90a946f3f7838e6a1c3cc366226e5c0b0e962d71
[cascardo/linux.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4
5         Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25   Documentation available at:
26         http://www.stlinux.com
27   Support available at:
28         https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55 #include <linux/of_mdio.h>
56 #include "dwmac1000.h"
57
58 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
59
60 /* Module parameters */
61 #define TX_TIMEO        5000
62 static int watchdog = TX_TIMEO;
63 module_param(watchdog, int, S_IRUGO | S_IWUSR);
64 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
65
66 static int debug = -1;
67 module_param(debug, int, S_IRUGO | S_IWUSR);
68 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
69
70 static int phyaddr = -1;
71 module_param(phyaddr, int, S_IRUGO);
72 MODULE_PARM_DESC(phyaddr, "Physical device address");
73
74 #define STMMAC_TX_THRESH        (DMA_TX_SIZE / 4)
75
76 static int flow_ctrl = FLOW_OFF;
77 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
78 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
79
80 static int pause = PAUSE_TIME;
81 module_param(pause, int, S_IRUGO | S_IWUSR);
82 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
83
84 #define TC_DEFAULT 64
85 static int tc = TC_DEFAULT;
86 module_param(tc, int, S_IRUGO | S_IWUSR);
87 MODULE_PARM_DESC(tc, "DMA threshold control value");
88
89 #define DEFAULT_BUFSIZE 1536
90 static int buf_sz = DEFAULT_BUFSIZE;
91 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
92 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
93
94 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
95                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
96                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
97
98 #define STMMAC_DEFAULT_LPI_TIMER        1000
99 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
100 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
101 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
102 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
103
104 /* By default the driver will use the ring mode to manage tx and rx descriptors
105  * but passing this value so user can force to use the chain instead of the ring
106  */
107 static unsigned int chain_mode;
108 module_param(chain_mode, int, S_IRUGO);
109 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
110
111 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
112
113 #ifdef CONFIG_DEBUG_FS
114 static int stmmac_init_fs(struct net_device *dev);
115 static void stmmac_exit_fs(struct net_device *dev);
116 #endif
117
118 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
119
120 /**
121  * stmmac_verify_args - verify the driver parameters.
122  * Description: it checks the driver parameters and set a default in case of
123  * errors.
124  */
125 static void stmmac_verify_args(void)
126 {
127         if (unlikely(watchdog < 0))
128                 watchdog = TX_TIMEO;
129         if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
130                 buf_sz = DEFAULT_BUFSIZE;
131         if (unlikely(flow_ctrl > 1))
132                 flow_ctrl = FLOW_AUTO;
133         else if (likely(flow_ctrl < 0))
134                 flow_ctrl = FLOW_OFF;
135         if (unlikely((pause < 0) || (pause > 0xffff)))
136                 pause = PAUSE_TIME;
137         if (eee_timer < 0)
138                 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
139 }
140
141 /**
142  * stmmac_clk_csr_set - dynamically set the MDC clock
143  * @priv: driver private structure
144  * Description: this is to dynamically set the MDC clock according to the csr
145  * clock input.
146  * Note:
147  *      If a specific clk_csr value is passed from the platform
148  *      this means that the CSR Clock Range selection cannot be
149  *      changed at run-time and it is fixed (as reported in the driver
150  *      documentation). Viceversa the driver will try to set the MDC
151  *      clock dynamically according to the actual clock input.
152  */
153 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
154 {
155         u32 clk_rate;
156
157         clk_rate = clk_get_rate(priv->stmmac_clk);
158
159         /* Platform provided default clk_csr would be assumed valid
160          * for all other cases except for the below mentioned ones.
161          * For values higher than the IEEE 802.3 specified frequency
162          * we can not estimate the proper divider as it is not known
163          * the frequency of clk_csr_i. So we do not change the default
164          * divider.
165          */
166         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
167                 if (clk_rate < CSR_F_35M)
168                         priv->clk_csr = STMMAC_CSR_20_35M;
169                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
170                         priv->clk_csr = STMMAC_CSR_35_60M;
171                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
172                         priv->clk_csr = STMMAC_CSR_60_100M;
173                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
174                         priv->clk_csr = STMMAC_CSR_100_150M;
175                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
176                         priv->clk_csr = STMMAC_CSR_150_250M;
177                 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
178                         priv->clk_csr = STMMAC_CSR_250_300M;
179         }
180 }
181
182 static void print_pkt(unsigned char *buf, int len)
183 {
184         pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
185         print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
186 }
187
188 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
189 {
190         unsigned avail;
191
192         if (priv->dirty_tx > priv->cur_tx)
193                 avail = priv->dirty_tx - priv->cur_tx - 1;
194         else
195                 avail = DMA_TX_SIZE - priv->cur_tx + priv->dirty_tx - 1;
196
197         return avail;
198 }
199
200 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv)
201 {
202         unsigned dirty;
203
204         if (priv->dirty_rx <= priv->cur_rx)
205                 dirty = priv->cur_rx - priv->dirty_rx;
206         else
207                 dirty = DMA_RX_SIZE - priv->dirty_rx + priv->cur_rx;
208
209         return dirty;
210 }
211
212 /**
213  * stmmac_hw_fix_mac_speed - callback for speed selection
214  * @priv: driver private structure
215  * Description: on some platforms (e.g. ST), some HW system configuraton
216  * registers have to be set according to the link speed negotiated.
217  */
218 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
219 {
220         struct phy_device *phydev = priv->phydev;
221
222         if (likely(priv->plat->fix_mac_speed))
223                 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
224 }
225
226 /**
227  * stmmac_enable_eee_mode - check and enter in LPI mode
228  * @priv: driver private structure
229  * Description: this function is to verify and enter in LPI mode in case of
230  * EEE.
231  */
232 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
233 {
234         /* Check and enter in LPI mode */
235         if ((priv->dirty_tx == priv->cur_tx) &&
236             (priv->tx_path_in_lpi_mode == false))
237                 priv->hw->mac->set_eee_mode(priv->hw);
238 }
239
240 /**
241  * stmmac_disable_eee_mode - disable and exit from LPI mode
242  * @priv: driver private structure
243  * Description: this function is to exit and disable EEE in case of
244  * LPI state is true. This is called by the xmit.
245  */
246 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
247 {
248         priv->hw->mac->reset_eee_mode(priv->hw);
249         del_timer_sync(&priv->eee_ctrl_timer);
250         priv->tx_path_in_lpi_mode = false;
251 }
252
253 /**
254  * stmmac_eee_ctrl_timer - EEE TX SW timer.
255  * @arg : data hook
256  * Description:
257  *  if there is no data transfer and if we are not in LPI state,
258  *  then MAC Transmitter can be moved to LPI state.
259  */
260 static void stmmac_eee_ctrl_timer(unsigned long arg)
261 {
262         struct stmmac_priv *priv = (struct stmmac_priv *)arg;
263
264         stmmac_enable_eee_mode(priv);
265         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
266 }
267
268 /**
269  * stmmac_eee_init - init EEE
270  * @priv: driver private structure
271  * Description:
272  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
273  *  can also manage EEE, this function enable the LPI state and start related
274  *  timer.
275  */
276 bool stmmac_eee_init(struct stmmac_priv *priv)
277 {
278         char *phy_bus_name = priv->plat->phy_bus_name;
279         unsigned long flags;
280         bool ret = false;
281
282         /* Using PCS we cannot dial with the phy registers at this stage
283          * so we do not support extra feature like EEE.
284          */
285         if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
286             (priv->pcs == STMMAC_PCS_RTBI))
287                 goto out;
288
289         /* Never init EEE in case of a switch is attached */
290         if (phy_bus_name && (!strcmp(phy_bus_name, "fixed")))
291                 goto out;
292
293         /* MAC core supports the EEE feature. */
294         if (priv->dma_cap.eee) {
295                 int tx_lpi_timer = priv->tx_lpi_timer;
296
297                 /* Check if the PHY supports EEE */
298                 if (phy_init_eee(priv->phydev, 1)) {
299                         /* To manage at run-time if the EEE cannot be supported
300                          * anymore (for example because the lp caps have been
301                          * changed).
302                          * In that case the driver disable own timers.
303                          */
304                         spin_lock_irqsave(&priv->lock, flags);
305                         if (priv->eee_active) {
306                                 pr_debug("stmmac: disable EEE\n");
307                                 del_timer_sync(&priv->eee_ctrl_timer);
308                                 priv->hw->mac->set_eee_timer(priv->hw, 0,
309                                                              tx_lpi_timer);
310                         }
311                         priv->eee_active = 0;
312                         spin_unlock_irqrestore(&priv->lock, flags);
313                         goto out;
314                 }
315                 /* Activate the EEE and start timers */
316                 spin_lock_irqsave(&priv->lock, flags);
317                 if (!priv->eee_active) {
318                         priv->eee_active = 1;
319                         setup_timer(&priv->eee_ctrl_timer,
320                                     stmmac_eee_ctrl_timer,
321                                     (unsigned long)priv);
322                         mod_timer(&priv->eee_ctrl_timer,
323                                   STMMAC_LPI_T(eee_timer));
324
325                         priv->hw->mac->set_eee_timer(priv->hw,
326                                                      STMMAC_DEFAULT_LIT_LS,
327                                                      tx_lpi_timer);
328                 }
329                 /* Set HW EEE according to the speed */
330                 priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
331
332                 ret = true;
333                 spin_unlock_irqrestore(&priv->lock, flags);
334
335                 pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
336         }
337 out:
338         return ret;
339 }
340
341 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
342  * @priv: driver private structure
343  * @entry : descriptor index to be used.
344  * @skb : the socket buffer
345  * Description :
346  * This function will read timestamp from the descriptor & pass it to stack.
347  * and also perform some sanity checks.
348  */
349 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
350                                    unsigned int entry, struct sk_buff *skb)
351 {
352         struct skb_shared_hwtstamps shhwtstamp;
353         u64 ns;
354         void *desc = NULL;
355
356         if (!priv->hwts_tx_en)
357                 return;
358
359         /* exit if skb doesn't support hw tstamp */
360         if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
361                 return;
362
363         if (priv->adv_ts)
364                 desc = (priv->dma_etx + entry);
365         else
366                 desc = (priv->dma_tx + entry);
367
368         /* check tx tstamp status */
369         if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
370                 return;
371
372         /* get the valid tstamp */
373         ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
374
375         memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
376         shhwtstamp.hwtstamp = ns_to_ktime(ns);
377         /* pass tstamp to stack */
378         skb_tstamp_tx(skb, &shhwtstamp);
379
380         return;
381 }
382
383 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
384  * @priv: driver private structure
385  * @entry : descriptor index to be used.
386  * @skb : the socket buffer
387  * Description :
388  * This function will read received packet's timestamp from the descriptor
389  * and pass it to stack. It also perform some sanity checks.
390  */
391 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
392                                    unsigned int entry, struct sk_buff *skb)
393 {
394         struct skb_shared_hwtstamps *shhwtstamp = NULL;
395         u64 ns;
396         void *desc = NULL;
397
398         if (!priv->hwts_rx_en)
399                 return;
400
401         if (priv->adv_ts)
402                 desc = (priv->dma_erx + entry);
403         else
404                 desc = (priv->dma_rx + entry);
405
406         /* exit if rx tstamp is not valid */
407         if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
408                 return;
409
410         /* get valid tstamp */
411         ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
412         shhwtstamp = skb_hwtstamps(skb);
413         memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
414         shhwtstamp->hwtstamp = ns_to_ktime(ns);
415 }
416
417 /**
418  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
419  *  @dev: device pointer.
420  *  @ifr: An IOCTL specefic structure, that can contain a pointer to
421  *  a proprietary structure used to pass information to the driver.
422  *  Description:
423  *  This function configures the MAC to enable/disable both outgoing(TX)
424  *  and incoming(RX) packets time stamping based on user input.
425  *  Return Value:
426  *  0 on success and an appropriate -ve integer on failure.
