Merge tag 'vmwgfx-fixes-4.3-151001' of git://people.freedesktop.org/~thomash/linux...
[cascardo/linux.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4
5         Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25   Documentation available at:
26         http://www.stlinux.com
27   Support available at:
28         https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55 #include <linux/of_mdio.h>
56
57 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
58
59 /* Module parameters */
60 #define TX_TIMEO        5000
61 static int watchdog = TX_TIMEO;
62 module_param(watchdog, int, S_IRUGO | S_IWUSR);
63 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
64
65 static int debug = -1;
66 module_param(debug, int, S_IRUGO | S_IWUSR);
67 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
68
69 static int phyaddr = -1;
70 module_param(phyaddr, int, S_IRUGO);
71 MODULE_PARM_DESC(phyaddr, "Physical device address");
72
73 #define DMA_TX_SIZE 256
74 static int dma_txsize = DMA_TX_SIZE;
75 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
76 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
77
78 #define DMA_RX_SIZE 256
79 static int dma_rxsize = DMA_RX_SIZE;
80 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
81 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
82
83 static int flow_ctrl = FLOW_OFF;
84 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
85 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
86
87 static int pause = PAUSE_TIME;
88 module_param(pause, int, S_IRUGO | S_IWUSR);
89 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
90
91 #define TC_DEFAULT 64
92 static int tc = TC_DEFAULT;
93 module_param(tc, int, S_IRUGO | S_IWUSR);
94 MODULE_PARM_DESC(tc, "DMA threshold control value");
95
96 #define DEFAULT_BUFSIZE 1536
97 static int buf_sz = DEFAULT_BUFSIZE;
98 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
99 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
100
101 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
102                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
103                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
104
105 #define STMMAC_DEFAULT_LPI_TIMER        1000
106 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
107 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
108 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
109 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
110
111 /* By default the driver will use the ring mode to manage tx and rx descriptors
112  * but passing this value so user can force to use the chain instead of the ring
113  */
114 static unsigned int chain_mode;
115 module_param(chain_mode, int, S_IRUGO);
116 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
117
118 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
119
120 #ifdef CONFIG_DEBUG_FS
121 static int stmmac_init_fs(struct net_device *dev);
122 static void stmmac_exit_fs(struct net_device *dev);
123 #endif
124
125 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
126
127 /**
128  * stmmac_verify_args - verify the driver parameters.
129  * Description: it checks the driver parameters and set a default in case of
130  * errors.
131  */
132 static void stmmac_verify_args(void)
133 {
134         if (unlikely(watchdog < 0))
135                 watchdog = TX_TIMEO;
136         if (unlikely(dma_rxsize < 0))
137                 dma_rxsize = DMA_RX_SIZE;
138         if (unlikely(dma_txsize < 0))
139                 dma_txsize = DMA_TX_SIZE;
140         if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
141                 buf_sz = DEFAULT_BUFSIZE;
142         if (unlikely(flow_ctrl > 1))
143                 flow_ctrl = FLOW_AUTO;
144         else if (likely(flow_ctrl < 0))
145                 flow_ctrl = FLOW_OFF;
146         if (unlikely((pause < 0) || (pause > 0xffff)))
147                 pause = PAUSE_TIME;
148         if (eee_timer < 0)
149                 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
150 }
151
152 /**
153  * stmmac_clk_csr_set - dynamically set the MDC clock
154  * @priv: driver private structure
155  * Description: this is to dynamically set the MDC clock according to the csr
156  * clock input.
157  * Note:
158  *      If a specific clk_csr value is passed from the platform
159  *      this means that the CSR Clock Range selection cannot be
160  *      changed at run-time and it is fixed (as reported in the driver
161  *      documentation). Viceversa the driver will try to set the MDC
162  *      clock dynamically according to the actual clock input.
163  */
164 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
165 {
166         u32 clk_rate;
167
168         clk_rate = clk_get_rate(priv->stmmac_clk);
169
170         /* Platform provided default clk_csr would be assumed valid
171          * for all other cases except for the below mentioned ones.
172          * For values higher than the IEEE 802.3 specified frequency
173          * we can not estimate the proper divider as it is not known
174          * the frequency of clk_csr_i. So we do not change the default
175          * divider.
176          */
177         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
178                 if (clk_rate < CSR_F_35M)
179                         priv->clk_csr = STMMAC_CSR_20_35M;
180                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
181                         priv->clk_csr = STMMAC_CSR_35_60M;
182                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
183                         priv->clk_csr = STMMAC_CSR_60_100M;
184                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
185                         priv->clk_csr = STMMAC_CSR_100_150M;
186                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
187                         priv->clk_csr = STMMAC_CSR_150_250M;
188                 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
189                         priv->clk_csr = STMMAC_CSR_250_300M;
190         }
191 }
192
193 static void print_pkt(unsigned char *buf, int len)
194 {
195         pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
196         print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
197 }
198
199 /* minimum number of free TX descriptors required to wake up TX process */
200 #define STMMAC_TX_THRESH(x)     (x->dma_tx_size/4)
201
202 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
203 {
204         return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
205 }
206
207 /**
208  * stmmac_hw_fix_mac_speed - callback for speed selection
209  * @priv: driver private structure
210  * Description: on some platforms (e.g. ST), some HW system configuraton
211  * registers have to be set according to the link speed negotiated.
212  */
213 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
214 {
215         struct phy_device *phydev = priv->phydev;
216
217         if (likely(priv->plat->fix_mac_speed))
218                 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
219 }
220
221 /**
222  * stmmac_enable_eee_mode - check and enter in LPI mode
223  * @priv: driver private structure
224  * Description: this function is to verify and enter in LPI mode in case of
225  * EEE.
226  */
227 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
228 {
229         /* Check and enter in LPI mode */
230         if ((priv->dirty_tx == priv->cur_tx) &&
231             (priv->tx_path_in_lpi_mode == false))
232                 priv->hw->mac->set_eee_mode(priv->hw);
233 }
234
235 /**
236  * stmmac_disable_eee_mode - disable and exit from LPI mode
237  * @priv: driver private structure
238  * Description: this function is to exit and disable EEE in case of
239  * LPI state is true. This is called by the xmit.
240  */
241 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
242 {
243         priv->hw->mac->reset_eee_mode(priv->hw);
244         del_timer_sync(&priv->eee_ctrl_timer);
245         priv->tx_path_in_lpi_mode = false;
246 }
247
248 /**
249  * stmmac_eee_ctrl_timer - EEE TX SW timer.
250  * @arg : data hook
251  * Description:
252  *  if there is no data transfer and if we are not in LPI state,
253  *  then MAC Transmitter can be moved to LPI state.
254  */
255 static void stmmac_eee_ctrl_timer(unsigned long arg)
256 {
257         struct stmmac_priv *priv = (struct stmmac_priv *)arg;
258
259         stmmac_enable_eee_mode(priv);
260         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
261 }
262
263 /**
264  * stmmac_eee_init - init EEE
265  * @priv: driver private structure
266  * Description:
267  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
268  *  can also manage EEE, this function enable the LPI state and start related
269  *  timer.
270  */
271 bool stmmac_eee_init(struct stmmac_priv *priv)
272 {
273         char *phy_bus_name = priv->plat->phy_bus_name;
274         unsigned long flags;
275         bool ret = false;
276
277         /* Using PCS we cannot dial with the phy registers at this stage
278          * so we do not support extra feature like EEE.
279          */
280         if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
281             (priv->pcs == STMMAC_PCS_RTBI))
282                 goto out;
283
284         /* Never init EEE in case of a switch is attached */
285         if (phy_bus_name && (!strcmp(phy_bus_name, "fixed")))
286                 goto out;
287
288         /* MAC core supports the EEE feature. */
289         if (priv->dma_cap.eee) {
290                 int tx_lpi_timer = priv->tx_lpi_timer;
291
292                 /* Check if the PHY supports EEE */
293                 if (phy_init_eee(priv->phydev, 1)) {
294                         /* To manage at run-time if the EEE cannot be supported
295                          * anymore (for example because the lp caps have been
296                          * changed).
297                          * In that case the driver disable own timers.
298                          */
299                         spin_lock_irqsave(&priv->lock, flags);
300                         if (priv->eee_active) {
301                                 pr_debug("stmmac: disable EEE\n");
302                                 del_timer_sync(&priv->eee_ctrl_timer);
303                                 priv->hw->mac->set_eee_timer(priv->hw, 0,
304                                                              tx_lpi_timer);
305                         }
306                         priv->eee_active = 0;
307                         spin_unlock_irqrestore(&priv->lock, flags);
308                         goto out;
309                 }
310                 /* Activate the EEE and start timers */
311                 spin_lock_irqsave(&priv->lock, flags);
312                 if (!priv->eee_active) {
313                         priv->eee_active = 1;
314                         setup_timer(&priv->eee_ctrl_timer,
315                                     stmmac_eee_ctrl_timer,
316                                     (unsigned long)priv);
317                         mod_timer(&priv->eee_ctrl_timer,
318                                   STMMAC_LPI_T(eee_timer));
319
320                         priv->hw->mac->set_eee_timer(priv->hw,
321                                                      STMMAC_DEFAULT_LIT_LS,
322                                                      tx_lpi_timer);
323                 }
324                 /* Set HW EEE according to the speed */
325                 priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
326
327                 ret = true;
328                 spin_unlock_irqrestore(&priv->lock, flags);
329
330                 pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
331         }
332 out:
333         return ret;
334 }
335
336 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
337  * @priv: driver private structure
338  * @entry : descriptor index to be used.
339  * @skb : the socket buffer
340  * Description :
341  * This function will read timestamp from the descriptor & pass it to stack.
342  * and also perform some sanity checks.
343  */
344 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
345                                    unsigned int entry, struct sk_buff *skb)
346 {
347         struct skb_shared_hwtstamps shhwtstamp;
348         u64 ns;
349         void *desc = NULL;
350
351         if (!priv->hwts_tx_en)
352                 return;
353
354         /* exit if skb doesn't support hw tstamp */
355         if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
356                 return;
357
358         if (priv->adv_ts)
359                 desc = (priv->dma_etx + entry);
360         else
361                 desc = (priv->dma_tx + entry);
362
363         /* check tx tstamp status */
364         if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
365                 return;
366
367         /* get the valid tstamp */
368         ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
369
370         memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
371         shhwtstamp.hwtstamp = ns_to_ktime(ns);
372         /* pass tstamp to stack */
373         skb_tstamp_tx(skb, &shhwtstamp);
374
375         return;
376 }
377
378 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
379  * @priv: driver private structure
380  * @entry : descriptor index to be used.
381  * @skb : the socket buffer
382  * Description :
383  * This function will read received packet's timestamp from the descriptor
384  * and pass it to stack. It also perform some sanity checks.
385  */
386 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
387                                    unsigned int entry, struct sk_buff *skb)
388 {
389         struct skb_shared_hwtstamps *shhwtstamp = NULL;
390         u64 ns;
391         void *desc = NULL;
392
393         if (!priv->hwts_rx_en)
394                 return;
395
396         if (priv->adv_ts)
397                 desc = (priv->dma_erx + entry);
398         else
399                 desc = (priv->dma_rx + entry);
400
401         /* exit if rx tstamp is not valid */
402         if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
403                 return;
404
405         /* get valid tstamp */
406         ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
407         shhwtstamp = skb_hwtstamps(skb);
408         memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
409         shhwtstamp->hwtstamp = ns_to_ktime(ns);
410 }
411
412 /**
413  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
414  *  @dev: device pointer.
415  *  @ifr: An IOCTL specefic structure, that can contain a pointer to
416  *  a proprietary structure used to pass information to the driver.
417  *  Description:
418  *  This function configures the MAC to enable/disable both outgoing(TX)
419  *  and incoming(RX) packets time stamping based on user input.
420  *  Return Value:
421  *  0 on success and an appropriate -ve integer on failure.
