, we need to override the HW
553                          * tunnel configuration so that packets are treated as
554                          * regular non tunnelled packets and no inner offloads
555                          * are done by the hardware.
556                          */
557                         first_bd->data.bitfields |= cpu_to_le16(temp);
558                 }
559
560                 /* If the packet is IPv6 with extension header, indicate that
561                  * to FW and pass few params, since the device cracker doesn't
562                  * support parsing IPv6 with extension header/s.
563                  */
564                 if (unlikely(ipv6_ext))
565                         qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
566         }
567
568         if (xmit_type & XMIT_LSO) {
569                 first_bd->data.bd_flags.bitfields |=
570                         (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
571                 third_bd->data.lso_mss =
572                         cpu_to_le16(skb_shinfo(skb)->gso_size);
573
574                 if (unlikely(xmit_type & XMIT_ENC)) {
575                         first_bd->data.bd_flags.bitfields |=
576                                 1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
577                         hlen = qede_get_skb_hlen(skb, true);
578                 } else {
579                         first_bd->data.bd_flags.bitfields |=
580                                 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
581                         hlen = qede_get_skb_hlen(skb, false);
582                 }
583
584                 /* @@@TBD - if will not be removed need to check */
585                 third_bd->data.bitfields |=
586                         cpu_to_le16((1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT));
587
588                 /* Make life easier for FW guys who can't deal with header and
589                  * data on same BD. If we need to split, use the second bd...
590                  */
591                 if (unlikely(skb_headlen(skb) > hlen)) {
592                         DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
593                                    "TSO split header size is %d (%x:%x)\n",
594                                    first_bd->nbytes, first_bd->addr.hi,
595                                    first_bd->addr.lo);
596
597                         mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
598                                            le32_to_cpu(first_bd->addr.lo)) +
599                                            hlen;
600
601                         BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
602                                               le16_to_cpu(first_bd->nbytes) -
603                                               hlen);
604
605                         /* this marks the BD as one that has no
606                          * individual mapping
607                          */
608                         txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD;
609
610                         first_bd->nbytes = cpu_to_le16(hlen);
611
612                         tx_data_bd = (struct eth_tx_bd *)third_bd;
613                         data_split = true;
614                 }
615         }
616
617         /* Handle fragmented skb */
618         /* special handle for frags inside 2nd and 3rd bds.. */
619         while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
620                 rc = map_frag_to_bd(edev,
621                                     &skb_shinfo(skb)->frags[frag_idx],
622                                     tx_data_bd);
623                 if (rc) {
624                         qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
625                                                 data_split);
626                         return NETDEV_TX_OK;
627                 }
628
629                 if (tx_data_bd == (struct eth_tx_bd *)second_bd)
630                         tx_data_bd = (struct eth_tx_bd *)third_bd;
631                 else
632                         tx_data_bd = NULL;
633
634                 frag_idx++;
635         }
636
637         /* map last frags into 4th, 5th .... */
638         for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
639                 tx_data_bd = (struct eth_tx_bd *)
640                              qed_chain_produce(&txq->tx_pbl);
641
642                 memset(tx_data_bd, 0, sizeof(*tx_data_bd));
643
644                 rc = map_frag_to_bd(edev,
645                                     &skb_shinfo(skb)->frags[frag_idx],
646                                     tx_data_bd);
647                 if (rc) {
648                         qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
649                                                 data_split);
650                         return NETDEV_TX_OK;
651                 }
652         }
653
654         /* update the first BD with the actual num BDs */
655         first_bd->data.nbds = nbd;
656
657         netdev_tx_sent_queue(netdev_txq, skb->len);
658
659         skb_tx_timestamp(skb);
660
661         /* Advance packet producer only before sending the packet since mapping
662          * of pages may fail.
663          */
664         txq->sw_tx_prod++;
665
666         /* 'next page' entries are counted in the producer value */
667         txq->tx_db.data.bd_prod =
668                 cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
669
670         /* wmb makes sure that the BDs data is updated before updating the
671          * producer, otherwise FW may read old data from the BDs.
672          */
673         wmb();
674         barrier();
675         writel(txq->tx_db.raw, txq->doorbell_addr);
676
677         /* mmiowb is needed to synchronize doorbell writes from more than one
678          * processor. It guarantees that the write arrives to the device before
679          * the queue lock is released and another start_xmit is called (possibly
680          * on another CPU). Without this barrier, the next doorbell can bypass
681          * this doorbell. This is applicable to IA64/Altix systems.
682          */
683         mmiowb();
684
685         if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
686                       < (MAX_SKB_FRAGS + 1))) {
687                 netif_tx_stop_queue(netdev_txq);
688                 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
689                            "Stop queue was called\n");
690                 /* paired memory barrier is in qede_tx_int(), we have to keep
691                  * ordering of set_bit() in netif_tx_stop_queue() and read of
692                  * fp->bd_tx_cons
693                  */
694                 smp_mb();
695
696                 if (qed_chain_get_elem_left(&txq->tx_pbl)
697                      >= (MAX_SKB_FRAGS + 1) &&
698                     (edev->state == QEDE_STATE_OPEN)) {
699                         netif_tx_wake_queue(netdev_txq);
700                         DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
701                                    "Wake queue was called\n");
702                 }
703         }
704
705         return NETDEV_TX_OK;
706 }
707
708 int qede_txq_has_work(struct qede_tx_queue *txq)
709 {
710         u16 hw_bd_cons;
711
712         /* Tell compiler that consumer and producer can change */
713         barrier();
714         hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
715         if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
716                 return 0;
717
718         return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
719 }
720
721 static int qede_tx_int(struct qede_dev *edev,
722                        struct qede_tx_queue *txq)
723 {
724         struct netdev_queue *netdev_txq;
725         u16 hw_bd_cons;
726         unsigned int pkts_compl = 0, bytes_compl = 0;
727         int rc;
728
729         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
730
731         hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
732         barrier();
733
734         while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
735                 int len = 0;
736
737                 rc = qede_free_tx_pkt(edev, txq, &len);
738                 if (rc) {
739                         DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
740                                   hw_bd_cons,
741                                   qed_chain_get_cons_idx(&txq->tx_pbl));
742                         break;
743                 }
744
745                 bytes_compl += len;
746                 pkts_compl++;
747                 txq->sw_tx_cons++;
748         }
749
750         netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
751
752         /* Need to make the tx_bd_cons update visible to start_xmit()
753          * before checking for netif_tx_queue_stopped().  Without the
754          * memory barrier, there is a small possibility that
755          * start_xmit() will miss it and cause the queue to be stopped
756          * forever.
757          * On the other hand we need an rmb() here to ensure the proper
758          * ordering of bit testing in the following
759          * netif_tx_queue_stopped(txq) call.
760          */
761         smp_mb();
762
763         if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
764                 /* Taking tx_lock is needed to prevent reenabling the queue
765                  * while it's empty. This could have happen if rx_action() gets
766                  * suspended in qede_tx_int() after the condition before
767                  * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
768                  *
769                  * stops the queue->sees fresh tx_bd_cons->releases the queue->
770                  * sends some packets consuming the whole queue again->
771                  * stops the queue
772                  */
773
774                 __netif_tx_lock(netdev_txq, smp_processor_id());
775
776                 if ((netif_tx_queue_stopped(netdev_txq)) &&
777                     (edev->state == QEDE_STATE_OPEN) &&
778                     (qed_chain_get_elem_left(&txq->tx_pbl)
779                       >= (MAX_SKB_FRAGS + 1))) {
780                         netif_tx_wake_queue(netdev_txq);
781                         DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
782                                    "Wake queue was called\n");
783                 }
784
785                 __netif_tx_unlock(netdev_txq);
786         }
787
788         return 0;
789 }
790
791 bool qede_has_rx_work(struct qede_rx_queue *rxq)
792 {
793         u16 hw_comp_cons, sw_comp_cons;
794
795         /* Tell compiler that status block fields can change */
796         barrier();
797
798         hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
799         sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
800
801         return hw_comp_cons != sw_comp_cons;
802 }
803
804 static bool qede_has_tx_work(struct qede_fastpath *fp)
805 {
806         u8 tc;
807
808         for (tc = 0; tc < fp->edev->num_tc; tc++)
809                 if (qede_txq_has_work(&fp->txqs[tc]))
810                         return true;
811         return false;
812 }
813
814 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
815 {
816         qed_chain_consume(&rxq->rx_bd_ring);
817         rxq->sw_rx_cons++;
818 }
819
820 /* This function reuses the buffer(from an offset) from
821  * consumer index to producer index in the bd ring
822  */
823 static inline void qede_reuse_page(struct qede_dev *edev,
824                                    struct qede_rx_queue *rxq,
825                                    struct sw_rx_data *curr_cons)
826 {
827         struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
828         struct sw_rx_data *curr_prod;
829         dma_addr_t new_mapping;
830
831         curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
832         *curr_prod = *curr_cons;
833
834         new_mapping = curr_prod->mapping + curr_prod->page_offset;
835
836         rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
837         rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping));
838
839         rxq->sw_rx_prod++;
840         curr_cons->data = NULL;
841 }
842
843 /* In case of allocation failures reuse buffers
844  * from consumer index to produce buffers for firmware
845  */
846 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
847                              struct qede_dev *edev, u8 count)
848 {
849         struct sw_rx_data *curr_cons;
850
851         for (; count > 0; count--) {
852                 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
853                 qede_reuse_page(edev, rxq, curr_cons);
854                 qede_rx_bd_ring_consume(rxq);
855         }
856 }
857
858 static inline int qede_realloc_rx_buffer(struct qede_dev *edev,
859                                          struct qede_rx_queue *rxq,
860                                          struct sw_rx_data *curr_cons)
861 {
862         /* Move to the next segment in the page */
863         curr_cons->page_offset += rxq->rx_buf_seg_size;
864
865         if (curr_cons->page_offset == PAGE_SIZE) {
866                 if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
867                         /* Since we failed to allocate new buffer
868                          * current buffer can be used again.
869                          */
870                         curr_cons->page_offset -= rxq->rx_buf_seg_size;
871
872                         return -ENOMEM;
873                 }
874
875                 dma_unmap_page(&edev->pdev->dev, curr_cons->mapping,
876                                PAGE_SIZE, DMA_FROM_DEVICE);
877         } else {
878                 /* Increment refcount of the page as we don't want
879                  * network stack to take the ownership of the page
880                  * which can be recycled multiple times by the driver.
881                  */
882                 atomic_inc(&curr_cons->data->_count);
883                 qede_reuse_page(edev, rxq, curr_cons);
884         }
885
886         return 0;
887 }
888
889 static inline void qede_update_rx_prod(struct qede_dev *edev,
890                                        struct qede_rx_queue *rxq)
891 {
892         u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
893         u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
894         struct eth_rx_prod_data rx_prods = {0};
895
896         /* Update producers */
897         rx_prods.bd_prod = cpu_to_le16(bd_prod);
898         rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
899
900         /* Make sure that the BD and SGE data is updated before updating the
901          * producers since FW might read the BD/SGE right after the producer
902          * is updated.
903          */
904         wmb();
905
906         internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
907                         (u32 *)&rx_prods);
908
909         /* mmiowb is needed to synchronize doorbell writes from more than one
910          * processor. It guarantees that the write arrives to the device before
911          * the napi lock is released and another qede_poll is called (possibly
912          * on another CPU). Without this barrier, the next doorbell can bypass
913          * this doorbell. This is applicable to IA64/Altix systems.
914          */
915         mmiowb();
916 }
917
918 static u32 qede_get_rxhash(struct qede_dev *edev,
919                            u8 bitfields,
920                            __le32 rss_hash,
921                            enum pkt_hash_types *rxhash_type)
922 {
923         enum rss_hash_type htype;
924
925         htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
926
927         if ((edev->ndev->features & NETIF_F_RXHASH) && htype) {
928                 *rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
929                                 (htype == RSS_HASH_TYPE_IPV6)) ?
930                                 PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
931                 return le32_to_cpu(rss_hash);
932         }
933         *rxhash_type = PKT_HASH_TYPE_NONE;
934         return 0;
935 }
936
937 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
938 {
939         skb_checksum_none_assert(skb);
940
941         if (csum_flag & QEDE_CSUM_UNNECESSARY)
942                 skb->ip_summed = CHECKSUM_UNNECESSARY;
943
944         if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY)
945                 skb->csum_level = 1;
946 }
947
948 static inline void qede_skb_receive(struct qede_dev *edev,
949                                     struct qede_fastpath *fp,
950                                     struct sk_buff *skb,
951                                     u16 vlan_tag)
952 {
953         if (vlan_tag)
954                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
955                                        vlan_tag);
956
957         napi_gro_receive(&fp->napi, skb);
958 }
959
960 static void qede_set_gro_params(struct qede_dev *edev,
961                                 struct sk_buff *skb,
962                                 struct eth_fast_path_rx_tpa_start_cqe *cqe)
963 {
964         u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
965
966         if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
967             PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
968                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
969         else
970                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
971
972         skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
973                                         cqe->header_len;
974 }
975
976 static int qede_fill_frag_skb(struct qede_dev *edev,
977                               struct qede_rx_queue *rxq,
978                               u8 tpa_agg_index,
979                               u16 len_on_bd)
980 {
981         struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
982                                                          NUM_RX_BDS_MAX];
983         struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
984         struct sk_buff *skb = tpa_info->skb;
985
986         if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
987                 goto out;
988
989         /* Add one frag and update the appropriate fields in the skb */
990         skb_fill_page_desc(skb, tpa_info->frag_id++,
991                            current_bd->data, current_bd->page_offset,
992                            len_on_bd);
993
994         if (unlikely(qede_realloc_rx_buffer(edev, rxq, current_bd))) {
995                 /* Incr page ref count to reuse on allocation failure
996                  * so that it doesn't get freed while freeing SKB.
