Merge tag 'fcoe' into fixes
[cascardo/linux.git] / drivers / net / ethernet / qlogic / qlge / qlge_main.c
1 /*
2  * QLogic qlge NIC HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  * See LICENSE.qlge for copyright and licensing details.
5  * Author:     Linux qlge network device driver by
6  *                      Ron Mercer <ron.mercer@qlogic.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/bitops.h>
11 #include <linux/types.h>
12 #include <linux/module.h>
13 #include <linux/list.h>
14 #include <linux/pci.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/pagemap.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/dmapool.h>
20 #include <linux/mempool.h>
21 #include <linux/spinlock.h>
22 #include <linux/kthread.h>
23 #include <linux/interrupt.h>
24 #include <linux/errno.h>
25 #include <linux/ioport.h>
26 #include <linux/in.h>
27 #include <linux/ip.h>
28 #include <linux/ipv6.h>
29 #include <net/ipv6.h>
30 #include <linux/tcp.h>
31 #include <linux/udp.h>
32 #include <linux/if_arp.h>
33 #include <linux/if_ether.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/ethtool.h>
37 #include <linux/if_vlan.h>
38 #include <linux/skbuff.h>
39 #include <linux/delay.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <linux/prefetch.h>
43 #include <net/ip6_checksum.h>
44
45 #include "qlge.h"
46
47 char qlge_driver_name[] = DRV_NAME;
48 const char qlge_driver_version[] = DRV_VERSION;
49
50 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
51 MODULE_DESCRIPTION(DRV_STRING " ");
52 MODULE_LICENSE("GPL");
53 MODULE_VERSION(DRV_VERSION);
54
55 static const u32 default_msg =
56     NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
57 /* NETIF_MSG_TIMER |    */
58     NETIF_MSG_IFDOWN |
59     NETIF_MSG_IFUP |
60     NETIF_MSG_RX_ERR |
61     NETIF_MSG_TX_ERR |
62 /*  NETIF_MSG_TX_QUEUED | */
63 /*  NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
64 /* NETIF_MSG_PKTDATA | */
65     NETIF_MSG_HW | NETIF_MSG_WOL | 0;
66
67 static int debug = -1;  /* defaults above */
68 module_param(debug, int, 0664);
69 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70
71 #define MSIX_IRQ 0
72 #define MSI_IRQ 1
73 #define LEG_IRQ 2
74 static int qlge_irq_type = MSIX_IRQ;
75 module_param(qlge_irq_type, int, 0664);
76 MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
77
78 static int qlge_mpi_coredump;
79 module_param(qlge_mpi_coredump, int, 0);
80 MODULE_PARM_DESC(qlge_mpi_coredump,
81                 "Option to enable MPI firmware dump. "
82                 "Default is OFF - Do Not allocate memory. ");
83
84 static int qlge_force_coredump;
85 module_param(qlge_force_coredump, int, 0);
86 MODULE_PARM_DESC(qlge_force_coredump,
87                 "Option to allow force of firmware core dump. "
88                 "Default is OFF - Do not allow.");
89
90 static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
91         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
92         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
93         /* required last entry */
94         {0,}
95 };
96
97 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
98
99 static int ql_wol(struct ql_adapter *qdev);
100 static void qlge_set_multicast_list(struct net_device *ndev);
101
102 /* This hardware semaphore causes exclusive access to
103  * resources shared between the NIC driver, MPI firmware,
104  * FCOE firmware and the FC driver.
105  */
106 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
107 {
108         u32 sem_bits = 0;
109
110         switch (sem_mask) {
111         case SEM_XGMAC0_MASK:
112                 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
113                 break;
114         case SEM_XGMAC1_MASK:
115                 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
116                 break;
117         case SEM_ICB_MASK:
118                 sem_bits = SEM_SET << SEM_ICB_SHIFT;
119                 break;
120         case SEM_MAC_ADDR_MASK:
121                 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
122                 break;
123         case SEM_FLASH_MASK:
124                 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
125                 break;
126         case SEM_PROBE_MASK:
127                 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
128                 break;
129         case SEM_RT_IDX_MASK:
130                 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
131                 break;
132         case SEM_PROC_REG_MASK:
133                 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
134                 break;
135         default:
136                 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
137                 return -EINVAL;
138         }
139
140         ql_write32(qdev, SEM, sem_bits | sem_mask);
141         return !(ql_read32(qdev, SEM) & sem_bits);
142 }
143
144 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
145 {
146         unsigned int wait_count = 30;
147         do {
148                 if (!ql_sem_trylock(qdev, sem_mask))
149                         return 0;
150                 udelay(100);
151         } while (--wait_count);
152         return -ETIMEDOUT;
153 }
154
155 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
156 {
157         ql_write32(qdev, SEM, sem_mask);
158         ql_read32(qdev, SEM);   /* flush */
159 }
160
161 /* This function waits for a specific bit to come ready
162  * in a given register.  It is used mostly by the initialize
163  * process, but is also used in kernel thread API such as
164  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
165  */
166 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
167 {
168         u32 temp;
169         int count = UDELAY_COUNT;
170
171         while (count) {
172                 temp = ql_read32(qdev, reg);
173
174                 /* check for errors */
175                 if (temp & err_bit) {
176                         netif_alert(qdev, probe, qdev->ndev,
177                                     "register 0x%.08x access error, value = 0x%.08x!.\n",
178                                     reg, temp);
179                         return -EIO;
180                 } else if (temp & bit)
181                         return 0;
182                 udelay(UDELAY_DELAY);
183                 count--;
184         }
185         netif_alert(qdev, probe, qdev->ndev,
186                     "Timed out waiting for reg %x to come ready.\n", reg);
187         return -ETIMEDOUT;
188 }
189
190 /* The CFG register is used to download TX and RX control blocks
191  * to the chip. This function waits for an operation to complete.
192  */
193 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
194 {
195         int count = UDELAY_COUNT;
196         u32 temp;
197
198         while (count) {
199                 temp = ql_read32(qdev, CFG);
200                 if (temp & CFG_LE)
201                         return -EIO;
202                 if (!(temp & bit))
203                         return 0;
204                 udelay(UDELAY_DELAY);
205                 count--;
206         }
207         return -ETIMEDOUT;
208 }
209
210
211 /* Used to issue init control blocks to hw. Maps control block,
212  * sets address, triggers download, waits for completion.
213  */
214 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
215                  u16 q_id)
216 {
217         u64 map;
218         int status = 0;
219         int direction;
220         u32 mask;
221         u32 value;
222
223         direction =
224             (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
225             PCI_DMA_FROMDEVICE;
226
227         map = pci_map_single(qdev->pdev, ptr, size, direction);
228         if (pci_dma_mapping_error(qdev->pdev, map)) {
229                 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
230                 return -ENOMEM;
231         }
232
233         status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
234         if (status)
235                 return status;
236
237         status = ql_wait_cfg(qdev, bit);
238         if (status) {
239                 netif_err(qdev, ifup, qdev->ndev,
240                           "Timed out waiting for CFG to come ready.\n");
241                 goto exit;
242         }
243
244         ql_write32(qdev, ICB_L, (u32) map);
245         ql_write32(qdev, ICB_H, (u32) (map >> 32));
246
247         mask = CFG_Q_MASK | (bit << 16);
248         value = bit | (q_id << CFG_Q_SHIFT);
249         ql_write32(qdev, CFG, (mask | value));
250
251         /*
252          * Wait for the bit to clear after signaling hw.
253          */
254         status = ql_wait_cfg(qdev, bit);
255 exit:
256         ql_sem_unlock(qdev, SEM_ICB_MASK);      /* does flush too */
257         pci_unmap_single(qdev->pdev, map, size, direction);
258         return status;
259 }
260
261 /* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
262 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
263                         u32 *value)
264 {
265         u32 offset = 0;
266         int status;
267
268         switch (type) {
269         case MAC_ADDR_TYPE_MULTI_MAC:
270         case MAC_ADDR_TYPE_CAM_MAC:
271                 {
272                         status =
273                             ql_wait_reg_rdy(qdev,
274                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
275                         if (status)
276                                 goto exit;
277                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
278                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
279                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
280                         status =
281                             ql_wait_reg_rdy(qdev,
282                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
283                         if (status)
284                                 goto exit;
285                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
286                         status =
287                             ql_wait_reg_rdy(qdev,
288                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
289                         if (status)
290                                 goto exit;
291                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
292                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
293                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
294                         status =
295                             ql_wait_reg_rdy(qdev,
296                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
297                         if (status)
298                                 goto exit;
299                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
300                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
301                                 status =
302                                     ql_wait_reg_rdy(qdev,
303                                         MAC_ADDR_IDX, MAC_ADDR_MW, 0);
304                                 if (status)
305                                         goto exit;
306                                 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
307                                            (index << MAC_ADDR_IDX_SHIFT) | /* index */
308                                            MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
309                                 status =
310                                     ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
311                                                     MAC_ADDR_MR, 0);
312                                 if (status)
313                                         goto exit;
314                                 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
315                         }
316                         break;
317                 }
318         case MAC_ADDR_TYPE_VLAN:
319         case MAC_ADDR_TYPE_MULTI_FLTR:
320         default:
321                 netif_crit(qdev, ifup, qdev->ndev,
322                            "Address type %d not yet supported.\n", type);
323                 status = -EPERM;
324         }
325 exit:
326         return status;
327 }
328
329 /* Set up a MAC, multicast or VLAN address for the
330  * inbound frame matching.
331  */
332 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
333                                u16 index)
334 {
335         u32 offset = 0;
336         int status = 0;
337
338         switch (type) {
339         case MAC_ADDR_TYPE_MULTI_MAC:
340                 {
341                         u32 upper = (addr[0] << 8) | addr[1];
342                         u32 lower = (addr[2] << 24) | (addr[3] << 16) |
343                                         (addr[4] << 8) | (addr[5]);
344
345                         status =
346                                 ql_wait_reg_rdy(qdev,
347                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
348                         if (status)
349                                 goto exit;
350                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
351                                 (index << MAC_ADDR_IDX_SHIFT) |
352                                 type | MAC_ADDR_E);
353                         ql_write32(qdev, MAC_ADDR_DATA, lower);
354                         status =
355                                 ql_wait_reg_rdy(qdev,
356                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
357                         if (status)
358                                 goto exit;
359                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
360                                 (index << MAC_ADDR_IDX_SHIFT) |
361                                 type | MAC_ADDR_E);
362
363                         ql_write32(qdev, MAC_ADDR_DATA, upper);
364                         status =
365                                 ql_wait_reg_rdy(qdev,
366                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
367                         if (status)
368                                 goto exit;
369                         break;
370                 }
371         case MAC_ADDR_TYPE_CAM_MAC:
372                 {
373                         u32 cam_output;
374                         u32 upper = (addr[0] << 8) | addr[1];
375                         u32 lower =
376                             (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
377                             (addr[5]);
378                         status =
379                             ql_wait_reg_rdy(qdev,
380                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
381                         if (status)
382                                 goto exit;
383                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
384                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
385                                    type);       /* type */
386                         ql_write32(qdev, MAC_ADDR_DATA, lower);
387                         status =
388                             ql_wait_reg_rdy(qdev,
389                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
390                         if (status)
391                                 goto exit;
392                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
393                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
394                                    type);       /* type */
395                         ql_write32(qdev, MAC_ADDR_DATA, upper);
396                         status =
397                             ql_wait_reg_rdy(qdev,
398                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
399                         if (status)
400                                 goto exit;
401                         ql_write32(qdev, MAC_ADDR_IDX, (offset) |       /* offset */
402                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
403                                    type);       /* type */
404                         /* This field should also include the queue id
405                            and possibly the function id.  Right now we hardcode
406                            the route field to NIC core.
407                          */
408                         cam_output = (CAM_OUT_ROUTE_NIC |
409                                       (qdev->
410                                        func << CAM_OUT_FUNC_SHIFT) |
411                                         (0 << CAM_OUT_CQ_ID_SHIFT));
412                         if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
413                                 cam_output |= CAM_OUT_RV;
414                         /* route to NIC core */
415                         ql_write32(qdev, MAC_ADDR_DATA, cam_output);
416                         break;
417                 }
418         case MAC_ADDR_TYPE_VLAN:
419                 {
420                         u32 enable_bit = *((u32 *) &addr[0]);
421                         /* For VLAN, the addr actually holds a bit that
422                          * either enables or disables the vlan id we are
423                          * addressing. It's either MAC_ADDR_E on or off.
424                          * That's bit-27 we're talking about.
425                          */
426                         status =
427                             ql_wait_reg_rdy(qdev,
428                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
429                         if (status)
430                                 goto exit;
431                         ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
432                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
433                                    type |       /* type */
434                                    enable_bit); /* enable/disable */
435                         break;
436                 }
437         case MAC_ADDR_TYPE_MULTI_FLTR:
438         default:
439                 netif_crit(qdev, ifup, qdev->ndev,
440                            "Address type %d not yet supported.\n", type);
441                 status = -EPERM;
442         }
443 exit:
444         return status;
445 }
446
447 /* Set or clear MAC address in hardware. We sometimes
448  * have to clear it to prevent wrong frame routing
449  * especially in a bonding environment.
450  */
451 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
452 {
453         int status;
454         char zero_mac_addr[ETH_ALEN];
455         char *addr;
456
457         if (set) {
458                 addr = &qdev->current_mac_addr[0];
459                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
460                              "Set Mac addr %pM\n", addr);
461         } else {
462                 memset(zero_mac_addr, 0, ETH_ALEN);
463                 addr = &zero_mac_addr[0];
464                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
465                              "Clearing MAC address\n");
466         }
467         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
468         if (status)
469                 return status;
470         status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
471                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
472         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
473         if (status)
474                 netif_err(qdev, ifup, qdev->ndev,
475                           "Failed to init mac address.\n");
476         return status;
477 }
478
479 void ql_link_on(struct ql_adapter *qdev)
480 {
481         netif_err(qdev, link, qdev->ndev, "Link is up.\n");
482         netif_carrier_on(qdev->ndev);
483         ql_set_mac_addr(qdev, 1);
484 }
485
486 void ql_link_off(struct ql_adapter *qdev)
487 {
488         netif_err(qdev, link, qdev->ndev, "Link is down.\n");
489         netif_carrier_off(qdev->ndev);
490         ql_set_mac_addr(qdev, 0);
491 }
492
493 /* Get a specific frame routing value from the CAM.
494  * Used for debug and reg dump.
495  */
496 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
497 {
498         int status = 0;
499
500         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
501         if (status)
502                 goto exit;
503
504         ql_write32(qdev, RT_IDX,
505                    RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
506         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
507         if (status)
508                 goto exit;
509         *value = ql_read32(qdev, RT_DATA);
510 exit:
511         return status;
512 }
513
514 /* The NIC function for this chip has 16 routing indexes.  Each one can be used
515  * to route different frame types to various inbound queues.  We send broadcast/
516  * multicast/error frames to the default queue for slow handling,
517  * and CAM hit/RSS frames to the fast handling queues.
518  */
519 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
520                               int enable)
521 {
522         int status = -EINVAL; /* Return error if no mask match. */
523         u32 value = 0;
524
525         switch (mask) {
526         case RT_IDX_CAM_HIT:
527                 {
528                         value = RT_IDX_DST_CAM_Q |      /* dest */
529                             RT_IDX_TYPE_NICQ |  /* type */
530                             (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
531                         break;
532                 }
533         case RT_IDX_VALID:      /* Promiscuous Mode frames. */
534                 {
535                         value = RT_IDX_DST_DFLT_Q |     /* dest */
536                             RT_IDX_TYPE_NICQ |  /* type */
537                             (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
538                         break;
539                 }
540         case RT_IDX_ERR:        /* Pass up MAC,IP,TCP/UDP error frames. */
541                 {
542                         value = RT_IDX_DST_DFLT_Q |     /* dest */
543                             RT_IDX_TYPE_NICQ |  /* type */
544                             (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
545                         break;
546                 }
547         case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
548                 {
549                         value = RT_IDX_DST_DFLT_Q | /* dest */
550                                 RT_IDX_TYPE_NICQ | /* type */
551                                 (RT_IDX_IP_CSUM_ERR_SLOT <<
552                                 RT_IDX_IDX_SHIFT); /* index */
553                         break;
554                 }
555         case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
556                 {
557                         value = RT_IDX_DST_DFLT_Q | /* dest */
558                                 RT_IDX_TYPE_NICQ | /* type */
559                                 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
560                                 RT_IDX_IDX_SHIFT); /* index */
561                         break;
562                 }
563         case RT_IDX_BCAST:      /* Pass up Broadcast frames to default Q. */
564                 {
565                         value = RT_IDX_DST_DFLT_Q |     /* dest */
566                             RT_IDX_TYPE_NICQ |  /* type */
567                             (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
568                         break;
569                 }
570         case RT_IDX_MCAST:      /* Pass up All Multicast frames. */
571                 {
572                         value = RT_IDX_DST_DFLT_Q |     /* dest */
573                             RT_IDX_TYPE_NICQ |  /* type */
574                             (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
575                         break;
576                 }
577         case RT_IDX_MCAST_MATCH:        /* Pass up matched Multicast frames. */
578                 {
579                         value = RT_IDX_DST_DFLT_Q |     /* dest */
580                             RT_IDX_TYPE_NICQ |  /* type */
581                             (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
582                         break;
583                 }
584         case RT_IDX_RSS_MATCH:  /* Pass up matched RSS frames. */
585                 {
586                         value = RT_IDX_DST_RSS |        /* dest */
587                             RT_IDX_TYPE_NICQ |  /* type */
588                             (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
589                         break;
590                 }
591         case 0:         /* Clear the E-bit on an entry. */
592                 {
593                         value = RT_IDX_DST_DFLT_Q |     /* dest */
594                             RT_IDX_TYPE_NICQ |  /* type */
595                             (index << RT_IDX_IDX_SHIFT);/* index */
596                         break;
597                 }
598         default:
599                 netif_err(qdev, ifup, qdev->ndev,
600                           "Mask type %d not yet supported.\n", mask);
601                 status = -EPERM;
602                 goto exit;
603         }
604
605         if (value) {
606                 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
607                 if (status)
608                         goto exit;
609                 value |= (enable ? RT_IDX_E : 0);
610                 ql_write32(qdev, RT_IDX, value);
611                 ql_write32(qdev, RT_DATA, enable ? mask : 0);
612         }
613 exit:
614         return status;
615 }
616
617 static void ql_enable_interrupts(struct ql_adapter *qdev)
618 {
619         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
620 }
621
622 static void ql_disable_interrupts(struct ql_adapter *qdev)
623 {
624         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
625 }
626
627 /* If we're running with multiple MSI-X vectors then we enable on the fly.
628  * Otherwise, we may have multiple outstanding workers and don't want to
629  * enable until the last one finishes. In this case, the irq_cnt gets
630  * incremented every time we queue a worker and decremented every time
631  * a worker finishes.  Once it hits zero we enable the interrupt.
632  */
633 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
634 {
635         u32 var = 0;
636         unsigned long hw_flags = 0;
637         struct intr_context *ctx = qdev->intr_context + intr;
638
639         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
640                 /* Always enable if we're MSIX multi interrupts and
641                  * it's not the default (zeroeth) interrupt.
642                  */
643                 ql_write32(qdev, INTR_EN,
644                            ctx->intr_en_mask);
645                 var = ql_read32(qdev, STS);
646                 return var;
647         }
648
649         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
650         if (atomic_dec_and_test(&ctx->irq_cnt)) {
651                 ql_write32(qdev, INTR_EN,
652                            ctx->intr_en_mask);
653                 var = ql_read32(qdev, STS);
654         }
655         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
656         return var;
657 }
658
659 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
660 {
661         u32 var = 0;
662         struct intr_context *ctx;
663
664         /* HW disables for us if we're MSIX multi interrupts and
665          * it's not the default (zeroeth) interrupt.
