NetXen: Fixes for Power PC architecture
[cascardo/linux.git] / drivers / net / sb1250-mac.c
1 /*
2  * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version 2
7  * of the License, or (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  *
18  *
19  * This driver is designed for the Broadcom SiByte SOC built-in
20  * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
21  */
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/string.h>
25 #include <linux/timer.h>
26 #include <linux/errno.h>
27 #include <linux/ioport.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/init.h>
34 #include <linux/bitops.h>
35 #include <asm/processor.h>              /* Processor type for cache alignment. */
36 #include <asm/io.h>
37 #include <asm/cache.h>
38
39 /* This is only here until the firmware is ready.  In that case,
40    the firmware leaves the ethernet address in the register for us. */
41 #ifdef CONFIG_SIBYTE_STANDALONE
42 #define SBMAC_ETH0_HWADDR "40:00:00:00:01:00"
43 #define SBMAC_ETH1_HWADDR "40:00:00:00:01:01"
44 #define SBMAC_ETH2_HWADDR "40:00:00:00:01:02"
45 #define SBMAC_ETH3_HWADDR "40:00:00:00:01:03"
46 #endif
47
48
49 /* These identify the driver base version and may not be removed. */
50 #if 0
51 static char version1[] __devinitdata =
52 "sb1250-mac.c:1.00 1/11/2001 Written by Mitch Lichtenberg\n";
53 #endif
54
55
56 /* Operational parameters that usually are not changed. */
57
58 #define CONFIG_SBMAC_COALESCE
59
60 #define MAX_UNITS 4             /* More are supported, limit only on options */
61
62 /* Time in jiffies before concluding the transmitter is hung. */
63 #define TX_TIMEOUT  (2*HZ)
64
65
66 MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
67 MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
68
69 /* A few user-configurable values which may be modified when a driver
70    module is loaded. */
71
72 /* 1 normal messages, 0 quiet .. 7 verbose. */
73 static int debug = 1;
74 module_param(debug, int, S_IRUGO);
75 MODULE_PARM_DESC(debug, "Debug messages");
76
77 /* mii status msgs */
78 static int noisy_mii = 1;
79 module_param(noisy_mii, int, S_IRUGO);
80 MODULE_PARM_DESC(noisy_mii, "MII status messages");
81
82 /* Used to pass the media type, etc.
83    Both 'options[]' and 'full_duplex[]' should exist for driver
84    interoperability.
85    The media type is usually passed in 'options[]'.
86 */
87 #ifdef MODULE
88 static int options[MAX_UNITS] = {-1, -1, -1, -1};
89 module_param_array(options, int, NULL, S_IRUGO);
90 MODULE_PARM_DESC(options, "1-" __MODULE_STRING(MAX_UNITS));
91
92 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1};
93 module_param_array(full_duplex, int, NULL, S_IRUGO);
94 MODULE_PARM_DESC(full_duplex, "1-" __MODULE_STRING(MAX_UNITS));
95 #endif
96
97 #ifdef CONFIG_SBMAC_COALESCE
98 static int int_pktcnt = 0;
99 module_param(int_pktcnt, int, S_IRUGO);
100 MODULE_PARM_DESC(int_pktcnt, "Packet count");
101
102 static int int_timeout = 0;
103 module_param(int_timeout, int, S_IRUGO);
104 MODULE_PARM_DESC(int_timeout, "Timeout value");
105 #endif
106
107 #include <asm/sibyte/sb1250.h>
108 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
109 #include <asm/sibyte/bcm1480_regs.h>
110 #include <asm/sibyte/bcm1480_int.h>
111 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
112 #include <asm/sibyte/sb1250_regs.h>
113 #include <asm/sibyte/sb1250_int.h>
114 #else
115 #error invalid SiByte MAC configuation
116 #endif
117 #include <asm/sibyte/sb1250_scd.h>
118 #include <asm/sibyte/sb1250_mac.h>
119 #include <asm/sibyte/sb1250_dma.h>
120
121 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
122 #define UNIT_INT(n)             (K_BCM1480_INT_MAC_0 + ((n) * 2))
123 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
124 #define UNIT_INT(n)             (K_INT_MAC_0 + (n))
125 #else
126 #error invalid SiByte MAC configuation
127 #endif
128
129 /**********************************************************************
130  *  Simple types
131  ********************************************************************* */
132
133
134 typedef enum { sbmac_speed_auto, sbmac_speed_10,
135                sbmac_speed_100, sbmac_speed_1000 } sbmac_speed_t;
136
137 typedef enum { sbmac_duplex_auto, sbmac_duplex_half,
138                sbmac_duplex_full } sbmac_duplex_t;
139
140 typedef enum { sbmac_fc_auto, sbmac_fc_disabled, sbmac_fc_frame,
141                sbmac_fc_collision, sbmac_fc_carrier } sbmac_fc_t;
142
143 typedef enum { sbmac_state_uninit, sbmac_state_off, sbmac_state_on,
144                sbmac_state_broken } sbmac_state_t;
145
146
147 /**********************************************************************
148  *  Macros
149  ********************************************************************* */
150
151
152 #define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
153                           (d)->sbdma_dscrtable : (d)->f+1)
154
155
156 #define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
157
158 #define SBMAC_MAX_TXDESCR       32
159 #define SBMAC_MAX_RXDESCR       32
160
161 #define ETHER_ALIGN     2
162 #define ETHER_ADDR_LEN  6
163 #define ENET_PACKET_SIZE        1518
164 /*#define ENET_PACKET_SIZE      9216 */
165
166 /**********************************************************************
167  *  DMA Descriptor structure
168  ********************************************************************* */
169
170 typedef struct sbdmadscr_s {
171         uint64_t  dscr_a;
172         uint64_t  dscr_b;
173 } sbdmadscr_t;
174
175 typedef unsigned long paddr_t;
176
177 /**********************************************************************
178  *  DMA Controller structure
179  ********************************************************************* */
180
181 typedef struct sbmacdma_s {
182
183         /*
184          * This stuff is used to identify the channel and the registers
185          * associated with it.