997                  */
998                 atomic_inc(&current_bd->data->_count);
999                 goto out;
1000         }
1001
1002         qed_chain_consume(&rxq->rx_bd_ring);
1003         rxq->sw_rx_cons++;
1004
1005         skb->data_len += len_on_bd;
1006         skb->truesize += rxq->rx_buf_seg_size;
1007         skb->len += len_on_bd;
1008
1009         return 0;
1010
1011 out:
1012         tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1013         qede_recycle_rx_bd_ring(rxq, edev, 1);
1014         return -ENOMEM;
1015 }
1016
1017 static void qede_tpa_start(struct qede_dev *edev,
1018                            struct qede_rx_queue *rxq,
1019                            struct eth_fast_path_rx_tpa_start_cqe *cqe)
1020 {
1021         struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1022         struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
1023         struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
1024         struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
1025         dma_addr_t mapping = tpa_info->replace_buf_mapping;
1026         struct sw_rx_data *sw_rx_data_cons;
1027         struct sw_rx_data *sw_rx_data_prod;
1028         enum pkt_hash_types rxhash_type;
1029         u32 rxhash;
1030
1031         sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
1032         sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
1033
1034         /* Use pre-allocated replacement buffer - we can't release the agg.
1035          * start until its over and we don't want to risk allocation failing
1036          * here, so re-allocate when aggregation will be over.
1037          */
1038         dma_unmap_addr_set(sw_rx_data_prod, mapping,
1039                            dma_unmap_addr(replace_buf, mapping));
1040
1041         sw_rx_data_prod->data = replace_buf->data;
1042         rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
1043         rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
1044         sw_rx_data_prod->page_offset = replace_buf->page_offset;
1045
1046         rxq->sw_rx_prod++;
1047
1048         /* move partial skb from cons to pool (don't unmap yet)
1049          * save mapping, incase we drop the packet later on.
1050          */
1051         tpa_info->start_buf = *sw_rx_data_cons;
1052         mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
1053                            le32_to_cpu(rx_bd_cons->addr.lo));
1054
1055         tpa_info->start_buf_mapping = mapping;
1056         rxq->sw_rx_cons++;
1057
1058         /* set tpa state to start only if we are able to allocate skb
1059          * for this aggregation, otherwise mark as error and aggregation will
1060          * be dropped
1061          */
1062         tpa_info->skb = netdev_alloc_skb(edev->ndev,
1063                                          le16_to_cpu(cqe->len_on_first_bd));
1064         if (unlikely(!tpa_info->skb)) {
1065                 DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
1066                 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1067                 goto cons_buf;
1068         }
1069
1070         skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
1071         memcpy(&tpa_info->start_cqe, cqe, sizeof(tpa_info->start_cqe));
1072
1073         /* Start filling in the aggregation info */
1074         tpa_info->frag_id = 0;
1075         tpa_info->agg_state = QEDE_AGG_STATE_START;
1076
1077         rxhash = qede_get_rxhash(edev, cqe->bitfields,
1078                                  cqe->rss_hash, &rxhash_type);
1079         skb_set_hash(tpa_info->skb, rxhash, rxhash_type);
1080         if ((le16_to_cpu(cqe->pars_flags.flags) >>
1081              PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
1082                     PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
1083                 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
1084         else
1085                 tpa_info->vlan_tag = 0;
1086
1087         /* This is needed in order to enable forwarding support */
1088         qede_set_gro_params(edev, tpa_info->skb, cqe);
1089
1090 cons_buf: /* We still need to handle bd_len_list to consume buffers */
1091         if (likely(cqe->ext_bd_len_list[0]))
1092                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1093                                    le16_to_cpu(cqe->ext_bd_len_list[0]));
1094
1095         if (unlikely(cqe->ext_bd_len_list[1])) {
1096                 DP_ERR(edev,
1097                        "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
1098                 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1099         }
1100 }
1101
1102 #ifdef CONFIG_INET
1103 static void qede_gro_ip_csum(struct sk_buff *skb)
1104 {
1105         const struct iphdr *iph = ip_hdr(skb);
1106         struct tcphdr *th;
1107
1108         skb_set_transport_header(skb, sizeof(struct iphdr));
1109         th = tcp_hdr(skb);
1110
1111         th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
1112                                   iph->saddr, iph->daddr, 0);
1113
1114         tcp_gro_complete(skb);
1115 }
1116
1117 static void qede_gro_ipv6_csum(struct sk_buff *skb)
1118 {
1119         struct ipv6hdr *iph = ipv6_hdr(skb);
1120         struct tcphdr *th;
1121
1122         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
1123         th = tcp_hdr(skb);
1124
1125         th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
1126                                   &iph->saddr, &iph->daddr, 0);
1127         tcp_gro_complete(skb);
1128 }
1129 #endif
1130
1131 static void qede_gro_receive(struct qede_dev *edev,
1132                              struct qede_fastpath *fp,
1133                              struct sk_buff *skb,
1134                              u16 vlan_tag)
1135 {
1136         /* FW can send a single MTU sized packet from gro flow
1137          * due to aggregation timeout/last segment etc. which
1138          * is not expected to be a gro packet. If a skb has zero
1139          * frags then simply push it in the stack as non gso skb.
1140          */
1141         if (unlikely(!skb->data_len)) {
1142                 skb_shinfo(skb)->gso_type = 0;
1143                 skb_shinfo(skb)->gso_size = 0;
1144                 goto send_skb;
1145         }
1146
1147 #ifdef CONFIG_INET
1148         if (skb_shinfo(skb)->gso_size) {
1149                 skb_set_network_header(skb, 0);
1150
1151                 switch (skb->protocol) {
1152                 case htons(ETH_P_IP):
1153                         qede_gro_ip_csum(skb);
1154                         break;
1155                 case htons(ETH_P_IPV6):
1156                         qede_gro_ipv6_csum(skb);
1157                         break;
1158                 default:
1159                         DP_ERR(edev,
1160                                "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
1161                                ntohs(skb->protocol));
1162                 }
1163         }
1164 #endif
1165
1166 send_skb:
1167         skb_record_rx_queue(skb, fp->rss_id);
1168         qede_skb_receive(edev, fp, skb, vlan_tag);
1169 }
1170
1171 static inline void qede_tpa_cont(struct qede_dev *edev,
1172                                  struct qede_rx_queue *rxq,
1173                                  struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1174 {
1175         int i;
1176
1177         for (i = 0; cqe->len_list[i]; i++)
1178                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1179                                    le16_to_cpu(cqe->len_list[i]));
1180
1181         if (unlikely(i > 1))
1182                 DP_ERR(edev,
1183                        "Strange - TPA cont with more than a single len_list entry\n");
1184 }
1185
1186 static void qede_tpa_end(struct qede_dev *edev,
1187                          struct qede_fastpath *fp,
1188                          struct eth_fast_path_rx_tpa_end_cqe *cqe)
1189 {
1190         struct qede_rx_queue *rxq = fp->rxq;
1191         struct qede_agg_info *tpa_info;
1192         struct sk_buff *skb;
1193         int i;
1194
1195         tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1196         skb = tpa_info->skb;
1197
1198         for (i = 0; cqe->len_list[i]; i++)
1199                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1200                                    le16_to_cpu(cqe->len_list[i]));
1201         if (unlikely(i > 1))
1202                 DP_ERR(edev,
1203                        "Strange - TPA emd with more than a single len_list entry\n");
1204
1205         if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1206                 goto err;
1207
1208         /* Sanity */
1209         if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
1210                 DP_ERR(edev,
1211                        "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
1212                        cqe->num_of_bds, tpa_info->frag_id);
1213         if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
1214                 DP_ERR(edev,
1215                        "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
1216                        le16_to_cpu(cqe->total_packet_len), skb->len);
1217
1218         memcpy(skb->data,
1219                page_address(tpa_info->start_buf.data) +
1220                 tpa_info->start_cqe.placement_offset +
1221                 tpa_info->start_buf.page_offset,
1222                le16_to_cpu(tpa_info->start_cqe.len_on_first_bd));
1223
1224         /* Recycle [mapped] start buffer for the next replacement */
1225         tpa_info->replace_buf = tpa_info->start_buf;
1226         tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1227
1228         /* Finalize the SKB */
1229         skb->protocol = eth_type_trans(skb, edev->ndev);
1230         skb->ip_summed = CHECKSUM_UNNECESSARY;
1231
1232         /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
1233          * to skb_shinfo(skb)->gso_segs
1234          */
1235         NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
1236
1237         qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
1238
1239         tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1240
1241         return;
1242 err:
1243         /* The BD starting the aggregation is still mapped; Re-use it for
1244          * future aggregations [as replacement buffer]
1245          */
1246         memcpy(&tpa_info->replace_buf, &tpa_info->start_buf,
1247                sizeof(struct sw_rx_data));
1248         tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1249         tpa_info->start_buf.data = NULL;
1250         tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1251         dev_kfree_skb_any(tpa_info->skb);
1252         tpa_info->skb = NULL;
1253 }
1254
1255 static bool qede_tunn_exist(u16 flag)
1256 {
1257         return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
1258                           PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
1259 }
1260
1261 static u8 qede_check_tunn_csum(u16 flag)
1262 {
1263         u16 csum_flag = 0;
1264         u8 tcsum = 0;
1265
1266         if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
1267                     PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
1268                 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
1269                              PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
1270
1271         if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1272                     PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1273                 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1274                              PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1275                 tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
1276         }
1277
1278         csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
1279                      PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
1280                      PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1281                      PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1282
1283         if (csum_flag & flag)
1284                 return QEDE_CSUM_ERROR;
1285
1286         return QEDE_CSUM_UNNECESSARY | tcsum;
1287 }
1288
1289 static u8 qede_check_notunn_csum(u16 flag)
1290 {
1291         u16 csum_flag = 0;
1292         u8 csum = 0;
1293
1294         if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1295                     PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1296                 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1297                              PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1298                 csum = QEDE_CSUM_UNNECESSARY;
1299         }
1300
1301         csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1302                      PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1303
1304         if (csum_flag & flag)
1305                 return QEDE_CSUM_ERROR;
1306
1307         return csum;
1308 }
1309
1310 static u8 qede_check_csum(u16 flag)
1311 {
1312         if (!qede_tunn_exist(flag))
1313                 return qede_check_notunn_csum(flag);
1314         else
1315                 return qede_check_tunn_csum(flag);
1316 }
1317
1318 static int qede_rx_int(struct qede_fastpath *fp, int budget)
1319 {
1320         struct qede_dev *edev = fp->edev;
1321         struct qede_rx_queue *rxq = fp->rxq;
1322
1323         u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag;
1324         int rx_pkt = 0;
1325         u8 csum_flag;
1326
1327         hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1328         sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1329
1330         /* Memory barrier to prevent the CPU from doing speculative reads of CQE
1331          * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1332          * read before it is written by FW, then FW writes CQE and SB, and then
1333          * the CPU reads the hw_comp_cons, it will use an old CQE.
1334          */
1335         rmb();
1336
1337         /* Loop to complete all indicated BDs */
1338         while (sw_comp_cons != hw_comp_cons) {
1339                 struct eth_fast_path_rx_reg_cqe *fp_cqe;
1340                 enum pkt_hash_types rxhash_type;
1341                 enum eth_rx_cqe_type cqe_type;
1342                 struct sw_rx_data *sw_rx_data;
1343                 union eth_rx_cqe *cqe;
1344                 struct sk_buff *skb;
1345                 struct page *data;
1346                 __le16 flags;
1347                 u16 len, pad;
1348                 u32 rx_hash;
1349
1350                 /* Get the CQE from the completion ring */
1351                 cqe = (union eth_rx_cqe *)
1352                         qed_chain_consume(&rxq->rx_comp_ring);
1353                 cqe_type = cqe->fast_path_regular.type;
1354
1355                 if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1356                         edev->ops->eth_cqe_completion(
1357                                         edev->cdev, fp->rss_id,
1358                                         (struct eth_slow_path_rx_cqe *)cqe);
1359                         goto next_cqe;
1360                 }
1361
1362                 if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) {
1363                         switch (cqe_type) {
1364                         case ETH_RX_CQE_TYPE_TPA_START:
1365                                 qede_tpa_start(edev, rxq,
1366                                                &cqe->fast_path_tpa_start);
1367                                 goto next_cqe;
1368                         case ETH_RX_CQE_TYPE_TPA_CONT:
1369                                 qede_tpa_cont(edev, rxq,
1370                                               &cqe->fast_path_tpa_cont);
1371                                 goto next_cqe;
1372                         case ETH_RX_CQE_TYPE_TPA_END:
1373                                 qede_tpa_end(edev, fp,
1374                                              &cqe->fast_path_tpa_end);
1375                                 goto next_rx_only;
1376                         default:
1377                                 break;
1378                         }
1379                 }
1380
1381                 /* Get the data from the SW ring */
1382                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1383                 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1384                 data = sw_rx_data->data;
1385
1386                 fp_cqe = &cqe->fast_path_regular;
1387                 len =  le16_to_cpu(fp_cqe->len_on_first_bd);
1388                 pad = fp_cqe->placement_offset;
1389                 flags = cqe->fast_path_regular.pars_flags.flags;
1390
1391                 /* If this is an error packet then drop it */
1392                 parse_flag = le16_to_cpu(flags);
1393
1394                 csum_flag = qede_check_csum(parse_flag);
1395                 if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1396                         DP_NOTICE(edev,
1397                                   "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n",
1398                                   sw_comp_cons, parse_flag);
1399                         rxq->rx_hw_errors++;
1400                         qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1401                         goto next_cqe;
1402                 }
1403
1404                 skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
1405                 if (unlikely(!skb)) {
1406                         DP_NOTICE(edev,
1407                                   "Build_skb failed, dropping incoming packet\n");
1408                         qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1409                         rxq->rx_alloc_errors++;
1410                         goto next_cqe;
1411                 }
1412
1413                 /* Copy data into SKB */
1414                 if (len + pad <= QEDE_RX_HDR_SIZE) {
1415                         memcpy(skb_put(skb, len),
1416                                page_address(data) + pad +
1417                                 sw_rx_data->page_offset, len);
1418                         qede_reuse_page(edev, rxq, sw_rx_data);
1419                 } else {
1420                         struct skb_frag_struct *frag;
1421                         unsigned int pull_len;
1422                         unsigned char *va;
1423
1424                         frag = &skb_shinfo(skb)->frags[0];
1425
1426                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, data,
1427                                         pad + sw_rx_data->page_offset,
1428                                         len, rxq->rx_buf_seg_size);
1429
1430                         va = skb_frag_address(frag);
1431                         pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
1432
1433                         /* Align the pull_len to optimize memcpy */
1434                         memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
1435
1436                         skb_frag_size_sub(frag, pull_len);
1437                         frag->page_offset += pull_len;
1438                         skb->data_len -= pull_len;
1439                         skb->tail += pull_len;
1440
1441                         if (unlikely(qede_realloc_rx_buffer(edev, rxq,
1442                                                             sw_rx_data))) {
1443                                 DP_ERR(edev, "Failed to allocate rx buffer\n");
1444                                 /* Incr page ref count to reuse on allocation
1445                                  * failure so that it doesn't get freed while
1446                                  * freeing SKB.