427  */
428 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
429 {
430         struct stmmac_priv *priv = netdev_priv(dev);
431         struct hwtstamp_config config;
432         struct timespec64 now;
433         u64 temp = 0;
434         u32 ptp_v2 = 0;
435         u32 tstamp_all = 0;
436         u32 ptp_over_ipv4_udp = 0;
437         u32 ptp_over_ipv6_udp = 0;
438         u32 ptp_over_ethernet = 0;
439         u32 snap_type_sel = 0;
440         u32 ts_master_en = 0;
441         u32 ts_event_en = 0;
442         u32 value = 0;
443         u32 sec_inc;
444
445         if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
446                 netdev_alert(priv->dev, "No support for HW time stamping\n");
447                 priv->hwts_tx_en = 0;
448                 priv->hwts_rx_en = 0;
449
450                 return -EOPNOTSUPP;
451         }
452
453         if (copy_from_user(&config, ifr->ifr_data,
454                            sizeof(struct hwtstamp_config)))
455                 return -EFAULT;
456
457         pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
458                  __func__, config.flags, config.tx_type, config.rx_filter);
459
460         /* reserved for future extensions */
461         if (config.flags)
462                 return -EINVAL;
463
464         if (config.tx_type != HWTSTAMP_TX_OFF &&
465             config.tx_type != HWTSTAMP_TX_ON)
466                 return -ERANGE;
467
468         if (priv->adv_ts) {
469                 switch (config.rx_filter) {
470                 case HWTSTAMP_FILTER_NONE:
471                         /* time stamp no incoming packet at all */
472                         config.rx_filter = HWTSTAMP_FILTER_NONE;
473                         break;
474
475                 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
476                         /* PTP v1, UDP, any kind of event packet */
477                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
478                         /* take time stamp for all event messages */
479                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
480
481                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
482                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
483                         break;
484
485                 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
486                         /* PTP v1, UDP, Sync packet */
487                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
488                         /* take time stamp for SYNC messages only */
489                         ts_event_en = PTP_TCR_TSEVNTENA;
490
491                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
492                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
493                         break;
494
495                 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
496                         /* PTP v1, UDP, Delay_req packet */
497                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
498                         /* take time stamp for Delay_Req messages only */
499                         ts_master_en = PTP_TCR_TSMSTRENA;
500                         ts_event_en = PTP_TCR_TSEVNTENA;
501
502                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
503                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
504                         break;
505
506                 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
507                         /* PTP v2, UDP, any kind of event packet */
508                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
509                         ptp_v2 = PTP_TCR_TSVER2ENA;
510                         /* take time stamp for all event messages */
511                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
512
513                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
514                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
515                         break;
516
517                 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
518                         /* PTP v2, UDP, Sync packet */
519                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
520                         ptp_v2 = PTP_TCR_TSVER2ENA;
521                         /* take time stamp for SYNC messages only */
522                         ts_event_en = PTP_TCR_TSEVNTENA;
523
524                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
525                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
526                         break;
527
528                 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
529                         /* PTP v2, UDP, Delay_req packet */
530                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
531                         ptp_v2 = PTP_TCR_TSVER2ENA;
532                         /* take time stamp for Delay_Req messages only */
533                         ts_master_en = PTP_TCR_TSMSTRENA;
534                         ts_event_en = PTP_TCR_TSEVNTENA;
535
536                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
537                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
538                         break;
539
540                 case HWTSTAMP_FILTER_PTP_V2_EVENT:
541                         /* PTP v2/802.AS1 any layer, any kind of event packet */
542                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
543                         ptp_v2 = PTP_TCR_TSVER2ENA;
544                         /* take time stamp for all event messages */
545                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
546
547                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
548                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
549                         ptp_over_ethernet = PTP_TCR_TSIPENA;
550                         break;
551
552                 case HWTSTAMP_FILTER_PTP_V2_SYNC:
553                         /* PTP v2/802.AS1, any layer, Sync packet */
554                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
555                         ptp_v2 = PTP_TCR_TSVER2ENA;
556                         /* take time stamp for SYNC messages only */
557                         ts_event_en = PTP_TCR_TSEVNTENA;
558
559                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
560                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
561                         ptp_over_ethernet = PTP_TCR_TSIPENA;
562                         break;
563
564                 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
565                         /* PTP v2/802.AS1, any layer, Delay_req packet */
566                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
567                         ptp_v2 = PTP_TCR_TSVER2ENA;
568                         /* take time stamp for Delay_Req messages only */
569                         ts_master_en = PTP_TCR_TSMSTRENA;
570                         ts_event_en = PTP_TCR_TSEVNTENA;
571
572                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
573                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
574                         ptp_over_ethernet = PTP_TCR_TSIPENA;
575                         break;
576
577                 case HWTSTAMP_FILTER_ALL:
578                         /* time stamp any incoming packet */
579                         config.rx_filter = HWTSTAMP_FILTER_ALL;
580                         tstamp_all = PTP_TCR_TSENALL;
581                         break;
582
583                 default:
584                         return -ERANGE;
585                 }
586         } else {
587                 switch (config.rx_filter) {
588                 case HWTSTAMP_FILTER_NONE:
589                         config.rx_filter = HWTSTAMP_FILTER_NONE;
590                         break;
591                 default:
592                         /* PTP v1, UDP, any kind of event packet */
593                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
594                         break;
595                 }
596         }
597         priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
598         priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
599
600         if (!priv->hwts_tx_en && !priv->hwts_rx_en)
601                 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
602         else {
603                 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
604                          tstamp_all | ptp_v2 | ptp_over_ethernet |
605                          ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
606                          ts_master_en | snap_type_sel);
607                 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
608
609                 /* program Sub Second Increment reg */
610                 sec_inc = priv->hw->ptp->config_sub_second_increment(
611                         priv->ioaddr, priv->clk_ptp_rate);
612                 temp = div_u64(1000000000ULL, sec_inc);
613
614                 /* calculate default added value:
615                  * formula is :
616                  * addend = (2^32)/freq_div_ratio;
617                  * where, freq_div_ratio = 1e9ns/sec_inc
618                  */
619                 temp = (u64)(temp << 32);
620                 priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
621                 priv->hw->ptp->config_addend(priv->ioaddr,
622                                              priv->default_addend);
623
624                 /* initialize system time */
625                 ktime_get_real_ts64(&now);
626
627                 /* lower 32 bits of tv_sec are safe until y2106 */
628                 priv->hw->ptp->init_systime(priv->ioaddr, (u32)now.tv_sec,
629                                             now.tv_nsec);
630         }
631
632         return copy_to_user(ifr->ifr_data, &config,
633                             sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
634 }
635
636 /**
637  * stmmac_init_ptp - init PTP
638  * @priv: driver private structure
639  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
640  * This is done by looking at the HW cap. register.
641  * This function also registers the ptp driver.
642  */
643 static int stmmac_init_ptp(struct stmmac_priv *priv)
644 {
645         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
646                 return -EOPNOTSUPP;
647
648         /* Fall-back to main clock in case of no PTP ref is passed */
649         priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
650         if (IS_ERR(priv->clk_ptp_ref)) {
651                 priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
652                 priv->clk_ptp_ref = NULL;
653         } else {
654                 clk_prepare_enable(priv->clk_ptp_ref);
655                 priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
656         }
657
658         priv->adv_ts = 0;
659         if (priv->dma_cap.atime_stamp && priv->extend_desc)
660                 priv->adv_ts = 1;
661
662         if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
663                 pr_debug("IEEE 1588-2002 Time Stamp supported\n");
664
665         if (netif_msg_hw(priv) && priv->adv_ts)
666                 pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
667
668         priv->hw->ptp = &stmmac_ptp;
669         priv->hwts_tx_en = 0;
670         priv->hwts_rx_en = 0;
671
672         return stmmac_ptp_register(priv);
673 }
674
675 static void stmmac_release_ptp(struct stmmac_priv *priv)
676 {
677         if (priv->clk_ptp_ref)
678                 clk_disable_unprepare(priv->clk_ptp_ref);
679         stmmac_ptp_unregister(priv);
680 }
681
682 /**
683  * stmmac_adjust_link - adjusts the link parameters
684  * @dev: net device structure
685  * Description: this is the helper called by the physical abstraction layer
686  * drivers to communicate the phy link status. According the speed and duplex
687  * this driver can invoke registered glue-logic as well.
688  * It also invoke the eee initialization because it could happen when switch
689  * on different networks (that are eee capable).
690  */
691 static void stmmac_adjust_link(struct net_device *dev)
692 {
693         struct stmmac_priv *priv = netdev_priv(dev);
694         struct phy_device *phydev = priv->phydev;
695         unsigned long flags;
696         int new_state = 0;
697         unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
698
699         if (phydev == NULL)
700                 return;
701
702         spin_lock_irqsave(&priv->lock, flags);
703
704         if (phydev->link) {
705                 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
706
707                 /* Now we make sure that we can be in full duplex mode.
708                  * If not, we operate in half-duplex mode. */
709                 if (phydev->duplex != priv->oldduplex) {
710                         new_state = 1;
711                         if (!(phydev->duplex))
712                                 ctrl &= ~priv->hw->link.duplex;
713                         else
714                                 ctrl |= priv->hw->link.duplex;
715                         priv->oldduplex = phydev->duplex;
716                 }
717                 /* Flow Control operation */
718                 if (phydev->pause)
719                         priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
720                                                  fc, pause_time);
721
722                 if (phydev->speed != priv->speed) {
723                         new_state = 1;
724                         switch (phydev->speed) {
725                         case 1000:
726                                 if (likely(priv->plat->has_gmac))
727                                         ctrl &= ~priv->hw->link.port;
728                                 stmmac_hw_fix_mac_speed(priv);
729                                 break;
730                         case 100:
731                         case 10:
732                                 if (priv->plat->has_gmac) {
733                                         ctrl |= priv->hw->link.port;
734                                         if (phydev->speed == SPEED_100) {
735                                                 ctrl |= priv->hw->link.speed;
736                                         } else {
737                                                 ctrl &= ~(priv->hw->link.speed);
738                                         }
739                                 } else {
740                                         ctrl &= ~priv->hw->link.port;
741                                 }
742                                 stmmac_hw_fix_mac_speed(priv);
743                                 break;
744                         default:
745                                 if (netif_msg_link(priv))
746                                         pr_warn("%s: Speed (%d) not 10/100\n",
747                                                 dev->name, phydev->speed);
748                                 break;
749                         }
750
751                         priv->speed = phydev->speed;
752                 }
753
754                 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
755
756                 if (!priv->oldlink) {
757                         new_state = 1;
758                         priv->oldlink = 1;
759                 }
760         } else if (priv->oldlink) {
761                 new_state = 1;
762                 priv->oldlink = 0;
763                 priv->speed = 0;
764                 priv->oldduplex = -1;
765         }
766
767         if (new_state && netif_msg_link(priv))
768                 phy_print_status(phydev);
769
770         spin_unlock_irqrestore(&priv->lock, flags);
771
772         /* At this stage, it could be needed to setup the EEE or adjust some
773          * MAC related HW registers.
774          */
775         priv->eee_enabled = stmmac_eee_init(priv);
776 }
777
778 /**
779  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
780  * @priv: driver private structure
781  * Description: this is to verify if the HW supports the PCS.
782  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
783  * configured for the TBI, RTBI, or SGMII PHY interface.
784  */
785 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
786 {
787         int interface = priv->plat->interface;
788
789         if (priv->dma_cap.pcs) {
790                 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
791                     (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
792                     (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
793                     (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
794                         pr_debug("STMMAC: PCS RGMII support enable\n");
795                         priv->pcs = STMMAC_PCS_RGMII;
796                 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
797                         pr_debug("STMMAC: PCS SGMII support enable\n");
798                         priv->pcs = STMMAC_PCS_SGMII;
799                 }
800         }
801 }
802
803 /**
804  * stmmac_init_phy - PHY initialization
805  * @dev: net device structure
806  * Description: it initializes the driver's PHY state, and attaches the PHY
807  * to the mac driver.
808  *  Return value:
809  *  0 on success
810  */
811 static int stmmac_init_phy(struct net_device *dev)
812 {
813         struct stmmac_priv *priv = netdev_priv(dev);
814         struct phy_device *phydev;
815         char phy_id_fmt[MII_BUS_ID_SIZE + 3];
816         char bus_id[MII_BUS_ID_SIZE];
817         int interface = priv->plat->interface;
818         int max_speed = priv->plat->max_speed;
819         priv->oldlink = 0;
820         priv->speed = 0;
821         priv->oldduplex = -1;
822
823         if (priv->plat->phy_node) {
824                 phydev = of_phy_connect(dev, priv->plat->phy_node,
825                                         &stmmac_adjust_link, 0, interface);
826         } else {
827                 if (priv->plat->phy_bus_name)
828                         snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
829                                  priv->plat->phy_bus_name, priv->plat->bus_id);
830                 else
831                         snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
832                                  priv->plat->bus_id);
833
834                 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
835                          priv->plat->phy_addr);
836                 pr_debug("stmmac_init_phy:  trying to attach to %s\n",
837                          phy_id_fmt);
838
839                 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
840                                      interface);
841         }
842
843         if (IS_ERR_OR_NULL(phydev)) {
844                 pr_err("%s: Could not attach to PHY\n", dev->name);
845                 if (!phydev)
846                         return -ENODEV;
847
848                 return PTR_ERR(phydev);
849         }
850
851         /* Stop Advertising 1000BASE Capability if interface is not GMII */
852         if ((interface == PHY_INTERFACE_MODE_MII) ||
853             (interface == PHY_INTERFACE_MODE_RMII) ||
854                 (max_speed < 1000 && max_speed > 0))
855                 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
856                                          SUPPORTED_1000baseT_Full);
857
858         /*
859          * Broken HW is sometimes missing the pull-up resistor on the
860          * MDIO line, which results in reads to non-existent devices returning
861          * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
862          * device as well.
863          * Note: phydev->phy_id is the result of reading the UID PHY registers.
864          */
865         if (!priv->plat->phy_node && phydev->phy_id == 0) {
866                 phy_disconnect(phydev);
867                 return -ENODEV;
868         }
869         pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
870                  " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
871
872         priv->phydev = phydev;
873
874         return 0;
875 }
876
877 /**
878  * stmmac_display_ring - display ring
879  * @head: pointer to the head of the ring passed.
880  * @size: size of the ring.
881  * @extend_desc: to verify if extended descriptors are used.
882  * Description: display the control/status and buffer descriptors.