186          */
187
188         struct sbmac_softc *sbdma_eth;          /* back pointer to associated MAC */
189         int              sbdma_channel; /* channel number */
190         int              sbdma_txdir;       /* direction (1=transmit) */
191         int              sbdma_maxdescr;        /* total # of descriptors in ring */
192 #ifdef CONFIG_SBMAC_COALESCE
193         int              sbdma_int_pktcnt;  /* # descriptors rx/tx before interrupt*/
194         int              sbdma_int_timeout; /* # usec rx/tx interrupt */
195 #endif
196
197         volatile void __iomem *sbdma_config0;   /* DMA config register 0 */
198         volatile void __iomem *sbdma_config1;   /* DMA config register 1 */
199         volatile void __iomem *sbdma_dscrbase;  /* Descriptor base address */
200         volatile void __iomem *sbdma_dscrcnt;     /* Descriptor count register */
201         volatile void __iomem *sbdma_curdscr;   /* current descriptor address */
202
203         /*
204          * This stuff is for maintenance of the ring
205          */
206
207         sbdmadscr_t     *sbdma_dscrtable;       /* base of descriptor table */
208         sbdmadscr_t     *sbdma_dscrtable_end; /* end of descriptor table */
209
210         struct sk_buff **sbdma_ctxtable;    /* context table, one per descr */
211
212         paddr_t          sbdma_dscrtable_phys; /* and also the phys addr */
213         sbdmadscr_t     *sbdma_addptr;  /* next dscr for sw to add */
214         sbdmadscr_t     *sbdma_remptr;  /* next dscr for sw to remove */
215 } sbmacdma_t;
216
217
218 /**********************************************************************
219  *  Ethernet softc structure
220  ********************************************************************* */
221
222 struct sbmac_softc {
223
224         /*
225          * Linux-specific things
226          */
227
228         struct net_device *sbm_dev;             /* pointer to linux device */
229         spinlock_t sbm_lock;            /* spin lock */
230         struct timer_list sbm_timer;            /* for monitoring MII */
231         struct net_device_stats sbm_stats;
232         int sbm_devflags;                       /* current device flags */
233
234         int          sbm_phy_oldbmsr;
235         int          sbm_phy_oldanlpar;
236         int          sbm_phy_oldk1stsr;
237         int          sbm_phy_oldlinkstat;
238         int sbm_buffersize;
239
240         unsigned char sbm_phys[2];
241
242         /*
243          * Controller-specific things
244          */
245
246         void __iomem            *sbm_base;          /* MAC's base address */
247         sbmac_state_t    sbm_state;         /* current state */
248
249         volatile void __iomem   *sbm_macenable; /* MAC Enable Register */
250         volatile void __iomem   *sbm_maccfg;    /* MAC Configuration Register */
251         volatile void __iomem   *sbm_fifocfg;   /* FIFO configuration register */
252         volatile void __iomem   *sbm_framecfg;  /* Frame configuration register */
253         volatile void __iomem   *sbm_rxfilter;  /* receive filter register */
254         volatile void __iomem   *sbm_isr;       /* Interrupt status register */
255         volatile void __iomem   *sbm_imr;       /* Interrupt mask register */
256         volatile void __iomem   *sbm_mdio;      /* MDIO register */
257
258         sbmac_speed_t    sbm_speed;             /* current speed */
259         sbmac_duplex_t   sbm_duplex;    /* current duplex */
260         sbmac_fc_t       sbm_fc;                /* current flow control setting */
261
262         unsigned char    sbm_hwaddr[ETHER_ADDR_LEN];
263
264         sbmacdma_t       sbm_txdma;             /* for now, only use channel 0 */
265         sbmacdma_t       sbm_rxdma;
266         int              rx_hw_checksum;
267         int              sbe_idx;
268 };
269
270
271 /**********************************************************************
272  *  Externs
273  ********************************************************************* */
274
275 /**********************************************************************
276  *  Prototypes
277  ********************************************************************* */
278
279 static void sbdma_initctx(sbmacdma_t *d,
280                           struct sbmac_softc *s,
281                           int chan,
282                           int txrx,
283                           int maxdescr);
284 static void sbdma_channel_start(sbmacdma_t *d, int rxtx);
285 static int sbdma_add_rcvbuffer(sbmacdma_t *d,struct sk_buff *m);
286 static int sbdma_add_txbuffer(sbmacdma_t *d,struct sk_buff *m);
287 static void sbdma_emptyring(sbmacdma_t *d);
288 static void sbdma_fillring(sbmacdma_t *d);
289 static void sbdma_rx_process(struct sbmac_softc *sc,sbmacdma_t *d);
290 static void sbdma_tx_process(struct sbmac_softc *sc,sbmacdma_t *d);
291 static int sbmac_initctx(struct sbmac_softc *s);
292 static void sbmac_channel_start(struct sbmac_softc *s);
293 static void sbmac_channel_stop(struct sbmac_softc *s);
294 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *,sbmac_state_t);
295 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff);
296 static uint64_t sbmac_addr2reg(unsigned char *ptr);
297 static irqreturn_t sbmac_intr(int irq,void *dev_instance);
298 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
299 static void sbmac_setmulti(struct sbmac_softc *sc);
300 static int sbmac_init(struct net_device *dev, int idx);
301 static int sbmac_set_speed(struct sbmac_softc *s,sbmac_speed_t speed);
302 static int sbmac_set_duplex(struct sbmac_softc *s,sbmac_duplex_t duplex,sbmac_fc_t fc);
303
304 static int sbmac_open(struct net_device *dev);