666          */
667         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
668                 return 0;
669
670         ctx = qdev->intr_context + intr;
671         spin_lock(&qdev->hw_lock);
672         if (!atomic_read(&ctx->irq_cnt)) {
673                 ql_write32(qdev, INTR_EN,
674                 ctx->intr_dis_mask);
675                 var = ql_read32(qdev, STS);
676         }
677         atomic_inc(&ctx->irq_cnt);
678         spin_unlock(&qdev->hw_lock);
679         return var;
680 }
681
682 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
683 {
684         int i;
685         for (i = 0; i < qdev->intr_count; i++) {
686                 /* The enable call does a atomic_dec_and_test
687                  * and enables only if the result is zero.
688                  * So we precharge it here.
689                  */
690                 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
691                         i == 0))
692                         atomic_set(&qdev->intr_context[i].irq_cnt, 1);
693                 ql_enable_completion_interrupt(qdev, i);
694         }
695
696 }
697
698 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
699 {
700         int status, i;
701         u16 csum = 0;
702         __le16 *flash = (__le16 *)&qdev->flash;
703
704         status = strncmp((char *)&qdev->flash, str, 4);
705         if (status) {
706                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
707                 return  status;
708         }
709
710         for (i = 0; i < size; i++)
711                 csum += le16_to_cpu(*flash++);
712
713         if (csum)
714                 netif_err(qdev, ifup, qdev->ndev,
715                           "Invalid flash checksum, csum = 0x%.04x.\n", csum);
716
717         return csum;
718 }
719
720 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
721 {
722         int status = 0;
723         /* wait for reg to come ready */
724         status = ql_wait_reg_rdy(qdev,
725                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
726         if (status)
727                 goto exit;
728         /* set up for reg read */
729         ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
730         /* wait for reg to come ready */
731         status = ql_wait_reg_rdy(qdev,
732                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
733         if (status)
734                 goto exit;
735          /* This data is stored on flash as an array of
736          * __le32.  Since ql_read32() returns cpu endian
737          * we need to swap it back.
738          */
739         *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
740 exit:
741         return status;
742 }
743
744 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
745 {
746         u32 i, size;
747         int status;
748         __le32 *p = (__le32 *)&qdev->flash;
749         u32 offset;
750         u8 mac_addr[6];
751
752         /* Get flash offset for function and adjust
753          * for dword access.
754          */
755         if (!qdev->port)
756                 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
757         else
758                 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
759
760         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
761                 return -ETIMEDOUT;
762
763         size = sizeof(struct flash_params_8000) / sizeof(u32);
764         for (i = 0; i < size; i++, p++) {
765                 status = ql_read_flash_word(qdev, i+offset, p);
766                 if (status) {
767                         netif_err(qdev, ifup, qdev->ndev,
768                                   "Error reading flash.\n");
769                         goto exit;
770                 }
771         }
772
773         status = ql_validate_flash(qdev,
774                         sizeof(struct flash_params_8000) / sizeof(u16),
775                         "8000");
776         if (status) {
777                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
778                 status = -EINVAL;
779                 goto exit;
780         }
781
782         /* Extract either manufacturer or BOFM modified
783          * MAC address.
784          */
785         if (qdev->flash.flash_params_8000.data_type1 == 2)
786                 memcpy(mac_addr,
787                         qdev->flash.flash_params_8000.mac_addr1,
788                         qdev->ndev->addr_len);
789         else
790                 memcpy(mac_addr,
791                         qdev->flash.flash_params_8000.mac_addr,
792                         qdev->ndev->addr_len);
793
794         if (!is_valid_ether_addr(mac_addr)) {
795                 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
796                 status = -EINVAL;
797                 goto exit;
798         }
799
800         memcpy(qdev->ndev->dev_addr,
801                 mac_addr,
802                 qdev->ndev->addr_len);
803
804 exit:
805         ql_sem_unlock(qdev, SEM_FLASH_MASK);
806         return status;
807 }
808
809 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
810 {
811         int i;
812         int status;
813         __le32 *p = (__le32 *)&qdev->flash;
814         u32 offset = 0;
815         u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
816
817         /* Second function's parameters follow the first
818          * function's.
819          */
820         if (qdev->port)
821                 offset = size;
822
823         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
824                 return -ETIMEDOUT;
825
826         for (i = 0; i < size; i++, p++) {
827                 status = ql_read_flash_word(qdev, i+offset, p);
828                 if (status) {
829                         netif_err(qdev, ifup, qdev->ndev,
830                                   "Error reading flash.\n");
831                         goto exit;
832                 }
833
834         }
835
836         status = ql_validate_flash(qdev,
837                         sizeof(struct flash_params_8012) / sizeof(u16),
838                         "8012");
839         if (status) {
840                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
841                 status = -EINVAL;
842                 goto exit;
843         }
844
845         if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
846                 status = -EINVAL;
847                 goto exit;
848         }
849
850         memcpy(qdev->ndev->dev_addr,
851                 qdev->flash.flash_params_8012.mac_addr,
852                 qdev->ndev->addr_len);
853
854 exit:
855         ql_sem_unlock(qdev, SEM_FLASH_MASK);
856         return status;
857 }
858
859 /* xgmac register are located behind the xgmac_addr and xgmac_data
860  * register pair.  Each read/write requires us to wait for the ready
861  * bit before reading/writing the data.
862  */
863 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
864 {
865         int status;
866         /* wait for reg to come ready */
867         status = ql_wait_reg_rdy(qdev,
868                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
869         if (status)
870                 return status;
871         /* write the data to the data reg */
872         ql_write32(qdev, XGMAC_DATA, data);
873         /* trigger the write */
874         ql_write32(qdev, XGMAC_ADDR, reg);
875         return status;
876 }
877
878 /* xgmac register are located behind the xgmac_addr and xgmac_data
879  * register pair.  Each read/write requires us to wait for the ready
880  * bit before reading/writing the data.
881  */
882 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
883 {
884         int status = 0;
885         /* wait for reg to come ready */
886         status = ql_wait_reg_rdy(qdev,
887                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
888         if (status)
889                 goto exit;
890         /* set up for reg read */
891         ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
892         /* wait for reg to come ready */
893         status = ql_wait_reg_rdy(qdev,
894                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
895         if (status)
896                 goto exit;
897         /* get the data */
898         *data = ql_read32(qdev, XGMAC_DATA);
899 exit:
900         return status;
901 }
902
903 /* This is used for reading the 64-bit statistics regs. */
904 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
905 {
906         int status = 0;
907         u32 hi = 0;
908         u32 lo = 0;
909
910         status = ql_read_xgmac_reg(qdev, reg, &lo);
911         if (status)
912                 goto exit;
913
914         status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
915         if (status)
916                 goto exit;
917
918         *data = (u64) lo | ((u64) hi << 32);
919
920 exit:
921         return status;
922 }
923
924 static int ql_8000_port_initialize(struct ql_adapter *qdev)
925 {
926         int status;
927         /*
928          * Get MPI firmware version for driver banner
929          * and ethool info.
930          */
931         status = ql_mb_about_fw(qdev);
932         if (status)
933                 goto exit;
934         status = ql_mb_get_fw_state(qdev);
935         if (status)
936                 goto exit;
937         /* Wake up a worker to get/set the TX/RX frame sizes. */
938         queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
939 exit:
940         return status;
941 }
942
943 /* Take the MAC Core out of reset.
944  * Enable statistics counting.
945  * Take the transmitter/receiver out of reset.
946  * This functionality may be done in the MPI firmware at a
947  * later date.
948  */
949 static int ql_8012_port_initialize(struct ql_adapter *qdev)
950 {
951         int status = 0;
952         u32 data;
953
954         if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
955                 /* Another function has the semaphore, so
956                  * wait for the port init bit to come ready.
957                  */
958                 netif_info(qdev, link, qdev->ndev,
959                            "Another function has the semaphore, so wait for the port init bit to come ready.\n");
960                 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
961                 if (status) {
962                         netif_crit(qdev, link, qdev->ndev,
963                                    "Port initialize timed out.\n");
964                 }
965                 return status;
966         }
967
968         netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
969         /* Set the core reset. */
970         status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
971         if (status)
972                 goto end;
973         data |= GLOBAL_CFG_RESET;
974         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
975         if (status)
976                 goto end;
977
978         /* Clear the core reset and turn on jumbo for receiver. */
979         data &= ~GLOBAL_CFG_RESET;      /* Clear core reset. */
980         data |= GLOBAL_CFG_JUMBO;       /* Turn on jumbo. */
981         data |= GLOBAL_CFG_TX_STAT_EN;
982         data |= GLOBAL_CFG_RX_STAT_EN;
983         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
984         if (status)
985                 goto end;
986
987         /* Enable transmitter, and clear it's reset. */
988         status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
989         if (status)
990                 goto end;
991         data &= ~TX_CFG_RESET;  /* Clear the TX MAC reset. */
992         data |= TX_CFG_EN;      /* Enable the transmitter. */
993         status = ql_write_xgmac_reg(qdev, TX_CFG, data);
994         if (status)
995                 goto end;
996
997         /* Enable receiver and clear it's reset. */
998         status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
999         if (status)
1000                 goto end;
1001         data &= ~RX_CFG_RESET;  /* Clear the RX MAC reset. */
1002         data |= RX_CFG_EN;      /* Enable the receiver. */
1003         status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1004         if (status)
1005                 goto end;
1006
1007         /* Turn on jumbo. */
1008         status =
1009             ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1010         if (status)
1011                 goto end;
1012         status =
1013             ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1014         if (status)
1015                 goto end;
1016
1017         /* Signal to the world that the port is enabled.        */
1018         ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1019 end:
1020         ql_sem_unlock(qdev, qdev->xg_sem_mask);
1021         return status;
1022 }
1023
1024 static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1025 {
1026         return PAGE_SIZE << qdev->lbq_buf_order;
1027 }
1028
1029 /* Get the next large buffer. */
1030 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1031 {
1032         struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1033         rx_ring->lbq_curr_idx++;
1034         if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1035                 rx_ring->lbq_curr_idx = 0;
1036         rx_ring->lbq_free_cnt++;
1037         return lbq_desc;
1038 }
1039
1040 static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1041                 struct rx_ring *rx_ring)
1042 {
1043         struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1044
1045         pci_dma_sync_single_for_cpu(qdev->pdev,
1046                                         dma_unmap_addr(lbq_desc, mapaddr),
1047                                     rx_ring->lbq_buf_size,
1048                                         PCI_DMA_FROMDEVICE);
1049
1050         /* If it's the last chunk of our master page then
1051          * we unmap it.
1052          */
1053         if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1054                                         == ql_lbq_block_size(qdev))
1055                 pci_unmap_page(qdev->pdev,
1056                                 lbq_desc->p.pg_chunk.map,
1057                                 ql_lbq_block_size(qdev),
1058                                 PCI_DMA_FROMDEVICE);
1059         return lbq_desc;
1060 }
1061
1062 /* Get the next small buffer. */
1063 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1064 {
1065         struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1066         rx_ring->sbq_curr_idx++;
1067         if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1068                 rx_ring->sbq_curr_idx = 0;
1069         rx_ring->sbq_free_cnt++;
1070         return sbq_desc;
1071 }
1072
1073 /* Update an rx ring index. */
1074 static void ql_update_cq(struct rx_ring *rx_ring)
1075 {
1076         rx_ring->cnsmr_idx++;
1077         rx_ring->curr_entry++;
1078         if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1079                 rx_ring->cnsmr_idx = 0;
1080                 rx_ring->curr_entry = rx_ring->cq_base;
1081         }
1082 }
1083
1084 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1085 {
1086         ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1087 }
1088
1089 static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1090                                                 struct bq_desc *lbq_desc)
1091 {
1092         if (!rx_ring->pg_chunk.page) {
1093                 u64 map;
1094                 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1095                                                 GFP_ATOMIC,
1096                                                 qdev->lbq_buf_order);
1097                 if (unlikely(!rx_ring->pg_chunk.page)) {
1098                         netif_err(qdev, drv, qdev->ndev,
1099                                   "page allocation failed.\n");
1100                         return -ENOMEM;
1101                 }
1102                 rx_ring->pg_chunk.offset = 0;
1103                 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1104                                         0, ql_lbq_block_size(qdev),
1105                                         PCI_DMA_FROMDEVICE);
1106                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1107                         __free_pages(rx_ring->pg_chunk.page,
1108                                         qdev->lbq_buf_order);
1109                         netif_err(qdev, drv, qdev->ndev,
1110                                   "PCI mapping failed.\n");
1111                         return -ENOMEM;
1112                 }
1113                 rx_ring->pg_chunk.map = map;
1114                 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1115         }
1116
1117         /* Copy the current master pg_chunk info
1118          * to the current descriptor.
1119          */
1120         lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1121
1122         /* Adjust the master page chunk for next
1123          * buffer get.
1124          */
1125         rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1126         if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1127                 rx_ring->pg_chunk.page = NULL;
1128                 lbq_desc->p.pg_chunk.last_flag = 1;
1129         } else {
1130                 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1131                 get_page(rx_ring->pg_chunk.page);
1132                 lbq_desc->p.pg_chunk.last_flag = 0;
1133         }
1134         return 0;
1135 }
1136 /* Process (refill) a large buffer queue. */
1137 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1138 {
1139         u32 clean_idx = rx_ring->lbq_clean_idx;
1140         u32 start_idx = clean_idx;
1141         struct bq_desc *lbq_desc;
1142         u64 map;
1143         int i;
1144
1145         while (rx_ring->lbq_free_cnt > 32) {
1146                 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
1147                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1148                                      "lbq: try cleaning clean_idx = %d.\n",
1149                                      clean_idx);
1150                         lbq_desc = &rx_ring->lbq[clean_idx];
1151                         if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1152                                 rx_ring->lbq_clean_idx = clean_idx;
1153                                 netif_err(qdev, ifup, qdev->ndev,
1154                                                 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1155                                                 i, clean_idx);
1156                                 return;
1157                         }
1158
1159                         map = lbq_desc->p.pg_chunk.map +
1160                                 lbq_desc->p.pg_chunk.offset;
1161                                 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1162                         dma_unmap_len_set(lbq_desc, maplen,
1163                                         rx_ring->lbq_buf_size);
1164                                 *lbq_desc->addr = cpu_to_le64(map);
1165
1166                         pci_dma_sync_single_for_device(qdev->pdev, map,
1167                                                 rx_ring->lbq_buf_size,
1168                                                 PCI_DMA_FROMDEVICE);
1169                         clean_idx++;
1170                         if (clean_idx == rx_ring->lbq_len)
1171                                 clean_idx = 0;
1172                 }
1173
1174                 rx_ring->lbq_clean_idx = clean_idx;
1175                 rx_ring->lbq_prod_idx += 16;
1176                 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1177                         rx_ring->lbq_prod_idx = 0;
1178                 rx_ring->lbq_free_cnt -= 16;
1179         }
1180
1181         if (start_idx != clean_idx) {
1182                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1183                              "lbq: updating prod idx = %d.\n",
1184                              rx_ring->lbq_prod_idx);
1185                 ql_write_db_reg(rx_ring->lbq_prod_idx,
1186                                 rx_ring->lbq_prod_idx_db_reg);
1187         }
1188 }
1189
1190 /* Process (refill) a small buffer queue. */
1191 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1192 {
1193         u32 clean_idx = rx_ring->sbq_clean_idx;
1194         u32 start_idx = clean_idx;
1195         struct bq_desc *sbq_desc;
1196         u64 map;
1197         int i;
1198
1199         while (rx_ring->sbq_free_cnt > 16) {
1200                 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
1201                         sbq_desc = &rx_ring->sbq[clean_idx];
1202                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1203                                      "sbq: try cleaning clean_idx = %d.\n",
1204                                      clean_idx);
1205                         if (sbq_desc->p.skb == NULL) {
1206                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1207                                              qdev->ndev,
1208                                              "sbq: getting new skb for index %d.\n",
1209                                              sbq_desc->index);
1210                                 sbq_desc->p.skb =
1211                                     netdev_alloc_skb(qdev->ndev,
1212                                                      SMALL_BUFFER_SIZE);
1213                                 if (sbq_desc->p.skb == NULL) {
1214                                         rx_ring->sbq_clean_idx = clean_idx;
1215                                         return;
1216                                 }
1217                                 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1218                                 map = pci_map_single(qdev->pdev,
1219                                                      sbq_desc->p.skb->data,
1220                                                      rx_ring->sbq_buf_size,
1221                                                      PCI_DMA_FROMDEVICE);
1222                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1223                                         netif_err(qdev, ifup, qdev->ndev,
1224                                                   "PCI mapping failed.\n");
1225                                         rx_ring->sbq_clean_idx = clean_idx;
1226                                         dev_kfree_skb_any(sbq_desc->p.skb);
1227                                         sbq_desc->p.skb = NULL;
1228                                         return;
1229                                 }
1230                                 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1231                                 dma_unmap_len_set(sbq_desc, maplen,
1232                                                   rx_ring->sbq_buf_size);
1233                                 *sbq_desc->addr = cpu_to_le64(map);
1234                         }
1235
1236                         clean_idx++;
1237                         if (clean_idx == rx_ring->sbq_len)
1238                                 clean_idx = 0;
1239                 }
1240                 rx_ring->sbq_clean_idx = clean_idx;
1241                 rx_ring->sbq_prod_idx += 16;
1242                 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1243                         rx_ring->sbq_prod_idx = 0;
1244                 rx_ring->sbq_free_cnt -= 16;
1245         }
1246
1247         if (start_idx != clean_idx) {
1248                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1249                              "sbq: updating prod idx = %d.\n",
1250                              rx_ring->sbq_prod_idx);
1251                 ql_write_db_reg(rx_ring->sbq_prod_idx,
1252                                 rx_ring->sbq_prod_idx_db_reg);
1253         }
1254 }
1255
1256 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1257                                     struct rx_ring *rx_ring)
1258 {
1259         ql_update_sbq(qdev, rx_ring);
1260         ql_update_lbq(qdev, rx_ring);
1261 }
1262
1263 /* Unmaps tx buffers.  Can be called from send() if a pci mapping
1264  * fails at some stage, or from the interrupt when a tx completes.
1265  */
1266 static void ql_unmap_send(struct ql_adapter *qdev,
1267                           struct tx_ring_desc *tx_ring_desc, int mapped)
1268 {
1269         int i;
1270         for (i = 0; i < mapped; i++) {
1271                 if (i == 0 || (i == 7 && mapped > 7)) {
1272                         /*
1273                          * Unmap the skb->data area, or the
1274                          * external sglist (AKA the Outbound
1275                          * Address List (OAL)).
1276                          * If its the zeroeth element, then it's
1277                          * the skb->data area.  If it's the 7th
1278                          * element and there is more than 6 frags,
1279                          * then its an OAL.
1280                          */
1281                         if (i == 7) {
1282                                 netif_printk(qdev, tx_done, KERN_DEBUG,
1283                                              qdev->ndev,
1284                                              "unmapping OAL area.\n");
1285                         }
1286                         pci_unmap_single(qdev->pdev,
1287                                          dma_unmap_addr(&tx_ring_desc->map[i],
1288                                                         mapaddr),
1289                                          dma_unmap_len(&tx_ring_desc->map[i],
1290                                                        maplen),
1291                                          PCI_DMA_TODEVICE);
1292                 } else {
1293                         netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1294                                      "unmapping frag %d.\n", i);
1295                         pci_unmap_page(qdev->pdev,
1296                                        dma_unmap_addr(&tx_ring_desc->map[i],
1297                                                       mapaddr),
1298                                        dma_unmap_len(&tx_ring_desc->map[i],
1299                                                      maplen), PCI_DMA_TODEVICE);
1300                 }
1301         }
1302
1303 }
1304
1305 /* Map the buffers for this transmit.  This will return
1306  * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1307  */
1308 static int ql_map_send(struct ql_adapter *qdev,
1309                        struct ob_mac_iocb_req *mac_iocb_ptr,
1310                        struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1311 {
1312         int len = skb_headlen(skb);
1313         dma_addr_t map;
1314         int frag_idx, err, map_idx = 0;
1315         struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1316         int frag_cnt = skb_shinfo(skb)->nr_frags;
1317
1318         if (frag_cnt) {
1319                 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1320                              "frag_cnt = %d.\n", frag_cnt);
1321         }
1322         /*
1323          * Map the skb buffer first.