1447                                  */
1448
1449                                 atomic_inc(&sw_rx_data->data->_count);
1450                                 rxq->rx_alloc_errors++;
1451                                 qede_recycle_rx_bd_ring(rxq, edev,
1452                                                         fp_cqe->bd_num);
1453                                 dev_kfree_skb_any(skb);
1454                                 goto next_cqe;
1455                         }
1456                 }
1457
1458                 qede_rx_bd_ring_consume(rxq);
1459
1460                 if (fp_cqe->bd_num != 1) {
1461                         u16 pkt_len = le16_to_cpu(fp_cqe->pkt_len);
1462                         u8 num_frags;
1463
1464                         pkt_len -= len;
1465
1466                         for (num_frags = fp_cqe->bd_num - 1; num_frags > 0;
1467                              num_frags--) {
1468                                 u16 cur_size = pkt_len > rxq->rx_buf_size ?
1469                                                 rxq->rx_buf_size : pkt_len;
1470                                 if (unlikely(!cur_size)) {
1471                                         DP_ERR(edev,
1472                                                "Still got %d BDs for mapping jumbo, but length became 0\n",
1473                                                num_frags);
1474                                         qede_recycle_rx_bd_ring(rxq, edev,
1475                                                                 num_frags);
1476                                         dev_kfree_skb_any(skb);
1477                                         goto next_cqe;
1478                                 }
1479
1480                                 if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
1481                                         qede_recycle_rx_bd_ring(rxq, edev,
1482                                                                 num_frags);
1483                                         dev_kfree_skb_any(skb);
1484                                         goto next_cqe;
1485                                 }
1486
1487                                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1488                                 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1489                                 qede_rx_bd_ring_consume(rxq);
1490
1491                                 dma_unmap_page(&edev->pdev->dev,
1492                                                sw_rx_data->mapping,
1493                                                PAGE_SIZE, DMA_FROM_DEVICE);
1494
1495                                 skb_fill_page_desc(skb,
1496                                                    skb_shinfo(skb)->nr_frags++,
1497                                                    sw_rx_data->data, 0,
1498                                                    cur_size);
1499
1500                                 skb->truesize += PAGE_SIZE;
1501                                 skb->data_len += cur_size;
1502                                 skb->len += cur_size;
1503                                 pkt_len -= cur_size;
1504                         }
1505
1506                         if (unlikely(pkt_len))
1507                                 DP_ERR(edev,
1508                                        "Mapped all BDs of jumbo, but still have %d bytes\n",
1509                                        pkt_len);
1510                 }
1511
1512                 skb->protocol = eth_type_trans(skb, edev->ndev);
1513
1514                 rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields,
1515                                           fp_cqe->rss_hash,
1516                                           &rxhash_type);
1517
1518                 skb_set_hash(skb, rx_hash, rxhash_type);
1519
1520                 qede_set_skb_csum(skb, csum_flag);
1521
1522                 skb_record_rx_queue(skb, fp->rss_id);
1523
1524                 qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag));
1525 next_rx_only:
1526                 rx_pkt++;
1527
1528 next_cqe: /* don't consume bd rx buffer */
1529                 qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1530                 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1531                 /* CR TPA - revisit how to handle budget in TPA perhaps
1532                  * increase on "end"
1533                  */
1534                 if (rx_pkt == budget)
1535                         break;
1536         } /* repeat while sw_comp_cons != hw_comp_cons... */
1537
1538         /* Update producers */
1539         qede_update_rx_prod(edev, rxq);
1540
1541         return rx_pkt;
1542 }
1543
1544 static int qede_poll(struct napi_struct *napi, int budget)
1545 {
1546         int work_done = 0;
1547         struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1548                                                  napi);
1549         struct qede_dev *edev = fp->edev;
1550
1551         while (1) {
1552                 u8 tc;
1553
1554                 for (tc = 0; tc < edev->num_tc; tc++)
1555                         if (qede_txq_has_work(&fp->txqs[tc]))
1556                                 qede_tx_int(edev, &fp->txqs[tc]);
1557
1558                 if (qede_has_rx_work(fp->rxq)) {
1559                         work_done += qede_rx_int(fp, budget - work_done);
1560
1561                         /* must not complete if we consumed full budget */
1562                         if (work_done >= budget)
1563                                 break;
1564                 }
1565
1566                 /* Fall out from the NAPI loop if needed */
1567                 if (!(qede_has_rx_work(fp->rxq) || qede_has_tx_work(fp))) {
1568                         qed_sb_update_sb_idx(fp->sb_info);
1569                         /* *_has_*_work() reads the status block,
1570                          * thus we need to ensure that status block indices
1571                          * have been actually read (qed_sb_update_sb_idx)
1572                          * prior to this check (*_has_*_work) so that
1573                          * we won't write the "newer" value of the status block
1574                          * to HW (if there was a DMA right after
1575                          * qede_has_rx_work and if there is no rmb, the memory
1576                          * reading (qed_sb_update_sb_idx) may be postponed
1577                          * to right before *_ack_sb). In this case there
1578                          * will never be another interrupt until there is
1579                          * another update of the status block, while there
1580                          * is still unhandled work.
1581                          */
1582                         rmb();
1583
1584                         if (!(qede_has_rx_work(fp->rxq) ||
1585                               qede_has_tx_work(fp))) {
1586                                 napi_complete(napi);
1587                                 /* Update and reenable interrupts */
1588                                 qed_sb_ack(fp->sb_info, IGU_INT_ENABLE,
1589                                            1 /*update*/);
1590                                 break;
1591                         }
1592                 }
1593         }
1594
1595         return work_done;
1596 }
1597
1598 static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1599 {
1600         struct qede_fastpath *fp = fp_cookie;
1601
1602         qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1603
1604         napi_schedule_irqoff(&fp->napi);
1605         return IRQ_HANDLED;
1606 }
1607
1608 /* -------------------------------------------------------------------------
1609  * END OF FAST-PATH
1610  * -------------------------------------------------------------------------
1611  */
1612
1613 static int qede_open(struct net_device *ndev);
1614 static int qede_close(struct net_device *ndev);
1615 static int qede_set_mac_addr(struct net_device *ndev, void *p);
1616 static void qede_set_rx_mode(struct net_device *ndev);
1617 static void qede_config_rx_mode(struct net_device *ndev);
1618
1619 static int qede_set_ucast_rx_mac(struct qede_dev *edev,
1620                                  enum qed_filter_xcast_params_type opcode,
1621                                  unsigned char mac[ETH_ALEN])
1622 {
1623         struct qed_filter_params filter_cmd;
1624
1625         memset(&filter_cmd, 0, sizeof(filter_cmd));
1626         filter_cmd.type = QED_FILTER_TYPE_UCAST;
1627         filter_cmd.filter.ucast.type = opcode;
1628         filter_cmd.filter.ucast.mac_valid = 1;
1629         ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
1630
1631         return edev->ops->filter_config(edev->cdev, &filter_cmd);
1632 }
1633
1634 static int qede_set_ucast_rx_vlan(struct qede_dev *edev,
1635                                   enum qed_filter_xcast_params_type opcode,
1636                                   u16 vid)
1637 {
1638         struct qed_filter_params filter_cmd;
1639
1640         memset(&filter_cmd, 0, sizeof(filter_cmd));
1641         filter_cmd.type = QED_FILTER_TYPE_UCAST;
1642         filter_cmd.filter.ucast.type = opcode;
1643         filter_cmd.filter.ucast.vlan_valid = 1;
1644         filter_cmd.filter.ucast.vlan = vid;
1645
1646         return edev->ops->filter_config(edev->cdev, &filter_cmd);
1647 }
1648
1649 void qede_fill_by_demand_stats(struct qede_dev *edev)
1650 {
1651         struct qed_eth_stats stats;
1652
1653         edev->ops->get_vport_stats(edev->cdev, &stats);
1654         edev->stats.no_buff_discards = stats.no_buff_discards;
1655         edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes;
1656         edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes;
1657         edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes;
1658         edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts;
1659         edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts;
1660         edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts;
1661         edev->stats.mftag_filter_discards = stats.mftag_filter_discards;
1662         edev->stats.mac_filter_discards = stats.mac_filter_discards;
1663
1664         edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes;
1665         edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes;
1666         edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes;
1667         edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts;
1668         edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts;
1669         edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts;
1670         edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts;
1671         edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts;
1672         edev->stats.coalesced_events = stats.tpa_coalesced_events;
1673         edev->stats.coalesced_aborts_num = stats.tpa_aborts_num;
1674         edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts;
1675         edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes;
1676
1677         edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets;
1678         edev->stats.rx_65_to_127_byte_packets = stats.rx_65_to_127_byte_packets;
1679         edev->stats.rx_128_to_255_byte_packets =
1680                                 stats.rx_128_to_255_byte_packets;
1681         edev->stats.rx_256_to_511_byte_packets =
1682                                 stats.rx_256_to_511_byte_packets;
1683         edev->stats.rx_512_to_1023_byte_packets =
1684                                 stats.rx_512_to_1023_byte_packets;
1685         edev->stats.rx_1024_to_1518_byte_packets =
1686                                 stats.rx_1024_to_1518_byte_packets;
1687         edev->stats.rx_1519_to_1522_byte_packets =
1688                                 stats.rx_1519_to_1522_byte_packets;
1689         edev->stats.rx_1519_to_2047_byte_packets =
1690                                 stats.rx_1519_to_2047_byte_packets;
1691         edev->stats.rx_2048_to_4095_byte_packets =
1692                                 stats.rx_2048_to_4095_byte_packets;
1693         edev->stats.rx_4096_to_9216_byte_packets =
1694                                 stats.rx_4096_to_9216_byte_packets;
1695         edev->stats.rx_9217_to_16383_byte_packets =
1696                                 stats.rx_9217_to_16383_byte_packets;
1697         edev->stats.rx_crc_errors = stats.rx_crc_errors;
1698         edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames;
1699         edev->stats.rx_pause_frames = stats.rx_pause_frames;
1700         edev->stats.rx_pfc_frames = stats.rx_pfc_frames;
1701         edev->stats.rx_align_errors = stats.rx_align_errors;
1702         edev->stats.rx_carrier_errors = stats.rx_carrier_errors;
1703         edev->stats.rx_oversize_packets = stats.rx_oversize_packets;
1704         edev->stats.rx_jabbers = stats.rx_jabbers;
1705         edev->stats.rx_undersize_packets = stats.rx_undersize_packets;
1706         edev->stats.rx_fragments = stats.rx_fragments;
1707         edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets;
1708         edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets;
1709         edev->stats.tx_128_to_255_byte_packets =
1710                                 stats.tx_128_to_255_byte_packets;
1711         edev->stats.tx_256_to_511_byte_packets =
1712                                 stats.tx_256_to_511_byte_packets;
1713         edev->stats.tx_512_to_1023_byte_packets =
1714                                 stats.tx_512_to_1023_byte_packets;
1715         edev->stats.tx_1024_to_1518_byte_packets =
1716                                 stats.tx_1024_to_1518_byte_packets;
1717         edev->stats.tx_1519_to_2047_byte_packets =
1718                                 stats.tx_1519_to_2047_byte_packets;
1719         edev->stats.tx_2048_to_4095_byte_packets =
1720                                 stats.tx_2048_to_4095_byte_packets;
1721         edev->stats.tx_4096_to_9216_byte_packets =
1722                                 stats.tx_4096_to_9216_byte_packets;
1723         edev->stats.tx_9217_to_16383_byte_packets =
1724                                 stats.tx_9217_to_16383_byte_packets;
1725         edev->stats.tx_pause_frames = stats.tx_pause_frames;
1726         edev->stats.tx_pfc_frames = stats.tx_pfc_frames;
1727         edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count;
1728         edev->stats.tx_total_collisions = stats.tx_total_collisions;
1729         edev->stats.brb_truncates = stats.brb_truncates;
1730         edev->stats.brb_discards = stats.brb_discards;
1731         edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames;
1732 }
1733
1734 static struct rtnl_link_stats64 *qede_get_stats64(
1735                             struct net_device *dev,
1736                             struct rtnl_link_stats64 *stats)
1737 {
1738         struct qede_dev *edev = netdev_priv(dev);
1739
1740         qede_fill_by_demand_stats(edev);
1741
1742         stats->rx_packets = edev->stats.rx_ucast_pkts +
1743                             edev->stats.rx_mcast_pkts +
1744                             edev->stats.rx_bcast_pkts;
1745         stats->tx_packets = edev->stats.tx_ucast_pkts +
1746                             edev->stats.tx_mcast_pkts +
1747                             edev->stats.tx_bcast_pkts;
1748
1749         stats->rx_bytes = edev->stats.rx_ucast_bytes +
1750                           edev->stats.rx_mcast_bytes +
1751                           edev->stats.rx_bcast_bytes;
1752
1753         stats->tx_bytes = edev->stats.tx_ucast_bytes +
1754                           edev->stats.tx_mcast_bytes +
1755                           edev->stats.tx_bcast_bytes;
1756
1757         stats->tx_errors = edev->stats.tx_err_drop_pkts;
1758         stats->multicast = edev->stats.rx_mcast_pkts +
1759                            edev->stats.rx_bcast_pkts;
1760
1761         stats->rx_fifo_errors = edev->stats.no_buff_discards;
1762
1763         stats->collisions = edev->stats.tx_total_collisions;
1764         stats->rx_crc_errors = edev->stats.rx_crc_errors;
1765         stats->rx_frame_errors = edev->stats.rx_align_errors;
1766
1767         return stats;
1768 }
1769
1770 static void qede_config_accept_any_vlan(struct qede_dev *edev, bool action)
1771 {
1772         struct qed_update_vport_params params;
1773         int rc;