883  */
884 static void stmmac_display_ring(void *head, int size, int extend_desc)
885 {
886         int i;
887         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
888         struct dma_desc *p = (struct dma_desc *)head;
889
890         for (i = 0; i < size; i++) {
891                 u64 x;
892                 if (extend_desc) {
893                         x = *(u64 *) ep;
894                         pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
895                                 i, (unsigned int)virt_to_phys(ep),
896                                 (unsigned int)x, (unsigned int)(x >> 32),
897                                 ep->basic.des2, ep->basic.des3);
898                         ep++;
899                 } else {
900                         x = *(u64 *) p;
901                         pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
902                                 i, (unsigned int)virt_to_phys(p),
903                                 (unsigned int)x, (unsigned int)(x >> 32),
904                                 p->des2, p->des3);
905                         p++;
906                 }
907                 pr_info("\n");
908         }
909 }
910
911 static void stmmac_display_rings(struct stmmac_priv *priv)
912 {
913         if (priv->extend_desc) {
914                 pr_info("Extended RX descriptor ring:\n");
915                 stmmac_display_ring((void *)priv->dma_erx, DMA_RX_SIZE, 1);
916                 pr_info("Extended TX descriptor ring:\n");
917                 stmmac_display_ring((void *)priv->dma_etx, DMA_TX_SIZE, 1);
918         } else {
919                 pr_info("RX descriptor ring:\n");
920                 stmmac_display_ring((void *)priv->dma_rx, DMA_RX_SIZE, 0);
921                 pr_info("TX descriptor ring:\n");
922                 stmmac_display_ring((void *)priv->dma_tx, DMA_TX_SIZE, 0);
923         }
924 }
925
926 static int stmmac_set_bfsize(int mtu, int bufsize)
927 {
928         int ret = bufsize;
929
930         if (mtu >= BUF_SIZE_4KiB)
931                 ret = BUF_SIZE_8KiB;
932         else if (mtu >= BUF_SIZE_2KiB)
933                 ret = BUF_SIZE_4KiB;
934         else if (mtu > DEFAULT_BUFSIZE)
935                 ret = BUF_SIZE_2KiB;
936         else
937                 ret = DEFAULT_BUFSIZE;
938
939         return ret;
940 }
941
942 /**
943  * stmmac_clear_descriptors - clear descriptors
944  * @priv: driver private structure
945  * Description: this function is called to clear the tx and rx descriptors
946  * in case of both basic and extended descriptors are used.
947  */
948 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
949 {
950         int i;
951
952         /* Clear the Rx/Tx descriptors */
953         for (i = 0; i < DMA_RX_SIZE; i++)
954                 if (priv->extend_desc)
955                         priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
956                                                      priv->use_riwt, priv->mode,
957                                                      (i == DMA_RX_SIZE - 1));
958                 else
959                         priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
960                                                      priv->use_riwt, priv->mode,
961                                                      (i == DMA_RX_SIZE - 1));
962         for (i = 0; i < DMA_TX_SIZE; i++)
963                 if (priv->extend_desc)
964                         priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
965                                                      priv->mode,
966                                                      (i == DMA_TX_SIZE - 1));
967                 else
968                         priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
969                                                      priv->mode,
970                                                      (i == DMA_TX_SIZE - 1));
971 }
972
973 /**
974  * stmmac_init_rx_buffers - init the RX descriptor buffer.
975  * @priv: driver private structure
976  * @p: descriptor pointer
977  * @i: descriptor index
978  * @flags: gfp flag.
979  * Description: this function is called to allocate a receive buffer, perform
980  * the DMA mapping and init the descriptor.
981  */
982 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
983                                   int i, gfp_t flags)
984 {
985         struct sk_buff *skb;
986
987         skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
988         if (!skb) {
989                 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
990                 return -ENOMEM;
991         }
992         priv->rx_skbuff[i] = skb;
993         priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
994                                                 priv->dma_buf_sz,
995                                                 DMA_FROM_DEVICE);
996         if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
997                 pr_err("%s: DMA mapping error\n", __func__);
998                 dev_kfree_skb_any(skb);
999                 return -EINVAL;
1000         }
1001
1002         p->des2 = priv->rx_skbuff_dma[i];
1003
1004         if ((priv->hw->mode->init_desc3) &&
1005             (priv->dma_buf_sz == BUF_SIZE_16KiB))
1006                 priv->hw->mode->init_desc3(p);
1007
1008         return 0;
1009 }
1010
1011 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
1012 {
1013         if (priv->rx_skbuff[i]) {
1014                 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1015                                  priv->dma_buf_sz, DMA_FROM_DEVICE);
1016                 dev_kfree_skb_any(priv->rx_skbuff[i]);
1017         }
1018         priv->rx_skbuff[i] = NULL;
1019 }
1020
1021 /**
1022  * init_dma_desc_rings - init the RX/TX descriptor rings
1023  * @dev: net device structure
1024  * @flags: gfp flag.
1025  * Description: this function initializes the DMA RX/TX descriptors
1026  * and allocates the socket buffers. It suppors the chained and ring
1027  * modes.
1028  */
1029 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1030 {
1031         int i;
1032         struct stmmac_priv *priv = netdev_priv(dev);
1033         unsigned int bfsize = 0;
1034         int ret = -ENOMEM;
1035
1036         if (priv->hw->mode->set_16kib_bfsize)
1037                 bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1038
1039         if (bfsize < BUF_SIZE_16KiB)
1040                 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1041
1042         priv->dma_buf_sz = bfsize;
1043
1044         if (netif_msg_probe(priv)) {
1045                 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1046                          (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1047
1048                 /* RX INITIALIZATION */
1049                 pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1050         }
1051         for (i = 0; i < DMA_RX_SIZE; i++) {
1052                 struct dma_desc *p;
1053                 if (priv->extend_desc)
1054                         p = &((priv->dma_erx + i)->basic);
1055                 else
1056                         p = priv->dma_rx + i;
1057
1058                 ret = stmmac_init_rx_buffers(priv, p, i, flags);
1059                 if (ret)
1060                         goto err_init_rx_buffers;
1061
1062                 if (netif_msg_probe(priv))
1063                         pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1064                                  priv->rx_skbuff[i]->data,
1065                                  (unsigned int)priv->rx_skbuff_dma[i]);
1066         }
1067         priv->cur_rx = 0;
1068         priv->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1069         buf_sz = bfsize;
1070
1071         /* Setup the chained descriptor addresses */
1072         if (priv->mode == STMMAC_CHAIN_MODE) {
1073                 if (priv->extend_desc) {
1074                         priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1075                                              DMA_RX_SIZE, 1);
1076                         priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1077                                              DMA_TX_SIZE, 1);
1078                 } else {
1079                         priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1080                                              DMA_RX_SIZE, 0);
1081                         priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1082                                              DMA_TX_SIZE, 0);
1083                 }
1084         }
1085
1086         /* TX INITIALIZATION */
1087         for (i = 0; i < DMA_TX_SIZE; i++) {
1088                 struct dma_desc *p;
1089                 if (priv->extend_desc)
1090                         p = &((priv->dma_etx + i)->basic);
1091                 else
1092                         p = priv->dma_tx + i;
1093                 p->des2 = 0;
1094                 priv->tx_skbuff_dma[i].buf = 0;
1095                 priv->tx_skbuff_dma[i].map_as_page = false;
1096                 priv->tx_skbuff_dma[i].len = 0;
1097                 priv->tx_skbuff[i] = NULL;
1098         }
1099
1100         priv->dirty_tx = 0;
1101         priv->cur_tx = 0;
1102         netdev_reset_queue(priv->dev);
1103
1104         stmmac_clear_descriptors(priv);
1105
1106         if (netif_msg_hw(priv))
1107                 stmmac_display_rings(priv);
1108
1109         return 0;
1110 err_init_rx_buffers:
1111         while (--i >= 0)
1112                 stmmac_free_rx_buffers(priv, i);
1113         return ret;
1114 }
1115
1116 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1117 {
1118         int i;
1119
1120         for (i = 0; i < DMA_RX_SIZE; i++)
1121                 stmmac_free_rx_buffers(priv, i);
1122 }
1123
1124 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1125 {
1126         int i;
1127
1128         for (i = 0; i < DMA_TX_SIZE; i++) {
1129                 struct dma_desc *p;
1130
1131                 if (priv->extend_desc)
1132                         p = &((priv->dma_etx + i)->basic);
1133                 else
1134                         p = priv->dma_tx + i;
1135
1136                 if (priv->tx_skbuff_dma[i].buf) {
1137                         if (priv->tx_skbuff_dma[i].map_as_page)
1138                                 dma_unmap_page(priv->device,
1139                                                priv->tx_skbuff_dma[i].buf,
1140                                                priv->tx_skbuff_dma[i].len,
1141                                                DMA_TO_DEVICE);
1142                         else
1143                                 dma_unmap_single(priv->device,
1144                                                  priv->tx_skbuff_dma[i].buf,
1145                                                  priv->tx_skbuff_dma[i].len,
1146                                                  DMA_TO_DEVICE);
1147                 }
1148
1149                 if (priv->tx_skbuff[i] != NULL) {
1150                         dev_kfree_skb_any(priv->tx_skbuff[i]);
1151                         priv->tx_skbuff[i] = NULL;
1152                         priv->tx_skbuff_dma[i].buf = 0;
1153                         priv->tx_skbuff_dma[i].map_as_page = false;
1154                 }
1155         }
1156 }
1157
1158 /**
1159  * alloc_dma_desc_resources - alloc TX/RX resources.
1160  * @priv: private structure
1161  * Description: according to which descriptor can be used (extend or basic)
1162  * this function allocates the resources for TX and RX paths. In case of
1163  * reception, for example, it pre-allocated the RX socket buffer in order to
1164  * allow zero-copy mechanism.
1165  */
1166 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1167 {
1168         int ret = -ENOMEM;
1169
1170         priv->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE, sizeof(dma_addr_t),
1171                                             GFP_KERNEL);
1172         if (!priv->rx_skbuff_dma)
1173                 return -ENOMEM;
1174
1175         priv->rx_skbuff = kmalloc_array(DMA_RX_SIZE, sizeof(struct sk_buff *),
1176                                         GFP_KERNEL);
1177         if (!priv->rx_skbuff)
1178                 goto err_rx_skbuff;
1179
1180         priv->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
1181                                             sizeof(*priv->tx_skbuff_dma),
1182                                             GFP_KERNEL);
1183         if (!priv->tx_skbuff_dma)
1184                 goto err_tx_skbuff_dma;
1185
1186         priv->tx_skbuff = kmalloc_array(DMA_TX_SIZE, sizeof(struct sk_buff *),
1187                                         GFP_KERNEL);
1188         if (!priv->tx_skbuff)
1189                 goto err_tx_skbuff;
1190
1191         if (priv->extend_desc) {
1192                 priv->dma_erx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
1193                                                     sizeof(struct
1194                                                            dma_extended_desc),
1195                                                     &priv->dma_rx_phy,
1196                                                     GFP_KERNEL);
1197                 if (!priv->dma_erx)
1198                         goto err_dma;
1199
1200                 priv->dma_etx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
1201                                                     sizeof(struct
1202                                                            dma_extended_desc),
1203                                                     &priv->dma_tx_phy,
1204                                                     GFP_KERNEL);
1205                 if (!priv->dma_etx) {
1206                         dma_free_coherent(priv->device, DMA_RX_SIZE *
1207                                           sizeof(struct dma_extended_desc),
1208                                           priv->dma_erx, priv->dma_rx_phy);
1209                         goto err_dma;
1210                 }
1211         } else {
1212                 priv->dma_rx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
1213                                                    sizeof(struct dma_desc),
1214                                                    &priv->dma_rx_phy,
1215                                                    GFP_KERNEL);
1216                 if (!priv->dma_rx)
1217                         goto err_dma;
1218
1219                 priv->dma_tx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
1220                                                    sizeof(struct dma_desc),
1221                                                    &priv->dma_tx_phy,
1222                                                    GFP_KERNEL);
1223                 if (!priv->dma_tx) {
1224                         dma_free_coherent(priv->device, DMA_RX_SIZE *
1225                                           sizeof(struct dma_desc),
1226                                           priv->dma_rx, priv->dma_rx_phy);
1227                         goto err_dma;
1228                 }
1229         }
1230
1231         return 0;
1232
1233 err_dma:
1234         kfree(priv->tx_skbuff);
1235 err_tx_skbuff:
1236         kfree(priv->tx_skbuff_dma);
1237 err_tx_skbuff_dma:
1238         kfree(priv->rx_skbuff);
1239 err_rx_skbuff:
1240         kfree(priv->rx_skbuff_dma);
1241         return ret;
1242 }
1243
1244 static void free_dma_desc_resources(struct stmmac_priv *priv)
1245 {
1246         /* Release the DMA TX/RX socket buffers */
1247         dma_free_rx_skbufs(priv);
1248         dma_free_tx_skbufs(priv);
1249
1250         /* Free DMA regions of consistent memory previously allocated */
1251         if (!priv->extend_desc) {
1252                 dma_free_coherent(priv->device,
1253                                   DMA_TX_SIZE * sizeof(struct dma_desc),
1254                                   priv->dma_tx, priv->dma_tx_phy);
1255                 dma_free_coherent(priv->device,
1256                                   DMA_RX_SIZE * sizeof(struct dma_desc),
1257                                   priv->dma_rx, priv->dma_rx_phy);
1258         } else {
1259                 dma_free_coherent(priv->device, DMA_TX_SIZE *
1260                                   sizeof(struct dma_extended_desc),
1261                                   priv->dma_etx, priv->dma_tx_phy);
1262                 dma_free_coherent(priv->device, DMA_RX_SIZE *
1263                                   sizeof(struct dma_extended_desc),
1264                                   priv->dma_erx, priv->dma_rx_phy);
1265         }
1266         kfree(priv->rx_skbuff_dma);
1267         kfree(priv->rx_skbuff);
1268         kfree(priv->tx_skbuff_dma);
1269         kfree(priv->tx_skbuff);
1270 }
1271
1272 /**
1273  *  stmmac_dma_operation_mode - HW DMA operation mode
1274  *  @priv: driver private structure
1275  *  Description: it is used for configuring the DMA operation mode register in
1276  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1277  */
1278 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1279 {
1280         int rxfifosz = priv->plat->rx_fifo_size;
1281
1282         if (priv->plat->force_thresh_dma_mode)
1283                 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz);
1284         else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1285                 /*
1286                  * In case of GMAC, SF mode can be enabled
1287                  * to perform the TX COE in HW. This depends on:
1288                  * 1) TX COE if actually supported
1289                  * 2) There is no bugged Jumbo frame support
1290                  *    that needs to not insert csum in the TDES.