1324          */
1325         map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1326
1327         err = pci_dma_mapping_error(qdev->pdev, map);
1328         if (err) {
1329                 netif_err(qdev, tx_queued, qdev->ndev,
1330                           "PCI mapping failed with error: %d\n", err);
1331
1332                 return NETDEV_TX_BUSY;
1333         }
1334
1335         tbd->len = cpu_to_le32(len);
1336         tbd->addr = cpu_to_le64(map);
1337         dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1338         dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1339         map_idx++;
1340
1341         /*
1342          * This loop fills the remainder of the 8 address descriptors
1343          * in the IOCB.  If there are more than 7 fragments, then the
1344          * eighth address desc will point to an external list (OAL).
1345          * When this happens, the remainder of the frags will be stored
1346          * in this list.
1347          */
1348         for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1349                 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1350                 tbd++;
1351                 if (frag_idx == 6 && frag_cnt > 7) {
1352                         /* Let's tack on an sglist.
1353                          * Our control block will now
1354                          * look like this:
1355                          * iocb->seg[0] = skb->data
1356                          * iocb->seg[1] = frag[0]
1357                          * iocb->seg[2] = frag[1]
1358                          * iocb->seg[3] = frag[2]
1359                          * iocb->seg[4] = frag[3]
1360                          * iocb->seg[5] = frag[4]
1361                          * iocb->seg[6] = frag[5]
1362                          * iocb->seg[7] = ptr to OAL (external sglist)
1363                          * oal->seg[0] = frag[6]
1364                          * oal->seg[1] = frag[7]
1365                          * oal->seg[2] = frag[8]
1366                          * oal->seg[3] = frag[9]
1367                          * oal->seg[4] = frag[10]
1368                          *      etc...
1369                          */
1370                         /* Tack on the OAL in the eighth segment of IOCB. */
1371                         map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1372                                              sizeof(struct oal),
1373                                              PCI_DMA_TODEVICE);
1374                         err = pci_dma_mapping_error(qdev->pdev, map);
1375                         if (err) {
1376                                 netif_err(qdev, tx_queued, qdev->ndev,
1377                                           "PCI mapping outbound address list with error: %d\n",
1378                                           err);
1379                                 goto map_error;
1380                         }
1381
1382                         tbd->addr = cpu_to_le64(map);
1383                         /*
1384                          * The length is the number of fragments
1385                          * that remain to be mapped times the length
1386                          * of our sglist (OAL).
1387                          */
1388                         tbd->len =
1389                             cpu_to_le32((sizeof(struct tx_buf_desc) *
1390                                          (frag_cnt - frag_idx)) | TX_DESC_C);
1391                         dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1392                                            map);
1393                         dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1394                                           sizeof(struct oal));
1395                         tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1396                         map_idx++;
1397                 }
1398
1399                 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
1400                                        DMA_TO_DEVICE);
1401
1402                 err = dma_mapping_error(&qdev->pdev->dev, map);
1403                 if (err) {
1404                         netif_err(qdev, tx_queued, qdev->ndev,
1405                                   "PCI mapping frags failed with error: %d.\n",
1406                                   err);
1407                         goto map_error;
1408                 }
1409
1410                 tbd->addr = cpu_to_le64(map);
1411                 tbd->len = cpu_to_le32(skb_frag_size(frag));
1412                 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1413                 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1414                                   skb_frag_size(frag));
1415
1416         }
1417         /* Save the number of segments we've mapped. */
1418         tx_ring_desc->map_cnt = map_idx;
1419         /* Terminate the last segment. */
1420         tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1421         return NETDEV_TX_OK;
1422
1423 map_error:
1424         /*
1425          * If the first frag mapping failed, then i will be zero.
1426          * This causes the unmap of the skb->data area.  Otherwise
1427          * we pass in the number of frags that mapped successfully
1428          * so they can be umapped.
1429          */
1430         ql_unmap_send(qdev, tx_ring_desc, map_idx);
1431         return NETDEV_TX_BUSY;
1432 }
1433
1434 /* Categorizing receive firmware frame errors */
1435 static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
1436                                  struct rx_ring *rx_ring)
1437 {
1438         struct nic_stats *stats = &qdev->nic_stats;
1439
1440         stats->rx_err_count++;
1441         rx_ring->rx_errors++;
1442
1443         switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
1444         case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
1445                 stats->rx_code_err++;
1446                 break;
1447         case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
1448                 stats->rx_oversize_err++;
1449                 break;
1450         case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
1451                 stats->rx_undersize_err++;
1452                 break;
1453         case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
1454                 stats->rx_preamble_err++;
1455                 break;
1456         case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
1457                 stats->rx_frame_len_err++;
1458                 break;
1459         case IB_MAC_IOCB_RSP_ERR_CRC:
1460                 stats->rx_crc_err++;
1461         default:
1462                 break;
1463         }
1464 }
1465
1466 /* Process an inbound completion from an rx ring. */
1467 static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1468                                         struct rx_ring *rx_ring,
1469                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1470                                         u32 length,
1471                                         u16 vlan_id)
1472 {
1473         struct sk_buff *skb;
1474         struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1475         struct napi_struct *napi = &rx_ring->napi;
1476
1477         /* Frame error, so drop the packet. */
1478         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1479                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1480                 put_page(lbq_desc->p.pg_chunk.page);
1481                 return;
1482         }
1483         napi->dev = qdev->ndev;
1484
1485         skb = napi_get_frags(napi);
1486         if (!skb) {
1487                 netif_err(qdev, drv, qdev->ndev,
1488                           "Couldn't get an skb, exiting.\n");
1489                 rx_ring->rx_dropped++;
1490                 put_page(lbq_desc->p.pg_chunk.page);
1491                 return;
1492         }
1493         prefetch(lbq_desc->p.pg_chunk.va);
1494         __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1495                              lbq_desc->p.pg_chunk.page,
1496                              lbq_desc->p.pg_chunk.offset,
1497                              length);
1498
1499         skb->len += length;
1500         skb->data_len += length;
1501         skb->truesize += length;
1502         skb_shinfo(skb)->nr_frags++;
1503
1504         rx_ring->rx_packets++;
1505         rx_ring->rx_bytes += length;
1506         skb->ip_summed = CHECKSUM_UNNECESSARY;
1507         skb_record_rx_queue(skb, rx_ring->cq_id);
1508         if (vlan_id != 0xffff)
1509                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1510         napi_gro_frags(napi);
1511 }
1512
1513 /* Process an inbound completion from an rx ring. */
1514 static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1515                                         struct rx_ring *rx_ring,
1516                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1517                                         u32 length,
1518                                         u16 vlan_id)
1519 {
1520         struct net_device *ndev = qdev->ndev;
1521         struct sk_buff *skb = NULL;
1522         void *addr;
1523         struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1524         struct napi_struct *napi = &rx_ring->napi;
1525
1526         skb = netdev_alloc_skb(ndev, length);
1527         if (!skb) {
1528                 rx_ring->rx_dropped++;
1529                 put_page(lbq_desc->p.pg_chunk.page);
1530                 return;
1531         }
1532
1533         addr = lbq_desc->p.pg_chunk.va;
1534         prefetch(addr);
1535
1536         /* Frame error, so drop the packet. */
1537         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1538                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1539                 goto err_out;
1540         }
1541
1542         /* The max framesize filter on this chip is set higher than
1543          * MTU since FCoE uses 2k frames.
1544          */
1545         if (skb->len > ndev->mtu + ETH_HLEN) {
1546                 netif_err(qdev, drv, qdev->ndev,
1547                           "Segment too small, dropping.\n");
1548                 rx_ring->rx_dropped++;
1549                 goto err_out;
1550         }
1551         memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
1552         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1553                      "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1554                      length);
1555         skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1556                                 lbq_desc->p.pg_chunk.offset+ETH_HLEN,
1557                                 length-ETH_HLEN);
1558         skb->len += length-ETH_HLEN;
1559         skb->data_len += length-ETH_HLEN;
1560         skb->truesize += length-ETH_HLEN;
1561
1562         rx_ring->rx_packets++;
1563         rx_ring->rx_bytes += skb->len;
1564         skb->protocol = eth_type_trans(skb, ndev);
1565         skb_checksum_none_assert(skb);
1566
1567         if ((ndev->features & NETIF_F_RXCSUM) &&
1568                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1569                 /* TCP frame. */
1570                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1571                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1572                                      "TCP checksum done!\n");
1573                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1574                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1575                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1576                         /* Unfragmented ipv4 UDP frame. */
1577                         struct iphdr *iph =
1578                                 (struct iphdr *) ((u8 *)addr + ETH_HLEN);
1579                         if (!(iph->frag_off &
1580                                 htons(IP_MF|IP_OFFSET))) {
1581                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1582                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1583                                              qdev->ndev,
1584                                              "UDP checksum done!\n");
1585                         }
1586                 }
1587         }
1588
1589         skb_record_rx_queue(skb, rx_ring->cq_id);
1590         if (vlan_id != 0xffff)
1591                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1592         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1593                 napi_gro_receive(napi, skb);
1594         else
1595                 netif_receive_skb(skb);
1596         return;
1597 err_out:
1598         dev_kfree_skb_any(skb);
1599         put_page(lbq_desc->p.pg_chunk.page);
1600 }
1601
1602 /* Process an inbound completion from an rx ring. */
1603 static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1604                                         struct rx_ring *rx_ring,
1605                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1606                                         u32 length,
1607                                         u16 vlan_id)
1608 {
1609         struct net_device *ndev = qdev->ndev;
1610         struct sk_buff *skb = NULL;
1611         struct sk_buff *new_skb = NULL;
1612         struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1613
1614         skb = sbq_desc->p.skb;
1615         /* Allocate new_skb and copy */
1616         new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1617         if (new_skb == NULL) {
1618                 rx_ring->rx_dropped++;
1619                 return;
1620         }
1621         skb_reserve(new_skb, NET_IP_ALIGN);
1622         memcpy(skb_put(new_skb, length), skb->data, length);
1623         skb = new_skb;
1624
1625         /* Frame error, so drop the packet. */
1626         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1627                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1628                 dev_kfree_skb_any(skb);
1629                 return;
1630         }
1631
1632         /* loopback self test for ethtool */
1633         if (test_bit(QL_SELFTEST, &qdev->flags)) {
1634                 ql_check_lb_frame(qdev, skb);
1635                 dev_kfree_skb_any(skb);
1636                 return;
1637         }
1638
1639         /* The max framesize filter on this chip is set higher than
1640          * MTU since FCoE uses 2k frames.
1641          */
1642         if (skb->len > ndev->mtu + ETH_HLEN) {
1643                 dev_kfree_skb_any(skb);
1644                 rx_ring->rx_dropped++;
1645                 return;
1646         }
1647
1648         prefetch(skb->data);
1649         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1650                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1651                              "%s Multicast.\n",
1652                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1653                              IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1654                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1655                              IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1656                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1657                              IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1658         }
1659         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1660                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1661                              "Promiscuous Packet.\n");
1662
1663         rx_ring->rx_packets++;
1664         rx_ring->rx_bytes += skb->len;
1665         skb->protocol = eth_type_trans(skb, ndev);
1666         skb_checksum_none_assert(skb);
1667
1668         /* If rx checksum is on, and there are no
1669          * csum or frame errors.
1670          */
1671         if ((ndev->features & NETIF_F_RXCSUM) &&
1672                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1673                 /* TCP frame. */
1674                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1675                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1676                                      "TCP checksum done!\n");
1677                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1678                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1679                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1680                         /* Unfragmented ipv4 UDP frame. */
1681                         struct iphdr *iph = (struct iphdr *) skb->data;
1682                         if (!(iph->frag_off &
1683                                 htons(IP_MF|IP_OFFSET))) {
1684                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1685                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1686                                              qdev->ndev,
1687                                              "UDP checksum done!\n");
1688                         }
1689                 }
1690         }
1691
1692         skb_record_rx_queue(skb, rx_ring->cq_id);
1693         if (vlan_id != 0xffff)
1694                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1695         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1696                 napi_gro_receive(&rx_ring->napi, skb);
1697         else
1698                 netif_receive_skb(skb);
1699 }
1700
1701 static void ql_realign_skb(struct sk_buff *skb, int len)
1702 {
1703         void *temp_addr = skb->data;
1704
1705         /* Undo the skb_reserve(skb,32) we did before
1706          * giving to hardware, and realign data on
1707          * a 2-byte boundary.
1708          */
1709         skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1710         skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1711         skb_copy_to_linear_data(skb, temp_addr,
1712                 (unsigned int)len);
1713 }
1714
1715 /*
1716  * This function builds an skb for the given inbound
1717  * completion.  It will be rewritten for readability in the near
1718  * future, but for not it works well.
1719  */
1720 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1721                                        struct rx_ring *rx_ring,
1722                                        struct ib_mac_iocb_rsp *ib_mac_rsp)
1723 {
1724         struct bq_desc *lbq_desc;
1725         struct bq_desc *sbq_desc;
1726         struct sk_buff *skb = NULL;
1727         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1728        u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1729
1730         /*
1731          * Handle the header buffer if present.
1732          */
1733         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1734             ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1735                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1736                              "Header of %d bytes in small buffer.\n", hdr_len);
1737                 /*
1738                  * Headers fit nicely into a small buffer.
1739                  */
1740                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1741                 pci_unmap_single(qdev->pdev,
1742                                 dma_unmap_addr(sbq_desc, mapaddr),
1743                                 dma_unmap_len(sbq_desc, maplen),
1744                                 PCI_DMA_FROMDEVICE);
1745                 skb = sbq_desc->p.skb;
1746                 ql_realign_skb(skb, hdr_len);
1747                 skb_put(skb, hdr_len);
1748                 sbq_desc->p.skb = NULL;
1749         }
1750
1751         /*
1752          * Handle the data buffer(s).
1753          */
1754         if (unlikely(!length)) {        /* Is there data too? */
1755                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1756                              "No Data buffer in this packet.\n");
1757                 return skb;
1758         }
1759
1760         if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1761                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1762                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1763                                      "Headers in small, data of %d bytes in small, combine them.\n",
1764                                      length);
1765                         /*
1766                          * Data is less than small buffer size so it's
1767                          * stuffed in a small buffer.
1768                          * For this case we append the data
1769                          * from the "data" small buffer to the "header" small
1770                          * buffer.
1771                          */
1772                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1773                         pci_dma_sync_single_for_cpu(qdev->pdev,
1774                                                     dma_unmap_addr
1775                                                     (sbq_desc, mapaddr),
1776                                                     dma_unmap_len
1777                                                     (sbq_desc, maplen),
1778                                                     PCI_DMA_FROMDEVICE);
1779                         memcpy(skb_put(skb, length),
1780                                sbq_desc->p.skb->data, length);
1781                         pci_dma_sync_single_for_device(qdev->pdev,
1782                                                        dma_unmap_addr
1783                                                        (sbq_desc,
1784                                                         mapaddr),
1785                                                        dma_unmap_len
1786                                                        (sbq_desc,
1787                                                         maplen),
1788                                                        PCI_DMA_FROMDEVICE);
1789                 } else {
1790                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1791                                      "%d bytes in a single small buffer.\n",
1792                                      length);
1793                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1794                         skb = sbq_desc->p.skb;
1795                         ql_realign_skb(skb, length);
1796                         skb_put(skb, length);
1797                         pci_unmap_single(qdev->pdev,
1798                                          dma_unmap_addr(sbq_desc,
1799                                                         mapaddr),
1800                                          dma_unmap_len(sbq_desc,
1801                                                        maplen),
1802                                          PCI_DMA_FROMDEVICE);
1803                         sbq_desc->p.skb = NULL;
1804                 }
1805         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1806                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1807                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1808                                      "Header in small, %d bytes in large. Chain large to small!\n",
1809                                      length);
1810                         /*
1811                          * The data is in a single large buffer.  We
1812                          * chain it to the header buffer's skb and let
1813                          * it rip.
1814                          */
1815                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1816                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1817                                      "Chaining page at offset = %d, for %d bytes  to skb.\n",
1818                                      lbq_desc->p.pg_chunk.offset, length);
1819                         skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1820                                                 lbq_desc->p.pg_chunk.offset,
1821                                                 length);
1822                         skb->len += length;
1823                         skb->data_len += length;
1824                         skb->truesize += length;
1825                 } else {
1826                         /*
1827                          * The headers and data are in a single large buffer. We
1828                          * copy it to a new skb and let it go. This can happen with
1829                          * jumbo mtu on a non-TCP/UDP frame.
1830                          */
1831                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1832                         skb = netdev_alloc_skb(qdev->ndev, length);
1833                         if (skb == NULL) {
1834                                 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1835                                              "No skb available, drop the packet.\n");
1836                                 return NULL;
1837                         }
1838                         pci_unmap_page(qdev->pdev,
1839                                        dma_unmap_addr(lbq_desc,
1840                                                       mapaddr),
1841                                        dma_unmap_len(lbq_desc, maplen),
1842                                        PCI_DMA_FROMDEVICE);
1843                         skb_reserve(skb, NET_IP_ALIGN);
1844                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1845                                      "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1846                                      length);
1847                         skb_fill_page_desc(skb, 0,
1848                                                 lbq_desc->p.pg_chunk.page,
1849                                                 lbq_desc->p.pg_chunk.offset,
1850                                                 length);
1851                         skb->len += length;
1852                         skb->data_len += length;
1853                         skb->truesize += length;
1854                         length -= length;
1855                         __pskb_pull_tail(skb,
1856                                 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1857                                 VLAN_ETH_HLEN : ETH_HLEN);
1858                 }
1859         } else {
1860                 /*
1861                  * The data is in a chain of large buffers
1862                  * pointed to by a small buffer.  We loop
1863                  * thru and chain them to the our small header
1864                  * buffer's skb.
1865                  * frags:  There are 18 max frags and our small
1866                  *         buffer will hold 32 of them. The thing is,
1867                  *         we'll use 3 max for our 9000 byte jumbo
1868                  *         frames.  If the MTU goes up we could
1869                  *          eventually be in trouble.
1870                  */
1871                 int size, i = 0;
1872                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1873                 pci_unmap_single(qdev->pdev,
1874                                  dma_unmap_addr(sbq_desc, mapaddr),
1875                                  dma_unmap_len(sbq_desc, maplen),
1876                                  PCI_DMA_FROMDEVICE);
1877                 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1878                         /*
1879                          * This is an non TCP/UDP IP frame, so
1880                          * the headers aren't split into a small
1881                          * buffer.  We have to use the small buffer
1882                          * that contains our sg list as our skb to
1883                          * send upstairs. Copy the sg list here to
1884                          * a local buffer and use it to find the
1885                          * pages to chain.