305 static void sbmac_timer(unsigned long data);
306 static void sbmac_tx_timeout (struct net_device *dev);
307 static struct net_device_stats *sbmac_get_stats(struct net_device *dev);
308 static void sbmac_set_rx_mode(struct net_device *dev);
309 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
310 static int sbmac_close(struct net_device *dev);
311 static int sbmac_mii_poll(struct sbmac_softc *s,int noisy);
312 static int sbmac_mii_probe(struct net_device *dev);
313
314 static void sbmac_mii_sync(struct sbmac_softc *s);
315 static void sbmac_mii_senddata(struct sbmac_softc *s,unsigned int data, int bitcnt);
316 static unsigned int sbmac_mii_read(struct sbmac_softc *s,int phyaddr,int regidx);
317 static void sbmac_mii_write(struct sbmac_softc *s,int phyaddr,int regidx,
318                             unsigned int regval);
319
320
321 /**********************************************************************
322  *  Globals
323  ********************************************************************* */
324
325 static uint64_t sbmac_orig_hwaddr[MAX_UNITS];
326
327
328 /**********************************************************************
329  *  MDIO constants
330  ********************************************************************* */
331
332 #define MII_COMMAND_START       0x01
333 #define MII_COMMAND_READ        0x02
334 #define MII_COMMAND_WRITE       0x01
335 #define MII_COMMAND_ACK         0x02
336
337 #define BMCR_RESET     0x8000
338 #define BMCR_LOOPBACK  0x4000
339 #define BMCR_SPEED0    0x2000
340 #define BMCR_ANENABLE  0x1000
341 #define BMCR_POWERDOWN 0x0800
342 #define BMCR_ISOLATE   0x0400
343 #define BMCR_RESTARTAN 0x0200
344 #define BMCR_DUPLEX    0x0100
345 #define BMCR_COLTEST   0x0080
346 #define BMCR_SPEED1    0x0040
347 #define BMCR_SPEED1000  BMCR_SPEED1
348 #define BMCR_SPEED100   BMCR_SPEED0
349 #define BMCR_SPEED10    0
350
351 #define BMSR_100BT4     0x8000
352 #define BMSR_100BT_FDX  0x4000
353 #define BMSR_100BT_HDX  0x2000
354 #define BMSR_10BT_FDX   0x1000
355 #define BMSR_10BT_HDX   0x0800
356 #define BMSR_100BT2_FDX 0x0400
357 #define BMSR_100BT2_HDX 0x0200
358 #define BMSR_1000BT_XSR 0x0100
359 #define BMSR_PRESUP     0x0040
360 #define BMSR_ANCOMPLT   0x0020
361 #define BMSR_REMFAULT   0x0010
362 #define BMSR_AUTONEG    0x0008
363 #define BMSR_LINKSTAT   0x0004
364 #define BMSR_JABDETECT  0x0002
365 #define BMSR_EXTCAPAB   0x0001
366
367 #define PHYIDR1         0x2000
368 #define PHYIDR2         0x5C60
369
370 #define ANAR_NP         0x8000
371 #define ANAR_RF         0x2000
372 #define ANAR_ASYPAUSE   0x0800
373 #define ANAR_PAUSE      0x0400
374 #define ANAR_T4         0x0200
375 #define ANAR_TXFD       0x0100
376 #define ANAR_TXHD       0x0080
377 #define ANAR_10FD       0x0040
378 #define ANAR_10HD       0x0020
379 #define ANAR_PSB        0x0001
380
381 #define ANLPAR_NP       0x8000
382 #define ANLPAR_ACK      0x4000
383 #define ANLPAR_RF       0x2000
384 #define ANLPAR_ASYPAUSE 0x0800
385 #define ANLPAR_PAUSE    0x0400
386 #define ANLPAR_T4       0x0200
387 #define ANLPAR_TXFD     0x0100
388 #define ANLPAR_TXHD     0x0080
389 #define ANLPAR_10FD     0x0040
390 #define ANLPAR_10HD     0x0020
391 #define ANLPAR_PSB      0x0001  /* 802.3 */
392
393 #define ANER_PDF        0x0010
394 #define ANER_LPNPABLE   0x0008
395 #define ANER_NPABLE     0x0004
396 #define ANER_PAGERX     0x0002
397 #define ANER_LPANABLE   0x0001
398
399 #define ANNPTR_NP       0x8000
400 #define ANNPTR_MP       0x2000
401 #define ANNPTR_ACK2     0x1000
402 #define ANNPTR_TOGTX    0x0800
403 #define ANNPTR_CODE     0x0008
404
405 #define ANNPRR_NP       0x8000
406 #define ANNPRR_MP       0x2000
407 #define ANNPRR_ACK3     0x1000
408 #define ANNPRR_TOGTX    0x0800
409 #define ANNPRR_CODE     0x0008
410
411 #define K1TCR_TESTMODE  0x0000
412 #define K1TCR_MSMCE     0x1000
413 #define K1TCR_MSCV      0x0800
414 #define K1TCR_RPTR      0x0400
415 #define K1TCR_1000BT_FDX 0x200
416 #define K1TCR_1000BT_HDX 0x100
417
418 #define K1STSR_MSMCFLT  0x8000
419 #define K1STSR_MSCFGRES 0x4000
420 #define K1STSR_LRSTAT   0x2000
421 #define K1STSR_RRSTAT   0x1000
422 #define K1STSR_LP1KFD   0x0800
423 #define K1STSR_LP1KHD   0x0400
424 #define K1STSR_LPASMDIR 0x0200
425
426 #define K1SCR_1KX_FDX   0x8000
427 #define K1SCR_1KX_HDX   0x4000
428 #define K1SCR_1KT_FDX   0x2000
429 #define K1SCR_1KT_HDX   0x1000
430
431 #define STRAP_PHY1      0x0800
432 #define STRAP_NCMODE    0x0400
433 #define STRAP_MANMSCFG  0x0200
434 #define STRAP_ANENABLE  0x0100
435 #define STRAP_MSVAL     0x0080
436 #define STRAP_1KHDXADV  0x0010
437 #define STRAP_1KFDXADV  0x0008
438 #define STRAP_100ADV    0x0004
439 #define STRAP_SPEEDSEL  0x0000
440 #define STRAP_SPEED100  0x0001
441
442 #define PHYSUP_SPEED1000 0x10
443 #define PHYSUP_SPEED100  0x08
444 #define PHYSUP_SPEED10   0x00
445 #define PHYSUP_LINKUP    0x04
446 #define PHYSUP_FDX       0x02
447
448 #define MII_BMCR        0x00    /* Basic mode control register (rw) */
449 #define MII_BMSR        0x01    /* Basic mode status register (ro) */
450 #define MII_PHYIDR1     0x02
451 #define MII_PHYIDR2     0x03
452
453 #define MII_K1STSR      0x0A    /* 1K Status Register (ro) */
454 #define MII_ANLPAR      0x05    /* Autonegotiation lnk partner abilities (rw) */
455
456
457 #define M_MAC_MDIO_DIR_OUTPUT   0               /* for clarity */
458
459 #define ENABLE          1
460 #define DISABLE         0
461
462 /**********************************************************************
463  *  SBMAC_MII_SYNC(s)
464  *
465  *  Synchronize with the MII - send a pattern of bits to the MII
466  *  that will guarantee that it is ready to accept a command.
