qed: Revisit chain implementation
[cascardo/linux.git] / drivers / net / ethernet / qlogic / qede / qede_main.c
1 /* QLogic qede NIC Driver
2 * Copyright (c) 2015 QLogic Corporation
3 *
4 * This software is available under the terms of the GNU General Public License
5 * (GPL) Version 2, available from the file COPYING in the main directory of
6 * this source tree.
7 */
8
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/version.h>
12 #include <linux/device.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/skbuff.h>
16 #include <linux/errno.h>
17 #include <linux/list.h>
18 #include <linux/string.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <asm/byteorder.h>
22 #include <asm/param.h>
23 #include <linux/io.h>
24 #include <linux/netdev_features.h>
25 #include <linux/udp.h>
26 #include <linux/tcp.h>
27 #ifdef CONFIG_QEDE_VXLAN
28 #include <net/vxlan.h>
29 #endif
30 #ifdef CONFIG_QEDE_GENEVE
31 #include <net/geneve.h>
32 #endif
33 #include <linux/ip.h>
34 #include <net/ipv6.h>
35 #include <net/tcp.h>
36 #include <linux/if_ether.h>
37 #include <linux/if_vlan.h>
38 #include <linux/pkt_sched.h>
39 #include <linux/ethtool.h>
40 #include <linux/in.h>
41 #include <linux/random.h>
42 #include <net/ip6_checksum.h>
43 #include <linux/bitops.h>
44
45 #include "qede.h"
46
47 static char version[] =
48         "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
49
50 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_MODULE_VERSION);
53
54 static uint debug;
55 module_param(debug, uint, 0);
56 MODULE_PARM_DESC(debug, " Default debug msglevel");
57
58 static const struct qed_eth_ops *qed_ops;
59
60 #define CHIP_NUM_57980S_40              0x1634
61 #define CHIP_NUM_57980S_10              0x1666
62 #define CHIP_NUM_57980S_MF              0x1636
63 #define CHIP_NUM_57980S_100             0x1644
64 #define CHIP_NUM_57980S_50              0x1654
65 #define CHIP_NUM_57980S_25              0x1656
66 #define CHIP_NUM_57980S_IOV             0x1664
67
68 #ifndef PCI_DEVICE_ID_NX2_57980E
69 #define PCI_DEVICE_ID_57980S_40         CHIP_NUM_57980S_40
70 #define PCI_DEVICE_ID_57980S_10         CHIP_NUM_57980S_10
71 #define PCI_DEVICE_ID_57980S_MF         CHIP_NUM_57980S_MF
72 #define PCI_DEVICE_ID_57980S_100        CHIP_NUM_57980S_100
73 #define PCI_DEVICE_ID_57980S_50         CHIP_NUM_57980S_50
74 #define PCI_DEVICE_ID_57980S_25         CHIP_NUM_57980S_25
75 #define PCI_DEVICE_ID_57980S_IOV        CHIP_NUM_57980S_IOV
76 #endif
77
78 enum qede_pci_private {
79         QEDE_PRIVATE_PF,
80         QEDE_PRIVATE_VF
81 };
82
83 static const struct pci_device_id qede_pci_tbl[] = {
84         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
85         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
86         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
87         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
88         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
89         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
90         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
91         { 0 }
92 };
93
94 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
95
96 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
97
98 #define TX_TIMEOUT              (5 * HZ)
99
100 static void qede_remove(struct pci_dev *pdev);
101 static int qede_alloc_rx_buffer(struct qede_dev *edev,
102                                 struct qede_rx_queue *rxq);
103 static void qede_link_update(void *dev, struct qed_link_output *link);
104
105 #ifdef CONFIG_QED_SRIOV
106 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos)
107 {
108         struct qede_dev *edev = netdev_priv(ndev);
109
110         if (vlan > 4095) {
111                 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
112                 return -EINVAL;
113         }
114
115         DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
116                    vlan, vf);
117
118         return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
119 }
120
121 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
122 {
123         struct qede_dev *edev = netdev_priv(ndev);
124
125         DP_VERBOSE(edev, QED_MSG_IOV,
126                    "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
127                    mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
128
129         if (!is_valid_ether_addr(mac)) {
130                 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
131                 return -EINVAL;
132         }
133
134         return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
135 }
136
137 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
138 {
139         struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
140         struct qed_dev_info *qed_info = &edev->dev_info.common;
141         int rc;
142
143         DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
144
145         rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
146
147         /* Enable/Disable Tx switching for PF */
148         if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
149             qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) {
150                 struct qed_update_vport_params params;
151
152                 memset(&params, 0, sizeof(params));
153                 params.vport_id = 0;
154                 params.update_tx_switching_flg = 1;
155                 params.tx_switching_flg = num_vfs_param ? 1 : 0;
156                 edev->ops->vport_update(edev->cdev, &params);
157         }
158
159         return rc;
160 }
161 #endif
162
163 static struct pci_driver qede_pci_driver = {
164         .name = "qede",
165         .id_table = qede_pci_tbl,
166         .probe = qede_probe,
167         .remove = qede_remove,
168 #ifdef CONFIG_QED_SRIOV
169         .sriov_configure = qede_sriov_configure,
170 #endif
171 };
172
173 static void qede_force_mac(void *dev, u8 *mac)
174 {
175         struct qede_dev *edev = dev;
176
177         ether_addr_copy(edev->ndev->dev_addr, mac);
178         ether_addr_copy(edev->primary_mac, mac);
179 }
180
181 static struct qed_eth_cb_ops qede_ll_ops = {
182         {
183                 .link_update = qede_link_update,
184         },
185         .force_mac = qede_force_mac,
186 };
187
188 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
189                              void *ptr)
190 {
191         struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
192         struct ethtool_drvinfo drvinfo;
193         struct qede_dev *edev;
194
195         /* Currently only support name change */
196         if (event != NETDEV_CHANGENAME)
197                 goto done;
198
199         /* Check whether this is a qede device */
200         if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
201                 goto done;
202
203         memset(&drvinfo, 0, sizeof(drvinfo));
204         ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
205         if (strcmp(drvinfo.driver, "qede"))
206                 goto done;
207         edev = netdev_priv(ndev);
208
209         /* Notify qed of the name change */
210         if (!edev->ops || !edev->ops->common)
211                 goto done;
212         edev->ops->common->set_id(edev->cdev, edev->ndev->name,
213                                   "qede");
214
215 done:
216         return NOTIFY_DONE;
217 }
218
219 static struct notifier_block qede_netdev_notifier = {
220         .notifier_call = qede_netdev_event,
221 };
222
223 static
224 int __init qede_init(void)
225 {
226         int ret;
227
228         pr_notice("qede_init: %s\n", version);
229
230         qed_ops = qed_get_eth_ops();
231         if (!qed_ops) {
232                 pr_notice("Failed to get qed ethtool operations\n");
233                 return -EINVAL;
234         }
235
236         /* Must register notifier before pci ops, since we might miss
237          * interface rename after pci probe and netdev registeration.
238          */
239         ret = register_netdevice_notifier(&qede_netdev_notifier);
240         if (ret) {
241                 pr_notice("Failed to register netdevice_notifier\n");
242                 qed_put_eth_ops();
243                 return -EINVAL;
244         }
245
246         ret = pci_register_driver(&qede_pci_driver);
247         if (ret) {
248                 pr_notice("Failed to register driver\n");
249                 unregister_netdevice_notifier(&qede_netdev_notifier);
250                 qed_put_eth_ops();
251                 return -EINVAL;
252         }
253
254         return 0;
255 }
256
257 static void __exit qede_cleanup(void)
258 {
259         pr_notice("qede_cleanup called\n");
260
261         unregister_netdevice_notifier(&qede_netdev_notifier);
262         pci_unregister_driver(&qede_pci_driver);
263         qed_put_eth_ops();
264 }
265
266 module_init(qede_init);
267 module_exit(qede_cleanup);
268
269 /* -------------------------------------------------------------------------
270  * START OF FAST-PATH
271  * -------------------------------------------------------------------------
272  */
273
274 /* Unmap the data and free skb */
275 static int qede_free_tx_pkt(struct qede_dev *edev,
276                             struct qede_tx_queue *txq,
277                             int *len)
278 {
279         u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
280         struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
281         struct eth_tx_1st_bd *first_bd;
282         struct eth_tx_bd *tx_data_bd;
283         int bds_consumed = 0;
284         int nbds;
285         bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD;
286         int i, split_bd_len = 0;
287
288         if (unlikely(!skb)) {
289                 DP_ERR(edev,
290                        "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
291                        idx, txq->sw_tx_cons, txq->sw_tx_prod);
292                 return -1;
293         }
294
295         *len = skb->len;
296
297         first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
298
299         bds_consumed++;
300
301         nbds = first_bd->data.nbds;
302
303         if (data_split) {
304                 struct eth_tx_bd *split = (struct eth_tx_bd *)
305                         qed_chain_consume(&txq->tx_pbl);
306                 split_bd_len = BD_UNMAP_LEN(split);
307                 bds_consumed++;
308         }
309         dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
310                        BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
311
312         /* Unmap the data of the skb frags */
313         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
314                 tx_data_bd = (struct eth_tx_bd *)
315                         qed_chain_consume(&txq->tx_pbl);
316                 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
317                                BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
318         }
319
320         while (bds_consumed++ < nbds)
321                 qed_chain_consume(&txq->tx_pbl);
322
323         /* Free skb */
324         dev_kfree_skb_any(skb);
325         txq->sw_tx_ring[idx].skb = NULL;
326         txq->sw_tx_ring[idx].flags = 0;
327
328         return 0;
329 }
330
331 /* Unmap the data and free skb when mapping failed during start_xmit */
332 static void qede_free_failed_tx_pkt(struct qede_dev *edev,
333                                     struct qede_tx_queue *txq,
334                                     struct eth_tx_1st_bd *first_bd,
335                                     int nbd,
336                                     bool data_split)
337 {
338         u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
339         struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
340         struct eth_tx_bd *tx_data_bd;
341         int i, split_bd_len = 0;
342
343         /* Return prod to its position before this skb was handled */
344         qed_chain_set_prod(&txq->tx_pbl,
345                            le16_to_cpu(txq->tx_db.data.bd_prod),
346                            first_bd);
347
348         first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
349
350         if (data_split) {
351                 struct eth_tx_bd *split = (struct eth_tx_bd *)
352                                           qed_chain_produce(&txq->tx_pbl);
353                 split_bd_len = BD_UNMAP_LEN(split);
354                 nbd--;
355         }
356
357         dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
358                        BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
359
360         /* Unmap the data of the skb frags */
361         for (i = 0; i < nbd; i++) {
362                 tx_data_bd = (struct eth_tx_bd *)
363                         qed_chain_produce(&txq->tx_pbl);
364                 if (tx_data_bd->nbytes)
365                         dma_unmap_page(&edev->pdev->dev,
366                                        BD_UNMAP_ADDR(tx_data_bd),
367                                        BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
368         }
369
370         /* Return again prod to its position before this skb was handled */
371         qed_chain_set_prod(&txq->tx_pbl,
372                            le16_to_cpu(txq->tx_db.data.bd_prod),
373                            first_bd);
374
375         /* Free skb */
376         dev_kfree_skb_any(skb);
377         txq->sw_tx_ring[idx].skb = NULL;
378         txq->sw_tx_ring[idx].flags = 0;
379 }
380
381 static u32 qede_xmit_type(struct qede_dev *edev,
382                           struct sk_buff *skb,
383                           int *ipv6_ext)
384 {
385         u32 rc = XMIT_L4_CSUM;
386         __be16 l3_proto;
387
388         if (skb->ip_summed != CHECKSUM_PARTIAL)
389                 return XMIT_PLAIN;
390
391         l3_proto = vlan_get_protocol(skb);
392         if (l3_proto == htons(ETH_P_IPV6) &&
393             (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
394                 *ipv6_ext = 1;
395
396         if (skb->encapsulation)
397                 rc |= XMIT_ENC;
398
399         if (skb_is_gso(skb))
400                 rc |= XMIT_LSO;
401
402         return rc;
403 }
404
405 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
406                                          struct eth_tx_2nd_bd *second_bd,
407                                          struct eth_tx_3rd_bd *third_bd)
408 {
409         u8 l4_proto;
410         u16 bd2_bits1 = 0, bd2_bits2 = 0;
411
412         bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
413
414         bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
415                      ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
416                     << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
417
418         bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
419                       ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
420
421         if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
422                 l4_proto = ipv6_hdr(skb)->nexthdr;
423         else
424                 l4_proto = ip_hdr(skb)->protocol;
425
426         if (l4_proto == IPPROTO_UDP)
427                 bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
428
429         if (third_bd)
430                 third_bd->data.bitfields |=
431                         cpu_to_le16(((tcp_hdrlen(skb) / 4) &
432                                 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
433                                 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
434
435         second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
436         second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
437 }
438
439 static int map_frag_to_bd(struct qede_dev *edev,
440                           skb_frag_t *frag,
441                           struct eth_tx_bd *bd)
442 {
443         dma_addr_t mapping;
444
445         /* Map skb non-linear frag data for DMA */
446         mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0,
447                                    skb_frag_size(frag),
448                                    DMA_TO_DEVICE);
449         if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
450                 DP_NOTICE(edev, "Unable to map frag - dropping packet\n");
451                 return -ENOMEM;
452         }
453
454         /* Setup the data pointer of the frag data */
455         BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
456
457         return 0;
458 }
459
460 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
461 {
462         if (is_encap_pkt)
463                 return (skb_inner_transport_header(skb) +
464                         inner_tcp_hdrlen(skb) - skb->data);
465         else
466                 return (skb_transport_header(skb) +
467                         tcp_hdrlen(skb) - skb->data);
468 }
469
470 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
471 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
472 static bool qede_pkt_req_lin(struct qede_dev *edev, struct sk_buff *skb,
473                              u8 xmit_type)
474 {
475         int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
476
477         if (xmit_type & XMIT_LSO) {
478                 int hlen;
479
480                 hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
481
482                 /* linear payload would require its own BD */
483                 if (skb_headlen(skb) > hlen)
484                         allowed_frags--;
485         }
486
487         return (skb_shinfo(skb)->nr_frags > allowed_frags);
488 }
489 #endif
490
491 /* Main transmit function */
492 static
493 netdev_tx_t qede_start_xmit(struct sk_buff *skb,
494                             struct net_device *ndev)
495 {
496         struct qede_dev *edev = netdev_priv(ndev);
497         struct netdev_queue *netdev_txq;
498         struct qede_tx_queue *txq;
499         struct eth_tx_1st_bd *first_bd;
500         struct eth_tx_2nd_bd *second_bd = NULL;
501         struct eth_tx_3rd_bd *third_bd = NULL;
502         struct eth_tx_bd *tx_data_bd = NULL;
503         u16 txq_index;
504         u8 nbd = 0;
505         dma_addr_t mapping;
506         int rc, frag_idx = 0, ipv6_ext = 0;
507         u8 xmit_type;
508         u16 idx;
509         u16 hlen;
510         bool data_split = false;
511
512         /* Get tx-queue context and netdev index */
513         txq_index = skb_get_queue_mapping(skb);
514         WARN_ON(txq_index >= QEDE_TSS_CNT(edev));
515         txq = QEDE_TX_QUEUE(edev, txq_index);
516         netdev_txq = netdev_get_tx_queue(ndev, txq_index);
517
518         WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) <
519                                (MAX_SKB_FRAGS + 1));
520
521         xmit_type = qede_xmit_type(edev, skb, &ipv6_ext);
522
523 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
524         if (qede_pkt_req_lin(edev, skb, xmit_type)) {
525                 if (skb_linearize(skb)) {
526                         DP_NOTICE(edev,
527                                   "SKB linearization failed - silently dropping this SKB\n");
528                         dev_kfree_skb_any(skb);
529                         return NETDEV_TX_OK;
530                 }
531         }
532 #endif
533
534         /* Fill the entry in the SW ring and the BDs in the FW ring */
535         idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
536         txq->sw_tx_ring[idx].skb = skb;
537         first_bd = (struct eth_tx_1st_bd *)
538                    qed_chain_produce(&txq->tx_pbl);
539         memset(first_bd, 0, sizeof(*first_bd));
540         first_bd->data.bd_flags.bitfields =
541                 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
542
543         /* Map skb linear data for DMA and set in the first BD */
544         mapping = dma_map_single(&edev->pdev->dev, skb->data,
545                                  skb_headlen(skb), DMA_TO_DEVICE);
546         if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
547                 DP_NOTICE(edev, "SKB mapping failed\n");
548                 qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false);
549                 return NETDEV_TX_OK;
550         }
551         nbd++;
552         BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
553
554         /* In case there is IPv6 with extension headers or LSO we need 2nd and
555          * 3rd BDs.