1886                          */
1887                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1888                                      "%d bytes of headers & data in chain of large.\n",
1889                                      length);
1890                         skb = sbq_desc->p.skb;
1891                         sbq_desc->p.skb = NULL;
1892                         skb_reserve(skb, NET_IP_ALIGN);
1893                 }
1894                 while (length > 0) {
1895                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1896                         size = (length < rx_ring->lbq_buf_size) ? length :
1897                                 rx_ring->lbq_buf_size;
1898
1899                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1900                                      "Adding page %d to skb for %d bytes.\n",
1901                                      i, size);
1902                         skb_fill_page_desc(skb, i,
1903                                                 lbq_desc->p.pg_chunk.page,
1904                                                 lbq_desc->p.pg_chunk.offset,
1905                                                 size);
1906                         skb->len += size;
1907                         skb->data_len += size;
1908                         skb->truesize += size;
1909                         length -= size;
1910                         i++;
1911                 }
1912                 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1913                                 VLAN_ETH_HLEN : ETH_HLEN);
1914         }
1915         return skb;
1916 }
1917
1918 /* Process an inbound completion from an rx ring. */
1919 static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1920                                    struct rx_ring *rx_ring,
1921                                    struct ib_mac_iocb_rsp *ib_mac_rsp,
1922                                    u16 vlan_id)
1923 {
1924         struct net_device *ndev = qdev->ndev;
1925         struct sk_buff *skb = NULL;
1926
1927         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1928
1929         skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1930         if (unlikely(!skb)) {
1931                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1932                              "No skb available, drop packet.\n");
1933                 rx_ring->rx_dropped++;
1934                 return;
1935         }
1936
1937         /* Frame error, so drop the packet. */
1938         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1939                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1940                 dev_kfree_skb_any(skb);
1941                 return;
1942         }
1943
1944         /* The max framesize filter on this chip is set higher than
1945          * MTU since FCoE uses 2k frames.
1946          */
1947         if (skb->len > ndev->mtu + ETH_HLEN) {
1948                 dev_kfree_skb_any(skb);
1949                 rx_ring->rx_dropped++;
1950                 return;
1951         }
1952
1953         /* loopback self test for ethtool */
1954         if (test_bit(QL_SELFTEST, &qdev->flags)) {
1955                 ql_check_lb_frame(qdev, skb);
1956                 dev_kfree_skb_any(skb);
1957                 return;
1958         }
1959
1960         prefetch(skb->data);
1961         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1962                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
1963                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1964                              IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1965                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1966                              IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1967                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1968                              IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1969                 rx_ring->rx_multicast++;
1970         }
1971         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1972                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1973                              "Promiscuous Packet.\n");
1974         }
1975
1976         skb->protocol = eth_type_trans(skb, ndev);
1977         skb_checksum_none_assert(skb);
1978
1979         /* If rx checksum is on, and there are no
1980          * csum or frame errors.
1981          */
1982         if ((ndev->features & NETIF_F_RXCSUM) &&
1983                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1984                 /* TCP frame. */
1985                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1986                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1987                                      "TCP checksum done!\n");
1988                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1989                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1990                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1991                 /* Unfragmented ipv4 UDP frame. */
1992                         struct iphdr *iph = (struct iphdr *) skb->data;
1993                         if (!(iph->frag_off &
1994                                 htons(IP_MF|IP_OFFSET))) {
1995                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1996                                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1997                                              "TCP checksum done!\n");
1998                         }
1999                 }
2000         }
2001
2002         rx_ring->rx_packets++;
2003         rx_ring->rx_bytes += skb->len;
2004         skb_record_rx_queue(skb, rx_ring->cq_id);
2005         if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) && (vlan_id != 0))
2006                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
2007         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
2008                 napi_gro_receive(&rx_ring->napi, skb);
2009         else
2010                 netif_receive_skb(skb);
2011 }
2012
2013 /* Process an inbound completion from an rx ring. */
2014 static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2015                                         struct rx_ring *rx_ring,
2016                                         struct ib_mac_iocb_rsp *ib_mac_rsp)
2017 {
2018         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
2019         u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
2020                         ((le16_to_cpu(ib_mac_rsp->vlan_id) &
2021                         IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2022
2023         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2024
2025         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2026                 /* The data and headers are split into
2027                  * separate buffers.
2028                  */
2029                 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2030                                                 vlan_id);
2031         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2032                 /* The data fit in a single small buffer.
2033                  * Allocate a new skb, copy the data and
2034                  * return the buffer to the free pool.
2035                  */
2036                 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2037                                                 length, vlan_id);
2038         } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2039                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2040                 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2041                 /* TCP packet in a page chunk that's been checksummed.
2042                  * Tack it on to our GRO skb and let it go.
2043                  */
2044                 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2045                                                 length, vlan_id);
2046         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2047                 /* Non-TCP packet in a page chunk. Allocate an
2048                  * skb, tack it on frags, and send it up.
2049                  */
2050                 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2051                                                 length, vlan_id);
2052         } else {
2053                 /* Non-TCP/UDP large frames that span multiple buffers
2054                  * can be processed corrrectly by the split frame logic.
2055                  */
2056                 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2057                                                 vlan_id);
2058         }
2059
2060         return (unsigned long)length;
2061 }
2062
2063 /* Process an outbound completion from an rx ring. */
2064 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2065                                    struct ob_mac_iocb_rsp *mac_rsp)
2066 {
2067         struct tx_ring *tx_ring;
2068         struct tx_ring_desc *tx_ring_desc;
2069
2070         QL_DUMP_OB_MAC_RSP(mac_rsp);
2071         tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2072         tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2073         ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2074         tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2075         tx_ring->tx_packets++;
2076         dev_kfree_skb(tx_ring_desc->skb);
2077         tx_ring_desc->skb = NULL;
2078
2079         if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2080                                         OB_MAC_IOCB_RSP_S |
2081                                         OB_MAC_IOCB_RSP_L |
2082                                         OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2083                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2084                         netif_warn(qdev, tx_done, qdev->ndev,
2085                                    "Total descriptor length did not match transfer length.\n");
2086                 }
2087                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2088                         netif_warn(qdev, tx_done, qdev->ndev,
2089                                    "Frame too short to be valid, not sent.\n");
2090                 }
2091                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2092                         netif_warn(qdev, tx_done, qdev->ndev,
2093                                    "Frame too long, but sent anyway.\n");
2094                 }
2095                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2096                         netif_warn(qdev, tx_done, qdev->ndev,
2097                                    "PCI backplane error. Frame not sent.\n");
2098                 }
2099         }
2100         atomic_inc(&tx_ring->tx_count);
2101 }
2102
2103 /* Fire up a handler to reset the MPI processor. */
2104 void ql_queue_fw_error(struct ql_adapter *qdev)
2105 {
2106         ql_link_off(qdev);
2107         queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2108 }
2109
2110 void ql_queue_asic_error(struct ql_adapter *qdev)
2111 {
2112         ql_link_off(qdev);
2113         ql_disable_interrupts(qdev);
2114         /* Clear adapter up bit to signal the recovery
2115          * process that it shouldn't kill the reset worker
2116          * thread
2117          */
2118         clear_bit(QL_ADAPTER_UP, &qdev->flags);
2119         /* Set asic recovery bit to indicate reset process that we are
2120          * in fatal error recovery process rather than normal close
2121          */
2122         set_bit(QL_ASIC_RECOVERY, &qdev->flags);
2123         queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2124 }
2125
2126 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2127                                     struct ib_ae_iocb_rsp *ib_ae_rsp)
2128 {
2129         switch (ib_ae_rsp->event) {
2130         case MGMT_ERR_EVENT:
2131                 netif_err(qdev, rx_err, qdev->ndev,
2132                           "Management Processor Fatal Error.\n");
2133                 ql_queue_fw_error(qdev);
2134                 return;
2135
2136         case CAM_LOOKUP_ERR_EVENT:
2137                 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2138                 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
2139                 ql_queue_asic_error(qdev);
2140                 return;
2141
2142         case SOFT_ECC_ERROR_EVENT:
2143                 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
2144                 ql_queue_asic_error(qdev);
2145                 break;
2146
2147         case PCI_ERR_ANON_BUF_RD:
2148                 netdev_err(qdev->ndev, "PCI error occurred when reading "
2149                                         "anonymous buffers from rx_ring %d.\n",
2150                                         ib_ae_rsp->q_id);
2151                 ql_queue_asic_error(qdev);
2152                 break;
2153
2154         default:
2155                 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2156                           ib_ae_rsp->event);
2157                 ql_queue_asic_error(qdev);
2158                 break;
2159         }
2160 }
2161
2162 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2163 {
2164         struct ql_adapter *qdev = rx_ring->qdev;
2165         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2166         struct ob_mac_iocb_rsp *net_rsp = NULL;
2167         int count = 0;
2168
2169         struct tx_ring *tx_ring;
2170         /* While there are entries in the completion queue. */
2171         while (prod != rx_ring->cnsmr_idx) {
2172
2173                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2174                              "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2175                              rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2176
2177                 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2178                 rmb();
2179                 switch (net_rsp->opcode) {
2180
2181                 case OPCODE_OB_MAC_TSO_IOCB:
2182                 case OPCODE_OB_MAC_IOCB:
2183                         ql_process_mac_tx_intr(qdev, net_rsp);
2184                         break;
2185                 default:
2186                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2187                                      "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2188                                      net_rsp->opcode);
2189                 }
2190                 count++;
2191                 ql_update_cq(rx_ring);
2192                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2193         }
2194         if (!net_rsp)
2195                 return 0;
2196         ql_write_cq_idx(rx_ring);
2197         tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2198         if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
2199                 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2200                         /*
2201                          * The queue got stopped because the tx_ring was full.
2202                          * Wake it up, because it's now at least 25% empty.
2203                          */
2204                         netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2205         }
2206
2207         return count;
2208 }
2209
2210 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2211 {
2212         struct ql_adapter *qdev = rx_ring->qdev;
2213         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2214         struct ql_net_rsp_iocb *net_rsp;
2215         int count = 0;
2216
2217         /* While there are entries in the completion queue. */
2218         while (prod != rx_ring->cnsmr_idx) {
2219
2220                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2221                              "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2222                              rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2223
2224                 net_rsp = rx_ring->curr_entry;
2225                 rmb();
2226                 switch (net_rsp->opcode) {
2227                 case OPCODE_IB_MAC_IOCB:
2228                         ql_process_mac_rx_intr(qdev, rx_ring,
2229                                                (struct ib_mac_iocb_rsp *)
2230                                                net_rsp);
2231                         break;
2232
2233                 case OPCODE_IB_AE_IOCB:
2234                         ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2235                                                 net_rsp);
2236                         break;
2237                 default:
2238                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2239                                      "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2240                                      net_rsp->opcode);
2241                         break;
2242                 }
2243                 count++;
2244                 ql_update_cq(rx_ring);
2245                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2246                 if (count == budget)
2247                         break;
2248         }
2249         ql_update_buffer_queues(qdev, rx_ring);
2250         ql_write_cq_idx(rx_ring);
2251         return count;
2252 }
2253
2254 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2255 {
2256         struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2257         struct ql_adapter *qdev = rx_ring->qdev;
2258         struct rx_ring *trx_ring;
2259         int i, work_done = 0;
2260         struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2261
2262         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2263                      "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2264
2265         /* Service the TX rings first.  They start
2266          * right after the RSS rings. */
2267         for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2268                 trx_ring = &qdev->rx_ring[i];
2269                 /* If this TX completion ring belongs to this vector and
2270                  * it's not empty then service it.
2271                  */
2272                 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2273                         (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2274                                         trx_ring->cnsmr_idx)) {
2275                         netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2276                                      "%s: Servicing TX completion ring %d.\n",
2277                                      __func__, trx_ring->cq_id);
2278                         ql_clean_outbound_rx_ring(trx_ring);
2279                 }
2280         }
2281
2282         /*
2283          * Now service the RSS ring if it's active.
2284          */
2285         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2286                                         rx_ring->cnsmr_idx) {
2287                 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2288                              "%s: Servicing RX completion ring %d.\n",
2289                              __func__, rx_ring->cq_id);
2290                 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2291         }
2292
2293         if (work_done < budget) {
2294                 napi_complete(napi);
2295                 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2296         }
2297         return work_done;
2298 }
2299
2300 static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
2301 {
2302         struct ql_adapter *qdev = netdev_priv(ndev);
2303
2304         if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2305                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2306                                  NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2307         } else {
2308                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2309         }
2310 }
2311
2312 static netdev_features_t qlge_fix_features(struct net_device *ndev,
2313         netdev_features_t features)
2314 {
2315         /*
2316          * Since there is no support for separate rx/tx vlan accel
2317          * enable/disable make sure tx flag is always in same state as rx.
2318          */
2319         if (features & NETIF_F_HW_VLAN_CTAG_RX)
2320                 features |= NETIF_F_HW_VLAN_CTAG_TX;
2321         else
2322                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2323
2324         return features;
2325 }
2326
2327 static int qlge_set_features(struct net_device *ndev,
2328         netdev_features_t features)
2329 {
2330         netdev_features_t changed = ndev->features ^ features;
2331
2332         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2333                 qlge_vlan_mode(ndev, features);
2334
2335         return 0;
2336 }
2337
2338 static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
2339 {
2340         u32 enable_bit = MAC_ADDR_E;
2341         int err;
2342
2343         err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2344                                   MAC_ADDR_TYPE_VLAN, vid);
2345         if (err)
2346                 netif_err(qdev, ifup, qdev->ndev,
2347                           "Failed to init vlan address.\n");
2348         return err;
2349 }
2350
2351 static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
2352 {
2353         struct ql_adapter *qdev = netdev_priv(ndev);
2354         int status;
2355         int err;
2356
2357         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2358         if (status)
2359                 return status;
2360
2361         err = __qlge_vlan_rx_add_vid(qdev, vid);
2362         set_bit(vid, qdev->active_vlans);
2363
2364         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2365
2366         return err;
2367 }
2368
2369 static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
2370 {
2371         u32 enable_bit = 0;
2372         int err;
2373
2374         err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2375                                   MAC_ADDR_TYPE_VLAN, vid);
2376         if (err)
2377                 netif_err(qdev, ifup, qdev->ndev,
2378                           "Failed to clear vlan address.\n");
2379         return err;
2380 }
2381
2382 static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
2383 {
2384         struct ql_adapter *qdev = netdev_priv(ndev);
2385         int status;
2386         int err;
2387
2388         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2389         if (status)
2390                 return status;
2391
2392         err = __qlge_vlan_rx_kill_vid(qdev, vid);
2393         clear_bit(vid, qdev->active_vlans);
2394
2395         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2396
2397         return err;
2398 }
2399
2400 static void qlge_restore_vlan(struct ql_adapter *qdev)
2401 {
2402         int status;
2403         u16 vid;
2404
2405         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2406         if (status)
2407                 return;
2408
2409         for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2410                 __qlge_vlan_rx_add_vid(qdev, vid);
2411
2412         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2413 }
2414
2415 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2416 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2417 {
2418         struct rx_ring *rx_ring = dev_id;
2419         napi_schedule(&rx_ring->napi);
2420         return IRQ_HANDLED;
2421 }
2422
2423 /* This handles a fatal error, MPI activity, and the default
2424  * rx_ring in an MSI-X multiple vector environment.
2425  * In MSI/Legacy environment it also process the rest of
2426  * the rx_rings.
2427  */
2428 static irqreturn_t qlge_isr(int irq, void *dev_id)
2429 {
2430         struct rx_ring *rx_ring = dev_id;
2431         struct ql_adapter *qdev = rx_ring->qdev;
2432         struct intr_context *intr_context = &qdev->intr_context[0];
2433         u32 var;
2434         int work_done = 0;
2435
2436         spin_lock(&qdev->hw_lock);
2437         if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2438                 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2439                              "Shared Interrupt, Not ours!\n");
2440                 spin_unlock(&qdev->hw_lock);
2441                 return IRQ_NONE;
2442         }
2443         spin_unlock(&qdev->hw_lock);
2444
2445         var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2446
2447         /*
2448          * Check for fatal error.
2449          */
2450         if (var & STS_FE) {
2451                 ql_queue_asic_error(qdev);
2452                 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
2453                 var = ql_read32(qdev, ERR_STS);
2454                 netdev_err(qdev->ndev, "Resetting chip. "
2455                                         "Error Status Register = 0x%x\n", var);
2456                 return IRQ_HANDLED;
2457         }
2458
2459         /*
2460          * Check MPI processor activity.
2461          */
2462         if ((var & STS_PI) &&
2463                 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2464                 /*
2465                  * We've got an async event or mailbox completion.
2466                  * Handle it and clear the source of the interrupt.
2467                  */
2468                 netif_err(qdev, intr, qdev->ndev,
2469                           "Got MPI processor interrupt.\n");
2470                 ql_disable_completion_interrupt(qdev, intr_context->intr);
2471                 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2472                 queue_delayed_work_on(smp_processor_id(),
2473                                 qdev->workqueue, &qdev->mpi_work, 0);
2474                 work_done++;
2475         }
2476
2477         /*
2478          * Get the bit-mask that shows the active queues for this
2479          * pass.  Compare it to the queues that this irq services
2480          * and call napi if there's a match.
2481          */
2482         var = ql_read32(qdev, ISR1);
2483         if (var & intr_context->irq_mask) {
2484                 netif_info(qdev, intr, qdev->ndev,
2485                            "Waking handler for rx_ring[0].\n");
2486                 ql_disable_completion_interrupt(qdev, intr_context->intr);
2487                 napi_schedule(&rx_ring->napi);
2488                 work_done++;
2489         }
2490         ql_enable_completion_interrupt(qdev, intr_context->intr);
2491         return work_done ? IRQ_HANDLED : IRQ_NONE;
2492 }
2493
2494 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2495 {
2496
2497         if (skb_is_gso(skb)) {
2498                 int err;
2499                 if (skb_header_cloned(skb)) {
2500                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2501                         if (err)
2502                                 return err;
2503                 }
2504
2505                 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2506                 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2507                 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2508                 mac_iocb_ptr->total_hdrs_len =
2509                     cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2510                 mac_iocb_ptr->net_trans_offset =
2511                     cpu_to_le16(skb_network_offset(skb) |
2512                                 skb_transport_offset(skb)
2513                                 << OB_MAC_TRANSPORT_HDR_SHIFT);
2514                 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2515                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2516                 if (likely(skb->protocol == htons(ETH_P_IP))) {
2517                         struct iphdr *iph = ip_hdr(skb);
2518                         iph->check = 0;
2519                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2520                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2521                                                                  iph->daddr, 0,
2522                                                                  IPPROTO_TCP,
2523                                                                  0);
2524                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2525                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2526                         tcp_hdr(skb)->check =
2527                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2528                                              &ipv6_hdr(skb)->daddr,
2529                                              0, IPPROTO_TCP, 0);
2530                 }
2531                 return 1;
2532         }
2533         return 0;
2534 }
2535
2536 static void ql_hw_csum_setup(struct sk_buff *skb,
2537                              struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2538 {
2539         int len;
2540         struct iphdr *iph = ip_hdr(skb);
2541         __sum16 *check;
2542         mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2543         mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2544         mac_iocb_ptr->net_trans_offset =
2545                 cpu_to_le16(skb_network_offset(skb) |
2546                 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2547
2548         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2549         len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2550         if (likely(iph->protocol == IPPROTO_TCP)) {
2551                 check = &(tcp_hdr(skb)->check);
2552                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2553                 mac_iocb_ptr->total_hdrs_len =
2554                     cpu_to_le16(skb_transport_offset(skb) +
2555                                 (tcp_hdr(skb)->doff << 2));
2556         } else {
2557                 check = &(udp_hdr(skb)->check);
2558                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2559                 mac_iocb_ptr->total_hdrs_len =
2560                     cpu_to_le16(skb_transport_offset(skb) +
2561                                 sizeof(struct udphdr));
2562         }
2563         *check = ~csum_tcpudp_magic(iph->saddr,
2564                                     iph->daddr, len, iph->protocol, 0);
2565 }
2566
2567 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2568 {
2569         struct tx_ring_desc *tx_ring_desc;
2570         struct ob_mac_iocb_req *mac_iocb_ptr;
2571         struct ql_adapter *qdev = netdev_priv(ndev);
2572         int tso;
2573         struct tx_ring *tx_ring;
2574         u32 tx_ring_idx = (u32) skb->queue_mapping;
2575
2576         tx_ring = &qdev->tx_ring[tx_ring_idx];
2577
2578         if (skb_padto(skb, ETH_ZLEN))
2579                 return NETDEV_TX_OK;
2580
2581         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2582                 netif_info(qdev, tx_queued, qdev->ndev,
2583                            "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
2584                            __func__, tx_ring_idx);
2585                 netif_stop_subqueue(ndev, tx_ring->wq_id);
2586                 tx_ring->tx_errors++;
2587                 return NETDEV_TX_BUSY;
2588         }
2589         tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2590         mac_iocb_ptr = tx_ring_desc->queue_entry;
2591         memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2592
2593         mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2594         mac_iocb_ptr->tid = tx_ring_desc->index;
2595         /* We use the upper 32-bits to store the tx queue for this IO.