1291                  */
1292                 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE,
1293                                         rxfifosz);
1294                 priv->xstats.threshold = SF_DMA_MODE;
1295         } else
1296                 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE,
1297                                         rxfifosz);
1298 }
1299
1300 /**
1301  * stmmac_tx_clean - to manage the transmission completion
1302  * @priv: driver private structure
1303  * Description: it reclaims the transmit resources after transmission completes.
1304  */
1305 static void stmmac_tx_clean(struct stmmac_priv *priv)
1306 {
1307         unsigned int bytes_compl = 0, pkts_compl = 0;
1308         unsigned int entry = priv->dirty_tx;
1309
1310         spin_lock(&priv->tx_lock);
1311
1312         priv->xstats.tx_clean++;
1313
1314         while (entry != priv->cur_tx) {
1315                 int last;
1316                 struct sk_buff *skb = priv->tx_skbuff[entry];
1317                 struct dma_desc *p;
1318
1319                 if (priv->extend_desc)
1320                         p = (struct dma_desc *)(priv->dma_etx + entry);
1321                 else
1322                         p = priv->dma_tx + entry;
1323
1324                 /* Check if the descriptor is owned by the DMA. */
1325                 if (priv->hw->desc->get_tx_owner(p))
1326                         break;
1327
1328                 /* Verify tx error by looking at the last segment. */
1329                 last = priv->hw->desc->get_tx_ls(p);
1330                 if (likely(last)) {
1331                         int tx_error =
1332                             priv->hw->desc->tx_status(&priv->dev->stats,
1333                                                       &priv->xstats, p,
1334                                                       priv->ioaddr);
1335                         if (likely(tx_error == 0)) {
1336                                 priv->dev->stats.tx_packets++;
1337                                 priv->xstats.tx_pkt_n++;
1338                         } else
1339                                 priv->dev->stats.tx_errors++;
1340
1341                         stmmac_get_tx_hwtstamp(priv, entry, skb);
1342                 }
1343                 if (netif_msg_tx_done(priv))
1344                         pr_debug("%s: curr %d, dirty %d\n", __func__,
1345                                  priv->cur_tx, priv->dirty_tx);
1346
1347                 if (likely(priv->tx_skbuff_dma[entry].buf)) {
1348                         if (priv->tx_skbuff_dma[entry].map_as_page)
1349                                 dma_unmap_page(priv->device,
1350                                                priv->tx_skbuff_dma[entry].buf,
1351                                                priv->tx_skbuff_dma[entry].len,
1352                                                DMA_TO_DEVICE);
1353                         else
1354                                 dma_unmap_single(priv->device,
1355                                                  priv->tx_skbuff_dma[entry].buf,
1356                                                  priv->tx_skbuff_dma[entry].len,
1357                                                  DMA_TO_DEVICE);
1358                         priv->tx_skbuff_dma[entry].buf = 0;
1359                         priv->tx_skbuff_dma[entry].map_as_page = false;
1360                 }
1361                 priv->hw->mode->clean_desc3(priv, p);
1362
1363                 if (likely(skb != NULL)) {
1364                         pkts_compl++;
1365                         bytes_compl += skb->len;
1366                         dev_consume_skb_any(skb);
1367                         priv->tx_skbuff[entry] = NULL;
1368                 }
1369
1370                 priv->hw->desc->release_tx_desc(p, priv->mode);
1371
1372                 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1373                 priv->dirty_tx = entry;
1374         }
1375
1376         netdev_completed_queue(priv->dev, pkts_compl, bytes_compl);
1377
1378         if (unlikely(netif_queue_stopped(priv->dev) &&
1379                      stmmac_tx_avail(priv) > STMMAC_TX_THRESH)) {
1380                 netif_tx_lock(priv->dev);
1381                 if (netif_queue_stopped(priv->dev) &&
1382                     stmmac_tx_avail(priv) > STMMAC_TX_THRESH) {
1383                         if (netif_msg_tx_done(priv))
1384                                 pr_debug("%s: restart transmit\n", __func__);
1385                         netif_wake_queue(priv->dev);
1386                 }
1387                 netif_tx_unlock(priv->dev);
1388         }
1389
1390         if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1391                 stmmac_enable_eee_mode(priv);
1392                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1393         }
1394         spin_unlock(&priv->tx_lock);
1395 }
1396
1397 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1398 {
1399         priv->hw->dma->enable_dma_irq(priv->ioaddr);
1400 }
1401
1402 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1403 {
1404         priv->hw->dma->disable_dma_irq(priv->ioaddr);
1405 }
1406
1407 /**
1408  * stmmac_tx_err - to manage the tx error
1409  * @priv: driver private structure
1410  * Description: it cleans the descriptors and restarts the transmission
1411  * in case of transmission errors.
1412  */
1413 static void stmmac_tx_err(struct stmmac_priv *priv)
1414 {
1415         int i;
1416         netif_stop_queue(priv->dev);
1417
1418         priv->hw->dma->stop_tx(priv->ioaddr);
1419         dma_free_tx_skbufs(priv);
1420         for (i = 0; i < DMA_TX_SIZE; i++)
1421                 if (priv->extend_desc)
1422                         priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1423                                                      priv->mode,
1424                                                      (i == DMA_TX_SIZE - 1));
1425                 else
1426                         priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1427                                                      priv->mode,
1428                                                      (i == DMA_TX_SIZE - 1));
1429         priv->dirty_tx = 0;
1430         priv->cur_tx = 0;
1431         netdev_reset_queue(priv->dev);
1432         priv->hw->dma->start_tx(priv->ioaddr);
1433
1434         priv->dev->stats.tx_errors++;
1435         netif_wake_queue(priv->dev);
1436 }
1437
1438 /**
1439  * stmmac_dma_interrupt - DMA ISR
1440  * @priv: driver private structure
1441  * Description: this is the DMA ISR. It is called by the main ISR.
1442  * It calls the dwmac dma routine and schedule poll method in case of some
1443  * work can be done.
1444  */
1445 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1446 {
1447         int status;
1448         int rxfifosz = priv->plat->rx_fifo_size;
1449
1450         status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1451         if (likely((status & handle_rx)) || (status & handle_tx)) {
1452                 if (likely(napi_schedule_prep(&priv->napi))) {
1453                         stmmac_disable_dma_irq(priv);
1454                         __napi_schedule(&priv->napi);
1455                 }
1456         }
1457         if (unlikely(status & tx_hard_error_bump_tc)) {
1458                 /* Try to bump up the dma threshold on this failure */
1459                 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
1460                     (tc <= 256)) {
1461                         tc += 64;
1462                         if (priv->plat->force_thresh_dma_mode)
1463                                 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc,
1464                                                         rxfifosz);
1465                         else
1466                                 priv->hw->dma->dma_mode(priv->ioaddr, tc,
1467                                                         SF_DMA_MODE, rxfifosz);
1468                         priv->xstats.threshold = tc;
1469                 }
1470         } else if (unlikely(status == tx_hard_error))
1471                 stmmac_tx_err(priv);
1472 }
1473
1474 /**
1475  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1476  * @priv: driver private structure
1477  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1478  */
1479 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1480 {
1481         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1482             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1483
1484         dwmac_mmc_intr_all_mask(priv->ioaddr);
1485
1486         if (priv->dma_cap.rmon) {
1487                 dwmac_mmc_ctrl(priv->ioaddr, mode);
1488                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1489         } else
1490                 pr_info(" No MAC Management Counters available\n");
1491 }
1492
1493 /**
1494  * stmmac_get_synopsys_id - return the SYINID.
1495  * @priv: driver private structure
1496  * Description: this simple function is to decode and return the SYINID
1497  * starting from the HW core register.
1498  */
1499 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1500 {
1501         u32 hwid = priv->hw->synopsys_uid;
1502
1503         /* Check Synopsys Id (not available on old chips) */
1504         if (likely(hwid)) {
1505                 u32 uid = ((hwid & 0x0000ff00) >> 8);
1506                 u32 synid = (hwid & 0x000000ff);
1507
1508                 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1509                         uid, synid);
1510
1511                 return synid;
1512         }
1513         return 0;
1514 }
1515
1516 /**
1517  * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
1518  * @priv: driver private structure
1519  * Description: select the Enhanced/Alternate or Normal descriptors.
1520  * In case of Enhanced/Alternate, it checks if the extended descriptors are
1521  * supported by the HW capability register.
1522  */
1523 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1524 {
1525         if (priv->plat->enh_desc) {
1526                 pr_info(" Enhanced/Alternate descriptors\n");
1527
1528                 /* GMAC older than 3.50 has no extended descriptors */
1529                 if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1530                         pr_info("\tEnabled extended descriptors\n");
1531                         priv->extend_desc = 1;
1532                 } else
1533                         pr_warn("Extended descriptors not supported\n");
1534
1535                 priv->hw->desc = &enh_desc_ops;
1536         } else {
1537                 pr_info(" Normal descriptors\n");
1538                 priv->hw->desc = &ndesc_ops;
1539         }
1540 }
1541
1542 /**
1543  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
1544  * @priv: driver private structure
1545  * Description:
1546  *  new GMAC chip generations have a new register to indicate the
1547  *  presence of the optional feature/functions.
1548  *  This can be also used to override the value passed through the
1549  *  platform and necessary for old MAC10/100 and GMAC chips.
1550  */
1551 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1552 {
1553         u32 hw_cap = 0;
1554
1555         if (priv->hw->dma->get_hw_feature) {
1556                 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1557
1558                 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1559                 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1560                 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1561                 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1562                 priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1563                 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1564                 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1565                 priv->dma_cap.pmt_remote_wake_up =
1566                     (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1567                 priv->dma_cap.pmt_magic_frame =
1568                     (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1569                 /* MMC */
1570                 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1571                 /* IEEE 1588-2002 */
1572                 priv->dma_cap.time_stamp =
1573                     (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1574                 /* IEEE 1588-2008 */
1575                 priv->dma_cap.atime_stamp =
1576                     (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1577                 /* 802.3az - Energy-Efficient Ethernet (EEE) */
1578                 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1579                 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1580                 /* TX and RX csum */
1581                 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1582                 priv->dma_cap.rx_coe_type1 =
1583                     (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1584                 priv->dma_cap.rx_coe_type2 =
1585                     (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1586                 priv->dma_cap.rxfifo_over_2048 =
1587                     (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1588                 /* TX and RX number of channels */
1589                 priv->dma_cap.number_rx_channel =
1590                     (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1591                 priv->dma_cap.number_tx_channel =
1592                     (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1593                 /* Alternate (enhanced) DESC mode */
1594                 priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1595         }
1596
1597         return hw_cap;
1598 }
1599
1600 /**
1601  * stmmac_check_ether_addr - check if the MAC addr is valid
1602  * @priv: driver private structure
1603  * Description:
1604  * it is to verify if the MAC address is valid, in case of failures it
1605  * generates a random MAC address
1606  */
1607 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1608 {
1609         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1610                 priv->hw->mac->get_umac_addr(priv->hw,
1611                                              priv->dev->dev_addr, 0);
1612                 if (!is_valid_ether_addr(priv->dev->dev_addr))
1613                         eth_hw_addr_random(priv->dev);
1614                 pr_info("%s: device MAC address %pM\n", priv->dev->name,
1615                         priv->dev->dev_addr);
1616         }
1617 }
1618
1619 /**
1620  * stmmac_init_dma_engine - DMA init.
1621  * @priv: driver private structure
1622  * Description:
1623  * It inits the DMA invoking the specific MAC/GMAC callback.
1624  * Some DMA parameters can be passed from the platform;
1625  * in case of these are not passed a default is kept for the MAC or GMAC.
1626  */
1627 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1628 {
1629         int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, aal = 0;
1630         int mixed_burst = 0;
1631         int atds = 0;
1632         int ret = 0;
1633
1634         if (priv->plat->dma_cfg) {
1635                 pbl = priv->plat->dma_cfg->pbl;
1636                 fixed_burst = priv->plat->dma_cfg->fixed_burst;
1637                 mixed_burst = priv->plat->dma_cfg->mixed_burst;
1638                 aal = priv->plat->dma_cfg->aal;
1639         }
1640
1641         if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1642                 atds = 1;
1643
1644         ret = priv->hw->dma->reset(priv->ioaddr);
1645         if (ret) {
1646                 dev_err(priv->device, "Failed to reset the dma\n");
1647                 return ret;
1648         }
1649
1650         priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1651                             aal, priv->dma_tx_phy, priv->dma_rx_phy, atds);
1652
1653         if ((priv->synopsys_id >= DWMAC_CORE_3_50) &&
1654             (priv->plat->axi && priv->hw->dma->axi))
1655                 priv->hw->dma->axi(priv->ioaddr, priv->plat->axi);
1656
1657         return ret;
1658 }
1659
1660 /**
1661  * stmmac_tx_timer - mitigation sw timer for tx.
1662  * @data: data pointer
1663  * Description:
1664  * This is the timer handler to directly invoke the stmmac_tx_clean.
