qed*: Support forced MAC
[cascardo/linux.git] / drivers / net / ethernet / qlogic / qede / qede_main.c
1 /* QLogic qede NIC Driver
2 * Copyright (c) 2015 QLogic Corporation
3 *
4 * This software is available under the terms of the GNU General Public License
5 * (GPL) Version 2, available from the file COPYING in the main directory of
6 * this source tree.
7 */
8
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/version.h>
12 #include <linux/device.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/skbuff.h>
16 #include <linux/errno.h>
17 #include <linux/list.h>
18 #include <linux/string.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <asm/byteorder.h>
22 #include <asm/param.h>
23 #include <linux/io.h>
24 #include <linux/netdev_features.h>
25 #include <linux/udp.h>
26 #include <linux/tcp.h>
27 #ifdef CONFIG_QEDE_VXLAN
28 #include <net/vxlan.h>
29 #endif
30 #ifdef CONFIG_QEDE_GENEVE
31 #include <net/geneve.h>
32 #endif
33 #include <linux/ip.h>
34 #include <net/ipv6.h>
35 #include <net/tcp.h>
36 #include <linux/if_ether.h>
37 #include <linux/if_vlan.h>
38 #include <linux/pkt_sched.h>
39 #include <linux/ethtool.h>
40 #include <linux/in.h>
41 #include <linux/random.h>
42 #include <net/ip6_checksum.h>
43 #include <linux/bitops.h>
44
45 #include "qede.h"
46
47 static char version[] =
48         "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
49
50 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_MODULE_VERSION);
53
54 static uint debug;
55 module_param(debug, uint, 0);
56 MODULE_PARM_DESC(debug, " Default debug msglevel");
57
58 static const struct qed_eth_ops *qed_ops;
59
60 #define CHIP_NUM_57980S_40              0x1634
61 #define CHIP_NUM_57980S_10              0x1666
62 #define CHIP_NUM_57980S_MF              0x1636
63 #define CHIP_NUM_57980S_100             0x1644
64 #define CHIP_NUM_57980S_50              0x1654
65 #define CHIP_NUM_57980S_25              0x1656
66 #define CHIP_NUM_57980S_IOV             0x1664
67
68 #ifndef PCI_DEVICE_ID_NX2_57980E
69 #define PCI_DEVICE_ID_57980S_40         CHIP_NUM_57980S_40
70 #define PCI_DEVICE_ID_57980S_10         CHIP_NUM_57980S_10
71 #define PCI_DEVICE_ID_57980S_MF         CHIP_NUM_57980S_MF
72 #define PCI_DEVICE_ID_57980S_100        CHIP_NUM_57980S_100
73 #define PCI_DEVICE_ID_57980S_50         CHIP_NUM_57980S_50
74 #define PCI_DEVICE_ID_57980S_25         CHIP_NUM_57980S_25
75 #define PCI_DEVICE_ID_57980S_IOV        CHIP_NUM_57980S_IOV
76 #endif
77
78 enum qede_pci_private {
79         QEDE_PRIVATE_PF,
80         QEDE_PRIVATE_VF
81 };
82
83 static const struct pci_device_id qede_pci_tbl[] = {
84         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
85         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
86         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
87         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
88         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
89         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
90         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
91         { 0 }
92 };
93
94 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
95
96 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
97
98 #define TX_TIMEOUT              (5 * HZ)
99
100 static void qede_remove(struct pci_dev *pdev);
101 static int qede_alloc_rx_buffer(struct qede_dev *edev,
102                                 struct qede_rx_queue *rxq);
103 static void qede_link_update(void *dev, struct qed_link_output *link);
104
105 #ifdef CONFIG_QED_SRIOV
106 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos)
107 {
108         struct qede_dev *edev = netdev_priv(ndev);
109
110         if (vlan > 4095) {
111                 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
112                 return -EINVAL;
113         }
114
115         DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
116                    vlan, vf);
117
118         return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
119 }
120
121 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
122 {
123         struct qede_dev *edev = netdev_priv(ndev);
124
125         DP_VERBOSE(edev, QED_MSG_IOV,
126                    "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
127                    mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
128
129         if (!is_valid_ether_addr(mac)) {
130                 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
131                 return -EINVAL;
132         }
133
134         return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
135 }
136
137 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
138 {
139         struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
140
141         DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
142
143         return edev->ops->iov->configure(edev->cdev, num_vfs_param);
144 }
145 #endif
146
147 static struct pci_driver qede_pci_driver = {
148         .name = "qede",
149         .id_table = qede_pci_tbl,
150         .probe = qede_probe,
151         .remove = qede_remove,
152 #ifdef CONFIG_QED_SRIOV
153         .sriov_configure = qede_sriov_configure,
154 #endif
155 };
156
157 static void qede_force_mac(void *dev, u8 *mac)
158 {
159         struct qede_dev *edev = dev;
160
161         ether_addr_copy(edev->ndev->dev_addr, mac);
162         ether_addr_copy(edev->primary_mac, mac);
163 }
164
165 static struct qed_eth_cb_ops qede_ll_ops = {
166         {
167                 .link_update = qede_link_update,
168         },
169         .force_mac = qede_force_mac,
170 };
171
172 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
173                              void *ptr)
174 {
175         struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
176         struct ethtool_drvinfo drvinfo;
177         struct qede_dev *edev;
178
179         /* Currently only support name change */
180         if (event != NETDEV_CHANGENAME)
181                 goto done;
182
183         /* Check whether this is a qede device */
184         if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
185                 goto done;
186
187         memset(&drvinfo, 0, sizeof(drvinfo));
188         ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
189         if (strcmp(drvinfo.driver, "qede"))
190                 goto done;
191         edev = netdev_priv(ndev);
192
193         /* Notify qed of the name change */
194         if (!edev->ops || !edev->ops->common)
195                 goto done;
196         edev->ops->common->set_id(edev->cdev, edev->ndev->name,
197                                   "qede");
198
199 done:
200         return NOTIFY_DONE;
201 }
202
203 static struct notifier_block qede_netdev_notifier = {
204         .notifier_call = qede_netdev_event,
205 };
206
207 static
208 int __init qede_init(void)
209 {
210         int ret;
211
212         pr_notice("qede_init: %s\n", version);
213
214         qed_ops = qed_get_eth_ops();
215         if (!qed_ops) {
216                 pr_notice("Failed to get qed ethtool operations\n");
217                 return -EINVAL;
218         }
219
220         /* Must register notifier before pci ops, since we might miss
221          * interface rename after pci probe and netdev registeration.
222          */
223         ret = register_netdevice_notifier(&qede_netdev_notifier);
224         if (ret) {
225                 pr_notice("Failed to register netdevice_notifier\n");
226                 qed_put_eth_ops();
227                 return -EINVAL;
228         }
229
230         ret = pci_register_driver(&qede_pci_driver);
231         if (ret) {
232                 pr_notice("Failed to register driver\n");
233                 unregister_netdevice_notifier(&qede_netdev_notifier);
234                 qed_put_eth_ops();
235                 return -EINVAL;
236         }
237
238         return 0;
239 }
240
241 static void __exit qede_cleanup(void)
242 {
243         pr_notice("qede_cleanup called\n");
244
245         unregister_netdevice_notifier(&qede_netdev_notifier);
246         pci_unregister_driver(&qede_pci_driver);
247         qed_put_eth_ops();
248 }
249
250 module_init(qede_init);
251 module_exit(qede_cleanup);
252
253 /* -------------------------------------------------------------------------
254  * START OF FAST-PATH
255  * -------------------------------------------------------------------------
256  */
257
258 /* Unmap the data and free skb */
259 static int qede_free_tx_pkt(struct qede_dev *edev,
260                             struct qede_tx_queue *txq,
261                             int *len)
262 {
263         u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
264         struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
265         struct eth_tx_1st_bd *first_bd;
266         struct eth_tx_bd *tx_data_bd;
267         int bds_consumed = 0;
268         int nbds;
269         bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD;
270         int i, split_bd_len = 0;
271
272         if (unlikely(!skb)) {
273                 DP_ERR(edev,
274                        "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
275                        idx, txq->sw_tx_cons, txq->sw_tx_prod);
276                 return -1;
277         }
278
279         *len = skb->len;
280
281         first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
282
283         bds_consumed++;
284
285         nbds = first_bd->data.nbds;
286
287         if (data_split) {
288                 struct eth_tx_bd *split = (struct eth_tx_bd *)
289                         qed_chain_consume(&txq->tx_pbl);
290                 split_bd_len = BD_UNMAP_LEN(split);
291                 bds_consumed++;
292         }
293         dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
294                        BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
295
296         /* Unmap the data of the skb frags */
297         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
298                 tx_data_bd = (struct eth_tx_bd *)
299                         qed_chain_consume(&txq->tx_pbl);
300                 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
301                                BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
302         }
303
304         while (bds_consumed++ < nbds)
305                 qed_chain_consume(&txq->tx_pbl);
306
307         /* Free skb */
308         dev_kfree_skb_any(skb);
309         txq->sw_tx_ring[idx].skb = NULL;
310         txq->sw_tx_ring[idx].flags = 0;
311
312         return 0;
313 }
314
315 /* Unmap the data and free skb when mapping failed during start_xmit */
316 static void qede_free_failed_tx_pkt(struct qede_dev *edev,
317                                     struct qede_tx_queue *txq,
318                                     struct eth_tx_1st_bd *first_bd,
319                                     int nbd,
320                                     bool data_split)
321 {
322         u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
323         struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
324         struct eth_tx_bd *tx_data_bd;
325         int i, split_bd_len = 0;
326
327         /* Return prod to its position before this skb was handled */
328         qed_chain_set_prod(&txq->tx_pbl,
329                            le16_to_cpu(txq->tx_db.data.bd_prod),
330                            first_bd);
331
332         first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
333
334         if (data_split) {
335                 struct eth_tx_bd *split = (struct eth_tx_bd *)
336                                           qed_chain_produce(&txq->tx_pbl);
337                 split_bd_len = BD_UNMAP_LEN(split);
338                 nbd--;
339         }
340
341         dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
342                        BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
343
344         /* Unmap the data of the skb frags */
345         for (i = 0; i < nbd; i++) {
346                 tx_data_bd = (struct eth_tx_bd *)
347                         qed_chain_produce(&txq->tx_pbl);
348                 if (tx_data_bd->nbytes)
349                         dma_unmap_page(&edev->pdev->dev,
350                                        BD_UNMAP_ADDR(tx_data_bd),
351                                        BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
352         }
353
354         /* Return again prod to its position before this skb was handled */
355         qed_chain_set_prod(&txq->tx_pbl,
356                            le16_to_cpu(txq->tx_db.data.bd_prod),
357                            first_bd);
358
359         /* Free skb */
360         dev_kfree_skb_any(skb);
361         txq->sw_tx_ring[idx].skb = NULL;
362         txq->sw_tx_ring[idx].flags = 0;
363 }
364
365 static u32 qede_xmit_type(struct qede_dev *edev,
366                           struct sk_buff *skb,
367                           int *ipv6_ext)
368 {
369         u32 rc = XMIT_L4_CSUM;
370         __be16 l3_proto;
371
372         if (skb->ip_summed != CHECKSUM_PARTIAL)
373                 return XMIT_PLAIN;
374
375         l3_proto = vlan_get_protocol(skb);
376         if (l3_proto == htons(ETH_P_IPV6) &&
377             (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
378                 *ipv6_ext = 1;
379
380         if (skb->encapsulation)
381                 rc |= XMIT_ENC;
382
383         if (skb_is_gso(skb))
384                 rc |= XMIT_LSO;
385
386         return rc;
387 }
388
389 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
390                                          struct eth_tx_2nd_bd *second_bd,
391                                          struct eth_tx_3rd_bd *third_bd)
392 {
393         u8 l4_proto;
394         u16 bd2_bits1 = 0, bd2_bits2 = 0;
395
396         bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
397
398         bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
399                      ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
400                     << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
401
402         bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
403                       ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
404
405         if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
406                 l4_proto = ipv6_hdr(skb)->nexthdr;
407         else
408                 l4_proto = ip_hdr(skb)->protocol;
409
410         if (l4_proto == IPPROTO_UDP)
411                 bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
412
413         if (third_bd)
414                 third_bd->data.bitfields |=
415                         cpu_to_le16(((tcp_hdrlen(skb) / 4) &
416                                 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
417                                 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
418
419         second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
420         second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
421 }
422
423 static int map_frag_to_bd(struct qede_dev *edev,
424                           skb_frag_t *frag,
425                           struct eth_tx_bd *bd)
426 {
427         dma_addr_t mapping;
428
429         /* Map skb non-linear frag data for DMA */
430         mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0,
431                                    skb_frag_size(frag),
432                                    DMA_TO_DEVICE);
433         if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
434                 DP_NOTICE(edev, "Unable to map frag - dropping packet\n");
435                 return -ENOMEM;
436         }
437
438         /* Setup the data pointer of the frag data */
439         BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
440
441         return 0;
442 }
443
444 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
445 {
446         if (is_encap_pkt)
447                 return (skb_inner_transport_header(skb) +
448                         inner_tcp_hdrlen(skb) - skb->data);
449         else
450                 return (skb_transport_header(skb) +
451                         tcp_hdrlen(skb) - skb->data);
452 }
453
454 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
455 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
456 static bool qede_pkt_req_lin(struct qede_dev *edev, struct sk_buff *skb,
457                              u8 xmit_type)
458 {
459         int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
460
461         if (xmit_type & XMIT_LSO) {
462                 int hlen;
463
464                 hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
465
466                 /* linear payload would require its own BD */
467                 if (skb_headlen(skb) > hlen)
468                         allowed_frags--;
469         }
470
471         return (skb_shinfo(skb)->nr_frags > allowed_frags);
472 }
473 #endif
474
475 /* Main transmit function */
476 static
477 netdev_tx_t qede_start_xmit(struct sk_buff *skb,
478                             struct net_device *ndev)
479 {
480         struct qede_dev *edev = netdev_priv(ndev);
481         struct netdev_queue *netdev_txq;
482         struct qede_tx_queue *txq;
483         struct eth_tx_1st_bd *first_bd;
484         struct eth_tx_2nd_bd *second_bd = NULL;
485         struct eth_tx_3rd_bd *third_bd = NULL;
486         struct eth_tx_bd *tx_data_bd = NULL;
487         u16 txq_index;
488         u8 nbd = 0;
489         dma_addr_t mapping;
490         int rc, frag_idx = 0, ipv6_ext = 0;
491         u8 xmit_type;
492         u16 idx;
493         u16 hlen;
494         bool data_split = false;
495
496         /* Get tx-queue context and netdev index */
497         txq_index = skb_get_queue_mapping(skb);
498         WARN_ON(txq_index >= QEDE_TSS_CNT(edev));
499         txq = QEDE_TX_QUEUE(edev, txq_index);
500         netdev_txq = netdev_get_tx_queue(ndev, txq_index);
501
502         WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) <
503                                (MAX_SKB_FRAGS + 1));
504
505         xmit_type = qede_xmit_type(edev, skb, &ipv6_ext);
506
507 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
508         if (qede_pkt_req_lin(edev, skb, xmit_type)) {
509                 if (skb_linearize(skb)) {
510                         DP_NOTICE(edev,
511                                   "SKB linearization failed - silently dropping this SKB\n");
512                         dev_kfree_skb_any(skb);
513                         return NETDEV_TX_OK;
514                 }
515         }
516 #endif
517
518         /* Fill the entry in the SW ring and the BDs in the FW ring */
519         idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
520         txq->sw_tx_ring[idx].skb = skb;
521         first_bd = (struct eth_tx_1st_bd *)
522                    qed_chain_produce(&txq->tx_pbl);
523         memset(first_bd, 0, sizeof(*first_bd));
524         first_bd->data.bd_flags.bitfields =
525                 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
526
527         /* Map skb linear data for DMA and set in the first BD */
528         mapping = dma_map_single(&edev->pdev->dev, skb->data,
529                                  skb_headlen(skb), DMA_TO_DEVICE);
530         if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
531                 DP_NOTICE(edev, "SKB mapping failed\n");
532                 qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false);
533                 return NETDEV_TX_OK;
534         }
535         nbd++;
536         BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
537
538         /* In case there is IPv6 with extension headers or LSO we need 2nd and
539          * 3rd BDs.