2596          * When we get the completion we can use it to establish the context.
2597          */
2598         mac_iocb_ptr->txq_idx = tx_ring_idx;
2599         tx_ring_desc->skb = skb;
2600
2601         mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2602
2603         if (vlan_tx_tag_present(skb)) {
2604                 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2605                              "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
2606                 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2607                 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2608         }
2609         tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2610         if (tso < 0) {
2611                 dev_kfree_skb_any(skb);
2612                 return NETDEV_TX_OK;
2613         } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2614                 ql_hw_csum_setup(skb,
2615                                  (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2616         }
2617         if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2618                         NETDEV_TX_OK) {
2619                 netif_err(qdev, tx_queued, qdev->ndev,
2620                           "Could not map the segments.\n");
2621                 tx_ring->tx_errors++;
2622                 return NETDEV_TX_BUSY;
2623         }
2624         QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2625         tx_ring->prod_idx++;
2626         if (tx_ring->prod_idx == tx_ring->wq_len)
2627                 tx_ring->prod_idx = 0;
2628         wmb();
2629
2630         ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2631         netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2632                      "tx queued, slot %d, len %d\n",
2633                      tx_ring->prod_idx, skb->len);
2634
2635         atomic_dec(&tx_ring->tx_count);
2636
2637         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2638                 netif_stop_subqueue(ndev, tx_ring->wq_id);
2639                 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2640                         /*
2641                          * The queue got stopped because the tx_ring was full.
2642                          * Wake it up, because it's now at least 25% empty.
2643                          */
2644                         netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2645         }
2646         return NETDEV_TX_OK;
2647 }
2648
2649
2650 static void ql_free_shadow_space(struct ql_adapter *qdev)
2651 {
2652         if (qdev->rx_ring_shadow_reg_area) {
2653                 pci_free_consistent(qdev->pdev,
2654                                     PAGE_SIZE,
2655                                     qdev->rx_ring_shadow_reg_area,
2656                                     qdev->rx_ring_shadow_reg_dma);
2657                 qdev->rx_ring_shadow_reg_area = NULL;
2658         }
2659         if (qdev->tx_ring_shadow_reg_area) {
2660                 pci_free_consistent(qdev->pdev,
2661                                     PAGE_SIZE,
2662                                     qdev->tx_ring_shadow_reg_area,
2663                                     qdev->tx_ring_shadow_reg_dma);
2664                 qdev->tx_ring_shadow_reg_area = NULL;
2665         }
2666 }
2667
2668 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2669 {
2670         qdev->rx_ring_shadow_reg_area =
2671             pci_alloc_consistent(qdev->pdev,
2672                                  PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2673         if (qdev->rx_ring_shadow_reg_area == NULL) {
2674                 netif_err(qdev, ifup, qdev->ndev,
2675                           "Allocation of RX shadow space failed.\n");
2676                 return -ENOMEM;
2677         }
2678         memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
2679         qdev->tx_ring_shadow_reg_area =
2680             pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2681                                  &qdev->tx_ring_shadow_reg_dma);
2682         if (qdev->tx_ring_shadow_reg_area == NULL) {
2683                 netif_err(qdev, ifup, qdev->ndev,
2684                           "Allocation of TX shadow space failed.\n");
2685                 goto err_wqp_sh_area;
2686         }
2687         memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
2688         return 0;
2689
2690 err_wqp_sh_area:
2691         pci_free_consistent(qdev->pdev,
2692                             PAGE_SIZE,
2693                             qdev->rx_ring_shadow_reg_area,
2694                             qdev->rx_ring_shadow_reg_dma);
2695         return -ENOMEM;
2696 }
2697
2698 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2699 {
2700         struct tx_ring_desc *tx_ring_desc;
2701         int i;
2702         struct ob_mac_iocb_req *mac_iocb_ptr;
2703
2704         mac_iocb_ptr = tx_ring->wq_base;
2705         tx_ring_desc = tx_ring->q;
2706         for (i = 0; i < tx_ring->wq_len; i++) {
2707                 tx_ring_desc->index = i;
2708                 tx_ring_desc->skb = NULL;
2709                 tx_ring_desc->queue_entry = mac_iocb_ptr;
2710                 mac_iocb_ptr++;
2711                 tx_ring_desc++;
2712         }
2713         atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2714 }
2715
2716 static void ql_free_tx_resources(struct ql_adapter *qdev,
2717                                  struct tx_ring *tx_ring)
2718 {
2719         if (tx_ring->wq_base) {
2720                 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2721                                     tx_ring->wq_base, tx_ring->wq_base_dma);
2722                 tx_ring->wq_base = NULL;
2723         }
2724         kfree(tx_ring->q);
2725         tx_ring->q = NULL;
2726 }
2727
2728 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2729                                  struct tx_ring *tx_ring)
2730 {
2731         tx_ring->wq_base =
2732             pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2733                                  &tx_ring->wq_base_dma);
2734
2735         if ((tx_ring->wq_base == NULL) ||
2736             tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2737                 goto pci_alloc_err;
2738
2739         tx_ring->q =
2740             kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2741         if (tx_ring->q == NULL)
2742                 goto err;
2743
2744         return 0;
2745 err:
2746         pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2747                             tx_ring->wq_base, tx_ring->wq_base_dma);
2748         tx_ring->wq_base = NULL;
2749 pci_alloc_err:
2750         netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2751         return -ENOMEM;
2752 }
2753
2754 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2755 {
2756         struct bq_desc *lbq_desc;
2757
2758         uint32_t  curr_idx, clean_idx;
2759
2760         curr_idx = rx_ring->lbq_curr_idx;
2761         clean_idx = rx_ring->lbq_clean_idx;
2762         while (curr_idx != clean_idx) {
2763                 lbq_desc = &rx_ring->lbq[curr_idx];
2764
2765                 if (lbq_desc->p.pg_chunk.last_flag) {
2766                         pci_unmap_page(qdev->pdev,
2767                                 lbq_desc->p.pg_chunk.map,
2768                                 ql_lbq_block_size(qdev),
2769                                        PCI_DMA_FROMDEVICE);
2770                         lbq_desc->p.pg_chunk.last_flag = 0;
2771                 }
2772
2773                 put_page(lbq_desc->p.pg_chunk.page);
2774                 lbq_desc->p.pg_chunk.page = NULL;
2775
2776                 if (++curr_idx == rx_ring->lbq_len)
2777                         curr_idx = 0;
2778
2779         }
2780 }
2781
2782 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2783 {
2784         int i;
2785         struct bq_desc *sbq_desc;
2786
2787         for (i = 0; i < rx_ring->sbq_len; i++) {
2788                 sbq_desc = &rx_ring->sbq[i];
2789                 if (sbq_desc == NULL) {
2790                         netif_err(qdev, ifup, qdev->ndev,
2791                                   "sbq_desc %d is NULL.\n", i);
2792                         return;
2793                 }
2794                 if (sbq_desc->p.skb) {
2795                         pci_unmap_single(qdev->pdev,
2796                                          dma_unmap_addr(sbq_desc, mapaddr),
2797                                          dma_unmap_len(sbq_desc, maplen),
2798                                          PCI_DMA_FROMDEVICE);
2799                         dev_kfree_skb(sbq_desc->p.skb);
2800                         sbq_desc->p.skb = NULL;
2801                 }
2802         }
2803 }
2804
2805 /* Free all large and small rx buffers associated
2806  * with the completion queues for this device.
2807  */
2808 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2809 {
2810         int i;
2811         struct rx_ring *rx_ring;
2812
2813         for (i = 0; i < qdev->rx_ring_count; i++) {
2814                 rx_ring = &qdev->rx_ring[i];
2815                 if (rx_ring->lbq)
2816                         ql_free_lbq_buffers(qdev, rx_ring);
2817                 if (rx_ring->sbq)
2818                         ql_free_sbq_buffers(qdev, rx_ring);
2819         }
2820 }
2821
2822 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2823 {
2824         struct rx_ring *rx_ring;
2825         int i;
2826
2827         for (i = 0; i < qdev->rx_ring_count; i++) {
2828                 rx_ring = &qdev->rx_ring[i];
2829                 if (rx_ring->type != TX_Q)
2830                         ql_update_buffer_queues(qdev, rx_ring);
2831         }
2832 }
2833
2834 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2835                                 struct rx_ring *rx_ring)
2836 {
2837         int i;
2838         struct bq_desc *lbq_desc;
2839         __le64 *bq = rx_ring->lbq_base;
2840
2841         memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2842         for (i = 0; i < rx_ring->lbq_len; i++) {
2843                 lbq_desc = &rx_ring->lbq[i];
2844                 memset(lbq_desc, 0, sizeof(*lbq_desc));
2845                 lbq_desc->index = i;
2846                 lbq_desc->addr = bq;
2847                 bq++;
2848         }
2849 }
2850
2851 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2852                                 struct rx_ring *rx_ring)
2853 {
2854         int i;
2855         struct bq_desc *sbq_desc;
2856         __le64 *bq = rx_ring->sbq_base;
2857
2858         memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2859         for (i = 0; i < rx_ring->sbq_len; i++) {
2860                 sbq_desc = &rx_ring->sbq[i];
2861                 memset(sbq_desc, 0, sizeof(*sbq_desc));
2862                 sbq_desc->index = i;
2863                 sbq_desc->addr = bq;
2864                 bq++;
2865         }
2866 }
2867
2868 static void ql_free_rx_resources(struct ql_adapter *qdev,
2869                                  struct rx_ring *rx_ring)
2870 {
2871         /* Free the small buffer queue. */
2872         if (rx_ring->sbq_base) {
2873                 pci_free_consistent(qdev->pdev,
2874                                     rx_ring->sbq_size,
2875                                     rx_ring->sbq_base, rx_ring->sbq_base_dma);
2876                 rx_ring->sbq_base = NULL;
2877         }
2878
2879         /* Free the small buffer queue control blocks. */
2880         kfree(rx_ring->sbq);
2881         rx_ring->sbq = NULL;
2882
2883         /* Free the large buffer queue. */
2884         if (rx_ring->lbq_base) {
2885                 pci_free_consistent(qdev->pdev,
2886                                     rx_ring->lbq_size,
2887                                     rx_ring->lbq_base, rx_ring->lbq_base_dma);
2888                 rx_ring->lbq_base = NULL;
2889         }
2890
2891         /* Free the large buffer queue control blocks. */
2892         kfree(rx_ring->lbq);
2893         rx_ring->lbq = NULL;
2894
2895         /* Free the rx queue. */
2896         if (rx_ring->cq_base) {
2897                 pci_free_consistent(qdev->pdev,
2898                                     rx_ring->cq_size,
2899                                     rx_ring->cq_base, rx_ring->cq_base_dma);
2900                 rx_ring->cq_base = NULL;
2901         }
2902 }
2903
2904 /* Allocate queues and buffers for this completions queue based
2905  * on the values in the parameter structure. */
2906 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2907                                  struct rx_ring *rx_ring)
2908 {
2909
2910         /*
2911          * Allocate the completion queue for this rx_ring.
2912          */
2913         rx_ring->cq_base =
2914             pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2915                                  &rx_ring->cq_base_dma);
2916
2917         if (rx_ring->cq_base == NULL) {
2918                 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
2919                 return -ENOMEM;
2920         }
2921
2922         if (rx_ring->sbq_len) {
2923                 /*
2924                  * Allocate small buffer queue.
2925                  */
2926                 rx_ring->sbq_base =
2927                     pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2928                                          &rx_ring->sbq_base_dma);
2929
2930                 if (rx_ring->sbq_base == NULL) {
2931                         netif_err(qdev, ifup, qdev->ndev,
2932                                   "Small buffer queue allocation failed.\n");
2933                         goto err_mem;
2934                 }
2935
2936                 /*
2937                  * Allocate small buffer queue control blocks.
2938                  */
2939                 rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
2940                                              sizeof(struct bq_desc),
2941                                              GFP_KERNEL);
2942                 if (rx_ring->sbq == NULL)
2943                         goto err_mem;
2944
2945                 ql_init_sbq_ring(qdev, rx_ring);
2946         }
2947
2948         if (rx_ring->lbq_len) {
2949                 /*
2950                  * Allocate large buffer queue.
2951                  */
2952                 rx_ring->lbq_base =
2953                     pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2954                                          &rx_ring->lbq_base_dma);
2955
2956                 if (rx_ring->lbq_base == NULL) {
2957                         netif_err(qdev, ifup, qdev->ndev,
2958                                   "Large buffer queue allocation failed.\n");
2959                         goto err_mem;
2960                 }
2961                 /*
2962                  * Allocate large buffer queue control blocks.
2963                  */
2964                 rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
2965                                              sizeof(struct bq_desc),
2966                                              GFP_KERNEL);
2967                 if (rx_ring->lbq == NULL)
2968                         goto err_mem;
2969
2970                 ql_init_lbq_ring(qdev, rx_ring);
2971         }
2972
2973         return 0;
2974
2975 err_mem:
2976         ql_free_rx_resources(qdev, rx_ring);
2977         return -ENOMEM;
2978 }
2979
2980 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2981 {
2982         struct tx_ring *tx_ring;
2983         struct tx_ring_desc *tx_ring_desc;
2984         int i, j;
2985
2986         /*
2987          * Loop through all queues and free
2988          * any resources.
2989          */
2990         for (j = 0; j < qdev->tx_ring_count; j++) {
2991                 tx_ring = &qdev->tx_ring[j];
2992                 for (i = 0; i < tx_ring->wq_len; i++) {
2993                         tx_ring_desc = &tx_ring->q[i];
2994                         if (tx_ring_desc && tx_ring_desc->skb) {
2995                                 netif_err(qdev, ifdown, qdev->ndev,
2996                                           "Freeing lost SKB %p, from queue %d, index %d.\n",
2997                                           tx_ring_desc->skb, j,
2998                                           tx_ring_desc->index);
2999                                 ql_unmap_send(qdev, tx_ring_desc,
3000                                               tx_ring_desc->map_cnt);
3001                                 dev_kfree_skb(tx_ring_desc->skb);
3002                                 tx_ring_desc->skb = NULL;
3003                         }
3004                 }
3005         }
3006 }
3007
3008 static void ql_free_mem_resources(struct ql_adapter *qdev)
3009 {
3010         int i;
3011
3012         for (i = 0; i < qdev->tx_ring_count; i++)
3013                 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
3014         for (i = 0; i < qdev->rx_ring_count; i++)
3015                 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3016         ql_free_shadow_space(qdev);
3017 }
3018
3019 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3020 {
3021         int i;
3022
3023         /* Allocate space for our shadow registers and such. */
3024         if (ql_alloc_shadow_space(qdev))
3025                 return -ENOMEM;
3026
3027         for (i = 0; i < qdev->rx_ring_count; i++) {
3028                 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
3029                         netif_err(qdev, ifup, qdev->ndev,
3030                                   "RX resource allocation failed.\n");
3031                         goto err_mem;
3032                 }
3033         }
3034         /* Allocate tx queue resources */
3035         for (i = 0; i < qdev->tx_ring_count; i++) {
3036                 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
3037                         netif_err(qdev, ifup, qdev->ndev,
3038                                   "TX resource allocation failed.\n");
3039                         goto err_mem;
3040                 }
3041         }
3042         return 0;
3043
3044 err_mem:
3045         ql_free_mem_resources(qdev);
3046         return -ENOMEM;
3047 }
3048
3049 /* Set up the rx ring control block and pass it to the chip.
3050  * The control block is defined as
3051  * "Completion Queue Initialization Control Block", or cqicb.
3052  */
3053 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3054 {
3055         struct cqicb *cqicb = &rx_ring->cqicb;
3056         void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3057                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3058         u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3059                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3060         void __iomem *doorbell_area =
3061             qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3062         int err = 0;
3063         u16 bq_len;
3064         u64 tmp;
3065         __le64 *base_indirect_ptr;
3066         int page_entries;
3067
3068         /* Set up the shadow registers for this ring. */
3069         rx_ring->prod_idx_sh_reg = shadow_reg;
3070         rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3071         *rx_ring->prod_idx_sh_reg = 0;
3072         shadow_reg += sizeof(u64);
3073         shadow_reg_dma += sizeof(u64);
3074         rx_ring->lbq_base_indirect = shadow_reg;
3075         rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3076         shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3077         shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3078         rx_ring->sbq_base_indirect = shadow_reg;
3079         rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3080
3081         /* PCI doorbell mem area + 0x00 for consumer index register */
3082         rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3083         rx_ring->cnsmr_idx = 0;
3084         rx_ring->curr_entry = rx_ring->cq_base;
3085
3086         /* PCI doorbell mem area + 0x04 for valid register */
3087         rx_ring->valid_db_reg = doorbell_area + 0x04;
3088
3089         /* PCI doorbell mem area + 0x18 for large buffer consumer */
3090         rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3091
3092         /* PCI doorbell mem area + 0x1c */
3093         rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3094
3095         memset((void *)cqicb, 0, sizeof(struct cqicb));
3096         cqicb->msix_vect = rx_ring->irq;
3097
3098         bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3099         cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3100
3101         cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3102
3103         cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3104
3105         /*
3106          * Set up the control block load flags.
3107          */
3108         cqicb->flags = FLAGS_LC |       /* Load queue base address */
3109             FLAGS_LV |          /* Load MSI-X vector */
3110             FLAGS_LI;           /* Load irq delay values */
3111         if (rx_ring->lbq_len) {
3112                 cqicb->flags |= FLAGS_LL;       /* Load lbq values */
3113                 tmp = (u64)rx_ring->lbq_base_dma;
3114                 base_indirect_ptr = rx_ring->lbq_base_indirect;
3115                 page_entries = 0;
3116                 do {
3117                         *base_indirect_ptr = cpu_to_le64(tmp);
3118                         tmp += DB_PAGE_SIZE;
3119                         base_indirect_ptr++;
3120                         page_entries++;
3121                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3122                 cqicb->lbq_addr =
3123                     cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3124                 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3125                         (u16) rx_ring->lbq_buf_size;
3126                 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3127                 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3128                         (u16) rx_ring->lbq_len;
3129                 cqicb->lbq_len = cpu_to_le16(bq_len);
3130                 rx_ring->lbq_prod_idx = 0;
3131                 rx_ring->lbq_curr_idx = 0;
3132                 rx_ring->lbq_clean_idx = 0;
3133                 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3134         }
3135         if (rx_ring->sbq_len) {
3136                 cqicb->flags |= FLAGS_LS;       /* Load sbq values */
3137                 tmp = (u64)rx_ring->sbq_base_dma;
3138                 base_indirect_ptr = rx_ring->sbq_base_indirect;
3139                 page_entries = 0;
3140                 do {
3141                         *base_indirect_ptr = cpu_to_le64(tmp);
3142                         tmp += DB_PAGE_SIZE;
3143                         base_indirect_ptr++;
3144                         page_entries++;
3145                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3146                 cqicb->sbq_addr =
3147                     cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3148                 cqicb->sbq_buf_size =
3149                     cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3150                 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3151                         (u16) rx_ring->sbq_len;
3152                 cqicb->sbq_len = cpu_to_le16(bq_len);
3153                 rx_ring->sbq_prod_idx = 0;
3154                 rx_ring->sbq_curr_idx = 0;
3155                 rx_ring->sbq_clean_idx = 0;
3156                 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3157         }
3158         switch (rx_ring->type) {
3159         case TX_Q:
3160                 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3161                 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3162                 break;
3163         case RX_Q:
3164                 /* Inbound completion handling rx_rings run in
3165                  * separate NAPI contexts.