1665  */
1666 static void stmmac_tx_timer(unsigned long data)
1667 {
1668         struct stmmac_priv *priv = (struct stmmac_priv *)data;
1669
1670         stmmac_tx_clean(priv);
1671 }
1672
1673 /**
1674  * stmmac_init_tx_coalesce - init tx mitigation options.
1675  * @priv: driver private structure
1676  * Description:
1677  * This inits the transmit coalesce parameters: i.e. timer rate,
1678  * timer handler and default threshold used for enabling the
1679  * interrupt on completion bit.
1680  */
1681 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1682 {
1683         priv->tx_coal_frames = STMMAC_TX_FRAMES;
1684         priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1685         init_timer(&priv->txtimer);
1686         priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1687         priv->txtimer.data = (unsigned long)priv;
1688         priv->txtimer.function = stmmac_tx_timer;
1689         add_timer(&priv->txtimer);
1690 }
1691
1692 /**
1693  * stmmac_hw_setup - setup mac in a usable state.
1694  *  @dev : pointer to the device structure.
1695  *  Description:
1696  *  this is the main function to setup the HW in a usable state because the
1697  *  dma engine is reset, the core registers are configured (e.g. AXI,
1698  *  Checksum features, timers). The DMA is ready to start receiving and
1699  *  transmitting.
1700  *  Return value:
1701  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1702  *  file on failure.
1703  */
1704 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
1705 {
1706         struct stmmac_priv *priv = netdev_priv(dev);
1707         int ret;
1708
1709         /* DMA initialization and SW reset */
1710         ret = stmmac_init_dma_engine(priv);
1711         if (ret < 0) {
1712                 pr_err("%s: DMA engine initialization failed\n", __func__);
1713                 return ret;
1714         }
1715
1716         /* Copy the MAC addr into the HW  */
1717         priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1718
1719         /* If required, perform hw setup of the bus. */
1720         if (priv->plat->bus_setup)
1721                 priv->plat->bus_setup(priv->ioaddr);
1722
1723         /* Initialize the MAC Core */
1724         priv->hw->mac->core_init(priv->hw, dev->mtu);
1725
1726         ret = priv->hw->mac->rx_ipc(priv->hw);
1727         if (!ret) {
1728                 pr_warn(" RX IPC Checksum Offload disabled\n");
1729                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1730                 priv->hw->rx_csum = 0;
1731         }
1732
1733         /* Enable the MAC Rx/Tx */
1734         stmmac_set_mac(priv->ioaddr, true);
1735
1736         /* Set the HW DMA mode and the COE */
1737         stmmac_dma_operation_mode(priv);
1738
1739         stmmac_mmc_setup(priv);
1740
1741         if (init_ptp) {
1742                 ret = stmmac_init_ptp(priv);
1743                 if (ret && ret != -EOPNOTSUPP)
1744                         pr_warn("%s: failed PTP initialisation\n", __func__);
1745         }
1746
1747 #ifdef CONFIG_DEBUG_FS
1748         ret = stmmac_init_fs(dev);
1749         if (ret < 0)
1750                 pr_warn("%s: failed debugFS registration\n", __func__);
1751 #endif
1752         /* Start the ball rolling... */
1753         pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1754         priv->hw->dma->start_tx(priv->ioaddr);
1755         priv->hw->dma->start_rx(priv->ioaddr);
1756
1757         /* Dump DMA/MAC registers */
1758         if (netif_msg_hw(priv)) {
1759                 priv->hw->mac->dump_regs(priv->hw);
1760                 priv->hw->dma->dump_regs(priv->ioaddr);
1761         }
1762         priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1763
1764         if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1765                 priv->rx_riwt = MAX_DMA_RIWT;
1766                 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1767         }
1768
1769         if (priv->pcs && priv->hw->mac->ctrl_ane)
1770                 priv->hw->mac->ctrl_ane(priv->hw, 0);
1771
1772         return 0;
1773 }
1774
1775 /**
1776  *  stmmac_open - open entry point of the driver
1777  *  @dev : pointer to the device structure.
1778  *  Description:
1779  *  This function is the open entry point of the driver.
1780  *  Return value:
1781  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1782  *  file on failure.
1783  */
1784 static int stmmac_open(struct net_device *dev)
1785 {
1786         struct stmmac_priv *priv = netdev_priv(dev);
1787         int ret;
1788
1789         stmmac_check_ether_addr(priv);
1790
1791         if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1792             priv->pcs != STMMAC_PCS_RTBI) {
1793                 ret = stmmac_init_phy(dev);
1794                 if (ret) {
1795                         pr_err("%s: Cannot attach to PHY (error: %d)\n",
1796                                __func__, ret);
1797                         return ret;
1798                 }
1799         }
1800
1801         /* Extra statistics */
1802         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1803         priv->xstats.threshold = tc;
1804
1805         priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1806
1807         ret = alloc_dma_desc_resources(priv);
1808         if (ret < 0) {
1809                 pr_err("%s: DMA descriptors allocation failed\n", __func__);
1810                 goto dma_desc_error;
1811         }
1812
1813         ret = init_dma_desc_rings(dev, GFP_KERNEL);
1814         if (ret < 0) {
1815                 pr_err("%s: DMA descriptors initialization failed\n", __func__);
1816                 goto init_error;
1817         }
1818
1819         ret = stmmac_hw_setup(dev, true);
1820         if (ret < 0) {
1821                 pr_err("%s: Hw setup failed\n", __func__);
1822                 goto init_error;
1823         }
1824
1825         stmmac_init_tx_coalesce(priv);
1826
1827         if (priv->phydev)
1828                 phy_start(priv->phydev);
1829
1830         /* Request the IRQ lines */
1831         ret = request_irq(dev->irq, stmmac_interrupt,
1832                           IRQF_SHARED, dev->name, dev);
1833         if (unlikely(ret < 0)) {
1834                 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1835                        __func__, dev->irq, ret);
1836                 goto init_error;
1837         }
1838
1839         /* Request the Wake IRQ in case of another line is used for WoL */
1840         if (priv->wol_irq != dev->irq) {
1841                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1842                                   IRQF_SHARED, dev->name, dev);
1843                 if (unlikely(ret < 0)) {
1844                         pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1845                                __func__, priv->wol_irq, ret);
1846                         goto wolirq_error;
1847                 }
1848         }
1849
1850         /* Request the IRQ lines */
1851         if (priv->lpi_irq > 0) {
1852                 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1853                                   dev->name, dev);
1854                 if (unlikely(ret < 0)) {
1855                         pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1856                                __func__, priv->lpi_irq, ret);
1857                         goto lpiirq_error;
1858                 }
1859         }
1860
1861         napi_enable(&priv->napi);
1862         netif_start_queue(dev);
1863
1864         return 0;
1865
1866 lpiirq_error:
1867         if (priv->wol_irq != dev->irq)
1868                 free_irq(priv->wol_irq, dev);
1869 wolirq_error:
1870         free_irq(dev->irq, dev);
1871
1872 init_error:
1873         free_dma_desc_resources(priv);
1874 dma_desc_error:
1875         if (priv->phydev)
1876                 phy_disconnect(priv->phydev);
1877
1878         return ret;
1879 }
1880
1881 /**
1882  *  stmmac_release - close entry point of the driver
1883  *  @dev : device pointer.
1884  *  Description:
1885  *  This is the stop entry point of the driver.
1886  */
1887 static int stmmac_release(struct net_device *dev)
1888 {
1889         struct stmmac_priv *priv = netdev_priv(dev);
1890
1891         if (priv->eee_enabled)
1892                 del_timer_sync(&priv->eee_ctrl_timer);
1893
1894         /* Stop and disconnect the PHY */
1895         if (priv->phydev) {
1896                 phy_stop(priv->phydev);
1897                 phy_disconnect(priv->phydev);
1898                 priv->phydev = NULL;
1899         }
1900
1901         netif_stop_queue(dev);
1902
1903         napi_disable(&priv->napi);
1904
1905         del_timer_sync(&priv->txtimer);
1906
1907         /* Free the IRQ lines */
1908         free_irq(dev->irq, dev);
1909         if (priv->wol_irq != dev->irq)
1910                 free_irq(priv->wol_irq, dev);
1911         if (priv->lpi_irq > 0)
1912                 free_irq(priv->lpi_irq, dev);
1913
1914         /* Stop TX/RX DMA and clear the descriptors */
1915         priv->hw->dma->stop_tx(priv->ioaddr);
1916         priv->hw->dma->stop_rx(priv->ioaddr);
1917
1918         /* Release and free the Rx/Tx resources */
1919         free_dma_desc_resources(priv);
1920
1921         /* Disable the MAC Rx/Tx */
1922         stmmac_set_mac(priv->ioaddr, false);
1923
1924         netif_carrier_off(dev);
1925
1926 #ifdef CONFIG_DEBUG_FS
1927         stmmac_exit_fs(dev);
1928 #endif
1929
1930         stmmac_release_ptp(priv);
1931
1932         return 0;
1933 }
1934
1935 /**
1936  *  stmmac_xmit - Tx entry point of the driver
1937  *  @skb : the socket buffer
1938  *  @dev : device pointer
1939  *  Description : this is the tx entry point of the driver.
1940  *  It programs the chain or the ring and supports oversized frames
1941  *  and SG feature.
1942  */
1943 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1944 {
1945         struct stmmac_priv *priv = netdev_priv(dev);
1946         int entry;
1947         int i, csum_insertion = 0, is_jumbo = 0;
1948         int nfrags = skb_shinfo(skb)->nr_frags;
1949         struct dma_desc *desc, *first;
1950         unsigned int nopaged_len = skb_headlen(skb);
1951         unsigned int enh_desc = priv->plat->enh_desc;
1952
1953         spin_lock(&priv->tx_lock);
1954
1955         if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1956                 spin_unlock(&priv->tx_lock);
1957                 if (!netif_queue_stopped(dev)) {
1958                         netif_stop_queue(dev);
1959                         /* This is a hard error, log it. */
1960                         pr_err("%s: Tx Ring full when queue awake\n", __func__);
1961                 }
1962                 return NETDEV_TX_BUSY;
1963         }
1964
1965         if (priv->tx_path_in_lpi_mode)
1966                 stmmac_disable_eee_mode(priv);
1967
1968         entry = priv->cur_tx;
1969
1970
1971         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1972
1973         if (priv->extend_desc)
1974                 desc = (struct dma_desc *)(priv->dma_etx + entry);
1975         else
1976                 desc = priv->dma_tx + entry;
1977
1978         first = desc;
1979
1980         /* To program the descriptors according to the size of the frame */
1981         if (enh_desc)
1982                 is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
1983
1984         if (likely(!is_jumbo)) {
1985                 desc->des2 = dma_map_single(priv->device, skb->data,
1986                                             nopaged_len, DMA_TO_DEVICE);
1987                 if (dma_mapping_error(priv->device, desc->des2))
1988                         goto dma_map_err;
1989                 priv->tx_skbuff_dma[entry].buf = desc->des2;
1990                 priv->tx_skbuff_dma[entry].len = nopaged_len;
1991                 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1992                                                 csum_insertion, priv->mode);
1993         } else {
1994                 desc = first;
1995                 entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
1996                 if (unlikely(entry < 0))
1997                         goto dma_map_err;
1998         }
1999
2000         for (i = 0; i < nfrags; i++) {
2001                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2002                 int len = skb_frag_size(frag);
2003
2004                 priv->tx_skbuff[entry] = NULL;
2005                 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2006
2007                 if (priv->extend_desc)
2008                         desc = (struct dma_desc *)(priv->dma_etx + entry);
2009                 else
2010                         desc = priv->dma_tx + entry;
2011
2012                 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
2013                                               DMA_TO_DEVICE);
2014                 if (dma_mapping_error(priv->device, desc->des2))
2015                         goto dma_map_err; /* should reuse desc w/o issues */
2016
2017                 priv->tx_skbuff_dma[entry].buf = desc->des2;
2018                 priv->tx_skbuff_dma[entry].map_as_page = true;
2019                 priv->tx_skbuff_dma[entry].len = len;
2020                 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
2021                                                 priv->mode);
2022                 wmb();
2023                 priv->hw->desc->set_tx_owner(desc);
2024                 wmb();
2025         }
2026
2027         priv->tx_skbuff[entry] = skb;
2028
2029         /* Finalize the latest segment. */
2030         priv->hw->desc->close_tx_desc(desc);
2031
2032         wmb();
2033         /* According to the coalesce parameter the IC bit for the latest
2034          * segment could be reset and the timer re-started to invoke the
2035          * stmmac_tx function. This approach takes care about the fragments.