540          */
541         if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
542                 second_bd = (struct eth_tx_2nd_bd *)
543                         qed_chain_produce(&txq->tx_pbl);
544                 memset(second_bd, 0, sizeof(*second_bd));
545
546                 nbd++;
547                 third_bd = (struct eth_tx_3rd_bd *)
548                         qed_chain_produce(&txq->tx_pbl);
549                 memset(third_bd, 0, sizeof(*third_bd));
550
551                 nbd++;
552                 /* We need to fill in additional data in second_bd... */
553                 tx_data_bd = (struct eth_tx_bd *)second_bd;
554         }
555
556         if (skb_vlan_tag_present(skb)) {
557                 first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
558                 first_bd->data.bd_flags.bitfields |=
559                         1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
560         }
561
562         /* Fill the parsing flags & params according to the requested offload */
563         if (xmit_type & XMIT_L4_CSUM) {
564                 u16 temp = 1 << ETH_TX_DATA_1ST_BD_TUNN_CFG_OVERRIDE_SHIFT;
565
566                 /* We don't re-calculate IP checksum as it is already done by
567                  * the upper stack
568                  */
569                 first_bd->data.bd_flags.bitfields |=
570                         1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
571
572                 if (xmit_type & XMIT_ENC) {
573                         first_bd->data.bd_flags.bitfields |=
574                                 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
575                 } else {
576                         /* In cases when OS doesn't indicate for inner offloads
577                          * when packet is tunnelled, we need to override the HW
578                          * tunnel configuration so that packets are treated as
579                          * regular non tunnelled packets and no inner offloads
580                          * are done by the hardware.
581                          */
582                         first_bd->data.bitfields |= cpu_to_le16(temp);
583                 }
584
585                 /* If the packet is IPv6 with extension header, indicate that
586                  * to FW and pass few params, since the device cracker doesn't
587                  * support parsing IPv6 with extension header/s.
588                  */
589                 if (unlikely(ipv6_ext))
590                         qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
591         }
592
593         if (xmit_type & XMIT_LSO) {
594                 first_bd->data.bd_flags.bitfields |=
595                         (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
596                 third_bd->data.lso_mss =
597                         cpu_to_le16(skb_shinfo(skb)->gso_size);
598
599                 if (unlikely(xmit_type & XMIT_ENC)) {
600                         first_bd->data.bd_flags.bitfields |=
601                                 1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
602                         hlen = qede_get_skb_hlen(skb, true);
603                 } else {
604                         first_bd->data.bd_flags.bitfields |=
605                                 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
606                         hlen = qede_get_skb_hlen(skb, false);
607                 }
608
609                 /* @@@TBD - if will not be removed need to check */
610                 third_bd->data.bitfields |=
611                         cpu_to_le16((1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT));
612
613                 /* Make life easier for FW guys who can't deal with header and
614                  * data on same BD. If we need to split, use the second bd...
615                  */
616                 if (unlikely(skb_headlen(skb) > hlen)) {
617                         DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
618                                    "TSO split header size is %d (%x:%x)\n",
619                                    first_bd->nbytes, first_bd->addr.hi,
620                                    first_bd->addr.lo);
621
622                         mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
623                                            le32_to_cpu(first_bd->addr.lo)) +
624                                            hlen;
625
626                         BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
627                                               le16_to_cpu(first_bd->nbytes) -
628                                               hlen);
629
630                         /* this marks the BD as one that has no
631                          * individual mapping
632                          */
633                         txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD;
634
635                         first_bd->nbytes = cpu_to_le16(hlen);
636
637                         tx_data_bd = (struct eth_tx_bd *)third_bd;
638                         data_split = true;
639                 }
640         }
641
642         /* Handle fragmented skb */
643         /* special handle for frags inside 2nd and 3rd bds.. */
644         while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
645                 rc = map_frag_to_bd(edev,
646                                     &skb_shinfo(skb)->frags[frag_idx],
647                                     tx_data_bd);
648                 if (rc) {
649                         qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
650                                                 data_split);
651                         return NETDEV_TX_OK;
652                 }
653
654                 if (tx_data_bd == (struct eth_tx_bd *)second_bd)
655                         tx_data_bd = (struct eth_tx_bd *)third_bd;
656                 else
657                         tx_data_bd = NULL;
658
659                 frag_idx++;
660         }
661
662         /* map last frags into 4th, 5th .... */
663         for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
664                 tx_data_bd = (struct eth_tx_bd *)
665                              qed_chain_produce(&txq->tx_pbl);
666
667                 memset(tx_data_bd, 0, sizeof(*tx_data_bd));
668
669                 rc = map_frag_to_bd(edev,
670                                     &skb_shinfo(skb)->frags[frag_idx],
671                                     tx_data_bd);
672                 if (rc) {
673                         qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
674                                                 data_split);
675                         return NETDEV_TX_OK;
676                 }
677         }
678
679         /* update the first BD with the actual num BDs */
680         first_bd->data.nbds = nbd;
681
682         netdev_tx_sent_queue(netdev_txq, skb->len);
683
684         skb_tx_timestamp(skb);
685
686         /* Advance packet producer only before sending the packet since mapping
687          * of pages may fail.
688          */
689         txq->sw_tx_prod++;
690
691         /* 'next page' entries are counted in the producer value */
692         txq->tx_db.data.bd_prod =
693                 cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
694
695         /* wmb makes sure that the BDs data is updated before updating the
696          * producer, otherwise FW may read old data from the BDs.
697          */
698         wmb();
699         barrier();
700         writel(txq->tx_db.raw, txq->doorbell_addr);
701
702         /* mmiowb is needed to synchronize doorbell writes from more than one
703          * processor. It guarantees that the write arrives to the device before
704          * the queue lock is released and another start_xmit is called (possibly
705          * on another CPU). Without this barrier, the next doorbell can bypass
706          * this doorbell. This is applicable to IA64/Altix systems.
707          */
708         mmiowb();
709
710         if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
711                       < (MAX_SKB_FRAGS + 1))) {
712                 netif_tx_stop_queue(netdev_txq);
713                 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
714                            "Stop queue was called\n");
715                 /* paired memory barrier is in qede_tx_int(), we have to keep
716                  * ordering of set_bit() in netif_tx_stop_queue() and read of
717                  * fp->bd_tx_cons
718                  */
719                 smp_mb();
720
721                 if (qed_chain_get_elem_left(&txq->tx_pbl)
722                      >= (MAX_SKB_FRAGS + 1) &&
723                     (edev->state == QEDE_STATE_OPEN)) {
724                         netif_tx_wake_queue(netdev_txq);
725                         DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
726                                    "Wake queue was called\n");
727                 }
728         }
729
730         return NETDEV_TX_OK;
731 }
732
733 int qede_txq_has_work(struct qede_tx_queue *txq)
734 {
735         u16 hw_bd_cons;
736
737         /* Tell compiler that consumer and producer can change */
738         barrier();
739         hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
740         if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
741                 return 0;
742
743         return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
744 }
745
746 static int qede_tx_int(struct qede_dev *edev,
747                        struct qede_tx_queue *txq)
748 {
749         struct netdev_queue *netdev_txq;
750         u16 hw_bd_cons;
751         unsigned int pkts_compl = 0, bytes_compl = 0;
752         int rc;
753
754         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
755
756         hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
757         barrier();
758
759         while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
760                 int len = 0;
761
762                 rc = qede_free_tx_pkt(edev, txq, &len);
763                 if (rc) {
764                         DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
765                                   hw_bd_cons,
766                                   qed_chain_get_cons_idx(&txq->tx_pbl));
767                         break;
768                 }
769
770                 bytes_compl += len;
771                 pkts_compl++;
772                 txq->sw_tx_cons++;
773         }
774
775         netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
776
777         /* Need to make the tx_bd_cons update visible to start_xmit()
778          * before checking for netif_tx_queue_stopped().  Without the
779          * memory barrier, there is a small possibility that
780          * start_xmit() will miss it and cause the queue to be stopped
781          * forever.
782          * On the other hand we need an rmb() here to ensure the proper
783          * ordering of bit testing in the following
784          * netif_tx_queue_stopped(txq) call.
785          */
786         smp_mb();
787
788         if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
789                 /* Taking tx_lock is needed to prevent reenabling the queue
790                  * while it's empty. This could have happen if rx_action() gets
791                  * suspended in qede_tx_int() after the condition before
792                  * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
793                  *
794                  * stops the queue->sees fresh tx_bd_cons->releases the queue->
795                  * sends some packets consuming the whole queue again->
796                  * stops the queue
797                  */
798
799                 __netif_tx_lock(netdev_txq, smp_processor_id());
800
801                 if ((netif_tx_queue_stopped(netdev_txq)) &&
802                     (edev->state == QEDE_STATE_OPEN) &&
803                     (qed_chain_get_elem_left(&txq->tx_pbl)
804                       >= (MAX_SKB_FRAGS + 1))) {
805                         netif_tx_wake_queue(netdev_txq);
806                         DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
807                                    "Wake queue was called\n");
808                 }
809
810                 __netif_tx_unlock(netdev_txq);
811         }
812
813         return 0;
814 }
815
816 bool qede_has_rx_work(struct qede_rx_queue *rxq)
817 {
818         u16 hw_comp_cons, sw_comp_cons;
819
820         /* Tell compiler that status block fields can change */
821         barrier();
822
823         hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
824         sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
825
826         return hw_comp_cons != sw_comp_cons;
827 }
828
829 static bool qede_has_tx_work(struct qede_fastpath *fp)
830 {
831         u8 tc;
832
833         for (tc = 0; tc < fp->edev->num_tc; tc++)
834                 if (qede_txq_has_work(&fp->txqs[tc]))
835                         return true;
836         return false;
837 }
838
839 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
840 {
841         qed_chain_consume(&rxq->rx_bd_ring);
842         rxq->sw_rx_cons++;
843 }
844
845 /* This function reuses the buffer(from an offset) from
846  * consumer index to producer index in the bd ring
847  */
848 static inline void qede_reuse_page(struct qede_dev *edev,
849                                    struct qede_rx_queue *rxq,
850                                    struct sw_rx_data *curr_cons)
851 {
852         struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
853         struct sw_rx_data *curr_prod;
854         dma_addr_t new_mapping;
855
856         curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
857         *curr_prod = *curr_cons;
858
859         new_mapping = curr_prod->mapping + curr_prod->page_offset;
860
861         rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
862         rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping));
863
864         rxq->sw_rx_prod++;
865         curr_cons->data = NULL;
866 }
867
868 /* In case of allocation failures reuse buffers
869  * from consumer index to produce buffers for firmware
870  */
871 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
872                              struct qede_dev *edev, u8 count)
873 {
874         struct sw_rx_data *curr_cons;
875
876         for (; count > 0; count--) {
877                 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
878                 qede_reuse_page(edev, rxq, curr_cons);
879                 qede_rx_bd_ring_consume(rxq);
880         }
881 }
882
883 static inline int qede_realloc_rx_buffer(struct qede_dev *edev,
884                                          struct qede_rx_queue *rxq,
885                                          struct sw_rx_data *curr_cons)
886 {
887         /* Move to the next segment in the page */
888         curr_cons->page_offset += rxq->rx_buf_seg_size;
889
890         if (curr_cons->page_offset == PAGE_SIZE) {
891                 if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
892                         /* Since we failed to allocate new buffer
893                          * current buffer can be used again.
894                          */
895                         curr_cons->page_offset -= rxq->rx_buf_seg_size;
896
897                         return -ENOMEM;
898                 }
899
900                 dma_unmap_page(&edev->pdev->dev, curr_cons->mapping,
901                                PAGE_SIZE, DMA_FROM_DEVICE);
902         } else {
903                 /* Increment refcount of the page as we don't want
904                  * network stack to take the ownership of the page
905                  * which can be recycled multiple times by the driver.
906                  */
907                 atomic_inc(&curr_cons->data->_count);
908                 qede_reuse_page(edev, rxq, curr_cons);
909         }
910
911         return 0;
912 }
913
914 static inline void qede_update_rx_prod(struct qede_dev *edev,
915                                        struct qede_rx_queue *rxq)
916 {
917         u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
918         u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
919         struct eth_rx_prod_data rx_prods = {0};
920
921         /* Update producers */
922         rx_prods.bd_prod = cpu_to_le16(bd_prod);
923         rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
924
925         /* Make sure that the BD and SGE data is updated before updating the
926          * producers since FW might read the BD/SGE right after the producer
927          * is updated.
928          */
929         wmb();
930
931         internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
932                         (u32 *)&rx_prods);
933
934         /* mmiowb is needed to synchronize doorbell writes from more than one
935          * processor. It guarantees that the write arrives to the device before
936          * the napi lock is released and another qede_poll is called (possibly
937          * on another CPU). Without this barrier, the next doorbell can bypass
938          * this doorbell. This is applicable to IA64/Altix systems.
939          */
940         mmiowb();
941 }
942
943 static u32 qede_get_rxhash(struct qede_dev *edev,
944                            u8 bitfields,
945                            __le32 rss_hash,
946                            enum pkt_hash_types *rxhash_type)
947 {
948         enum rss_hash_type htype;
949
950         htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
951
952         if ((edev->ndev->features & NETIF_F_RXHASH) && htype) {
953                 *rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
954                                 (htype == RSS_HASH_TYPE_IPV6)) ?
955                                 PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
956                 return le32_to_cpu(rss_hash);
957         }
958         *rxhash_type = PKT_HASH_TYPE_NONE;
959         return 0;
960 }
961
962 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
963 {
964         skb_checksum_none_assert(skb);
965
966         if (csum_flag & QEDE_CSUM_UNNECESSARY)
967                 skb->ip_summed = CHECKSUM_UNNECESSARY;
968
969         if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY)
970                 skb->csum_level = 1;
971 }
972
973 static inline void qede_skb_receive(struct qede_dev *edev,
974                                     struct qede_fastpath *fp,
975                                     struct sk_buff *skb,
976                                     u16 vlan_tag)
977 {
978         if (vlan_tag)
979                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
980                                        vlan_tag);
981
982         napi_gro_receive(&fp->napi, skb);
983 }
984
985 static void qede_set_gro_params(struct qede_dev *edev,
986                                 struct sk_buff *skb,
987                                 struct eth_fast_path_rx_tpa_start_cqe *cqe)
988 {
989         u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
990
991         if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
992             PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
993                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
994         else
995                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
996
997         skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
998                                         cqe->header_len;
999 }
1000
1001 static int qede_fill_frag_skb(struct qede_dev *edev,
1002                               struct qede_rx_queue *rxq,
1003                               u8 tpa_agg_index,
1004                               u16 len_on_bd)
1005 {
1006         struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
1007                                                          NUM_RX_BDS_MAX];
1008         struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
1009         struct sk_buff *skb = tpa_info->skb;
1010
1011         if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1012                 goto out;
1013
1014         /* Add one frag and update the appropriate fields in the skb */
1015         skb_fill_page_desc(skb, tpa_info->frag_id++,
1016                            current_bd->data, current_bd->page_offset,
1017                            len_on_bd);
1018
1019         if (unlikely(qede_realloc_rx_buffer(edev, rxq, current_bd))) {
1020                 /* Incr page ref count to reuse on allocation failure
1021                  * so that it doesn't get freed while freeing SKB.