422  */
423 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
424 {
425         struct stmmac_priv *priv = netdev_priv(dev);
426         struct hwtstamp_config config;
427         struct timespec now;
428         u64 temp = 0;
429         u32 ptp_v2 = 0;
430         u32 tstamp_all = 0;
431         u32 ptp_over_ipv4_udp = 0;
432         u32 ptp_over_ipv6_udp = 0;
433         u32 ptp_over_ethernet = 0;
434         u32 snap_type_sel = 0;
435         u32 ts_master_en = 0;
436         u32 ts_event_en = 0;
437         u32 value = 0;
438
439         if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
440                 netdev_alert(priv->dev, "No support for HW time stamping\n");
441                 priv->hwts_tx_en = 0;
442                 priv->hwts_rx_en = 0;
443
444                 return -EOPNOTSUPP;
445         }
446
447         if (copy_from_user(&config, ifr->ifr_data,
448                            sizeof(struct hwtstamp_config)))
449                 return -EFAULT;
450
451         pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
452                  __func__, config.flags, config.tx_type, config.rx_filter);
453
454         /* reserved for future extensions */
455         if (config.flags)
456                 return -EINVAL;
457
458         if (config.tx_type != HWTSTAMP_TX_OFF &&
459             config.tx_type != HWTSTAMP_TX_ON)
460                 return -ERANGE;
461
462         if (priv->adv_ts) {
463                 switch (config.rx_filter) {
464                 case HWTSTAMP_FILTER_NONE:
465                         /* time stamp no incoming packet at all */
466                         config.rx_filter = HWTSTAMP_FILTER_NONE;
467                         break;
468
469                 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
470                         /* PTP v1, UDP, any kind of event packet */
471                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
472                         /* take time stamp for all event messages */
473                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
474
475                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
476                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
477                         break;
478
479                 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
480                         /* PTP v1, UDP, Sync packet */
481                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
482                         /* take time stamp for SYNC messages only */
483                         ts_event_en = PTP_TCR_TSEVNTENA;
484
485                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
486                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
487                         break;
488
489                 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
490                         /* PTP v1, UDP, Delay_req packet */
491                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
492                         /* take time stamp for Delay_Req messages only */
493                         ts_master_en = PTP_TCR_TSMSTRENA;
494                         ts_event_en = PTP_TCR_TSEVNTENA;
495
496                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
497                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
498                         break;
499
500                 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
501                         /* PTP v2, UDP, any kind of event packet */
502                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
503                         ptp_v2 = PTP_TCR_TSVER2ENA;
504                         /* take time stamp for all event messages */
505                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
506
507                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
508                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
509                         break;
510
511                 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
512                         /* PTP v2, UDP, Sync packet */
513                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
514                         ptp_v2 = PTP_TCR_TSVER2ENA;
515                         /* take time stamp for SYNC messages only */
516                         ts_event_en = PTP_TCR_TSEVNTENA;
517
518                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
519                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
520                         break;
521
522                 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
523                         /* PTP v2, UDP, Delay_req packet */
524                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
525                         ptp_v2 = PTP_TCR_TSVER2ENA;
526                         /* take time stamp for Delay_Req messages only */
527                         ts_master_en = PTP_TCR_TSMSTRENA;
528                         ts_event_en = PTP_TCR_TSEVNTENA;
529
530                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
531                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
532                         break;
533
534                 case HWTSTAMP_FILTER_PTP_V2_EVENT:
535                         /* PTP v2/802.AS1 any layer, any kind of event packet */
536                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
537                         ptp_v2 = PTP_TCR_TSVER2ENA;
538                         /* take time stamp for all event messages */
539                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
540
541                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
542                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
543                         ptp_over_ethernet = PTP_TCR_TSIPENA;
544                         break;
545
546                 case HWTSTAMP_FILTER_PTP_V2_SYNC:
547                         /* PTP v2/802.AS1, any layer, Sync packet */
548                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
549                         ptp_v2 = PTP_TCR_TSVER2ENA;
550                         /* take time stamp for SYNC messages only */
551                         ts_event_en = PTP_TCR_TSEVNTENA;
552
553                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
554                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
555                         ptp_over_ethernet = PTP_TCR_TSIPENA;
556                         break;
557
558                 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
559                         /* PTP v2/802.AS1, any layer, Delay_req packet */
560                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
561                         ptp_v2 = PTP_TCR_TSVER2ENA;
562                         /* take time stamp for Delay_Req messages only */
563                         ts_master_en = PTP_TCR_TSMSTRENA;
564                         ts_event_en = PTP_TCR_TSEVNTENA;
565
566                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
567                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
568                         ptp_over_ethernet = PTP_TCR_TSIPENA;
569                         break;
570
571                 case HWTSTAMP_FILTER_ALL:
572                         /* time stamp any incoming packet */
573                         config.rx_filter = HWTSTAMP_FILTER_ALL;
574                         tstamp_all = PTP_TCR_TSENALL;
575                         break;
576
577                 default:
578                         return -ERANGE;
579                 }
580         } else {
581                 switch (config.rx_filter) {
582                 case HWTSTAMP_FILTER_NONE:
583                         config.rx_filter = HWTSTAMP_FILTER_NONE;
584                         break;
585                 default:
586                         /* PTP v1, UDP, any kind of event packet */
587                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
588                         break;
589                 }
590         }
591         priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
592         priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
593
594         if (!priv->hwts_tx_en && !priv->hwts_rx_en)
595                 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
596         else {
597                 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
598                          tstamp_all | ptp_v2 | ptp_over_ethernet |
599                          ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
600                          ts_master_en | snap_type_sel);
601
602                 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
603
604                 /* program Sub Second Increment reg */
605                 priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
606
607                 /* calculate default added value:
608                  * formula is :
609                  * addend = (2^32)/freq_div_ratio;
610                  * where, freq_div_ratio = clk_ptp_ref_i/50MHz
611                  * hence, addend = ((2^32) * 50MHz)/clk_ptp_ref_i;
612                  * NOTE: clk_ptp_ref_i should be >= 50MHz to
613                  *       achieve 20ns accuracy.
614                  *
615                  * 2^x * y == (y << x), hence
616                  * 2^32 * 50000000 ==> (50000000 << 32)
617                  */
618                 temp = (u64) (50000000ULL << 32);
619                 priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
620                 priv->hw->ptp->config_addend(priv->ioaddr,
621                                              priv->default_addend);
622
623                 /* initialize system time */
624                 getnstimeofday(&now);
625                 priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec,
626                                             now.tv_nsec);
627         }
628
629         return copy_to_user(ifr->ifr_data, &config,
630                             sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
631 }
632
633 /**
634  * stmmac_init_ptp - init PTP
635  * @priv: driver private structure
636  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
637  * This is done by looking at the HW cap. register.
638  * This function also registers the ptp driver.
639  */
640 static int stmmac_init_ptp(struct stmmac_priv *priv)
641 {
642         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
643                 return -EOPNOTSUPP;
644
645         /* Fall-back to main clock in case of no PTP ref is passed */
646         priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
647         if (IS_ERR(priv->clk_ptp_ref)) {
648                 priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
649                 priv->clk_ptp_ref = NULL;
650         } else {
651                 clk_prepare_enable(priv->clk_ptp_ref);
652                 priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
653         }
654
655         priv->adv_ts = 0;
656         if (priv->dma_cap.atime_stamp && priv->extend_desc)
657                 priv->adv_ts = 1;
658
659         if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
660                 pr_debug("IEEE 1588-2002 Time Stamp supported\n");
661
662         if (netif_msg_hw(priv) && priv->adv_ts)
663                 pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
664
665         priv->hw->ptp = &stmmac_ptp;
666         priv->hwts_tx_en = 0;
667         priv->hwts_rx_en = 0;
668
669         return stmmac_ptp_register(priv);
670 }
671
672 static void stmmac_release_ptp(struct stmmac_priv *priv)
673 {
674         if (priv->clk_ptp_ref)
675                 clk_disable_unprepare(priv->clk_ptp_ref);
676         stmmac_ptp_unregister(priv);
677 }
678
679 /**
680  * stmmac_adjust_link - adjusts the link parameters
681  * @dev: net device structure
682  * Description: this is the helper called by the physical abstraction layer
683  * drivers to communicate the phy link status. According the speed and duplex
684  * this driver can invoke registered glue-logic as well.
685  * It also invoke the eee initialization because it could happen when switch
686  * on different networks (that are eee capable).
687  */
688 static void stmmac_adjust_link(struct net_device *dev)
689 {
690         struct stmmac_priv *priv = netdev_priv(dev);
691         struct phy_device *phydev = priv->phydev;
692         unsigned long flags;
693         int new_state = 0;
694         unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
695
696         if (phydev == NULL)
697                 return;
698
699         spin_lock_irqsave(&priv->lock, flags);
700
701         if (phydev->link) {
702                 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
703
704                 /* Now we make sure that we can be in full duplex mode.
705                  * If not, we operate in half-duplex mode. */
706                 if (phydev->duplex != priv->oldduplex) {
707                         new_state = 1;
708                         if (!(phydev->duplex))
709                                 ctrl &= ~priv->hw->link.duplex;
710                         else
711                                 ctrl |= priv->hw->link.duplex;
712                         priv->oldduplex = phydev->duplex;
713                 }
714                 /* Flow Control operation */
715                 if (phydev->pause)
716                         priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
717                                                  fc, pause_time);
718
719                 if (phydev->speed != priv->speed) {
720                         new_state = 1;
721                         switch (phydev->speed) {
722                         case 1000:
723                                 if (likely(priv->plat->has_gmac))
724                                         ctrl &= ~priv->hw->link.port;
725                                 stmmac_hw_fix_mac_speed(priv);
726                                 break;
727                         case 100:
728                         case 10:
729                                 if (priv->plat->has_gmac) {
730                                         ctrl |= priv->hw->link.port;
731                                         if (phydev->speed == SPEED_100) {
732                                                 ctrl |= priv->hw->link.speed;
733                                         } else {
734                                                 ctrl &= ~(priv->hw->link.speed);
735                                         }
736                                 } else {
737                                         ctrl &= ~priv->hw->link.port;
738                                 }
739                                 stmmac_hw_fix_mac_speed(priv);
740                                 break;
741                         default:
742                                 if (netif_msg_link(priv))
743                                         pr_warn("%s: Speed (%d) not 10/100\n",
744                                                 dev->name, phydev->speed);
745                                 break;
746                         }
747
748                         priv->speed = phydev->speed;
749                 }
750
751                 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
752
753                 if (!priv->oldlink) {
754                         new_state = 1;
755                         priv->oldlink = 1;
756                 }
757         } else if (priv->oldlink) {
758                 new_state = 1;
759                 priv->oldlink = 0;
760                 priv->speed = 0;
761                 priv->oldduplex = -1;
762         }
763
764         if (new_state && netif_msg_link(priv))
765                 phy_print_status(phydev);
766
767         spin_unlock_irqrestore(&priv->lock, flags);
768
769         /* At this stage, it could be needed to setup the EEE or adjust some
770          * MAC related HW registers.
771          */
772         priv->eee_enabled = stmmac_eee_init(priv);
773 }
774
775 /**
776  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
777  * @priv: driver private structure
778  * Description: this is to verify if the HW supports the PCS.
779  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
780  * configured for the TBI, RTBI, or SGMII PHY interface.
781  */
782 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
783 {
784         int interface = priv->plat->interface;
785
786         if (priv->dma_cap.pcs) {
787                 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
788                     (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
789                     (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
790                     (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
791                         pr_debug("STMMAC: PCS RGMII support enable\n");
792                         priv->pcs = STMMAC_PCS_RGMII;
793                 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
794                         pr_debug("STMMAC: PCS SGMII support enable\n");
795                         priv->pcs = STMMAC_PCS_SGMII;
796                 }
797         }
798 }
799
800 /**
801  * stmmac_init_phy - PHY initialization
802  * @dev: net device structure
803  * Description: it initializes the driver's PHY state, and attaches the PHY
804  * to the mac driver.
805  *  Return value:
806  *  0 on success
807  */
808 static int stmmac_init_phy(struct net_device *dev)
809 {
810         struct stmmac_priv *priv = netdev_priv(dev);
811         struct phy_device *phydev;
812         char phy_id_fmt[MII_BUS_ID_SIZE + 3];
813         char bus_id[MII_BUS_ID_SIZE];
814         int interface = priv->plat->interface;
815         int max_speed = priv->plat->max_speed;
816         priv->oldlink = 0;
817         priv->speed = 0;
818         priv->oldduplex = -1;
819
820         if (priv->plat->phy_node) {
821                 phydev = of_phy_connect(dev, priv->plat->phy_node,
822                                         &stmmac_adjust_link, 0, interface);
823         } else {
824                 if (priv->plat->phy_bus_name)
825                         snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
826                                  priv->plat->phy_bus_name, priv->plat->bus_id);
827                 else
828                         snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
829                                  priv->plat->bus_id);
830
831                 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
832                          priv->plat->phy_addr);
833                 pr_debug("stmmac_init_phy:  trying to attach to %s\n",
834                          phy_id_fmt);
835
836                 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
837                                      interface);
838         }
839
840         if (IS_ERR_OR_NULL(phydev)) {
841                 pr_err("%s: Could not attach to PHY\n", dev->name);
842                 if (!phydev)
843                         return -ENODEV;
844
845                 return PTR_ERR(phydev);
846         }
847
848         /* Stop Advertising 1000BASE Capability if interface is not GMII */
849         if ((interface == PHY_INTERFACE_MODE_MII) ||
850             (interface == PHY_INTERFACE_MODE_RMII) ||
851                 (max_speed < 1000 && max_speed > 0))
852                 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
853                                          SUPPORTED_1000baseT_Full);
854
855         /*
856          * Broken HW is sometimes missing the pull-up resistor on the
857          * MDIO line, which results in reads to non-existent devices returning
858          * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
859          * device as well.
860          * Note: phydev->phy_id is the result of reading the UID PHY registers.
861          */
862         if (!priv->plat->phy_node && phydev->phy_id == 0) {
863                 phy_disconnect(phydev);
864                 return -ENODEV;
865         }
866         pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
867                  " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
868
869         priv->phydev = phydev;
870
871         return 0;
872 }
873
874 /**
875  * stmmac_display_ring - display ring
876  * @head: pointer to the head of the ring passed.
877  * @size: size of the ring.
878  * @extend_desc: to verify if extended descriptors are used.
879  * Description: display the control/status and buffer descriptors.