1774
1775         /* Proceed only if action actually needs to be performed */
1776         if (edev->accept_any_vlan == action)
1777                 return;
1778
1779         memset(&params, 0, sizeof(params));
1780
1781         params.vport_id = 0;
1782         params.accept_any_vlan = action;
1783         params.update_accept_any_vlan_flg = 1;
1784
1785         rc = edev->ops->vport_update(edev->cdev, &params);
1786         if (rc) {
1787                 DP_ERR(edev, "Failed to %s accept-any-vlan\n",
1788                        action ? "enable" : "disable");
1789         } else {
1790                 DP_INFO(edev, "%s accept-any-vlan\n",
1791                         action ? "enabled" : "disabled");
1792                 edev->accept_any_vlan = action;
1793         }
1794 }
1795
1796 static int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1797 {
1798         struct qede_dev *edev = netdev_priv(dev);
1799         struct qede_vlan *vlan, *tmp;
1800         int rc;
1801
1802         DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid);
1803
1804         vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
1805         if (!vlan) {
1806                 DP_INFO(edev, "Failed to allocate struct for vlan\n");
1807                 return -ENOMEM;
1808         }
1809         INIT_LIST_HEAD(&vlan->list);
1810         vlan->vid = vid;
1811         vlan->configured = false;
1812
1813         /* Verify vlan isn't already configured */
1814         list_for_each_entry(tmp, &edev->vlan_list, list) {
1815                 if (tmp->vid == vlan->vid) {
1816                         DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
1817                                    "vlan already configured\n");
1818                         kfree(vlan);
1819                         return -EEXIST;
1820                 }
1821         }
1822
1823         /* If interface is down, cache this VLAN ID and return */
1824         if (edev->state != QEDE_STATE_OPEN) {
1825                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1826                            "Interface is down, VLAN %d will be configured when interface is up\n",
1827                            vid);
1828                 if (vid != 0)
1829                         edev->non_configured_vlans++;
1830                 list_add(&vlan->list, &edev->vlan_list);
1831
1832                 return 0;
1833         }
1834
1835         /* Check for the filter limit.
1836          * Note - vlan0 has a reserved filter and can be added without
1837          * worrying about quota
1838          */
1839         if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) ||
1840             (vlan->vid == 0)) {
1841                 rc = qede_set_ucast_rx_vlan(edev,
1842                                             QED_FILTER_XCAST_TYPE_ADD,
1843                                             vlan->vid);
1844                 if (rc) {
1845                         DP_ERR(edev, "Failed to configure VLAN %d\n",
1846                                vlan->vid);
1847                         kfree(vlan);
1848                         return -EINVAL;
1849                 }
1850                 vlan->configured = true;
1851
1852                 /* vlan0 filter isn't consuming out of our quota */
1853                 if (vlan->vid != 0)
1854                         edev->configured_vlans++;
1855         } else {
1856                 /* Out of quota; Activate accept-any-VLAN mode */
1857                 if (!edev->non_configured_vlans)
1858                         qede_config_accept_any_vlan(edev, true);
1859
1860                 edev->non_configured_vlans++;
1861         }
1862
1863         list_add(&vlan->list, &edev->vlan_list);
1864
1865         return 0;
1866 }
1867
1868 static void qede_del_vlan_from_list(struct qede_dev *edev,
1869                                     struct qede_vlan *vlan)
1870 {
1871         /* vlan0 filter isn't consuming out of our quota */
1872         if (vlan->vid != 0) {
1873                 if (vlan->configured)
1874                         edev->configured_vlans--;
1875                 else
1876                         edev->non_configured_vlans--;
1877         }
1878
1879         list_del(&vlan->list);
1880         kfree(vlan);
1881 }
1882
1883 static int qede_configure_vlan_filters(struct qede_dev *edev)
1884 {
1885         int rc = 0, real_rc = 0, accept_any_vlan = 0;
1886         struct qed_dev_eth_info *dev_info;
1887         struct qede_vlan *vlan = NULL;
1888
1889         if (list_empty(&edev->vlan_list))
1890                 return 0;
1891
1892         dev_info = &edev->dev_info;
1893
1894         /* Configure non-configured vlans */
1895         list_for_each_entry(vlan, &edev->vlan_list, list) {
1896                 if (vlan->configured)
1897                         continue;
1898
1899                 /* We have used all our credits, now enable accept_any_vlan */
1900                 if ((vlan->vid != 0) &&
1901                     (edev->configured_vlans == dev_info->num_vlan_filters)) {
1902                         accept_any_vlan = 1;
1903                         continue;
1904                 }
1905
1906                 DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid);
1907
1908                 rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD,
1909                                             vlan->vid);
1910                 if (rc) {
1911                         DP_ERR(edev, "Failed to configure VLAN %u\n",
1912                                vlan->vid);
1913                         real_rc = rc;
1914                         continue;
1915                 }
1916
1917                 vlan->configured = true;
1918                 /* vlan0 filter doesn't consume our VLAN filter's quota */
1919                 if (vlan->vid != 0) {
1920                         edev->non_configured_vlans--;
1921                         edev->configured_vlans++;
1922                 }
1923         }
1924
1925         /* enable accept_any_vlan mode if we have more VLANs than credits,
1926          * or remove accept_any_vlan mode if we've actually removed
1927          * a non-configured vlan, and all remaining vlans are truly configured.
1928          */
1929
1930         if (accept_any_vlan)
1931                 qede_config_accept_any_vlan(edev, true);
1932         else if (!edev->non_configured_vlans)
1933                 qede_config_accept_any_vlan(edev, false);
1934
1935         return real_rc;
1936 }
1937
1938 static int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
1939 {
1940         struct qede_dev *edev = netdev_priv(dev);
1941         struct qede_vlan *vlan = NULL;
1942         int rc;
1943
1944         DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid);
1945
1946         /* Find whether entry exists */
1947         list_for_each_entry(vlan, &edev->vlan_list, list)
1948                 if (vlan->vid == vid)
1949                         break;
1950
1951         if (!vlan || (vlan->vid != vid)) {
1952                 DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
1953                            "Vlan isn't configured\n");
1954                 return 0;
1955         }
1956
1957         if (edev->state != QEDE_STATE_OPEN) {
1958                 /* As interface is already down, we don't have a VPORT
1959                  * instance to remove vlan filter. So just update vlan list
1960                  */
1961                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1962                            "Interface is down, removing VLAN from list only\n");
1963                 qede_del_vlan_from_list(edev, vlan);
1964                 return 0;
1965         }
1966
1967         /* Remove vlan */
1968         rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL, vid);
1969         if (rc) {
1970                 DP_ERR(edev, "Failed to remove VLAN %d\n", vid);
1971                 return -EINVAL;
1972         }
1973
1974         qede_del_vlan_from_list(edev, vlan);
1975
1976         /* We have removed a VLAN - try to see if we can
1977          * configure non-configured VLAN from the list.
1978          */
1979         rc = qede_configure_vlan_filters(edev);
1980
1981         return rc;
1982 }
1983
1984 static void qede_vlan_mark_nonconfigured(struct qede_dev *edev)
1985 {
1986         struct qede_vlan *vlan = NULL;
1987
1988         if (list_empty(&edev->vlan_list))
1989                 return;
1990
1991         list_for_each_entry(vlan, &edev->vlan_list, list) {
1992                 if (!vlan->configured)
1993                         continue;
1994
1995                 vlan->configured = false;
1996
1997                 /* vlan0 filter isn't consuming out of our quota */
1998                 if (vlan->vid != 0) {
1999                         edev->non_configured_vlans++;
2000                         edev->configured_vlans--;
2001                 }
2002
2003                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2004                            "marked vlan %d as non-configured\n",
2005                            vlan->vid);
2006         }
2007
2008         edev->accept_any_vlan = false;
2009 }
2010
2011 #ifdef CONFIG_QEDE_VXLAN
2012 static void qede_add_vxlan_port(struct net_device *dev,
2013                                 sa_family_t sa_family, __be16 port)
2014 {
2015         struct qede_dev *edev = netdev_priv(dev);
2016         u16 t_port = ntohs(port);
2017
2018         if (edev->vxlan_dst_port)
2019                 return;
2020
2021         edev->vxlan_dst_port = t_port;
2022
2023         DP_VERBOSE(edev, QED_MSG_DEBUG, "Added vxlan port=%d", t_port);
2024
2025         set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2026         schedule_delayed_work(&edev->sp_task, 0);
2027 }
2028
2029 static void qede_del_vxlan_port(struct net_device *dev,
2030                                 sa_family_t sa_family, __be16 port)
2031 {
2032         struct qede_dev *edev = netdev_priv(dev);
2033         u16 t_port = ntohs(port);
2034
2035         if (t_port != edev->vxlan_dst_port)
2036                 return;
2037
2038         edev->vxlan_dst_port = 0;
2039
2040         DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted vxlan port=%d", t_port);
2041
2042         set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2043         schedule_delayed_work(&edev->sp_task, 0);
2044 }
2045 #endif
2046
2047 #ifdef CONFIG_QEDE_GENEVE
2048 static void qede_add_geneve_port(struct net_device *dev,
2049                                  sa_family_t sa_family, __be16 port)
2050 {
2051         struct qede_dev *edev = netdev_priv(dev);
2052         u16 t_port = ntohs(port);
2053
2054         if (edev->geneve_dst_port)
2055                 return;
2056
2057         edev->geneve_dst_port = t_port;
2058
2059         DP_VERBOSE(edev, QED_MSG_DEBUG, "Added geneve port=%d", t_port);
2060         set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2061         schedule_delayed_work(&edev->sp_task, 0);
2062 }
2063
2064 static void qede_del_geneve_port(struct net_device *dev,
2065                                  sa_family_t sa_family, __be16 port)
2066 {
2067         struct qede_dev *edev = netdev_priv(dev);
2068         u16 t_port = ntohs(port);
2069
2070         if (t_port != edev->geneve_dst_port)
2071                 return;
2072
2073         edev->geneve_dst_port = 0;
2074
2075         DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted geneve port=%d", t_port);
2076         set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2077         schedule_delayed_work(&edev->sp_task, 0);
2078 }
2079 #endif
2080
2081 static const struct net_device_ops qede_netdev_ops = {
2082         .ndo_open = qede_open,
2083         .ndo_stop = qede_close,
2084         .ndo_start_xmit = qede_start_xmit,
2085         .ndo_set_rx_mode = qede_set_rx_mode,
2086         .ndo_set_mac_address = qede_set_mac_addr,
2087         .ndo_validate_addr = eth_validate_addr,
2088         .ndo_change_mtu = qede_change_mtu,
2089 #ifdef CONFIG_QED_SRIOV
2090         .ndo_set_vf_vlan = qede_set_vf_vlan,
2091 #endif
2092         .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
2093         .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
2094         .ndo_get_stats64 = qede_get_stats64,
2095 #ifdef CONFIG_QEDE_VXLAN
2096         .ndo_add_vxlan_port = qede_add_vxlan_port,
2097         .ndo_del_vxlan_port = qede_del_vxlan_port,
2098 #endif
2099 #ifdef CONFIG_QEDE_GENEVE
2100         .ndo_add_geneve_port = qede_add_geneve_port,
2101         .ndo_del_geneve_port = qede_del_geneve_port,
2102 #endif
2103 };
2104
2105 /* -------------------------------------------------------------------------
2106  * START OF PROBE / REMOVE
2107  * -------------------------------------------------------------------------
2108  */
2109
2110 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
2111                                             struct pci_dev *pdev,
2112                                             struct qed_dev_eth_info *info,
2113                                             u32 dp_module,
2114                                             u8 dp_level)
2115 {
2116         struct net_device *ndev;
2117         struct qede_dev *edev;
2118
2119         ndev = alloc_etherdev_mqs(sizeof(*edev),
2120                                   info->num_queues,
2121                                   info->num_queues);
2122         if (!ndev) {
2123                 pr_err("etherdev allocation failed\n");
2124                 return NULL;
2125         }
2126
2127         edev = netdev_priv(ndev);
2128         edev->ndev = ndev;
2129         edev->cdev = cdev;
2130         edev->pdev = pdev;
2131         edev->dp_module = dp_module;
2132         edev->dp_level = dp_level;
2133         edev->ops = qed_ops;
2134         edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
2135         edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
2136
2137         SET_NETDEV_DEV(ndev, &pdev->dev);
2138
2139         memset(&edev->stats, 0, sizeof(edev->stats));
2140         memcpy(&edev->dev_info, info, sizeof(*info));
2141
2142         edev->num_tc = edev->dev_info.num_tc;
2143
2144         INIT_LIST_HEAD(&edev->vlan_list);
2145
2146         return edev;
2147 }
2148
2149 static void qede_init_ndev(struct qede_dev *edev)
2150 {
2151         struct net_device *ndev = edev->ndev;
2152         struct pci_dev *pdev = edev->pdev;
2153         u32 hw_features;
2154
2155         pci_set_drvdata(pdev, ndev);
2156
2157         ndev->mem_start = edev->dev_info.common.pci_mem_start;
2158         ndev->base_addr = ndev->mem_start;
2159         ndev->mem_end = edev->dev_info.common.pci_mem_end;
2160         ndev->irq = edev->dev_info.common.pci_irq;
2161
2162         ndev->watchdog_timeo = TX_TIMEOUT;
2163
2164         ndev->netdev_ops = &qede_netdev_ops;
2165
2166         qede_set_ethtool_ops(ndev);
2167
2168         /* user-changeble features */
2169         hw_features = NETIF_F_GRO | NETIF_F_SG |
2170                       NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2171                       NETIF_F_TSO | NETIF_F_TSO6;
2172
2173         /* Encap features*/
2174         hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
2175                        NETIF_F_TSO_ECN;
2176         ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2177                                 NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO_ECN |
2178                                 NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2179                                 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_RXCSUM;
2180
2181         ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2182                               NETIF_F_HIGHDMA;
2183         ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2184                          NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
2185                          NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
2186
2187         ndev->hw_features = hw_features;
2188
2189         /* Set network device HW mac */
2190         ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
2191 }
2192
2193 /* This function converts from 32b param to two params of level and module
2194  * Input 32b decoding:
2195  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
2196  * 'happy' flow, e.g. memory allocation failed.