1022                  */
1023                 atomic_inc(&current_bd->data->_count);
1024                 goto out;
1025         }
1026
1027         qed_chain_consume(&rxq->rx_bd_ring);
1028         rxq->sw_rx_cons++;
1029
1030         skb->data_len += len_on_bd;
1031         skb->truesize += rxq->rx_buf_seg_size;
1032         skb->len += len_on_bd;
1033
1034         return 0;
1035
1036 out:
1037         tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1038         qede_recycle_rx_bd_ring(rxq, edev, 1);
1039         return -ENOMEM;
1040 }
1041
1042 static void qede_tpa_start(struct qede_dev *edev,
1043                            struct qede_rx_queue *rxq,
1044                            struct eth_fast_path_rx_tpa_start_cqe *cqe)
1045 {
1046         struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1047         struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
1048         struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
1049         struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
1050         dma_addr_t mapping = tpa_info->replace_buf_mapping;
1051         struct sw_rx_data *sw_rx_data_cons;
1052         struct sw_rx_data *sw_rx_data_prod;
1053         enum pkt_hash_types rxhash_type;
1054         u32 rxhash;
1055
1056         sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
1057         sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
1058
1059         /* Use pre-allocated replacement buffer - we can't release the agg.
1060          * start until its over and we don't want to risk allocation failing
1061          * here, so re-allocate when aggregation will be over.
1062          */
1063         dma_unmap_addr_set(sw_rx_data_prod, mapping,
1064                            dma_unmap_addr(replace_buf, mapping));
1065
1066         sw_rx_data_prod->data = replace_buf->data;
1067         rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
1068         rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
1069         sw_rx_data_prod->page_offset = replace_buf->page_offset;
1070
1071         rxq->sw_rx_prod++;
1072
1073         /* move partial skb from cons to pool (don't unmap yet)
1074          * save mapping, incase we drop the packet later on.
1075          */
1076         tpa_info->start_buf = *sw_rx_data_cons;
1077         mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
1078                            le32_to_cpu(rx_bd_cons->addr.lo));
1079
1080         tpa_info->start_buf_mapping = mapping;
1081         rxq->sw_rx_cons++;
1082
1083         /* set tpa state to start only if we are able to allocate skb
1084          * for this aggregation, otherwise mark as error and aggregation will
1085          * be dropped
1086          */
1087         tpa_info->skb = netdev_alloc_skb(edev->ndev,
1088                                          le16_to_cpu(cqe->len_on_first_bd));
1089         if (unlikely(!tpa_info->skb)) {
1090                 DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
1091                 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1092                 goto cons_buf;
1093         }
1094
1095         skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
1096         memcpy(&tpa_info->start_cqe, cqe, sizeof(tpa_info->start_cqe));
1097
1098         /* Start filling in the aggregation info */
1099         tpa_info->frag_id = 0;
1100         tpa_info->agg_state = QEDE_AGG_STATE_START;
1101
1102         rxhash = qede_get_rxhash(edev, cqe->bitfields,
1103                                  cqe->rss_hash, &rxhash_type);
1104         skb_set_hash(tpa_info->skb, rxhash, rxhash_type);
1105         if ((le16_to_cpu(cqe->pars_flags.flags) >>
1106              PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
1107                     PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
1108                 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
1109         else
1110                 tpa_info->vlan_tag = 0;
1111
1112         /* This is needed in order to enable forwarding support */
1113         qede_set_gro_params(edev, tpa_info->skb, cqe);
1114
1115 cons_buf: /* We still need to handle bd_len_list to consume buffers */
1116         if (likely(cqe->ext_bd_len_list[0]))
1117                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1118                                    le16_to_cpu(cqe->ext_bd_len_list[0]));
1119
1120         if (unlikely(cqe->ext_bd_len_list[1])) {
1121                 DP_ERR(edev,
1122                        "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
1123                 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1124         }
1125 }
1126
1127 #ifdef CONFIG_INET
1128 static void qede_gro_ip_csum(struct sk_buff *skb)
1129 {
1130         const struct iphdr *iph = ip_hdr(skb);
1131         struct tcphdr *th;
1132
1133         skb_set_transport_header(skb, sizeof(struct iphdr));
1134         th = tcp_hdr(skb);
1135
1136         th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
1137                                   iph->saddr, iph->daddr, 0);
1138
1139         tcp_gro_complete(skb);
1140 }
1141
1142 static void qede_gro_ipv6_csum(struct sk_buff *skb)
1143 {
1144         struct ipv6hdr *iph = ipv6_hdr(skb);
1145         struct tcphdr *th;
1146
1147         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
1148         th = tcp_hdr(skb);
1149
1150         th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
1151                                   &iph->saddr, &iph->daddr, 0);
1152         tcp_gro_complete(skb);
1153 }
1154 #endif
1155
1156 static void qede_gro_receive(struct qede_dev *edev,
1157                              struct qede_fastpath *fp,
1158                              struct sk_buff *skb,
1159                              u16 vlan_tag)
1160 {
1161         /* FW can send a single MTU sized packet from gro flow
1162          * due to aggregation timeout/last segment etc. which
1163          * is not expected to be a gro packet. If a skb has zero
1164          * frags then simply push it in the stack as non gso skb.
1165          */
1166         if (unlikely(!skb->data_len)) {
1167                 skb_shinfo(skb)->gso_type = 0;
1168                 skb_shinfo(skb)->gso_size = 0;
1169                 goto send_skb;
1170         }
1171
1172 #ifdef CONFIG_INET
1173         if (skb_shinfo(skb)->gso_size) {
1174                 skb_set_network_header(skb, 0);
1175
1176                 switch (skb->protocol) {
1177                 case htons(ETH_P_IP):
1178                         qede_gro_ip_csum(skb);
1179                         break;
1180                 case htons(ETH_P_IPV6):
1181                         qede_gro_ipv6_csum(skb);
1182                         break;
1183                 default:
1184                         DP_ERR(edev,
1185                                "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
1186                                ntohs(skb->protocol));
1187                 }
1188         }
1189 #endif
1190
1191 send_skb:
1192         skb_record_rx_queue(skb, fp->rss_id);
1193         qede_skb_receive(edev, fp, skb, vlan_tag);
1194 }
1195
1196 static inline void qede_tpa_cont(struct qede_dev *edev,
1197                                  struct qede_rx_queue *rxq,
1198                                  struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1199 {
1200         int i;
1201
1202         for (i = 0; cqe->len_list[i]; i++)
1203                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1204                                    le16_to_cpu(cqe->len_list[i]));
1205
1206         if (unlikely(i > 1))
1207                 DP_ERR(edev,
1208                        "Strange - TPA cont with more than a single len_list entry\n");
1209 }
1210
1211 static void qede_tpa_end(struct qede_dev *edev,
1212                          struct qede_fastpath *fp,
1213                          struct eth_fast_path_rx_tpa_end_cqe *cqe)
1214 {
1215         struct qede_rx_queue *rxq = fp->rxq;
1216         struct qede_agg_info *tpa_info;
1217         struct sk_buff *skb;
1218         int i;
1219
1220         tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1221         skb = tpa_info->skb;
1222
1223         for (i = 0; cqe->len_list[i]; i++)
1224                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1225                                    le16_to_cpu(cqe->len_list[i]));
1226         if (unlikely(i > 1))
1227                 DP_ERR(edev,
1228                        "Strange - TPA emd with more than a single len_list entry\n");
1229
1230         if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1231                 goto err;
1232
1233         /* Sanity */
1234         if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
1235                 DP_ERR(edev,
1236                        "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
1237                        cqe->num_of_bds, tpa_info->frag_id);
1238         if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
1239                 DP_ERR(edev,
1240                        "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
1241                        le16_to_cpu(cqe->total_packet_len), skb->len);
1242
1243         memcpy(skb->data,
1244                page_address(tpa_info->start_buf.data) +
1245                 tpa_info->start_cqe.placement_offset +
1246                 tpa_info->start_buf.page_offset,
1247                le16_to_cpu(tpa_info->start_cqe.len_on_first_bd));
1248
1249         /* Recycle [mapped] start buffer for the next replacement */
1250         tpa_info->replace_buf = tpa_info->start_buf;
1251         tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1252
1253         /* Finalize the SKB */
1254         skb->protocol = eth_type_trans(skb, edev->ndev);
1255         skb->ip_summed = CHECKSUM_UNNECESSARY;
1256
1257         /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
1258          * to skb_shinfo(skb)->gso_segs
1259          */
1260         NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
1261
1262         qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
1263
1264         tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1265
1266         return;
1267 err:
1268         /* The BD starting the aggregation is still mapped; Re-use it for
1269          * future aggregations [as replacement buffer]
1270          */
1271         memcpy(&tpa_info->replace_buf, &tpa_info->start_buf,
1272                sizeof(struct sw_rx_data));
1273         tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1274         tpa_info->start_buf.data = NULL;
1275         tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1276         dev_kfree_skb_any(tpa_info->skb);
1277         tpa_info->skb = NULL;
1278 }
1279
1280 static bool qede_tunn_exist(u16 flag)
1281 {
1282         return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
1283                           PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
1284 }
1285
1286 static u8 qede_check_tunn_csum(u16 flag)
1287 {
1288         u16 csum_flag = 0;
1289         u8 tcsum = 0;
1290
1291         if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
1292                     PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
1293                 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
1294                              PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
1295
1296         if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1297                     PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1298                 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1299                              PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1300                 tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
1301         }
1302
1303         csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
1304                      PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
1305                      PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1306                      PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1307
1308         if (csum_flag & flag)
1309                 return QEDE_CSUM_ERROR;
1310
1311         return QEDE_CSUM_UNNECESSARY | tcsum;
1312 }
1313
1314 static u8 qede_check_notunn_csum(u16 flag)
1315 {
1316         u16 csum_flag = 0;
1317         u8 csum = 0;
1318
1319         if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1320                     PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1321                 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1322                              PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1323                 csum = QEDE_CSUM_UNNECESSARY;
1324         }
1325
1326         csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1327                      PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1328
1329         if (csum_flag & flag)
1330                 return QEDE_CSUM_ERROR;
1331
1332         return csum;
1333 }
1334
1335 static u8 qede_check_csum(u16 flag)
1336 {
1337         if (!qede_tunn_exist(flag))
1338                 return qede_check_notunn_csum(flag);
1339         else
1340                 return qede_check_tunn_csum(flag);
1341 }
1342
1343 static int qede_rx_int(struct qede_fastpath *fp, int budget)
1344 {
1345         struct qede_dev *edev = fp->edev;
1346         struct qede_rx_queue *rxq = fp->rxq;
1347
1348         u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag;
1349         int rx_pkt = 0;
1350         u8 csum_flag;
1351
1352         hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1353         sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1354
1355         /* Memory barrier to prevent the CPU from doing speculative reads of CQE
1356          * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1357          * read before it is written by FW, then FW writes CQE and SB, and then
1358          * the CPU reads the hw_comp_cons, it will use an old CQE.
1359          */
1360         rmb();
1361
1362         /* Loop to complete all indicated BDs */
1363         while (sw_comp_cons != hw_comp_cons) {
1364                 struct eth_fast_path_rx_reg_cqe *fp_cqe;
1365                 enum pkt_hash_types rxhash_type;
1366                 enum eth_rx_cqe_type cqe_type;
1367                 struct sw_rx_data *sw_rx_data;
1368                 union eth_rx_cqe *cqe;
1369                 struct sk_buff *skb;
1370                 struct page *data;
1371                 __le16 flags;
1372                 u16 len, pad;
1373                 u32 rx_hash;
1374
1375                 /* Get the CQE from the completion ring */
1376                 cqe = (union eth_rx_cqe *)
1377                         qed_chain_consume(&rxq->rx_comp_ring);
1378                 cqe_type = cqe->fast_path_regular.type;
1379
1380                 if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1381                         edev->ops->eth_cqe_completion(
1382                                         edev->cdev, fp->rss_id,
1383                                         (struct eth_slow_path_rx_cqe *)cqe);
1384                         goto next_cqe;
1385                 }
1386
1387                 if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) {
1388                         switch (cqe_type) {
1389                         case ETH_RX_CQE_TYPE_TPA_START:
1390                                 qede_tpa_start(edev, rxq,
1391                                                &cqe->fast_path_tpa_start);
1392                                 goto next_cqe;
1393                         case ETH_RX_CQE_TYPE_TPA_CONT:
1394                                 qede_tpa_cont(edev, rxq,
1395                                               &cqe->fast_path_tpa_cont);
1396                                 goto next_cqe;
1397                         case ETH_RX_CQE_TYPE_TPA_END:
1398                                 qede_tpa_end(edev, fp,
1399                                              &cqe->fast_path_tpa_end);
1400                                 goto next_rx_only;
1401                         default:
1402                                 break;
1403                         }
1404                 }
1405
1406                 /* Get the data from the SW ring */
1407                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1408                 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1409                 data = sw_rx_data->data;
1410
1411                 fp_cqe = &cqe->fast_path_regular;
1412                 len =  le16_to_cpu(fp_cqe->len_on_first_bd);
1413                 pad = fp_cqe->placement_offset;
1414                 flags = cqe->fast_path_regular.pars_flags.flags;
1415
1416                 /* If this is an error packet then drop it */
1417                 parse_flag = le16_to_cpu(flags);
1418
1419                 csum_flag = qede_check_csum(parse_flag);
1420                 if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1421                         DP_NOTICE(edev,
1422                                   "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n",
1423                                   sw_comp_cons, parse_flag);
1424                         rxq->rx_hw_errors++;
1425                         qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1426                         goto next_cqe;
1427                 }
1428
1429                 skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
1430                 if (unlikely(!skb)) {
1431                         DP_NOTICE(edev,
1432                                   "Build_skb failed, dropping incoming packet\n");
1433                         qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1434                         rxq->rx_alloc_errors++;
1435                         goto next_cqe;
1436                 }
1437
1438                 /* Copy data into SKB */
1439                 if (len + pad <= QEDE_RX_HDR_SIZE) {
1440                         memcpy(skb_put(skb, len),
1441                                page_address(data) + pad +
1442                                 sw_rx_data->page_offset, len);
1443                         qede_reuse_page(edev, rxq, sw_rx_data);
1444                 } else {
1445                         struct skb_frag_struct *frag;
1446                         unsigned int pull_len;
1447                         unsigned char *va;
1448
1449                         frag = &skb_shinfo(skb)->frags[0];
1450
1451                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, data,
1452                                         pad + sw_rx_data->page_offset,
1453                                         len, rxq->rx_buf_seg_size);
1454
1455                         va = skb_frag_address(frag);
1456                         pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
1457
1458                         /* Align the pull_len to optimize memcpy */
1459                         memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
1460
1461                         skb_frag_size_sub(frag, pull_len);
1462                         frag->page_offset += pull_len;
1463                         skb->data_len -= pull_len;
1464                         skb->tail += pull_len;
1465
1466                         if (unlikely(qede_realloc_rx_buffer(edev, rxq,
1467                                                             sw_rx_data))) {
1468                                 DP_ERR(edev, "Failed to allocate rx buffer\n");
1469                                 /* Incr page ref count to reuse on allocation
1470                                  * failure so that it doesn't get freed while
1471                                  * freeing SKB.
1472                                  */
1473
1474                                 atomic_inc(&sw_rx_data->data->_count);
1475                                 rxq->rx_alloc_errors++;
1476                                 qede_recycle_rx_bd_ring(rxq, edev,
1477                                                         fp_cqe->bd_num);
1478                                 dev_kfree_skb_any(skb);
1479                                 goto next_cqe;
1480                         }
1481                 }
1482
1483                 qede_rx_bd_ring_consume(rxq);
1484
1485                 if (fp_cqe->bd_num != 1) {
1486                         u16 pkt_len = le16_to_cpu(fp_cqe->pkt_len);
1487                         u8 num_frags;
1488
1489                         pkt_len -= len;
1490
1491                         for (num_frags = fp_cqe->bd_num - 1; num_frags > 0;
1492                              num_frags--) {
1493                                 u16 cur_size = pkt_len > rxq->rx_buf_size ?