2036          */
2037         priv->tx_count_frames += nfrags + 1;
2038         if (priv->tx_coal_frames > priv->tx_count_frames) {
2039                 priv->hw->desc->clear_tx_ic(desc);
2040                 priv->xstats.tx_reset_ic_bit++;
2041                 mod_timer(&priv->txtimer,
2042                           STMMAC_COAL_TIMER(priv->tx_coal_timer));
2043         } else
2044                 priv->tx_count_frames = 0;
2045
2046         /* To avoid raise condition */
2047         priv->hw->desc->set_tx_owner(first);
2048         wmb();
2049
2050         entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2051
2052         priv->cur_tx = entry;
2053
2054         if (netif_msg_pktdata(priv)) {
2055                 pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
2056                         __func__, (priv->cur_tx % DMA_TX_SIZE),
2057                         (priv->dirty_tx % DMA_TX_SIZE), entry, first, nfrags);
2058
2059                 if (priv->extend_desc)
2060                         stmmac_display_ring((void *)priv->dma_etx,
2061                                             DMA_TX_SIZE, 1);
2062                 else
2063                         stmmac_display_ring((void *)priv->dma_tx,
2064                                             DMA_TX_SIZE, 0);
2065
2066                 pr_debug(">>> frame to be transmitted: ");
2067                 print_pkt(skb->data, skb->len);
2068         }
2069         if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2070                 if (netif_msg_hw(priv))
2071                         pr_debug("%s: stop transmitted packets\n", __func__);
2072                 netif_stop_queue(dev);
2073         }
2074
2075         dev->stats.tx_bytes += skb->len;
2076
2077         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2078                      priv->hwts_tx_en)) {
2079                 /* declare that device is doing timestamping */
2080                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2081                 priv->hw->desc->enable_tx_timestamp(first);
2082         }
2083
2084         if (!priv->hwts_tx_en)
2085                 skb_tx_timestamp(skb);
2086
2087         netdev_sent_queue(dev, skb->len);
2088         priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2089
2090         spin_unlock(&priv->tx_lock);
2091         return NETDEV_TX_OK;
2092
2093 dma_map_err:
2094         spin_unlock(&priv->tx_lock);
2095         dev_err(priv->device, "Tx dma map failed\n");
2096         dev_kfree_skb(skb);
2097         priv->dev->stats.tx_dropped++;
2098         return NETDEV_TX_OK;
2099 }
2100
2101 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2102 {
2103         struct ethhdr *ehdr;
2104         u16 vlanid;
2105
2106         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2107             NETIF_F_HW_VLAN_CTAG_RX &&
2108             !__vlan_get_tag(skb, &vlanid)) {
2109                 /* pop the vlan tag */
2110                 ehdr = (struct ethhdr *)skb->data;
2111                 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2112                 skb_pull(skb, VLAN_HLEN);
2113                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2114         }
2115 }
2116
2117
2118 /**
2119  * stmmac_rx_refill - refill used skb preallocated buffers
2120  * @priv: driver private structure
2121  * Description : this is to reallocate the skb for the reception process
2122  * that is based on zero-copy.
2123  */
2124 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2125 {
2126         int bfsize = priv->dma_buf_sz;
2127         unsigned int entry = priv->dirty_rx;
2128         int dirty = stmmac_rx_dirty(priv);
2129
2130         while (dirty-- > 0) {
2131                 struct dma_desc *p;
2132
2133                 if (priv->extend_desc)
2134                         p = (struct dma_desc *)(priv->dma_erx + entry);
2135                 else
2136                         p = priv->dma_rx + entry;
2137
2138                 if (likely(priv->rx_skbuff[entry] == NULL)) {
2139                         struct sk_buff *skb;
2140
2141                         skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2142
2143                         if (unlikely(skb == NULL))
2144                                 break;
2145
2146                         priv->rx_skbuff[entry] = skb;
2147                         priv->rx_skbuff_dma[entry] =
2148                             dma_map_single(priv->device, skb->data, bfsize,
2149                                            DMA_FROM_DEVICE);
2150                         if (dma_mapping_error(priv->device,
2151                                               priv->rx_skbuff_dma[entry])) {
2152                                 dev_err(priv->device, "Rx dma map failed\n");
2153                                 dev_kfree_skb(skb);
2154                                 break;
2155                         }
2156                         p->des2 = priv->rx_skbuff_dma[entry];
2157
2158                         priv->hw->mode->refill_desc3(priv, p);
2159
2160                         if (netif_msg_rx_status(priv))
2161                                 pr_debug("\trefill entry #%d\n", entry);
2162                 }
2163                 wmb();
2164                 priv->hw->desc->set_rx_owner(p);
2165                 wmb();
2166
2167                 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
2168         }
2169         priv->dirty_rx = entry;
2170 }
2171
2172 /**
2173  * stmmac_rx - manage the receive process
2174  * @priv: driver private structure
2175  * @limit: napi bugget.
2176  * Description :  this the function called by the napi poll method.
2177  * It gets all the frames inside the ring.
2178  */
2179 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2180 {
2181         unsigned int entry = priv->cur_rx;
2182         unsigned int next_entry;
2183         unsigned int count = 0;
2184         int coe = priv->hw->rx_csum;
2185
2186         if (netif_msg_rx_status(priv)) {
2187                 pr_debug("%s: descriptor ring:\n", __func__);
2188                 if (priv->extend_desc)
2189                         stmmac_display_ring((void *)priv->dma_erx,
2190                                             DMA_RX_SIZE, 1);
2191                 else
2192                         stmmac_display_ring((void *)priv->dma_rx,
2193                                             DMA_RX_SIZE, 0);
2194         }
2195         while (count < limit) {
2196                 int status;
2197                 struct dma_desc *p;
2198
2199                 if (priv->extend_desc)
2200                         p = (struct dma_desc *)(priv->dma_erx + entry);
2201                 else
2202                         p = priv->dma_rx + entry;
2203
2204                 if (priv->hw->desc->get_rx_owner(p))
2205                         break;
2206
2207                 count++;
2208
2209                 priv->cur_rx = STMMAC_GET_ENTRY(priv->cur_rx, DMA_RX_SIZE);
2210                 next_entry = priv->cur_rx;
2211
2212                 if (priv->extend_desc)
2213                         prefetch(priv->dma_erx + next_entry);
2214                 else
2215                         prefetch(priv->dma_rx + next_entry);
2216
2217                 /* read the status of the incoming frame */
2218                 status = priv->hw->desc->rx_status(&priv->dev->stats,
2219                                                    &priv->xstats, p);
2220                 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2221                         priv->hw->desc->rx_extended_status(&priv->dev->stats,
2222                                                            &priv->xstats,
2223                                                            priv->dma_erx +
2224                                                            entry);
2225                 if (unlikely(status == discard_frame)) {
2226                         priv->dev->stats.rx_errors++;
2227                         if (priv->hwts_rx_en && !priv->extend_desc) {
2228                                 /* DESC2 & DESC3 will be overwitten by device
2229                                  * with timestamp value, hence reinitialize
2230                                  * them in stmmac_rx_refill() function so that
2231                                  * device can reuse it.
2232                                  */
2233                                 priv->rx_skbuff[entry] = NULL;
2234                                 dma_unmap_single(priv->device,
2235                                                  priv->rx_skbuff_dma[entry],
2236                                                  priv->dma_buf_sz,
2237                                                  DMA_FROM_DEVICE);
2238                         }
2239                 } else {
2240                         struct sk_buff *skb;
2241                         int frame_len;
2242
2243                         frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2244
2245                         /*  check if frame_len fits the preallocated memory */
2246                         if (frame_len > priv->dma_buf_sz) {
2247                                 priv->dev->stats.rx_length_errors++;
2248                                 break;
2249                         }
2250
2251                         /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2252                          * Type frames (LLC/LLC-SNAP)
2253                          */
2254                         if (unlikely(status != llc_snap))
2255                                 frame_len -= ETH_FCS_LEN;
2256
2257                         if (netif_msg_rx_status(priv)) {
2258                                 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2259                                          p, entry, p->des2);
2260                                 if (frame_len > ETH_FRAME_LEN)
2261                                         pr_debug("\tframe size %d, COE: %d\n",
2262                                                  frame_len, status);
2263                         }
2264                         skb = priv->rx_skbuff[entry];
2265                         if (unlikely(!skb)) {
2266                                 pr_err("%s: Inconsistent Rx descriptor chain\n",
2267                                        priv->dev->name);
2268                                 priv->dev->stats.rx_dropped++;
2269                                 break;
2270                         }
2271                         prefetch(skb->data - NET_IP_ALIGN);
2272                         priv->rx_skbuff[entry] = NULL;
2273
2274                         stmmac_get_rx_hwtstamp(priv, entry, skb);
2275
2276                         skb_put(skb, frame_len);
2277                         dma_unmap_single(priv->device,
2278                                          priv->rx_skbuff_dma[entry],
2279                                          priv->dma_buf_sz, DMA_FROM_DEVICE);
2280
2281                         if (netif_msg_pktdata(priv)) {
2282                                 pr_debug("frame received (%dbytes)", frame_len);
2283                                 print_pkt(skb->data, frame_len);
2284                         }
2285
2286                         stmmac_rx_vlan(priv->dev, skb);
2287
2288                         skb->protocol = eth_type_trans(skb, priv->dev);
2289
2290                         if (unlikely(!coe))
2291                                 skb_checksum_none_assert(skb);
2292                         else
2293                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2294
2295                         napi_gro_receive(&priv->napi, skb);
2296
2297                         priv->dev->stats.rx_packets++;
2298                         priv->dev->stats.rx_bytes += frame_len;
2299                 }
2300                 entry = next_entry;
2301         }
2302
2303         stmmac_rx_refill(priv);
2304
2305         priv->xstats.rx_pkt_n += count;
2306
2307         return count;
2308 }
2309
2310 /**
2311  *  stmmac_poll - stmmac poll method (NAPI)
2312  *  @napi : pointer to the napi structure.
2313  *  @budget : maximum number of packets that the current CPU can receive from
2314  *            all interfaces.
2315  *  Description :
2316  *  To look at the incoming frames and clear the tx resources.
2317  */
2318 static int stmmac_poll(struct napi_struct *napi, int budget)
2319 {
2320         struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2321         int work_done = 0;
2322
2323         priv->xstats.napi_poll++;
2324         stmmac_tx_clean(priv);
2325
2326         work_done = stmmac_rx(priv, budget);
2327         if (work_done < budget) {
2328                 napi_complete(napi);
2329                 stmmac_enable_dma_irq(priv);
2330         }
2331         return work_done;
2332 }
2333
2334 /**
2335  *  stmmac_tx_timeout
2336  *  @dev : Pointer to net device structure
2337  *  Description: this function is called when a packet transmission fails to
2338  *   complete within a reasonable time. The driver will mark the error in the
2339  *   netdev structure and arrange for the device to be reset to a sane state
2340  *   in order to transmit a new packet.
2341  */
2342 static void stmmac_tx_timeout(struct net_device *dev)
2343 {
2344         struct stmmac_priv *priv = netdev_priv(dev);
2345
2346         /* Clear Tx resources and restart transmitting again */
2347         stmmac_tx_err(priv);
2348 }
2349
2350 /**
2351  *  stmmac_set_rx_mode - entry point for multicast addressing
2352  *  @dev : pointer to the device structure
2353  *  Description:
2354  *  This function is a driver entry point which gets called by the kernel
2355  *  whenever multicast addresses must be enabled/disabled.
2356  *  Return value:
2357  *  void.
2358  */
2359 static void stmmac_set_rx_mode(struct net_device *dev)
2360 {
2361         struct stmmac_priv *priv = netdev_priv(dev);
2362
2363         priv->hw->mac->set_filter(priv->hw, dev);
2364 }
2365
2366 /**
2367  *  stmmac_change_mtu - entry point to change MTU size for the device.
2368  *  @dev : device pointer.
2369  *  @new_mtu : the new MTU size for the device.
2370  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
2371  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
2372  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
2373  *  Return value:
2374  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2375  *  file on failure.
2376  */
2377 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2378 {
2379         struct stmmac_priv *priv = netdev_priv(dev);
2380         int max_mtu;
2381
2382         if (netif_running(dev)) {
2383                 pr_err("%s: must be stopped to change its MTU\n", dev->name);
2384                 return -EBUSY;
2385         }
2386
2387         if (priv->plat->enh_desc)
2388                 max_mtu = JUMBO_LEN;
2389         else
2390                 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2391
2392         if (priv->plat->maxmtu < max_mtu)
2393                 max_mtu = priv->plat->maxmtu;
2394
2395         if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2396                 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2397                 return -EINVAL;
2398         }
2399
2400         dev->mtu = new_mtu;
2401         netdev_update_features(dev);
2402
2403         return 0;
2404 }
2405
2406 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2407                                              netdev_features_t features)
2408 {
2409         struct stmmac_priv *priv = netdev_priv(dev);
2410
2411         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2412                 features &= ~NETIF_F_RXCSUM;
2413
2414         if (!priv->plat->tx_coe)
2415                 features &= ~NETIF_F_CSUM_MASK;
2416
2417         /* Some GMAC devices have a bugged Jumbo frame support that
2418          * needs to have the Tx COE disabled for oversized frames
2419          * (due to limited buffer sizes). In this case we disable
2420          * the TX csum insertionin the TDES and not use SF.
2421          */
2422         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2423                 features &= ~NETIF_F_CSUM_MASK;
2424
2425         return features;
2426 }
2427
2428 static int stmmac_set_features(struct net_device *netdev,
2429                                netdev_features_t features)
2430 {
2431         struct stmmac_priv *priv = netdev_priv(netdev);
2432
2433         /* Keep the COE Type in case of csum is supporting */
2434         if (features & NETIF_F_RXCSUM)
2435                 priv->hw->rx_csum = priv->plat->rx_coe;
2436         else
2437                 priv->hw->rx_csum = 0;
2438         /* No check needed because rx_coe has been set before and it will be
2439          * fixed in case of issue.
2440          */
2441         priv->hw->mac->rx_ipc(priv->hw);
2442
2443         return 0;
2444 }
2445
2446 /**
2447  *  stmmac_interrupt - main ISR
2448  *  @irq: interrupt number.
2449  *  @dev_id: to pass the net device pointer.
2450  *  Description: this is the main driver interrupt service routine.