880  */
881 static void stmmac_display_ring(void *head, int size, int extend_desc)
882 {
883         int i;
884         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
885         struct dma_desc *p = (struct dma_desc *)head;
886
887         for (i = 0; i < size; i++) {
888                 u64 x;
889                 if (extend_desc) {
890                         x = *(u64 *) ep;
891                         pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
892                                 i, (unsigned int)virt_to_phys(ep),
893                                 (unsigned int)x, (unsigned int)(x >> 32),
894                                 ep->basic.des2, ep->basic.des3);
895                         ep++;
896                 } else {
897                         x = *(u64 *) p;
898                         pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
899                                 i, (unsigned int)virt_to_phys(p),
900                                 (unsigned int)x, (unsigned int)(x >> 32),
901                                 p->des2, p->des3);
902                         p++;
903                 }
904                 pr_info("\n");
905         }
906 }
907
908 static void stmmac_display_rings(struct stmmac_priv *priv)
909 {
910         unsigned int txsize = priv->dma_tx_size;
911         unsigned int rxsize = priv->dma_rx_size;
912
913         if (priv->extend_desc) {
914                 pr_info("Extended RX descriptor ring:\n");
915                 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
916                 pr_info("Extended TX descriptor ring:\n");
917                 stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
918         } else {
919                 pr_info("RX descriptor ring:\n");
920                 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
921                 pr_info("TX descriptor ring:\n");
922                 stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
923         }
924 }
925
926 static int stmmac_set_bfsize(int mtu, int bufsize)
927 {
928         int ret = bufsize;
929
930         if (mtu >= BUF_SIZE_4KiB)
931                 ret = BUF_SIZE_8KiB;
932         else if (mtu >= BUF_SIZE_2KiB)
933                 ret = BUF_SIZE_4KiB;
934         else if (mtu > DEFAULT_BUFSIZE)
935                 ret = BUF_SIZE_2KiB;
936         else
937                 ret = DEFAULT_BUFSIZE;
938
939         return ret;
940 }
941
942 /**
943  * stmmac_clear_descriptors - clear descriptors
944  * @priv: driver private structure
945  * Description: this function is called to clear the tx and rx descriptors
946  * in case of both basic and extended descriptors are used.
947  */
948 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
949 {
950         int i;
951         unsigned int txsize = priv->dma_tx_size;
952         unsigned int rxsize = priv->dma_rx_size;
953
954         /* Clear the Rx/Tx descriptors */
955         for (i = 0; i < rxsize; i++)
956                 if (priv->extend_desc)
957                         priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
958                                                      priv->use_riwt, priv->mode,
959                                                      (i == rxsize - 1));
960                 else
961                         priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
962                                                      priv->use_riwt, priv->mode,
963                                                      (i == rxsize - 1));
964         for (i = 0; i < txsize; i++)
965                 if (priv->extend_desc)
966                         priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
967                                                      priv->mode,
968                                                      (i == txsize - 1));
969                 else
970                         priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
971                                                      priv->mode,
972                                                      (i == txsize - 1));
973 }
974
975 /**
976  * stmmac_init_rx_buffers - init the RX descriptor buffer.
977  * @priv: driver private structure
978  * @p: descriptor pointer
979  * @i: descriptor index
980  * @flags: gfp flag.
981  * Description: this function is called to allocate a receive buffer, perform
982  * the DMA mapping and init the descriptor.
983  */
984 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
985                                   int i, gfp_t flags)
986 {
987         struct sk_buff *skb;
988
989         skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
990         if (!skb) {
991                 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
992                 return -ENOMEM;
993         }
994         priv->rx_skbuff[i] = skb;
995         priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
996                                                 priv->dma_buf_sz,
997                                                 DMA_FROM_DEVICE);
998         if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
999                 pr_err("%s: DMA mapping error\n", __func__);
1000                 dev_kfree_skb_any(skb);
1001                 return -EINVAL;
1002         }
1003
1004         p->des2 = priv->rx_skbuff_dma[i];
1005
1006         if ((priv->hw->mode->init_desc3) &&
1007             (priv->dma_buf_sz == BUF_SIZE_16KiB))
1008                 priv->hw->mode->init_desc3(p);
1009
1010         return 0;
1011 }
1012
1013 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
1014 {
1015         if (priv->rx_skbuff[i]) {
1016                 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1017                                  priv->dma_buf_sz, DMA_FROM_DEVICE);
1018                 dev_kfree_skb_any(priv->rx_skbuff[i]);
1019         }
1020         priv->rx_skbuff[i] = NULL;
1021 }
1022
1023 /**
1024  * init_dma_desc_rings - init the RX/TX descriptor rings
1025  * @dev: net device structure
1026  * @flags: gfp flag.
1027  * Description: this function initializes the DMA RX/TX descriptors
1028  * and allocates the socket buffers. It suppors the chained and ring
1029  * modes.
1030  */
1031 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1032 {
1033         int i;
1034         struct stmmac_priv *priv = netdev_priv(dev);
1035         unsigned int txsize = priv->dma_tx_size;
1036         unsigned int rxsize = priv->dma_rx_size;
1037         unsigned int bfsize = 0;
1038         int ret = -ENOMEM;
1039
1040         if (priv->hw->mode->set_16kib_bfsize)
1041                 bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1042
1043         if (bfsize < BUF_SIZE_16KiB)
1044                 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1045
1046         priv->dma_buf_sz = bfsize;
1047
1048         if (netif_msg_probe(priv))
1049                 pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__,
1050                          txsize, rxsize, bfsize);
1051
1052         if (netif_msg_probe(priv)) {
1053                 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1054                          (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1055
1056                 /* RX INITIALIZATION */
1057                 pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1058         }
1059         for (i = 0; i < rxsize; i++) {
1060                 struct dma_desc *p;
1061                 if (priv->extend_desc)
1062                         p = &((priv->dma_erx + i)->basic);
1063                 else
1064                         p = priv->dma_rx + i;
1065
1066                 ret = stmmac_init_rx_buffers(priv, p, i, flags);
1067                 if (ret)
1068                         goto err_init_rx_buffers;
1069
1070                 if (netif_msg_probe(priv))
1071                         pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1072                                  priv->rx_skbuff[i]->data,
1073                                  (unsigned int)priv->rx_skbuff_dma[i]);
1074         }
1075         priv->cur_rx = 0;
1076         priv->dirty_rx = (unsigned int)(i - rxsize);
1077         buf_sz = bfsize;
1078
1079         /* Setup the chained descriptor addresses */
1080         if (priv->mode == STMMAC_CHAIN_MODE) {
1081                 if (priv->extend_desc) {
1082                         priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1083                                              rxsize, 1);
1084                         priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1085                                              txsize, 1);
1086                 } else {
1087                         priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1088                                              rxsize, 0);
1089                         priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1090                                              txsize, 0);
1091                 }
1092         }
1093
1094         /* TX INITIALIZATION */
1095         for (i = 0; i < txsize; i++) {
1096                 struct dma_desc *p;
1097                 if (priv->extend_desc)
1098                         p = &((priv->dma_etx + i)->basic);
1099                 else
1100                         p = priv->dma_tx + i;
1101                 p->des2 = 0;
1102                 priv->tx_skbuff_dma[i].buf = 0;
1103                 priv->tx_skbuff_dma[i].map_as_page = false;
1104                 priv->tx_skbuff[i] = NULL;
1105         }
1106
1107         priv->dirty_tx = 0;
1108         priv->cur_tx = 0;
1109         netdev_reset_queue(priv->dev);
1110
1111         stmmac_clear_descriptors(priv);
1112
1113         if (netif_msg_hw(priv))
1114                 stmmac_display_rings(priv);
1115
1116         return 0;
1117 err_init_rx_buffers:
1118         while (--i >= 0)
1119                 stmmac_free_rx_buffers(priv, i);
1120         return ret;
1121 }
1122
1123 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1124 {
1125         int i;
1126
1127         for (i = 0; i < priv->dma_rx_size; i++)
1128                 stmmac_free_rx_buffers(priv, i);
1129 }
1130
1131 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1132 {
1133         int i;
1134
1135         for (i = 0; i < priv->dma_tx_size; i++) {
1136                 struct dma_desc *p;
1137
1138                 if (priv->extend_desc)
1139                         p = &((priv->dma_etx + i)->basic);
1140                 else
1141                         p = priv->dma_tx + i;
1142
1143                 if (priv->tx_skbuff_dma[i].buf) {
1144                         if (priv->tx_skbuff_dma[i].map_as_page)
1145                                 dma_unmap_page(priv->device,
1146                                                priv->tx_skbuff_dma[i].buf,
1147                                                priv->hw->desc->get_tx_len(p),
1148                                                DMA_TO_DEVICE);
1149                         else
1150                                 dma_unmap_single(priv->device,
1151                                                  priv->tx_skbuff_dma[i].buf,
1152                                                  priv->hw->desc->get_tx_len(p),
1153                                                  DMA_TO_DEVICE);
1154                 }
1155
1156                 if (priv->tx_skbuff[i] != NULL) {
1157                         dev_kfree_skb_any(priv->tx_skbuff[i]);
1158                         priv->tx_skbuff[i] = NULL;
1159                         priv->tx_skbuff_dma[i].buf = 0;
1160                         priv->tx_skbuff_dma[i].map_as_page = false;
1161                 }
1162         }
1163 }
1164
1165 /**
1166  * alloc_dma_desc_resources - alloc TX/RX resources.
1167  * @priv: private structure
1168  * Description: according to which descriptor can be used (extend or basic)
1169  * this function allocates the resources for TX and RX paths. In case of
1170  * reception, for example, it pre-allocated the RX socket buffer in order to
1171  * allow zero-copy mechanism.
1172  */
1173 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1174 {
1175         unsigned int txsize = priv->dma_tx_size;
1176         unsigned int rxsize = priv->dma_rx_size;
1177         int ret = -ENOMEM;
1178
1179         priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1180                                             GFP_KERNEL);
1181         if (!priv->rx_skbuff_dma)
1182                 return -ENOMEM;
1183
1184         priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1185                                         GFP_KERNEL);
1186         if (!priv->rx_skbuff)
1187                 goto err_rx_skbuff;
1188
1189         priv->tx_skbuff_dma = kmalloc_array(txsize,
1190                                             sizeof(*priv->tx_skbuff_dma),
1191                                             GFP_KERNEL);
1192         if (!priv->tx_skbuff_dma)
1193                 goto err_tx_skbuff_dma;
1194
1195         priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1196                                         GFP_KERNEL);
1197         if (!priv->tx_skbuff)
1198                 goto err_tx_skbuff;
1199
1200         if (priv->extend_desc) {
1201                 priv->dma_erx = dma_zalloc_coherent(priv->device, rxsize *
1202                                                     sizeof(struct
1203                                                            dma_extended_desc),
1204                                                     &priv->dma_rx_phy,
1205                                                     GFP_KERNEL);
1206                 if (!priv->dma_erx)
1207                         goto err_dma;
1208
1209                 priv->dma_etx = dma_zalloc_coherent(priv->device, txsize *
1210                                                     sizeof(struct
1211                                                            dma_extended_desc),
1212                                                     &priv->dma_tx_phy,
1213                                                     GFP_KERNEL);
1214                 if (!priv->dma_etx) {
1215                         dma_free_coherent(priv->device, priv->dma_rx_size *
1216                                           sizeof(struct dma_extended_desc),
1217                                           priv->dma_erx, priv->dma_rx_phy);
1218                         goto err_dma;
1219                 }
1220         } else {
1221                 priv->dma_rx = dma_zalloc_coherent(priv->device, rxsize *
1222                                                    sizeof(struct dma_desc),
1223                                                    &priv->dma_rx_phy,
1224                                                    GFP_KERNEL);
1225                 if (!priv->dma_rx)
1226                         goto err_dma;
1227
1228                 priv->dma_tx = dma_zalloc_coherent(priv->device, txsize *
1229                                                    sizeof(struct dma_desc),
1230                                                    &priv->dma_tx_phy,
1231                                                    GFP_KERNEL);
1232                 if (!priv->dma_tx) {
1233                         dma_free_coherent(priv->device, priv->dma_rx_size *
1234                                           sizeof(struct dma_desc),
1235                                           priv->dma_rx, priv->dma_rx_phy);
1236                         goto err_dma;
1237                 }
1238         }
1239
1240         return 0;
1241
1242 err_dma:
1243         kfree(priv->tx_skbuff);
1244 err_tx_skbuff:
1245         kfree(priv->tx_skbuff_dma);
1246 err_tx_skbuff_dma:
1247         kfree(priv->rx_skbuff);
1248 err_rx_skbuff:
1249         kfree(priv->rx_skbuff_dma);
1250         return ret;
1251 }
1252
1253 static void free_dma_desc_resources(struct stmmac_priv *priv)
1254 {
1255         /* Release the DMA TX/RX socket buffers */
1256         dma_free_rx_skbufs(priv);
1257         dma_free_tx_skbufs(priv);
1258
1259         /* Free DMA regions of consistent memory previously allocated */
1260         if (!priv->extend_desc) {
1261                 dma_free_coherent(priv->device,
1262                                   priv->dma_tx_size * sizeof(struct dma_desc),
1263                                   priv->dma_tx, priv->dma_tx_phy);
1264                 dma_free_coherent(priv->device,
1265                                   priv->dma_rx_size * sizeof(struct dma_desc),
1266                                   priv->dma_rx, priv->dma_rx_phy);
1267         } else {
1268                 dma_free_coherent(priv->device, priv->dma_tx_size *
1269                                   sizeof(struct dma_extended_desc),
1270                                   priv->dma_etx, priv->dma_tx_phy);
1271                 dma_free_coherent(priv->device, priv->dma_rx_size *
1272                                   sizeof(struct dma_extended_desc),
1273                                   priv->dma_erx, priv->dma_rx_phy);
1274         }
1275         kfree(priv->rx_skbuff_dma);
1276         kfree(priv->rx_skbuff);
1277         kfree(priv->tx_skbuff_dma);
1278         kfree(priv->tx_skbuff);
1279 }
1280
1281 /**
1282  *  stmmac_dma_operation_mode - HW DMA operation mode
1283  *  @priv: driver private structure
1284  *  Description: it is used for configuring the DMA operation mode register in
1285  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1286  */
1287 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1288 {
1289         int rxfifosz = priv->plat->rx_fifo_size;
1290
1291         if (priv->plat->force_thresh_dma_mode)
1292                 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz);
1293         else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1294                 /*
1295                  * In case of GMAC, SF mode can be enabled
1296                  * to perform the TX COE in HW. This depends on:
1297                  * 1) TX COE if actually supported
1298                  * 2) There is no bugged Jumbo frame support
1299                  *    that needs to not insert csum in the TDES.