1494                                                 rxq->rx_buf_size : pkt_len;
1495                                 if (unlikely(!cur_size)) {
1496                                         DP_ERR(edev,
1497                                                "Still got %d BDs for mapping jumbo, but length became 0\n",
1498                                                num_frags);
1499                                         qede_recycle_rx_bd_ring(rxq, edev,
1500                                                                 num_frags);
1501                                         dev_kfree_skb_any(skb);
1502                                         goto next_cqe;
1503                                 }
1504
1505                                 if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
1506                                         qede_recycle_rx_bd_ring(rxq, edev,
1507                                                                 num_frags);
1508                                         dev_kfree_skb_any(skb);
1509                                         goto next_cqe;
1510                                 }
1511
1512                                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1513                                 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1514                                 qede_rx_bd_ring_consume(rxq);
1515
1516                                 dma_unmap_page(&edev->pdev->dev,
1517                                                sw_rx_data->mapping,
1518                                                PAGE_SIZE, DMA_FROM_DEVICE);
1519
1520                                 skb_fill_page_desc(skb,
1521                                                    skb_shinfo(skb)->nr_frags++,
1522                                                    sw_rx_data->data, 0,
1523                                                    cur_size);
1524
1525                                 skb->truesize += PAGE_SIZE;
1526                                 skb->data_len += cur_size;
1527                                 skb->len += cur_size;
1528                                 pkt_len -= cur_size;
1529                         }
1530
1531                         if (unlikely(pkt_len))
1532                                 DP_ERR(edev,
1533                                        "Mapped all BDs of jumbo, but still have %d bytes\n",
1534                                        pkt_len);
1535                 }
1536
1537                 skb->protocol = eth_type_trans(skb, edev->ndev);
1538
1539                 rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields,
1540                                           fp_cqe->rss_hash,
1541                                           &rxhash_type);
1542
1543                 skb_set_hash(skb, rx_hash, rxhash_type);
1544
1545                 qede_set_skb_csum(skb, csum_flag);
1546
1547                 skb_record_rx_queue(skb, fp->rss_id);
1548
1549                 qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag));
1550 next_rx_only:
1551                 rx_pkt++;
1552
1553 next_cqe: /* don't consume bd rx buffer */
1554                 qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1555                 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1556                 /* CR TPA - revisit how to handle budget in TPA perhaps
1557                  * increase on "end"
1558                  */
1559                 if (rx_pkt == budget)
1560                         break;
1561         } /* repeat while sw_comp_cons != hw_comp_cons... */
1562
1563         /* Update producers */
1564         qede_update_rx_prod(edev, rxq);
1565
1566         return rx_pkt;
1567 }
1568
1569 static int qede_poll(struct napi_struct *napi, int budget)
1570 {
1571         int work_done = 0;
1572         struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1573                                                  napi);
1574         struct qede_dev *edev = fp->edev;
1575
1576         while (1) {
1577                 u8 tc;
1578
1579                 for (tc = 0; tc < edev->num_tc; tc++)
1580                         if (qede_txq_has_work(&fp->txqs[tc]))
1581                                 qede_tx_int(edev, &fp->txqs[tc]);
1582
1583                 if (qede_has_rx_work(fp->rxq)) {
1584                         work_done += qede_rx_int(fp, budget - work_done);
1585
1586                         /* must not complete if we consumed full budget */
1587                         if (work_done >= budget)
1588                                 break;
1589                 }
1590
1591                 /* Fall out from the NAPI loop if needed */
1592                 if (!(qede_has_rx_work(fp->rxq) || qede_has_tx_work(fp))) {
1593                         qed_sb_update_sb_idx(fp->sb_info);
1594                         /* *_has_*_work() reads the status block,
1595                          * thus we need to ensure that status block indices
1596                          * have been actually read (qed_sb_update_sb_idx)
1597                          * prior to this check (*_has_*_work) so that
1598                          * we won't write the "newer" value of the status block
1599                          * to HW (if there was a DMA right after
1600                          * qede_has_rx_work and if there is no rmb, the memory
1601                          * reading (qed_sb_update_sb_idx) may be postponed
1602                          * to right before *_ack_sb). In this case there
1603                          * will never be another interrupt until there is
1604                          * another update of the status block, while there
1605                          * is still unhandled work.
1606                          */
1607                         rmb();
1608
1609                         if (!(qede_has_rx_work(fp->rxq) ||
1610                               qede_has_tx_work(fp))) {
1611                                 napi_complete(napi);
1612                                 /* Update and reenable interrupts */
1613                                 qed_sb_ack(fp->sb_info, IGU_INT_ENABLE,
1614                                            1 /*update*/);
1615                                 break;
1616                         }
1617                 }
1618         }
1619
1620         return work_done;
1621 }
1622
1623 static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1624 {
1625         struct qede_fastpath *fp = fp_cookie;
1626
1627         qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1628
1629         napi_schedule_irqoff(&fp->napi);
1630         return IRQ_HANDLED;
1631 }
1632
1633 /* -------------------------------------------------------------------------
1634  * END OF FAST-PATH
1635  * -------------------------------------------------------------------------
1636  */
1637
1638 static int qede_open(struct net_device *ndev);
1639 static int qede_close(struct net_device *ndev);
1640 static int qede_set_mac_addr(struct net_device *ndev, void *p);
1641 static void qede_set_rx_mode(struct net_device *ndev);
1642 static void qede_config_rx_mode(struct net_device *ndev);
1643
1644 static int qede_set_ucast_rx_mac(struct qede_dev *edev,
1645                                  enum qed_filter_xcast_params_type opcode,
1646                                  unsigned char mac[ETH_ALEN])
1647 {
1648         struct qed_filter_params filter_cmd;
1649
1650         memset(&filter_cmd, 0, sizeof(filter_cmd));
1651         filter_cmd.type = QED_FILTER_TYPE_UCAST;
1652         filter_cmd.filter.ucast.type = opcode;
1653         filter_cmd.filter.ucast.mac_valid = 1;
1654         ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
1655
1656         return edev->ops->filter_config(edev->cdev, &filter_cmd);
1657 }
1658
1659 static int qede_set_ucast_rx_vlan(struct qede_dev *edev,
1660                                   enum qed_filter_xcast_params_type opcode,
1661                                   u16 vid)
1662 {
1663         struct qed_filter_params filter_cmd;
1664
1665         memset(&filter_cmd, 0, sizeof(filter_cmd));
1666         filter_cmd.type = QED_FILTER_TYPE_UCAST;
1667         filter_cmd.filter.ucast.type = opcode;
1668         filter_cmd.filter.ucast.vlan_valid = 1;
1669         filter_cmd.filter.ucast.vlan = vid;
1670
1671         return edev->ops->filter_config(edev->cdev, &filter_cmd);
1672 }
1673
1674 void qede_fill_by_demand_stats(struct qede_dev *edev)
1675 {
1676         struct qed_eth_stats stats;
1677
1678         edev->ops->get_vport_stats(edev->cdev, &stats);
1679         edev->stats.no_buff_discards = stats.no_buff_discards;
1680         edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes;
1681         edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes;
1682         edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes;
1683         edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts;
1684         edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts;
1685         edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts;
1686         edev->stats.mftag_filter_discards = stats.mftag_filter_discards;
1687         edev->stats.mac_filter_discards = stats.mac_filter_discards;
1688
1689         edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes;
1690         edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes;
1691         edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes;
1692         edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts;
1693         edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts;
1694         edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts;
1695         edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts;
1696         edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts;
1697         edev->stats.coalesced_events = stats.tpa_coalesced_events;
1698         edev->stats.coalesced_aborts_num = stats.tpa_aborts_num;
1699         edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts;
1700         edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes;
1701
1702         edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets;
1703         edev->stats.rx_65_to_127_byte_packets = stats.rx_65_to_127_byte_packets;
1704         edev->stats.rx_128_to_255_byte_packets =
1705                                 stats.rx_128_to_255_byte_packets;
1706         edev->stats.rx_256_to_511_byte_packets =
1707                                 stats.rx_256_to_511_byte_packets;
1708         edev->stats.rx_512_to_1023_byte_packets =
1709                                 stats.rx_512_to_1023_byte_packets;
1710         edev->stats.rx_1024_to_1518_byte_packets =
1711                                 stats.rx_1024_to_1518_byte_packets;
1712         edev->stats.rx_1519_to_1522_byte_packets =
1713                                 stats.rx_1519_to_1522_byte_packets;
1714         edev->stats.rx_1519_to_2047_byte_packets =
1715                                 stats.rx_1519_to_2047_byte_packets;
1716         edev->stats.rx_2048_to_4095_byte_packets =
1717                                 stats.rx_2048_to_4095_byte_packets;
1718         edev->stats.rx_4096_to_9216_byte_packets =
1719                                 stats.rx_4096_to_9216_byte_packets;
1720         edev->stats.rx_9217_to_16383_byte_packets =
1721                                 stats.rx_9217_to_16383_byte_packets;
1722         edev->stats.rx_crc_errors = stats.rx_crc_errors;
1723         edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames;
1724         edev->stats.rx_pause_frames = stats.rx_pause_frames;
1725         edev->stats.rx_pfc_frames = stats.rx_pfc_frames;
1726         edev->stats.rx_align_errors = stats.rx_align_errors;
1727         edev->stats.rx_carrier_errors = stats.rx_carrier_errors;
1728         edev->stats.rx_oversize_packets = stats.rx_oversize_packets;
1729         edev->stats.rx_jabbers = stats.rx_jabbers;
1730         edev->stats.rx_undersize_packets = stats.rx_undersize_packets;
1731         edev->stats.rx_fragments = stats.rx_fragments;
1732         edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets;
1733         edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets;
1734         edev->stats.tx_128_to_255_byte_packets =
1735                                 stats.tx_128_to_255_byte_packets;
1736         edev->stats.tx_256_to_511_byte_packets =
1737                                 stats.tx_256_to_511_byte_packets;
1738         edev->stats.tx_512_to_1023_byte_packets =
1739                                 stats.tx_512_to_1023_byte_packets;
1740         edev->stats.tx_1024_to_1518_byte_packets =
1741                                 stats.tx_1024_to_1518_byte_packets;
1742         edev->stats.tx_1519_to_2047_byte_packets =
1743                                 stats.tx_1519_to_2047_byte_packets;
1744         edev->stats.tx_2048_to_4095_byte_packets =
1745                                 stats.tx_2048_to_4095_byte_packets;
1746         edev->stats.tx_4096_to_9216_byte_packets =
1747                                 stats.tx_4096_to_9216_byte_packets;
1748         edev->stats.tx_9217_to_16383_byte_packets =
1749                                 stats.tx_9217_to_16383_byte_packets;
1750         edev->stats.tx_pause_frames = stats.tx_pause_frames;
1751         edev->stats.tx_pfc_frames = stats.tx_pfc_frames;
1752         edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count;
1753         edev->stats.tx_total_collisions = stats.tx_total_collisions;
1754         edev->stats.brb_truncates = stats.brb_truncates;
1755         edev->stats.brb_discards = stats.brb_discards;
1756         edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames;
1757 }
1758
1759 static struct rtnl_link_stats64 *qede_get_stats64(
1760                             struct net_device *dev,
1761                             struct rtnl_link_stats64 *stats)
1762 {
1763         struct qede_dev *edev = netdev_priv(dev);
1764
1765         qede_fill_by_demand_stats(edev);
1766
1767         stats->rx_packets = edev->stats.rx_ucast_pkts +
1768                             edev->stats.rx_mcast_pkts +
1769                             edev->stats.rx_bcast_pkts;
1770         stats->tx_packets = edev->stats.tx_ucast_pkts +
1771                             edev->stats.tx_mcast_pkts +
1772                             edev->stats.tx_bcast_pkts;
1773
1774         stats->rx_bytes = edev->stats.rx_ucast_bytes +
1775                           edev->stats.rx_mcast_bytes +
1776                           edev->stats.rx_bcast_bytes;
1777
1778         stats->tx_bytes = edev->stats.tx_ucast_bytes +
1779                           edev->stats.tx_mcast_bytes +
1780                           edev->stats.tx_bcast_bytes;
1781
1782         stats->tx_errors = edev->stats.tx_err_drop_pkts;
1783         stats->multicast = edev->stats.rx_mcast_pkts +
1784                            edev->stats.rx_bcast_pkts;
1785
1786         stats->rx_fifo_errors = edev->stats.no_buff_discards;
1787
1788         stats->collisions = edev->stats.tx_total_collisions;
1789         stats->rx_crc_errors = edev->stats.rx_crc_errors;
1790         stats->rx_frame_errors = edev->stats.rx_align_errors;
1791
1792         return stats;
1793 }
1794
1795 static void qede_config_accept_any_vlan(struct qede_dev *edev, bool action)
1796 {
1797         struct qed_update_vport_params params;
1798         int rc;
1799
1800         /* Proceed only if action actually needs to be performed */
1801         if (edev->accept_any_vlan == action)
1802                 return;
1803
1804         memset(&params, 0, sizeof(params));
1805
1806         params.vport_id = 0;
1807         params.accept_any_vlan = action;
1808         params.update_accept_any_vlan_flg = 1;
1809
1810         rc = edev->ops->vport_update(edev->cdev, &params);
1811         if (rc) {
1812                 DP_ERR(edev, "Failed to %s accept-any-vlan\n",
1813                        action ? "enable" : "disable");
1814         } else {
1815                 DP_INFO(edev, "%s accept-any-vlan\n",
1816                         action ? "enabled" : "disabled");
1817                 edev->accept_any_vlan = action;
1818         }
1819 }
1820
1821 static int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1822 {
1823         struct qede_dev *edev = netdev_priv(dev);
1824         struct qede_vlan *vlan, *tmp;
1825         int rc;
1826
1827         DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid);
1828
1829         vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
1830         if (!vlan) {
1831                 DP_INFO(edev, "Failed to allocate struct for vlan\n");
1832                 return -ENOMEM;
1833         }
1834         INIT_LIST_HEAD(&vlan->list);
1835         vlan->vid = vid;
1836         vlan->configured = false;
1837
1838         /* Verify vlan isn't already configured */
1839         list_for_each_entry(tmp, &edev->vlan_list, list) {
1840                 if (tmp->vid == vlan->vid) {
1841                         DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
1842                                    "vlan already configured\n");
1843                         kfree(vlan);
1844                         return -EEXIST;
1845                 }
1846         }
1847
1848         /* If interface is down, cache this VLAN ID and return */
1849         if (edev->state != QEDE_STATE_OPEN) {
1850                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1851                            "Interface is down, VLAN %d will be configured when interface is up\n",
1852                            vid);
1853                 if (vid != 0)
1854                         edev->non_configured_vlans++;
1855                 list_add(&vlan->list, &edev->vlan_list);
1856
1857                 return 0;
1858         }
1859
1860         /* Check for the filter limit.