467  *
468  *  Input parameters:
469  *         s - sbmac structure
470  *
471  *  Return value:
472  *         nothing
473  ********************************************************************* */
474
475 static void sbmac_mii_sync(struct sbmac_softc *s)
476 {
477         int cnt;
478         uint64_t bits;
479         int mac_mdio_genc;
480
481         mac_mdio_genc = __raw_readq(s->sbm_mdio) & M_MAC_GENC;
482
483         bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
484
485         __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
486
487         for (cnt = 0; cnt < 32; cnt++) {
488                 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
489                 __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
490         }
491 }
492
493 /**********************************************************************
494  *  SBMAC_MII_SENDDATA(s,data,bitcnt)
495  *
496  *  Send some bits to the MII.  The bits to be sent are right-
497  *  justified in the 'data' parameter.
498  *
499  *  Input parameters:
500  *         s - sbmac structure
501  *         data - data to send
502  *         bitcnt - number of bits to send
503  ********************************************************************* */
504
505 static void sbmac_mii_senddata(struct sbmac_softc *s,unsigned int data, int bitcnt)
506 {
507         int i;
508         uint64_t bits;
509         unsigned int curmask;
510         int mac_mdio_genc;
511
512         mac_mdio_genc = __raw_readq(s->sbm_mdio) & M_MAC_GENC;
513
514         bits = M_MAC_MDIO_DIR_OUTPUT;
515         __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
516
517         curmask = 1 << (bitcnt - 1);
518
519         for (i = 0; i < bitcnt; i++) {
520                 if (data & curmask)
521                         bits |= M_MAC_MDIO_OUT;
522                 else bits &= ~M_MAC_MDIO_OUT;
523                 __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
524                 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
525                 __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
526                 curmask >>= 1;
527         }
528 }
529
530
531
532 /**********************************************************************
533  *  SBMAC_MII_READ(s,phyaddr,regidx)
534  *
535  *  Read a PHY register.
536  *
537  *  Input parameters:
538  *         s - sbmac structure
539  *         phyaddr - PHY's address
540  *         regidx = index of register to read
541  *
542  *  Return value:
543  *         value read, or 0 if an error occurred.
544  ********************************************************************* */
545
546 static unsigned int sbmac_mii_read(struct sbmac_softc *s,int phyaddr,int regidx)
547 {
548         int idx;
549         int error;
550         int regval;
551         int mac_mdio_genc;
552
553         /*
554          * Synchronize ourselves so that the PHY knows the next
555          * thing coming down is a command
556          */
557
558         sbmac_mii_sync(s);
559
560         /*
561          * Send the data to the PHY.  The sequence is
562          * a "start" command (2 bits)
563          * a "read" command (2 bits)
564          * the PHY addr (5 bits)
565          * the register index (5 bits)
566          */
567
568         sbmac_mii_senddata(s,MII_COMMAND_START, 2);
569         sbmac_mii_senddata(s,MII_COMMAND_READ, 2);
570         sbmac_mii_senddata(s,phyaddr, 5);
571         sbmac_mii_senddata(s,regidx, 5);
572
573         mac_mdio_genc = __raw_readq(s->sbm_mdio) & M_MAC_GENC;
574
575         /*
576          * Switch the port around without a clock transition.
577          */
578         __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, s->sbm_mdio);
579
580         /*
581          * Send out a clock pulse to signal we want the status
582          */
583
584         __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
585         __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, s->sbm_mdio);
586
587         /*
588          * If an error occurred, the PHY will signal '1' back
589          */
590         error = __raw_readq(s->sbm_mdio) & M_MAC_MDIO_IN;
591
592         /*
593          * Issue an 'idle' clock pulse, but keep the direction
594          * the same.
595          */
596         __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
597         __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, s->sbm_mdio);
598
599         regval = 0;
600
601         for (idx = 0; idx < 16; idx++) {
602                 regval <<= 1;
603
604                 if (error == 0) {
605                         if (__raw_readq(s->sbm_mdio) & M_MAC_MDIO_IN)
606                                 regval |= 1;
607                 }
608
609                 __raw_writeq(M_MAC_MDIO_DIR_INPUT|M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
610                 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, s->sbm_mdio);
611         }
612
613         /* Switch back to output */
614         __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, s->sbm_mdio);
615
616         if (error == 0)
617                 return regval;
618         return 0;
619 }
620
621
622 /**********************************************************************
623  *  SBMAC_MII_WRITE(s,phyaddr,regidx,regval)
624  *
625  *  Write a value to a PHY register.
626  *
627  *  Input parameters:
628  *         s - sbmac structure
629  *         phyaddr - PHY to use
630  *         regidx - register within the PHY
631  *         regval - data to write to register
632  *
633  *  Return value:
634  *         nothing
635  ********************************************************************* */
636
637 static void sbmac_mii_write(struct sbmac_softc *s,int phyaddr,int regidx,
638                             unsigned int regval)
639 {
640         int mac_mdio_genc;
641
642         sbmac_mii_sync(s);
643
644         sbmac_mii_senddata(s,MII_COMMAND_START,2);
645         sbmac_mii_senddata(s,MII_COMMAND_WRITE,2);
646         sbmac_mii_senddata(s,phyaddr, 5);
647         sbmac_mii_senddata(s,regidx, 5);
648         sbmac_mii_senddata(s,MII_COMMAND_ACK,2);
649         sbmac_mii_senddata(s,regval,16);
650
651         mac_mdio_genc = __raw_readq(s->sbm_mdio) & M_MAC_GENC;
652
653         __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, s->sbm_mdio);
654 }
655
656
657
658 /**********************************************************************
659  *  SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
660  *
661  *  Initialize a DMA channel context.  Since there are potentially
662  *  eight DMA channels per MAC, it's nice to do this in a standard
663  *  way.