2197  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
2198  * and provide important parameters.
2199  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
2200  * module. VERBOSE prints are for tracking the specific flow in low level.
2201  *
2202  * Notice that the level should be that of the lowest required logs.
2203  */
2204 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
2205 {
2206         *p_dp_level = QED_LEVEL_NOTICE;
2207         *p_dp_module = 0;
2208
2209         if (debug & QED_LOG_VERBOSE_MASK) {
2210                 *p_dp_level = QED_LEVEL_VERBOSE;
2211                 *p_dp_module = (debug & 0x3FFFFFFF);
2212         } else if (debug & QED_LOG_INFO_MASK) {
2213                 *p_dp_level = QED_LEVEL_INFO;
2214         } else if (debug & QED_LOG_NOTICE_MASK) {
2215                 *p_dp_level = QED_LEVEL_NOTICE;
2216         }
2217 }
2218
2219 static void qede_free_fp_array(struct qede_dev *edev)
2220 {
2221         if (edev->fp_array) {
2222                 struct qede_fastpath *fp;
2223                 int i;
2224
2225                 for_each_rss(i) {
2226                         fp = &edev->fp_array[i];
2227
2228                         kfree(fp->sb_info);
2229                         kfree(fp->rxq);
2230                         kfree(fp->txqs);
2231                 }
2232                 kfree(edev->fp_array);
2233         }
2234         edev->num_rss = 0;
2235 }
2236
2237 static int qede_alloc_fp_array(struct qede_dev *edev)
2238 {
2239         struct qede_fastpath *fp;
2240         int i;
2241
2242         edev->fp_array = kcalloc(QEDE_RSS_CNT(edev),
2243                                  sizeof(*edev->fp_array), GFP_KERNEL);
2244         if (!edev->fp_array) {
2245                 DP_NOTICE(edev, "fp array allocation failed\n");
2246                 goto err;
2247         }
2248
2249         for_each_rss(i) {
2250                 fp = &edev->fp_array[i];
2251
2252                 fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL);
2253                 if (!fp->sb_info) {
2254                         DP_NOTICE(edev, "sb info struct allocation failed\n");
2255                         goto err;
2256                 }
2257
2258                 fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL);
2259                 if (!fp->rxq) {
2260                         DP_NOTICE(edev, "RXQ struct allocation failed\n");
2261                         goto err;
2262                 }
2263
2264                 fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs), GFP_KERNEL);
2265                 if (!fp->txqs) {
2266                         DP_NOTICE(edev, "TXQ array allocation failed\n");
2267                         goto err;
2268                 }
2269         }
2270
2271         return 0;
2272 err:
2273         qede_free_fp_array(edev);
2274         return -ENOMEM;
2275 }
2276
2277 static void qede_sp_task(struct work_struct *work)
2278 {
2279         struct qede_dev *edev = container_of(work, struct qede_dev,
2280                                              sp_task.work);
2281         struct qed_dev *cdev = edev->cdev;
2282
2283         mutex_lock(&edev->qede_lock);
2284
2285         if (edev->state == QEDE_STATE_OPEN) {
2286                 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
2287                         qede_config_rx_mode(edev->ndev);
2288         }
2289
2290         if (test_and_clear_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags)) {
2291                 struct qed_tunn_params tunn_params;
2292
2293                 memset(&tunn_params, 0, sizeof(tunn_params));
2294                 tunn_params.update_vxlan_port = 1;
2295                 tunn_params.vxlan_port = edev->vxlan_dst_port;
2296                 qed_ops->tunn_config(cdev, &tunn_params);
2297         }
2298
2299         if (test_and_clear_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags)) {
2300                 struct qed_tunn_params tunn_params;
2301
2302                 memset(&tunn_params, 0, sizeof(tunn_params));
2303                 tunn_params.update_geneve_port = 1;
2304                 tunn_params.geneve_port = edev->geneve_dst_port;
2305                 qed_ops->tunn_config(cdev, &tunn_params);
2306         }
2307
2308         mutex_unlock(&edev->qede_lock);
2309 }
2310
2311 static void qede_update_pf_params(struct qed_dev *cdev)
2312 {
2313         struct qed_pf_params pf_params;
2314
2315         /* 64 rx + 64 tx */
2316         memset(&pf_params, 0, sizeof(struct qed_pf_params));
2317         pf_params.eth_pf_params.num_cons = 128;
2318         qed_ops->common->update_pf_params(cdev, &pf_params);
2319 }
2320
2321 enum qede_probe_mode {
2322         QEDE_PROBE_NORMAL,
2323 };
2324
2325 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
2326                         bool is_vf, enum qede_probe_mode mode)
2327 {
2328         struct qed_probe_params probe_params;
2329         struct qed_slowpath_params params;
2330         struct qed_dev_eth_info dev_info;
2331         struct qede_dev *edev;
2332         struct qed_dev *cdev;
2333         int rc;
2334
2335         if (unlikely(dp_level & QED_LEVEL_INFO))
2336                 pr_notice("Starting qede probe\n");
2337
2338         memset(&probe_params, 0, sizeof(probe_params));
2339         probe_params.protocol = QED_PROTOCOL_ETH;
2340         probe_params.dp_module = dp_module;
2341         probe_params.dp_level = dp_level;
2342         probe_params.is_vf = is_vf;
2343         cdev = qed_ops->common->probe(pdev, &probe_params);
2344         if (!cdev) {
2345                 rc = -ENODEV;
2346                 goto err0;
2347         }
2348
2349         qede_update_pf_params(cdev);
2350
2351         /* Start the Slowpath-process */
2352         memset(&params, 0, sizeof(struct qed_slowpath_params));
2353         params.int_mode = QED_INT_MODE_MSIX;
2354         params.drv_major = QEDE_MAJOR_VERSION;
2355         params.drv_minor = QEDE_MINOR_VERSION;
2356         params.drv_rev = QEDE_REVISION_VERSION;
2357         params.drv_eng = QEDE_ENGINEERING_VERSION;
2358         strlcpy(params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
2359         rc = qed_ops->common->slowpath_start(cdev, &params);
2360         if (rc) {
2361                 pr_notice("Cannot start slowpath\n");
2362                 goto err1;
2363         }
2364
2365         /* Learn information crucial for qede to progress */
2366         rc = qed_ops->fill_dev_info(cdev, &dev_info);
2367         if (rc)
2368                 goto err2;
2369
2370         edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
2371                                    dp_level);
2372         if (!edev) {
2373                 rc = -ENOMEM;
2374                 goto err2;
2375         }
2376
2377         if (is_vf)
2378                 edev->flags |= QEDE_FLAG_IS_VF;
2379
2380         qede_init_ndev(edev);
2381
2382         rc = register_netdev(edev->ndev);
2383         if (rc) {
2384                 DP_NOTICE(edev, "Cannot register net-device\n");
2385                 goto err3;
2386         }
2387
2388         edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
2389
2390         edev->ops->register_ops(cdev, &qede_ll_ops, edev);
2391
2392         INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
2393         mutex_init(&edev->qede_lock);
2394
2395         DP_INFO(edev, "Ending successfully qede probe\n");
2396
2397         return 0;
2398
2399 err3:
2400         free_netdev(edev->ndev);
2401 err2:
2402         qed_ops->common->slowpath_stop(cdev);
2403 err1:
2404         qed_ops->common->remove(cdev);
2405 err0:
2406         return rc;
2407 }
2408
2409 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2410 {
2411         bool is_vf = false;
2412         u32 dp_module = 0;
2413         u8 dp_level = 0;
2414
2415         switch ((enum qede_pci_private)id->driver_data) {
2416         case QEDE_PRIVATE_VF:
2417                 if (debug & QED_LOG_VERBOSE_MASK)
2418                         dev_err(&pdev->dev, "Probing a VF\n");
2419                 is_vf = true;
2420                 break;
2421         default:
2422                 if (debug & QED_LOG_VERBOSE_MASK)
2423                         dev_err(&pdev->dev, "Probing a PF\n");
2424         }
2425
2426         qede_config_debug(debug, &dp_module, &dp_level);
2427
2428         return __qede_probe(pdev, dp_module, dp_level, is_vf,
2429                             QEDE_PROBE_NORMAL);
2430 }
2431
2432 enum qede_remove_mode {
2433         QEDE_REMOVE_NORMAL,
2434 };
2435
2436 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
2437 {
2438         struct net_device *ndev = pci_get_drvdata(pdev);
2439         struct qede_dev *edev = netdev_priv(ndev);
2440         struct qed_dev *cdev = edev->cdev;
2441
2442         DP_INFO(edev, "Starting qede_remove\n");
2443
2444         cancel_delayed_work_sync(&edev->sp_task);
2445         unregister_netdev(ndev);
2446
2447         edev->ops->common->set_power_state(cdev, PCI_D0);
2448
2449         pci_set_drvdata(pdev, NULL);
2450
2451         free_netdev(ndev);
2452
2453         /* Use global ops since we've freed edev */
2454         qed_ops->common->slowpath_stop(cdev);
2455         qed_ops->common->remove(cdev);
2456
2457         pr_notice("Ending successfully qede_remove\n");
2458 }
2459
2460 static void qede_remove(struct pci_dev *pdev)
2461 {
2462         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
2463 }
2464
2465 /* -------------------------------------------------------------------------
2466  * START OF LOAD / UNLOAD
2467  * -------------------------------------------------------------------------
2468  */
2469
2470 static int qede_set_num_queues(struct qede_dev *edev)
2471 {
2472         int rc;
2473         u16 rss_num;
2474
2475         /* Setup queues according to possible resources*/
2476         if (edev->req_rss)
2477                 rss_num = edev->req_rss;
2478         else
2479                 rss_num = netif_get_num_default_rss_queues() *
2480                           edev->dev_info.common.num_hwfns;
2481
2482         rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
2483
2484         rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
2485         if (rc > 0) {
2486                 /* Managed to request interrupts for our queues */
2487                 edev->num_rss = rc;
2488                 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
2489                         QEDE_RSS_CNT(edev), rss_num);
2490                 rc = 0;
2491         }
2492         return rc;
2493 }
2494
2495 static void qede_free_mem_sb(struct qede_dev *edev,
2496                              struct qed_sb_info *sb_info)
2497 {
2498         if (sb_info->sb_virt)
2499                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
2500                                   (void *)sb_info->sb_virt, sb_info->sb_phys);
2501 }
2502
2503 /* This function allocates fast-path status block memory */
2504 static int qede_alloc_mem_sb(struct qede_dev *edev,
2505                              struct qed_sb_info *sb_info,
2506                              u16 sb_id)
2507 {
2508         struct status_block *sb_virt;
2509         dma_addr_t sb_phys;
2510         int rc;
2511
2512         sb_virt = dma_alloc_coherent(&edev->pdev->dev,
2513                                      sizeof(*sb_virt),
2514                                      &sb_phys, GFP_KERNEL);
2515         if (!sb_virt) {
2516                 DP_ERR(edev, "Status block allocation failed\n");
2517                 return -ENOMEM;
2518         }
2519
2520         rc = edev->ops->common->sb_init(edev->cdev, sb_info,
2521                                         sb_virt, sb_phys, sb_id,
2522                                         QED_SB_TYPE_L2_QUEUE);
2523         if (rc) {
2524                 DP_ERR(edev, "Status block initialization failed\n");
2525                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
2526                                   sb_virt, sb_phys);
2527                 return rc;
2528         }
2529
2530         return 0;
2531 }
2532
2533 static void qede_free_rx_buffers(struct qede_dev *edev,
2534                                  struct qede_rx_queue *rxq)
2535 {
2536         u16 i;
2537
2538         for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
2539                 struct sw_rx_data *rx_buf;
2540                 struct page *data;
2541
2542                 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
2543                 data = rx_buf->data;
2544
2545                 dma_unmap_page(&edev->pdev->dev,
2546                                rx_buf->mapping,
2547                                PAGE_SIZE, DMA_FROM_DEVICE);
2548
2549                 rx_buf->data = NULL;
2550                 __free_page(data);
2551         }
2552 }
2553
2554 static void qede_free_sge_mem(struct qede_dev *edev,
2555                               struct qede_rx_queue *rxq) {
2556         int i;
2557
2558         if (edev->gro_disable)
2559                 return;
2560
2561         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2562                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2563                 struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2564
2565                 if (replace_buf->data) {
2566                         dma_unmap_page(&edev->pdev->dev,
2567                                        dma_unmap_addr(replace_buf, mapping),
2568                                        PAGE_SIZE, DMA_FROM_DEVICE);
2569                         __free_page(replace_buf->data);
2570                 }
2571         }
2572 }
2573
2574 static void qede_free_mem_rxq(struct qede_dev *edev,
2575                               struct qede_rx_queue *rxq)
2576 {
2577         qede_free_sge_mem(edev, rxq);
2578
2579         /* Free rx buffers */
2580         qede_free_rx_buffers(edev, rxq);
2581
2582         /* Free the parallel SW ring */
2583         kfree(rxq->sw_rx_ring);
2584
2585         /* Free the real RQ ring used by FW */
2586         edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
2587         edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
2588 }
2589
2590 static int qede_alloc_rx_buffer(struct qede_dev *edev,
2591                                 struct qede_rx_queue *rxq)
2592 {
2593         struct sw_rx_data *sw_rx_data;
2594         struct eth_rx_bd *rx_bd;
2595         dma_addr_t mapping;
2596         struct page *data;
2597         u16 rx_buf_size;
2598
2599         rx_buf_size = rxq->rx_buf_size;
2600
2601         data = alloc_pages(GFP_ATOMIC, 0);
2602         if (unlikely(!data)) {
2603                 DP_NOTICE(edev, "Failed to allocate Rx data [page]\n");
2604                 return -ENOMEM;
2605         }
2606
2607         /* Map the entire page as it would be used
2608          * for multiple RX buffer segment size mapping.