1861          * Note - vlan0 has a reserved filter and can be added without
1862          * worrying about quota
1863          */
1864         if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) ||
1865             (vlan->vid == 0)) {
1866                 rc = qede_set_ucast_rx_vlan(edev,
1867                                             QED_FILTER_XCAST_TYPE_ADD,
1868                                             vlan->vid);
1869                 if (rc) {
1870                         DP_ERR(edev, "Failed to configure VLAN %d\n",
1871                                vlan->vid);
1872                         kfree(vlan);
1873                         return -EINVAL;
1874                 }
1875                 vlan->configured = true;
1876
1877                 /* vlan0 filter isn't consuming out of our quota */
1878                 if (vlan->vid != 0)
1879                         edev->configured_vlans++;
1880         } else {
1881                 /* Out of quota; Activate accept-any-VLAN mode */
1882                 if (!edev->non_configured_vlans)
1883                         qede_config_accept_any_vlan(edev, true);
1884
1885                 edev->non_configured_vlans++;
1886         }
1887
1888         list_add(&vlan->list, &edev->vlan_list);
1889
1890         return 0;
1891 }
1892
1893 static void qede_del_vlan_from_list(struct qede_dev *edev,
1894                                     struct qede_vlan *vlan)
1895 {
1896         /* vlan0 filter isn't consuming out of our quota */
1897         if (vlan->vid != 0) {
1898                 if (vlan->configured)
1899                         edev->configured_vlans--;
1900                 else
1901                         edev->non_configured_vlans--;
1902         }
1903
1904         list_del(&vlan->list);
1905         kfree(vlan);
1906 }
1907
1908 static int qede_configure_vlan_filters(struct qede_dev *edev)
1909 {
1910         int rc = 0, real_rc = 0, accept_any_vlan = 0;
1911         struct qed_dev_eth_info *dev_info;
1912         struct qede_vlan *vlan = NULL;
1913
1914         if (list_empty(&edev->vlan_list))
1915                 return 0;
1916
1917         dev_info = &edev->dev_info;
1918
1919         /* Configure non-configured vlans */
1920         list_for_each_entry(vlan, &edev->vlan_list, list) {
1921                 if (vlan->configured)
1922                         continue;
1923
1924                 /* We have used all our credits, now enable accept_any_vlan */
1925                 if ((vlan->vid != 0) &&
1926                     (edev->configured_vlans == dev_info->num_vlan_filters)) {
1927                         accept_any_vlan = 1;
1928                         continue;
1929                 }
1930
1931                 DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid);
1932
1933                 rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD,
1934                                             vlan->vid);
1935                 if (rc) {
1936                         DP_ERR(edev, "Failed to configure VLAN %u\n",
1937                                vlan->vid);
1938                         real_rc = rc;
1939                         continue;
1940                 }
1941
1942                 vlan->configured = true;
1943                 /* vlan0 filter doesn't consume our VLAN filter's quota */
1944                 if (vlan->vid != 0) {
1945                         edev->non_configured_vlans--;
1946                         edev->configured_vlans++;
1947                 }
1948         }
1949
1950         /* enable accept_any_vlan mode if we have more VLANs than credits,
1951          * or remove accept_any_vlan mode if we've actually removed
1952          * a non-configured vlan, and all remaining vlans are truly configured.
1953          */
1954
1955         if (accept_any_vlan)
1956                 qede_config_accept_any_vlan(edev, true);
1957         else if (!edev->non_configured_vlans)
1958                 qede_config_accept_any_vlan(edev, false);
1959
1960         return real_rc;
1961 }
1962
1963 static int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
1964 {
1965         struct qede_dev *edev = netdev_priv(dev);
1966         struct qede_vlan *vlan = NULL;
1967         int rc;
1968
1969         DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid);
1970
1971         /* Find whether entry exists */
1972         list_for_each_entry(vlan, &edev->vlan_list, list)
1973                 if (vlan->vid == vid)
1974                         break;
1975
1976         if (!vlan || (vlan->vid != vid)) {
1977                 DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
1978                            "Vlan isn't configured\n");
1979                 return 0;
1980         }
1981
1982         if (edev->state != QEDE_STATE_OPEN) {
1983                 /* As interface is already down, we don't have a VPORT
1984                  * instance to remove vlan filter. So just update vlan list
1985                  */
1986                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1987                            "Interface is down, removing VLAN from list only\n");
1988                 qede_del_vlan_from_list(edev, vlan);
1989                 return 0;
1990         }
1991
1992         /* Remove vlan */
1993         rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL, vid);
1994         if (rc) {
1995                 DP_ERR(edev, "Failed to remove VLAN %d\n", vid);
1996                 return -EINVAL;
1997         }
1998
1999         qede_del_vlan_from_list(edev, vlan);
2000
2001         /* We have removed a VLAN - try to see if we can
2002          * configure non-configured VLAN from the list.
2003          */
2004         rc = qede_configure_vlan_filters(edev);
2005
2006         return rc;
2007 }
2008
2009 static void qede_vlan_mark_nonconfigured(struct qede_dev *edev)
2010 {
2011         struct qede_vlan *vlan = NULL;
2012
2013         if (list_empty(&edev->vlan_list))
2014                 return;
2015
2016         list_for_each_entry(vlan, &edev->vlan_list, list) {
2017                 if (!vlan->configured)
2018                         continue;
2019
2020                 vlan->configured = false;
2021
2022                 /* vlan0 filter isn't consuming out of our quota */
2023                 if (vlan->vid != 0) {
2024                         edev->non_configured_vlans++;
2025                         edev->configured_vlans--;
2026                 }
2027
2028                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2029                            "marked vlan %d as non-configured\n",
2030                            vlan->vid);
2031         }
2032
2033         edev->accept_any_vlan = false;
2034 }
2035
2036 #ifdef CONFIG_QEDE_VXLAN
2037 static void qede_add_vxlan_port(struct net_device *dev,
2038                                 sa_family_t sa_family, __be16 port)
2039 {
2040         struct qede_dev *edev = netdev_priv(dev);
2041         u16 t_port = ntohs(port);
2042
2043         if (edev->vxlan_dst_port)
2044                 return;
2045
2046         edev->vxlan_dst_port = t_port;
2047
2048         DP_VERBOSE(edev, QED_MSG_DEBUG, "Added vxlan port=%d", t_port);
2049
2050         set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2051         schedule_delayed_work(&edev->sp_task, 0);
2052 }
2053
2054 static void qede_del_vxlan_port(struct net_device *dev,
2055                                 sa_family_t sa_family, __be16 port)
2056 {
2057         struct qede_dev *edev = netdev_priv(dev);
2058         u16 t_port = ntohs(port);
2059
2060         if (t_port != edev->vxlan_dst_port)
2061                 return;
2062
2063         edev->vxlan_dst_port = 0;
2064
2065         DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted vxlan port=%d", t_port);
2066
2067         set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2068         schedule_delayed_work(&edev->sp_task, 0);
2069 }
2070 #endif
2071
2072 #ifdef CONFIG_QEDE_GENEVE
2073 static void qede_add_geneve_port(struct net_device *dev,
2074                                  sa_family_t sa_family, __be16 port)
2075 {
2076         struct qede_dev *edev = netdev_priv(dev);
2077         u16 t_port = ntohs(port);
2078
2079         if (edev->geneve_dst_port)
2080                 return;
2081
2082         edev->geneve_dst_port = t_port;
2083
2084         DP_VERBOSE(edev, QED_MSG_DEBUG, "Added geneve port=%d", t_port);
2085         set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2086         schedule_delayed_work(&edev->sp_task, 0);
2087 }
2088
2089 static void qede_del_geneve_port(struct net_device *dev,
2090                                  sa_family_t sa_family, __be16 port)
2091 {
2092         struct qede_dev *edev = netdev_priv(dev);
2093         u16 t_port = ntohs(port);
2094
2095         if (t_port != edev->geneve_dst_port)
2096                 return;
2097
2098         edev->geneve_dst_port = 0;
2099
2100         DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted geneve port=%d", t_port);
2101         set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2102         schedule_delayed_work(&edev->sp_task, 0);
2103 }
2104 #endif
2105
2106 static const struct net_device_ops qede_netdev_ops = {
2107         .ndo_open = qede_open,
2108         .ndo_stop = qede_close,
2109         .ndo_start_xmit = qede_start_xmit,
2110         .ndo_set_rx_mode = qede_set_rx_mode,
2111         .ndo_set_mac_address = qede_set_mac_addr,
2112         .ndo_validate_addr = eth_validate_addr,
2113         .ndo_change_mtu = qede_change_mtu,
2114 #ifdef CONFIG_QED_SRIOV
2115         .ndo_set_vf_mac = qede_set_vf_mac,
2116         .ndo_set_vf_vlan = qede_set_vf_vlan,
2117 #endif
2118         .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
2119         .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
2120         .ndo_get_stats64 = qede_get_stats64,
2121 #ifdef CONFIG_QEDE_VXLAN
2122         .ndo_add_vxlan_port = qede_add_vxlan_port,
2123         .ndo_del_vxlan_port = qede_del_vxlan_port,
2124 #endif
2125 #ifdef CONFIG_QEDE_GENEVE
2126         .ndo_add_geneve_port = qede_add_geneve_port,
2127         .ndo_del_geneve_port = qede_del_geneve_port,
2128 #endif
2129 };
2130
2131 /* -------------------------------------------------------------------------
2132  * START OF PROBE / REMOVE
2133  * -------------------------------------------------------------------------
2134  */
2135
2136 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
2137                                             struct pci_dev *pdev,
2138                                             struct qed_dev_eth_info *info,
2139                                             u32 dp_module,
2140                                             u8 dp_level)
2141 {
2142         struct net_device *ndev;
2143         struct qede_dev *edev;
2144
2145         ndev = alloc_etherdev_mqs(sizeof(*edev),
2146                                   info->num_queues,
2147                                   info->num_queues);
2148         if (!ndev) {
2149                 pr_err("etherdev allocation failed\n");
2150                 return NULL;
2151         }
2152
2153         edev = netdev_priv(ndev);
2154         edev->ndev = ndev;
2155         edev->cdev = cdev;
2156         edev->pdev = pdev;
2157         edev->dp_module = dp_module;
2158         edev->dp_level = dp_level;
2159         edev->ops = qed_ops;
2160         edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
2161         edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
2162
2163         SET_NETDEV_DEV(ndev, &pdev->dev);
2164
2165         memset(&edev->stats, 0, sizeof(edev->stats));
2166         memcpy(&edev->dev_info, info, sizeof(*info));
2167
2168         edev->num_tc = edev->dev_info.num_tc;
2169
2170         INIT_LIST_HEAD(&edev->vlan_list);
2171
2172         return edev;
2173 }
2174
2175 static void qede_init_ndev(struct qede_dev *edev)
2176 {
2177         struct net_device *ndev = edev->ndev;
2178         struct pci_dev *pdev = edev->pdev;
2179         u32 hw_features;
2180
2181         pci_set_drvdata(pdev, ndev);
2182
2183         ndev->mem_start = edev->dev_info.common.pci_mem_start;
2184         ndev->base_addr = ndev->mem_start;
2185         ndev->mem_end = edev->dev_info.common.pci_mem_end;
2186         ndev->irq = edev->dev_info.common.pci_irq;
2187
2188         ndev->watchdog_timeo = TX_TIMEOUT;
2189
2190         ndev->netdev_ops = &qede_netdev_ops;
2191
2192         qede_set_ethtool_ops(ndev);
2193
2194         /* user-changeble features */
2195         hw_features = NETIF_F_GRO | NETIF_F_SG |
2196                       NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2197                       NETIF_F_TSO | NETIF_F_TSO6;
2198
2199         /* Encap features*/
2200         hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
2201                        NETIF_F_TSO_ECN;
2202         ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2203                                 NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO_ECN |
2204                                 NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2205                                 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_RXCSUM;
2206
2207         ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2208                               NETIF_F_HIGHDMA;
2209         ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2210                          NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
2211                          NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
2212
2213         ndev->hw_features = hw_features;
2214
2215         /* Set network device HW mac */
2216         ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
2217 }
2218
2219 /* This function converts from 32b param to two params of level and module
2220  * Input 32b decoding:
2221  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
2222  * 'happy' flow, e.g. memory allocation failed.
2223  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
2224  * and provide important parameters.
2225  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
2226  * module. VERBOSE prints are for tracking the specific flow in low level.
2227  *
2228  * Notice that the level should be that of the lowest required logs.