664  *
665  *  Input parameters:
666  *         d - sbmacdma_t structure (DMA channel context)
667  *         s - sbmac_softc structure (pointer to a MAC)
668  *         chan - channel number (0..1 right now)
669  *         txrx - Identifies DMA_TX or DMA_RX for channel direction
670  *      maxdescr - number of descriptors
671  *
672  *  Return value:
673  *         nothing
674  ********************************************************************* */
675
676 static void sbdma_initctx(sbmacdma_t *d,
677                           struct sbmac_softc *s,
678                           int chan,
679                           int txrx,
680                           int maxdescr)
681 {
682         /*
683          * Save away interesting stuff in the structure
684          */
685
686         d->sbdma_eth       = s;
687         d->sbdma_channel   = chan;
688         d->sbdma_txdir     = txrx;
689
690 #if 0
691         /* RMON clearing */
692         s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
693 #endif
694
695         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_BYTES)));
696         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_COLLISIONS)));
697         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_LATE_COL)));
698         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_EX_COL)));
699         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_FCS_ERROR)));
700         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_ABORT)));
701         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_BAD)));
702         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_GOOD)));
703         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_RUNT)));
704         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_OVERSIZE)));
705         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_BYTES)));
706         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_MCAST)));
707         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_BCAST)));
708         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_BAD)));
709         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_GOOD)));
710         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_RUNT)));
711         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_OVERSIZE)));
712         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_FCS_ERROR)));
713         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_LENGTH_ERROR)));
714         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_CODE_ERROR)));
715         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_ALIGN_ERROR)));
716
717         /*
718          * initialize register pointers
719          */
720
721         d->sbdma_config0 =
722                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
723         d->sbdma_config1 =
724                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
725         d->sbdma_dscrbase =
726                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
727         d->sbdma_dscrcnt =
728                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
729         d->sbdma_curdscr =
730                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
731
732         /*
733          * Allocate memory for the ring
734          */
735
736         d->sbdma_maxdescr = maxdescr;
737
738         d->sbdma_dscrtable = (sbdmadscr_t *)
739                 kmalloc((d->sbdma_maxdescr+1)*sizeof(sbdmadscr_t), GFP_KERNEL);
740
741         /*
742          * The descriptor table must be aligned to at least 16 bytes or the
743          * MAC will corrupt it.
744          */
745         d->sbdma_dscrtable = (sbdmadscr_t *)
746                 ALIGN((unsigned long)d->sbdma_dscrtable, sizeof(sbdmadscr_t));
747
748         memset(d->sbdma_dscrtable,0,d->sbdma_maxdescr*sizeof(sbdmadscr_t));
749
750         d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
751
752         d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
753
754         /*
755          * And context table
756          */
757
758         d->sbdma_ctxtable = (struct sk_buff **)
759                 kmalloc(d->sbdma_maxdescr*sizeof(struct sk_buff *), GFP_KERNEL);
760
761         memset(d->sbdma_ctxtable,0,d->sbdma_maxdescr*sizeof(struct sk_buff *));
762
763 #ifdef CONFIG_SBMAC_COALESCE
764         /*
765          * Setup Rx/Tx DMA coalescing defaults
766          */
767
768         if ( int_pktcnt ) {
769                 d->sbdma_int_pktcnt = int_pktcnt;
770         } else {
771                 d->sbdma_int_pktcnt = 1;
772         }
773
774         if ( int_timeout ) {
775                 d->sbdma_int_timeout = int_timeout;
776         } else {
777                 d->sbdma_int_timeout = 0;
778         }
779 #endif
780
781 }
782
783 /**********************************************************************
784  *  SBDMA_CHANNEL_START(d)
785  *
786  *  Initialize the hardware registers for a DMA channel.
787  *
788  *  Input parameters:
789  *         d - DMA channel to init (context must be previously init'd
790  *         rxtx - DMA_RX or DMA_TX depending on what type of channel
791  *
792  *  Return value:
793  *         nothing
794  ********************************************************************* */
795
796 static void sbdma_channel_start(sbmacdma_t *d, int rxtx )
797 {
798         /*
799          * Turn on the DMA channel
800          */
801
802 #ifdef CONFIG_SBMAC_COALESCE
803         __raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
804                        0, d->sbdma_config1);
805         __raw_writeq(M_DMA_EOP_INT_EN |
806                        V_DMA_RINGSZ(d->sbdma_maxdescr) |
807                        V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
808                        0, d->sbdma_config0);
809 #else
810         __raw_writeq(0, d->sbdma_config1);
811         __raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
812                        0, d->sbdma_config0);
813 #endif
814
815         __raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
816
817         /*
818          * Initialize ring pointers
819          */
820
821         d->sbdma_addptr = d->sbdma_dscrtable;
822         d->sbdma_remptr = d->sbdma_dscrtable;
823 }
824
825 /**********************************************************************
826  *  SBDMA_CHANNEL_STOP(d)
827  *
828  *  Initialize the hardware registers for a DMA channel.
829  *
830  *  Input parameters:
831  *         d - DMA channel to init (context must be previously init'd
832  *
833  *  Return value:
834  *         nothing
835  ********************************************************************* */
836
837 static void sbdma_channel_stop(sbmacdma_t *d)
838 {
839         /*
840          * Turn off the DMA channel
841          */
842
843         __raw_writeq(0, d->sbdma_config1);
844
845         __raw_writeq(0, d->sbdma_dscrbase);
846
847         __raw_writeq(0, d->sbdma_config0);
848
849         /*
850          * Zero ring pointers
851          */
852
853         d->sbdma_addptr = NULL;
854         d->sbdma_remptr = NULL;
855 }
856
857 static void sbdma_align_skb(struct sk_buff *skb,int power2,int offset)
858 {
859         unsigned long addr;
860         unsigned long newaddr;
861
862         addr = (unsigned long) skb->data;
863
864         newaddr = (addr + power2 - 1) & ~(power2 - 1);
865
866         skb_reserve(skb,newaddr-addr+offset);
867 }
868
869
870 /**********************************************************************
871  *  SBDMA_ADD_RCVBUFFER(d,sb)
872  *
873  *  Add a buffer to the specified DMA channel.   For receive channels,
874  *  this queues a buffer for inbound packets.
875  *
876  *  Input parameters:
877  *         d - DMA channel descriptor
878  *         sb - sk_buff to add, or NULL if we should allocate one
879  *
880  *  Return value:
881  *         0 if buffer could not be added (ring is full)
882  *         1 if buffer added successfully
883  ********************************************************************* */
884
885
886 static int sbdma_add_rcvbuffer(sbmacdma_t *d,struct sk_buff *sb)
887 {
888         sbdmadscr_t *dsc;
889         sbdmadscr_t *nextdsc;
890         struct sk_buff *sb_new = NULL;
891         int pktsize = ENET_PACKET_SIZE;
892
893         /* get pointer to our current place in the ring */
894
895         dsc = d->sbdma_addptr;
896         nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
897
898         /*
899          * figure out if the ring is full - if the next descriptor
900          * is the same as the one that we're going to remove from
901          * the ring, the ring is full
902          */
903
904         if (nextdsc == d->sbdma_remptr) {
905                 return -ENOSPC;
906         }
907
908         /*
909          * Allocate a sk_buff if we don't already have one.