556          */
557         if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
558                 second_bd = (struct eth_tx_2nd_bd *)
559                         qed_chain_produce(&txq->tx_pbl);
560                 memset(second_bd, 0, sizeof(*second_bd));
561
562                 nbd++;
563                 third_bd = (struct eth_tx_3rd_bd *)
564                         qed_chain_produce(&txq->tx_pbl);
565                 memset(third_bd, 0, sizeof(*third_bd));
566
567                 nbd++;
568                 /* We need to fill in additional data in second_bd... */
569                 tx_data_bd = (struct eth_tx_bd *)second_bd;
570         }
571
572         if (skb_vlan_tag_present(skb)) {
573                 first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
574                 first_bd->data.bd_flags.bitfields |=
575                         1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
576         }
577
578         /* Fill the parsing flags & params according to the requested offload */
579         if (xmit_type & XMIT_L4_CSUM) {
580                 /* We don't re-calculate IP checksum as it is already done by
581                  * the upper stack
582                  */
583                 first_bd->data.bd_flags.bitfields |=
584                         1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
585
586                 if (xmit_type & XMIT_ENC) {
587                         first_bd->data.bd_flags.bitfields |=
588                                 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
589                         first_bd->data.bitfields |=
590                             1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
591                 }
592
593                 /* If the packet is IPv6 with extension header, indicate that
594                  * to FW and pass few params, since the device cracker doesn't
595                  * support parsing IPv6 with extension header/s.
596                  */
597                 if (unlikely(ipv6_ext))
598                         qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
599         }
600
601         if (xmit_type & XMIT_LSO) {
602                 first_bd->data.bd_flags.bitfields |=
603                         (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
604                 third_bd->data.lso_mss =
605                         cpu_to_le16(skb_shinfo(skb)->gso_size);
606
607                 if (unlikely(xmit_type & XMIT_ENC)) {
608                         first_bd->data.bd_flags.bitfields |=
609                                 1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
610                         hlen = qede_get_skb_hlen(skb, true);
611                 } else {
612                         first_bd->data.bd_flags.bitfields |=
613                                 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
614                         hlen = qede_get_skb_hlen(skb, false);
615                 }
616
617                 /* @@@TBD - if will not be removed need to check */
618                 third_bd->data.bitfields |=
619                         cpu_to_le16((1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT));
620
621                 /* Make life easier for FW guys who can't deal with header and
622                  * data on same BD. If we need to split, use the second bd...
623                  */
624                 if (unlikely(skb_headlen(skb) > hlen)) {
625                         DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
626                                    "TSO split header size is %d (%x:%x)\n",
627                                    first_bd->nbytes, first_bd->addr.hi,
628                                    first_bd->addr.lo);
629
630                         mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
631                                            le32_to_cpu(first_bd->addr.lo)) +
632                                            hlen;
633
634                         BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
635                                               le16_to_cpu(first_bd->nbytes) -
636                                               hlen);
637
638                         /* this marks the BD as one that has no
639                          * individual mapping
640                          */
641                         txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD;
642
643                         first_bd->nbytes = cpu_to_le16(hlen);
644
645                         tx_data_bd = (struct eth_tx_bd *)third_bd;
646                         data_split = true;
647                 }
648         } else {
649                 first_bd->data.bitfields |=
650                     (skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
651                     ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
652         }
653
654         /* Handle fragmented skb */
655         /* special handle for frags inside 2nd and 3rd bds.. */
656         while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
657                 rc = map_frag_to_bd(edev,
658                                     &skb_shinfo(skb)->frags[frag_idx],
659                                     tx_data_bd);
660                 if (rc) {
661                         qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
662                                                 data_split);
663                         return NETDEV_TX_OK;
664                 }
665
666                 if (tx_data_bd == (struct eth_tx_bd *)second_bd)
667                         tx_data_bd = (struct eth_tx_bd *)third_bd;
668                 else
669                         tx_data_bd = NULL;
670
671                 frag_idx++;
672         }
673
674         /* map last frags into 4th, 5th .... */
675         for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
676                 tx_data_bd = (struct eth_tx_bd *)
677                              qed_chain_produce(&txq->tx_pbl);
678
679                 memset(tx_data_bd, 0, sizeof(*tx_data_bd));
680
681                 rc = map_frag_to_bd(edev,
682                                     &skb_shinfo(skb)->frags[frag_idx],
683                                     tx_data_bd);
684                 if (rc) {
685                         qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
686                                                 data_split);
687                         return NETDEV_TX_OK;
688                 }
689         }
690
691         /* update the first BD with the actual num BDs */
692         first_bd->data.nbds = nbd;
693
694         netdev_tx_sent_queue(netdev_txq, skb->len);
695
696         skb_tx_timestamp(skb);
697
698         /* Advance packet producer only before sending the packet since mapping
699          * of pages may fail.
700          */
701         txq->sw_tx_prod++;
702
703         /* 'next page' entries are counted in the producer value */
704         txq->tx_db.data.bd_prod =
705                 cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
706
707         /* wmb makes sure that the BDs data is updated before updating the
708          * producer, otherwise FW may read old data from the BDs.
709          */
710         wmb();
711         barrier();
712         writel(txq->tx_db.raw, txq->doorbell_addr);
713
714         /* mmiowb is needed to synchronize doorbell writes from more than one
715          * processor. It guarantees that the write arrives to the device before
716          * the queue lock is released and another start_xmit is called (possibly
717          * on another CPU). Without this barrier, the next doorbell can bypass
718          * this doorbell. This is applicable to IA64/Altix systems.
719          */
720         mmiowb();
721
722         if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
723                       < (MAX_SKB_FRAGS + 1))) {
724                 netif_tx_stop_queue(netdev_txq);
725                 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
726                            "Stop queue was called\n");
727                 /* paired memory barrier is in qede_tx_int(), we have to keep
728                  * ordering of set_bit() in netif_tx_stop_queue() and read of
729                  * fp->bd_tx_cons
730                  */
731                 smp_mb();
732
733                 if (qed_chain_get_elem_left(&txq->tx_pbl)
734                      >= (MAX_SKB_FRAGS + 1) &&
735                     (edev->state == QEDE_STATE_OPEN)) {
736                         netif_tx_wake_queue(netdev_txq);
737                         DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
738                                    "Wake queue was called\n");
739                 }
740         }
741
742         return NETDEV_TX_OK;
743 }
744
745 int qede_txq_has_work(struct qede_tx_queue *txq)
746 {
747         u16 hw_bd_cons;
748
749         /* Tell compiler that consumer and producer can change */
750         barrier();
751         hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
752         if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
753                 return 0;
754
755         return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
756 }
757
758 static int qede_tx_int(struct qede_dev *edev,
759                        struct qede_tx_queue *txq)
760 {
761         struct netdev_queue *netdev_txq;
762         u16 hw_bd_cons;
763         unsigned int pkts_compl = 0, bytes_compl = 0;
764         int rc;
765
766         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
767
768         hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
769         barrier();
770
771         while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
772                 int len = 0;
773
774                 rc = qede_free_tx_pkt(edev, txq, &len);
775                 if (rc) {
776                         DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
777                                   hw_bd_cons,
778                                   qed_chain_get_cons_idx(&txq->tx_pbl));
779                         break;
780                 }
781
782                 bytes_compl += len;
783                 pkts_compl++;
784                 txq->sw_tx_cons++;
785         }
786
787         netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
788
789         /* Need to make the tx_bd_cons update visible to start_xmit()
790          * before checking for netif_tx_queue_stopped().  Without the
791          * memory barrier, there is a small possibility that
792          * start_xmit() will miss it and cause the queue to be stopped
793          * forever.
794          * On the other hand we need an rmb() here to ensure the proper
795          * ordering of bit testing in the following
796          * netif_tx_queue_stopped(txq) call.
797          */
798         smp_mb();
799
800         if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
801                 /* Taking tx_lock is needed to prevent reenabling the queue
802                  * while it's empty. This could have happen if rx_action() gets
803                  * suspended in qede_tx_int() after the condition before
804                  * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
805                  *
806                  * stops the queue->sees fresh tx_bd_cons->releases the queue->
807                  * sends some packets consuming the whole queue again->
808                  * stops the queue
809                  */
810
811                 __netif_tx_lock(netdev_txq, smp_processor_id());
812
813                 if ((netif_tx_queue_stopped(netdev_txq)) &&
814                     (edev->state == QEDE_STATE_OPEN) &&
815                     (qed_chain_get_elem_left(&txq->tx_pbl)
816                       >= (MAX_SKB_FRAGS + 1))) {
817                         netif_tx_wake_queue(netdev_txq);
818                         DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
819                                    "Wake queue was called\n");
820                 }
821
822                 __netif_tx_unlock(netdev_txq);
823         }
824
825         return 0;
826 }
827
828 bool qede_has_rx_work(struct qede_rx_queue *rxq)
829 {
830         u16 hw_comp_cons, sw_comp_cons;
831
832         /* Tell compiler that status block fields can change */
833         barrier();
834
835         hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
836         sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
837
838         return hw_comp_cons != sw_comp_cons;
839 }
840
841 static bool qede_has_tx_work(struct qede_fastpath *fp)
842 {
843         u8 tc;
844
845         for (tc = 0; tc < fp->edev->num_tc; tc++)
846                 if (qede_txq_has_work(&fp->txqs[tc]))
847                         return true;
848         return false;
849 }
850
851 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
852 {
853         qed_chain_consume(&rxq->rx_bd_ring);
854         rxq->sw_rx_cons++;
855 }
856
857 /* This function reuses the buffer(from an offset) from
858  * consumer index to producer index in the bd ring
859  */
860 static inline void qede_reuse_page(struct qede_dev *edev,
861                                    struct qede_rx_queue *rxq,
862                                    struct sw_rx_data *curr_cons)
863 {
864         struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
865         struct sw_rx_data *curr_prod;
866         dma_addr_t new_mapping;
867
868         curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
869         *curr_prod = *curr_cons;
870
871         new_mapping = curr_prod->mapping + curr_prod->page_offset;
872
873         rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
874         rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping));
875
876         rxq->sw_rx_prod++;
877         curr_cons->data = NULL;
878 }
879
880 /* In case of allocation failures reuse buffers
881  * from consumer index to produce buffers for firmware
882  */
883 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
884                              struct qede_dev *edev, u8 count)
885 {
886         struct sw_rx_data *curr_cons;
887
888         for (; count > 0; count--) {
889                 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
890                 qede_reuse_page(edev, rxq, curr_cons);
891                 qede_rx_bd_ring_consume(rxq);
892         }
893 }
894
895 static inline int qede_realloc_rx_buffer(struct qede_dev *edev,
896                                          struct qede_rx_queue *rxq,
897                                          struct sw_rx_data *curr_cons)
898 {
899         /* Move to the next segment in the page */
900         curr_cons->page_offset += rxq->rx_buf_seg_size;
901
902         if (curr_cons->page_offset == PAGE_SIZE) {
903                 if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
904                         /* Since we failed to allocate new buffer
905                          * current buffer can be used again.
906                          */
907                         curr_cons->page_offset -= rxq->rx_buf_seg_size;
908
909                         return -ENOMEM;
910                 }
911
912                 dma_unmap_page(&edev->pdev->dev, curr_cons->mapping,
913                                PAGE_SIZE, DMA_FROM_DEVICE);
914         } else {
915                 /* Increment refcount of the page as we don't want
916                  * network stack to take the ownership of the page
917                  * which can be recycled multiple times by the driver.
918                  */
919                 page_ref_inc(curr_cons->data);
920                 qede_reuse_page(edev, rxq, curr_cons);
921         }
922
923         return 0;
924 }
925
926 static inline void qede_update_rx_prod(struct qede_dev *edev,
927                                        struct qede_rx_queue *rxq)
928 {
929         u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
930         u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
931         struct eth_rx_prod_data rx_prods = {0};
932
933         /* Update producers */
934         rx_prods.bd_prod = cpu_to_le16(bd_prod);
935         rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
936
937         /* Make sure that the BD and SGE data is updated before updating the
938          * producers since FW might read the BD/SGE right after the producer
939          * is updated.
940          */
941         wmb();
942
943         internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
944                         (u32 *)&rx_prods);
945
946         /* mmiowb is needed to synchronize doorbell writes from more than one
947          * processor. It guarantees that the write arrives to the device before
948          * the napi lock is released and another qede_poll is called (possibly
949          * on another CPU). Without this barrier, the next doorbell can bypass
950          * this doorbell. This is applicable to IA64/Altix systems.
951          */
952         mmiowb();
953 }
954
955 static u32 qede_get_rxhash(struct qede_dev *edev,
956                            u8 bitfields,
957                            __le32 rss_hash,
958                            enum pkt_hash_types *rxhash_type)
959 {
960         enum rss_hash_type htype;
961
962         htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
963
964         if ((edev->ndev->features & NETIF_F_RXHASH) && htype) {
965                 *rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
966                                 (htype == RSS_HASH_TYPE_IPV6)) ?
967                                 PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
968                 return le32_to_cpu(rss_hash);
969         }
970         *rxhash_type = PKT_HASH_TYPE_NONE;
971         return 0;
972 }
973
974 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
975 {
976         skb_checksum_none_assert(skb);
977
978         if (csum_flag & QEDE_CSUM_UNNECESSARY)
979                 skb->ip_summed = CHECKSUM_UNNECESSARY;
980
981         if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY)
982                 skb->csum_level = 1;
983 }
984
985 static inline void qede_skb_receive(struct qede_dev *edev,
986                                     struct qede_fastpath *fp,
987                                     struct sk_buff *skb,
988                                     u16 vlan_tag)
989 {
990         if (vlan_tag)
991                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
992                                        vlan_tag);
993
994         napi_gro_receive(&fp->napi, skb);
995 }
996
997 static void qede_set_gro_params(struct qede_dev *edev,
998                                 struct sk_buff *skb,
999                                 struct eth_fast_path_rx_tpa_start_cqe *cqe)
1000 {
1001         u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
1002
1003         if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
1004             PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
1005                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
1006         else
1007                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
1008
1009         skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
1010                                         cqe->header_len;
1011 }
1012
1013 static int qede_fill_frag_skb(struct qede_dev *edev,
1014                               struct qede_rx_queue *rxq,
1015                               u8 tpa_agg_index,
1016                               u16 len_on_bd)
1017 {
1018         struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
1019                                                          NUM_RX_BDS_MAX];
1020         struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
1021         struct sk_buff *skb = tpa_info->skb;
1022
1023         if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1024                 goto out;
1025
1026         /* Add one frag and update the appropriate fields in the skb */
1027         skb_fill_page_desc(skb, tpa_info->frag_id++,
1028                            current_bd->data, current_bd->page_offset,
1029                            len_on_bd);
1030
1031         if (unlikely(qede_realloc_rx_buffer(edev, rxq, current_bd))) {
1032                 /* Incr page ref count to reuse on allocation failure
1033                  * so that it doesn't get freed while freeing SKB.