2229  */
2230 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
2231 {
2232         *p_dp_level = QED_LEVEL_NOTICE;
2233         *p_dp_module = 0;
2234
2235         if (debug & QED_LOG_VERBOSE_MASK) {
2236                 *p_dp_level = QED_LEVEL_VERBOSE;
2237                 *p_dp_module = (debug & 0x3FFFFFFF);
2238         } else if (debug & QED_LOG_INFO_MASK) {
2239                 *p_dp_level = QED_LEVEL_INFO;
2240         } else if (debug & QED_LOG_NOTICE_MASK) {
2241                 *p_dp_level = QED_LEVEL_NOTICE;
2242         }
2243 }
2244
2245 static void qede_free_fp_array(struct qede_dev *edev)
2246 {
2247         if (edev->fp_array) {
2248                 struct qede_fastpath *fp;
2249                 int i;
2250
2251                 for_each_rss(i) {
2252                         fp = &edev->fp_array[i];
2253
2254                         kfree(fp->sb_info);
2255                         kfree(fp->rxq);
2256                         kfree(fp->txqs);
2257                 }
2258                 kfree(edev->fp_array);
2259         }
2260         edev->num_rss = 0;
2261 }
2262
2263 static int qede_alloc_fp_array(struct qede_dev *edev)
2264 {
2265         struct qede_fastpath *fp;
2266         int i;
2267
2268         edev->fp_array = kcalloc(QEDE_RSS_CNT(edev),
2269                                  sizeof(*edev->fp_array), GFP_KERNEL);
2270         if (!edev->fp_array) {
2271                 DP_NOTICE(edev, "fp array allocation failed\n");
2272                 goto err;
2273         }
2274
2275         for_each_rss(i) {
2276                 fp = &edev->fp_array[i];
2277
2278                 fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL);
2279                 if (!fp->sb_info) {
2280                         DP_NOTICE(edev, "sb info struct allocation failed\n");
2281                         goto err;
2282                 }
2283
2284                 fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL);
2285                 if (!fp->rxq) {
2286                         DP_NOTICE(edev, "RXQ struct allocation failed\n");
2287                         goto err;
2288                 }
2289
2290                 fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs), GFP_KERNEL);
2291                 if (!fp->txqs) {
2292                         DP_NOTICE(edev, "TXQ array allocation failed\n");
2293                         goto err;
2294                 }
2295         }
2296
2297         return 0;
2298 err:
2299         qede_free_fp_array(edev);
2300         return -ENOMEM;
2301 }
2302
2303 static void qede_sp_task(struct work_struct *work)
2304 {
2305         struct qede_dev *edev = container_of(work, struct qede_dev,
2306                                              sp_task.work);
2307         struct qed_dev *cdev = edev->cdev;
2308
2309         mutex_lock(&edev->qede_lock);
2310
2311         if (edev->state == QEDE_STATE_OPEN) {
2312                 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
2313                         qede_config_rx_mode(edev->ndev);
2314         }
2315
2316         if (test_and_clear_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags)) {
2317                 struct qed_tunn_params tunn_params;
2318
2319                 memset(&tunn_params, 0, sizeof(tunn_params));
2320                 tunn_params.update_vxlan_port = 1;
2321                 tunn_params.vxlan_port = edev->vxlan_dst_port;
2322                 qed_ops->tunn_config(cdev, &tunn_params);
2323         }
2324
2325         if (test_and_clear_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags)) {
2326                 struct qed_tunn_params tunn_params;
2327
2328                 memset(&tunn_params, 0, sizeof(tunn_params));
2329                 tunn_params.update_geneve_port = 1;
2330                 tunn_params.geneve_port = edev->geneve_dst_port;
2331                 qed_ops->tunn_config(cdev, &tunn_params);
2332         }
2333
2334         mutex_unlock(&edev->qede_lock);
2335 }
2336
2337 static void qede_update_pf_params(struct qed_dev *cdev)
2338 {
2339         struct qed_pf_params pf_params;
2340
2341         /* 64 rx + 64 tx */
2342         memset(&pf_params, 0, sizeof(struct qed_pf_params));
2343         pf_params.eth_pf_params.num_cons = 128;
2344         qed_ops->common->update_pf_params(cdev, &pf_params);
2345 }
2346
2347 enum qede_probe_mode {
2348         QEDE_PROBE_NORMAL,
2349 };
2350
2351 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
2352                         bool is_vf, enum qede_probe_mode mode)
2353 {
2354         struct qed_probe_params probe_params;
2355         struct qed_slowpath_params params;
2356         struct qed_dev_eth_info dev_info;
2357         struct qede_dev *edev;
2358         struct qed_dev *cdev;
2359         int rc;
2360
2361         if (unlikely(dp_level & QED_LEVEL_INFO))
2362                 pr_notice("Starting qede probe\n");
2363
2364         memset(&probe_params, 0, sizeof(probe_params));
2365         probe_params.protocol = QED_PROTOCOL_ETH;
2366         probe_params.dp_module = dp_module;
2367         probe_params.dp_level = dp_level;
2368         probe_params.is_vf = is_vf;
2369         cdev = qed_ops->common->probe(pdev, &probe_params);
2370         if (!cdev) {
2371                 rc = -ENODEV;
2372                 goto err0;
2373         }
2374
2375         qede_update_pf_params(cdev);
2376
2377         /* Start the Slowpath-process */
2378         memset(&params, 0, sizeof(struct qed_slowpath_params));
2379         params.int_mode = QED_INT_MODE_MSIX;
2380         params.drv_major = QEDE_MAJOR_VERSION;
2381         params.drv_minor = QEDE_MINOR_VERSION;
2382         params.drv_rev = QEDE_REVISION_VERSION;
2383         params.drv_eng = QEDE_ENGINEERING_VERSION;
2384         strlcpy(params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
2385         rc = qed_ops->common->slowpath_start(cdev, &params);
2386         if (rc) {
2387                 pr_notice("Cannot start slowpath\n");
2388                 goto err1;
2389         }
2390
2391         /* Learn information crucial for qede to progress */
2392         rc = qed_ops->fill_dev_info(cdev, &dev_info);
2393         if (rc)
2394                 goto err2;
2395
2396         edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
2397                                    dp_level);
2398         if (!edev) {
2399                 rc = -ENOMEM;
2400                 goto err2;
2401         }
2402
2403         if (is_vf)
2404                 edev->flags |= QEDE_FLAG_IS_VF;
2405
2406         qede_init_ndev(edev);
2407
2408         rc = register_netdev(edev->ndev);
2409         if (rc) {
2410                 DP_NOTICE(edev, "Cannot register net-device\n");
2411                 goto err3;
2412         }
2413
2414         edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
2415
2416         edev->ops->register_ops(cdev, &qede_ll_ops, edev);
2417
2418         INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
2419         mutex_init(&edev->qede_lock);
2420
2421         DP_INFO(edev, "Ending successfully qede probe\n");
2422
2423         return 0;
2424
2425 err3:
2426         free_netdev(edev->ndev);
2427 err2:
2428         qed_ops->common->slowpath_stop(cdev);
2429 err1:
2430         qed_ops->common->remove(cdev);
2431 err0:
2432         return rc;
2433 }
2434
2435 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2436 {
2437         bool is_vf = false;
2438         u32 dp_module = 0;
2439         u8 dp_level = 0;
2440
2441         switch ((enum qede_pci_private)id->driver_data) {
2442         case QEDE_PRIVATE_VF:
2443                 if (debug & QED_LOG_VERBOSE_MASK)
2444                         dev_err(&pdev->dev, "Probing a VF\n");
2445                 is_vf = true;
2446                 break;
2447         default:
2448                 if (debug & QED_LOG_VERBOSE_MASK)
2449                         dev_err(&pdev->dev, "Probing a PF\n");
2450         }
2451
2452         qede_config_debug(debug, &dp_module, &dp_level);
2453
2454         return __qede_probe(pdev, dp_module, dp_level, is_vf,
2455                             QEDE_PROBE_NORMAL);
2456 }
2457
2458 enum qede_remove_mode {
2459         QEDE_REMOVE_NORMAL,
2460 };
2461
2462 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
2463 {
2464         struct net_device *ndev = pci_get_drvdata(pdev);
2465         struct qede_dev *edev = netdev_priv(ndev);
2466         struct qed_dev *cdev = edev->cdev;
2467
2468         DP_INFO(edev, "Starting qede_remove\n");
2469
2470         cancel_delayed_work_sync(&edev->sp_task);
2471         unregister_netdev(ndev);
2472
2473         edev->ops->common->set_power_state(cdev, PCI_D0);
2474
2475         pci_set_drvdata(pdev, NULL);
2476
2477         free_netdev(ndev);
2478
2479         /* Use global ops since we've freed edev */
2480         qed_ops->common->slowpath_stop(cdev);
2481         qed_ops->common->remove(cdev);
2482
2483         pr_notice("Ending successfully qede_remove\n");
2484 }
2485
2486 static void qede_remove(struct pci_dev *pdev)
2487 {
2488         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
2489 }
2490
2491 /* -------------------------------------------------------------------------
2492  * START OF LOAD / UNLOAD
2493  * -------------------------------------------------------------------------
2494  */
2495
2496 static int qede_set_num_queues(struct qede_dev *edev)
2497 {
2498         int rc;
2499         u16 rss_num;
2500
2501         /* Setup queues according to possible resources*/
2502         if (edev->req_rss)
2503                 rss_num = edev->req_rss;
2504         else
2505                 rss_num = netif_get_num_default_rss_queues() *
2506                           edev->dev_info.common.num_hwfns;
2507
2508         rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
2509
2510         rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
2511         if (rc > 0) {
2512                 /* Managed to request interrupts for our queues */
2513                 edev->num_rss = rc;
2514                 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
2515                         QEDE_RSS_CNT(edev), rss_num);
2516                 rc = 0;
2517         }
2518         return rc;
2519 }
2520
2521 static void qede_free_mem_sb(struct qede_dev *edev,
2522                              struct qed_sb_info *sb_info)
2523 {
2524         if (sb_info->sb_virt)
2525                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
2526                                   (void *)sb_info->sb_virt, sb_info->sb_phys);
2527 }
2528
2529 /* This function allocates fast-path status block memory */
2530 static int qede_alloc_mem_sb(struct qede_dev *edev,
2531                              struct qed_sb_info *sb_info,
2532                              u16 sb_id)
2533 {
2534         struct status_block *sb_virt;
2535         dma_addr_t sb_phys;
2536         int rc;
2537
2538         sb_virt = dma_alloc_coherent(&edev->pdev->dev,
2539                                      sizeof(*sb_virt),
2540                                      &sb_phys, GFP_KERNEL);
2541         if (!sb_virt) {
2542                 DP_ERR(edev, "Status block allocation failed\n");
2543                 return -ENOMEM;
2544         }
2545
2546         rc = edev->ops->common->sb_init(edev->cdev, sb_info,
2547                                         sb_virt, sb_phys, sb_id,
2548                                         QED_SB_TYPE_L2_QUEUE);
2549         if (rc) {
2550                 DP_ERR(edev, "Status block initialization failed\n");
2551                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
2552                                   sb_virt, sb_phys);
2553                 return rc;
2554         }
2555
2556         return 0;
2557 }
2558
2559 static void qede_free_rx_buffers(struct qede_dev *edev,
2560                                  struct qede_rx_queue *rxq)
2561 {
2562         u16 i;
2563
2564         for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
2565                 struct sw_rx_data *rx_buf;
2566                 struct page *data;
2567
2568                 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
2569                 data = rx_buf->data;
2570
2571                 dma_unmap_page(&edev->pdev->dev,
2572                                rx_buf->mapping,
2573                                PAGE_SIZE, DMA_FROM_DEVICE);
2574
2575                 rx_buf->data = NULL;
2576                 __free_page(data);
2577         }
2578 }
2579
2580 static void qede_free_sge_mem(struct qede_dev *edev,
2581                               struct qede_rx_queue *rxq) {
2582         int i;
2583
2584         if (edev->gro_disable)
2585                 return;
2586
2587         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2588                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2589                 struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2590
2591                 if (replace_buf->data) {
2592                         dma_unmap_page(&edev->pdev->dev,
2593                                        dma_unmap_addr(replace_buf, mapping),
2594                                        PAGE_SIZE, DMA_FROM_DEVICE);
2595                         __free_page(replace_buf->data);
2596                 }
2597         }
2598 }
2599
2600 static void qede_free_mem_rxq(struct qede_dev *edev,
2601                               struct qede_rx_queue *rxq)
2602 {
2603         qede_free_sge_mem(edev, rxq);
2604
2605         /* Free rx buffers */
2606         qede_free_rx_buffers(edev, rxq);
2607
2608         /* Free the parallel SW ring */
2609         kfree(rxq->sw_rx_ring);
2610
2611         /* Free the real RQ ring used by FW */
2612         edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
2613         edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
2614 }
2615
2616 static int qede_alloc_rx_buffer(struct qede_dev *edev,
2617                                 struct qede_rx_queue *rxq)
2618 {
2619         struct sw_rx_data *sw_rx_data;
2620         struct eth_rx_bd *rx_bd;
2621         dma_addr_t mapping;
2622         struct page *data;
2623         u16 rx_buf_size;
2624
2625         rx_buf_size = rxq->rx_buf_size;
2626
2627         data = alloc_pages(GFP_ATOMIC, 0);
2628         if (unlikely(!data)) {
2629                 DP_NOTICE(edev, "Failed to allocate Rx data [page]\n");
2630                 return -ENOMEM;
2631         }
2632
2633         /* Map the entire page as it would be used
2634          * for multiple RX buffer segment size mapping.
2635          */
2636         mapping = dma_map_page(&edev->pdev->dev, data, 0,
2637                                PAGE_SIZE, DMA_FROM_DEVICE);
2638         if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2639                 __free_page(data);
2640                 DP_NOTICE(edev, "Failed to map Rx buffer\n");
2641                 return -ENOMEM;
2642         }
2643
2644         sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
2645         sw_rx_data->page_offset = 0;
2646         sw_rx_data->data = data;
2647         sw_rx_data->mapping = mapping;
2648
2649         /* Advance PROD and get BD pointer */
2650         rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
2651         WARN_ON(!rx_bd);
2652         rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
2653         rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
2654
2655         rxq->sw_rx_prod++;
2656
2657         return 0;
2658 }
2659
2660 static int qede_alloc_sge_mem(struct qede_dev *edev,
2661                               struct qede_rx_queue *rxq)
2662 {
2663         dma_addr_t mapping;
2664         int i;
2665
2666         if (edev->gro_disable)
2667                 return 0;
2668
2669         if (edev->ndev->mtu > PAGE_SIZE) {
2670                 edev->gro_disable = 1;
2671                 return 0;
2672         }
2673
2674         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2675                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2676                 struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2677
2678                 replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
2679                 if (unlikely(!replace_buf->data)) {
2680                         DP_NOTICE(edev,
2681                                   "Failed to allocate TPA skb pool [replacement buffer]\n");
2682                         goto err;
2683                 }
2684
2685                 mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
2686                                        rxq->rx_buf_size, DMA_FROM_DEVICE);
2687                 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2688                         DP_NOTICE(edev,
2689                                   "Failed to map TPA replacement buffer\n");
2690                         goto err;
2691                 }
2692
2693                 dma_unmap_addr_set(replace_buf, mapping, mapping);
2694                 tpa_info->replace_buf.page_offset = 0;
2695
2696                 tpa_info->replace_buf_mapping = mapping;
2697                 tpa_info->agg_state = QEDE_AGG_STATE_NONE;
2698         }
2699
2700         return 0;
2701 err:
2702         qede_free_sge_mem(edev, rxq);
2703         edev->gro_disable = 1;
2704         return -ENOMEM;
2705 }
2706
2707 /* This function allocates all memory needed per Rx queue */
2708 static int qede_alloc_mem_rxq(struct qede_dev *edev,
2709                               struct qede_rx_queue *rxq)
2710 {
2711         int i, rc, size;
2712
2713         rxq->num_rx_buffers = edev->q_num_rx_buffers;
2714
2715         rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD +
2716                            edev->ndev->mtu;
2717         if (rxq->rx_buf_size > PAGE_SIZE)
2718                 rxq->rx_buf_size = PAGE_SIZE;
2719
2720         /* Segment size to spilt a page in multiple equal parts */
2721         rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
2722
2723         /* Allocate the parallel driver ring for Rx buffers */
2724         size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
2725         rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
2726         if (!rxq->sw_rx_ring) {
2727                 DP_ERR(edev, "Rx buffers ring allocation failed\n");
2728                 rc = -ENOMEM;
2729                 goto err;
2730         }
2731
2732         /* Allocate FW Rx ring  */
2733         rc = edev->ops->common->chain_alloc(edev->cdev,
2734                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2735                                             QED_CHAIN_MODE_NEXT_PTR,
2736                                             RX_RING_SIZE,
2737                                             sizeof(struct eth_rx_bd),
2738                                             &rxq->rx_bd_ring);
2739
2740         if (rc)
2741                 goto err;
2742
2743         /* Allocate FW completion ring */
2744         rc = edev->ops->common->chain_alloc(edev->cdev,
2745                                             QED_CHAIN_USE_TO_CONSUME,
2746                                             QED_CHAIN_MODE_PBL,
2747                                             RX_RING_SIZE,
2748                                             sizeof(union eth_rx_cqe),
2749                                             &rxq->rx_comp_ring);
2750         if (rc)
2751                 goto err;
2752
2753         /* Allocate buffers for the Rx ring */
2754         for (i = 0; i < rxq->num_rx_buffers; i++) {
2755                 rc = qede_alloc_rx_buffer(edev, rxq);
2756                 if (rc) {
2757                         DP_ERR(edev,
2758                                "Rx buffers allocation failed at index %d\n", i);
2759                         goto err;
2760                 }
2761         }
2762
2763         rc = qede_alloc_sge_mem(edev, rxq);
2764 err:
2765         return rc;
2766 }
2767
2768 static void qede_free_mem_txq(struct qede_dev *edev,
2769                               struct qede_tx_queue *txq)
2770 {
2771         /* Free the parallel SW ring */
2772         kfree(txq->sw_tx_ring);
2773
2774         /* Free the real RQ ring used by FW */
2775         edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
2776 }
2777
2778 /* This function allocates all memory needed per Tx queue */
2779 static int qede_alloc_mem_txq(struct qede_dev *edev,
2780                               struct qede_tx_queue *txq)
2781 {
2782         int size, rc;
2783         union eth_tx_bd_types *p_virt;
2784
2785         txq->num_tx_buffers = edev->q_num_tx_buffers;
2786
2787         /* Allocate the parallel driver ring for Tx buffers */
2788         size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX;
2789         txq->sw_tx_ring = kzalloc(size, GFP_KERNEL);
2790         if (!txq->sw_tx_ring) {
2791                 DP_NOTICE(edev, "Tx buffers ring allocation failed\n");
2792                 goto err;
2793         }
2794
2795         rc = edev->ops->common->chain_alloc(edev->cdev,
2796                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2797                                             QED_CHAIN_MODE_PBL,
2798                                             NUM_TX_BDS_MAX,
2799                                             sizeof(*p_virt),
2800                                             &txq->tx_pbl);
2801         if (rc)
2802                 goto err;
2803
2804         return 0;
2805
2806 err:
2807         qede_free_mem_txq(edev, txq);
2808         return -ENOMEM;
2809 }
2810
2811 /* This function frees all memory of a single fp */
2812 static void qede_free_mem_fp(struct qede_dev *edev,
2813                              struct qede_fastpath *fp)
2814 {
2815         int tc;
2816
2817         qede_free_mem_sb(edev, fp->sb_info);
2818
2819         qede_free_mem_rxq(edev, fp->rxq);
2820
2821         for (tc = 0; tc < edev->num_tc; tc++)
2822                 qede_free_mem_txq(edev, &fp->txqs[tc]);
2823 }
2824
2825 /* This function allocates all memory needed for a single fp (i.e. an entity
2826  * which contains status block, one rx queue and multiple per-TC tx queues.