2609          */
2610         mapping = dma_map_page(&edev->pdev->dev, data, 0,
2611                                PAGE_SIZE, DMA_FROM_DEVICE);
2612         if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2613                 __free_page(data);
2614                 DP_NOTICE(edev, "Failed to map Rx buffer\n");
2615                 return -ENOMEM;
2616         }
2617
2618         sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
2619         sw_rx_data->page_offset = 0;
2620         sw_rx_data->data = data;
2621         sw_rx_data->mapping = mapping;
2622
2623         /* Advance PROD and get BD pointer */
2624         rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
2625         WARN_ON(!rx_bd);
2626         rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
2627         rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
2628
2629         rxq->sw_rx_prod++;
2630
2631         return 0;
2632 }
2633
2634 static int qede_alloc_sge_mem(struct qede_dev *edev,
2635                               struct qede_rx_queue *rxq)
2636 {
2637         dma_addr_t mapping;
2638         int i;
2639
2640         if (edev->gro_disable)
2641                 return 0;
2642
2643         if (edev->ndev->mtu > PAGE_SIZE) {
2644                 edev->gro_disable = 1;
2645                 return 0;
2646         }
2647
2648         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2649                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2650                 struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2651
2652                 replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
2653                 if (unlikely(!replace_buf->data)) {
2654                         DP_NOTICE(edev,
2655                                   "Failed to allocate TPA skb pool [replacement buffer]\n");
2656                         goto err;
2657                 }
2658
2659                 mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
2660                                        rxq->rx_buf_size, DMA_FROM_DEVICE);
2661                 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2662                         DP_NOTICE(edev,
2663                                   "Failed to map TPA replacement buffer\n");
2664                         goto err;
2665                 }
2666
2667                 dma_unmap_addr_set(replace_buf, mapping, mapping);
2668                 tpa_info->replace_buf.page_offset = 0;
2669
2670                 tpa_info->replace_buf_mapping = mapping;
2671                 tpa_info->agg_state = QEDE_AGG_STATE_NONE;
2672         }
2673
2674         return 0;
2675 err:
2676         qede_free_sge_mem(edev, rxq);
2677         edev->gro_disable = 1;
2678         return -ENOMEM;
2679 }
2680
2681 /* This function allocates all memory needed per Rx queue */
2682 static int qede_alloc_mem_rxq(struct qede_dev *edev,
2683                               struct qede_rx_queue *rxq)
2684 {
2685         int i, rc, size;
2686
2687         rxq->num_rx_buffers = edev->q_num_rx_buffers;
2688
2689         rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD +
2690                            edev->ndev->mtu;
2691         if (rxq->rx_buf_size > PAGE_SIZE)
2692                 rxq->rx_buf_size = PAGE_SIZE;
2693
2694         /* Segment size to spilt a page in multiple equal parts */
2695         rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
2696
2697         /* Allocate the parallel driver ring for Rx buffers */
2698         size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
2699         rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
2700         if (!rxq->sw_rx_ring) {
2701                 DP_ERR(edev, "Rx buffers ring allocation failed\n");
2702                 rc = -ENOMEM;
2703                 goto err;
2704         }
2705
2706         /* Allocate FW Rx ring  */
2707         rc = edev->ops->common->chain_alloc(edev->cdev,
2708                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2709                                             QED_CHAIN_MODE_NEXT_PTR,
2710                                             RX_RING_SIZE,
2711                                             sizeof(struct eth_rx_bd),
2712                                             &rxq->rx_bd_ring);
2713
2714         if (rc)
2715                 goto err;
2716
2717         /* Allocate FW completion ring */
2718         rc = edev->ops->common->chain_alloc(edev->cdev,
2719                                             QED_CHAIN_USE_TO_CONSUME,
2720                                             QED_CHAIN_MODE_PBL,
2721                                             RX_RING_SIZE,
2722                                             sizeof(union eth_rx_cqe),
2723                                             &rxq->rx_comp_ring);
2724         if (rc)
2725                 goto err;
2726
2727         /* Allocate buffers for the Rx ring */
2728         for (i = 0; i < rxq->num_rx_buffers; i++) {
2729                 rc = qede_alloc_rx_buffer(edev, rxq);
2730                 if (rc) {
2731                         DP_ERR(edev,
2732                                "Rx buffers allocation failed at index %d\n", i);
2733                         goto err;
2734                 }
2735         }
2736
2737         rc = qede_alloc_sge_mem(edev, rxq);
2738 err:
2739         return rc;
2740 }
2741
2742 static void qede_free_mem_txq(struct qede_dev *edev,
2743                               struct qede_tx_queue *txq)
2744 {
2745         /* Free the parallel SW ring */
2746         kfree(txq->sw_tx_ring);
2747
2748         /* Free the real RQ ring used by FW */
2749         edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
2750 }
2751
2752 /* This function allocates all memory needed per Tx queue */
2753 static int qede_alloc_mem_txq(struct qede_dev *edev,
2754                               struct qede_tx_queue *txq)
2755 {
2756         int size, rc;
2757         union eth_tx_bd_types *p_virt;
2758
2759         txq->num_tx_buffers = edev->q_num_tx_buffers;
2760
2761         /* Allocate the parallel driver ring for Tx buffers */
2762         size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX;
2763         txq->sw_tx_ring = kzalloc(size, GFP_KERNEL);
2764         if (!txq->sw_tx_ring) {
2765                 DP_NOTICE(edev, "Tx buffers ring allocation failed\n");
2766                 goto err;
2767         }
2768
2769         rc = edev->ops->common->chain_alloc(edev->cdev,
2770                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2771                                             QED_CHAIN_MODE_PBL,
2772                                             NUM_TX_BDS_MAX,
2773                                             sizeof(*p_virt),
2774                                             &txq->tx_pbl);
2775         if (rc)
2776                 goto err;
2777
2778         return 0;
2779
2780 err:
2781         qede_free_mem_txq(edev, txq);
2782         return -ENOMEM;
2783 }
2784
2785 /* This function frees all memory of a single fp */
2786 static void qede_free_mem_fp(struct qede_dev *edev,
2787                              struct qede_fastpath *fp)
2788 {
2789         int tc;
2790
2791         qede_free_mem_sb(edev, fp->sb_info);
2792
2793         qede_free_mem_rxq(edev, fp->rxq);
2794
2795         for (tc = 0; tc < edev->num_tc; tc++)
2796                 qede_free_mem_txq(edev, &fp->txqs[tc]);
2797 }
2798
2799 /* This function allocates all memory needed for a single fp (i.e. an entity
2800  * which contains status block, one rx queue and multiple per-TC tx queues.