2451  *  It can call:
2452  *  o DMA service routine (to manage incoming frame reception and transmission
2453  *    status)
2454  *  o Core interrupts to manage: remote wake-up, management counter, LPI
2455  *    interrupts.
2456  */
2457 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2458 {
2459         struct net_device *dev = (struct net_device *)dev_id;
2460         struct stmmac_priv *priv = netdev_priv(dev);
2461
2462         if (priv->irq_wake)
2463                 pm_wakeup_event(priv->device, 0);
2464
2465         if (unlikely(!dev)) {
2466                 pr_err("%s: invalid dev pointer\n", __func__);
2467                 return IRQ_NONE;
2468         }
2469
2470         /* To handle GMAC own interrupts */
2471         if (priv->plat->has_gmac) {
2472                 int status = priv->hw->mac->host_irq_status(priv->hw,
2473                                                             &priv->xstats);
2474                 if (unlikely(status)) {
2475                         /* For LPI we need to save the tx status */
2476                         if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2477                                 priv->tx_path_in_lpi_mode = true;
2478                         if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2479                                 priv->tx_path_in_lpi_mode = false;
2480                 }
2481         }
2482
2483         /* To handle DMA interrupts */
2484         stmmac_dma_interrupt(priv);
2485
2486         return IRQ_HANDLED;
2487 }
2488
2489 #ifdef CONFIG_NET_POLL_CONTROLLER
2490 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2491  * to allow network I/O with interrupts disabled.
2492  */
2493 static void stmmac_poll_controller(struct net_device *dev)
2494 {
2495         disable_irq(dev->irq);
2496         stmmac_interrupt(dev->irq, dev);
2497         enable_irq(dev->irq);
2498 }
2499 #endif
2500
2501 /**
2502  *  stmmac_ioctl - Entry point for the Ioctl
2503  *  @dev: Device pointer.
2504  *  @rq: An IOCTL specefic structure, that can contain a pointer to
2505  *  a proprietary structure used to pass information to the driver.
2506  *  @cmd: IOCTL command
2507  *  Description:
2508  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2509  */
2510 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2511 {
2512         struct stmmac_priv *priv = netdev_priv(dev);
2513         int ret = -EOPNOTSUPP;
2514
2515         if (!netif_running(dev))
2516                 return -EINVAL;
2517
2518         switch (cmd) {
2519         case SIOCGMIIPHY:
2520         case SIOCGMIIREG:
2521         case SIOCSMIIREG:
2522                 if (!priv->phydev)
2523                         return -EINVAL;
2524                 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2525                 break;
2526         case SIOCSHWTSTAMP:
2527                 ret = stmmac_hwtstamp_ioctl(dev, rq);
2528                 break;
2529         default:
2530                 break;
2531         }
2532
2533         return ret;
2534 }
2535
2536 #ifdef CONFIG_DEBUG_FS
2537 static struct dentry *stmmac_fs_dir;
2538
2539 static void sysfs_display_ring(void *head, int size, int extend_desc,
2540                                struct seq_file *seq)
2541 {
2542         int i;
2543         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2544         struct dma_desc *p = (struct dma_desc *)head;
2545
2546         for (i = 0; i < size; i++) {
2547                 u64 x;
2548                 if (extend_desc) {
2549                         x = *(u64 *) ep;
2550                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2551                                    i, (unsigned int)virt_to_phys(ep),
2552                                    (unsigned int)x, (unsigned int)(x >> 32),
2553                                    ep->basic.des2, ep->basic.des3);
2554                         ep++;
2555                 } else {
2556                         x = *(u64 *) p;
2557                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2558                                    i, (unsigned int)virt_to_phys(ep),
2559                                    (unsigned int)x, (unsigned int)(x >> 32),
2560                                    p->des2, p->des3);
2561                         p++;
2562                 }
2563                 seq_printf(seq, "\n");
2564         }
2565 }
2566
2567 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2568 {
2569         struct net_device *dev = seq->private;
2570         struct stmmac_priv *priv = netdev_priv(dev);
2571
2572         if (priv->extend_desc) {
2573                 seq_printf(seq, "Extended RX descriptor ring:\n");
2574                 sysfs_display_ring((void *)priv->dma_erx, DMA_RX_SIZE, 1, seq);
2575                 seq_printf(seq, "Extended TX descriptor ring:\n");
2576                 sysfs_display_ring((void *)priv->dma_etx, DMA_TX_SIZE, 1, seq);
2577         } else {
2578                 seq_printf(seq, "RX descriptor ring:\n");
2579                 sysfs_display_ring((void *)priv->dma_rx, DMA_RX_SIZE, 0, seq);
2580                 seq_printf(seq, "TX descriptor ring:\n");
2581                 sysfs_display_ring((void *)priv->dma_tx, DMA_TX_SIZE, 0, seq);
2582         }
2583
2584         return 0;
2585 }
2586
2587 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2588 {
2589         return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2590 }
2591
2592 static const struct file_operations stmmac_rings_status_fops = {
2593         .owner = THIS_MODULE,
2594         .open = stmmac_sysfs_ring_open,
2595         .read = seq_read,
2596         .llseek = seq_lseek,
2597         .release = single_release,
2598 };
2599
2600 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2601 {
2602         struct net_device *dev = seq->private;
2603         struct stmmac_priv *priv = netdev_priv(dev);
2604
2605         if (!priv->hw_cap_support) {
2606                 seq_printf(seq, "DMA HW features not supported\n");
2607                 return 0;
2608         }
2609
2610         seq_printf(seq, "==============================\n");
2611         seq_printf(seq, "\tDMA HW features\n");
2612         seq_printf(seq, "==============================\n");
2613
2614         seq_printf(seq, "\t10/100 Mbps %s\n",
2615                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2616         seq_printf(seq, "\t1000 Mbps %s\n",
2617                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
2618         seq_printf(seq, "\tHalf duple %s\n",
2619                    (priv->dma_cap.half_duplex) ? "Y" : "N");
2620         seq_printf(seq, "\tHash Filter: %s\n",
2621                    (priv->dma_cap.hash_filter) ? "Y" : "N");
2622         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2623                    (priv->dma_cap.multi_addr) ? "Y" : "N");
2624         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2625                    (priv->dma_cap.pcs) ? "Y" : "N");
2626         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2627                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
2628         seq_printf(seq, "\tPMT Remote wake up: %s\n",
2629                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2630         seq_printf(seq, "\tPMT Magic Frame: %s\n",
2631                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2632         seq_printf(seq, "\tRMON module: %s\n",
2633                    (priv->dma_cap.rmon) ? "Y" : "N");
2634         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2635                    (priv->dma_cap.time_stamp) ? "Y" : "N");
2636         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2637                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
2638         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2639                    (priv->dma_cap.eee) ? "Y" : "N");
2640         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2641         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2642                    (priv->dma_cap.tx_coe) ? "Y" : "N");
2643         seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2644                    (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2645         seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2646                    (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2647         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2648                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2649         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2650                    priv->dma_cap.number_rx_channel);
2651         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2652                    priv->dma_cap.number_tx_channel);
2653         seq_printf(seq, "\tEnhanced descriptors: %s\n",
2654                    (priv->dma_cap.enh_desc) ? "Y" : "N");
2655
2656         return 0;
2657 }
2658
2659 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2660 {
2661         return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2662 }
2663
2664 static const struct file_operations stmmac_dma_cap_fops = {
2665         .owner = THIS_MODULE,
2666         .open = stmmac_sysfs_dma_cap_open,
2667         .read = seq_read,
2668         .llseek = seq_lseek,
2669         .release = single_release,
2670 };
2671
2672 static int stmmac_init_fs(struct net_device *dev)
2673 {
2674         struct stmmac_priv *priv = netdev_priv(dev);
2675
2676         /* Create per netdev entries */
2677         priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
2678
2679         if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
2680                 pr_err("ERROR %s/%s, debugfs create directory failed\n",
2681                        STMMAC_RESOURCE_NAME, dev->name);
2682
2683                 return -ENOMEM;
2684         }
2685
2686         /* Entry to report DMA RX/TX rings */
2687         priv->dbgfs_rings_status =
2688                 debugfs_create_file("descriptors_status", S_IRUGO,
2689                                     priv->dbgfs_dir, dev,
2690                                     &stmmac_rings_status_fops);
2691
2692         if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
2693                 pr_info("ERROR creating stmmac ring debugfs file\n");
2694                 debugfs_remove_recursive(priv->dbgfs_dir);
2695
2696                 return -ENOMEM;
2697         }
2698
2699         /* Entry to report the DMA HW features */
2700         priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO,
2701                                             priv->dbgfs_dir,
2702                                             dev, &stmmac_dma_cap_fops);
2703
2704         if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
2705                 pr_info("ERROR creating stmmac MMC debugfs file\n");
2706                 debugfs_remove_recursive(priv->dbgfs_dir);
2707
2708                 return -ENOMEM;
2709         }
2710
2711         return 0;
2712 }
2713
2714 static void stmmac_exit_fs(struct net_device *dev)
2715 {
2716         struct stmmac_priv *priv = netdev_priv(dev);
2717
2718         debugfs_remove_recursive(priv->dbgfs_dir);
2719 }
2720 #endif /* CONFIG_DEBUG_FS */
2721
2722 static const struct net_device_ops stmmac_netdev_ops = {
2723         .ndo_open = stmmac_open,
2724         .ndo_start_xmit = stmmac_xmit,
2725         .ndo_stop = stmmac_release,
2726         .ndo_change_mtu = stmmac_change_mtu,
2727         .ndo_fix_features = stmmac_fix_features,
2728         .ndo_set_features = stmmac_set_features,
2729         .ndo_set_rx_mode = stmmac_set_rx_mode,
2730         .ndo_tx_timeout = stmmac_tx_timeout,
2731         .ndo_do_ioctl = stmmac_ioctl,
2732 #ifdef CONFIG_NET_POLL_CONTROLLER
2733         .ndo_poll_controller = stmmac_poll_controller,
2734 #endif
2735         .ndo_set_mac_address = eth_mac_addr,
2736 };
2737
2738 /**
2739  *  stmmac_hw_init - Init the MAC device
2740  *  @priv: driver private structure
2741  *  Description: this function is to configure the MAC device according to
2742  *  some platform parameters or the HW capability register. It prepares the
2743  *  driver to use either ring or chain modes and to setup either enhanced or
2744  *  normal descriptors.
2745  */
2746 static int stmmac_hw_init(struct stmmac_priv *priv)
2747 {
2748         struct mac_device_info *mac;
2749
2750         /* Identify the MAC HW device */
2751         if (priv->plat->has_gmac) {
2752                 priv->dev->priv_flags |= IFF_UNICAST_FLT;
2753                 mac = dwmac1000_setup(priv->ioaddr,
2754                                       priv->plat->multicast_filter_bins,
2755                                       priv->plat->unicast_filter_entries);
2756         } else {
2757                 mac = dwmac100_setup(priv->ioaddr);
2758         }
2759         if (!mac)
2760                 return -ENOMEM;
2761
2762         priv->hw = mac;
2763
2764         /* Get and dump the chip ID */
2765         priv->synopsys_id = stmmac_get_synopsys_id(priv);
2766
2767         /* To use the chained or ring mode */
2768         if (chain_mode) {
2769                 priv->hw->mode = &chain_mode_ops;
2770                 pr_info(" Chain mode enabled\n");
2771                 priv->mode = STMMAC_CHAIN_MODE;
2772         } else {
2773                 priv->hw->mode = &ring_mode_ops;
2774                 pr_info(" Ring mode enabled\n");
2775                 priv->mode = STMMAC_RING_MODE;
2776         }
2777
2778         /* Get the HW capability (new GMAC newer than 3.50a) */
2779         priv->hw_cap_support = stmmac_get_hw_features(priv);
2780         if (priv->hw_cap_support) {
2781                 pr_info(" DMA HW capability register supported");
2782
2783                 /* We can override some gmac/dma configuration fields: e.g.
2784                  * enh_desc, tx_coe (e.g. that are passed through the
2785                  * platform) with the values from the HW capability
2786                  * register (if supported).
2787                  */
2788                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
2789                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2790
2791                 /* TXCOE doesn't work in thresh DMA mode */
2792                 if (priv->plat->force_thresh_dma_mode)
2793                         priv->plat->tx_coe = 0;
2794                 else
2795                         priv->plat->tx_coe = priv->dma_cap.tx_coe;
2796
2797                 if (priv->dma_cap.rx_coe_type2)
2798                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2799                 else if (priv->dma_cap.rx_coe_type1)
2800                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2801
2802         } else
2803                 pr_info(" No HW DMA feature register supported");
2804
2805         /* To use alternate (extended) or normal descriptor structures */
2806         stmmac_selec_desc_mode(priv);
2807
2808         if (priv->plat->rx_coe) {
2809                 priv->hw->rx_csum = priv->plat->rx_coe;
2810                 pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2811                         priv->plat->rx_coe);
2812         }
2813         if (priv->plat->tx_coe)
2814                 pr_info(" TX Checksum insertion supported\n");
2815
2816         if (priv->plat->pmt) {
2817                 pr_info(" Wake-Up On Lan supported\n");
2818                 device_set_wakeup_capable(priv->device, 1);
2819         }
2820
2821         return 0;
2822 }
2823
2824 /**
2825  * stmmac_dvr_probe
2826  * @device: device pointer
2827  * @plat_dat: platform data pointer
2828  * @res: stmmac resource pointer
2829  * Description: this is the main probe function used to
2830  * call the alloc_etherdev, allocate the priv structure.