2827  */
2828 static int qede_alloc_mem_fp(struct qede_dev *edev,
2829                              struct qede_fastpath *fp)
2830 {
2831         int rc, tc;
2832
2833         rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->rss_id);
2834         if (rc)
2835                 goto err;
2836
2837         rc = qede_alloc_mem_rxq(edev, fp->rxq);
2838         if (rc)
2839                 goto err;
2840
2841         for (tc = 0; tc < edev->num_tc; tc++) {
2842                 rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]);
2843                 if (rc)
2844                         goto err;
2845         }
2846
2847         return 0;
2848 err:
2849         return rc;
2850 }
2851
2852 static void qede_free_mem_load(struct qede_dev *edev)
2853 {
2854         int i;
2855
2856         for_each_rss(i) {
2857                 struct qede_fastpath *fp = &edev->fp_array[i];
2858
2859                 qede_free_mem_fp(edev, fp);
2860         }
2861 }
2862
2863 /* This function allocates all qede memory at NIC load. */
2864 static int qede_alloc_mem_load(struct qede_dev *edev)
2865 {
2866         int rc = 0, rss_id;
2867
2868         for (rss_id = 0; rss_id < QEDE_RSS_CNT(edev); rss_id++) {
2869                 struct qede_fastpath *fp = &edev->fp_array[rss_id];
2870
2871                 rc = qede_alloc_mem_fp(edev, fp);
2872                 if (rc) {
2873                         DP_ERR(edev,
2874                                "Failed to allocate memory for fastpath - rss id = %d\n",
2875                                rss_id);
2876                         qede_free_mem_load(edev);
2877                         return rc;
2878                 }
2879         }
2880
2881         return 0;
2882 }
2883
2884 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
2885 static void qede_init_fp(struct qede_dev *edev)
2886 {
2887         int rss_id, txq_index, tc;
2888         struct qede_fastpath *fp;
2889
2890         for_each_rss(rss_id) {
2891                 fp = &edev->fp_array[rss_id];
2892
2893                 fp->edev = edev;
2894                 fp->rss_id = rss_id;
2895
2896                 memset((void *)&fp->napi, 0, sizeof(fp->napi));
2897
2898                 memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info));
2899
2900                 memset((void *)fp->rxq, 0, sizeof(*fp->rxq));
2901                 fp->rxq->rxq_id = rss_id;
2902
2903                 memset((void *)fp->txqs, 0, (edev->num_tc * sizeof(*fp->txqs)));
2904                 for (tc = 0; tc < edev->num_tc; tc++) {
2905                         txq_index = tc * QEDE_RSS_CNT(edev) + rss_id;
2906                         fp->txqs[tc].index = txq_index;
2907                 }
2908
2909                 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
2910                          edev->ndev->name, rss_id);
2911         }
2912
2913         edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
2914 }
2915
2916 static int qede_set_real_num_queues(struct qede_dev *edev)
2917 {
2918         int rc = 0;
2919
2920         rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_CNT(edev));
2921         if (rc) {
2922                 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
2923                 return rc;
2924         }
2925         rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_CNT(edev));
2926         if (rc) {
2927                 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
2928                 return rc;
2929         }
2930
2931         return 0;
2932 }
2933
2934 static void qede_napi_disable_remove(struct qede_dev *edev)
2935 {
2936         int i;
2937
2938         for_each_rss(i) {
2939                 napi_disable(&edev->fp_array[i].napi);
2940
2941                 netif_napi_del(&edev->fp_array[i].napi);
2942         }
2943 }
2944
2945 static void qede_napi_add_enable(struct qede_dev *edev)
2946 {
2947         int i;
2948
2949         /* Add NAPI objects */
2950         for_each_rss(i) {
2951                 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
2952                                qede_poll, NAPI_POLL_WEIGHT);
2953                 napi_enable(&edev->fp_array[i].napi);
2954         }
2955 }
2956
2957 static void qede_sync_free_irqs(struct qede_dev *edev)
2958 {
2959         int i;
2960
2961         for (i = 0; i < edev->int_info.used_cnt; i++) {
2962                 if (edev->int_info.msix_cnt) {
2963                         synchronize_irq(edev->int_info.msix[i].vector);
2964                         free_irq(edev->int_info.msix[i].vector,
2965                                  &edev->fp_array[i]);
2966                 } else {
2967                         edev->ops->common->simd_handler_clean(edev->cdev, i);
2968                 }
2969         }
2970
2971         edev->int_info.used_cnt = 0;
2972 }
2973
2974 static int qede_req_msix_irqs(struct qede_dev *edev)
2975 {
2976         int i, rc;
2977
2978         /* Sanitize number of interrupts == number of prepared RSS queues */
2979         if (QEDE_RSS_CNT(edev) > edev->int_info.msix_cnt) {
2980                 DP_ERR(edev,
2981                        "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
2982                        QEDE_RSS_CNT(edev), edev->int_info.msix_cnt);
2983                 return -EINVAL;
2984         }
2985
2986         for (i = 0; i < QEDE_RSS_CNT(edev); i++) {
2987                 rc = request_irq(edev->int_info.msix[i].vector,
2988                                  qede_msix_fp_int, 0, edev->fp_array[i].name,
2989                                  &edev->fp_array[i]);
2990                 if (rc) {
2991                         DP_ERR(edev, "Request fp %d irq failed\n", i);
2992                         qede_sync_free_irqs(edev);
2993                         return rc;
2994                 }
2995                 DP_VERBOSE(edev, NETIF_MSG_INTR,
2996                            "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
2997                            edev->fp_array[i].name, i,
2998                            &edev->fp_array[i]);
2999                 edev->int_info.used_cnt++;
3000         }
3001
3002         return 0;
3003 }
3004
3005 static void qede_simd_fp_handler(void *cookie)
3006 {
3007         struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
3008
3009         napi_schedule_irqoff(&fp->napi);
3010 }
3011
3012 static int qede_setup_irqs(struct qede_dev *edev)
3013 {
3014         int i, rc = 0;
3015
3016         /* Learn Interrupt configuration */
3017         rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
3018         if (rc)
3019                 return rc;
3020
3021         if (edev->int_info.msix_cnt) {
3022                 rc = qede_req_msix_irqs(edev);
3023                 if (rc)
3024                         return rc;
3025                 edev->ndev->irq = edev->int_info.msix[0].vector;
3026         } else {
3027                 const struct qed_common_ops *ops;
3028
3029                 /* qed should learn receive the RSS ids and callbacks */
3030                 ops = edev->ops->common;
3031                 for (i = 0; i < QEDE_RSS_CNT(edev); i++)
3032                         ops->simd_handler_config(edev->cdev,
3033                                                  &edev->fp_array[i], i,
3034                                                  qede_simd_fp_handler);
3035                 edev->int_info.used_cnt = QEDE_RSS_CNT(edev);
3036         }
3037         return 0;
3038 }
3039
3040 static int qede_drain_txq(struct qede_dev *edev,
3041                           struct qede_tx_queue *txq,
3042                           bool allow_drain)
3043 {
3044         int rc, cnt = 1000;
3045
3046         while (txq->sw_tx_cons != txq->sw_tx_prod) {
3047                 if (!cnt) {
3048                         if (allow_drain) {
3049                                 DP_NOTICE(edev,
3050                                           "Tx queue[%d] is stuck, requesting MCP to drain\n",
3051                                           txq->index);
3052                                 rc = edev->ops->common->drain(edev->cdev);
3053                                 if (rc)
3054                                         return rc;
3055                                 return qede_drain_txq(edev, txq, false);
3056                         }
3057                         DP_NOTICE(edev,
3058                                   "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
3059                                   txq->index, txq->sw_tx_prod,
3060                                   txq->sw_tx_cons);
3061                         return -ENODEV;
3062                 }
3063                 cnt--;
3064                 usleep_range(1000, 2000);
3065                 barrier();
3066         }
3067
3068         /* FW finished processing, wait for HW to transmit all tx packets */
3069         usleep_range(1000, 2000);
3070
3071         return 0;
3072 }
3073
3074 static int qede_stop_queues(struct qede_dev *edev)
3075 {
3076         struct qed_update_vport_params vport_update_params;
3077         struct qed_dev *cdev = edev->cdev;
3078         int rc, tc, i;
3079
3080         /* Disable the vport */
3081         memset(&vport_update_params, 0, sizeof(vport_update_params));
3082         vport_update_params.vport_id = 0;
3083         vport_update_params.update_vport_active_flg = 1;
3084         vport_update_params.vport_active_flg = 0;
3085         vport_update_params.update_rss_flg = 0;
3086
3087         rc = edev->ops->vport_update(cdev, &vport_update_params);
3088         if (rc) {
3089                 DP_ERR(edev, "Failed to update vport\n");
3090                 return rc;
3091         }
3092
3093         /* Flush Tx queues. If needed, request drain from MCP */
3094         for_each_rss(i) {
3095                 struct qede_fastpath *fp = &edev->fp_array[i];
3096
3097                 for (tc = 0; tc < edev->num_tc; tc++) {
3098                         struct qede_tx_queue *txq = &fp->txqs[tc];
3099
3100                         rc = qede_drain_txq(edev, txq, true);
3101                         if (rc)
3102                                 return rc;
3103                 }
3104         }
3105
3106         /* Stop all Queues in reverse order*/
3107         for (i = QEDE_RSS_CNT(edev) - 1; i >= 0; i--) {
3108                 struct qed_stop_rxq_params rx_params;
3109
3110                 /* Stop the Tx Queue(s)*/
3111                 for (tc = 0; tc < edev->num_tc; tc++) {
3112                         struct qed_stop_txq_params tx_params;
3113
3114                         tx_params.rss_id = i;
3115                         tx_params.tx_queue_id = tc * QEDE_RSS_CNT(edev) + i;
3116                         rc = edev->ops->q_tx_stop(cdev, &tx_params);
3117                         if (rc) {
3118                                 DP_ERR(edev, "Failed to stop TXQ #%d\n",
3119                                        tx_params.tx_queue_id);
3120                                 return rc;
3121                         }
3122                 }
3123
3124                 /* Stop the Rx Queue*/
3125                 memset(&rx_params, 0, sizeof(rx_params));
3126                 rx_params.rss_id = i;
3127                 rx_params.rx_queue_id = i;
3128
3129                 rc = edev->ops->q_rx_stop(cdev, &rx_params);
3130                 if (rc) {
3131                         DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
3132                         return rc;
3133                 }
3134         }
3135
3136         /* Stop the vport */
3137         rc = edev->ops->vport_stop(cdev, 0);
3138         if (rc)
3139                 DP_ERR(edev, "Failed to stop VPORT\n");
3140
3141         return rc;
3142 }
3143
3144 static int qede_start_queues(struct qede_dev *edev)
3145 {
3146         int rc, tc, i;
3147         int vlan_removal_en = 1;
3148         struct qed_dev *cdev = edev->cdev;
3149         struct qed_update_vport_params vport_update_params;
3150         struct qed_queue_start_common_params q_params;
3151         struct qed_dev_info *qed_info = &edev->dev_info.common;
3152         struct qed_start_vport_params start = {0};
3153         bool reset_rss_indir = false;
3154
3155         if (!edev->num_rss) {
3156                 DP_ERR(edev,
3157                        "Cannot update V-VPORT as active as there are no Rx queues\n");
3158                 return -EINVAL;
3159         }
3160
3161         start.gro_enable = !edev->gro_disable;
3162         start.mtu = edev->ndev->mtu;
3163         start.vport_id = 0;
3164         start.drop_ttl0 = true;
3165         start.remove_inner_vlan = vlan_removal_en;
3166
3167         rc = edev->ops->vport_start(cdev, &start);
3168
3169         if (rc) {
3170                 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
3171                 return rc;
3172         }
3173
3174         DP_VERBOSE(edev, NETIF_MSG_IFUP,
3175                    "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
3176                    start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
3177
3178         for_each_rss(i) {
3179                 struct qede_fastpath *fp = &edev->fp_array[i];
3180                 dma_addr_t phys_table = fp->rxq->rx_comp_ring.pbl.p_phys_table;
3181
3182                 memset(&q_params, 0, sizeof(q_params));
3183                 q_params.rss_id = i;
3184                 q_params.queue_id = i;
3185                 q_params.vport_id = 0;
3186                 q_params.sb = fp->sb_info->igu_sb_id;
3187                 q_params.sb_idx = RX_PI;
3188
3189                 rc = edev->ops->q_rx_start(cdev, &q_params,
3190                                            fp->rxq->rx_buf_size,
3191                                            fp->rxq->rx_bd_ring.p_phys_addr,
3192                                            phys_table,
3193                                            fp->rxq->rx_comp_ring.page_cnt,
3194                                            &fp->rxq->hw_rxq_prod_addr);
3195                 if (rc) {
3196                         DP_ERR(edev, "Start RXQ #%d failed %d\n", i, rc);
3197                         return rc;
3198                 }
3199
3200                 fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
3201
3202                 qede_update_rx_prod(edev, fp->rxq);
3203
3204                 for (tc = 0; tc < edev->num_tc; tc++) {
3205                         struct qede_tx_queue *txq = &fp->txqs[tc];
3206                         int txq_index = tc * QEDE_RSS_CNT(edev) + i;
3207
3208                         memset(&q_params, 0, sizeof(q_params));
3209                         q_params.rss_id = i;
3210                         q_params.queue_id = txq_index;
3211                         q_params.vport_id = 0;
3212                         q_params.sb = fp->sb_info->igu_sb_id;
3213                         q_params.sb_idx = TX_PI(tc);
3214
3215                         rc = edev->ops->q_tx_start(cdev, &q_params,
3216                                                    txq->tx_pbl.pbl.p_phys_table,
3217                                                    txq->tx_pbl.page_cnt,
3218                                                    &txq->doorbell_addr);
3219                         if (rc) {
3220                                 DP_ERR(edev, "Start TXQ #%d failed %d\n",
3221                                        txq_index, rc);
3222                                 return rc;
3223                         }
3224
3225                         txq->hw_cons_ptr =
3226                                 &fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
3227                         SET_FIELD(txq->tx_db.data.params,
3228                                   ETH_DB_DATA_DEST, DB_DEST_XCM);
3229                         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
3230                                   DB_AGG_CMD_SET);
3231                         SET_FIELD(txq->tx_db.data.params,
3232                                   ETH_DB_DATA_AGG_VAL_SEL,
3233                                   DQ_XCM_ETH_TX_BD_PROD_CMD);
3234
3235                         txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
3236                 }
3237         }
3238
3239         /* Prepare and send the vport enable */
3240         memset(&vport_update_params, 0, sizeof(vport_update_params));
3241         vport_update_params.vport_id = start.vport_id;
3242         vport_update_params.update_vport_active_flg = 1;
3243         vport_update_params.vport_active_flg = 1;
3244
3245         /* Fill struct with RSS params */
3246         if (QEDE_RSS_CNT(edev) > 1) {
3247                 vport_update_params.update_rss_flg = 1;
3248
3249                 /* Need to validate current RSS config uses valid entries */
3250                 for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3251                         if (edev->rss_params.rss_ind_table[i] >=