1300                  */
1301                 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE,
1302                                         rxfifosz);
1303                 priv->xstats.threshold = SF_DMA_MODE;
1304         } else
1305                 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE,
1306                                         rxfifosz);
1307 }
1308
1309 /**
1310  * stmmac_tx_clean - to manage the transmission completion
1311  * @priv: driver private structure
1312  * Description: it reclaims the transmit resources after transmission completes.
1313  */
1314 static void stmmac_tx_clean(struct stmmac_priv *priv)
1315 {
1316         unsigned int txsize = priv->dma_tx_size;
1317         unsigned int bytes_compl = 0, pkts_compl = 0;
1318
1319         spin_lock(&priv->tx_lock);
1320
1321         priv->xstats.tx_clean++;
1322
1323         while (priv->dirty_tx != priv->cur_tx) {
1324                 int last;
1325                 unsigned int entry = priv->dirty_tx % txsize;
1326                 struct sk_buff *skb = priv->tx_skbuff[entry];
1327                 struct dma_desc *p;
1328
1329                 if (priv->extend_desc)
1330                         p = (struct dma_desc *)(priv->dma_etx + entry);
1331                 else
1332                         p = priv->dma_tx + entry;
1333
1334                 /* Check if the descriptor is owned by the DMA. */
1335                 if (priv->hw->desc->get_tx_owner(p))
1336                         break;
1337
1338                 /* Verify tx error by looking at the last segment. */
1339                 last = priv->hw->desc->get_tx_ls(p);
1340                 if (likely(last)) {
1341                         int tx_error =
1342                             priv->hw->desc->tx_status(&priv->dev->stats,
1343                                                       &priv->xstats, p,
1344                                                       priv->ioaddr);
1345                         if (likely(tx_error == 0)) {
1346                                 priv->dev->stats.tx_packets++;
1347                                 priv->xstats.tx_pkt_n++;
1348                         } else
1349                                 priv->dev->stats.tx_errors++;
1350
1351                         stmmac_get_tx_hwtstamp(priv, entry, skb);
1352                 }
1353                 if (netif_msg_tx_done(priv))
1354                         pr_debug("%s: curr %d, dirty %d\n", __func__,
1355                                  priv->cur_tx, priv->dirty_tx);
1356
1357                 if (likely(priv->tx_skbuff_dma[entry].buf)) {
1358                         if (priv->tx_skbuff_dma[entry].map_as_page)
1359                                 dma_unmap_page(priv->device,
1360                                                priv->tx_skbuff_dma[entry].buf,
1361                                                priv->hw->desc->get_tx_len(p),
1362                                                DMA_TO_DEVICE);
1363                         else
1364                                 dma_unmap_single(priv->device,
1365                                                  priv->tx_skbuff_dma[entry].buf,
1366                                                  priv->hw->desc->get_tx_len(p),
1367                                                  DMA_TO_DEVICE);
1368                         priv->tx_skbuff_dma[entry].buf = 0;
1369                         priv->tx_skbuff_dma[entry].map_as_page = false;
1370                 }
1371                 priv->hw->mode->clean_desc3(priv, p);
1372
1373                 if (likely(skb != NULL)) {
1374                         pkts_compl++;
1375                         bytes_compl += skb->len;
1376                         dev_consume_skb_any(skb);
1377                         priv->tx_skbuff[entry] = NULL;
1378                 }
1379
1380                 priv->hw->desc->release_tx_desc(p, priv->mode);
1381
1382                 priv->dirty_tx++;
1383         }
1384
1385         netdev_completed_queue(priv->dev, pkts_compl, bytes_compl);
1386
1387         if (unlikely(netif_queue_stopped(priv->dev) &&
1388                      stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1389                 netif_tx_lock(priv->dev);
1390                 if (netif_queue_stopped(priv->dev) &&
1391                     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1392                         if (netif_msg_tx_done(priv))
1393                                 pr_debug("%s: restart transmit\n", __func__);
1394                         netif_wake_queue(priv->dev);
1395                 }
1396                 netif_tx_unlock(priv->dev);
1397         }
1398
1399         if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1400                 stmmac_enable_eee_mode(priv);
1401                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1402         }
1403         spin_unlock(&priv->tx_lock);
1404 }
1405
1406 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1407 {
1408         priv->hw->dma->enable_dma_irq(priv->ioaddr);
1409 }
1410
1411 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1412 {
1413         priv->hw->dma->disable_dma_irq(priv->ioaddr);
1414 }
1415
1416 /**
1417  * stmmac_tx_err - to manage the tx error
1418  * @priv: driver private structure
1419  * Description: it cleans the descriptors and restarts the transmission
1420  * in case of transmission errors.
1421  */
1422 static void stmmac_tx_err(struct stmmac_priv *priv)
1423 {
1424         int i;
1425         int txsize = priv->dma_tx_size;
1426         netif_stop_queue(priv->dev);
1427
1428         priv->hw->dma->stop_tx(priv->ioaddr);
1429         dma_free_tx_skbufs(priv);
1430         for (i = 0; i < txsize; i++)
1431                 if (priv->extend_desc)
1432                         priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1433                                                      priv->mode,
1434                                                      (i == txsize - 1));
1435                 else
1436                         priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1437                                                      priv->mode,
1438                                                      (i == txsize - 1));
1439         priv->dirty_tx = 0;
1440         priv->cur_tx = 0;
1441         netdev_reset_queue(priv->dev);
1442         priv->hw->dma->start_tx(priv->ioaddr);
1443
1444         priv->dev->stats.tx_errors++;
1445         netif_wake_queue(priv->dev);
1446 }
1447
1448 /**
1449  * stmmac_dma_interrupt - DMA ISR
1450  * @priv: driver private structure
1451  * Description: this is the DMA ISR. It is called by the main ISR.
1452  * It calls the dwmac dma routine and schedule poll method in case of some
1453  * work can be done.
1454  */
1455 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1456 {
1457         int status;
1458         int rxfifosz = priv->plat->rx_fifo_size;
1459
1460         status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1461         if (likely((status & handle_rx)) || (status & handle_tx)) {
1462                 if (likely(napi_schedule_prep(&priv->napi))) {
1463                         stmmac_disable_dma_irq(priv);
1464                         __napi_schedule(&priv->napi);
1465                 }
1466         }
1467         if (unlikely(status & tx_hard_error_bump_tc)) {
1468                 /* Try to bump up the dma threshold on this failure */
1469                 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
1470                     (tc <= 256)) {
1471                         tc += 64;
1472                         if (priv->plat->force_thresh_dma_mode)
1473                                 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc,
1474                                                         rxfifosz);
1475                         else
1476                                 priv->hw->dma->dma_mode(priv->ioaddr, tc,
1477                                                         SF_DMA_MODE, rxfifosz);
1478                         priv->xstats.threshold = tc;
1479                 }
1480         } else if (unlikely(status == tx_hard_error))
1481                 stmmac_tx_err(priv);
1482 }
1483
1484 /**
1485  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1486  * @priv: driver private structure
1487  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1488  */
1489 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1490 {
1491         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1492             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1493
1494         dwmac_mmc_intr_all_mask(priv->ioaddr);
1495
1496         if (priv->dma_cap.rmon) {
1497                 dwmac_mmc_ctrl(priv->ioaddr, mode);
1498                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1499         } else
1500                 pr_info(" No MAC Management Counters available\n");
1501 }
1502
1503 /**
1504  * stmmac_get_synopsys_id - return the SYINID.
1505  * @priv: driver private structure
1506  * Description: this simple function is to decode and return the SYINID
1507  * starting from the HW core register.
1508  */
1509 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1510 {
1511         u32 hwid = priv->hw->synopsys_uid;
1512
1513         /* Check Synopsys Id (not available on old chips) */
1514         if (likely(hwid)) {
1515                 u32 uid = ((hwid & 0x0000ff00) >> 8);
1516                 u32 synid = (hwid & 0x000000ff);
1517
1518                 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1519                         uid, synid);
1520
1521                 return synid;
1522         }
1523         return 0;
1524 }
1525
1526 /**
1527  * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
1528  * @priv: driver private structure
1529  * Description: select the Enhanced/Alternate or Normal descriptors.
1530  * In case of Enhanced/Alternate, it checks if the extended descriptors are
1531  * supported by the HW capability register.
1532  */
1533 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1534 {
1535         if (priv->plat->enh_desc) {
1536                 pr_info(" Enhanced/Alternate descriptors\n");
1537
1538                 /* GMAC older than 3.50 has no extended descriptors */
1539                 if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1540                         pr_info("\tEnabled extended descriptors\n");
1541                         priv->extend_desc = 1;
1542                 } else
1543                         pr_warn("Extended descriptors not supported\n");
1544
1545                 priv->hw->desc = &enh_desc_ops;
1546         } else {
1547                 pr_info(" Normal descriptors\n");
1548                 priv->hw->desc = &ndesc_ops;
1549         }
1550 }
1551
1552 /**
1553  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
1554  * @priv: driver private structure
1555  * Description:
1556  *  new GMAC chip generations have a new register to indicate the
1557  *  presence of the optional feature/functions.
1558  *  This can be also used to override the value passed through the
1559  *  platform and necessary for old MAC10/100 and GMAC chips.
1560  */
1561 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1562 {
1563         u32 hw_cap = 0;
1564
1565         if (priv->hw->dma->get_hw_feature) {
1566                 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1567
1568                 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1569                 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1570                 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1571                 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1572                 priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1573                 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1574                 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1575                 priv->dma_cap.pmt_remote_wake_up =
1576                     (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1577                 priv->dma_cap.pmt_magic_frame =
1578                     (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1579                 /* MMC */
1580                 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1581                 /* IEEE 1588-2002 */
1582                 priv->dma_cap.time_stamp =
1583                     (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1584                 /* IEEE 1588-2008 */
1585                 priv->dma_cap.atime_stamp =
1586                     (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1587                 /* 802.3az - Energy-Efficient Ethernet (EEE) */
1588                 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1589                 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1590                 /* TX and RX csum */
1591                 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1592                 priv->dma_cap.rx_coe_type1 =
1593                     (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1594                 priv->dma_cap.rx_coe_type2 =
1595                     (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1596                 priv->dma_cap.rxfifo_over_2048 =
1597                     (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1598                 /* TX and RX number of channels */
1599                 priv->dma_cap.number_rx_channel =
1600                     (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1601                 priv->dma_cap.number_tx_channel =
1602                     (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1603                 /* Alternate (enhanced) DESC mode */
1604                 priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1605         }
1606
1607         return hw_cap;
1608 }
1609
1610 /**
1611  * stmmac_check_ether_addr - check if the MAC addr is valid
1612  * @priv: driver private structure
1613  * Description:
1614  * it is to verify if the MAC address is valid, in case of failures it
1615  * generates a random MAC address
1616  */
1617 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1618 {
1619         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1620                 priv->hw->mac->get_umac_addr(priv->hw,
1621                                              priv->dev->dev_addr, 0);
1622                 if (!is_valid_ether_addr(priv->dev->dev_addr))
1623                         eth_hw_addr_random(priv->dev);
1624                 pr_info("%s: device MAC address %pM\n", priv->dev->name,
1625                         priv->dev->dev_addr);
1626         }
1627 }
1628
1629 /**
1630  * stmmac_init_dma_engine - DMA init.
1631  * @priv: driver private structure
1632  * Description:
1633  * It inits the DMA invoking the specific MAC/GMAC callback.
1634  * Some DMA parameters can be passed from the platform;
1635  * in case of these are not passed a default is kept for the MAC or GMAC.
1636  */
1637 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1638 {
1639         int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1640         int mixed_burst = 0;
1641         int atds = 0;
1642
1643         if (priv->plat->dma_cfg) {
1644                 pbl = priv->plat->dma_cfg->pbl;
1645                 fixed_burst = priv->plat->dma_cfg->fixed_burst;
1646                 mixed_burst = priv->plat->dma_cfg->mixed_burst;
1647                 burst_len = priv->plat->dma_cfg->burst_len;
1648         }
1649
1650         if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1651                 atds = 1;
1652
1653         return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1654                                    burst_len, priv->dma_tx_phy,
1655                                    priv->dma_rx_phy, atds);
1656 }
1657
1658 /**
1659  * stmmac_tx_timer - mitigation sw timer for tx.