2831  * Return:
2832  * returns 0 on success, otherwise errno.
2833  */
2834 int stmmac_dvr_probe(struct device *device,
2835                      struct plat_stmmacenet_data *plat_dat,
2836                      struct stmmac_resources *res)
2837 {
2838         int ret = 0;
2839         struct net_device *ndev = NULL;
2840         struct stmmac_priv *priv;
2841
2842         ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2843         if (!ndev)
2844                 return -ENOMEM;
2845
2846         SET_NETDEV_DEV(ndev, device);
2847
2848         priv = netdev_priv(ndev);
2849         priv->device = device;
2850         priv->dev = ndev;
2851
2852         stmmac_set_ethtool_ops(ndev);
2853         priv->pause = pause;
2854         priv->plat = plat_dat;
2855         priv->ioaddr = res->addr;
2856         priv->dev->base_addr = (unsigned long)res->addr;
2857
2858         priv->dev->irq = res->irq;
2859         priv->wol_irq = res->wol_irq;
2860         priv->lpi_irq = res->lpi_irq;
2861
2862         if (res->mac)
2863                 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
2864
2865         dev_set_drvdata(device, priv->dev);
2866
2867         /* Verify driver arguments */
2868         stmmac_verify_args();
2869
2870         /* Override with kernel parameters if supplied XXX CRS XXX
2871          * this needs to have multiple instances
2872          */
2873         if ((phyaddr >= 0) && (phyaddr <= 31))
2874                 priv->plat->phy_addr = phyaddr;
2875
2876         priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
2877         if (IS_ERR(priv->stmmac_clk)) {
2878                 dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
2879                          __func__);
2880                 /* If failed to obtain stmmac_clk and specific clk_csr value
2881                  * is NOT passed from the platform, probe fail.
2882                  */
2883                 if (!priv->plat->clk_csr) {
2884                         ret = PTR_ERR(priv->stmmac_clk);
2885                         goto error_clk_get;
2886                 } else {
2887                         priv->stmmac_clk = NULL;
2888                 }
2889         }
2890         clk_prepare_enable(priv->stmmac_clk);
2891
2892         priv->pclk = devm_clk_get(priv->device, "pclk");
2893         if (IS_ERR(priv->pclk)) {
2894                 if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) {
2895                         ret = -EPROBE_DEFER;
2896                         goto error_pclk_get;
2897                 }
2898                 priv->pclk = NULL;
2899         }
2900         clk_prepare_enable(priv->pclk);
2901
2902         priv->stmmac_rst = devm_reset_control_get(priv->device,
2903                                                   STMMAC_RESOURCE_NAME);
2904         if (IS_ERR(priv->stmmac_rst)) {
2905                 if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
2906                         ret = -EPROBE_DEFER;
2907                         goto error_hw_init;
2908                 }
2909                 dev_info(priv->device, "no reset control found\n");
2910                 priv->stmmac_rst = NULL;
2911         }
2912         if (priv->stmmac_rst)
2913                 reset_control_deassert(priv->stmmac_rst);
2914
2915         /* Init MAC and get the capabilities */
2916         ret = stmmac_hw_init(priv);
2917         if (ret)
2918                 goto error_hw_init;
2919
2920         ndev->netdev_ops = &stmmac_netdev_ops;
2921
2922         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2923                             NETIF_F_RXCSUM;
2924         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2925         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2926 #ifdef STMMAC_VLAN_TAG_USED
2927         /* Both mac100 and gmac support receive VLAN tag detection */
2928         ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2929 #endif
2930         priv->msg_enable = netif_msg_init(debug, default_msg_level);
2931
2932         if (flow_ctrl)
2933                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
2934
2935         /* Rx Watchdog is available in the COREs newer than the 3.40.
2936          * In some case, for example on bugged HW this feature
2937          * has to be disable and this can be done by passing the
2938          * riwt_off field from the platform.
2939          */
2940         if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2941                 priv->use_riwt = 1;
2942                 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2943         }
2944
2945         netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2946
2947         spin_lock_init(&priv->lock);
2948         spin_lock_init(&priv->tx_lock);
2949
2950         ret = register_netdev(ndev);
2951         if (ret) {
2952                 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2953                 goto error_netdev_register;
2954         }
2955
2956         /* If a specific clk_csr value is passed from the platform
2957          * this means that the CSR Clock Range selection cannot be
2958          * changed at run-time and it is fixed. Viceversa the driver'll try to
2959          * set the MDC clock dynamically according to the csr actual
2960          * clock input.
2961          */
2962         if (!priv->plat->clk_csr)
2963                 stmmac_clk_csr_set(priv);
2964         else
2965                 priv->clk_csr = priv->plat->clk_csr;
2966
2967         stmmac_check_pcs_mode(priv);
2968
2969         if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2970             priv->pcs != STMMAC_PCS_RTBI) {
2971                 /* MDIO bus Registration */
2972                 ret = stmmac_mdio_register(ndev);
2973                 if (ret < 0) {
2974                         pr_debug("%s: MDIO bus (id: %d) registration failed",
2975                                  __func__, priv->plat->bus_id);
2976                         goto error_mdio_register;
2977                 }
2978         }
2979
2980         return 0;
2981
2982 error_mdio_register:
2983         unregister_netdev(ndev);
2984 error_netdev_register:
2985         netif_napi_del(&priv->napi);
2986 error_hw_init:
2987         clk_disable_unprepare(priv->pclk);
2988 error_pclk_get:
2989         clk_disable_unprepare(priv->stmmac_clk);
2990 error_clk_get:
2991         free_netdev(ndev);
2992
2993         return ret;
2994 }
2995 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
2996
2997 /**
2998  * stmmac_dvr_remove
2999  * @ndev: net device pointer
3000  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
3001  * changes the link status, releases the DMA descriptor rings.
3002  */
3003 int stmmac_dvr_remove(struct net_device *ndev)
3004 {
3005         struct stmmac_priv *priv = netdev_priv(ndev);
3006
3007         pr_info("%s:\n\tremoving driver", __func__);
3008
3009         priv->hw->dma->stop_rx(priv->ioaddr);
3010         priv->hw->dma->stop_tx(priv->ioaddr);
3011
3012         stmmac_set_mac(priv->ioaddr, false);
3013         netif_carrier_off(ndev);
3014         unregister_netdev(ndev);
3015         if (priv->stmmac_rst)
3016                 reset_control_assert(priv->stmmac_rst);
3017         clk_disable_unprepare(priv->pclk);
3018         clk_disable_unprepare(priv->stmmac_clk);
3019         if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
3020             priv->pcs != STMMAC_PCS_RTBI)
3021                 stmmac_mdio_unregister(ndev);
3022         free_netdev(ndev);
3023
3024         return 0;
3025 }
3026 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
3027
3028 /**
3029  * stmmac_suspend - suspend callback
3030  * @ndev: net device pointer
3031  * Description: this is the function to suspend the device and it is called
3032  * by the platform driver to stop the network queue, release the resources,
3033  * program the PMT register (for WoL), clean and release driver resources.
3034  */
3035 int stmmac_suspend(struct net_device *ndev)
3036 {
3037         struct stmmac_priv *priv = netdev_priv(ndev);
3038         unsigned long flags;
3039
3040         if (!ndev || !netif_running(ndev))
3041                 return 0;
3042
3043         if (priv->phydev)
3044                 phy_stop(priv->phydev);
3045
3046         spin_lock_irqsave(&priv->lock, flags);
3047
3048         netif_device_detach(ndev);
3049         netif_stop_queue(ndev);
3050
3051         napi_disable(&priv->napi);
3052
3053         /* Stop TX/RX DMA */
3054         priv->hw->dma->stop_tx(priv->ioaddr);
3055         priv->hw->dma->stop_rx(priv->ioaddr);
3056
3057         /* Enable Power down mode by programming the PMT regs */
3058         if (device_may_wakeup(priv->device)) {
3059                 priv->hw->mac->pmt(priv->hw, priv->wolopts);
3060                 priv->irq_wake = 1;
3061         } else {
3062                 stmmac_set_mac(priv->ioaddr, false);
3063                 pinctrl_pm_select_sleep_state(priv->device);
3064                 /* Disable clock in case of PWM is off */
3065                 clk_disable(priv->pclk);
3066                 clk_disable(priv->stmmac_clk);
3067         }
3068         spin_unlock_irqrestore(&priv->lock, flags);
3069
3070         priv->oldlink = 0;
3071         priv->speed = 0;
3072         priv->oldduplex = -1;
3073         return 0;
3074 }
3075 EXPORT_SYMBOL_GPL(stmmac_suspend);
3076
3077 /**
3078  * stmmac_resume - resume callback
3079  * @ndev: net device pointer
3080  * Description: when resume this function is invoked to setup the DMA and CORE
3081  * in a usable state.
3082  */
3083 int stmmac_resume(struct net_device *ndev)
3084 {
3085         struct stmmac_priv *priv = netdev_priv(ndev);
3086         unsigned long flags;
3087
3088         if (!netif_running(ndev))
3089                 return 0;
3090
3091         spin_lock_irqsave(&priv->lock, flags);
3092
3093         /* Power Down bit, into the PM register, is cleared
3094          * automatically as soon as a magic packet or a Wake-up frame
3095          * is received. Anyway, it's better to manually clear
3096          * this bit because it can generate problems while resuming
3097          * from another devices (e.g. serial console).
3098          */
3099         if (device_may_wakeup(priv->device)) {
3100                 priv->hw->mac->pmt(priv->hw, 0);
3101                 priv->irq_wake = 0;
3102         } else {
3103                 pinctrl_pm_select_default_state(priv->device);
3104                 /* enable the clk prevously disabled */
3105                 clk_enable(priv->stmmac_clk);
3106                 clk_enable(priv->pclk);
3107                 /* reset the phy so that it's ready */
3108                 if (priv->mii)
3109                         stmmac_mdio_reset(priv->mii);
3110         }
3111
3112         netif_device_attach(ndev);
3113
3114         priv->cur_rx = 0;
3115         priv->dirty_rx = 0;
3116         priv->dirty_tx = 0;
3117         priv->cur_tx = 0;
3118         stmmac_clear_descriptors(priv);
3119
3120         stmmac_hw_setup(ndev, false);
3121         stmmac_init_tx_coalesce(priv);
3122         stmmac_set_rx_mode(ndev);
3123
3124         napi_enable(&priv->napi);
3125
3126         netif_start_queue(ndev);
3127
3128         spin_unlock_irqrestore(&priv->lock, flags);
3129
3130         if (priv->phydev)
3131                 phy_start(priv->phydev);
3132
3133         return 0;
3134 }
3135 EXPORT_SYMBOL_GPL(stmmac_resume);
3136
3137 #ifndef MODULE
3138 static int __init stmmac_cmdline_opt(char *str)
3139 {
3140         char *opt;
3141
3142         if (!str || !*str)
3143                 return -EINVAL;
3144         while ((opt = strsep(&str, ",")) != NULL) {
3145                 if (!strncmp(opt, "debug:", 6)) {
3146                         if (kstrtoint(opt + 6, 0, &debug))
3147                                 goto err;
3148                 } else if (!strncmp(opt, "phyaddr:", 8)) {
3149                         if (kstrtoint(opt + 8, 0, &phyaddr))
3150                                 goto err;
3151                 } else if (!strncmp(opt, "buf_sz:", 7)) {
3152                         if (kstrtoint(opt + 7, 0, &buf_sz))
3153                                 goto err;
3154                 } else if (!strncmp(opt, "tc:", 3)) {
3155                         if (kstrtoint(opt + 3, 0, &tc))
3156                                 goto err;
3157                 } else if (!strncmp(opt, "watchdog:", 9)) {
3158                         if (kstrtoint(opt + 9, 0, &watchdog))
3159                                 goto err;
3160                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
3161                         if (kstrtoint(opt + 10, 0, &flow_ctrl))
3162                                 goto err;
3163                 } else if (!strncmp(opt, "pause:", 6)) {
3164                         if (kstrtoint(opt + 6, 0, &pause))
3165                                 goto err;
3166                 } else if (!strncmp(opt, "eee_timer:", 10)) {
3167                         if (kstrtoint(opt + 10, 0, &eee_timer))
3168                                 goto err;
3169                 } else if (!strncmp(opt, "chain_mode:", 11)) {
3170                         if (kstrtoint(opt + 11, 0, &chain_mode))
3171                                 goto err;
3172                 }
3173         }
3174         return 0;
3175
3176 err:
3177         pr_err("%s: ERROR broken module parameter conversion", __func__);
3178         return -EINVAL;
3179 }
3180
3181 __setup("stmmaceth=", stmmac_cmdline_opt);
3182 #endif /* MODULE */
3183
3184 static int __init stmmac_init(void)
3185 {
3186 #ifdef CONFIG_DEBUG_FS
3187         /* Create debugfs main directory if it doesn't exist yet */
3188         if (!stmmac_fs_dir) {
3189                 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
3190
3191                 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
3192                         pr_err("ERROR %s, debugfs create directory failed\n",
3193                                STMMAC_RESOURCE_NAME);
3194
3195                         return -ENOMEM;
3196                 }
3197         }
3198 #endif
3199
3200         return 0;
3201 }
3202
3203 static void __exit stmmac_exit(void)
3204 {
3205 #ifdef CONFIG_DEBUG_FS
3206         debugfs_remove_recursive(stmmac_fs_dir);
3207 #endif
3208 }
3209
3210 module_init(stmmac_init)
3211 module_exit(stmmac_exit)
3212
3213 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3214 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3215 MODULE_LICENSE("GPL");