3166                  */
3167                 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3168                                64);
3169                 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3170                 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3171                 break;
3172         default:
3173                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3174                              "Invalid rx_ring->type = %d.\n", rx_ring->type);
3175         }
3176         err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3177                            CFG_LCQ, rx_ring->cq_id);
3178         if (err) {
3179                 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3180                 return err;
3181         }
3182         return err;
3183 }
3184
3185 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3186 {
3187         struct wqicb *wqicb = (struct wqicb *)tx_ring;
3188         void __iomem *doorbell_area =
3189             qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3190         void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3191             (tx_ring->wq_id * sizeof(u64));
3192         u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3193             (tx_ring->wq_id * sizeof(u64));
3194         int err = 0;
3195
3196         /*
3197          * Assign doorbell registers for this tx_ring.
3198          */
3199         /* TX PCI doorbell mem area for tx producer index */
3200         tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3201         tx_ring->prod_idx = 0;
3202         /* TX PCI doorbell mem area + 0x04 */
3203         tx_ring->valid_db_reg = doorbell_area + 0x04;
3204
3205         /*
3206          * Assign shadow registers for this tx_ring.
3207          */
3208         tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3209         tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3210
3211         wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3212         wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3213                                    Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3214         wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3215         wqicb->rid = 0;
3216         wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3217
3218         wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3219
3220         ql_init_tx_ring(qdev, tx_ring);
3221
3222         err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3223                            (u16) tx_ring->wq_id);
3224         if (err) {
3225                 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3226                 return err;
3227         }
3228         return err;
3229 }
3230
3231 static void ql_disable_msix(struct ql_adapter *qdev)
3232 {
3233         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3234                 pci_disable_msix(qdev->pdev);
3235                 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3236                 kfree(qdev->msi_x_entry);
3237                 qdev->msi_x_entry = NULL;
3238         } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3239                 pci_disable_msi(qdev->pdev);
3240                 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3241         }
3242 }
3243
3244 /* We start by trying to get the number of vectors
3245  * stored in qdev->intr_count. If we don't get that
3246  * many then we reduce the count and try again.
3247  */
3248 static void ql_enable_msix(struct ql_adapter *qdev)
3249 {
3250         int i, err;
3251
3252         /* Get the MSIX vectors. */
3253         if (qlge_irq_type == MSIX_IRQ) {
3254                 /* Try to alloc space for the msix struct,
3255                  * if it fails then go to MSI/legacy.
3256                  */
3257                 qdev->msi_x_entry = kcalloc(qdev->intr_count,
3258                                             sizeof(struct msix_entry),
3259                                             GFP_KERNEL);
3260                 if (!qdev->msi_x_entry) {
3261                         qlge_irq_type = MSI_IRQ;
3262                         goto msi;
3263                 }
3264
3265                 for (i = 0; i < qdev->intr_count; i++)
3266                         qdev->msi_x_entry[i].entry = i;
3267
3268                 /* Loop to get our vectors.  We start with
3269                  * what we want and settle for what we get.
3270                  */
3271                 do {
3272                         err = pci_enable_msix(qdev->pdev,
3273                                 qdev->msi_x_entry, qdev->intr_count);
3274                         if (err > 0)
3275                                 qdev->intr_count = err;
3276                 } while (err > 0);
3277
3278                 if (err < 0) {
3279                         kfree(qdev->msi_x_entry);
3280                         qdev->msi_x_entry = NULL;
3281                         netif_warn(qdev, ifup, qdev->ndev,
3282                                    "MSI-X Enable failed, trying MSI.\n");
3283                         qdev->intr_count = 1;
3284                         qlge_irq_type = MSI_IRQ;
3285                 } else if (err == 0) {
3286                         set_bit(QL_MSIX_ENABLED, &qdev->flags);
3287                         netif_info(qdev, ifup, qdev->ndev,
3288                                    "MSI-X Enabled, got %d vectors.\n",
3289                                    qdev->intr_count);
3290                         return;
3291                 }
3292         }
3293 msi:
3294         qdev->intr_count = 1;
3295         if (qlge_irq_type == MSI_IRQ) {
3296                 if (!pci_enable_msi(qdev->pdev)) {
3297                         set_bit(QL_MSI_ENABLED, &qdev->flags);
3298                         netif_info(qdev, ifup, qdev->ndev,
3299                                    "Running with MSI interrupts.\n");
3300                         return;
3301                 }
3302         }
3303         qlge_irq_type = LEG_IRQ;
3304         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3305                      "Running with legacy interrupts.\n");
3306 }
3307
3308 /* Each vector services 1 RSS ring and and 1 or more
3309  * TX completion rings.  This function loops through
3310  * the TX completion rings and assigns the vector that
3311  * will service it.  An example would be if there are
3312  * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3313  * This would mean that vector 0 would service RSS ring 0
3314  * and TX completion rings 0,1,2 and 3.  Vector 1 would
3315  * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3316  */
3317 static void ql_set_tx_vect(struct ql_adapter *qdev)
3318 {
3319         int i, j, vect;
3320         u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3321
3322         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3323                 /* Assign irq vectors to TX rx_rings.*/
3324                 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3325                                          i < qdev->rx_ring_count; i++) {
3326                         if (j == tx_rings_per_vector) {
3327                                 vect++;
3328                                 j = 0;
3329                         }
3330                         qdev->rx_ring[i].irq = vect;
3331                         j++;
3332                 }
3333         } else {
3334                 /* For single vector all rings have an irq
3335                  * of zero.
3336                  */
3337                 for (i = 0; i < qdev->rx_ring_count; i++)
3338                         qdev->rx_ring[i].irq = 0;
3339         }
3340 }
3341
3342 /* Set the interrupt mask for this vector.  Each vector
3343  * will service 1 RSS ring and 1 or more TX completion
3344  * rings.  This function sets up a bit mask per vector
3345  * that indicates which rings it services.
3346  */
3347 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3348 {
3349         int j, vect = ctx->intr;
3350         u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3351
3352         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3353                 /* Add the RSS ring serviced by this vector
3354                  * to the mask.
3355                  */
3356                 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3357                 /* Add the TX ring(s) serviced by this vector
3358                  * to the mask. */
3359                 for (j = 0; j < tx_rings_per_vector; j++) {
3360                         ctx->irq_mask |=
3361                         (1 << qdev->rx_ring[qdev->rss_ring_count +
3362                         (vect * tx_rings_per_vector) + j].cq_id);
3363                 }
3364         } else {
3365                 /* For single vector we just shift each queue's
3366                  * ID into the mask.
3367                  */
3368                 for (j = 0; j < qdev->rx_ring_count; j++)
3369                         ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3370         }
3371 }
3372
3373 /*
3374  * Here we build the intr_context structures based on
3375  * our rx_ring count and intr vector count.
3376  * The intr_context structure is used to hook each vector
3377  * to possibly different handlers.
3378  */
3379 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3380 {
3381         int i = 0;
3382         struct intr_context *intr_context = &qdev->intr_context[0];
3383
3384         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3385                 /* Each rx_ring has it's
3386                  * own intr_context since we have separate
3387                  * vectors for each queue.
3388                  */
3389                 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3390                         qdev->rx_ring[i].irq = i;
3391                         intr_context->intr = i;
3392                         intr_context->qdev = qdev;
3393                         /* Set up this vector's bit-mask that indicates
3394                          * which queues it services.
3395                          */
3396                         ql_set_irq_mask(qdev, intr_context);
3397                         /*
3398                          * We set up each vectors enable/disable/read bits so
3399                          * there's no bit/mask calculations in the critical path.
3400                          */
3401                         intr_context->intr_en_mask =
3402                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3403                             INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3404                             | i;
3405                         intr_context->intr_dis_mask =
3406                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3407                             INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3408                             INTR_EN_IHD | i;
3409                         intr_context->intr_read_mask =
3410                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3411                             INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3412                             i;
3413                         if (i == 0) {
3414                                 /* The first vector/queue handles
3415                                  * broadcast/multicast, fatal errors,
3416                                  * and firmware events.  This in addition
3417                                  * to normal inbound NAPI processing.
3418                                  */
3419                                 intr_context->handler = qlge_isr;
3420                                 sprintf(intr_context->name, "%s-rx-%d",
3421                                         qdev->ndev->name, i);
3422                         } else {
3423                                 /*
3424                                  * Inbound queues handle unicast frames only.
3425                                  */
3426                                 intr_context->handler = qlge_msix_rx_isr;
3427                                 sprintf(intr_context->name, "%s-rx-%d",
3428                                         qdev->ndev->name, i);
3429                         }
3430                 }
3431         } else {
3432                 /*
3433                  * All rx_rings use the same intr_context since
3434                  * there is only one vector.
3435                  */
3436                 intr_context->intr = 0;
3437                 intr_context->qdev = qdev;
3438                 /*
3439                  * We set up each vectors enable/disable/read bits so
3440                  * there's no bit/mask calculations in the critical path.
3441                  */
3442                 intr_context->intr_en_mask =
3443                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3444                 intr_context->intr_dis_mask =
3445                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3446                     INTR_EN_TYPE_DISABLE;
3447                 intr_context->intr_read_mask =
3448                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3449                 /*
3450                  * Single interrupt means one handler for all rings.
3451                  */
3452                 intr_context->handler = qlge_isr;
3453                 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3454                 /* Set up this vector's bit-mask that indicates
3455                  * which queues it services. In this case there is
3456                  * a single vector so it will service all RSS and
3457                  * TX completion rings.
3458                  */
3459                 ql_set_irq_mask(qdev, intr_context);
3460         }
3461         /* Tell the TX completion rings which MSIx vector
3462          * they will be using.
3463          */
3464         ql_set_tx_vect(qdev);
3465 }
3466
3467 static void ql_free_irq(struct ql_adapter *qdev)
3468 {
3469         int i;
3470         struct intr_context *intr_context = &qdev->intr_context[0];
3471
3472         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3473                 if (intr_context->hooked) {
3474                         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3475                                 free_irq(qdev->msi_x_entry[i].vector,
3476                                          &qdev->rx_ring[i]);
3477                         } else {
3478                                 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3479                         }
3480                 }
3481         }
3482         ql_disable_msix(qdev);
3483 }
3484
3485 static int ql_request_irq(struct ql_adapter *qdev)
3486 {
3487         int i;
3488         int status = 0;
3489         struct pci_dev *pdev = qdev->pdev;
3490         struct intr_context *intr_context = &qdev->intr_context[0];
3491
3492         ql_resolve_queues_to_irqs(qdev);
3493
3494         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3495                 atomic_set(&intr_context->irq_cnt, 0);
3496                 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3497                         status = request_irq(qdev->msi_x_entry[i].vector,
3498                                              intr_context->handler,
3499                                              0,
3500                                              intr_context->name,
3501                                              &qdev->rx_ring[i]);
3502                         if (status) {
3503                                 netif_err(qdev, ifup, qdev->ndev,
3504                                           "Failed request for MSIX interrupt %d.\n",
3505                                           i);
3506                                 goto err_irq;
3507                         }
3508                 } else {
3509                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3510                                      "trying msi or legacy interrupts.\n");
3511                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3512                                      "%s: irq = %d.\n", __func__, pdev->irq);
3513                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3514                                      "%s: context->name = %s.\n", __func__,
3515                                      intr_context->name);
3516                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3517                                      "%s: dev_id = 0x%p.\n", __func__,
3518                                      &qdev->rx_ring[0]);
3519                         status =
3520                             request_irq(pdev->irq, qlge_isr,
3521                                         test_bit(QL_MSI_ENABLED,
3522                                                  &qdev->
3523                                                  flags) ? 0 : IRQF_SHARED,
3524                                         intr_context->name, &qdev->rx_ring[0]);
3525                         if (status)
3526                                 goto err_irq;
3527
3528                         netif_err(qdev, ifup, qdev->ndev,
3529                                   "Hooked intr %d, queue type %s, with name %s.\n",
3530                                   i,
3531                                   qdev->rx_ring[0].type == DEFAULT_Q ?
3532                                   "DEFAULT_Q" :
3533                                   qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3534                                   qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3535                                   intr_context->name);
3536                 }
3537                 intr_context->hooked = 1;
3538         }
3539         return status;
3540 err_irq:
3541         netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
3542         ql_free_irq(qdev);
3543         return status;
3544 }
3545
3546 static int ql_start_rss(struct ql_adapter *qdev)
3547 {
3548         static const u8 init_hash_seed[] = {
3549                 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3550                 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3551                 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3552                 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3553                 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3554         };
3555         struct ricb *ricb = &qdev->ricb;
3556         int status = 0;
3557         int i;
3558         u8 *hash_id = (u8 *) ricb->hash_cq_id;
3559
3560         memset((void *)ricb, 0, sizeof(*ricb));
3561
3562         ricb->base_cq = RSS_L4K;
3563         ricb->flags =
3564                 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3565         ricb->mask = cpu_to_le16((u16)(0x3ff));
3566
3567         /*
3568          * Fill out the Indirection Table.
3569          */
3570         for (i = 0; i < 1024; i++)
3571                 hash_id[i] = (i & (qdev->rss_ring_count - 1));
3572
3573         memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3574         memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3575
3576         status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3577         if (status) {
3578                 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3579                 return status;
3580         }
3581         return status;
3582 }
3583
3584 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3585 {
3586         int i, status = 0;
3587
3588         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3589         if (status)
3590                 return status;
3591         /* Clear all the entries in the routing table. */
3592         for (i = 0; i < 16; i++) {
3593                 status = ql_set_routing_reg(qdev, i, 0, 0);
3594                 if (status) {
3595                         netif_err(qdev, ifup, qdev->ndev,
3596                                   "Failed to init routing register for CAM packets.\n");
3597                         break;
3598                 }
3599         }
3600         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3601         return status;
3602 }
3603
3604 /* Initialize the frame-to-queue routing. */
3605 static int ql_route_initialize(struct ql_adapter *qdev)
3606 {
3607         int status = 0;
3608
3609         /* Clear all the entries in the routing table. */
3610         status = ql_clear_routing_entries(qdev);
3611         if (status)
3612                 return status;
3613
3614         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3615         if (status)
3616                 return status;
3617
3618         status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3619                                                 RT_IDX_IP_CSUM_ERR, 1);
3620         if (status) {
3621                 netif_err(qdev, ifup, qdev->ndev,
3622                         "Failed to init routing register "
3623                         "for IP CSUM error packets.\n");
3624                 goto exit;
3625         }
3626         status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3627                                                 RT_IDX_TU_CSUM_ERR, 1);
3628         if (status) {
3629                 netif_err(qdev, ifup, qdev->ndev,
3630                         "Failed to init routing register "
3631                         "for TCP/UDP CSUM error packets.\n");
3632                 goto exit;
3633         }
3634         status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3635         if (status) {
3636                 netif_err(qdev, ifup, qdev->ndev,
3637                           "Failed to init routing register for broadcast packets.\n");
3638                 goto exit;
3639         }
3640         /* If we have more than one inbound queue, then turn on RSS in the
3641          * routing block.
3642          */
3643         if (qdev->rss_ring_count > 1) {
3644                 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3645                                         RT_IDX_RSS_MATCH, 1);
3646                 if (status) {
3647                         netif_err(qdev, ifup, qdev->ndev,
3648                                   "Failed to init routing register for MATCH RSS packets.\n");
3649                         goto exit;
3650                 }
3651         }
3652
3653         status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3654                                     RT_IDX_CAM_HIT, 1);
3655         if (status)
3656                 netif_err(qdev, ifup, qdev->ndev,
3657                           "Failed to init routing register for CAM packets.\n");
3658 exit:
3659         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3660         return status;
3661 }
3662
3663 int ql_cam_route_initialize(struct ql_adapter *qdev)
3664 {
3665         int status, set;
3666
3667         /* If check if the link is up and use to
3668          * determine if we are setting or clearing
3669          * the MAC address in the CAM.
3670          */
3671         set = ql_read32(qdev, STS);
3672         set &= qdev->port_link_up;
3673         status = ql_set_mac_addr(qdev, set);
3674         if (status) {
3675                 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3676                 return status;
3677         }
3678
3679         status = ql_route_initialize(qdev);
3680         if (status)
3681                 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3682
3683         return status;
3684 }
3685
3686 static int ql_adapter_initialize(struct ql_adapter *qdev)
3687 {
3688         u32 value, mask;
3689         int i;
3690         int status = 0;
3691
3692         /*
3693          * Set up the System register to halt on errors.
3694          */
3695         value = SYS_EFE | SYS_FAE;
3696         mask = value << 16;
3697         ql_write32(qdev, SYS, mask | value);
3698
3699         /* Set the default queue, and VLAN behavior. */
3700         value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
3701         mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
3702         ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3703
3704         /* Set the MPI interrupt to enabled. */
3705         ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3706
3707         /* Enable the function, set pagesize, enable error checking. */
3708         value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3709             FSC_EC | FSC_VM_PAGE_4K;
3710         value |= SPLT_SETTING;
3711
3712         /* Set/clear header splitting. */
3713         mask = FSC_VM_PAGESIZE_MASK |
3714             FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3715         ql_write32(qdev, FSC, mask | value);
3716
3717         ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3718
3719         /* Set RX packet routing to use port/pci function on which the
3720          * packet arrived on in addition to usual frame routing.
3721          * This is helpful on bonding where both interfaces can have
3722          * the same MAC address.
3723          */
3724         ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3725         /* Reroute all packets to our Interface.
3726          * They may have been routed to MPI firmware
3727          * due to WOL.
3728          */
3729         value = ql_read32(qdev, MGMT_RCV_CFG);
3730         value &= ~MGMT_RCV_CFG_RM;
3731         mask = 0xffff0000;
3732
3733         /* Sticky reg needs clearing due to WOL. */
3734         ql_write32(qdev, MGMT_RCV_CFG, mask);
3735         ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3736
3737         /* Default WOL is enable on Mezz cards */
3738         if (qdev->pdev->subsystem_device == 0x0068 ||
3739                         qdev->pdev->subsystem_device == 0x0180)
3740                 qdev->wol = WAKE_MAGIC;
3741
3742         /* Start up the rx queues. */
3743         for (i = 0; i < qdev->rx_ring_count; i++) {
3744                 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3745                 if (status) {
3746                         netif_err(qdev, ifup, qdev->ndev,
3747                                   "Failed to start rx ring[%d].\n", i);
3748                         return status;
3749                 }
3750         }
3751
3752         /* If there is more than one inbound completion queue
3753          * then download a RICB to configure RSS.