1034                  */
1035                 page_ref_inc(current_bd->data);
1036                 goto out;
1037         }
1038
1039         qed_chain_consume(&rxq->rx_bd_ring);
1040         rxq->sw_rx_cons++;
1041
1042         skb->data_len += len_on_bd;
1043         skb->truesize += rxq->rx_buf_seg_size;
1044         skb->len += len_on_bd;
1045
1046         return 0;
1047
1048 out:
1049         tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1050         qede_recycle_rx_bd_ring(rxq, edev, 1);
1051         return -ENOMEM;
1052 }
1053
1054 static void qede_tpa_start(struct qede_dev *edev,
1055                            struct qede_rx_queue *rxq,
1056                            struct eth_fast_path_rx_tpa_start_cqe *cqe)
1057 {
1058         struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1059         struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
1060         struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
1061         struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
1062         dma_addr_t mapping = tpa_info->replace_buf_mapping;
1063         struct sw_rx_data *sw_rx_data_cons;
1064         struct sw_rx_data *sw_rx_data_prod;
1065         enum pkt_hash_types rxhash_type;
1066         u32 rxhash;
1067
1068         sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
1069         sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
1070
1071         /* Use pre-allocated replacement buffer - we can't release the agg.
1072          * start until its over and we don't want to risk allocation failing
1073          * here, so re-allocate when aggregation will be over.
1074          */
1075         sw_rx_data_prod->mapping = replace_buf->mapping;
1076
1077         sw_rx_data_prod->data = replace_buf->data;
1078         rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
1079         rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
1080         sw_rx_data_prod->page_offset = replace_buf->page_offset;
1081
1082         rxq->sw_rx_prod++;
1083
1084         /* move partial skb from cons to pool (don't unmap yet)
1085          * save mapping, incase we drop the packet later on.
1086          */
1087         tpa_info->start_buf = *sw_rx_data_cons;
1088         mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
1089                            le32_to_cpu(rx_bd_cons->addr.lo));
1090
1091         tpa_info->start_buf_mapping = mapping;
1092         rxq->sw_rx_cons++;
1093
1094         /* set tpa state to start only if we are able to allocate skb
1095          * for this aggregation, otherwise mark as error and aggregation will
1096          * be dropped
1097          */
1098         tpa_info->skb = netdev_alloc_skb(edev->ndev,
1099                                          le16_to_cpu(cqe->len_on_first_bd));
1100         if (unlikely(!tpa_info->skb)) {
1101                 DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
1102                 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1103                 goto cons_buf;
1104         }
1105
1106         skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
1107         memcpy(&tpa_info->start_cqe, cqe, sizeof(tpa_info->start_cqe));
1108
1109         /* Start filling in the aggregation info */
1110         tpa_info->frag_id = 0;
1111         tpa_info->agg_state = QEDE_AGG_STATE_START;
1112
1113         rxhash = qede_get_rxhash(edev, cqe->bitfields,
1114                                  cqe->rss_hash, &rxhash_type);
1115         skb_set_hash(tpa_info->skb, rxhash, rxhash_type);
1116         if ((le16_to_cpu(cqe->pars_flags.flags) >>
1117              PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
1118                     PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
1119                 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
1120         else
1121                 tpa_info->vlan_tag = 0;
1122
1123         /* This is needed in order to enable forwarding support */
1124         qede_set_gro_params(edev, tpa_info->skb, cqe);
1125
1126 cons_buf: /* We still need to handle bd_len_list to consume buffers */
1127         if (likely(cqe->ext_bd_len_list[0]))
1128                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1129                                    le16_to_cpu(cqe->ext_bd_len_list[0]));
1130
1131         if (unlikely(cqe->ext_bd_len_list[1])) {
1132                 DP_ERR(edev,
1133                        "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
1134                 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1135         }
1136 }
1137
1138 #ifdef CONFIG_INET
1139 static void qede_gro_ip_csum(struct sk_buff *skb)
1140 {
1141         const struct iphdr *iph = ip_hdr(skb);
1142         struct tcphdr *th;
1143
1144         skb_set_transport_header(skb, sizeof(struct iphdr));
1145         th = tcp_hdr(skb);
1146
1147         th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
1148                                   iph->saddr, iph->daddr, 0);
1149
1150         tcp_gro_complete(skb);
1151 }
1152
1153 static void qede_gro_ipv6_csum(struct sk_buff *skb)
1154 {
1155         struct ipv6hdr *iph = ipv6_hdr(skb);
1156         struct tcphdr *th;
1157
1158         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
1159         th = tcp_hdr(skb);
1160
1161         th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
1162                                   &iph->saddr, &iph->daddr, 0);
1163         tcp_gro_complete(skb);
1164 }
1165 #endif
1166
1167 static void qede_gro_receive(struct qede_dev *edev,
1168                              struct qede_fastpath *fp,
1169                              struct sk_buff *skb,
1170                              u16 vlan_tag)
1171 {
1172         /* FW can send a single MTU sized packet from gro flow
1173          * due to aggregation timeout/last segment etc. which
1174          * is not expected to be a gro packet. If a skb has zero
1175          * frags then simply push it in the stack as non gso skb.
1176          */
1177         if (unlikely(!skb->data_len)) {
1178                 skb_shinfo(skb)->gso_type = 0;
1179                 skb_shinfo(skb)->gso_size = 0;
1180                 goto send_skb;
1181         }
1182
1183 #ifdef CONFIG_INET
1184         if (skb_shinfo(skb)->gso_size) {
1185                 skb_set_network_header(skb, 0);
1186
1187                 switch (skb->protocol) {
1188                 case htons(ETH_P_IP):
1189                         qede_gro_ip_csum(skb);
1190                         break;
1191                 case htons(ETH_P_IPV6):
1192                         qede_gro_ipv6_csum(skb);
1193                         break;
1194                 default:
1195                         DP_ERR(edev,
1196                                "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
1197                                ntohs(skb->protocol));
1198                 }
1199         }
1200 #endif
1201
1202 send_skb:
1203         skb_record_rx_queue(skb, fp->rss_id);
1204         qede_skb_receive(edev, fp, skb, vlan_tag);
1205 }
1206
1207 static inline void qede_tpa_cont(struct qede_dev *edev,
1208                                  struct qede_rx_queue *rxq,
1209                                  struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1210 {
1211         int i;
1212
1213         for (i = 0; cqe->len_list[i]; i++)
1214                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1215                                    le16_to_cpu(cqe->len_list[i]));
1216
1217         if (unlikely(i > 1))
1218                 DP_ERR(edev,
1219                        "Strange - TPA cont with more than a single len_list entry\n");
1220 }
1221
1222 static void qede_tpa_end(struct qede_dev *edev,
1223                          struct qede_fastpath *fp,
1224                          struct eth_fast_path_rx_tpa_end_cqe *cqe)
1225 {
1226         struct qede_rx_queue *rxq = fp->rxq;
1227         struct qede_agg_info *tpa_info;
1228         struct sk_buff *skb;
1229         int i;
1230
1231         tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1232         skb = tpa_info->skb;
1233
1234         for (i = 0; cqe->len_list[i]; i++)
1235                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1236                                    le16_to_cpu(cqe->len_list[i]));
1237         if (unlikely(i > 1))
1238                 DP_ERR(edev,
1239                        "Strange - TPA emd with more than a single len_list entry\n");
1240
1241         if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1242                 goto err;
1243
1244         /* Sanity */
1245         if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
1246                 DP_ERR(edev,
1247                        "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
1248                        cqe->num_of_bds, tpa_info->frag_id);
1249         if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
1250                 DP_ERR(edev,
1251                        "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
1252                        le16_to_cpu(cqe->total_packet_len), skb->len);
1253
1254         memcpy(skb->data,
1255                page_address(tpa_info->start_buf.data) +
1256                 tpa_info->start_cqe.placement_offset +
1257                 tpa_info->start_buf.page_offset,
1258                le16_to_cpu(tpa_info->start_cqe.len_on_first_bd));
1259
1260         /* Recycle [mapped] start buffer for the next replacement */
1261         tpa_info->replace_buf = tpa_info->start_buf;
1262         tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1263
1264         /* Finalize the SKB */
1265         skb->protocol = eth_type_trans(skb, edev->ndev);
1266         skb->ip_summed = CHECKSUM_UNNECESSARY;
1267
1268         /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
1269          * to skb_shinfo(skb)->gso_segs
1270          */
1271         NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
1272
1273         qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
1274
1275         tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1276
1277         return;
1278 err:
1279         /* The BD starting the aggregation is still mapped; Re-use it for
1280          * future aggregations [as replacement buffer]
1281          */
1282         memcpy(&tpa_info->replace_buf, &tpa_info->start_buf,
1283                sizeof(struct sw_rx_data));
1284         tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1285         tpa_info->start_buf.data = NULL;
1286         tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1287         dev_kfree_skb_any(tpa_info->skb);
1288         tpa_info->skb = NULL;
1289 }
1290
1291 static bool qede_tunn_exist(u16 flag)
1292 {
1293         return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
1294                           PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
1295 }
1296
1297 static u8 qede_check_tunn_csum(u16 flag)
1298 {
1299         u16 csum_flag = 0;
1300         u8 tcsum = 0;
1301
1302         if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
1303                     PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
1304                 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
1305                              PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
1306
1307         if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1308                     PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1309                 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1310                              PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1311                 tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
1312         }
1313
1314         csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
1315                      PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
1316                      PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1317                      PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1318
1319         if (csum_flag & flag)
1320                 return QEDE_CSUM_ERROR;
1321
1322         return QEDE_CSUM_UNNECESSARY | tcsum;
1323 }
1324
1325 static u8 qede_check_notunn_csum(u16 flag)
1326 {
1327         u16 csum_flag = 0;
1328         u8 csum = 0;
1329
1330         if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1331                     PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1332                 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1333                              PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1334                 csum = QEDE_CSUM_UNNECESSARY;
1335         }
1336
1337         csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1338                      PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1339
1340         if (csum_flag & flag)
1341                 return QEDE_CSUM_ERROR;
1342
1343         return csum;
1344 }
1345
1346 static u8 qede_check_csum(u16 flag)
1347 {
1348         if (!qede_tunn_exist(flag))
1349                 return qede_check_notunn_csum(flag);
1350         else
1351                 return qede_check_tunn_csum(flag);
1352 }
1353
1354 static int qede_rx_int(struct qede_fastpath *fp, int budget)
1355 {
1356         struct qede_dev *edev = fp->edev;
1357         struct qede_rx_queue *rxq = fp->rxq;
1358
1359         u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag;
1360         int rx_pkt = 0;
1361         u8 csum_flag;
1362
1363         hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1364         sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1365
1366         /* Memory barrier to prevent the CPU from doing speculative reads of CQE
1367          * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1368          * read before it is written by FW, then FW writes CQE and SB, and then
1369          * the CPU reads the hw_comp_cons, it will use an old CQE.
1370          */
1371         rmb();
1372
1373         /* Loop to complete all indicated BDs */
1374         while (sw_comp_cons != hw_comp_cons) {
1375                 struct eth_fast_path_rx_reg_cqe *fp_cqe;
1376                 enum pkt_hash_types rxhash_type;
1377                 enum eth_rx_cqe_type cqe_type;
1378                 struct sw_rx_data *sw_rx_data;
1379                 union eth_rx_cqe *cqe;
1380                 struct sk_buff *skb;
1381                 struct page *data;
1382                 __le16 flags;
1383                 u16 len, pad;
1384                 u32 rx_hash;
1385
1386                 /* Get the CQE from the completion ring */
1387                 cqe = (union eth_rx_cqe *)
1388                         qed_chain_consume(&rxq->rx_comp_ring);
1389                 cqe_type = cqe->fast_path_regular.type;
1390
1391                 if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1392                         edev->ops->eth_cqe_completion(
1393                                         edev->cdev, fp->rss_id,
1394                                         (struct eth_slow_path_rx_cqe *)cqe);
1395                         goto next_cqe;
1396                 }
1397
1398                 if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) {
1399                         switch (cqe_type) {
1400                         case ETH_RX_CQE_TYPE_TPA_START:
1401                                 qede_tpa_start(edev, rxq,
1402                                                &cqe->fast_path_tpa_start);
1403                                 goto next_cqe;
1404                         case ETH_RX_CQE_TYPE_TPA_CONT:
1405                                 qede_tpa_cont(edev, rxq,
1406                                               &cqe->fast_path_tpa_cont);
1407                                 goto next_cqe;
1408                         case ETH_RX_CQE_TYPE_TPA_END:
1409                                 qede_tpa_end(edev, fp,
1410                                              &cqe->fast_path_tpa_end);
1411                                 goto next_rx_only;
1412                         default:
1413                                 break;
1414                         }
1415                 }
1416
1417                 /* Get the data from the SW ring */
1418                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1419                 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1420                 data = sw_rx_data->data;
1421
1422                 fp_cqe = &cqe->fast_path_regular;
1423                 len =  le16_to_cpu(fp_cqe->len_on_first_bd);
1424                 pad = fp_cqe->placement_offset;
1425                 flags = cqe->fast_path_regular.pars_flags.flags;
1426
1427                 /* If this is an error packet then drop it */
1428                 parse_flag = le16_to_cpu(flags);
1429
1430                 csum_flag = qede_check_csum(parse_flag);
1431                 if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1432                         DP_NOTICE(edev,
1433                                   "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n",
1434                                   sw_comp_cons, parse_flag);
1435                         rxq->rx_hw_errors++;
1436                         qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1437                         goto next_cqe;
1438                 }
1439
1440                 skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
1441                 if (unlikely(!skb)) {
1442                         DP_NOTICE(edev,
1443                                   "Build_skb failed, dropping incoming packet\n");
1444                         qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1445                         rxq->rx_alloc_errors++;
1446                         goto next_cqe;
1447                 }
1448
1449                 /* Copy data into SKB */
1450                 if (len + pad <= QEDE_RX_HDR_SIZE) {
1451                         memcpy(skb_put(skb, len),
1452                                page_address(data) + pad +
1453                                 sw_rx_data->page_offset, len);
1454                         qede_reuse_page(edev, rxq, sw_rx_data);
1455                 } else {
1456                         struct skb_frag_struct *frag;
1457                         unsigned int pull_len;
1458                         unsigned char *va;
1459
1460                         frag = &skb_shinfo(skb)->frags[0];
1461
1462                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, data,
1463                                         pad + sw_rx_data->page_offset,
1464                                         len, rxq->rx_buf_seg_size);
1465
1466                         va = skb_frag_address(frag);
1467                         pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
1468
1469                         /* Align the pull_len to optimize memcpy */
1470                         memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
1471
1472                         skb_frag_size_sub(frag, pull_len);
1473                         frag->page_offset += pull_len;
1474                         skb->data_len -= pull_len;
1475                         skb->tail += pull_len;
1476
1477                         if (unlikely(qede_realloc_rx_buffer(edev, rxq,
1478                                                             sw_rx_data))) {
1479                                 DP_ERR(edev, "Failed to allocate rx buffer\n");
1480                                 /* Incr page ref count to reuse on allocation
1481                                  * failure so that it doesn't get freed while
1482                                  * freeing SKB.
1483                                  */
1484
1485                                 page_ref_inc(sw_rx_data->data);
1486                                 rxq->rx_alloc_errors++;
1487                                 qede_recycle_rx_bd_ring(rxq, edev,
1488                                                         fp_cqe->bd_num);
1489                                 dev_kfree_skb_any(skb);
1490                                 goto next_cqe;
1491                         }
1492                 }
1493
1494                 qede_rx_bd_ring_consume(rxq);
1495
1496                 if (fp_cqe->bd_num != 1) {
1497                         u16 pkt_len = le16_to_cpu(fp_cqe->pkt_len);
1498                         u8 num_frags;
1499
1500                         pkt_len -= len;
1501
1502                         for (num_frags = fp_cqe->bd_num - 1; num_frags > 0;
1503                              num_frags--) {
1504                                 u16 cur_size = pkt_len > rxq->rx_buf_size ?