1660  * @data: data pointer
1661  * Description:
1662  * This is the timer handler to directly invoke the stmmac_tx_clean.
1663  */
1664 static void stmmac_tx_timer(unsigned long data)
1665 {
1666         struct stmmac_priv *priv = (struct stmmac_priv *)data;
1667
1668         stmmac_tx_clean(priv);
1669 }
1670
1671 /**
1672  * stmmac_init_tx_coalesce - init tx mitigation options.
1673  * @priv: driver private structure
1674  * Description:
1675  * This inits the transmit coalesce parameters: i.e. timer rate,
1676  * timer handler and default threshold used for enabling the
1677  * interrupt on completion bit.
1678  */
1679 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1680 {
1681         priv->tx_coal_frames = STMMAC_TX_FRAMES;
1682         priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1683         init_timer(&priv->txtimer);
1684         priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1685         priv->txtimer.data = (unsigned long)priv;
1686         priv->txtimer.function = stmmac_tx_timer;
1687         add_timer(&priv->txtimer);
1688 }
1689
1690 /**
1691  * stmmac_hw_setup - setup mac in a usable state.
1692  *  @dev : pointer to the device structure.
1693  *  Description:
1694  *  this is the main function to setup the HW in a usable state because the
1695  *  dma engine is reset, the core registers are configured (e.g. AXI,
1696  *  Checksum features, timers). The DMA is ready to start receiving and
1697  *  transmitting.
1698  *  Return value:
1699  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1700  *  file on failure.
1701  */
1702 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
1703 {
1704         struct stmmac_priv *priv = netdev_priv(dev);
1705         int ret;
1706
1707         /* DMA initialization and SW reset */
1708         ret = stmmac_init_dma_engine(priv);
1709         if (ret < 0) {
1710                 pr_err("%s: DMA engine initialization failed\n", __func__);
1711                 return ret;
1712         }
1713
1714         /* Copy the MAC addr into the HW  */
1715         priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1716
1717         /* If required, perform hw setup of the bus. */
1718         if (priv->plat->bus_setup)
1719                 priv->plat->bus_setup(priv->ioaddr);
1720
1721         /* Initialize the MAC Core */
1722         priv->hw->mac->core_init(priv->hw, dev->mtu);
1723
1724         ret = priv->hw->mac->rx_ipc(priv->hw);
1725         if (!ret) {
1726                 pr_warn(" RX IPC Checksum Offload disabled\n");
1727                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1728                 priv->hw->rx_csum = 0;
1729         }
1730
1731         /* Enable the MAC Rx/Tx */
1732         stmmac_set_mac(priv->ioaddr, true);
1733
1734         /* Set the HW DMA mode and the COE */
1735         stmmac_dma_operation_mode(priv);
1736
1737         stmmac_mmc_setup(priv);
1738
1739         if (init_ptp) {
1740                 ret = stmmac_init_ptp(priv);
1741                 if (ret && ret != -EOPNOTSUPP)
1742                         pr_warn("%s: failed PTP initialisation\n", __func__);
1743         }
1744
1745 #ifdef CONFIG_DEBUG_FS
1746         ret = stmmac_init_fs(dev);
1747         if (ret < 0)
1748                 pr_warn("%s: failed debugFS registration\n", __func__);
1749 #endif
1750         /* Start the ball rolling... */
1751         pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1752         priv->hw->dma->start_tx(priv->ioaddr);
1753         priv->hw->dma->start_rx(priv->ioaddr);
1754
1755         /* Dump DMA/MAC registers */
1756         if (netif_msg_hw(priv)) {
1757                 priv->hw->mac->dump_regs(priv->hw);
1758                 priv->hw->dma->dump_regs(priv->ioaddr);
1759         }
1760         priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1761
1762         if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1763                 priv->rx_riwt = MAX_DMA_RIWT;
1764                 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1765         }
1766
1767         if (priv->pcs && priv->hw->mac->ctrl_ane)
1768                 priv->hw->mac->ctrl_ane(priv->hw, 0);
1769
1770         return 0;
1771 }
1772
1773 /**
1774  *  stmmac_open - open entry point of the driver
1775  *  @dev : pointer to the device structure.
1776  *  Description:
1777  *  This function is the open entry point of the driver.
1778  *  Return value:
1779  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1780  *  file on failure.
1781  */
1782 static int stmmac_open(struct net_device *dev)
1783 {
1784         struct stmmac_priv *priv = netdev_priv(dev);
1785         int ret;
1786
1787         stmmac_check_ether_addr(priv);
1788
1789         if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1790             priv->pcs != STMMAC_PCS_RTBI) {
1791                 ret = stmmac_init_phy(dev);
1792                 if (ret) {
1793                         pr_err("%s: Cannot attach to PHY (error: %d)\n",
1794                                __func__, ret);
1795                         return ret;
1796                 }
1797         }
1798
1799         /* Extra statistics */
1800         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1801         priv->xstats.threshold = tc;
1802
1803         /* Create and initialize the TX/RX descriptors chains. */
1804         priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1805         priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1806         priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1807
1808         ret = alloc_dma_desc_resources(priv);
1809         if (ret < 0) {
1810                 pr_err("%s: DMA descriptors allocation failed\n", __func__);
1811                 goto dma_desc_error;
1812         }
1813
1814         ret = init_dma_desc_rings(dev, GFP_KERNEL);
1815         if (ret < 0) {
1816                 pr_err("%s: DMA descriptors initialization failed\n", __func__);
1817                 goto init_error;
1818         }
1819
1820         ret = stmmac_hw_setup(dev, true);
1821         if (ret < 0) {
1822                 pr_err("%s: Hw setup failed\n", __func__);
1823                 goto init_error;
1824         }
1825
1826         stmmac_init_tx_coalesce(priv);
1827
1828         if (priv->phydev)
1829                 phy_start(priv->phydev);
1830
1831         /* Request the IRQ lines */
1832         ret = request_irq(dev->irq, stmmac_interrupt,
1833                           IRQF_SHARED, dev->name, dev);
1834         if (unlikely(ret < 0)) {
1835                 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1836                        __func__, dev->irq, ret);
1837                 goto init_error;
1838         }
1839
1840         /* Request the Wake IRQ in case of another line is used for WoL */
1841         if (priv->wol_irq != dev->irq) {
1842                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1843                                   IRQF_SHARED, dev->name, dev);
1844                 if (unlikely(ret < 0)) {
1845                         pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1846                                __func__, priv->wol_irq, ret);
1847                         goto wolirq_error;
1848                 }
1849         }
1850
1851         /* Request the IRQ lines */
1852         if (priv->lpi_irq > 0) {
1853                 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1854                                   dev->name, dev);
1855                 if (unlikely(ret < 0)) {
1856                         pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1857                                __func__, priv->lpi_irq, ret);
1858                         goto lpiirq_error;
1859                 }
1860         }
1861
1862         napi_enable(&priv->napi);
1863         netif_start_queue(dev);
1864
1865         return 0;
1866
1867 lpiirq_error:
1868         if (priv->wol_irq != dev->irq)
1869                 free_irq(priv->wol_irq, dev);
1870 wolirq_error:
1871         free_irq(dev->irq, dev);
1872
1873 init_error:
1874         free_dma_desc_resources(priv);
1875 dma_desc_error:
1876         if (priv->phydev)
1877                 phy_disconnect(priv->phydev);
1878
1879         return ret;
1880 }
1881
1882 /**
1883  *  stmmac_release - close entry point of the driver
1884  *  @dev : device pointer.
1885  *  Description:
1886  *  This is the stop entry point of the driver.
1887  */
1888 static int stmmac_release(struct net_device *dev)
1889 {
1890         struct stmmac_priv *priv = netdev_priv(dev);
1891
1892         if (priv->eee_enabled)
1893                 del_timer_sync(&priv->eee_ctrl_timer);
1894
1895         /* Stop and disconnect the PHY */
1896         if (priv->phydev) {
1897                 phy_stop(priv->phydev);
1898                 phy_disconnect(priv->phydev);
1899                 priv->phydev = NULL;
1900         }
1901
1902         netif_stop_queue(dev);
1903
1904         napi_disable(&priv->napi);
1905
1906         del_timer_sync(&priv->txtimer);
1907
1908         /* Free the IRQ lines */
1909         free_irq(dev->irq, dev);
1910         if (priv->wol_irq != dev->irq)
1911                 free_irq(priv->wol_irq, dev);
1912         if (priv->lpi_irq > 0)
1913                 free_irq(priv->lpi_irq, dev);
1914
1915         /* Stop TX/RX DMA and clear the descriptors */
1916         priv->hw->dma->stop_tx(priv->ioaddr);
1917         priv->hw->dma->stop_rx(priv->ioaddr);
1918
1919         /* Release and free the Rx/Tx resources */
1920         free_dma_desc_resources(priv);
1921
1922         /* Disable the MAC Rx/Tx */
1923         stmmac_set_mac(priv->ioaddr, false);
1924
1925         netif_carrier_off(dev);
1926
1927 #ifdef CONFIG_DEBUG_FS
1928         stmmac_exit_fs(dev);
1929 #endif
1930
1931         stmmac_release_ptp(priv);
1932
1933         return 0;
1934 }
1935
1936 /**
1937  *  stmmac_xmit - Tx entry point of the driver
1938  *  @skb : the socket buffer
1939  *  @dev : device pointer
1940  *  Description : this is the tx entry point of the driver.
1941  *  It programs the chain or the ring and supports oversized frames
1942  *  and SG feature.
1943  */
1944 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1945 {
1946         struct stmmac_priv *priv = netdev_priv(dev);
1947         unsigned int txsize = priv->dma_tx_size;
1948         unsigned int entry;
1949         int i, csum_insertion = 0, is_jumbo = 0;
1950         int nfrags = skb_shinfo(skb)->nr_frags;
1951         struct dma_desc *desc, *first;
1952         unsigned int nopaged_len = skb_headlen(skb);
1953         unsigned int enh_desc = priv->plat->enh_desc;
1954
1955         spin_lock(&priv->tx_lock);
1956
1957         if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1958                 spin_unlock(&priv->tx_lock);
1959                 if (!netif_queue_stopped(dev)) {
1960                         netif_stop_queue(dev);
1961                         /* This is a hard error, log it. */
1962                         pr_err("%s: Tx Ring full when queue awake\n", __func__);
1963                 }
1964                 return NETDEV_TX_BUSY;
1965         }
1966
1967         if (priv->tx_path_in_lpi_mode)
1968                 stmmac_disable_eee_mode(priv);
1969
1970         entry = priv->cur_tx % txsize;
1971
1972         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1973
1974         if (priv->extend_desc)
1975                 desc = (struct dma_desc *)(priv->dma_etx + entry);
1976         else
1977                 desc = priv->dma_tx + entry;
1978
1979         first = desc;
1980
1981         /* To program the descriptors according to the size of the frame */
1982         if (enh_desc)
1983                 is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
1984
1985         if (likely(!is_jumbo)) {
1986                 desc->des2 = dma_map_single(priv->device, skb->data,
1987                                             nopaged_len, DMA_TO_DEVICE);
1988                 if (dma_mapping_error(priv->device, desc->des2))
1989                         goto dma_map_err;
1990                 priv->tx_skbuff_dma[entry].buf = desc->des2;
1991                 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1992                                                 csum_insertion, priv->mode);
1993         } else {
1994                 desc = first;
1995                 entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
1996                 if (unlikely(entry < 0))
1997                         goto dma_map_err;
1998         }
1999
2000         for (i = 0; i < nfrags; i++) {
2001                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2002                 int len = skb_frag_size(frag);
2003
2004                 priv->tx_skbuff[entry] = NULL;
2005                 entry = (++priv->cur_tx) % txsize;
2006                 if (priv->extend_desc)
2007                         desc = (struct dma_desc *)(priv->dma_etx + entry);
2008                 else
2009                         desc = priv->dma_tx + entry;
2010
2011                 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
2012                                               DMA_TO_DEVICE);
2013                 if (dma_mapping_error(priv->device, desc->des2))
2014                         goto dma_map_err; /* should reuse desc w/o issues */
2015
2016                 priv->tx_skbuff_dma[entry].buf = desc->des2;
2017                 priv->tx_skbuff_dma[entry].map_as_page = true;
2018                 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
2019                                                 priv->mode);
2020                 wmb();
2021                 priv->hw->desc->set_tx_owner(desc);
2022                 wmb();
2023         }
2024
2025         priv->tx_skbuff[entry] = skb;
2026
2027         /* Finalize the latest segment. */
2028         priv->hw->desc->close_tx_desc(desc);
2029
2030         wmb();
2031         /* According to the coalesce parameter the IC bit for the latest
2032          * segment could be reset and the timer re-started to invoke the
2033          * stmmac_tx function. This approach takes care about the fragments.