3754          */
3755         if (qdev->rss_ring_count > 1) {
3756                 status = ql_start_rss(qdev);
3757                 if (status) {
3758                         netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3759                         return status;
3760                 }
3761         }
3762
3763         /* Start up the tx queues. */
3764         for (i = 0; i < qdev->tx_ring_count; i++) {
3765                 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3766                 if (status) {
3767                         netif_err(qdev, ifup, qdev->ndev,
3768                                   "Failed to start tx ring[%d].\n", i);
3769                         return status;
3770                 }
3771         }
3772
3773         /* Initialize the port and set the max framesize. */
3774         status = qdev->nic_ops->port_initialize(qdev);
3775         if (status)
3776                 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3777
3778         /* Set up the MAC address and frame routing filter. */
3779         status = ql_cam_route_initialize(qdev);
3780         if (status) {
3781                 netif_err(qdev, ifup, qdev->ndev,
3782                           "Failed to init CAM/Routing tables.\n");
3783                 return status;
3784         }
3785
3786         /* Start NAPI for the RSS queues. */
3787         for (i = 0; i < qdev->rss_ring_count; i++)
3788                 napi_enable(&qdev->rx_ring[i].napi);
3789
3790         return status;
3791 }
3792
3793 /* Issue soft reset to chip. */
3794 static int ql_adapter_reset(struct ql_adapter *qdev)
3795 {
3796         u32 value;
3797         int status = 0;
3798         unsigned long end_jiffies;
3799
3800         /* Clear all the entries in the routing table. */
3801         status = ql_clear_routing_entries(qdev);
3802         if (status) {
3803                 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3804                 return status;
3805         }
3806
3807         end_jiffies = jiffies +
3808                 max((unsigned long)1, usecs_to_jiffies(30));
3809
3810         /* Check if bit is set then skip the mailbox command and
3811          * clear the bit, else we are in normal reset process.
3812          */
3813         if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3814                 /* Stop management traffic. */
3815                 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3816
3817                 /* Wait for the NIC and MGMNT FIFOs to empty. */
3818                 ql_wait_fifo_empty(qdev);
3819         } else
3820                 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
3821
3822         ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3823
3824         do {
3825                 value = ql_read32(qdev, RST_FO);
3826                 if ((value & RST_FO_FR) == 0)
3827                         break;
3828                 cpu_relax();
3829         } while (time_before(jiffies, end_jiffies));
3830
3831         if (value & RST_FO_FR) {
3832                 netif_err(qdev, ifdown, qdev->ndev,
3833                           "ETIMEDOUT!!! errored out of resetting the chip!\n");
3834                 status = -ETIMEDOUT;
3835         }
3836
3837         /* Resume management traffic. */
3838         ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3839         return status;
3840 }
3841
3842 static void ql_display_dev_info(struct net_device *ndev)
3843 {
3844         struct ql_adapter *qdev = netdev_priv(ndev);
3845
3846         netif_info(qdev, probe, qdev->ndev,
3847                    "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3848                    "XG Roll = %d, XG Rev = %d.\n",
3849                    qdev->func,
3850                    qdev->port,
3851                    qdev->chip_rev_id & 0x0000000f,
3852                    qdev->chip_rev_id >> 4 & 0x0000000f,
3853                    qdev->chip_rev_id >> 8 & 0x0000000f,
3854                    qdev->chip_rev_id >> 12 & 0x0000000f);
3855         netif_info(qdev, probe, qdev->ndev,
3856                    "MAC address %pM\n", ndev->dev_addr);
3857 }
3858
3859 static int ql_wol(struct ql_adapter *qdev)
3860 {
3861         int status = 0;
3862         u32 wol = MB_WOL_DISABLE;
3863
3864         /* The CAM is still intact after a reset, but if we
3865          * are doing WOL, then we may need to program the
3866          * routing regs. We would also need to issue the mailbox
3867          * commands to instruct the MPI what to do per the ethtool
3868          * settings.
3869          */
3870
3871         if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3872                         WAKE_MCAST | WAKE_BCAST)) {
3873                 netif_err(qdev, ifdown, qdev->ndev,
3874                           "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
3875                           qdev->wol);
3876                 return -EINVAL;
3877         }
3878
3879         if (qdev->wol & WAKE_MAGIC) {
3880                 status = ql_mb_wol_set_magic(qdev, 1);
3881                 if (status) {
3882                         netif_err(qdev, ifdown, qdev->ndev,
3883                                   "Failed to set magic packet on %s.\n",
3884                                   qdev->ndev->name);
3885                         return status;
3886                 } else
3887                         netif_info(qdev, drv, qdev->ndev,
3888                                    "Enabled magic packet successfully on %s.\n",
3889                                    qdev->ndev->name);
3890
3891                 wol |= MB_WOL_MAGIC_PKT;
3892         }
3893
3894         if (qdev->wol) {
3895                 wol |= MB_WOL_MODE_ON;
3896                 status = ql_mb_wol_mode(qdev, wol);
3897                 netif_err(qdev, drv, qdev->ndev,
3898                           "WOL %s (wol code 0x%x) on %s\n",
3899                           (status == 0) ? "Successfully set" : "Failed",
3900                           wol, qdev->ndev->name);
3901         }
3902
3903         return status;
3904 }
3905
3906 static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
3907 {
3908
3909         /* Don't kill the reset worker thread if we
3910          * are in the process of recovery.
3911          */
3912         if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3913                 cancel_delayed_work_sync(&qdev->asic_reset_work);
3914         cancel_delayed_work_sync(&qdev->mpi_reset_work);
3915         cancel_delayed_work_sync(&qdev->mpi_work);
3916         cancel_delayed_work_sync(&qdev->mpi_idc_work);
3917         cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3918         cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3919 }
3920
3921 static int ql_adapter_down(struct ql_adapter *qdev)
3922 {
3923         int i, status = 0;
3924
3925         ql_link_off(qdev);
3926
3927         ql_cancel_all_work_sync(qdev);
3928
3929         for (i = 0; i < qdev->rss_ring_count; i++)
3930                 napi_disable(&qdev->rx_ring[i].napi);
3931
3932         clear_bit(QL_ADAPTER_UP, &qdev->flags);
3933
3934         ql_disable_interrupts(qdev);
3935
3936         ql_tx_ring_clean(qdev);
3937
3938         /* Call netif_napi_del() from common point.
3939          */
3940         for (i = 0; i < qdev->rss_ring_count; i++)
3941                 netif_napi_del(&qdev->rx_ring[i].napi);
3942
3943         status = ql_adapter_reset(qdev);
3944         if (status)
3945                 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
3946                           qdev->func);
3947         ql_free_rx_buffers(qdev);
3948
3949         return status;
3950 }
3951
3952 static int ql_adapter_up(struct ql_adapter *qdev)
3953 {
3954         int err = 0;
3955
3956         err = ql_adapter_initialize(qdev);
3957         if (err) {
3958                 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
3959                 goto err_init;
3960         }
3961         set_bit(QL_ADAPTER_UP, &qdev->flags);
3962         ql_alloc_rx_buffers(qdev);
3963         /* If the port is initialized and the
3964          * link is up the turn on the carrier.
3965          */
3966         if ((ql_read32(qdev, STS) & qdev->port_init) &&
3967                         (ql_read32(qdev, STS) & qdev->port_link_up))
3968                 ql_link_on(qdev);
3969         /* Restore rx mode. */
3970         clear_bit(QL_ALLMULTI, &qdev->flags);
3971         clear_bit(QL_PROMISCUOUS, &qdev->flags);
3972         qlge_set_multicast_list(qdev->ndev);
3973
3974         /* Restore vlan setting. */
3975         qlge_restore_vlan(qdev);
3976
3977         ql_enable_interrupts(qdev);
3978         ql_enable_all_completion_interrupts(qdev);
3979         netif_tx_start_all_queues(qdev->ndev);
3980
3981         return 0;
3982 err_init:
3983         ql_adapter_reset(qdev);
3984         return err;
3985 }
3986
3987 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3988 {
3989         ql_free_mem_resources(qdev);
3990         ql_free_irq(qdev);
3991 }
3992
3993 static int ql_get_adapter_resources(struct ql_adapter *qdev)
3994 {
3995         int status = 0;
3996
3997         if (ql_alloc_mem_resources(qdev)) {
3998                 netif_err(qdev, ifup, qdev->ndev, "Unable to  allocate memory.\n");
3999                 return -ENOMEM;
4000         }
4001         status = ql_request_irq(qdev);
4002         return status;
4003 }
4004
4005 static int qlge_close(struct net_device *ndev)
4006 {
4007         struct ql_adapter *qdev = netdev_priv(ndev);
4008
4009         /* If we hit pci_channel_io_perm_failure
4010          * failure condition, then we already
4011          * brought the adapter down.
4012          */
4013         if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
4014                 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4015                 clear_bit(QL_EEH_FATAL, &qdev->flags);
4016                 return 0;
4017         }
4018
4019         /*
4020          * Wait for device to recover from a reset.
4021          * (Rarely happens, but possible.)
4022          */
4023         while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4024                 msleep(1);
4025         ql_adapter_down(qdev);
4026         ql_release_adapter_resources(qdev);
4027         return 0;
4028 }
4029
4030 static int ql_configure_rings(struct ql_adapter *qdev)
4031 {
4032         int i;
4033         struct rx_ring *rx_ring;
4034         struct tx_ring *tx_ring;
4035         int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
4036         unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4037                 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4038
4039         qdev->lbq_buf_order = get_order(lbq_buf_len);
4040
4041         /* In a perfect world we have one RSS ring for each CPU
4042          * and each has it's own vector.  To do that we ask for
4043          * cpu_cnt vectors.  ql_enable_msix() will adjust the
4044          * vector count to what we actually get.  We then
4045          * allocate an RSS ring for each.
4046          * Essentially, we are doing min(cpu_count, msix_vector_count).
4047          */
4048         qdev->intr_count = cpu_cnt;
4049         ql_enable_msix(qdev);
4050         /* Adjust the RSS ring count to the actual vector count. */
4051         qdev->rss_ring_count = qdev->intr_count;
4052         qdev->tx_ring_count = cpu_cnt;
4053         qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
4054
4055         for (i = 0; i < qdev->tx_ring_count; i++) {
4056                 tx_ring = &qdev->tx_ring[i];
4057                 memset((void *)tx_ring, 0, sizeof(*tx_ring));
4058                 tx_ring->qdev = qdev;
4059                 tx_ring->wq_id = i;
4060                 tx_ring->wq_len = qdev->tx_ring_size;
4061                 tx_ring->wq_size =
4062                     tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4063
4064                 /*
4065                  * The completion queue ID for the tx rings start
4066                  * immediately after the rss rings.
4067                  */
4068                 tx_ring->cq_id = qdev->rss_ring_count + i;
4069         }
4070
4071         for (i = 0; i < qdev->rx_ring_count; i++) {
4072                 rx_ring = &qdev->rx_ring[i];
4073                 memset((void *)rx_ring, 0, sizeof(*rx_ring));
4074                 rx_ring->qdev = qdev;
4075                 rx_ring->cq_id = i;
4076                 rx_ring->cpu = i % cpu_cnt;     /* CPU to run handler on. */
4077                 if (i < qdev->rss_ring_count) {
4078                         /*
4079                          * Inbound (RSS) queues.
4080                          */
4081                         rx_ring->cq_len = qdev->rx_ring_size;
4082                         rx_ring->cq_size =
4083                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4084                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4085                         rx_ring->lbq_size =
4086                             rx_ring->lbq_len * sizeof(__le64);
4087                         rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4088                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4089                         rx_ring->sbq_size =
4090                             rx_ring->sbq_len * sizeof(__le64);
4091                         rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4092                         rx_ring->type = RX_Q;
4093                 } else {
4094                         /*
4095                          * Outbound queue handles outbound completions only.
4096                          */
4097                         /* outbound cq is same size as tx_ring it services. */
4098                         rx_ring->cq_len = qdev->tx_ring_size;
4099                         rx_ring->cq_size =
4100                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4101                         rx_ring->lbq_len = 0;
4102                         rx_ring->lbq_size = 0;
4103                         rx_ring->lbq_buf_size = 0;
4104                         rx_ring->sbq_len = 0;
4105                         rx_ring->sbq_size = 0;
4106                         rx_ring->sbq_buf_size = 0;
4107                         rx_ring->type = TX_Q;
4108                 }
4109         }
4110         return 0;
4111 }
4112
4113 static int qlge_open(struct net_device *ndev)
4114 {
4115         int err = 0;
4116         struct ql_adapter *qdev = netdev_priv(ndev);
4117
4118         err = ql_adapter_reset(qdev);
4119         if (err)
4120                 return err;
4121
4122         err = ql_configure_rings(qdev);
4123         if (err)
4124                 return err;
4125
4126         err = ql_get_adapter_resources(qdev);
4127         if (err)
4128                 goto error_up;
4129
4130         err = ql_adapter_up(qdev);
4131         if (err)
4132                 goto error_up;
4133
4134         return err;
4135
4136 error_up:
4137         ql_release_adapter_resources(qdev);
4138         return err;
4139 }
4140
4141 static int ql_change_rx_buffers(struct ql_adapter *qdev)
4142 {
4143         struct rx_ring *rx_ring;
4144         int i, status;
4145         u32 lbq_buf_len;
4146
4147         /* Wait for an outstanding reset to complete. */
4148         if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4149                 int i = 3;
4150                 while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4151                         netif_err(qdev, ifup, qdev->ndev,
4152                                   "Waiting for adapter UP...\n");
4153                         ssleep(1);
4154                 }
4155
4156                 if (!i) {
4157                         netif_err(qdev, ifup, qdev->ndev,
4158                                   "Timed out waiting for adapter UP\n");
4159                         return -ETIMEDOUT;
4160                 }
4161         }
4162
4163         status = ql_adapter_down(qdev);
4164         if (status)
4165                 goto error;
4166
4167         /* Get the new rx buffer size. */
4168         lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4169                 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4170         qdev->lbq_buf_order = get_order(lbq_buf_len);
4171
4172         for (i = 0; i < qdev->rss_ring_count; i++) {
4173                 rx_ring = &qdev->rx_ring[i];
4174                 /* Set the new size. */
4175                 rx_ring->lbq_buf_size = lbq_buf_len;
4176         }
4177
4178         status = ql_adapter_up(qdev);
4179         if (status)
4180                 goto error;
4181
4182         return status;
4183 error:
4184         netif_alert(qdev, ifup, qdev->ndev,
4185                     "Driver up/down cycle failed, closing device.\n");
4186         set_bit(QL_ADAPTER_UP, &qdev->flags);
4187         dev_close(qdev->ndev);
4188         return status;
4189 }
4190
4191 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4192 {
4193         struct ql_adapter *qdev = netdev_priv(ndev);
4194         int status;
4195
4196         if (ndev->mtu == 1500 && new_mtu == 9000) {
4197                 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4198         } else if (ndev->mtu == 9000 && new_mtu == 1500) {
4199                 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4200         } else
4201                 return -EINVAL;
4202
4203         queue_delayed_work(qdev->workqueue,
4204                         &qdev->mpi_port_cfg_work, 3*HZ);
4205
4206         ndev->mtu = new_mtu;
4207
4208         if (!netif_running(qdev->ndev)) {
4209                 return 0;
4210         }
4211
4212         status = ql_change_rx_buffers(qdev);
4213         if (status) {
4214                 netif_err(qdev, ifup, qdev->ndev,
4215                           "Changing MTU failed.\n");
4216         }
4217
4218         return status;
4219 }
4220
4221 static struct net_device_stats *qlge_get_stats(struct net_device
4222                                                *ndev)
4223 {
4224         struct ql_adapter *qdev = netdev_priv(ndev);
4225         struct rx_ring *rx_ring = &qdev->rx_ring[0];
4226         struct tx_ring *tx_ring = &qdev->tx_ring[0];
4227         unsigned long pkts, mcast, dropped, errors, bytes;
4228         int i;
4229
4230         /* Get RX stats. */
4231         pkts = mcast = dropped = errors = bytes = 0;
4232         for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4233                         pkts += rx_ring->rx_packets;
4234                         bytes += rx_ring->rx_bytes;
4235                         dropped += rx_ring->rx_dropped;
4236                         errors += rx_ring->rx_errors;
4237                         mcast += rx_ring->rx_multicast;
4238         }
4239         ndev->stats.rx_packets = pkts;
4240         ndev->stats.rx_bytes = bytes;
4241         ndev->stats.rx_dropped = dropped;
4242         ndev->stats.rx_errors = errors;
4243         ndev->stats.multicast = mcast;
4244
4245         /* Get TX stats. */
4246         pkts = errors = bytes = 0;
4247         for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4248                         pkts += tx_ring->tx_packets;
4249                         bytes += tx_ring->tx_bytes;
4250                         errors += tx_ring->tx_errors;
4251         }
4252         ndev->stats.tx_packets = pkts;
4253         ndev->stats.tx_bytes = bytes;
4254         ndev->stats.tx_errors = errors;
4255         return &ndev->stats;
4256 }
4257
4258 static void qlge_set_multicast_list(struct net_device *ndev)
4259 {
4260         struct ql_adapter *qdev = netdev_priv(ndev);
4261         struct netdev_hw_addr *ha;
4262         int i, status;
4263
4264         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4265         if (status)
4266                 return;
4267         /*
4268          * Set or clear promiscuous mode if a
4269          * transition is taking place.
4270          */
4271         if (ndev->flags & IFF_PROMISC) {
4272                 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4273                         if (ql_set_routing_reg
4274                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4275                                 netif_err(qdev, hw, qdev->ndev,
4276                                           "Failed to set promiscuous mode.\n");
4277                         } else {
4278                                 set_bit(QL_PROMISCUOUS, &qdev->flags);
4279                         }
4280                 }
4281         } else {
4282                 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4283                         if (ql_set_routing_reg
4284                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4285                                 netif_err(qdev, hw, qdev->ndev,
4286                                           "Failed to clear promiscuous mode.\n");
4287                         } else {
4288                                 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4289                         }
4290                 }
4291         }
4292
4293         /*
4294          * Set or clear all multicast mode if a
4295          * transition is taking place.