1505                                                 rxq->rx_buf_size : pkt_len;
1506                                 if (unlikely(!cur_size)) {
1507                                         DP_ERR(edev,
1508                                                "Still got %d BDs for mapping jumbo, but length became 0\n",
1509                                                num_frags);
1510                                         qede_recycle_rx_bd_ring(rxq, edev,
1511                                                                 num_frags);
1512                                         dev_kfree_skb_any(skb);
1513                                         goto next_cqe;
1514                                 }
1515
1516                                 if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
1517                                         qede_recycle_rx_bd_ring(rxq, edev,
1518                                                                 num_frags);
1519                                         dev_kfree_skb_any(skb);
1520                                         goto next_cqe;
1521                                 }
1522
1523                                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1524                                 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1525                                 qede_rx_bd_ring_consume(rxq);
1526
1527                                 dma_unmap_page(&edev->pdev->dev,
1528                                                sw_rx_data->mapping,
1529                                                PAGE_SIZE, DMA_FROM_DEVICE);
1530
1531                                 skb_fill_page_desc(skb,
1532                                                    skb_shinfo(skb)->nr_frags++,
1533                                                    sw_rx_data->data, 0,
1534                                                    cur_size);
1535
1536                                 skb->truesize += PAGE_SIZE;
1537                                 skb->data_len += cur_size;
1538                                 skb->len += cur_size;
1539                                 pkt_len -= cur_size;
1540                         }
1541
1542                         if (unlikely(pkt_len))
1543                                 DP_ERR(edev,
1544                                        "Mapped all BDs of jumbo, but still have %d bytes\n",
1545                                        pkt_len);
1546                 }
1547
1548                 skb->protocol = eth_type_trans(skb, edev->ndev);
1549
1550                 rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields,
1551                                           fp_cqe->rss_hash,
1552                                           &rxhash_type);
1553
1554                 skb_set_hash(skb, rx_hash, rxhash_type);
1555
1556                 qede_set_skb_csum(skb, csum_flag);
1557
1558                 skb_record_rx_queue(skb, fp->rss_id);
1559
1560                 qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag));
1561 next_rx_only:
1562                 rx_pkt++;
1563
1564 next_cqe: /* don't consume bd rx buffer */
1565                 qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1566                 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1567                 /* CR TPA - revisit how to handle budget in TPA perhaps
1568                  * increase on "end"
1569                  */
1570                 if (rx_pkt == budget)
1571                         break;
1572         } /* repeat while sw_comp_cons != hw_comp_cons... */
1573
1574         /* Update producers */
1575         qede_update_rx_prod(edev, rxq);
1576
1577         return rx_pkt;
1578 }
1579
1580 static int qede_poll(struct napi_struct *napi, int budget)
1581 {
1582         int work_done = 0;
1583         struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1584                                                  napi);
1585         struct qede_dev *edev = fp->edev;
1586
1587         while (1) {
1588                 u8 tc;
1589
1590                 for (tc = 0; tc < edev->num_tc; tc++)
1591                         if (qede_txq_has_work(&fp->txqs[tc]))
1592                                 qede_tx_int(edev, &fp->txqs[tc]);
1593
1594                 if (qede_has_rx_work(fp->rxq)) {
1595                         work_done += qede_rx_int(fp, budget - work_done);
1596
1597                         /* must not complete if we consumed full budget */
1598                         if (work_done >= budget)
1599                                 break;
1600                 }
1601
1602                 /* Fall out from the NAPI loop if needed */
1603                 if (!(qede_has_rx_work(fp->rxq) || qede_has_tx_work(fp))) {
1604                         qed_sb_update_sb_idx(fp->sb_info);
1605                         /* *_has_*_work() reads the status block,
1606                          * thus we need to ensure that status block indices
1607                          * have been actually read (qed_sb_update_sb_idx)
1608                          * prior to this check (*_has_*_work) so that
1609                          * we won't write the "newer" value of the status block
1610                          * to HW (if there was a DMA right after
1611                          * qede_has_rx_work and if there is no rmb, the memory
1612                          * reading (qed_sb_update_sb_idx) may be postponed
1613                          * to right before *_ack_sb). In this case there
1614                          * will never be another interrupt until there is
1615                          * another update of the status block, while there
1616                          * is still unhandled work.
1617                          */
1618                         rmb();
1619
1620                         if (!(qede_has_rx_work(fp->rxq) ||
1621                               qede_has_tx_work(fp))) {
1622                                 napi_complete(napi);
1623                                 /* Update and reenable interrupts */
1624                                 qed_sb_ack(fp->sb_info, IGU_INT_ENABLE,
1625                                            1 /*update*/);
1626                                 break;
1627                         }
1628                 }
1629         }
1630
1631         return work_done;
1632 }
1633
1634 static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1635 {
1636         struct qede_fastpath *fp = fp_cookie;
1637
1638         qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1639
1640         napi_schedule_irqoff(&fp->napi);
1641         return IRQ_HANDLED;
1642 }
1643
1644 /* -------------------------------------------------------------------------
1645  * END OF FAST-PATH
1646  * -------------------------------------------------------------------------
1647  */
1648
1649 static int qede_open(struct net_device *ndev);
1650 static int qede_close(struct net_device *ndev);
1651 static int qede_set_mac_addr(struct net_device *ndev, void *p);
1652 static void qede_set_rx_mode(struct net_device *ndev);
1653 static void qede_config_rx_mode(struct net_device *ndev);
1654
1655 static int qede_set_ucast_rx_mac(struct qede_dev *edev,
1656                                  enum qed_filter_xcast_params_type opcode,
1657                                  unsigned char mac[ETH_ALEN])
1658 {
1659         struct qed_filter_params filter_cmd;
1660
1661         memset(&filter_cmd, 0, sizeof(filter_cmd));
1662         filter_cmd.type = QED_FILTER_TYPE_UCAST;
1663         filter_cmd.filter.ucast.type = opcode;
1664         filter_cmd.filter.ucast.mac_valid = 1;
1665         ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
1666
1667         return edev->ops->filter_config(edev->cdev, &filter_cmd);
1668 }
1669
1670 static int qede_set_ucast_rx_vlan(struct qede_dev *edev,
1671                                   enum qed_filter_xcast_params_type opcode,
1672                                   u16 vid)
1673 {
1674         struct qed_filter_params filter_cmd;
1675
1676         memset(&filter_cmd, 0, sizeof(filter_cmd));
1677         filter_cmd.type = QED_FILTER_TYPE_UCAST;
1678         filter_cmd.filter.ucast.type = opcode;
1679         filter_cmd.filter.ucast.vlan_valid = 1;
1680         filter_cmd.filter.ucast.vlan = vid;
1681
1682         return edev->ops->filter_config(edev->cdev, &filter_cmd);
1683 }
1684
1685 void qede_fill_by_demand_stats(struct qede_dev *edev)
1686 {
1687         struct qed_eth_stats stats;
1688
1689         edev->ops->get_vport_stats(edev->cdev, &stats);
1690         edev->stats.no_buff_discards = stats.no_buff_discards;
1691         edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes;
1692         edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes;
1693         edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes;
1694         edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts;
1695         edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts;
1696         edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts;
1697         edev->stats.mftag_filter_discards = stats.mftag_filter_discards;
1698         edev->stats.mac_filter_discards = stats.mac_filter_discards;
1699
1700         edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes;
1701         edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes;
1702         edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes;
1703         edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts;
1704         edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts;
1705         edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts;
1706         edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts;
1707         edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts;
1708         edev->stats.coalesced_events = stats.tpa_coalesced_events;
1709         edev->stats.coalesced_aborts_num = stats.tpa_aborts_num;
1710         edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts;
1711         edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes;
1712
1713         edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets;
1714         edev->stats.rx_65_to_127_byte_packets = stats.rx_65_to_127_byte_packets;
1715         edev->stats.rx_128_to_255_byte_packets =
1716                                 stats.rx_128_to_255_byte_packets;
1717         edev->stats.rx_256_to_511_byte_packets =
1718                                 stats.rx_256_to_511_byte_packets;
1719         edev->stats.rx_512_to_1023_byte_packets =
1720                                 stats.rx_512_to_1023_byte_packets;
1721         edev->stats.rx_1024_to_1518_byte_packets =
1722                                 stats.rx_1024_to_1518_byte_packets;
1723         edev->stats.rx_1519_to_1522_byte_packets =
1724                                 stats.rx_1519_to_1522_byte_packets;
1725         edev->stats.rx_1519_to_2047_byte_packets =
1726                                 stats.rx_1519_to_2047_byte_packets;
1727         edev->stats.rx_2048_to_4095_byte_packets =
1728                                 stats.rx_2048_to_4095_byte_packets;
1729         edev->stats.rx_4096_to_9216_byte_packets =
1730                                 stats.rx_4096_to_9216_byte_packets;
1731         edev->stats.rx_9217_to_16383_byte_packets =
1732                                 stats.rx_9217_to_16383_byte_packets;
1733         edev->stats.rx_crc_errors = stats.rx_crc_errors;
1734         edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames;
1735         edev->stats.rx_pause_frames = stats.rx_pause_frames;
1736         edev->stats.rx_pfc_frames = stats.rx_pfc_frames;
1737         edev->stats.rx_align_errors = stats.rx_align_errors;
1738         edev->stats.rx_carrier_errors = stats.rx_carrier_errors;
1739         edev->stats.rx_oversize_packets = stats.rx_oversize_packets;
1740         edev->stats.rx_jabbers = stats.rx_jabbers;
1741         edev->stats.rx_undersize_packets = stats.rx_undersize_packets;
1742         edev->stats.rx_fragments = stats.rx_fragments;
1743         edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets;
1744         edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets;
1745         edev->stats.tx_128_to_255_byte_packets =
1746                                 stats.tx_128_to_255_byte_packets;
1747         edev->stats.tx_256_to_511_byte_packets =
1748                                 stats.tx_256_to_511_byte_packets;
1749         edev->stats.tx_512_to_1023_byte_packets =
1750                                 stats.tx_512_to_1023_byte_packets;
1751         edev->stats.tx_1024_to_1518_byte_packets =
1752                                 stats.tx_1024_to_1518_byte_packets;
1753         edev->stats.tx_1519_to_2047_byte_packets =
1754                                 stats.tx_1519_to_2047_byte_packets;
1755         edev->stats.tx_2048_to_4095_byte_packets =
1756                                 stats.tx_2048_to_4095_byte_packets;
1757         edev->stats.tx_4096_to_9216_byte_packets =
1758                                 stats.tx_4096_to_9216_byte_packets;
1759         edev->stats.tx_9217_to_16383_byte_packets =
1760                                 stats.tx_9217_to_16383_byte_packets;
1761         edev->stats.tx_pause_frames = stats.tx_pause_frames;
1762         edev->stats.tx_pfc_frames = stats.tx_pfc_frames;
1763         edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count;
1764         edev->stats.tx_total_collisions = stats.tx_total_collisions;
1765         edev->stats.brb_truncates = stats.brb_truncates;
1766         edev->stats.brb_discards = stats.brb_discards;
1767         edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames;
1768 }
1769
1770 static struct rtnl_link_stats64 *qede_get_stats64(
1771                             struct net_device *dev,
1772                             struct rtnl_link_stats64 *stats)
1773 {
1774         struct qede_dev *edev = netdev_priv(dev);
1775
1776         qede_fill_by_demand_stats(edev);
1777
1778         stats->rx_packets = edev->stats.rx_ucast_pkts +
1779                             edev->stats.rx_mcast_pkts +
1780                             edev->stats.rx_bcast_pkts;
1781         stats->tx_packets = edev->stats.tx_ucast_pkts +
1782                             edev->stats.tx_mcast_pkts +
1783                             edev->stats.tx_bcast_pkts;
1784
1785         stats->rx_bytes = edev->stats.rx_ucast_bytes +
1786                           edev->stats.rx_mcast_bytes +
1787                           edev->stats.rx_bcast_bytes;
1788
1789         stats->tx_bytes = edev->stats.tx_ucast_bytes +
1790                           edev->stats.tx_mcast_bytes +
1791                           edev->stats.tx_bcast_bytes;
1792
1793         stats->tx_errors = edev->stats.tx_err_drop_pkts;
1794         stats->multicast = edev->stats.rx_mcast_pkts +
1795                            edev->stats.rx_bcast_pkts;
1796
1797         stats->rx_fifo_errors = edev->stats.no_buff_discards;
1798
1799         stats->collisions = edev->stats.tx_total_collisions;
1800         stats->rx_crc_errors = edev->stats.rx_crc_errors;
1801         stats->rx_frame_errors = edev->stats.rx_align_errors;
1802
1803         return stats;
1804 }
1805
1806 #ifdef CONFIG_QED_SRIOV
1807 static int qede_get_vf_config(struct net_device *dev, int vfidx,
1808                               struct ifla_vf_info *ivi)
1809 {
1810         struct qede_dev *edev = netdev_priv(dev);
1811
1812         if (!edev->ops)
1813                 return -EINVAL;
1814
1815         return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
1816 }
1817
1818 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
1819                             int min_tx_rate, int max_tx_rate)
1820 {
1821         struct qede_dev *edev = netdev_priv(dev);
1822
1823         return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
1824                                         max_tx_rate);
1825 }
1826
1827 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
1828 {
1829         struct qede_dev *edev = netdev_priv(dev);
1830
1831         if (!edev->ops)
1832                 return -EINVAL;
1833
1834         return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
1835 }
1836
1837 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
1838                                   int link_state)
1839 {
1840         struct qede_dev *edev = netdev_priv(dev);
1841
1842         if (!edev->ops)
1843                 return -EINVAL;
1844
1845         return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
1846 }
1847 #endif
1848
1849 static void qede_config_accept_any_vlan(struct qede_dev *edev, bool action)
1850 {
1851         struct qed_update_vport_params params;
1852         int rc;
1853
1854         /* Proceed only if action actually needs to be performed */
1855         if (edev->accept_any_vlan == action)
1856                 return;
1857
1858         memset(&params, 0, sizeof(params));
1859
1860         params.vport_id = 0;
1861         params.accept_any_vlan = action;
1862         params.update_accept_any_vlan_flg = 1;
1863
1864         rc = edev->ops->vport_update(edev->cdev, &params);
1865         if (rc) {
1866                 DP_ERR(edev, "Failed to %s accept-any-vlan\n",
1867                        action ? "enable" : "disable");
1868         } else {
1869                 DP_INFO(edev, "%s accept-any-vlan\n",
1870                         action ? "enabled" : "disabled");
1871                 edev->accept_any_vlan = action;
1872         }
1873 }
1874
1875 static int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1876 {
1877         struct qede_dev *edev = netdev_priv(dev);
1878         struct qede_vlan *vlan, *tmp;
1879         int rc;
1880
1881         DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid);
1882
1883         vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
1884         if (!vlan) {
1885                 DP_INFO(edev, "Failed to allocate struct for vlan\n");
1886                 return -ENOMEM;
1887         }
1888         INIT_LIST_HEAD(&vlan->list);
1889         vlan->vid = vid;
1890         vlan->configured = false;
1891
1892         /* Verify vlan isn't already configured */
1893         list_for_each_entry(tmp, &edev->vlan_list, list) {
1894                 if (tmp->vid == vlan->vid) {
1895                         DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
1896                                    "vlan already configured\n");
1897                         kfree(vlan);
1898                         return -EEXIST;
1899                 }
1900         }
1901
1902         /* If interface is down, cache this VLAN ID and return */
1903         if (edev->state != QEDE_STATE_OPEN) {
1904                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1905                            "Interface is down, VLAN %d will be configured when interface is up\n",
1906                            vid);
1907                 if (vid != 0)
1908                         edev->non_configured_vlans++;
1909                 list_add(&vlan->list, &edev->vlan_list);
1910
1911                 return 0;
1912         }
1913
1914         /* Check for the filter limit.