2034          */
2035         priv->tx_count_frames += nfrags + 1;
2036         if (priv->tx_coal_frames > priv->tx_count_frames) {
2037                 priv->hw->desc->clear_tx_ic(desc);
2038                 priv->xstats.tx_reset_ic_bit++;
2039                 mod_timer(&priv->txtimer,
2040                           STMMAC_COAL_TIMER(priv->tx_coal_timer));
2041         } else
2042                 priv->tx_count_frames = 0;
2043
2044         /* To avoid raise condition */
2045         priv->hw->desc->set_tx_owner(first);
2046         wmb();
2047
2048         priv->cur_tx++;
2049
2050         if (netif_msg_pktdata(priv)) {
2051                 pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
2052                         __func__, (priv->cur_tx % txsize),
2053                         (priv->dirty_tx % txsize), entry, first, nfrags);
2054
2055                 if (priv->extend_desc)
2056                         stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
2057                 else
2058                         stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
2059
2060                 pr_debug(">>> frame to be transmitted: ");
2061                 print_pkt(skb->data, skb->len);
2062         }
2063         if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2064                 if (netif_msg_hw(priv))
2065                         pr_debug("%s: stop transmitted packets\n", __func__);
2066                 netif_stop_queue(dev);
2067         }
2068
2069         dev->stats.tx_bytes += skb->len;
2070
2071         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2072                      priv->hwts_tx_en)) {
2073                 /* declare that device is doing timestamping */
2074                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2075                 priv->hw->desc->enable_tx_timestamp(first);
2076         }
2077
2078         if (!priv->hwts_tx_en)
2079                 skb_tx_timestamp(skb);
2080
2081         netdev_sent_queue(dev, skb->len);
2082         priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2083
2084         spin_unlock(&priv->tx_lock);
2085         return NETDEV_TX_OK;
2086
2087 dma_map_err:
2088         spin_unlock(&priv->tx_lock);
2089         dev_err(priv->device, "Tx dma map failed\n");
2090         dev_kfree_skb(skb);
2091         priv->dev->stats.tx_dropped++;
2092         return NETDEV_TX_OK;
2093 }
2094
2095 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2096 {
2097         struct ethhdr *ehdr;
2098         u16 vlanid;
2099
2100         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2101             NETIF_F_HW_VLAN_CTAG_RX &&
2102             !__vlan_get_tag(skb, &vlanid)) {
2103                 /* pop the vlan tag */
2104                 ehdr = (struct ethhdr *)skb->data;
2105                 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2106                 skb_pull(skb, VLAN_HLEN);
2107                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2108         }
2109 }
2110
2111
2112 /**
2113  * stmmac_rx_refill - refill used skb preallocated buffers
2114  * @priv: driver private structure
2115  * Description : this is to reallocate the skb for the reception process
2116  * that is based on zero-copy.
2117  */
2118 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2119 {
2120         unsigned int rxsize = priv->dma_rx_size;
2121         int bfsize = priv->dma_buf_sz;
2122
2123         for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
2124                 unsigned int entry = priv->dirty_rx % rxsize;
2125                 struct dma_desc *p;
2126
2127                 if (priv->extend_desc)
2128                         p = (struct dma_desc *)(priv->dma_erx + entry);
2129                 else
2130                         p = priv->dma_rx + entry;
2131
2132                 if (likely(priv->rx_skbuff[entry] == NULL)) {
2133                         struct sk_buff *skb;
2134
2135                         skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2136
2137                         if (unlikely(skb == NULL))
2138                                 break;
2139
2140                         priv->rx_skbuff[entry] = skb;
2141                         priv->rx_skbuff_dma[entry] =
2142                             dma_map_single(priv->device, skb->data, bfsize,
2143                                            DMA_FROM_DEVICE);
2144                         if (dma_mapping_error(priv->device,
2145                                               priv->rx_skbuff_dma[entry])) {
2146                                 dev_err(priv->device, "Rx dma map failed\n");
2147                                 dev_kfree_skb(skb);
2148                                 break;
2149                         }
2150                         p->des2 = priv->rx_skbuff_dma[entry];
2151
2152                         priv->hw->mode->refill_desc3(priv, p);
2153
2154                         if (netif_msg_rx_status(priv))
2155                                 pr_debug("\trefill entry #%d\n", entry);
2156                 }
2157                 wmb();
2158                 priv->hw->desc->set_rx_owner(p);
2159                 wmb();
2160         }
2161 }
2162
2163 /**
2164  * stmmac_rx - manage the receive process
2165  * @priv: driver private structure
2166  * @limit: napi bugget.
2167  * Description :  this the function called by the napi poll method.
2168  * It gets all the frames inside the ring.
2169  */
2170 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2171 {
2172         unsigned int rxsize = priv->dma_rx_size;
2173         unsigned int entry = priv->cur_rx % rxsize;
2174         unsigned int next_entry;
2175         unsigned int count = 0;
2176         int coe = priv->hw->rx_csum;
2177
2178         if (netif_msg_rx_status(priv)) {
2179                 pr_debug("%s: descriptor ring:\n", __func__);
2180                 if (priv->extend_desc)
2181                         stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
2182                 else
2183                         stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2184         }
2185         while (count < limit) {
2186                 int status;
2187                 struct dma_desc *p;
2188
2189                 if (priv->extend_desc)
2190                         p = (struct dma_desc *)(priv->dma_erx + entry);
2191                 else
2192                         p = priv->dma_rx + entry;
2193
2194                 if (priv->hw->desc->get_rx_owner(p))
2195                         break;
2196
2197                 count++;
2198
2199                 next_entry = (++priv->cur_rx) % rxsize;
2200                 if (priv->extend_desc)
2201                         prefetch(priv->dma_erx + next_entry);
2202                 else
2203                         prefetch(priv->dma_rx + next_entry);
2204
2205                 /* read the status of the incoming frame */
2206                 status = priv->hw->desc->rx_status(&priv->dev->stats,
2207                                                    &priv->xstats, p);
2208                 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2209                         priv->hw->desc->rx_extended_status(&priv->dev->stats,
2210                                                            &priv->xstats,
2211                                                            priv->dma_erx +
2212                                                            entry);
2213                 if (unlikely(status == discard_frame)) {
2214                         priv->dev->stats.rx_errors++;
2215                         if (priv->hwts_rx_en && !priv->extend_desc) {
2216                                 /* DESC2 & DESC3 will be overwitten by device
2217                                  * with timestamp value, hence reinitialize
2218                                  * them in stmmac_rx_refill() function so that
2219                                  * device can reuse it.
2220                                  */
2221                                 priv->rx_skbuff[entry] = NULL;
2222                                 dma_unmap_single(priv->device,
2223                                                  priv->rx_skbuff_dma[entry],
2224                                                  priv->dma_buf_sz,
2225                                                  DMA_FROM_DEVICE);
2226                         }
2227                 } else {
2228                         struct sk_buff *skb;
2229                         int frame_len;
2230
2231                         frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2232
2233                         /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2234                          * Type frames (LLC/LLC-SNAP)
2235                          */
2236                         if (unlikely(status != llc_snap))
2237                                 frame_len -= ETH_FCS_LEN;
2238
2239                         if (netif_msg_rx_status(priv)) {
2240                                 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2241                                          p, entry, p->des2);
2242                                 if (frame_len > ETH_FRAME_LEN)
2243                                         pr_debug("\tframe size %d, COE: %d\n",
2244                                                  frame_len, status);
2245                         }
2246                         skb = priv->rx_skbuff[entry];
2247                         if (unlikely(!skb)) {
2248                                 pr_err("%s: Inconsistent Rx descriptor chain\n",
2249                                        priv->dev->name);
2250                                 priv->dev->stats.rx_dropped++;
2251                                 break;
2252                         }
2253                         prefetch(skb->data - NET_IP_ALIGN);
2254                         priv->rx_skbuff[entry] = NULL;
2255
2256                         stmmac_get_rx_hwtstamp(priv, entry, skb);
2257
2258                         skb_put(skb, frame_len);
2259                         dma_unmap_single(priv->device,
2260                                          priv->rx_skbuff_dma[entry],
2261                                          priv->dma_buf_sz, DMA_FROM_DEVICE);
2262
2263                         if (netif_msg_pktdata(priv)) {
2264                                 pr_debug("frame received (%dbytes)", frame_len);
2265                                 print_pkt(skb->data, frame_len);
2266                         }
2267
2268                         stmmac_rx_vlan(priv->dev, skb);
2269
2270                         skb->protocol = eth_type_trans(skb, priv->dev);
2271
2272                         if (unlikely(!coe))
2273                                 skb_checksum_none_assert(skb);
2274                         else
2275                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2276
2277                         napi_gro_receive(&priv->napi, skb);
2278
2279                         priv->dev->stats.rx_packets++;
2280                         priv->dev->stats.rx_bytes += frame_len;
2281                 }
2282                 entry = next_entry;
2283         }
2284
2285         stmmac_rx_refill(priv);
2286
2287         priv->xstats.rx_pkt_n += count;
2288
2289         return count;
2290 }
2291
2292 /**
2293  *  stmmac_poll - stmmac poll method (NAPI)
2294  *  @napi : pointer to the napi structure.
2295  *  @budget : maximum number of packets that the current CPU can receive from
2296  *            all interfaces.
2297  *  Description :
2298  *  To look at the incoming frames and clear the tx resources.
2299  */
2300 static int stmmac_poll(struct napi_struct *napi, int budget)
2301 {
2302         struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2303         int work_done = 0;
2304
2305         priv->xstats.napi_poll++;
2306         stmmac_tx_clean(priv);
2307
2308         work_done = stmmac_rx(priv, budget);
2309         if (work_done < budget) {
2310                 napi_complete(napi);
2311                 stmmac_enable_dma_irq(priv);
2312         }
2313         return work_done;
2314 }
2315
2316 /**
2317  *  stmmac_tx_timeout
2318  *  @dev : Pointer to net device structure
2319  *  Description: this function is called when a packet transmission fails to
2320  *   complete within a reasonable time. The driver will mark the error in the
2321  *   netdev structure and arrange for the device to be reset to a sane state
2322  *   in order to transmit a new packet.
2323  */
2324 static void stmmac_tx_timeout(struct net_device *dev)
2325 {
2326         struct stmmac_priv *priv = netdev_priv(dev);
2327
2328         /* Clear Tx resources and restart transmitting again */
2329         stmmac_tx_err(priv);
2330 }
2331
2332 /**
2333  *  stmmac_set_rx_mode - entry point for multicast addressing
2334  *  @dev : pointer to the device structure
2335  *  Description:
2336  *  This function is a driver entry point which gets called by the kernel
2337  *  whenever multicast addresses must be enabled/disabled.
2338  *  Return value:
2339  *  void.
2340  */
2341 static void stmmac_set_rx_mode(struct net_device *dev)
2342 {
2343         struct stmmac_priv *priv = netdev_priv(dev);
2344
2345         priv->hw->mac->set_filter(priv->hw, dev);
2346 }
2347
2348 /**
2349  *  stmmac_change_mtu - entry point to change MTU size for the device.
2350  *  @dev : device pointer.
2351  *  @new_mtu : the new MTU size for the device.
2352  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
2353  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
2354  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
2355  *  Return value:
2356  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2357  *  file on failure.
2358  */
2359 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2360 {
2361         struct stmmac_priv *priv = netdev_priv(dev);
2362         int max_mtu;
2363
2364         if (netif_running(dev)) {
2365                 pr_err("%s: must be stopped to change its MTU\n", dev->name);
2366                 return -EBUSY;
2367         }
2368
2369         if (priv->plat->enh_desc)
2370                 max_mtu = JUMBO_LEN;
2371         else
2372                 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2373
2374         if (priv->plat->maxmtu < max_mtu)
2375                 max_mtu = priv->plat->maxmtu;
2376
2377         if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2378                 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2379                 return -EINVAL;
2380         }
2381
2382         dev->mtu = new_mtu;
2383         netdev_update_features(dev);
2384
2385         return 0;
2386 }
2387
2388 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2389                                              netdev_features_t features)
2390 {
2391         struct stmmac_priv *priv = netdev_priv(dev);
2392
2393         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2394                 features &= ~NETIF_F_RXCSUM;
2395
2396         if (!priv->plat->tx_coe)
2397                 features &= ~NETIF_F_ALL_CSUM;
2398
2399         /* Some GMAC devices have a bugged Jumbo frame support that
2400          * needs to have the Tx COE disabled for oversized frames
2401          * (due to limited buffer sizes). In this case we disable
2402          * the TX csum insertionin the TDES and not use SF.
2403          */
2404         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2405                 features &= ~NETIF_F_ALL_CSUM;
2406
2407         return features;
2408 }
2409
2410 static int stmmac_set_features(struct net_device *netdev,
2411                                netdev_features_t features)
2412 {
2413         struct stmmac_priv *priv = netdev_priv(netdev);
2414
2415         /* Keep the COE Type in case of csum is supporting */
2416         if (features & NETIF_F_RXCSUM)
2417                 priv->hw->rx_csum = priv->plat->rx_coe;
2418         else
2419                 priv->hw->rx_csum = 0;
2420         /* No check needed because rx_coe has been set before and it will be
2421          * fixed in case of issue.
2422          */
2423         priv->hw->mac->rx_ipc(priv->hw);
2424
2425         return 0;
2426 }
2427
2428 /**
2429  *  stmmac_interrupt - main ISR
2430  *  @irq: interrupt number.
2431  *  @dev_id: to pass the net device pointer.
2432  *  Description: this is the main driver interrupt service routine.
2433  *  It can call:
2434  *  o DMA service routine (to manage incoming frame reception and transmission
2435  *    status)
2436  *  o Core interrupts to manage: remote wake-up, management counter, LPI
2437  *    interrupts.