3252                             edev->num_rss) {
3253                                 reset_rss_indir = true;
3254                                 break;
3255                         }
3256                 }
3257
3258                 if (!(edev->rss_params_inited & QEDE_RSS_INDIR_INITED) ||
3259                     reset_rss_indir) {
3260                         u16 val;
3261
3262                         for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3263                                 u16 indir_val;
3264
3265                                 val = QEDE_RSS_CNT(edev);
3266                                 indir_val = ethtool_rxfh_indir_default(i, val);
3267                                 edev->rss_params.rss_ind_table[i] = indir_val;
3268                         }
3269                         edev->rss_params_inited |= QEDE_RSS_INDIR_INITED;
3270                 }
3271
3272                 if (!(edev->rss_params_inited & QEDE_RSS_KEY_INITED)) {
3273                         netdev_rss_key_fill(edev->rss_params.rss_key,
3274                                             sizeof(edev->rss_params.rss_key));
3275                         edev->rss_params_inited |= QEDE_RSS_KEY_INITED;
3276                 }
3277
3278                 if (!(edev->rss_params_inited & QEDE_RSS_CAPS_INITED)) {
3279                         edev->rss_params.rss_caps = QED_RSS_IPV4 |
3280                                                     QED_RSS_IPV6 |
3281                                                     QED_RSS_IPV4_TCP |
3282                                                     QED_RSS_IPV6_TCP;
3283                         edev->rss_params_inited |= QEDE_RSS_CAPS_INITED;
3284                 }
3285
3286                 memcpy(&vport_update_params.rss_params, &edev->rss_params,
3287                        sizeof(vport_update_params.rss_params));
3288         } else {
3289                 memset(&vport_update_params.rss_params, 0,
3290                        sizeof(vport_update_params.rss_params));
3291         }
3292
3293         rc = edev->ops->vport_update(cdev, &vport_update_params);
3294         if (rc) {
3295                 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
3296                 return rc;
3297         }
3298
3299         return 0;
3300 }
3301
3302 static int qede_set_mcast_rx_mac(struct qede_dev *edev,
3303                                  enum qed_filter_xcast_params_type opcode,
3304                                  unsigned char *mac, int num_macs)
3305 {
3306         struct qed_filter_params filter_cmd;
3307         int i;
3308
3309         memset(&filter_cmd, 0, sizeof(filter_cmd));
3310         filter_cmd.type = QED_FILTER_TYPE_MCAST;
3311         filter_cmd.filter.mcast.type = opcode;
3312         filter_cmd.filter.mcast.num = num_macs;
3313
3314         for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
3315                 ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
3316
3317         return edev->ops->filter_config(edev->cdev, &filter_cmd);
3318 }
3319
3320 enum qede_unload_mode {
3321         QEDE_UNLOAD_NORMAL,
3322 };
3323
3324 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode)
3325 {
3326         struct qed_link_params link_params;
3327         int rc;
3328
3329         DP_INFO(edev, "Starting qede unload\n");
3330
3331         mutex_lock(&edev->qede_lock);
3332         edev->state = QEDE_STATE_CLOSED;
3333
3334         /* Close OS Tx */
3335         netif_tx_disable(edev->ndev);
3336         netif_carrier_off(edev->ndev);
3337
3338         /* Reset the link */
3339         memset(&link_params, 0, sizeof(link_params));
3340         link_params.link_up = false;
3341         edev->ops->common->set_link(edev->cdev, &link_params);
3342         rc = qede_stop_queues(edev);
3343         if (rc) {
3344                 qede_sync_free_irqs(edev);
3345                 goto out;
3346         }
3347
3348         DP_INFO(edev, "Stopped Queues\n");
3349
3350         qede_vlan_mark_nonconfigured(edev);
3351         edev->ops->fastpath_stop(edev->cdev);
3352
3353         /* Release the interrupts */
3354         qede_sync_free_irqs(edev);
3355         edev->ops->common->set_fp_int(edev->cdev, 0);
3356
3357         qede_napi_disable_remove(edev);
3358
3359         qede_free_mem_load(edev);
3360         qede_free_fp_array(edev);
3361
3362 out:
3363         mutex_unlock(&edev->qede_lock);
3364         DP_INFO(edev, "Ending qede unload\n");
3365 }
3366
3367 enum qede_load_mode {
3368         QEDE_LOAD_NORMAL,
3369 };
3370
3371 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode)
3372 {
3373         struct qed_link_params link_params;
3374         struct qed_link_output link_output;
3375         int rc;
3376
3377         DP_INFO(edev, "Starting qede load\n");
3378
3379         rc = qede_set_num_queues(edev);
3380         if (rc)
3381                 goto err0;
3382
3383         rc = qede_alloc_fp_array(edev);
3384         if (rc)
3385                 goto err0;
3386
3387         qede_init_fp(edev);
3388
3389         rc = qede_alloc_mem_load(edev);
3390         if (rc)
3391                 goto err1;
3392         DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n",
3393                 QEDE_RSS_CNT(edev), edev->num_tc);
3394
3395         rc = qede_set_real_num_queues(edev);
3396         if (rc)
3397                 goto err2;
3398
3399         qede_napi_add_enable(edev);
3400         DP_INFO(edev, "Napi added and enabled\n");
3401
3402         rc = qede_setup_irqs(edev);
3403         if (rc)
3404                 goto err3;
3405         DP_INFO(edev, "Setup IRQs succeeded\n");
3406
3407         rc = qede_start_queues(edev);
3408         if (rc)
3409                 goto err4;
3410         DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
3411
3412         /* Add primary mac and set Rx filters */
3413         ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
3414
3415         mutex_lock(&edev->qede_lock);
3416         edev->state = QEDE_STATE_OPEN;
3417         mutex_unlock(&edev->qede_lock);
3418
3419         /* Program un-configured VLANs */
3420         qede_configure_vlan_filters(edev);
3421
3422         /* Ask for link-up using current configuration */
3423         memset(&link_params, 0, sizeof(link_params));
3424         link_params.link_up = true;
3425         edev->ops->common->set_link(edev->cdev, &link_params);
3426
3427         /* Query whether link is already-up */
3428         memset(&link_output, 0, sizeof(link_output));
3429         edev->ops->common->get_link(edev->cdev, &link_output);
3430         qede_link_update(edev, &link_output);
3431
3432         DP_INFO(edev, "Ending successfully qede load\n");
3433
3434         return 0;
3435
3436 err4:
3437         qede_sync_free_irqs(edev);
3438         memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
3439 err3:
3440         qede_napi_disable_remove(edev);
3441 err2:
3442         qede_free_mem_load(edev);
3443 err1:
3444         edev->ops->common->set_fp_int(edev->cdev, 0);
3445         qede_free_fp_array(edev);
3446         edev->num_rss = 0;
3447 err0:
3448         return rc;
3449 }
3450
3451 void qede_reload(struct qede_dev *edev,
3452                  void (*func)(struct qede_dev *, union qede_reload_args *),
3453                  union qede_reload_args *args)
3454 {
3455         qede_unload(edev, QEDE_UNLOAD_NORMAL);
3456         /* Call function handler to update parameters
3457          * needed for function load.
3458          */
3459         if (func)
3460                 func(edev, args);
3461
3462         qede_load(edev, QEDE_LOAD_NORMAL);
3463
3464         mutex_lock(&edev->qede_lock);
3465         qede_config_rx_mode(edev->ndev);
3466         mutex_unlock(&edev->qede_lock);
3467 }
3468
3469 /* called with rtnl_lock */
3470 static int qede_open(struct net_device *ndev)
3471 {
3472         struct qede_dev *edev = netdev_priv(ndev);
3473         int rc;
3474
3475         netif_carrier_off(ndev);
3476
3477         edev->ops->common->set_power_state(edev->cdev, PCI_D0);
3478
3479         rc = qede_load(edev, QEDE_LOAD_NORMAL);
3480
3481         if (rc)
3482                 return rc;
3483
3484 #ifdef CONFIG_QEDE_VXLAN
3485         vxlan_get_rx_port(ndev);
3486 #endif
3487 #ifdef CONFIG_QEDE_GENEVE
3488         geneve_get_rx_port(ndev);
3489 #endif
3490         return 0;
3491 }
3492
3493 static int qede_close(struct net_device *ndev)
3494 {
3495         struct qede_dev *edev = netdev_priv(ndev);
3496
3497         qede_unload(edev, QEDE_UNLOAD_NORMAL);
3498
3499         return 0;
3500 }
3501
3502 static void qede_link_update(void *dev, struct qed_link_output *link)
3503 {
3504         struct qede_dev *edev = dev;
3505
3506         if (!netif_running(edev->ndev)) {
3507                 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
3508                 return;
3509         }
3510
3511         if (link->link_up) {
3512                 if (!netif_carrier_ok(edev->ndev)) {
3513                         DP_NOTICE(edev, "Link is up\n");
3514                         netif_tx_start_all_queues(edev->ndev);
3515                         netif_carrier_on(edev->ndev);
3516                 }
3517         } else {
3518                 if (netif_carrier_ok(edev->ndev)) {
3519                         DP_NOTICE(edev, "Link is down\n");
3520                         netif_tx_disable(edev->ndev);
3521                         netif_carrier_off(edev->ndev);
3522                 }
3523         }
3524 }
3525
3526 static int qede_set_mac_addr(struct net_device *ndev, void *p)
3527 {
3528         struct qede_dev *edev = netdev_priv(ndev);
3529         struct sockaddr *addr = p;
3530         int rc;
3531
3532         ASSERT_RTNL(); /* @@@TBD To be removed */
3533
3534         DP_INFO(edev, "Set_mac_addr called\n");
3535
3536         if (!is_valid_ether_addr(addr->sa_data)) {
3537                 DP_NOTICE(edev, "The MAC address is not valid\n");
3538                 return -EFAULT;
3539         }
3540
3541         if (!edev->ops->check_mac(edev->cdev, addr->sa_data)) {
3542                 DP_NOTICE(edev, "qed prevents setting MAC\n");
3543                 return -EINVAL;
3544         }
3545
3546         ether_addr_copy(ndev->dev_addr, addr->sa_data);
3547
3548         if (!netif_running(ndev))  {
3549                 DP_NOTICE(edev, "The device is currently down\n");
3550                 return 0;
3551         }
3552
3553         /* Remove the previous primary mac */
3554         rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3555                                    edev->primary_mac);
3556         if (rc)
3557                 return rc;
3558
3559         /* Add MAC filter according to the new unicast HW MAC address */
3560         ether_addr_copy(edev->primary_mac, ndev->dev_addr);
3561         return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3562                                       edev->primary_mac);
3563 }
3564
3565 static int
3566 qede_configure_mcast_filtering(struct net_device *ndev,
3567                                enum qed_filter_rx_mode_type *accept_flags)
3568 {
3569         struct qede_dev *edev = netdev_priv(ndev);
3570         unsigned char *mc_macs, *temp;
3571         struct netdev_hw_addr *ha;
3572         int rc = 0, mc_count;
3573         size_t size;
3574
3575         size = 64 * ETH_ALEN;
3576
3577         mc_macs = kzalloc(size, GFP_KERNEL);
3578         if (!mc_macs) {
3579                 DP_NOTICE(edev,
3580                           "Failed to allocate memory for multicast MACs\n");
3581                 rc = -ENOMEM;
3582                 goto exit;
3583         }
3584
3585         temp = mc_macs;
3586
3587         /* Remove all previously configured MAC filters */
3588         rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3589                                    mc_macs, 1);
3590         if (rc)
3591                 goto exit;
3592
3593         netif_addr_lock_bh(ndev);
3594
3595         mc_count = netdev_mc_count(ndev);
3596         if (mc_count < 64) {
3597                 netdev_for_each_mc_addr(ha, ndev) {
3598                         ether_addr_copy(temp, ha->addr);
3599                         temp += ETH_ALEN;
3600                 }
3601         }
3602
3603         netif_addr_unlock_bh(ndev);
3604
3605         /* Check for all multicast @@@TBD resource allocation */
3606         if ((ndev->flags & IFF_ALLMULTI) ||
3607             (mc_count > 64)) {
3608                 if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
3609                         *accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
3610         } else {
3611                 /* Add all multicast MAC filters */
3612                 rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3613                                            mc_macs, mc_count);
3614         }
3615
3616 exit:
3617         kfree(mc_macs);
3618         return rc;
3619 }
3620
3621 static void qede_set_rx_mode(struct net_device *ndev)
3622 {
3623         struct qede_dev *edev = netdev_priv(ndev);
3624
3625         DP_INFO(edev, "qede_set_rx_mode called\n");
3626
3627         if (edev->state != QEDE_STATE_OPEN) {
3628                 DP_INFO(edev,
3629                         "qede_set_rx_mode called while interface is down\n");
3630         } else {
3631                 set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
3632                 schedule_delayed_work(&edev->sp_task, 0);
3633         }
3634 }
3635
3636 /* Must be called with qede_lock held */
3637 static void qede_config_rx_mode(struct net_device *ndev)
3638 {
3639         enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST;
3640         struct qede_dev *edev = netdev_priv(ndev);
3641         struct qed_filter_params rx_mode;
3642         unsigned char *uc_macs, *temp;
3643         struct netdev_hw_addr *ha;
3644         int rc, uc_count;
3645         size_t size;
3646
3647         netif_addr_lock_bh(ndev);
3648
3649         uc_count = netdev_uc_count(ndev);
3650         size = uc_count * ETH_ALEN;
3651
3652         uc_macs = kzalloc(size, GFP_ATOMIC);
3653         if (!uc_macs) {
3654                 DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
3655                 netif_addr_unlock_bh(ndev);
3656                 return;
3657         }
3658
3659         temp = uc_macs;
3660         netdev_for_each_uc_addr(ha, ndev) {
3661                 ether_addr_copy(temp, ha->addr);
3662                 temp += ETH_ALEN;
3663         }
3664
3665         netif_addr_unlock_bh(ndev);
3666
3667         /* Configure the struct for the Rx mode */
3668         memset(&rx_mode, 0, sizeof(struct qed_filter_params));
3669         rx_mode.type = QED_FILTER_TYPE_RX_MODE;
3670
3671         /* Remove all previous unicast secondary macs and multicast macs
3672          * (configrue / leave the primary mac)
3673          */
3674         rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
3675                                    edev->primary_mac);
3676         if (rc)
3677                 goto out;
3678
3679         /* Check for promiscuous */
3680         if ((ndev->flags & IFF_PROMISC) ||
3681             (uc_count > 15)) { /* @@@TBD resource allocation - 1 */
3682                 accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
3683         } else {
3684                 /* Add MAC filters according to the unicast secondary macs */
3685                 int i;
3686
3687                 temp = uc_macs;
3688                 for (i = 0; i < uc_count; i++) {
3689                         rc = qede_set_ucast_rx_mac(edev,
3690                                                    QED_FILTER_XCAST_TYPE_ADD,
3691                                                    temp);
3692                         if (rc)
3693                                 goto out;
3694
3695                         temp += ETH_ALEN;
3696                 }
3697
3698                 rc = qede_configure_mcast_filtering(ndev, &accept_flags);
3699                 if (rc)
3700                         goto out;
3701         }
3702
3703         /* take care of VLAN mode */
3704         if (ndev->flags & IFF_PROMISC) {
3705                 qede_config_accept_any_vlan(edev, true);
3706         } else if (!edev->non_configured_vlans) {
3707                 /* It's possible that accept_any_vlan mode is set due to a
3708                  * previous setting of IFF_PROMISC. If vlan credits are
3709                  * sufficient, disable accept_any_vlan.
3710                  */
3711                 qede_config_accept_any_vlan(edev, false);
3712         }
3713
3714         rx_mode.filter.accept_flags = accept_flags;
3715         edev->ops->filter_config(edev->cdev, &rx_mode);
3716 out:
3717         kfree(uc_macs);
3718 }