910          * If we do have an sk_buff, reset it so that it's empty.
911          *
912          * Note: sk_buffs don't seem to be guaranteed to have any sort
913          * of alignment when they are allocated.  Therefore, allocate enough
914          * extra space to make sure that:
915          *
916          *    1. the data does not start in the middle of a cache line.
917          *    2. The data does not end in the middle of a cache line
918          *    3. The buffer can be aligned such that the IP addresses are
919          *       naturally aligned.
920          *
921          *  Remember, the SOCs MAC writes whole cache lines at a time,
922          *  without reading the old contents first.  So, if the sk_buff's
923          *  data portion starts in the middle of a cache line, the SOC
924          *  DMA will trash the beginning (and ending) portions.
925          */
926
927         if (sb == NULL) {
928                 sb_new = dev_alloc_skb(ENET_PACKET_SIZE + SMP_CACHE_BYTES * 2 + ETHER_ALIGN);
929                 if (sb_new == NULL) {
930                         printk(KERN_INFO "%s: sk_buff allocation failed\n",
931                                d->sbdma_eth->sbm_dev->name);
932                         return -ENOBUFS;
933                 }
934
935                 sbdma_align_skb(sb_new, SMP_CACHE_BYTES, ETHER_ALIGN);
936         }
937         else {
938                 sb_new = sb;
939                 /*
940                  * nothing special to reinit buffer, it's already aligned
941                  * and sb->data already points to a good place.
942                  */
943         }
944
945         /*
946          * fill in the descriptor
947          */
948
949 #ifdef CONFIG_SBMAC_COALESCE
950         /*
951          * Do not interrupt per DMA transfer.
952          */
953         dsc->dscr_a = virt_to_phys(sb_new->data) |
954                 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize+ETHER_ALIGN)) | 0;
955 #else
956         dsc->dscr_a = virt_to_phys(sb_new->data) |
957                 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize+ETHER_ALIGN)) |
958                 M_DMA_DSCRA_INTERRUPT;
959 #endif
960
961         /* receiving: no options */
962         dsc->dscr_b = 0;
963
964         /*
965          * fill in the context
966          */
967
968         d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
969
970         /*
971          * point at next packet
972          */
973
974         d->sbdma_addptr = nextdsc;
975
976         /*
977          * Give the buffer to the DMA engine.
978          */
979
980         __raw_writeq(1, d->sbdma_dscrcnt);
981
982         return 0;                                       /* we did it */
983 }
984
985 /**********************************************************************
986  *  SBDMA_ADD_TXBUFFER(d,sb)
987  *
988  *  Add a transmit buffer to the specified DMA channel, causing a
989  *  transmit to start.
990  *
991  *  Input parameters:
992  *         d - DMA channel descriptor
993  *         sb - sk_buff to add
994  *
995  *  Return value:
996  *         0 transmit queued successfully
997  *         otherwise error code
998  ********************************************************************* */
999
1000
1001 static int sbdma_add_txbuffer(sbmacdma_t *d,struct sk_buff *sb)
1002 {
1003         sbdmadscr_t *dsc;
1004         sbdmadscr_t *nextdsc;
1005         uint64_t phys;
1006         uint64_t ncb;
1007         int length;
1008
1009         /* get pointer to our current place in the ring */
1010
1011         dsc = d->sbdma_addptr;
1012         nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
1013
1014         /*
1015          * figure out if the ring is full - if the next descriptor
1016          * is the same as the one that we're going to remove from
1017          * the ring, the ring is full
1018          */
1019
1020         if (nextdsc == d->sbdma_remptr) {
1021                 return -ENOSPC;
1022         }
1023
1024         /*
1025          * Under Linux, it's not necessary to copy/coalesce buffers
1026          * like it is on NetBSD.  We think they're all contiguous,
1027          * but that may not be true for GBE.
1028          */
1029
1030         length = sb->len;
1031
1032         /*
1033          * fill in the descriptor.  Note that the number of cache
1034          * blocks in the descriptor is the number of blocks
1035          * *spanned*, so we need to add in the offset (if any)
1036          * while doing the calculation.
1037          */
1038
1039         phys = virt_to_phys(sb->data);
1040         ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
1041
1042         dsc->dscr_a = phys |
1043                 V_DMA_DSCRA_A_SIZE(ncb) |
1044 #ifndef CONFIG_SBMAC_COALESCE
1045                 M_DMA_DSCRA_INTERRUPT |
1046 #endif
1047                 M_DMA_ETHTX_SOP;
1048
1049         /* transmitting: set outbound options and length */
1050
1051         dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
1052                 V_DMA_DSCRB_PKT_SIZE(length);
1053
1054         /*
1055          * fill in the context
1056          */
1057
1058         d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
1059
1060         /*
1061          * point at next packet
1062          */
1063
1064         d->sbdma_addptr = nextdsc;
1065
1066         /*
1067          * Give the buffer to the DMA engine.
1068          */
1069
1070         __raw_writeq(1, d->sbdma_dscrcnt);
1071
1072         return 0;                                       /* we did it */
1073 }
1074
1075
1076
1077
1078 /**********************************************************************
1079  *  SBDMA_EMPTYRING(d)
1080  *
1081  *  Free all allocated sk_buffs on the specified DMA channel;
1082  *
1083  *  Input parameters:
1084  *         d  - DMA channel
1085  *
1086  *  Return value:
1087  *         nothing
1088  ********************************************************************* */
1089
1090 static void sbdma_emptyring(sbmacdma_t *d)
1091 {
1092         int idx;
1093         struct sk_buff *sb;
1094
1095         for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
1096                 sb = d->sbdma_ctxtable[idx];
1097                 if (sb) {
1098                         dev_kfree_skb(sb);
1099                         d->sbdma_ctxtable[idx] = NULL;
1100                 }
1101         }
1102 }
1103
1104
1105 /**********************************************************************
1106  *  SBDMA_FILLRING(d)
1107  *
1108  *  Fill the specified DMA channel (must be receive channel)
1109  *  with sk_buffs
1110  *
1111  *  Input parameters:
1112  *         d - DMA channel
1113  *
1114  *  Return value:
1115  *         nothing
1116  ********************************************************************* */
1117
1118 static void sbdma_fillring(sbmacdma_t *d)
1119 {
1120         int idx;
1121
1122         for (idx = 0; idx < SBMAC_MAX_RXDESCR-1; idx++) {
1123                 if (sbdma_add_rcvbuffer(d,NULL) != 0)
1124                         break;
1125         }
1126 }
1127
1128 #ifdef CONFIG_NET_POLL_CONTROLLER
1129 static void sbmac_netpoll(struct net_device *netdev)
1130 {
1131         struct sbmac_softc *sc = netdev_priv(netdev);
1132         int irq = sc->sbm_dev->irq;
1133
1134         __raw_writeq(0, sc->sbm_imr);
1135
1136         sbmac_intr(irq, netdev, NULL);
1137
1138 #ifdef CONFIG_SBMAC_COALESCE
1139         __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1140         ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1141         sc->sbm_imr);
1142 #else
1143         __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) | 
1144         (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1145 #endif
1146 }
1147 #endif
1148
1149 /**********************************************************************
1150  *  SBDMA_RX_PROCESS(sc,d)
1151  *
1152  *  Process "completed" receive buffers on the specified DMA channel.