2438  */
2439 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2440 {
2441         struct net_device *dev = (struct net_device *)dev_id;
2442         struct stmmac_priv *priv = netdev_priv(dev);
2443
2444         if (priv->irq_wake)
2445                 pm_wakeup_event(priv->device, 0);
2446
2447         if (unlikely(!dev)) {
2448                 pr_err("%s: invalid dev pointer\n", __func__);
2449                 return IRQ_NONE;
2450         }
2451
2452         /* To handle GMAC own interrupts */
2453         if (priv->plat->has_gmac) {
2454                 int status = priv->hw->mac->host_irq_status(priv->hw,
2455                                                             &priv->xstats);
2456                 if (unlikely(status)) {
2457                         /* For LPI we need to save the tx status */
2458                         if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2459                                 priv->tx_path_in_lpi_mode = true;
2460                         if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2461                                 priv->tx_path_in_lpi_mode = false;
2462                 }
2463         }
2464
2465         /* To handle DMA interrupts */
2466         stmmac_dma_interrupt(priv);
2467
2468         return IRQ_HANDLED;
2469 }
2470
2471 #ifdef CONFIG_NET_POLL_CONTROLLER
2472 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2473  * to allow network I/O with interrupts disabled.
2474  */
2475 static void stmmac_poll_controller(struct net_device *dev)
2476 {
2477         disable_irq(dev->irq);
2478         stmmac_interrupt(dev->irq, dev);
2479         enable_irq(dev->irq);
2480 }
2481 #endif
2482
2483 /**
2484  *  stmmac_ioctl - Entry point for the Ioctl
2485  *  @dev: Device pointer.
2486  *  @rq: An IOCTL specefic structure, that can contain a pointer to
2487  *  a proprietary structure used to pass information to the driver.
2488  *  @cmd: IOCTL command
2489  *  Description:
2490  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2491  */
2492 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2493 {
2494         struct stmmac_priv *priv = netdev_priv(dev);
2495         int ret = -EOPNOTSUPP;
2496
2497         if (!netif_running(dev))
2498                 return -EINVAL;
2499
2500         switch (cmd) {
2501         case SIOCGMIIPHY:
2502         case SIOCGMIIREG:
2503         case SIOCSMIIREG:
2504                 if (!priv->phydev)
2505                         return -EINVAL;
2506                 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2507                 break;
2508         case SIOCSHWTSTAMP:
2509                 ret = stmmac_hwtstamp_ioctl(dev, rq);
2510                 break;
2511         default:
2512                 break;
2513         }
2514
2515         return ret;
2516 }
2517
2518 #ifdef CONFIG_DEBUG_FS
2519 static struct dentry *stmmac_fs_dir;
2520
2521 static void sysfs_display_ring(void *head, int size, int extend_desc,
2522                                struct seq_file *seq)
2523 {
2524         int i;
2525         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2526         struct dma_desc *p = (struct dma_desc *)head;
2527
2528         for (i = 0; i < size; i++) {
2529                 u64 x;
2530                 if (extend_desc) {
2531                         x = *(u64 *) ep;
2532                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2533                                    i, (unsigned int)virt_to_phys(ep),
2534                                    (unsigned int)x, (unsigned int)(x >> 32),
2535                                    ep->basic.des2, ep->basic.des3);
2536                         ep++;
2537                 } else {
2538                         x = *(u64 *) p;
2539                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2540                                    i, (unsigned int)virt_to_phys(ep),
2541                                    (unsigned int)x, (unsigned int)(x >> 32),
2542                                    p->des2, p->des3);
2543                         p++;
2544                 }
2545                 seq_printf(seq, "\n");
2546         }
2547 }
2548
2549 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2550 {
2551         struct net_device *dev = seq->private;
2552         struct stmmac_priv *priv = netdev_priv(dev);
2553         unsigned int txsize = priv->dma_tx_size;
2554         unsigned int rxsize = priv->dma_rx_size;
2555
2556         if (priv->extend_desc) {
2557                 seq_printf(seq, "Extended RX descriptor ring:\n");
2558                 sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2559                 seq_printf(seq, "Extended TX descriptor ring:\n");
2560                 sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2561         } else {
2562                 seq_printf(seq, "RX descriptor ring:\n");
2563                 sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2564                 seq_printf(seq, "TX descriptor ring:\n");
2565                 sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2566         }
2567
2568         return 0;
2569 }
2570
2571 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2572 {
2573         return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2574 }
2575
2576 static const struct file_operations stmmac_rings_status_fops = {
2577         .owner = THIS_MODULE,
2578         .open = stmmac_sysfs_ring_open,
2579         .read = seq_read,
2580         .llseek = seq_lseek,
2581         .release = single_release,
2582 };
2583
2584 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2585 {
2586         struct net_device *dev = seq->private;
2587         struct stmmac_priv *priv = netdev_priv(dev);
2588
2589         if (!priv->hw_cap_support) {
2590                 seq_printf(seq, "DMA HW features not supported\n");
2591                 return 0;
2592         }
2593
2594         seq_printf(seq, "==============================\n");
2595         seq_printf(seq, "\tDMA HW features\n");
2596         seq_printf(seq, "==============================\n");
2597
2598         seq_printf(seq, "\t10/100 Mbps %s\n",
2599                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2600         seq_printf(seq, "\t1000 Mbps %s\n",
2601                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
2602         seq_printf(seq, "\tHalf duple %s\n",
2603                    (priv->dma_cap.half_duplex) ? "Y" : "N");
2604         seq_printf(seq, "\tHash Filter: %s\n",
2605                    (priv->dma_cap.hash_filter) ? "Y" : "N");
2606         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2607                    (priv->dma_cap.multi_addr) ? "Y" : "N");
2608         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2609                    (priv->dma_cap.pcs) ? "Y" : "N");
2610         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2611                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
2612         seq_printf(seq, "\tPMT Remote wake up: %s\n",
2613                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2614         seq_printf(seq, "\tPMT Magic Frame: %s\n",
2615                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2616         seq_printf(seq, "\tRMON module: %s\n",
2617                    (priv->dma_cap.rmon) ? "Y" : "N");
2618         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2619                    (priv->dma_cap.time_stamp) ? "Y" : "N");
2620         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2621                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
2622         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2623                    (priv->dma_cap.eee) ? "Y" : "N");
2624         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2625         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2626                    (priv->dma_cap.tx_coe) ? "Y" : "N");
2627         seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2628                    (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2629         seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2630                    (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2631         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2632                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2633         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2634                    priv->dma_cap.number_rx_channel);
2635         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2636                    priv->dma_cap.number_tx_channel);
2637         seq_printf(seq, "\tEnhanced descriptors: %s\n",
2638                    (priv->dma_cap.enh_desc) ? "Y" : "N");
2639
2640         return 0;
2641 }
2642
2643 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2644 {
2645         return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2646 }
2647
2648 static const struct file_operations stmmac_dma_cap_fops = {
2649         .owner = THIS_MODULE,
2650         .open = stmmac_sysfs_dma_cap_open,
2651         .read = seq_read,
2652         .llseek = seq_lseek,
2653         .release = single_release,
2654 };
2655
2656 static int stmmac_init_fs(struct net_device *dev)
2657 {
2658         struct stmmac_priv *priv = netdev_priv(dev);
2659
2660         /* Create per netdev entries */
2661         priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
2662
2663         if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
2664                 pr_err("ERROR %s/%s, debugfs create directory failed\n",
2665                        STMMAC_RESOURCE_NAME, dev->name);
2666
2667                 return -ENOMEM;
2668         }
2669
2670         /* Entry to report DMA RX/TX rings */
2671         priv->dbgfs_rings_status =
2672                 debugfs_create_file("descriptors_status", S_IRUGO,
2673                                     priv->dbgfs_dir, dev,
2674                                     &stmmac_rings_status_fops);
2675
2676         if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
2677                 pr_info("ERROR creating stmmac ring debugfs file\n");
2678                 debugfs_remove_recursive(priv->dbgfs_dir);
2679
2680                 return -ENOMEM;
2681         }
2682
2683         /* Entry to report the DMA HW features */
2684         priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO,
2685                                             priv->dbgfs_dir,
2686                                             dev, &stmmac_dma_cap_fops);
2687
2688         if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
2689                 pr_info("ERROR creating stmmac MMC debugfs file\n");
2690                 debugfs_remove_recursive(priv->dbgfs_dir);
2691
2692                 return -ENOMEM;
2693         }
2694
2695         return 0;
2696 }
2697
2698 static void stmmac_exit_fs(struct net_device *dev)
2699 {
2700         struct stmmac_priv *priv = netdev_priv(dev);
2701
2702         debugfs_remove_recursive(priv->dbgfs_dir);
2703 }
2704 #endif /* CONFIG_DEBUG_FS */
2705
2706 static const struct net_device_ops stmmac_netdev_ops = {
2707         .ndo_open = stmmac_open,
2708         .ndo_start_xmit = stmmac_xmit,
2709         .ndo_stop = stmmac_release,
2710         .ndo_change_mtu = stmmac_change_mtu,
2711         .ndo_fix_features = stmmac_fix_features,
2712         .ndo_set_features = stmmac_set_features,
2713         .ndo_set_rx_mode = stmmac_set_rx_mode,
2714         .ndo_tx_timeout = stmmac_tx_timeout,
2715         .ndo_do_ioctl = stmmac_ioctl,
2716 #ifdef CONFIG_NET_POLL_CONTROLLER
2717         .ndo_poll_controller = stmmac_poll_controller,
2718 #endif
2719         .ndo_set_mac_address = eth_mac_addr,
2720 };
2721
2722 /**
2723  *  stmmac_hw_init - Init the MAC device
2724  *  @priv: driver private structure
2725  *  Description: this function is to configure the MAC device according to
2726  *  some platform parameters or the HW capability register. It prepares the
2727  *  driver to use either ring or chain modes and to setup either enhanced or
2728  *  normal descriptors.
2729  */
2730 static int stmmac_hw_init(struct stmmac_priv *priv)
2731 {
2732         struct mac_device_info *mac;
2733
2734         /* Identify the MAC HW device */
2735         if (priv->plat->has_gmac) {
2736                 priv->dev->priv_flags |= IFF_UNICAST_FLT;
2737                 mac = dwmac1000_setup(priv->ioaddr,
2738                                       priv->plat->multicast_filter_bins,
2739                                       priv->plat->unicast_filter_entries);
2740         } else {
2741                 mac = dwmac100_setup(priv->ioaddr);
2742         }
2743         if (!mac)
2744                 return -ENOMEM;
2745
2746         priv->hw = mac;
2747
2748         /* Get and dump the chip ID */
2749         priv->synopsys_id = stmmac_get_synopsys_id(priv);
2750
2751         /* To use the chained or ring mode */
2752         if (chain_mode) {
2753                 priv->hw->mode = &chain_mode_ops;
2754                 pr_info(" Chain mode enabled\n");
2755                 priv->mode = STMMAC_CHAIN_MODE;
2756         } else {
2757                 priv->hw->mode = &ring_mode_ops;
2758                 pr_info(" Ring mode enabled\n");
2759                 priv->mode = STMMAC_RING_MODE;
2760         }
2761
2762         /* Get the HW capability (new GMAC newer than 3.50a) */
2763         priv->hw_cap_support = stmmac_get_hw_features(priv);
2764         if (priv->hw_cap_support) {
2765                 pr_info(" DMA HW capability register supported");
2766
2767                 /* We can override some gmac/dma configuration fields: e.g.
2768                  * enh_desc, tx_coe (e.g. that are passed through the
2769                  * platform) with the values from the HW capability
2770                  * register (if supported).
2771                  */
2772                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
2773                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2774
2775                 /* TXCOE doesn't work in thresh DMA mode */
2776                 if (priv->plat->force_thresh_dma_mode)
2777                         priv->plat->tx_coe = 0;
2778                 else
2779                         priv->plat->tx_coe = priv->dma_cap.tx_coe;
2780
2781                 if (priv->dma_cap.rx_coe_type2)
2782                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2783                 else if (priv->dma_cap.rx_coe_type1)
2784                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2785
2786         } else
2787                 pr_info(" No HW DMA feature register supported");
2788
2789         /* To use alternate (extended) or normal descriptor structures */
2790         stmmac_selec_desc_mode(priv);
2791
2792         if (priv->plat->rx_coe) {
2793                 priv->hw->rx_csum = priv->plat->rx_coe;
2794                 pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2795                         priv->plat->rx_coe);
2796         }
2797         if (priv->plat->tx_coe)
2798                 pr_info(" TX Checksum insertion supported\n");
2799
2800         if (priv->plat->pmt) {
2801                 pr_info(" Wake-Up On Lan supported\n");
2802                 device_set_wakeup_capable(priv->device, 1);
2803         }
2804
2805         return 0;
2806 }
2807
2808 /**
2809  * stmmac_dvr_probe
2810  * @device: device pointer
2811  * @plat_dat: platform data pointer
2812  * @res: stmmac resource pointer
2813  * Description: this is the main probe function used to
2814  * call the alloc_etherdev, allocate the priv structure.
2815  * Return:
2816  * returns 0 on success, otherwise errno.