1915          * Note - vlan0 has a reserved filter and can be added without
1916          * worrying about quota
1917          */
1918         if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) ||
1919             (vlan->vid == 0)) {
1920                 rc = qede_set_ucast_rx_vlan(edev,
1921                                             QED_FILTER_XCAST_TYPE_ADD,
1922                                             vlan->vid);
1923                 if (rc) {
1924                         DP_ERR(edev, "Failed to configure VLAN %d\n",
1925                                vlan->vid);
1926                         kfree(vlan);
1927                         return -EINVAL;
1928                 }
1929                 vlan->configured = true;
1930
1931                 /* vlan0 filter isn't consuming out of our quota */
1932                 if (vlan->vid != 0)
1933                         edev->configured_vlans++;
1934         } else {
1935                 /* Out of quota; Activate accept-any-VLAN mode */
1936                 if (!edev->non_configured_vlans)
1937                         qede_config_accept_any_vlan(edev, true);
1938
1939                 edev->non_configured_vlans++;
1940         }
1941
1942         list_add(&vlan->list, &edev->vlan_list);
1943
1944         return 0;
1945 }
1946
1947 static void qede_del_vlan_from_list(struct qede_dev *edev,
1948                                     struct qede_vlan *vlan)
1949 {
1950         /* vlan0 filter isn't consuming out of our quota */
1951         if (vlan->vid != 0) {
1952                 if (vlan->configured)
1953                         edev->configured_vlans--;
1954                 else
1955                         edev->non_configured_vlans--;
1956         }
1957
1958         list_del(&vlan->list);
1959         kfree(vlan);
1960 }
1961
1962 static int qede_configure_vlan_filters(struct qede_dev *edev)
1963 {
1964         int rc = 0, real_rc = 0, accept_any_vlan = 0;
1965         struct qed_dev_eth_info *dev_info;
1966         struct qede_vlan *vlan = NULL;
1967
1968         if (list_empty(&edev->vlan_list))
1969                 return 0;
1970
1971         dev_info = &edev->dev_info;
1972
1973         /* Configure non-configured vlans */
1974         list_for_each_entry(vlan, &edev->vlan_list, list) {
1975                 if (vlan->configured)
1976                         continue;
1977
1978                 /* We have used all our credits, now enable accept_any_vlan */
1979                 if ((vlan->vid != 0) &&
1980                     (edev->configured_vlans == dev_info->num_vlan_filters)) {
1981                         accept_any_vlan = 1;
1982                         continue;
1983                 }
1984
1985                 DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid);
1986
1987                 rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD,
1988                                             vlan->vid);
1989                 if (rc) {
1990                         DP_ERR(edev, "Failed to configure VLAN %u\n",
1991                                vlan->vid);
1992                         real_rc = rc;
1993                         continue;
1994                 }
1995
1996                 vlan->configured = true;
1997                 /* vlan0 filter doesn't consume our VLAN filter's quota */
1998                 if (vlan->vid != 0) {
1999                         edev->non_configured_vlans--;
2000                         edev->configured_vlans++;
2001                 }
2002         }
2003
2004         /* enable accept_any_vlan mode if we have more VLANs than credits,
2005          * or remove accept_any_vlan mode if we've actually removed
2006          * a non-configured vlan, and all remaining vlans are truly configured.
2007          */
2008
2009         if (accept_any_vlan)
2010                 qede_config_accept_any_vlan(edev, true);
2011         else if (!edev->non_configured_vlans)
2012                 qede_config_accept_any_vlan(edev, false);
2013
2014         return real_rc;
2015 }
2016
2017 static int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
2018 {
2019         struct qede_dev *edev = netdev_priv(dev);
2020         struct qede_vlan *vlan = NULL;
2021         int rc;
2022
2023         DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid);
2024
2025         /* Find whether entry exists */
2026         list_for_each_entry(vlan, &edev->vlan_list, list)
2027                 if (vlan->vid == vid)
2028                         break;
2029
2030         if (!vlan || (vlan->vid != vid)) {
2031                 DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
2032                            "Vlan isn't configured\n");
2033                 return 0;
2034         }
2035
2036         if (edev->state != QEDE_STATE_OPEN) {
2037                 /* As interface is already down, we don't have a VPORT
2038                  * instance to remove vlan filter. So just update vlan list
2039                  */
2040                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2041                            "Interface is down, removing VLAN from list only\n");
2042                 qede_del_vlan_from_list(edev, vlan);
2043                 return 0;
2044         }
2045
2046         /* Remove vlan */
2047         rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL, vid);
2048         if (rc) {
2049                 DP_ERR(edev, "Failed to remove VLAN %d\n", vid);
2050                 return -EINVAL;
2051         }
2052
2053         qede_del_vlan_from_list(edev, vlan);
2054
2055         /* We have removed a VLAN - try to see if we can
2056          * configure non-configured VLAN from the list.
2057          */
2058         rc = qede_configure_vlan_filters(edev);
2059
2060         return rc;
2061 }
2062
2063 static void qede_vlan_mark_nonconfigured(struct qede_dev *edev)
2064 {
2065         struct qede_vlan *vlan = NULL;
2066
2067         if (list_empty(&edev->vlan_list))
2068                 return;
2069
2070         list_for_each_entry(vlan, &edev->vlan_list, list) {
2071                 if (!vlan->configured)
2072                         continue;
2073
2074                 vlan->configured = false;
2075
2076                 /* vlan0 filter isn't consuming out of our quota */
2077                 if (vlan->vid != 0) {
2078                         edev->non_configured_vlans++;
2079                         edev->configured_vlans--;
2080                 }
2081
2082                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2083                            "marked vlan %d as non-configured\n",
2084                            vlan->vid);
2085         }
2086
2087         edev->accept_any_vlan = false;
2088 }
2089
2090 int qede_set_features(struct net_device *dev, netdev_features_t features)
2091 {
2092         struct qede_dev *edev = netdev_priv(dev);
2093         netdev_features_t changes = features ^ dev->features;
2094         bool need_reload = false;
2095
2096         /* No action needed if hardware GRO is disabled during driver load */
2097         if (changes & NETIF_F_GRO) {
2098                 if (dev->features & NETIF_F_GRO)
2099                         need_reload = !edev->gro_disable;
2100                 else
2101                         need_reload = edev->gro_disable;
2102         }
2103
2104         if (need_reload && netif_running(edev->ndev)) {
2105                 dev->features = features;
2106                 qede_reload(edev, NULL, NULL);
2107                 return 1;
2108         }
2109
2110         return 0;
2111 }
2112
2113 #ifdef CONFIG_QEDE_VXLAN
2114 static void qede_add_vxlan_port(struct net_device *dev,
2115                                 sa_family_t sa_family, __be16 port)
2116 {
2117         struct qede_dev *edev = netdev_priv(dev);
2118         u16 t_port = ntohs(port);
2119
2120         if (edev->vxlan_dst_port)
2121                 return;
2122
2123         edev->vxlan_dst_port = t_port;
2124
2125         DP_VERBOSE(edev, QED_MSG_DEBUG, "Added vxlan port=%d", t_port);
2126
2127         set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2128         schedule_delayed_work(&edev->sp_task, 0);
2129 }
2130
2131 static void qede_del_vxlan_port(struct net_device *dev,
2132                                 sa_family_t sa_family, __be16 port)
2133 {
2134         struct qede_dev *edev = netdev_priv(dev);
2135         u16 t_port = ntohs(port);
2136
2137         if (t_port != edev->vxlan_dst_port)
2138                 return;
2139
2140         edev->vxlan_dst_port = 0;
2141
2142         DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted vxlan port=%d", t_port);
2143
2144         set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2145         schedule_delayed_work(&edev->sp_task, 0);
2146 }
2147 #endif
2148
2149 #ifdef CONFIG_QEDE_GENEVE
2150 static void qede_add_geneve_port(struct net_device *dev,
2151                                  sa_family_t sa_family, __be16 port)
2152 {
2153         struct qede_dev *edev = netdev_priv(dev);
2154         u16 t_port = ntohs(port);
2155
2156         if (edev->geneve_dst_port)
2157                 return;
2158
2159         edev->geneve_dst_port = t_port;
2160
2161         DP_VERBOSE(edev, QED_MSG_DEBUG, "Added geneve port=%d", t_port);
2162         set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2163         schedule_delayed_work(&edev->sp_task, 0);
2164 }
2165
2166 static void qede_del_geneve_port(struct net_device *dev,
2167                                  sa_family_t sa_family, __be16 port)
2168 {
2169         struct qede_dev *edev = netdev_priv(dev);
2170         u16 t_port = ntohs(port);
2171
2172         if (t_port != edev->geneve_dst_port)
2173                 return;
2174
2175         edev->geneve_dst_port = 0;
2176
2177         DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted geneve port=%d", t_port);
2178         set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2179         schedule_delayed_work(&edev->sp_task, 0);
2180 }
2181 #endif
2182
2183 static const struct net_device_ops qede_netdev_ops = {
2184         .ndo_open = qede_open,
2185         .ndo_stop = qede_close,
2186         .ndo_start_xmit = qede_start_xmit,
2187         .ndo_set_rx_mode = qede_set_rx_mode,
2188         .ndo_set_mac_address = qede_set_mac_addr,
2189         .ndo_validate_addr = eth_validate_addr,
2190         .ndo_change_mtu = qede_change_mtu,
2191 #ifdef CONFIG_QED_SRIOV
2192         .ndo_set_vf_mac = qede_set_vf_mac,
2193         .ndo_set_vf_vlan = qede_set_vf_vlan,
2194 #endif
2195         .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
2196         .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
2197         .ndo_set_features = qede_set_features,
2198         .ndo_get_stats64 = qede_get_stats64,
2199 #ifdef CONFIG_QED_SRIOV
2200         .ndo_set_vf_link_state = qede_set_vf_link_state,
2201         .ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
2202         .ndo_get_vf_config = qede_get_vf_config,
2203         .ndo_set_vf_rate = qede_set_vf_rate,
2204 #endif
2205 #ifdef CONFIG_QEDE_VXLAN
2206         .ndo_add_vxlan_port = qede_add_vxlan_port,
2207         .ndo_del_vxlan_port = qede_del_vxlan_port,
2208 #endif
2209 #ifdef CONFIG_QEDE_GENEVE
2210         .ndo_add_geneve_port = qede_add_geneve_port,
2211         .ndo_del_geneve_port = qede_del_geneve_port,
2212 #endif
2213 };
2214
2215 /* -------------------------------------------------------------------------
2216  * START OF PROBE / REMOVE
2217  * -------------------------------------------------------------------------
2218  */
2219
2220 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
2221                                             struct pci_dev *pdev,
2222                                             struct qed_dev_eth_info *info,
2223                                             u32 dp_module,
2224                                             u8 dp_level)
2225 {
2226         struct net_device *ndev;
2227         struct qede_dev *edev;
2228
2229         ndev = alloc_etherdev_mqs(sizeof(*edev),
2230                                   info->num_queues,
2231                                   info->num_queues);
2232         if (!ndev) {
2233                 pr_err("etherdev allocation failed\n");
2234                 return NULL;
2235         }
2236
2237         edev = netdev_priv(ndev);
2238         edev->ndev = ndev;
2239         edev->cdev = cdev;
2240         edev->pdev = pdev;
2241         edev->dp_module = dp_module;
2242         edev->dp_level = dp_level;
2243         edev->ops = qed_ops;
2244         edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
2245         edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
2246
2247         SET_NETDEV_DEV(ndev, &pdev->dev);
2248
2249         memset(&edev->stats, 0, sizeof(edev->stats));
2250         memcpy(&edev->dev_info, info, sizeof(*info));
2251
2252         edev->num_tc = edev->dev_info.num_tc;
2253
2254         INIT_LIST_HEAD(&edev->vlan_list);
2255
2256         return edev;
2257 }
2258
2259 static void qede_init_ndev(struct qede_dev *edev)
2260 {
2261         struct net_device *ndev = edev->ndev;
2262         struct pci_dev *pdev = edev->pdev;
2263         u32 hw_features;
2264
2265         pci_set_drvdata(pdev, ndev);
2266
2267         ndev->mem_start = edev->dev_info.common.pci_mem_start;
2268         ndev->base_addr = ndev->mem_start;
2269         ndev->mem_end = edev->dev_info.common.pci_mem_end;
2270         ndev->irq = edev->dev_info.common.pci_irq;
2271
2272         ndev->watchdog_timeo = TX_TIMEOUT;
2273
2274         ndev->netdev_ops = &qede_netdev_ops;
2275
2276         qede_set_ethtool_ops(ndev);
2277
2278         /* user-changeble features */
2279         hw_features = NETIF_F_GRO | NETIF_F_SG |
2280                       NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2281                       NETIF_F_TSO | NETIF_F_TSO6;
2282
2283         /* Encap features*/
2284         hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
2285                        NETIF_F_TSO_ECN;
2286         ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2287                                 NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO_ECN |
2288                                 NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2289                                 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_RXCSUM;
2290
2291         ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2292                               NETIF_F_HIGHDMA;
2293         ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2294                          NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
2295                          NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
2296
2297         ndev->hw_features = hw_features;
2298
2299         /* Set network device HW mac */
2300         ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
2301 }
2302
2303 /* This function converts from 32b param to two params of level and module
2304  * Input 32b decoding:
2305  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
2306  * 'happy' flow, e.g. memory allocation failed.
2307  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
2308  * and provide important parameters.
2309  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
2310  * module. VERBOSE prints are for tracking the specific flow in low level.
2311  *
2312  * Notice that the level should be that of the lowest required logs.