1153  *  Note that this isn't really ideal for priority channels, since
1154  *  it processes all of the packets on a given channel before
1155  *  returning.
1156  *
1157  *  Input parameters:
1158  *         sc - softc structure
1159  *         d - DMA channel context
1160  *
1161  *  Return value:
1162  *         nothing
1163  ********************************************************************* */
1164
1165 static void sbdma_rx_process(struct sbmac_softc *sc,sbmacdma_t *d)
1166 {
1167         int curidx;
1168         int hwidx;
1169         sbdmadscr_t *dsc;
1170         struct sk_buff *sb;
1171         int len;
1172
1173         for (;;) {
1174                 /*
1175                  * figure out where we are (as an index) and where
1176                  * the hardware is (also as an index)
1177                  *
1178                  * This could be done faster if (for example) the
1179                  * descriptor table was page-aligned and contiguous in
1180                  * both virtual and physical memory -- you could then
1181                  * just compare the low-order bits of the virtual address
1182                  * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1183                  */
1184
1185                 curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1186                 hwidx = (int) (((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1187                                 d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
1188
1189                 /*
1190                  * If they're the same, that means we've processed all
1191                  * of the descriptors up to (but not including) the one that
1192                  * the hardware is working on right now.
1193                  */
1194
1195                 if (curidx == hwidx)
1196                         break;
1197
1198                 /*
1199                  * Otherwise, get the packet's sk_buff ptr back
1200                  */
1201
1202                 dsc = &(d->sbdma_dscrtable[curidx]);
1203                 sb = d->sbdma_ctxtable[curidx];
1204                 d->sbdma_ctxtable[curidx] = NULL;
1205
1206                 len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1207
1208                 /*
1209                  * Check packet status.  If good, process it.
1210                  * If not, silently drop it and put it back on the
1211                  * receive ring.
1212                  */
1213
1214                 if (!(dsc->dscr_a & M_DMA_ETHRX_BAD)) {
1215
1216                         /*
1217                          * Add a new buffer to replace the old one.  If we fail
1218                          * to allocate a buffer, we're going to drop this
1219                          * packet and put it right back on the receive ring.
1220                          */
1221
1222                         if (sbdma_add_rcvbuffer(d,NULL) == -ENOBUFS) {
1223                                 sc->sbm_stats.rx_dropped++;
1224                                 sbdma_add_rcvbuffer(d,sb); /* re-add old buffer */
1225                         } else {
1226                                 /*
1227                                  * Set length into the packet
1228                                  */
1229                                 skb_put(sb,len);
1230
1231                                 /*
1232                                  * Buffer has been replaced on the
1233                                  * receive ring.  Pass the buffer to
1234                                  * the kernel
1235                                  */
1236                                 sc->sbm_stats.rx_bytes += len;
1237                                 sc->sbm_stats.rx_packets++;
1238                                 sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1239                                 /* Check hw IPv4/TCP checksum if supported */
1240                                 if (sc->rx_hw_checksum == ENABLE) {
1241                                         if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1242                                             !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1243                                                 sb->ip_summed = CHECKSUM_UNNECESSARY;
1244                                                 /* don't need to set sb->csum */
1245                                         } else {
1246                                                 sb->ip_summed = CHECKSUM_NONE;
1247                                         }
1248                                 }
1249
1250                                 netif_rx(sb);
1251                         }
1252                 } else {
1253                         /*
1254                          * Packet was mangled somehow.  Just drop it and
1255                          * put it back on the receive ring.
1256                          */
1257                         sc->sbm_stats.rx_errors++;
1258                         sbdma_add_rcvbuffer(d,sb);
1259                 }
1260
1261
1262                 /*
1263                  * .. and advance to the next buffer.
1264                  */
1265
1266                 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1267
1268         }
1269 }
1270
1271
1272
1273 /**********************************************************************
1274  *  SBDMA_TX_PROCESS(sc,d)
1275  *
1276  *  Process "completed" transmit buffers on the specified DMA channel.
1277  *  This is normally called within the interrupt service routine.
1278  *  Note that this isn't really ideal for priority channels, since
1279  *  it processes all of the packets on a given channel before
1280  *  returning.
1281  *
1282  *  Input parameters:
1283  *      sc - softc structure
1284  *         d - DMA channel context
1285  *
1286  *  Return value:
1287  *         nothing
1288  ********************************************************************* */
1289
1290 static void sbdma_tx_process(struct sbmac_softc *sc,sbmacdma_t *d)
1291 {
1292         int curidx;
1293         int hwidx;
1294         sbdmadscr_t *dsc;
1295         struct sk_buff *sb;
1296         unsigned long flags;
1297
1298         spin_lock_irqsave(&(sc->sbm_lock), flags);
1299
1300         for (;;) {
1301                 /*
1302                  * figure out where we are (as an index) and where
1303                  * the hardware is (also as an index)
1304                  *
1305                  * This could be done faster if (for example) the
1306                  * descriptor table was page-aligned and contiguous in
1307                  * both virtual and physical memory -- you could then
1308                  * just compare the low-order bits of the virtual address
1309                  * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1310                  */
1311
1312                 curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1313                 hwidx = (int) (((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1314                                 d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
1315
1316                 /*
1317                  * If they're the same, that means we've processed all
1318                  * of the descriptors up to (but not including) the one that
1319                  * the hardware is working on right now.