2801  */
2802 static int qede_alloc_mem_fp(struct qede_dev *edev,
2803                              struct qede_fastpath *fp)
2804 {
2805         int rc, tc;
2806
2807         rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->rss_id);
2808         if (rc)
2809                 goto err;
2810
2811         rc = qede_alloc_mem_rxq(edev, fp->rxq);
2812         if (rc)
2813                 goto err;
2814
2815         for (tc = 0; tc < edev->num_tc; tc++) {
2816                 rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]);
2817                 if (rc)
2818                         goto err;
2819         }
2820
2821         return 0;
2822 err:
2823         return rc;
2824 }
2825
2826 static void qede_free_mem_load(struct qede_dev *edev)
2827 {
2828         int i;
2829
2830         for_each_rss(i) {
2831                 struct qede_fastpath *fp = &edev->fp_array[i];
2832
2833                 qede_free_mem_fp(edev, fp);
2834         }
2835 }
2836
2837 /* This function allocates all qede memory at NIC load. */
2838 static int qede_alloc_mem_load(struct qede_dev *edev)
2839 {
2840         int rc = 0, rss_id;
2841
2842         for (rss_id = 0; rss_id < QEDE_RSS_CNT(edev); rss_id++) {
2843                 struct qede_fastpath *fp = &edev->fp_array[rss_id];
2844
2845                 rc = qede_alloc_mem_fp(edev, fp);
2846                 if (rc) {
2847                         DP_ERR(edev,
2848                                "Failed to allocate memory for fastpath - rss id = %d\n",
2849                                rss_id);
2850                         qede_free_mem_load(edev);
2851                         return rc;
2852                 }
2853         }
2854
2855         return 0;
2856 }
2857
2858 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
2859 static void qede_init_fp(struct qede_dev *edev)
2860 {
2861         int rss_id, txq_index, tc;
2862         struct qede_fastpath *fp;
2863
2864         for_each_rss(rss_id) {
2865                 fp = &edev->fp_array[rss_id];
2866
2867                 fp->edev = edev;
2868                 fp->rss_id = rss_id;
2869
2870                 memset((void *)&fp->napi, 0, sizeof(fp->napi));
2871
2872                 memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info));
2873
2874                 memset((void *)fp->rxq, 0, sizeof(*fp->rxq));
2875                 fp->rxq->rxq_id = rss_id;
2876
2877                 memset((void *)fp->txqs, 0, (edev->num_tc * sizeof(*fp->txqs)));
2878                 for (tc = 0; tc < edev->num_tc; tc++) {
2879                         txq_index = tc * QEDE_RSS_CNT(edev) + rss_id;
2880                         fp->txqs[tc].index = txq_index;
2881                 }
2882
2883                 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
2884                          edev->ndev->name, rss_id);
2885         }
2886
2887         edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
2888 }
2889
2890 static int qede_set_real_num_queues(struct qede_dev *edev)
2891 {
2892         int rc = 0;
2893
2894         rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_CNT(edev));
2895         if (rc) {
2896                 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
2897                 return rc;
2898         }
2899         rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_CNT(edev));
2900         if (rc) {
2901                 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
2902                 return rc;
2903         }
2904
2905         return 0;
2906 }
2907
2908 static void qede_napi_disable_remove(struct qede_dev *edev)
2909 {
2910         int i;
2911
2912         for_each_rss(i) {
2913                 napi_disable(&edev->fp_array[i].napi);
2914
2915                 netif_napi_del(&edev->fp_array[i].napi);
2916         }
2917 }
2918
2919 static void qede_napi_add_enable(struct qede_dev *edev)
2920 {
2921         int i;
2922
2923         /* Add NAPI objects */
2924         for_each_rss(i) {
2925                 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
2926                                qede_poll, NAPI_POLL_WEIGHT);
2927                 napi_enable(&edev->fp_array[i].napi);
2928         }
2929 }
2930
2931 static void qede_sync_free_irqs(struct qede_dev *edev)
2932 {
2933         int i;
2934
2935         for (i = 0; i < edev->int_info.used_cnt; i++) {
2936                 if (edev->int_info.msix_cnt) {
2937                         synchronize_irq(edev->int_info.msix[i].vector);
2938                         free_irq(edev->int_info.msix[i].vector,
2939                                  &edev->fp_array[i]);
2940                 } else {
2941                         edev->ops->common->simd_handler_clean(edev->cdev, i);
2942                 }
2943         }
2944
2945         edev->int_info.used_cnt = 0;
2946 }
2947
2948 static int qede_req_msix_irqs(struct qede_dev *edev)
2949 {
2950         int i, rc;
2951
2952         /* Sanitize number of interrupts == number of prepared RSS queues */
2953         if (QEDE_RSS_CNT(edev) > edev->int_info.msix_cnt) {
2954                 DP_ERR(edev,
2955                        "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
2956                        QEDE_RSS_CNT(edev), edev->int_info.msix_cnt);
2957                 return -EINVAL;
2958         }
2959
2960         for (i = 0; i < QEDE_RSS_CNT(edev); i++) {
2961                 rc = request_irq(edev->int_info.msix[i].vector,
2962                                  qede_msix_fp_int, 0, edev->fp_array[i].name,
2963                                  &edev->fp_array[i]);
2964                 if (rc) {
2965                         DP_ERR(edev, "Request fp %d irq failed\n", i);
2966                         qede_sync_free_irqs(edev);
2967                         return rc;
2968                 }
2969                 DP_VERBOSE(edev, NETIF_MSG_INTR,
2970                            "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
2971                            edev->fp_array[i].name, i,
2972                            &edev->fp_array[i]);
2973                 edev->int_info.used_cnt++;
2974         }
2975
2976         return 0;
2977 }
2978
2979 static void qede_simd_fp_handler(void *cookie)
2980 {
2981         struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
2982
2983         napi_schedule_irqoff(&fp->napi);
2984 }
2985
2986 static int qede_setup_irqs(struct qede_dev *edev)
2987 {
2988         int i, rc = 0;
2989
2990         /* Learn Interrupt configuration */
2991         rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
2992         if (rc)
2993                 return rc;
2994
2995         if (edev->int_info.msix_cnt) {
2996                 rc = qede_req_msix_irqs(edev);
2997                 if (rc)
2998                         return rc;
2999                 edev->ndev->irq = edev->int_info.msix[0].vector;
3000         } else {
3001                 const struct qed_common_ops *ops;
3002
3003                 /* qed should learn receive the RSS ids and callbacks */
3004                 ops = edev->ops->common;
3005                 for (i = 0; i < QEDE_RSS_CNT(edev); i++)
3006                         ops->simd_handler_config(edev->cdev,
3007                                                  &edev->fp_array[i], i,
3008                                                  qede_simd_fp_handler);
3009                 edev->int_info.used_cnt = QEDE_RSS_CNT(edev);
3010         }
3011         return 0;
3012 }
3013
3014 static int qede_drain_txq(struct qede_dev *edev,
3015                           struct qede_tx_queue *txq,
3016                           bool allow_drain)
3017 {
3018         int rc, cnt = 1000;
3019
3020         while (txq->sw_tx_cons != txq->sw_tx_prod) {
3021                 if (!cnt) {
3022                         if (allow_drain) {
3023                                 DP_NOTICE(edev,
3024                                           "Tx queue[%d] is stuck, requesting MCP to drain\n",
3025                                           txq->index);
3026                                 rc = edev->ops->common->drain(edev->cdev);
3027                                 if (rc)
3028                                         return rc;
3029                                 return qede_drain_txq(edev, txq, false);
3030                         }
3031                         DP_NOTICE(edev,
3032                                   "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
3033                                   txq->index, txq->sw_tx_prod,
3034                                   txq->sw_tx_cons);
3035                         return -ENODEV;
3036                 }
3037                 cnt--;
3038                 usleep_range(1000, 2000);
3039                 barrier();
3040         }
3041
3042         /* FW finished processing, wait for HW to transmit all tx packets */
3043         usleep_range(1000, 2000);
3044
3045         return 0;
3046 }
3047
3048 static int qede_stop_queues(struct qede_dev *edev)
3049 {
3050         struct qed_update_vport_params vport_update_params;
3051         struct qed_dev *cdev = edev->cdev;
3052         int rc, tc, i;
3053
3054         /* Disable the vport */
3055         memset(&vport_update_params, 0, sizeof(vport_update_params));
3056         vport_update_params.vport_id = 0;
3057         vport_update_params.update_vport_active_flg = 1;
3058         vport_update_params.vport_active_flg = 0;
3059         vport_update_params.update_rss_flg = 0;
3060
3061         rc = edev->ops->vport_update(cdev, &vport_update_params);
3062         if (rc) {
3063                 DP_ERR(edev, "Failed to update vport\n");
3064                 return rc;
3065         }
3066
3067         /* Flush Tx queues. If needed, request drain from MCP */
3068         for_each_rss(i) {
3069                 struct qede_fastpath *fp = &edev->fp_array[i];
3070
3071                 for (tc = 0; tc < edev->num_tc; tc++) {
3072                         struct qede_tx_queue *txq = &fp->txqs[tc];
3073
3074                         rc = qede_drain_txq(edev, txq, true);
3075                         if (rc)
3076                                 return rc;
3077                 }
3078         }
3079
3080         /* Stop all Queues in reverse order*/
3081         for (i = QEDE_RSS_CNT(edev) - 1; i >= 0; i--) {
3082                 struct qed_stop_rxq_params rx_params;
3083
3084                 /* Stop the Tx Queue(s)*/
3085                 for (tc = 0; tc < edev->num_tc; tc++) {
3086                         struct qed_stop_txq_params tx_params;
3087
3088                         tx_params.rss_id = i;
3089                         tx_params.tx_queue_id = tc * QEDE_RSS_CNT(edev) + i;
3090                         rc = edev->ops->q_tx_stop(cdev, &tx_params);
3091                         if (rc) {
3092                                 DP_ERR(edev, "Failed to stop TXQ #%d\n",
3093                                        tx_params.tx_queue_id);
3094                                 return rc;
3095                         }
3096                 }
3097
3098                 /* Stop the Rx Queue*/
3099                 memset(&rx_params, 0, sizeof(rx_params));
3100                 rx_params.rss_id = i;
3101                 rx_params.rx_queue_id = i;
3102
3103                 rc = edev->ops->q_rx_stop(cdev, &rx_params);
3104                 if (rc) {
3105                         DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
3106                         return rc;
3107                 }
3108         }
3109
3110         /* Stop the vport */
3111         rc = edev->ops->vport_stop(cdev, 0);
3112         if (rc)
3113                 DP_ERR(edev, "Failed to stop VPORT\n");
3114
3115         return rc;
3116 }
3117
3118 static int qede_start_queues(struct qede_dev *edev)
3119 {
3120         int rc, tc, i;
3121         int vlan_removal_en = 1;
3122         struct qed_dev *cdev = edev->cdev;
3123         struct qed_update_vport_params vport_update_params;
3124         struct qed_queue_start_common_params q_params;
3125         struct qed_dev_info *qed_info = &edev->dev_info.common;
3126         struct qed_start_vport_params start = {0};
3127         bool reset_rss_indir = false;
3128
3129         if (!edev->num_rss) {
3130                 DP_ERR(edev,
3131                        "Cannot update V-VPORT as active as there are no Rx queues\n");
3132                 return -EINVAL;
3133         }
3134
3135         start.gro_enable = !edev->gro_disable;
3136         start.mtu = edev->ndev->mtu;
3137         start.vport_id = 0;
3138         start.drop_ttl0 = true;
3139         start.remove_inner_vlan = vlan_removal_en;
3140
3141         rc = edev->ops->vport_start(cdev, &start);
3142
3143         if (rc) {
3144                 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
3145                 return rc;
3146         }
3147
3148         DP_VERBOSE(edev, NETIF_MSG_IFUP,
3149                    "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
3150                    start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
3151
3152         for_each_rss(i) {
3153                 struct qede_fastpath *fp = &edev->fp_array[i];
3154                 dma_addr_t phys_table = fp->rxq->rx_comp_ring.pbl.p_phys_table;
3155
3156                 memset(&q_params, 0, sizeof(q_params));
3157                 q_params.rss_id = i;
3158                 q_params.queue_id = i;
3159                 q_params.vport_id = 0;
3160                 q_params.sb = fp->sb_info->igu_sb_id;
3161                 q_params.sb_idx = RX_PI;
3162
3163                 rc = edev->ops->q_rx_start(cdev, &q_params,
3164                                            fp->rxq->rx_buf_size,
3165                                            fp->rxq->rx_bd_ring.p_phys_addr,
3166                                            phys_table,
3167                                            fp->rxq->rx_comp_ring.page_cnt,
3168                                            &fp->rxq->hw_rxq_prod_addr);
3169                 if (rc) {
3170                         DP_ERR(edev, "Start RXQ #%d failed %d\n", i, rc);
3171                         return rc;
3172                 }
3173
3174                 fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
3175
3176                 qede_update_rx_prod(edev, fp->rxq);
3177
3178                 for (tc = 0; tc < edev->num_tc; tc++) {
3179                         struct qede_tx_queue *txq = &fp->txqs[tc];
3180                         int txq_index = tc * QEDE_RSS_CNT(edev) + i;
3181
3182                         memset(&q_params, 0, sizeof(q_params));
3183                         q_params.rss_id = i;
3184                         q_params.queue_id = txq_index;
3185                         q_params.vport_id = 0;
3186                         q_params.sb = fp->sb_info->igu_sb_id;
3187                         q_params.sb_idx = TX_PI(tc);
3188
3189                         rc = edev->ops->q_tx_start(cdev, &q_params,
3190                                                    txq->tx_pbl.pbl.p_phys_table,
3191                                                    txq->tx_pbl.page_cnt,
3192                                                    &txq->doorbell_addr);
3193                         if (rc) {
3194                                 DP_ERR(edev, "Start TXQ #%d failed %d\n",
3195                                        txq_index, rc);
3196                                 return rc;
3197                         }
3198
3199                         txq->hw_cons_ptr =
3200                                 &fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
3201                         SET_FIELD(txq->tx_db.data.params,
3202                                   ETH_DB_DATA_DEST, DB_DEST_XCM);
3203                         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
3204                                   DB_AGG_CMD_SET);
3205                         SET_FIELD(txq->tx_db.data.params,
3206                                   ETH_DB_DATA_AGG_VAL_SEL,
3207                                   DQ_XCM_ETH_TX_BD_PROD_CMD);
3208
3209                         txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
3210                 }
3211         }
3212
3213         /* Prepare and send the vport enable */
3214         memset(&vport_update_params, 0, sizeof(vport_update_params));
3215         vport_update_params.vport_id = start.vport_id;
3216         vport_update_params.update_vport_active_flg = 1;
3217         vport_update_params.vport_active_flg = 1;
3218
3219         /* Fill struct with RSS params */
3220         if (QEDE_RSS_CNT(edev) > 1) {
3221                 vport_update_params.update_rss_flg = 1;
3222
3223                 /* Need to validate current RSS config uses valid entries */