2313  */
2314 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
2315 {
2316         *p_dp_level = QED_LEVEL_NOTICE;
2317         *p_dp_module = 0;
2318
2319         if (debug & QED_LOG_VERBOSE_MASK) {
2320                 *p_dp_level = QED_LEVEL_VERBOSE;
2321                 *p_dp_module = (debug & 0x3FFFFFFF);
2322         } else if (debug & QED_LOG_INFO_MASK) {
2323                 *p_dp_level = QED_LEVEL_INFO;
2324         } else if (debug & QED_LOG_NOTICE_MASK) {
2325                 *p_dp_level = QED_LEVEL_NOTICE;
2326         }
2327 }
2328
2329 static void qede_free_fp_array(struct qede_dev *edev)
2330 {
2331         if (edev->fp_array) {
2332                 struct qede_fastpath *fp;
2333                 int i;
2334
2335                 for_each_rss(i) {
2336                         fp = &edev->fp_array[i];
2337
2338                         kfree(fp->sb_info);
2339                         kfree(fp->rxq);
2340                         kfree(fp->txqs);
2341                 }
2342                 kfree(edev->fp_array);
2343         }
2344         edev->num_rss = 0;
2345 }
2346
2347 static int qede_alloc_fp_array(struct qede_dev *edev)
2348 {
2349         struct qede_fastpath *fp;
2350         int i;
2351
2352         edev->fp_array = kcalloc(QEDE_RSS_CNT(edev),
2353                                  sizeof(*edev->fp_array), GFP_KERNEL);
2354         if (!edev->fp_array) {
2355                 DP_NOTICE(edev, "fp array allocation failed\n");
2356                 goto err;
2357         }
2358
2359         for_each_rss(i) {
2360                 fp = &edev->fp_array[i];
2361
2362                 fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL);
2363                 if (!fp->sb_info) {
2364                         DP_NOTICE(edev, "sb info struct allocation failed\n");
2365                         goto err;
2366                 }
2367
2368                 fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL);
2369                 if (!fp->rxq) {
2370                         DP_NOTICE(edev, "RXQ struct allocation failed\n");
2371                         goto err;
2372                 }
2373
2374                 fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs), GFP_KERNEL);
2375                 if (!fp->txqs) {
2376                         DP_NOTICE(edev, "TXQ array allocation failed\n");
2377                         goto err;
2378                 }
2379         }
2380
2381         return 0;
2382 err:
2383         qede_free_fp_array(edev);
2384         return -ENOMEM;
2385 }
2386
2387 static void qede_sp_task(struct work_struct *work)
2388 {
2389         struct qede_dev *edev = container_of(work, struct qede_dev,
2390                                              sp_task.work);
2391         struct qed_dev *cdev = edev->cdev;
2392
2393         mutex_lock(&edev->qede_lock);
2394
2395         if (edev->state == QEDE_STATE_OPEN) {
2396                 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
2397                         qede_config_rx_mode(edev->ndev);
2398         }
2399
2400         if (test_and_clear_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags)) {
2401                 struct qed_tunn_params tunn_params;
2402
2403                 memset(&tunn_params, 0, sizeof(tunn_params));
2404                 tunn_params.update_vxlan_port = 1;
2405                 tunn_params.vxlan_port = edev->vxlan_dst_port;
2406                 qed_ops->tunn_config(cdev, &tunn_params);
2407         }
2408
2409         if (test_and_clear_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags)) {
2410                 struct qed_tunn_params tunn_params;
2411
2412                 memset(&tunn_params, 0, sizeof(tunn_params));
2413                 tunn_params.update_geneve_port = 1;
2414                 tunn_params.geneve_port = edev->geneve_dst_port;
2415                 qed_ops->tunn_config(cdev, &tunn_params);
2416         }
2417
2418         mutex_unlock(&edev->qede_lock);
2419 }
2420
2421 static void qede_update_pf_params(struct qed_dev *cdev)
2422 {
2423         struct qed_pf_params pf_params;
2424
2425         /* 64 rx + 64 tx */
2426         memset(&pf_params, 0, sizeof(struct qed_pf_params));
2427         pf_params.eth_pf_params.num_cons = 128;
2428         qed_ops->common->update_pf_params(cdev, &pf_params);
2429 }
2430
2431 enum qede_probe_mode {
2432         QEDE_PROBE_NORMAL,
2433 };
2434
2435 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
2436                         bool is_vf, enum qede_probe_mode mode)
2437 {
2438         struct qed_probe_params probe_params;
2439         struct qed_slowpath_params params;
2440         struct qed_dev_eth_info dev_info;
2441         struct qede_dev *edev;
2442         struct qed_dev *cdev;
2443         int rc;
2444
2445         if (unlikely(dp_level & QED_LEVEL_INFO))
2446                 pr_notice("Starting qede probe\n");
2447
2448         memset(&probe_params, 0, sizeof(probe_params));
2449         probe_params.protocol = QED_PROTOCOL_ETH;
2450         probe_params.dp_module = dp_module;
2451         probe_params.dp_level = dp_level;
2452         probe_params.is_vf = is_vf;
2453         cdev = qed_ops->common->probe(pdev, &probe_params);
2454         if (!cdev) {
2455                 rc = -ENODEV;
2456                 goto err0;
2457         }
2458
2459         qede_update_pf_params(cdev);
2460
2461         /* Start the Slowpath-process */
2462         memset(&params, 0, sizeof(struct qed_slowpath_params));
2463         params.int_mode = QED_INT_MODE_MSIX;
2464         params.drv_major = QEDE_MAJOR_VERSION;
2465         params.drv_minor = QEDE_MINOR_VERSION;
2466         params.drv_rev = QEDE_REVISION_VERSION;
2467         params.drv_eng = QEDE_ENGINEERING_VERSION;
2468         strlcpy(params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
2469         rc = qed_ops->common->slowpath_start(cdev, &params);
2470         if (rc) {
2471                 pr_notice("Cannot start slowpath\n");
2472                 goto err1;
2473         }
2474
2475         /* Learn information crucial for qede to progress */
2476         rc = qed_ops->fill_dev_info(cdev, &dev_info);
2477         if (rc)
2478                 goto err2;
2479
2480         edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
2481                                    dp_level);
2482         if (!edev) {
2483                 rc = -ENOMEM;
2484                 goto err2;
2485         }
2486
2487         if (is_vf)
2488                 edev->flags |= QEDE_FLAG_IS_VF;
2489
2490         qede_init_ndev(edev);
2491
2492         rc = register_netdev(edev->ndev);
2493         if (rc) {
2494                 DP_NOTICE(edev, "Cannot register net-device\n");
2495                 goto err3;
2496         }
2497
2498         edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
2499
2500         edev->ops->register_ops(cdev, &qede_ll_ops, edev);
2501
2502         INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
2503         mutex_init(&edev->qede_lock);
2504
2505         DP_INFO(edev, "Ending successfully qede probe\n");
2506
2507         return 0;
2508
2509 err3:
2510         free_netdev(edev->ndev);
2511 err2:
2512         qed_ops->common->slowpath_stop(cdev);
2513 err1:
2514         qed_ops->common->remove(cdev);
2515 err0:
2516         return rc;
2517 }
2518
2519 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2520 {
2521         bool is_vf = false;
2522         u32 dp_module = 0;
2523         u8 dp_level = 0;
2524
2525         switch ((enum qede_pci_private)id->driver_data) {
2526         case QEDE_PRIVATE_VF:
2527                 if (debug & QED_LOG_VERBOSE_MASK)
2528                         dev_err(&pdev->dev, "Probing a VF\n");
2529                 is_vf = true;
2530                 break;
2531         default:
2532                 if (debug & QED_LOG_VERBOSE_MASK)
2533                         dev_err(&pdev->dev, "Probing a PF\n");
2534         }
2535
2536         qede_config_debug(debug, &dp_module, &dp_level);
2537
2538         return __qede_probe(pdev, dp_module, dp_level, is_vf,
2539                             QEDE_PROBE_NORMAL);
2540 }
2541
2542 enum qede_remove_mode {
2543         QEDE_REMOVE_NORMAL,
2544 };
2545
2546 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
2547 {
2548         struct net_device *ndev = pci_get_drvdata(pdev);
2549         struct qede_dev *edev = netdev_priv(ndev);
2550         struct qed_dev *cdev = edev->cdev;
2551
2552         DP_INFO(edev, "Starting qede_remove\n");
2553
2554         cancel_delayed_work_sync(&edev->sp_task);
2555         unregister_netdev(ndev);
2556
2557         edev->ops->common->set_power_state(cdev, PCI_D0);
2558
2559         pci_set_drvdata(pdev, NULL);
2560
2561         free_netdev(ndev);
2562
2563         /* Use global ops since we've freed edev */
2564         qed_ops->common->slowpath_stop(cdev);
2565         qed_ops->common->remove(cdev);
2566
2567         pr_notice("Ending successfully qede_remove\n");
2568 }
2569
2570 static void qede_remove(struct pci_dev *pdev)
2571 {
2572         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
2573 }
2574
2575 /* -------------------------------------------------------------------------
2576  * START OF LOAD / UNLOAD
2577  * -------------------------------------------------------------------------
2578  */
2579
2580 static int qede_set_num_queues(struct qede_dev *edev)
2581 {
2582         int rc;
2583         u16 rss_num;
2584
2585         /* Setup queues according to possible resources*/
2586         if (edev->req_rss)
2587                 rss_num = edev->req_rss;
2588         else
2589                 rss_num = netif_get_num_default_rss_queues() *
2590                           edev->dev_info.common.num_hwfns;
2591
2592         rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
2593
2594         rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
2595         if (rc > 0) {
2596                 /* Managed to request interrupts for our queues */
2597                 edev->num_rss = rc;
2598                 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
2599                         QEDE_RSS_CNT(edev), rss_num);
2600                 rc = 0;
2601         }
2602         return rc;
2603 }
2604
2605 static void qede_free_mem_sb(struct qede_dev *edev,
2606                              struct qed_sb_info *sb_info)
2607 {
2608         if (sb_info->sb_virt)
2609                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
2610                                   (void *)sb_info->sb_virt, sb_info->sb_phys);
2611 }
2612
2613 /* This function allocates fast-path status block memory */
2614 static int qede_alloc_mem_sb(struct qede_dev *edev,
2615                              struct qed_sb_info *sb_info,
2616                              u16 sb_id)
2617 {
2618         struct status_block *sb_virt;
2619         dma_addr_t sb_phys;
2620         int rc;
2621
2622         sb_virt = dma_alloc_coherent(&edev->pdev->dev,
2623                                      sizeof(*sb_virt),
2624                                      &sb_phys, GFP_KERNEL);
2625         if (!sb_virt) {
2626                 DP_ERR(edev, "Status block allocation failed\n");
2627                 return -ENOMEM;
2628         }
2629
2630         rc = edev->ops->common->sb_init(edev->cdev, sb_info,
2631                                         sb_virt, sb_phys, sb_id,
2632                                         QED_SB_TYPE_L2_QUEUE);
2633         if (rc) {
2634                 DP_ERR(edev, "Status block initialization failed\n");
2635                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
2636                                   sb_virt, sb_phys);
2637                 return rc;
2638         }
2639
2640         return 0;
2641 }
2642
2643 static void qede_free_rx_buffers(struct qede_dev *edev,
2644                                  struct qede_rx_queue *rxq)
2645 {
2646         u16 i;
2647
2648         for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
2649                 struct sw_rx_data *rx_buf;
2650                 struct page *data;
2651
2652                 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
2653                 data = rx_buf->data;
2654
2655                 dma_unmap_page(&edev->pdev->dev,
2656                                rx_buf->mapping,
2657                                PAGE_SIZE, DMA_FROM_DEVICE);
2658
2659                 rx_buf->data = NULL;
2660                 __free_page(data);
2661         }
2662 }
2663
2664 static void qede_free_sge_mem(struct qede_dev *edev,
2665                               struct qede_rx_queue *rxq) {
2666         int i;
2667
2668         if (edev->gro_disable)
2669                 return;
2670
2671         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2672                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2673                 struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2674
2675                 if (replace_buf->data) {
2676                         dma_unmap_page(&edev->pdev->dev,
2677                                        replace_buf->mapping,
2678                                        PAGE_SIZE, DMA_FROM_DEVICE);
2679                         __free_page(replace_buf->data);
2680                 }
2681         }
2682 }
2683
2684 static void qede_free_mem_rxq(struct qede_dev *edev,
2685                               struct qede_rx_queue *rxq)
2686 {
2687         qede_free_sge_mem(edev, rxq);
2688
2689         /* Free rx buffers */
2690         qede_free_rx_buffers(edev, rxq);
2691
2692         /* Free the parallel SW ring */
2693         kfree(rxq->sw_rx_ring);
2694
2695         /* Free the real RQ ring used by FW */
2696         edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
2697         edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
2698 }
2699
2700 static int qede_alloc_rx_buffer(struct qede_dev *edev,
2701                                 struct qede_rx_queue *rxq)
2702 {
2703         struct sw_rx_data *sw_rx_data;
2704         struct eth_rx_bd *rx_bd;
2705         dma_addr_t mapping;
2706         struct page *data;
2707         u16 rx_buf_size;
2708
2709         rx_buf_size = rxq->rx_buf_size;
2710
2711         data = alloc_pages(GFP_ATOMIC, 0);
2712         if (unlikely(!data)) {
2713                 DP_NOTICE(edev, "Failed to allocate Rx data [page]\n");
2714                 return -ENOMEM;
2715         }
2716
2717         /* Map the entire page as it would be used
2718          * for multiple RX buffer segment size mapping.
2719          */
2720         mapping = dma_map_page(&edev->pdev->dev, data, 0,
2721                                PAGE_SIZE, DMA_FROM_DEVICE);
2722         if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2723                 __free_page(data);
2724                 DP_NOTICE(edev, "Failed to map Rx buffer\n");
2725                 return -ENOMEM;
2726         }
2727
2728         sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
2729         sw_rx_data->page_offset = 0;
2730         sw_rx_data->data = data;
2731         sw_rx_data->mapping = mapping;
2732
2733         /* Advance PROD and get BD pointer */
2734         rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
2735         WARN_ON(!rx_bd);
2736         rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
2737         rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
2738
2739         rxq->sw_rx_prod++;
2740
2741         return 0;
2742 }
2743
2744 static int qede_alloc_sge_mem(struct qede_dev *edev,
2745                               struct qede_rx_queue *rxq)
2746 {
2747         dma_addr_t mapping;
2748         int i;
2749
2750         if (edev->gro_disable)
2751                 return 0;
2752
2753         if (edev->ndev->mtu > PAGE_SIZE) {
2754                 edev->gro_disable = 1;
2755                 return 0;
2756         }
2757
2758         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2759                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2760                 struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2761
2762                 replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
2763                 if (unlikely(!replace_buf->data)) {
2764                         DP_NOTICE(edev,
2765                                   "Failed to allocate TPA skb pool [replacement buffer]\n");
2766                         goto err;
2767                 }
2768
2769                 mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
2770                                        rxq->rx_buf_size, DMA_FROM_DEVICE);
2771                 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2772                         DP_NOTICE(edev,
2773                                   "Failed to map TPA replacement buffer\n");
2774                         goto err;
2775                 }
2776
2777                 replace_buf->mapping = mapping;
2778                 tpa_info->replace_buf.page_offset = 0;
2779
2780                 tpa_info->replace_buf_mapping = mapping;
2781                 tpa_info->agg_state = QEDE_AGG_STATE_NONE;
2782         }
2783
2784         return 0;
2785 err:
2786         qede_free_sge_mem(edev, rxq);
2787         edev->gro_disable = 1;
2788         return -ENOMEM;
2789 }
2790
2791 /* This function allocates all memory needed per Rx queue */
2792 static int qede_alloc_mem_rxq(struct qede_dev *edev,
2793                               struct qede_rx_queue *rxq)
2794 {
2795         int i, rc, size;
2796
2797         rxq->num_rx_buffers = edev->q_num_rx_buffers;
2798
2799         rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD +
2800                            edev->ndev->mtu;
2801         if (rxq->rx_buf_size > PAGE_SIZE)
2802                 rxq->rx_buf_size = PAGE_SIZE;
2803
2804         /* Segment size to spilt a page in multiple equal parts */
2805         rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
2806
2807         /* Allocate the parallel driver ring for Rx buffers */
2808         size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
2809         rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
2810         if (!rxq->sw_rx_ring) {
2811                 DP_ERR(edev, "Rx buffers ring allocation failed\n");
2812                 rc = -ENOMEM;
2813                 goto err;
2814         }
2815
2816         /* Allocate FW Rx ring  */
2817         rc = edev->ops->common->chain_alloc(edev->cdev,
2818                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2819                                             QED_CHAIN_MODE_NEXT_PTR,
2820                                             QED_CHAIN_CNT_TYPE_U16,
2821                                             RX_RING_SIZE,
2822                                             sizeof(struct eth_rx_bd),
2823                                             &rxq->rx_bd_ring);
2824
2825         if (rc)
2826                 goto err;
2827
2828         /* Allocate FW completion ring */
2829         rc = edev->ops->common->chain_alloc(edev->cdev,
2830                                             QED_CHAIN_USE_TO_CONSUME,
2831                                             QED_CHAIN_MODE_PBL,
2832                                             QED_CHAIN_CNT_TYPE_U16,
2833                                             RX_RING_SIZE,
2834                                             sizeof(union eth_rx_cqe),
2835                                             &rxq->rx_comp_ring);
2836         if (rc)
2837                 goto err;
2838
2839         /* Allocate buffers for the Rx ring */
2840         for (i = 0; i < rxq->num_rx_buffers; i++) {
2841                 rc = qede_alloc_rx_buffer(edev, rxq);
2842                 if (rc) {
2843                         DP_ERR(edev,
2844                                "Rx buffers allocation failed at index %d\n", i);
2845                         goto err;
2846                 }
2847         }
2848
2849         rc = qede_alloc_sge_mem(edev, rxq);
2850 err:
2851         return rc;
2852 }
2853
2854 static void qede_free_mem_txq(struct qede_dev *edev,
2855                               struct qede_tx_queue *txq)
2856 {
2857         /* Free the parallel SW ring */
2858         kfree(txq->sw_tx_ring);
2859
2860         /* Free the real RQ ring used by FW */
2861         edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
2862 }
2863
2864 /* This function allocates all memory needed per Tx queue */
2865 static int qede_alloc_mem_txq(struct qede_dev *edev,
2866                               struct qede_tx_queue *txq)
2867 {
2868         int size, rc;
2869         union eth_tx_bd_types *p_virt;
2870
2871         txq->num_tx_buffers = edev->q_num_tx_buffers;
2872
2873         /* Allocate the parallel driver ring for Tx buffers */
2874         size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX;
2875         txq->sw_tx_ring = kzalloc(size, GFP_KERNEL);
2876         if (!txq->sw_tx_ring) {
2877                 DP_NOTICE(edev, "Tx buffers ring allocation failed\n");
2878                 goto err;
2879         }
2880
2881         rc = edev->ops->common->chain_alloc(edev->cdev,
2882                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2883                                             QED_CHAIN_MODE_PBL,
2884                                             QED_CHAIN_CNT_TYPE_U16,
2885                                             NUM_TX_BDS_MAX,
2886                                             sizeof(*p_virt), &txq->tx_pbl);
2887         if (rc)
2888                 goto err;
2889
2890         return 0;
2891
2892 err:
2893         qede_free_mem_txq(edev, txq);
2894         return -ENOMEM;
2895 }
2896
2897 /* This function frees all memory of a single fp */
2898 static void qede_free_mem_fp(struct qede_dev *edev,
2899                              struct qede_fastpath *fp)
2900 {
2901         int tc;
2902
2903         qede_free_mem_sb(edev, fp->sb_info);
2904
2905         qede_free_mem_rxq(edev, fp->rxq);
2906
2907         for (tc = 0; tc < edev->num_tc; tc++)
2908                 qede_free_mem_txq(edev, &fp->txqs[tc]);
2909 }
2910
2911 /* This function allocates all memory needed for a single fp (i.e. an entity
2912  * which contains status block, one rx queue and multiple per-TC tx queues.