2817  */
2818 int stmmac_dvr_probe(struct device *device,
2819                      struct plat_stmmacenet_data *plat_dat,
2820                      struct stmmac_resources *res)
2821 {
2822         int ret = 0;
2823         struct net_device *ndev = NULL;
2824         struct stmmac_priv *priv;
2825
2826         ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2827         if (!ndev)
2828                 return -ENOMEM;
2829
2830         SET_NETDEV_DEV(ndev, device);
2831
2832         priv = netdev_priv(ndev);
2833         priv->device = device;
2834         priv->dev = ndev;
2835
2836         stmmac_set_ethtool_ops(ndev);
2837         priv->pause = pause;
2838         priv->plat = plat_dat;
2839         priv->ioaddr = res->addr;
2840         priv->dev->base_addr = (unsigned long)res->addr;
2841
2842         priv->dev->irq = res->irq;
2843         priv->wol_irq = res->wol_irq;
2844         priv->lpi_irq = res->lpi_irq;
2845
2846         if (res->mac)
2847                 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
2848
2849         dev_set_drvdata(device, priv->dev);
2850
2851         /* Verify driver arguments */
2852         stmmac_verify_args();
2853
2854         /* Override with kernel parameters if supplied XXX CRS XXX
2855          * this needs to have multiple instances
2856          */
2857         if ((phyaddr >= 0) && (phyaddr <= 31))
2858                 priv->plat->phy_addr = phyaddr;
2859
2860         priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
2861         if (IS_ERR(priv->stmmac_clk)) {
2862                 dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
2863                          __func__);
2864                 /* If failed to obtain stmmac_clk and specific clk_csr value
2865                  * is NOT passed from the platform, probe fail.
2866                  */
2867                 if (!priv->plat->clk_csr) {
2868                         ret = PTR_ERR(priv->stmmac_clk);
2869                         goto error_clk_get;
2870                 } else {
2871                         priv->stmmac_clk = NULL;
2872                 }
2873         }
2874         clk_prepare_enable(priv->stmmac_clk);
2875
2876         priv->pclk = devm_clk_get(priv->device, "pclk");
2877         if (IS_ERR(priv->pclk)) {
2878                 if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) {
2879                         ret = -EPROBE_DEFER;
2880                         goto error_pclk_get;
2881                 }
2882                 priv->pclk = NULL;
2883         }
2884         clk_prepare_enable(priv->pclk);
2885
2886         priv->stmmac_rst = devm_reset_control_get(priv->device,
2887                                                   STMMAC_RESOURCE_NAME);
2888         if (IS_ERR(priv->stmmac_rst)) {
2889                 if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
2890                         ret = -EPROBE_DEFER;
2891                         goto error_hw_init;
2892                 }
2893                 dev_info(priv->device, "no reset control found\n");
2894                 priv->stmmac_rst = NULL;
2895         }
2896         if (priv->stmmac_rst)
2897                 reset_control_deassert(priv->stmmac_rst);
2898
2899         /* Init MAC and get the capabilities */
2900         ret = stmmac_hw_init(priv);
2901         if (ret)
2902                 goto error_hw_init;
2903
2904         ndev->netdev_ops = &stmmac_netdev_ops;
2905
2906         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2907                             NETIF_F_RXCSUM;
2908         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2909         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2910 #ifdef STMMAC_VLAN_TAG_USED
2911         /* Both mac100 and gmac support receive VLAN tag detection */
2912         ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2913 #endif
2914         priv->msg_enable = netif_msg_init(debug, default_msg_level);
2915
2916         if (flow_ctrl)
2917                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
2918
2919         /* Rx Watchdog is available in the COREs newer than the 3.40.
2920          * In some case, for example on bugged HW this feature
2921          * has to be disable and this can be done by passing the
2922          * riwt_off field from the platform.
2923          */
2924         if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2925                 priv->use_riwt = 1;
2926                 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2927         }
2928
2929         netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2930
2931         spin_lock_init(&priv->lock);
2932         spin_lock_init(&priv->tx_lock);
2933
2934         ret = register_netdev(ndev);
2935         if (ret) {
2936                 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2937                 goto error_netdev_register;
2938         }
2939
2940         /* If a specific clk_csr value is passed from the platform
2941          * this means that the CSR Clock Range selection cannot be
2942          * changed at run-time and it is fixed. Viceversa the driver'll try to
2943          * set the MDC clock dynamically according to the csr actual
2944          * clock input.
2945          */
2946         if (!priv->plat->clk_csr)
2947                 stmmac_clk_csr_set(priv);
2948         else
2949                 priv->clk_csr = priv->plat->clk_csr;
2950
2951         stmmac_check_pcs_mode(priv);
2952
2953         if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2954             priv->pcs != STMMAC_PCS_RTBI) {
2955                 /* MDIO bus Registration */
2956                 ret = stmmac_mdio_register(ndev);
2957                 if (ret < 0) {
2958                         pr_debug("%s: MDIO bus (id: %d) registration failed",
2959                                  __func__, priv->plat->bus_id);
2960                         goto error_mdio_register;
2961                 }
2962         }
2963
2964         return 0;
2965
2966 error_mdio_register:
2967         unregister_netdev(ndev);
2968 error_netdev_register:
2969         netif_napi_del(&priv->napi);
2970 error_hw_init:
2971         clk_disable_unprepare(priv->pclk);
2972 error_pclk_get:
2973         clk_disable_unprepare(priv->stmmac_clk);
2974 error_clk_get:
2975         free_netdev(ndev);
2976
2977         return ret;
2978 }
2979 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
2980
2981 /**
2982  * stmmac_dvr_remove
2983  * @ndev: net device pointer
2984  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2985  * changes the link status, releases the DMA descriptor rings.
2986  */
2987 int stmmac_dvr_remove(struct net_device *ndev)
2988 {
2989         struct stmmac_priv *priv = netdev_priv(ndev);
2990
2991         pr_info("%s:\n\tremoving driver", __func__);
2992
2993         priv->hw->dma->stop_rx(priv->ioaddr);
2994         priv->hw->dma->stop_tx(priv->ioaddr);
2995
2996         stmmac_set_mac(priv->ioaddr, false);
2997         netif_carrier_off(ndev);
2998         unregister_netdev(ndev);
2999         if (priv->stmmac_rst)
3000                 reset_control_assert(priv->stmmac_rst);
3001         clk_disable_unprepare(priv->pclk);
3002         clk_disable_unprepare(priv->stmmac_clk);
3003         if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
3004             priv->pcs != STMMAC_PCS_RTBI)
3005                 stmmac_mdio_unregister(ndev);
3006         free_netdev(ndev);
3007
3008         return 0;
3009 }
3010 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
3011
3012 /**
3013  * stmmac_suspend - suspend callback
3014  * @ndev: net device pointer
3015  * Description: this is the function to suspend the device and it is called
3016  * by the platform driver to stop the network queue, release the resources,
3017  * program the PMT register (for WoL), clean and release driver resources.
3018  */
3019 int stmmac_suspend(struct net_device *ndev)
3020 {
3021         struct stmmac_priv *priv = netdev_priv(ndev);
3022         unsigned long flags;
3023
3024         if (!ndev || !netif_running(ndev))
3025                 return 0;
3026
3027         if (priv->phydev)
3028                 phy_stop(priv->phydev);
3029
3030         spin_lock_irqsave(&priv->lock, flags);
3031
3032         netif_device_detach(ndev);
3033         netif_stop_queue(ndev);
3034
3035         napi_disable(&priv->napi);
3036
3037         /* Stop TX/RX DMA */
3038         priv->hw->dma->stop_tx(priv->ioaddr);
3039         priv->hw->dma->stop_rx(priv->ioaddr);
3040
3041         stmmac_clear_descriptors(priv);
3042
3043         /* Enable Power down mode by programming the PMT regs */
3044         if (device_may_wakeup(priv->device)) {
3045                 priv->hw->mac->pmt(priv->hw, priv->wolopts);
3046                 priv->irq_wake = 1;
3047         } else {
3048                 stmmac_set_mac(priv->ioaddr, false);
3049                 pinctrl_pm_select_sleep_state(priv->device);
3050                 /* Disable clock in case of PWM is off */
3051                 clk_disable(priv->pclk);
3052                 clk_disable(priv->stmmac_clk);
3053         }
3054         spin_unlock_irqrestore(&priv->lock, flags);
3055
3056         priv->oldlink = 0;
3057         priv->speed = 0;
3058         priv->oldduplex = -1;
3059         return 0;
3060 }
3061 EXPORT_SYMBOL_GPL(stmmac_suspend);
3062
3063 /**
3064  * stmmac_resume - resume callback
3065  * @ndev: net device pointer
3066  * Description: when resume this function is invoked to setup the DMA and CORE
3067  * in a usable state.
3068  */
3069 int stmmac_resume(struct net_device *ndev)
3070 {
3071         struct stmmac_priv *priv = netdev_priv(ndev);
3072         unsigned long flags;
3073
3074         if (!netif_running(ndev))
3075                 return 0;
3076
3077         spin_lock_irqsave(&priv->lock, flags);
3078
3079         /* Power Down bit, into the PM register, is cleared
3080          * automatically as soon as a magic packet or a Wake-up frame
3081          * is received. Anyway, it's better to manually clear
3082          * this bit because it can generate problems while resuming
3083          * from another devices (e.g. serial console).
3084          */
3085         if (device_may_wakeup(priv->device)) {
3086                 priv->hw->mac->pmt(priv->hw, 0);
3087                 priv->irq_wake = 0;
3088         } else {
3089                 pinctrl_pm_select_default_state(priv->device);
3090                 /* enable the clk prevously disabled */
3091                 clk_enable(priv->stmmac_clk);
3092                 clk_enable(priv->pclk);
3093                 /* reset the phy so that it's ready */
3094                 if (priv->mii)
3095                         stmmac_mdio_reset(priv->mii);
3096         }
3097
3098         netif_device_attach(ndev);
3099
3100         init_dma_desc_rings(ndev, GFP_ATOMIC);
3101         stmmac_hw_setup(ndev, false);
3102         stmmac_init_tx_coalesce(priv);
3103
3104         napi_enable(&priv->napi);
3105
3106         netif_start_queue(ndev);
3107
3108         spin_unlock_irqrestore(&priv->lock, flags);
3109
3110         if (priv->phydev)
3111                 phy_start(priv->phydev);
3112
3113         return 0;
3114 }
3115 EXPORT_SYMBOL_GPL(stmmac_resume);
3116
3117 #ifndef MODULE
3118 static int __init stmmac_cmdline_opt(char *str)
3119 {
3120         char *opt;
3121
3122         if (!str || !*str)
3123                 return -EINVAL;
3124         while ((opt = strsep(&str, ",")) != NULL) {
3125                 if (!strncmp(opt, "debug:", 6)) {
3126                         if (kstrtoint(opt + 6, 0, &debug))
3127                                 goto err;
3128                 } else if (!strncmp(opt, "phyaddr:", 8)) {
3129                         if (kstrtoint(opt + 8, 0, &phyaddr))
3130                                 goto err;
3131                 } else if (!strncmp(opt, "dma_txsize:", 11)) {
3132                         if (kstrtoint(opt + 11, 0, &dma_txsize))
3133                                 goto err;
3134                 } else if (!strncmp(opt, "dma_rxsize:", 11)) {
3135                         if (kstrtoint(opt + 11, 0, &dma_rxsize))
3136                                 goto err;
3137                 } else if (!strncmp(opt, "buf_sz:", 7)) {
3138                         if (kstrtoint(opt + 7, 0, &buf_sz))
3139                                 goto err;
3140                 } else if (!strncmp(opt, "tc:", 3)) {
3141                         if (kstrtoint(opt + 3, 0, &tc))
3142                                 goto err;
3143                 } else if (!strncmp(opt, "watchdog:", 9)) {
3144                         if (kstrtoint(opt + 9, 0, &watchdog))
3145                                 goto err;
3146                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
3147                         if (kstrtoint(opt + 10, 0, &flow_ctrl))
3148                                 goto err;
3149                 } else if (!strncmp(opt, "pause:", 6)) {
3150                         if (kstrtoint(opt + 6, 0, &pause))
3151                                 goto err;
3152                 } else if (!strncmp(opt, "eee_timer:", 10)) {
3153                         if (kstrtoint(opt + 10, 0, &eee_timer))
3154                                 goto err;
3155                 } else if (!strncmp(opt, "chain_mode:", 11)) {
3156                         if (kstrtoint(opt + 11, 0, &chain_mode))
3157                                 goto err;
3158                 }
3159         }
3160         return 0;
3161
3162 err:
3163         pr_err("%s: ERROR broken module parameter conversion", __func__);
3164         return -EINVAL;
3165 }
3166
3167 __setup("stmmaceth=", stmmac_cmdline_opt);
3168 #endif /* MODULE */
3169
3170 static int __init stmmac_init(void)
3171 {
3172 #ifdef CONFIG_DEBUG_FS
3173         /* Create debugfs main directory if it doesn't exist yet */
3174         if (!stmmac_fs_dir) {
3175                 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
3176
3177                 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
3178                         pr_err("ERROR %s, debugfs create directory failed\n",
3179                                STMMAC_RESOURCE_NAME);
3180
3181                         return -ENOMEM;
3182                 }
3183         }
3184 #endif
3185
3186         return 0;
3187 }
3188
3189 static void __exit stmmac_exit(void)
3190 {
3191 #ifdef CONFIG_DEBUG_FS
3192         debugfs_remove_recursive(stmmac_fs_dir);
3193 #endif
3194 }
3195
3196 module_init(stmmac_init)
3197 module_exit(stmmac_exit)
3198
3199 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3200 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3201 MODULE_LICENSE("GPL");