4296          */
4297         if ((ndev->flags & IFF_ALLMULTI) ||
4298             (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4299                 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4300                         if (ql_set_routing_reg
4301                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4302                                 netif_err(qdev, hw, qdev->ndev,
4303                                           "Failed to set all-multi mode.\n");
4304                         } else {
4305                                 set_bit(QL_ALLMULTI, &qdev->flags);
4306                         }
4307                 }
4308         } else {
4309                 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4310                         if (ql_set_routing_reg
4311                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4312                                 netif_err(qdev, hw, qdev->ndev,
4313                                           "Failed to clear all-multi mode.\n");
4314                         } else {
4315                                 clear_bit(QL_ALLMULTI, &qdev->flags);
4316                         }
4317                 }
4318         }
4319
4320         if (!netdev_mc_empty(ndev)) {
4321                 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4322                 if (status)
4323                         goto exit;
4324                 i = 0;
4325                 netdev_for_each_mc_addr(ha, ndev) {
4326                         if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
4327                                                 MAC_ADDR_TYPE_MULTI_MAC, i)) {
4328                                 netif_err(qdev, hw, qdev->ndev,
4329                                           "Failed to loadmulticast address.\n");
4330                                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4331                                 goto exit;
4332                         }
4333                         i++;
4334                 }
4335                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4336                 if (ql_set_routing_reg
4337                     (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4338                         netif_err(qdev, hw, qdev->ndev,
4339                                   "Failed to set multicast match mode.\n");
4340                 } else {
4341                         set_bit(QL_ALLMULTI, &qdev->flags);
4342                 }
4343         }
4344 exit:
4345         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4346 }
4347
4348 static int qlge_set_mac_address(struct net_device *ndev, void *p)
4349 {
4350         struct ql_adapter *qdev = netdev_priv(ndev);
4351         struct sockaddr *addr = p;
4352         int status;
4353
4354         if (!is_valid_ether_addr(addr->sa_data))
4355                 return -EADDRNOTAVAIL;
4356         memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4357         /* Update local copy of current mac address. */
4358         memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4359
4360         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4361         if (status)
4362                 return status;
4363         status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4364                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4365         if (status)
4366                 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4367         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4368         return status;
4369 }
4370
4371 static void qlge_tx_timeout(struct net_device *ndev)
4372 {
4373         struct ql_adapter *qdev = netdev_priv(ndev);
4374         ql_queue_asic_error(qdev);
4375 }
4376
4377 static void ql_asic_reset_work(struct work_struct *work)
4378 {
4379         struct ql_adapter *qdev =
4380             container_of(work, struct ql_adapter, asic_reset_work.work);
4381         int status;
4382         rtnl_lock();
4383         status = ql_adapter_down(qdev);
4384         if (status)
4385                 goto error;
4386
4387         status = ql_adapter_up(qdev);
4388         if (status)
4389                 goto error;
4390
4391         /* Restore rx mode. */
4392         clear_bit(QL_ALLMULTI, &qdev->flags);
4393         clear_bit(QL_PROMISCUOUS, &qdev->flags);
4394         qlge_set_multicast_list(qdev->ndev);
4395
4396         rtnl_unlock();
4397         return;
4398 error:
4399         netif_alert(qdev, ifup, qdev->ndev,
4400                     "Driver up/down cycle failed, closing device\n");
4401
4402         set_bit(QL_ADAPTER_UP, &qdev->flags);
4403         dev_close(qdev->ndev);
4404         rtnl_unlock();
4405 }
4406
4407 static const struct nic_operations qla8012_nic_ops = {
4408         .get_flash              = ql_get_8012_flash_params,
4409         .port_initialize        = ql_8012_port_initialize,
4410 };
4411
4412 static const struct nic_operations qla8000_nic_ops = {
4413         .get_flash              = ql_get_8000_flash_params,
4414         .port_initialize        = ql_8000_port_initialize,
4415 };
4416
4417 /* Find the pcie function number for the other NIC
4418  * on this chip.  Since both NIC functions share a
4419  * common firmware we have the lowest enabled function
4420  * do any common work.  Examples would be resetting
4421  * after a fatal firmware error, or doing a firmware
4422  * coredump.
4423  */
4424 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4425 {
4426         int status = 0;
4427         u32 temp;
4428         u32 nic_func1, nic_func2;
4429
4430         status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4431                         &temp);
4432         if (status)
4433                 return status;
4434
4435         nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4436                         MPI_TEST_NIC_FUNC_MASK);
4437         nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4438                         MPI_TEST_NIC_FUNC_MASK);
4439
4440         if (qdev->func == nic_func1)
4441                 qdev->alt_func = nic_func2;
4442         else if (qdev->func == nic_func2)
4443                 qdev->alt_func = nic_func1;
4444         else
4445                 status = -EIO;
4446
4447         return status;
4448 }
4449
4450 static int ql_get_board_info(struct ql_adapter *qdev)
4451 {
4452         int status;
4453         qdev->func =
4454             (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4455         if (qdev->func > 3)
4456                 return -EIO;
4457
4458         status = ql_get_alt_pcie_func(qdev);
4459         if (status)
4460                 return status;
4461
4462         qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4463         if (qdev->port) {
4464                 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4465                 qdev->port_link_up = STS_PL1;
4466                 qdev->port_init = STS_PI1;
4467                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4468                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4469         } else {
4470                 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4471                 qdev->port_link_up = STS_PL0;
4472                 qdev->port_init = STS_PI0;
4473                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4474                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4475         }
4476         qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4477         qdev->device_id = qdev->pdev->device;
4478         if (qdev->device_id == QLGE_DEVICE_ID_8012)
4479                 qdev->nic_ops = &qla8012_nic_ops;
4480         else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4481                 qdev->nic_ops = &qla8000_nic_ops;
4482         return status;
4483 }
4484
4485 static void ql_release_all(struct pci_dev *pdev)
4486 {
4487         struct net_device *ndev = pci_get_drvdata(pdev);
4488         struct ql_adapter *qdev = netdev_priv(ndev);
4489
4490         if (qdev->workqueue) {
4491                 destroy_workqueue(qdev->workqueue);
4492                 qdev->workqueue = NULL;
4493         }
4494
4495         if (qdev->reg_base)
4496                 iounmap(qdev->reg_base);
4497         if (qdev->doorbell_area)
4498                 iounmap(qdev->doorbell_area);
4499         vfree(qdev->mpi_coredump);
4500         pci_release_regions(pdev);
4501         pci_set_drvdata(pdev, NULL);
4502 }
4503
4504 static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
4505                           int cards_found)
4506 {
4507         struct ql_adapter *qdev = netdev_priv(ndev);
4508         int err = 0;
4509
4510         memset((void *)qdev, 0, sizeof(*qdev));
4511         err = pci_enable_device(pdev);
4512         if (err) {
4513                 dev_err(&pdev->dev, "PCI device enable failed.\n");
4514                 return err;
4515         }
4516
4517         qdev->ndev = ndev;
4518         qdev->pdev = pdev;
4519         pci_set_drvdata(pdev, ndev);
4520
4521         /* Set PCIe read request size */
4522         err = pcie_set_readrq(pdev, 4096);
4523         if (err) {
4524                 dev_err(&pdev->dev, "Set readrq failed.\n");
4525                 goto err_out1;
4526         }
4527
4528         err = pci_request_regions(pdev, DRV_NAME);
4529         if (err) {
4530                 dev_err(&pdev->dev, "PCI region request failed.\n");
4531                 return err;
4532         }
4533
4534         pci_set_master(pdev);
4535         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4536                 set_bit(QL_DMA64, &qdev->flags);
4537                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4538         } else {
4539                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4540                 if (!err)
4541                        err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4542         }
4543
4544         if (err) {
4545                 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4546                 goto err_out2;
4547         }
4548
4549         /* Set PCIe reset type for EEH to fundamental. */
4550         pdev->needs_freset = 1;
4551         pci_save_state(pdev);
4552         qdev->reg_base =
4553             ioremap_nocache(pci_resource_start(pdev, 1),
4554                             pci_resource_len(pdev, 1));
4555         if (!qdev->reg_base) {
4556                 dev_err(&pdev->dev, "Register mapping failed.\n");
4557                 err = -ENOMEM;
4558                 goto err_out2;
4559         }
4560
4561         qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4562         qdev->doorbell_area =
4563             ioremap_nocache(pci_resource_start(pdev, 3),
4564                             pci_resource_len(pdev, 3));
4565         if (!qdev->doorbell_area) {
4566                 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4567                 err = -ENOMEM;
4568                 goto err_out2;
4569         }
4570
4571         err = ql_get_board_info(qdev);
4572         if (err) {
4573                 dev_err(&pdev->dev, "Register access failed.\n");
4574                 err = -EIO;
4575                 goto err_out2;
4576         }
4577         qdev->msg_enable = netif_msg_init(debug, default_msg);
4578         spin_lock_init(&qdev->hw_lock);
4579         spin_lock_init(&qdev->stats_lock);
4580
4581         if (qlge_mpi_coredump) {
4582                 qdev->mpi_coredump =
4583                         vmalloc(sizeof(struct ql_mpi_coredump));
4584                 if (qdev->mpi_coredump == NULL) {
4585                         err = -ENOMEM;
4586                         goto err_out2;
4587                 }
4588                 if (qlge_force_coredump)
4589                         set_bit(QL_FRC_COREDUMP, &qdev->flags);
4590         }
4591         /* make sure the EEPROM is good */
4592         err = qdev->nic_ops->get_flash(qdev);
4593         if (err) {
4594                 dev_err(&pdev->dev, "Invalid FLASH.\n");
4595                 goto err_out2;
4596         }
4597
4598         /* Keep local copy of current mac address. */
4599         memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4600
4601         /* Set up the default ring sizes. */
4602         qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4603         qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4604
4605         /* Set up the coalescing parameters. */
4606         qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4607         qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4608         qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4609         qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4610
4611         /*
4612          * Set up the operating parameters.
4613          */
4614         qdev->workqueue = create_singlethread_workqueue(ndev->name);
4615         INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4616         INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4617         INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4618         INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4619         INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4620         INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4621         init_completion(&qdev->ide_completion);
4622         mutex_init(&qdev->mpi_mutex);
4623
4624         if (!cards_found) {
4625                 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4626                 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4627                          DRV_NAME, DRV_VERSION);
4628         }
4629         return 0;
4630 err_out2:
4631         ql_release_all(pdev);
4632 err_out1:
4633         pci_disable_device(pdev);
4634         return err;
4635 }
4636
4637 static const struct net_device_ops qlge_netdev_ops = {
4638         .ndo_open               = qlge_open,
4639         .ndo_stop               = qlge_close,
4640         .ndo_start_xmit         = qlge_send,
4641         .ndo_change_mtu         = qlge_change_mtu,
4642         .ndo_get_stats          = qlge_get_stats,
4643         .ndo_set_rx_mode        = qlge_set_multicast_list,
4644         .ndo_set_mac_address    = qlge_set_mac_address,
4645         .ndo_validate_addr      = eth_validate_addr,
4646         .ndo_tx_timeout         = qlge_tx_timeout,
4647         .ndo_fix_features       = qlge_fix_features,
4648         .ndo_set_features       = qlge_set_features,
4649         .ndo_vlan_rx_add_vid    = qlge_vlan_rx_add_vid,
4650         .ndo_vlan_rx_kill_vid   = qlge_vlan_rx_kill_vid,
4651 };
4652
4653 static void ql_timer(unsigned long data)
4654 {
4655         struct ql_adapter *qdev = (struct ql_adapter *)data;
4656         u32 var = 0;
4657
4658         var = ql_read32(qdev, STS);
4659         if (pci_channel_offline(qdev->pdev)) {
4660                 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4661                 return;
4662         }
4663
4664         mod_timer(&qdev->timer, jiffies + (5*HZ));
4665 }
4666
4667 static int qlge_probe(struct pci_dev *pdev,
4668                       const struct pci_device_id *pci_entry)
4669 {
4670         struct net_device *ndev = NULL;
4671         struct ql_adapter *qdev = NULL;
4672         static int cards_found = 0;
4673         int err = 0;
4674
4675         ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4676                         min(MAX_CPUS, netif_get_num_default_rss_queues()));
4677         if (!ndev)
4678                 return -ENOMEM;
4679
4680         err = ql_init_device(pdev, ndev, cards_found);
4681         if (err < 0) {
4682                 free_netdev(ndev);
4683                 return err;
4684         }
4685
4686         qdev = netdev_priv(ndev);
4687         SET_NETDEV_DEV(ndev, &pdev->dev);
4688         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
4689                 NETIF_F_TSO | NETIF_F_TSO_ECN |
4690                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_RXCSUM;
4691         ndev->features = ndev->hw_features |
4692                 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
4693         ndev->vlan_features = ndev->hw_features;
4694
4695         if (test_bit(QL_DMA64, &qdev->flags))
4696                 ndev->features |= NETIF_F_HIGHDMA;
4697
4698         /*
4699          * Set up net_device structure.
4700          */
4701         ndev->tx_queue_len = qdev->tx_ring_size;
4702         ndev->irq = pdev->irq;
4703
4704         ndev->netdev_ops = &qlge_netdev_ops;
4705         SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
4706         ndev->watchdog_timeo = 10 * HZ;
4707
4708         err = register_netdev(ndev);
4709         if (err) {
4710                 dev_err(&pdev->dev, "net device registration failed.\n");
4711                 ql_release_all(pdev);
4712                 pci_disable_device(pdev);
4713                 return err;
4714         }
4715         /* Start up the timer to trigger EEH if
4716          * the bus goes dead
4717          */
4718         init_timer_deferrable(&qdev->timer);
4719         qdev->timer.data = (unsigned long)qdev;
4720         qdev->timer.function = ql_timer;
4721         qdev->timer.expires = jiffies + (5*HZ);
4722         add_timer(&qdev->timer);
4723         ql_link_off(qdev);
4724         ql_display_dev_info(ndev);
4725         atomic_set(&qdev->lb_count, 0);
4726         cards_found++;
4727         return 0;
4728 }
4729
4730 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4731 {
4732         return qlge_send(skb, ndev);
4733 }
4734
4735 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4736 {
4737         return ql_clean_inbound_rx_ring(rx_ring, budget);
4738 }
4739
4740 static void qlge_remove(struct pci_dev *pdev)
4741 {
4742         struct net_device *ndev = pci_get_drvdata(pdev);
4743         struct ql_adapter *qdev = netdev_priv(ndev);
4744         del_timer_sync(&qdev->timer);
4745         ql_cancel_all_work_sync(qdev);
4746         unregister_netdev(ndev);
4747         ql_release_all(pdev);
4748         pci_disable_device(pdev);
4749         free_netdev(ndev);
4750 }
4751
4752 /* Clean up resources without touching hardware. */
4753 static void ql_eeh_close(struct net_device *ndev)
4754 {
4755         int i;
4756         struct ql_adapter *qdev = netdev_priv(ndev);
4757
4758         if (netif_carrier_ok(ndev)) {
4759                 netif_carrier_off(ndev);
4760                 netif_stop_queue(ndev);
4761         }
4762
4763         /* Disabling the timer */
4764         del_timer_sync(&qdev->timer);
4765         ql_cancel_all_work_sync(qdev);
4766
4767         for (i = 0; i < qdev->rss_ring_count; i++)
4768                 netif_napi_del(&qdev->rx_ring[i].napi);
4769
4770         clear_bit(QL_ADAPTER_UP, &qdev->flags);
4771         ql_tx_ring_clean(qdev);
4772         ql_free_rx_buffers(qdev);
4773         ql_release_adapter_resources(qdev);
4774 }
4775
4776 /*
4777  * This callback is called by the PCI subsystem whenever
4778  * a PCI bus error is detected.
4779  */
4780 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4781                                                enum pci_channel_state state)
4782 {
4783         struct net_device *ndev = pci_get_drvdata(pdev);
4784         struct ql_adapter *qdev = netdev_priv(ndev);
4785
4786         switch (state) {
4787         case pci_channel_io_normal:
4788                 return PCI_ERS_RESULT_CAN_RECOVER;
4789         case pci_channel_io_frozen:
4790                 netif_device_detach(ndev);
4791                 if (netif_running(ndev))
4792                         ql_eeh_close(ndev);
4793                 pci_disable_device(pdev);
4794                 return PCI_ERS_RESULT_NEED_RESET;
4795         case pci_channel_io_perm_failure:
4796                 dev_err(&pdev->dev,
4797                         "%s: pci_channel_io_perm_failure.\n", __func__);
4798                 ql_eeh_close(ndev);
4799                 set_bit(QL_EEH_FATAL, &qdev->flags);
4800                 return PCI_ERS_RESULT_DISCONNECT;
4801         }
4802
4803         /* Request a slot reset. */
4804         return PCI_ERS_RESULT_NEED_RESET;
4805 }
4806
4807 /*
4808  * This callback is called after the PCI buss has been reset.
4809  * Basically, this tries to restart the card from scratch.
4810  * This is a shortened version of the device probe/discovery code,
4811  * it resembles the first-half of the () routine.
4812  */
4813 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4814 {
4815         struct net_device *ndev = pci_get_drvdata(pdev);
4816         struct ql_adapter *qdev = netdev_priv(ndev);
4817
4818         pdev->error_state = pci_channel_io_normal;
4819
4820         pci_restore_state(pdev);
4821         if (pci_enable_device(pdev)) {
4822                 netif_err(qdev, ifup, qdev->ndev,
4823                           "Cannot re-enable PCI device after reset.\n");
4824                 return PCI_ERS_RESULT_DISCONNECT;
4825         }
4826         pci_set_master(pdev);
4827
4828         if (ql_adapter_reset(qdev)) {
4829                 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4830                 set_bit(QL_EEH_FATAL, &qdev->flags);
4831                 return PCI_ERS_RESULT_DISCONNECT;
4832         }
4833
4834         return PCI_ERS_RESULT_RECOVERED;
4835 }
4836
4837 static void qlge_io_resume(struct pci_dev *pdev)
4838 {
4839         struct net_device *ndev = pci_get_drvdata(pdev);
4840         struct ql_adapter *qdev = netdev_priv(ndev);
4841         int err = 0;
4842
4843         if (netif_running(ndev)) {
4844                 err = qlge_open(ndev);
4845                 if (err) {
4846                         netif_err(qdev, ifup, qdev->ndev,
4847                                   "Device initialization failed after reset.\n");
4848                         return;
4849                 }
4850         } else {
4851                 netif_err(qdev, ifup, qdev->ndev,
4852                           "Device was not running prior to EEH.\n");
4853         }
4854         mod_timer(&qdev->timer, jiffies + (5*HZ));
4855         netif_device_attach(ndev);
4856 }
4857
4858 static const struct pci_error_handlers qlge_err_handler = {
4859         .error_detected = qlge_io_error_detected,
4860         .slot_reset = qlge_io_slot_reset,
4861         .resume = qlge_io_resume,
4862 };
4863
4864 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4865 {
4866         struct net_device *ndev = pci_get_drvdata(pdev);
4867         struct ql_adapter *qdev = netdev_priv(ndev);
4868         int err;
4869
4870         netif_device_detach(ndev);
4871         del_timer_sync(&qdev->timer);
4872
4873         if (netif_running(ndev)) {
4874                 err = ql_adapter_down(qdev);
4875                 if (!err)
4876                         return err;
4877         }
4878
4879         ql_wol(qdev);
4880         err = pci_save_state(pdev);
4881         if (err)
4882                 return err;
4883
4884         pci_disable_device(pdev);
4885
4886         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4887
4888         return 0;
4889 }
4890
4891 #ifdef CONFIG_PM
4892 static int qlge_resume(struct pci_dev *pdev)
4893 {
4894         struct net_device *ndev = pci_get_drvdata(pdev);
4895         struct ql_adapter *qdev = netdev_priv(ndev);
4896         int err;
4897
4898         pci_set_power_state(pdev, PCI_D0);
4899         pci_restore_state(pdev);
4900         err = pci_enable_device(pdev);
4901         if (err) {
4902                 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4903                 return err;
4904         }
4905         pci_set_master(pdev);
4906
4907         pci_enable_wake(pdev, PCI_D3hot, 0);
4908         pci_enable_wake(pdev, PCI_D3cold, 0);
4909
4910         if (netif_running(ndev)) {
4911                 err = ql_adapter_up(qdev);
4912                 if (err)
4913                         return err;
4914         }
4915
4916         mod_timer(&qdev->timer, jiffies + (5*HZ));
4917         netif_device_attach(ndev);
4918
4919         return 0;
4920 }
4921 #endif /* CONFIG_PM */
4922
4923 static void qlge_shutdown(struct pci_dev *pdev)
4924 {
4925         qlge_suspend(pdev, PMSG_SUSPEND);
4926 }
4927
4928 static struct pci_driver qlge_driver = {
4929         .name = DRV_NAME,
4930         .id_table = qlge_pci_tbl,
4931         .probe = qlge_probe,
4932         .remove = qlge_remove,
4933 #ifdef CONFIG_PM
4934         .suspend = qlge_suspend,
4935         .resume = qlge_resume,
4936 #endif
4937         .shutdown = qlge_shutdown,
4938         .err_handler = &qlge_err_handler
4939 };
4940
4941 static int __init qlge_init_module(void)
4942 {
4943         return pci_register_driver(&qlge_driver);
4944 }
4945
4946 static void __exit qlge_exit(void)
4947 {
4948         pci_unregister_driver(&qlge_driver);
4949 }
4950
4951 module_init(qlge_init_module);
4952 module_exit(qlge_exit);