2913  */
2914 static int qede_alloc_mem_fp(struct qede_dev *edev,
2915                              struct qede_fastpath *fp)
2916 {
2917         int rc, tc;
2918
2919         rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->rss_id);
2920         if (rc)
2921                 goto err;
2922
2923         rc = qede_alloc_mem_rxq(edev, fp->rxq);
2924         if (rc)
2925                 goto err;
2926
2927         for (tc = 0; tc < edev->num_tc; tc++) {
2928                 rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]);
2929                 if (rc)
2930                         goto err;
2931         }
2932
2933         return 0;
2934 err:
2935         return rc;
2936 }
2937
2938 static void qede_free_mem_load(struct qede_dev *edev)
2939 {
2940         int i;
2941
2942         for_each_rss(i) {
2943                 struct qede_fastpath *fp = &edev->fp_array[i];
2944
2945                 qede_free_mem_fp(edev, fp);
2946         }
2947 }
2948
2949 /* This function allocates all qede memory at NIC load. */
2950 static int qede_alloc_mem_load(struct qede_dev *edev)
2951 {
2952         int rc = 0, rss_id;
2953
2954         for (rss_id = 0; rss_id < QEDE_RSS_CNT(edev); rss_id++) {
2955                 struct qede_fastpath *fp = &edev->fp_array[rss_id];
2956
2957                 rc = qede_alloc_mem_fp(edev, fp);
2958                 if (rc) {
2959                         DP_ERR(edev,
2960                                "Failed to allocate memory for fastpath - rss id = %d\n",
2961                                rss_id);
2962                         qede_free_mem_load(edev);
2963                         return rc;
2964                 }
2965         }
2966
2967         return 0;
2968 }
2969
2970 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
2971 static void qede_init_fp(struct qede_dev *edev)
2972 {
2973         int rss_id, txq_index, tc;
2974         struct qede_fastpath *fp;
2975
2976         for_each_rss(rss_id) {
2977                 fp = &edev->fp_array[rss_id];
2978
2979                 fp->edev = edev;
2980                 fp->rss_id = rss_id;
2981
2982                 memset((void *)&fp->napi, 0, sizeof(fp->napi));
2983
2984                 memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info));
2985
2986                 memset((void *)fp->rxq, 0, sizeof(*fp->rxq));
2987                 fp->rxq->rxq_id = rss_id;
2988
2989                 memset((void *)fp->txqs, 0, (edev->num_tc * sizeof(*fp->txqs)));
2990                 for (tc = 0; tc < edev->num_tc; tc++) {
2991                         txq_index = tc * QEDE_RSS_CNT(edev) + rss_id;
2992                         fp->txqs[tc].index = txq_index;
2993                 }
2994
2995                 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
2996                          edev->ndev->name, rss_id);
2997         }
2998
2999         edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
3000 }
3001
3002 static int qede_set_real_num_queues(struct qede_dev *edev)
3003 {
3004         int rc = 0;
3005
3006         rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_CNT(edev));
3007         if (rc) {
3008                 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
3009                 return rc;
3010         }
3011         rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_CNT(edev));
3012         if (rc) {
3013                 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
3014                 return rc;
3015         }
3016
3017         return 0;
3018 }
3019
3020 static void qede_napi_disable_remove(struct qede_dev *edev)
3021 {
3022         int i;
3023
3024         for_each_rss(i) {
3025                 napi_disable(&edev->fp_array[i].napi);
3026
3027                 netif_napi_del(&edev->fp_array[i].napi);
3028         }
3029 }
3030
3031 static void qede_napi_add_enable(struct qede_dev *edev)
3032 {
3033         int i;
3034
3035         /* Add NAPI objects */
3036         for_each_rss(i) {
3037                 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
3038                                qede_poll, NAPI_POLL_WEIGHT);
3039                 napi_enable(&edev->fp_array[i].napi);
3040         }
3041 }
3042
3043 static void qede_sync_free_irqs(struct qede_dev *edev)
3044 {
3045         int i;
3046
3047         for (i = 0; i < edev->int_info.used_cnt; i++) {
3048                 if (edev->int_info.msix_cnt) {
3049                         synchronize_irq(edev->int_info.msix[i].vector);
3050                         free_irq(edev->int_info.msix[i].vector,
3051                                  &edev->fp_array[i]);
3052                 } else {
3053                         edev->ops->common->simd_handler_clean(edev->cdev, i);
3054                 }
3055         }
3056
3057         edev->int_info.used_cnt = 0;
3058 }
3059
3060 static int qede_req_msix_irqs(struct qede_dev *edev)
3061 {
3062         int i, rc;
3063
3064         /* Sanitize number of interrupts == number of prepared RSS queues */
3065         if (QEDE_RSS_CNT(edev) > edev->int_info.msix_cnt) {
3066                 DP_ERR(edev,
3067                        "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
3068                        QEDE_RSS_CNT(edev), edev->int_info.msix_cnt);
3069                 return -EINVAL;
3070         }
3071
3072         for (i = 0; i < QEDE_RSS_CNT(edev); i++) {
3073                 rc = request_irq(edev->int_info.msix[i].vector,
3074                                  qede_msix_fp_int, 0, edev->fp_array[i].name,
3075                                  &edev->fp_array[i]);
3076                 if (rc) {
3077                         DP_ERR(edev, "Request fp %d irq failed\n", i);
3078                         qede_sync_free_irqs(edev);
3079                         return rc;
3080                 }
3081                 DP_VERBOSE(edev, NETIF_MSG_INTR,
3082                            "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
3083                            edev->fp_array[i].name, i,
3084                            &edev->fp_array[i]);
3085                 edev->int_info.used_cnt++;
3086         }
3087
3088         return 0;
3089 }
3090
3091 static void qede_simd_fp_handler(void *cookie)
3092 {
3093         struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
3094
3095         napi_schedule_irqoff(&fp->napi);
3096 }
3097
3098 static int qede_setup_irqs(struct qede_dev *edev)
3099 {
3100         int i, rc = 0;
3101
3102         /* Learn Interrupt configuration */
3103         rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
3104         if (rc)
3105                 return rc;
3106
3107         if (edev->int_info.msix_cnt) {
3108                 rc = qede_req_msix_irqs(edev);
3109                 if (rc)
3110                         return rc;
3111                 edev->ndev->irq = edev->int_info.msix[0].vector;
3112         } else {
3113                 const struct qed_common_ops *ops;
3114
3115                 /* qed should learn receive the RSS ids and callbacks */
3116                 ops = edev->ops->common;
3117                 for (i = 0; i < QEDE_RSS_CNT(edev); i++)
3118                         ops->simd_handler_config(edev->cdev,
3119                                                  &edev->fp_array[i], i,
3120                                                  qede_simd_fp_handler);
3121                 edev->int_info.used_cnt = QEDE_RSS_CNT(edev);
3122         }
3123         return 0;
3124 }
3125
3126 static int qede_drain_txq(struct qede_dev *edev,
3127                           struct qede_tx_queue *txq,
3128                           bool allow_drain)
3129 {
3130         int rc, cnt = 1000;
3131
3132         while (txq->sw_tx_cons != txq->sw_tx_prod) {
3133                 if (!cnt) {
3134                         if (allow_drain) {
3135                                 DP_NOTICE(edev,
3136                                           "Tx queue[%d] is stuck, requesting MCP to drain\n",
3137                                           txq->index);
3138                                 rc = edev->ops->common->drain(edev->cdev);
3139                                 if (rc)
3140                                         return rc;
3141                                 return qede_drain_txq(edev, txq, false);
3142                         }
3143                         DP_NOTICE(edev,
3144                                   "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
3145                                   txq->index, txq->sw_tx_prod,
3146                                   txq->sw_tx_cons);
3147                         return -ENODEV;
3148                 }
3149                 cnt--;
3150                 usleep_range(1000, 2000);
3151                 barrier();
3152         }
3153
3154         /* FW finished processing, wait for HW to transmit all tx packets */
3155         usleep_range(1000, 2000);
3156
3157         return 0;
3158 }
3159
3160 static int qede_stop_queues(struct qede_dev *edev)
3161 {
3162         struct qed_update_vport_params vport_update_params;
3163         struct qed_dev *cdev = edev->cdev;
3164         int rc, tc, i;
3165
3166         /* Disable the vport */
3167         memset(&vport_update_params, 0, sizeof(vport_update_params));
3168         vport_update_params.vport_id = 0;
3169         vport_update_params.update_vport_active_flg = 1;
3170         vport_update_params.vport_active_flg = 0;
3171         vport_update_params.update_rss_flg = 0;
3172
3173         rc = edev->ops->vport_update(cdev, &vport_update_params);
3174         if (rc) {
3175                 DP_ERR(edev, "Failed to update vport\n");
3176                 return rc;
3177         }
3178
3179         /* Flush Tx queues. If needed, request drain from MCP */
3180         for_each_rss(i) {
3181                 struct qede_fastpath *fp = &edev->fp_array[i];
3182
3183                 for (tc = 0; tc < edev->num_tc; tc++) {
3184                         struct qede_tx_queue *txq = &fp->txqs[tc];
3185
3186                         rc = qede_drain_txq(edev, txq, true);
3187                         if (rc)
3188                                 return rc;
3189                 }
3190         }
3191
3192         /* Stop all Queues in reverse order*/
3193         for (i = QEDE_RSS_CNT(edev) - 1; i >= 0; i--) {
3194                 struct qed_stop_rxq_params rx_params;
3195
3196                 /* Stop the Tx Queue(s)*/
3197                 for (tc = 0; tc < edev->num_tc; tc++) {
3198                         struct qed_stop_txq_params tx_params;
3199
3200                         tx_params.rss_id = i;
3201                         tx_params.tx_queue_id = tc * QEDE_RSS_CNT(edev) + i;
3202                         rc = edev->ops->q_tx_stop(cdev, &tx_params);
3203                         if (rc) {
3204                                 DP_ERR(edev, "Failed to stop TXQ #%d\n",
3205                                        tx_params.tx_queue_id);
3206                                 return rc;
3207                         }
3208                 }
3209
3210                 /* Stop the Rx Queue*/
3211                 memset(&rx_params, 0, sizeof(rx_params));
3212                 rx_params.rss_id = i;
3213                 rx_params.rx_queue_id = i;
3214
3215                 rc = edev->ops->q_rx_stop(cdev, &rx_params);
3216                 if (rc) {
3217                         DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
3218                         return rc;
3219                 }
3220         }
3221
3222         /* Stop the vport */
3223         rc = edev->ops->vport_stop(cdev, 0);
3224         if (rc)
3225                 DP_ERR(edev, "Failed to stop VPORT\n");
3226
3227         return rc;
3228 }
3229
3230 static int qede_start_queues(struct qede_dev *edev)
3231 {
3232         int rc, tc, i;
3233         int vlan_removal_en = 1;
3234         struct qed_dev *cdev = edev->cdev;
3235         struct qed_update_vport_params vport_update_params;
3236         struct qed_queue_start_common_params q_params;
3237         struct qed_dev_info *qed_info = &edev->dev_info.common;
3238         struct qed_start_vport_params start = {0};
3239         bool reset_rss_indir = false;
3240
3241         if (!edev->num_rss) {
3242                 DP_ERR(edev,
3243                        "Cannot update V-VPORT as active as there are no Rx queues\n");
3244                 return -EINVAL;
3245         }
3246
3247         start.gro_enable = !edev->gro_disable;
3248         start.mtu = edev->ndev->mtu;
3249         start.vport_id = 0;
3250         start.drop_ttl0 = true;
3251         start.remove_inner_vlan = vlan_removal_en;
3252
3253         rc = edev->ops->vport_start(cdev, &start);
3254
3255         if (rc) {
3256                 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
3257                 return rc;
3258         }
3259
3260         DP_VERBOSE(edev, NETIF_MSG_IFUP,
3261                    "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
3262                    start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
3263
3264         for_each_rss(i) {
3265                 struct qede_fastpath *fp = &edev->fp_array[i];
3266                 dma_addr_t phys_table = fp->rxq->rx_comp_ring.pbl.p_phys_table;
3267
3268                 memset(&q_params, 0, sizeof(q_params));
3269                 q_params.rss_id = i;
3270                 q_params.queue_id = i;
3271                 q_params.vport_id = 0;
3272                 q_params.sb = fp->sb_info->igu_sb_id;
3273                 q_params.sb_idx = RX_PI;
3274
3275                 rc = edev->ops->q_rx_start(cdev, &q_params,
3276                                            fp->rxq->rx_buf_size,
3277                                            fp->rxq->rx_bd_ring.p_phys_addr,
3278                                            phys_table,
3279                                            fp->rxq->rx_comp_ring.page_cnt,
3280                                            &fp->rxq->hw_rxq_prod_addr);
3281                 if (rc) {
3282                         DP_ERR(edev, "Start RXQ #%d failed %d\n", i, rc);
3283                         return rc;
3284                 }
3285
3286                 fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
3287
3288                 qede_update_rx_prod(edev, fp->rxq);
3289
3290                 for (tc = 0; tc < edev->num_tc; tc++) {
3291                         struct qede_tx_queue *txq = &fp->txqs[tc];
3292                         int txq_index = tc * QEDE_RSS_CNT(edev) + i;
3293
3294                         memset(&q_params, 0, sizeof(q_params));
3295                         q_params.rss_id = i;
3296                         q_params.queue_id = txq_index;
3297                         q_params.vport_id = 0;
3298                         q_params.sb = fp->sb_info->igu_sb_id;
3299                         q_params.sb_idx = TX_PI(tc);
3300
3301                         rc = edev->ops->q_tx_start(cdev, &q_params,
3302                                                    txq->tx_pbl.pbl.p_phys_table,
3303                                                    txq->tx_pbl.page_cnt,
3304                                                    &txq->doorbell_addr);
3305                         if (rc) {
3306                                 DP_ERR(edev, "Start TXQ #%d failed %d\n",
3307                                        txq_index, rc);
3308                                 return rc;
3309                         }
3310
3311                         txq->hw_cons_ptr =
3312                                 &fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
3313                         SET_FIELD(txq->tx_db.data.params,
3314                                   ETH_DB_DATA_DEST, DB_DEST_XCM);
3315                         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
3316                                   DB_AGG_CMD_SET);
3317                         SET_FIELD(txq->tx_db.data.params,
3318                                   ETH_DB_DATA_AGG_VAL_SEL,
3319                                   DQ_XCM_ETH_TX_BD_PROD_CMD);
3320
3321                         txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
3322                 }
3323         }
3324
3325         /* Prepare and send the vport enable */
3326         memset(&vport_update_params, 0, sizeof(vport_update_params));
3327         vport_update_params.vport_id = start.vport_id;
3328         vport_update_params.update_vport_active_flg = 1;
3329         vport_update_params.vport_active_flg = 1;
3330
3331         if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) &&
3332             qed_info->tx_switching) {
3333                 vport_update_params.update_tx_switching_flg = 1;
3334                 vport_update_params.tx_switching_flg = 1;
3335         }
3336
3337         /* Fill struct with RSS params */
3338         if (QEDE_RSS_CNT(edev) > 1) {
3339                 vport_update_params.update_rss_flg = 1;
3340