3224                 for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3225                         if (edev->rss_params.rss_ind_table[i] >=
3226                             edev->num_rss) {
3227                                 reset_rss_indir = true;
3228                                 break;
3229                         }
3230                 }
3231
3232                 if (!(edev->rss_params_inited & QEDE_RSS_INDIR_INITED) ||
3233                     reset_rss_indir) {
3234                         u16 val;
3235
3236                         for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3237                                 u16 indir_val;
3238
3239                                 val = QEDE_RSS_CNT(edev);
3240                                 indir_val = ethtool_rxfh_indir_default(i, val);
3241                                 edev->rss_params.rss_ind_table[i] = indir_val;
3242                         }
3243                         edev->rss_params_inited |= QEDE_RSS_INDIR_INITED;
3244                 }
3245
3246                 if (!(edev->rss_params_inited & QEDE_RSS_KEY_INITED)) {
3247                         netdev_rss_key_fill(edev->rss_params.rss_key,
3248                                             sizeof(edev->rss_params.rss_key));
3249                         edev->rss_params_inited |= QEDE_RSS_KEY_INITED;
3250                 }
3251
3252                 if (!(edev->rss_params_inited & QEDE_RSS_CAPS_INITED)) {
3253                         edev->rss_params.rss_caps = QED_RSS_IPV4 |
3254                                                     QED_RSS_IPV6 |
3255                                                     QED_RSS_IPV4_TCP |
3256                                                     QED_RSS_IPV6_TCP;
3257                         edev->rss_params_inited |= QEDE_RSS_CAPS_INITED;
3258                 }
3259
3260                 memcpy(&vport_update_params.rss_params, &edev->rss_params,
3261                        sizeof(vport_update_params.rss_params));
3262         } else {
3263                 memset(&vport_update_params.rss_params, 0,
3264                        sizeof(vport_update_params.rss_params));
3265         }
3266
3267         rc = edev->ops->vport_update(cdev, &vport_update_params);
3268         if (rc) {
3269                 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
3270                 return rc;
3271         }
3272
3273         return 0;
3274 }
3275
3276 static int qede_set_mcast_rx_mac(struct qede_dev *edev,
3277                                  enum qed_filter_xcast_params_type opcode,
3278                                  unsigned char *mac, int num_macs)
3279 {
3280         struct qed_filter_params filter_cmd;
3281         int i;
3282
3283         memset(&filter_cmd, 0, sizeof(filter_cmd));
3284         filter_cmd.type = QED_FILTER_TYPE_MCAST;
3285         filter_cmd.filter.mcast.type = opcode;
3286         filter_cmd.filter.mcast.num = num_macs;
3287
3288         for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
3289                 ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
3290
3291         return edev->ops->filter_config(edev->cdev, &filter_cmd);
3292 }
3293
3294 enum qede_unload_mode {
3295         QEDE_UNLOAD_NORMAL,
3296 };
3297
3298 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode)
3299 {
3300         struct qed_link_params link_params;
3301         int rc;
3302
3303         DP_INFO(edev, "Starting qede unload\n");
3304
3305         mutex_lock(&edev->qede_lock);
3306         edev->state = QEDE_STATE_CLOSED;
3307
3308         /* Close OS Tx */
3309         netif_tx_disable(edev->ndev);
3310         netif_carrier_off(edev->ndev);
3311
3312         /* Reset the link */
3313         memset(&link_params, 0, sizeof(link_params));
3314         link_params.link_up = false;
3315         edev->ops->common->set_link(edev->cdev, &link_params);
3316         rc = qede_stop_queues(edev);
3317         if (rc) {
3318                 qede_sync_free_irqs(edev);
3319                 goto out;
3320         }
3321
3322         DP_INFO(edev, "Stopped Queues\n");
3323
3324         qede_vlan_mark_nonconfigured(edev);
3325         edev->ops->fastpath_stop(edev->cdev);
3326
3327         /* Release the interrupts */
3328         qede_sync_free_irqs(edev);
3329         edev->ops->common->set_fp_int(edev->cdev, 0);
3330
3331         qede_napi_disable_remove(edev);
3332
3333         qede_free_mem_load(edev);
3334         qede_free_fp_array(edev);
3335
3336 out:
3337         mutex_unlock(&edev->qede_lock);
3338         DP_INFO(edev, "Ending qede unload\n");
3339 }
3340
3341 enum qede_load_mode {
3342         QEDE_LOAD_NORMAL,
3343 };
3344
3345 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode)
3346 {
3347         struct qed_link_params link_params;
3348         struct qed_link_output link_output;
3349         int rc;
3350
3351         DP_INFO(edev, "Starting qede load\n");
3352
3353         rc = qede_set_num_queues(edev);
3354         if (rc)
3355                 goto err0;
3356
3357         rc = qede_alloc_fp_array(edev);
3358         if (rc)
3359                 goto err0;
3360
3361         qede_init_fp(edev);
3362
3363         rc = qede_alloc_mem_load(edev);
3364         if (rc)
3365                 goto err1;
3366         DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n",
3367                 QEDE_RSS_CNT(edev), edev->num_tc);
3368
3369         rc = qede_set_real_num_queues(edev);
3370         if (rc)
3371                 goto err2;
3372
3373         qede_napi_add_enable(edev);
3374         DP_INFO(edev, "Napi added and enabled\n");
3375
3376         rc = qede_setup_irqs(edev);
3377         if (rc)
3378                 goto err3;
3379         DP_INFO(edev, "Setup IRQs succeeded\n");
3380
3381         rc = qede_start_queues(edev);
3382         if (rc)
3383                 goto err4;
3384         DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
3385
3386         /* Add primary mac and set Rx filters */
3387         ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
3388
3389         mutex_lock(&edev->qede_lock);
3390         edev->state = QEDE_STATE_OPEN;
3391         mutex_unlock(&edev->qede_lock);
3392
3393         /* Program un-configured VLANs */
3394         qede_configure_vlan_filters(edev);
3395
3396         /* Ask for link-up using current configuration */
3397         memset(&link_params, 0, sizeof(link_params));
3398         link_params.link_up = true;
3399         edev->ops->common->set_link(edev->cdev, &link_params);
3400
3401         /* Query whether link is already-up */
3402         memset(&link_output, 0, sizeof(link_output));
3403         edev->ops->common->get_link(edev->cdev, &link_output);
3404         qede_link_update(edev, &link_output);
3405
3406         DP_INFO(edev, "Ending successfully qede load\n");
3407
3408         return 0;
3409
3410 err4:
3411         qede_sync_free_irqs(edev);
3412         memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
3413 err3:
3414         qede_napi_disable_remove(edev);
3415 err2:
3416         qede_free_mem_load(edev);
3417 err1:
3418         edev->ops->common->set_fp_int(edev->cdev, 0);
3419         qede_free_fp_array(edev);
3420         edev->num_rss = 0;
3421 err0:
3422         return rc;
3423 }
3424
3425 void qede_reload(struct qede_dev *edev,
3426                  void (*func)(struct qede_dev *, union qede_reload_args *),
3427                  union qede_reload_args *args)
3428 {
3429         qede_unload(edev, QEDE_UNLOAD_NORMAL);
3430         /* Call function handler to update parameters
3431          * needed for function load.
3432          */
3433         if (func)
3434                 func(edev, args);
3435
3436         qede_load(edev, QEDE_LOAD_NORMAL);
3437
3438         mutex_lock(&edev->qede_lock);
3439         qede_config_rx_mode(edev->ndev);
3440         mutex_unlock(&edev->qede_lock);
3441 }
3442
3443 /* called with rtnl_lock */
3444 static int qede_open(struct net_device *ndev)
3445 {
3446         struct qede_dev *edev = netdev_priv(ndev);
3447         int rc;
3448
3449         netif_carrier_off(ndev);
3450
3451         edev->ops->common->set_power_state(edev->cdev, PCI_D0);
3452
3453         rc = qede_load(edev, QEDE_LOAD_NORMAL);
3454
3455         if (rc)
3456                 return rc;
3457
3458 #ifdef CONFIG_QEDE_VXLAN
3459         vxlan_get_rx_port(ndev);
3460 #endif
3461 #ifdef CONFIG_QEDE_GENEVE
3462         geneve_get_rx_port(ndev);
3463 #endif
3464         return 0;
3465 }
3466
3467 static int qede_close(struct net_device *ndev)
3468 {
3469         struct qede_dev *edev = netdev_priv(ndev);
3470
3471         qede_unload(edev, QEDE_UNLOAD_NORMAL);
3472
3473         return 0;
3474 }
3475
3476 static void qede_link_update(void *dev, struct qed_link_output *link)
3477 {
3478         struct qede_dev *edev = dev;
3479
3480         if (!netif_running(edev->ndev)) {
3481                 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
3482                 return;
3483         }
3484
3485         if (link->link_up) {
3486                 if (!netif_carrier_ok(edev->ndev)) {
3487                         DP_NOTICE(edev, "Link is up\n");
3488                         netif_tx_start_all_queues(edev->ndev);
3489                         netif_carrier_on(edev->ndev);
3490                 }
3491         } else {
3492                 if (netif_carrier_ok(edev->ndev)) {
3493                         DP_NOTICE(edev, "Link is down\n");
3494                         netif_tx_disable(edev->ndev);
3495                         netif_carrier_off(edev->ndev);
3496                 }
3497         }
3498 }
3499
3500 static int qede_set_mac_addr(struct net_device *ndev, void *p)
3501 {
3502         struct qede_dev *edev = netdev_priv(ndev);
3503         struct sockaddr *addr = p;
3504         int rc;
3505
3506         ASSERT_RTNL(); /* @@@TBD To be removed */
3507
3508         DP_INFO(edev, "Set_mac_addr called\n");
3509
3510         if (!is_valid_ether_addr(addr->sa_data)) {
3511                 DP_NOTICE(edev, "The MAC address is not valid\n");
3512                 return -EFAULT;
3513         }
3514
3515         ether_addr_copy(ndev->dev_addr, addr->sa_data);
3516
3517         if (!netif_running(ndev))  {
3518                 DP_NOTICE(edev, "The device is currently down\n");
3519                 return 0;
3520         }
3521
3522         /* Remove the previous primary mac */
3523         rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3524                                    edev->primary_mac);
3525         if (rc)
3526                 return rc;
3527
3528         /* Add MAC filter according to the new unicast HW MAC address */
3529         ether_addr_copy(edev->primary_mac, ndev->dev_addr);
3530         return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3531                                       edev->primary_mac);
3532 }
3533
3534 static int
3535 qede_configure_mcast_filtering(struct net_device *ndev,
3536                                enum qed_filter_rx_mode_type *accept_flags)
3537 {
3538         struct qede_dev *edev = netdev_priv(ndev);
3539         unsigned char *mc_macs, *temp;
3540         struct netdev_hw_addr *ha;
3541         int rc = 0, mc_count;
3542         size_t size;
3543
3544         size = 64 * ETH_ALEN;
3545
3546         mc_macs = kzalloc(size, GFP_KERNEL);
3547         if (!mc_macs) {
3548                 DP_NOTICE(edev,
3549                           "Failed to allocate memory for multicast MACs\n");
3550                 rc = -ENOMEM;
3551                 goto exit;
3552         }
3553
3554         temp = mc_macs;
3555
3556         /* Remove all previously configured MAC filters */
3557         rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3558                                    mc_macs, 1);
3559         if (rc)
3560                 goto exit;
3561
3562         netif_addr_lock_bh(ndev);
3563
3564         mc_count = netdev_mc_count(ndev);
3565         if (mc_count < 64) {
3566                 netdev_for_each_mc_addr(ha, ndev) {
3567                         ether_addr_copy(temp, ha->addr);
3568                         temp += ETH_ALEN;
3569                 }
3570         }
3571
3572         netif_addr_unlock_bh(ndev);
3573
3574         /* Check for all multicast @@@TBD resource allocation */
3575         if ((ndev->flags & IFF_ALLMULTI) ||
3576             (mc_count > 64)) {
3577                 if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
3578                         *accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
3579         } else {
3580                 /* Add all multicast MAC filters */
3581                 rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3582                                            mc_macs, mc_count);
3583         }
3584
3585 exit:
3586         kfree(mc_macs);
3587         return rc;
3588 }
3589
3590 static void qede_set_rx_mode(struct net_device *ndev)
3591 {
3592         struct qede_dev *edev = netdev_priv(ndev);
3593
3594         DP_INFO(edev, "qede_set_rx_mode called\n");
3595
3596         if (edev->state != QEDE_STATE_OPEN) {
3597                 DP_INFO(edev,
3598                         "qede_set_rx_mode called while interface is down\n");
3599         } else {
3600                 set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
3601                 schedule_delayed_work(&edev->sp_task, 0);
3602         }
3603 }
3604
3605 /* Must be called with qede_lock held */
3606 static void qede_config_rx_mode(struct net_device *ndev)
3607 {
3608         enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST;
3609         struct qede_dev *edev = netdev_priv(ndev);
3610         struct qed_filter_params rx_mode;
3611         unsigned char *uc_macs, *temp;
3612         struct netdev_hw_addr *ha;
3613         int rc, uc_count;
3614         size_t size;
3615
3616         netif_addr_lock_bh(ndev);
3617
3618         uc_count = netdev_uc_count(ndev);
3619         size = uc_count * ETH_ALEN;
3620
3621         uc_macs = kzalloc(size, GFP_ATOMIC);
3622         if (!uc_macs) {
3623                 DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
3624                 netif_addr_unlock_bh(ndev);
3625                 return;
3626         }
3627
3628         temp = uc_macs;
3629         netdev_for_each_uc_addr(ha, ndev) {
3630                 ether_addr_copy(temp, ha->addr);
3631                 temp += ETH_ALEN;
3632         }
3633
3634         netif_addr_unlock_bh(ndev);
3635
3636         /* Configure the struct for the Rx mode */
3637         memset(&rx_mode, 0, sizeof(struct qed_filter_params));
3638         rx_mode.type = QED_FILTER_TYPE_RX_MODE;
3639
3640         /* Remove all previous unicast secondary macs and multicast macs
3641          * (configrue / leave the primary mac)
3642          */
3643         rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
3644                                    edev->primary_mac);
3645         if (rc)
3646                 goto out;
3647
3648         /* Check for promiscuous */
3649         if ((ndev->flags & IFF_PROMISC) ||
3650             (uc_count > 15)) { /* @@@TBD resource allocation - 1 */
3651                 accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
3652         } else {
3653                 /* Add MAC filters according to the unicast secondary macs */
3654                 int i;
3655
3656                 temp = uc_macs;
3657                 for (i = 0; i < uc_count; i++) {
3658                         rc = qede_set_ucast_rx_mac(edev,
3659                                                    QED_FILTER_XCAST_TYPE_ADD,
3660                                                    temp);
3661                         if (rc)
3662                                 goto out;
3663
3664                         temp += ETH_ALEN;
3665                 }
3666
3667                 rc = qede_configure_mcast_filtering(ndev, &accept_flags);
3668                 if (rc)
3669                         goto out;
3670         }
3671
3672         /* take care of VLAN mode */
3673         if (ndev->flags & IFF_PROMISC) {
3674                 qede_config_accept_any_vlan(edev, true);
3675         } else if (!edev->non_configured_vlans) {
3676                 /* It's possible that accept_any_vlan mode is set due to a
3677                  * previous setting of IFF_PROMISC. If vlan credits are
3678                  * sufficient, disable accept_any_vlan.
3679                  */
3680                 qede_config_accept_any_vlan(edev, false);
3681         }
3682
3683         rx_mode.filter.accept_flags = accept_flags;
3684         edev->ops->filter_config(edev->cdev, &rx_mode);
3685 out:
3686         kfree(uc_macs);
3687 }