3341                 /* Need to validate current RSS config uses valid entries */
3342                 for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3343                         if (edev->rss_params.rss_ind_table[i] >=
3344                             edev->num_rss) {
3345                                 reset_rss_indir = true;
3346                                 break;
3347                         }
3348                 }
3349
3350                 if (!(edev->rss_params_inited & QEDE_RSS_INDIR_INITED) ||
3351                     reset_rss_indir) {
3352                         u16 val;
3353
3354                         for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3355                                 u16 indir_val;
3356
3357                                 val = QEDE_RSS_CNT(edev);
3358                                 indir_val = ethtool_rxfh_indir_default(i, val);
3359                                 edev->rss_params.rss_ind_table[i] = indir_val;
3360                         }
3361                         edev->rss_params_inited |= QEDE_RSS_INDIR_INITED;
3362                 }
3363
3364                 if (!(edev->rss_params_inited & QEDE_RSS_KEY_INITED)) {
3365                         netdev_rss_key_fill(edev->rss_params.rss_key,
3366                                             sizeof(edev->rss_params.rss_key));
3367                         edev->rss_params_inited |= QEDE_RSS_KEY_INITED;
3368                 }
3369
3370                 if (!(edev->rss_params_inited & QEDE_RSS_CAPS_INITED)) {
3371                         edev->rss_params.rss_caps = QED_RSS_IPV4 |
3372                                                     QED_RSS_IPV6 |
3373                                                     QED_RSS_IPV4_TCP |
3374                                                     QED_RSS_IPV6_TCP;
3375                         edev->rss_params_inited |= QEDE_RSS_CAPS_INITED;
3376                 }
3377
3378                 memcpy(&vport_update_params.rss_params, &edev->rss_params,
3379                        sizeof(vport_update_params.rss_params));
3380         } else {
3381                 memset(&vport_update_params.rss_params, 0,
3382                        sizeof(vport_update_params.rss_params));
3383         }
3384
3385         rc = edev->ops->vport_update(cdev, &vport_update_params);
3386         if (rc) {
3387                 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
3388                 return rc;
3389         }
3390
3391         return 0;
3392 }
3393
3394 static int qede_set_mcast_rx_mac(struct qede_dev *edev,
3395                                  enum qed_filter_xcast_params_type opcode,
3396                                  unsigned char *mac, int num_macs)
3397 {
3398         struct qed_filter_params filter_cmd;
3399         int i;
3400
3401         memset(&filter_cmd, 0, sizeof(filter_cmd));
3402         filter_cmd.type = QED_FILTER_TYPE_MCAST;
3403         filter_cmd.filter.mcast.type = opcode;
3404         filter_cmd.filter.mcast.num = num_macs;
3405
3406         for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
3407                 ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
3408
3409         return edev->ops->filter_config(edev->cdev, &filter_cmd);
3410 }
3411
3412 enum qede_unload_mode {
3413         QEDE_UNLOAD_NORMAL,
3414 };
3415
3416 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode)
3417 {
3418         struct qed_link_params link_params;
3419         int rc;
3420
3421         DP_INFO(edev, "Starting qede unload\n");
3422
3423         mutex_lock(&edev->qede_lock);
3424         edev->state = QEDE_STATE_CLOSED;
3425
3426         /* Close OS Tx */
3427         netif_tx_disable(edev->ndev);
3428         netif_carrier_off(edev->ndev);
3429
3430         /* Reset the link */
3431         memset(&link_params, 0, sizeof(link_params));
3432         link_params.link_up = false;
3433         edev->ops->common->set_link(edev->cdev, &link_params);
3434         rc = qede_stop_queues(edev);
3435         if (rc) {
3436                 qede_sync_free_irqs(edev);
3437                 goto out;
3438         }
3439
3440         DP_INFO(edev, "Stopped Queues\n");
3441
3442         qede_vlan_mark_nonconfigured(edev);
3443         edev->ops->fastpath_stop(edev->cdev);
3444
3445         /* Release the interrupts */
3446         qede_sync_free_irqs(edev);
3447         edev->ops->common->set_fp_int(edev->cdev, 0);
3448
3449         qede_napi_disable_remove(edev);
3450
3451         qede_free_mem_load(edev);
3452         qede_free_fp_array(edev);
3453
3454 out:
3455         mutex_unlock(&edev->qede_lock);
3456         DP_INFO(edev, "Ending qede unload\n");
3457 }
3458
3459 enum qede_load_mode {
3460         QEDE_LOAD_NORMAL,
3461 };
3462
3463 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode)
3464 {
3465         struct qed_link_params link_params;
3466         struct qed_link_output link_output;
3467         int rc;
3468
3469         DP_INFO(edev, "Starting qede load\n");
3470
3471         rc = qede_set_num_queues(edev);
3472         if (rc)
3473                 goto err0;
3474
3475         rc = qede_alloc_fp_array(edev);
3476         if (rc)
3477                 goto err0;
3478
3479         qede_init_fp(edev);
3480
3481         rc = qede_alloc_mem_load(edev);
3482         if (rc)
3483                 goto err1;
3484         DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n",
3485                 QEDE_RSS_CNT(edev), edev->num_tc);
3486
3487         rc = qede_set_real_num_queues(edev);
3488         if (rc)
3489                 goto err2;
3490
3491         qede_napi_add_enable(edev);
3492         DP_INFO(edev, "Napi added and enabled\n");
3493
3494         rc = qede_setup_irqs(edev);
3495         if (rc)
3496                 goto err3;
3497         DP_INFO(edev, "Setup IRQs succeeded\n");
3498
3499         rc = qede_start_queues(edev);
3500         if (rc)
3501                 goto err4;
3502         DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
3503
3504         /* Add primary mac and set Rx filters */
3505         ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
3506
3507         mutex_lock(&edev->qede_lock);
3508         edev->state = QEDE_STATE_OPEN;
3509         mutex_unlock(&edev->qede_lock);
3510
3511         /* Program un-configured VLANs */
3512         qede_configure_vlan_filters(edev);
3513
3514         /* Ask for link-up using current configuration */
3515         memset(&link_params, 0, sizeof(link_params));
3516         link_params.link_up = true;
3517         edev->ops->common->set_link(edev->cdev, &link_params);
3518
3519         /* Query whether link is already-up */
3520         memset(&link_output, 0, sizeof(link_output));
3521         edev->ops->common->get_link(edev->cdev, &link_output);
3522         qede_link_update(edev, &link_output);
3523
3524         DP_INFO(edev, "Ending successfully qede load\n");
3525
3526         return 0;
3527
3528 err4:
3529         qede_sync_free_irqs(edev);
3530         memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
3531 err3:
3532         qede_napi_disable_remove(edev);
3533 err2:
3534         qede_free_mem_load(edev);
3535 err1:
3536         edev->ops->common->set_fp_int(edev->cdev, 0);
3537         qede_free_fp_array(edev);
3538         edev->num_rss = 0;
3539 err0:
3540         return rc;
3541 }
3542
3543 void qede_reload(struct qede_dev *edev,
3544                  void (*func)(struct qede_dev *, union qede_reload_args *),
3545                  union qede_reload_args *args)
3546 {
3547         qede_unload(edev, QEDE_UNLOAD_NORMAL);
3548         /* Call function handler to update parameters
3549          * needed for function load.
3550          */
3551         if (func)
3552                 func(edev, args);
3553
3554         qede_load(edev, QEDE_LOAD_NORMAL);
3555
3556         mutex_lock(&edev->qede_lock);
3557         qede_config_rx_mode(edev->ndev);
3558         mutex_unlock(&edev->qede_lock);
3559 }
3560
3561 /* called with rtnl_lock */
3562 static int qede_open(struct net_device *ndev)
3563 {
3564         struct qede_dev *edev = netdev_priv(ndev);
3565         int rc;
3566
3567         netif_carrier_off(ndev);
3568
3569         edev->ops->common->set_power_state(edev->cdev, PCI_D0);
3570
3571         rc = qede_load(edev, QEDE_LOAD_NORMAL);
3572
3573         if (rc)
3574                 return rc;
3575
3576 #ifdef CONFIG_QEDE_VXLAN
3577         vxlan_get_rx_port(ndev);
3578 #endif
3579 #ifdef CONFIG_QEDE_GENEVE
3580         geneve_get_rx_port(ndev);
3581 #endif
3582         return 0;
3583 }
3584
3585 static int qede_close(struct net_device *ndev)
3586 {
3587         struct qede_dev *edev = netdev_priv(ndev);
3588
3589         qede_unload(edev, QEDE_UNLOAD_NORMAL);
3590
3591         return 0;
3592 }
3593
3594 static void qede_link_update(void *dev, struct qed_link_output *link)
3595 {
3596         struct qede_dev *edev = dev;
3597
3598         if (!netif_running(edev->ndev)) {
3599                 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
3600                 return;
3601         }
3602
3603         if (link->link_up) {
3604                 if (!netif_carrier_ok(edev->ndev)) {
3605                         DP_NOTICE(edev, "Link is up\n");
3606                         netif_tx_start_all_queues(edev->ndev);
3607                         netif_carrier_on(edev->ndev);
3608                 }
3609         } else {
3610                 if (netif_carrier_ok(edev->ndev)) {
3611                         DP_NOTICE(edev, "Link is down\n");
3612                         netif_tx_disable(edev->ndev);
3613                         netif_carrier_off(edev->ndev);
3614                 }
3615         }
3616 }
3617
3618 static int qede_set_mac_addr(struct net_device *ndev, void *p)
3619 {
3620         struct qede_dev *edev = netdev_priv(ndev);
3621         struct sockaddr *addr = p;
3622         int rc;
3623
3624         ASSERT_RTNL(); /* @@@TBD To be removed */
3625
3626         DP_INFO(edev, "Set_mac_addr called\n");
3627
3628         if (!is_valid_ether_addr(addr->sa_data)) {
3629                 DP_NOTICE(edev, "The MAC address is not valid\n");
3630                 return -EFAULT;
3631         }
3632
3633         if (!edev->ops->check_mac(edev->cdev, addr->sa_data)) {
3634                 DP_NOTICE(edev, "qed prevents setting MAC\n");
3635                 return -EINVAL;
3636         }
3637
3638         ether_addr_copy(ndev->dev_addr, addr->sa_data);
3639
3640         if (!netif_running(ndev))  {
3641                 DP_NOTICE(edev, "The device is currently down\n");
3642                 return 0;
3643         }
3644
3645         /* Remove the previous primary mac */
3646         rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3647                                    edev->primary_mac);
3648         if (rc)
3649                 return rc;
3650
3651         /* Add MAC filter according to the new unicast HW MAC address */
3652         ether_addr_copy(edev->primary_mac, ndev->dev_addr);
3653         return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3654                                       edev->primary_mac);
3655 }
3656
3657 static int
3658 qede_configure_mcast_filtering(struct net_device *ndev,
3659                                enum qed_filter_rx_mode_type *accept_flags)
3660 {
3661         struct qede_dev *edev = netdev_priv(ndev);
3662         unsigned char *mc_macs, *temp;
3663         struct netdev_hw_addr *ha;
3664         int rc = 0, mc_count;
3665         size_t size;
3666
3667         size = 64 * ETH_ALEN;
3668
3669         mc_macs = kzalloc(size, GFP_KERNEL);
3670         if (!mc_macs) {
3671                 DP_NOTICE(edev,
3672                           "Failed to allocate memory for multicast MACs\n");
3673                 rc = -ENOMEM;
3674                 goto exit;
3675         }
3676
3677         temp = mc_macs;
3678
3679         /* Remove all previously configured MAC filters */
3680         rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3681                                    mc_macs, 1);
3682         if (rc)
3683                 goto exit;
3684
3685         netif_addr_lock_bh(ndev);
3686
3687         mc_count = netdev_mc_count(ndev);
3688         if (mc_count < 64) {
3689                 netdev_for_each_mc_addr(ha, ndev) {
3690                         ether_addr_copy(temp, ha->addr);
3691                         temp += ETH_ALEN;
3692                 }
3693         }
3694
3695         netif_addr_unlock_bh(ndev);
3696
3697         /* Check for all multicast @@@TBD resource allocation */
3698         if ((ndev->flags & IFF_ALLMULTI) ||
3699             (mc_count > 64)) {
3700                 if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
3701                         *accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
3702         } else {
3703                 /* Add all multicast MAC filters */
3704                 rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3705                                            mc_macs, mc_count);
3706         }
3707
3708 exit:
3709         kfree(mc_macs);
3710         return rc;
3711 }
3712
3713 static void qede_set_rx_mode(struct net_device *ndev)
3714 {
3715         struct qede_dev *edev = netdev_priv(ndev);
3716
3717         DP_INFO(edev, "qede_set_rx_mode called\n");
3718
3719         if (edev->state != QEDE_STATE_OPEN) {
3720                 DP_INFO(edev,
3721                         "qede_set_rx_mode called while interface is down\n");
3722         } else {
3723                 set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
3724                 schedule_delayed_work(&edev->sp_task, 0);
3725         }
3726 }
3727
3728 /* Must be called with qede_lock held */
3729 static void qede_config_rx_mode(struct net_device *ndev)
3730 {
3731         enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST;
3732         struct qede_dev *edev = netdev_priv(ndev);
3733         struct qed_filter_params rx_mode;
3734         unsigned char *uc_macs, *temp;
3735         struct netdev_hw_addr *ha;
3736         int rc, uc_count;
3737         size_t size;
3738
3739         netif_addr_lock_bh(ndev);
3740
3741         uc_count = netdev_uc_count(ndev);
3742         size = uc_count * ETH_ALEN;
3743
3744         uc_macs = kzalloc(size, GFP_ATOMIC);
3745         if (!uc_macs) {
3746                 DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
3747                 netif_addr_unlock_bh(ndev);
3748                 return;
3749         }
3750
3751         temp = uc_macs;
3752         netdev_for_each_uc_addr(ha, ndev) {
3753                 ether_addr_copy(temp, ha->addr);
3754                 temp += ETH_ALEN;
3755         }
3756
3757         netif_addr_unlock_bh(ndev);
3758
3759         /* Configure the struct for the Rx mode */
3760         memset(&rx_mode, 0, sizeof(struct qed_filter_params));
3761         rx_mode.type = QED_FILTER_TYPE_RX_MODE;
3762
3763         /* Remove all previous unicast secondary macs and multicast macs
3764          * (configrue / leave the primary mac)
3765          */
3766         rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
3767                                    edev->primary_mac);
3768         if (rc)
3769                 goto out;
3770
3771         /* Check for promiscuous */
3772         if ((ndev->flags & IFF_PROMISC) ||
3773             (uc_count > 15)) { /* @@@TBD resource allocation - 1 */
3774                 accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
3775         } else {
3776                 /* Add MAC filters according to the unicast secondary macs */
3777                 int i;
3778
3779                 temp = uc_macs;
3780                 for (i = 0; i < uc_count; i++) {
3781                         rc = qede_set_ucast_rx_mac(edev,
3782                                                    QED_FILTER_XCAST_TYPE_ADD,
3783                                                    temp);
3784                         if (rc)
3785                                 goto out;
3786
3787                         temp += ETH_ALEN;
3788                 }
3789
3790                 rc = qede_configure_mcast_filtering(ndev, &accept_flags);
3791                 if (rc)
3792                         goto out;
3793         }
3794
3795         /* take care of VLAN mode */
3796         if (ndev->flags & IFF_PROMISC) {
3797                 qede_config_accept_any_vlan(edev, true);
3798         } else if (!edev->non_configured_vlans) {
3799                 /* It's possible that accept_any_vlan mode is set due to a
3800                  * previous setting of IFF_PROMISC. If vlan credits are
3801                  * sufficient, disable accept_any_vlan.
3802                  */
3803                 qede_config_accept_any_vlan(edev, false);
3804         }
3805
3806         rx_mode.filter.accept_flags = accept_flags;
3807         edev->ops->filter_config(edev->cdev, &rx_mode);
3808 out:
3809         kfree(uc_macs);
3810 }