1320                  */
1321
1322                 if (curidx == hwidx)
1323                         break;
1324
1325                 /*
1326                  * Otherwise, get the packet's sk_buff ptr back
1327                  */
1328
1329                 dsc = &(d->sbdma_dscrtable[curidx]);
1330                 sb = d->sbdma_ctxtable[curidx];
1331                 d->sbdma_ctxtable[curidx] = NULL;
1332
1333                 /*
1334                  * Stats
1335                  */
1336
1337                 sc->sbm_stats.tx_bytes += sb->len;
1338                 sc->sbm_stats.tx_packets++;
1339
1340                 /*
1341                  * for transmits, we just free buffers.
1342                  */
1343
1344                 dev_kfree_skb_irq(sb);
1345
1346                 /*
1347                  * .. and advance to the next buffer.
1348                  */
1349
1350                 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1351
1352         }
1353
1354         /*
1355          * Decide if we should wake up the protocol or not.
1356          * Other drivers seem to do this when we reach a low
1357          * watermark on the transmit queue.
1358          */
1359
1360         netif_wake_queue(d->sbdma_eth->sbm_dev);
1361
1362         spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1363
1364 }
1365
1366
1367
1368 /**********************************************************************
1369  *  SBMAC_INITCTX(s)
1370  *
1371  *  Initialize an Ethernet context structure - this is called
1372  *  once per MAC on the 1250.  Memory is allocated here, so don't
1373  *  call it again from inside the ioctl routines that bring the
1374  *  interface up/down
1375  *
1376  *  Input parameters:
1377  *         s - sbmac context structure
1378  *
1379  *  Return value:
1380  *         0
1381  ********************************************************************* */
1382
1383 static int sbmac_initctx(struct sbmac_softc *s)
1384 {
1385
1386         /*
1387          * figure out the addresses of some ports
1388          */
1389
1390         s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1391         s->sbm_maccfg    = s->sbm_base + R_MAC_CFG;
1392         s->sbm_fifocfg   = s->sbm_base + R_MAC_THRSH_CFG;
1393         s->sbm_framecfg  = s->sbm_base + R_MAC_FRAMECFG;
1394         s->sbm_rxfilter  = s->sbm_base + R_MAC_ADFILTER_CFG;
1395         s->sbm_isr       = s->sbm_base + R_MAC_STATUS;
1396         s->sbm_imr       = s->sbm_base + R_MAC_INT_MASK;
1397         s->sbm_mdio      = s->sbm_base + R_MAC_MDIO;
1398
1399         s->sbm_phys[0]   = 1;
1400         s->sbm_phys[1]   = 0;
1401
1402         s->sbm_phy_oldbmsr = 0;
1403         s->sbm_phy_oldanlpar = 0;
1404         s->sbm_phy_oldk1stsr = 0;
1405         s->sbm_phy_oldlinkstat = 0;
1406
1407         /*
1408          * Initialize the DMA channels.  Right now, only one per MAC is used
1409          * Note: Only do this _once_, as it allocates memory from the kernel!
1410          */
1411
1412         sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1413         sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1414
1415         /*
1416          * initial state is OFF
1417          */
1418
1419         s->sbm_state = sbmac_state_off;
1420
1421         /*
1422          * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
1423          */
1424
1425         s->sbm_speed = sbmac_speed_10;
1426         s->sbm_duplex = sbmac_duplex_half;
1427         s->sbm_fc = sbmac_fc_disabled;
1428
1429         return 0;
1430 }
1431
1432
1433 static void sbdma_uninitctx(struct sbmacdma_s *d)
1434 {
1435         if (d->sbdma_dscrtable) {
1436                 kfree(d->sbdma_dscrtable);
1437                 d->sbdma_dscrtable = NULL;
1438         }
1439
1440         if (d->sbdma_ctxtable) {
1441                 kfree(d->sbdma_ctxtable);
1442                 d->sbdma_ctxtable = NULL;
1443         }
1444 }
1445
1446
1447 static void sbmac_uninitctx(struct sbmac_softc *sc)
1448 {
1449         sbdma_uninitctx(&(sc->sbm_txdma));
1450         sbdma_uninitctx(&(sc->sbm_rxdma));
1451 }
1452
1453
1454 /**********************************************************************
1455  *  SBMAC_CHANNEL_START(s)
1456  *
1457  *  Start packet processing on this MAC.
1458  *
1459  *  Input parameters:
1460  *         s - sbmac structure
1461  *
1462  *  Return value:
1463  *         nothing
1464  ********************************************************************* */
1465
1466 static void sbmac_channel_start(struct sbmac_softc *s)
1467 {
1468         uint64_t reg;
1469         volatile void __iomem *port;
1470         uint64_t cfg,fifo,framecfg;
1471         int idx, th_value;
1472
1473         /*
1474          * Don't do this if running
1475          */
1476
1477         if (s->sbm_state == sbmac_state_on)
1478                 return;
1479
1480         /*
1481          * Bring the controller out of reset, but leave it off.
1482          */
1483
1484         __raw_writeq(0, s->sbm_macenable);
1485
1486         /*
1487          * Ignore all received packets
1488          */
1489
1490         __raw_writeq(0, s->sbm_rxfilter);
1491
1492         /*
1493          * Calculate values for various control registers.
1494          */
1495
1496         cfg = M_MAC_RETRY_EN |
1497                 M_MAC_TX_HOLD_SOP_EN |
1498                 V_MAC_TX_PAUSE_CNT_16K |
1499                 M_MAC_AP_STAT_EN |
1500                 M_MAC_FAST_SYNC |
1501                 M_MAC_SS_EN |
1502                 0;
1503
1504         /*
1505          * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1506          * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1507          * Use a larger RD_THRSH for gigabit
1508          */
1509         if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1510                 th_value = 28;
1511         else
1512                 th_value = 64;
1513
1514         fifo = V_MAC_TX_WR_THRSH(4) |   /* Must be '4' or '8' */
1515                 ((s->sbm_speed == sbmac_speed_1000)
1516                  ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1517                 V_MAC_TX_RL_THRSH(4) |
1518                 V_MAC_RX_PL_THRSH(4) |
1519                 V_MAC_RX_RD_THRSH(4) |  /* Must be '4' */
1520                 V_MAC_RX_PL_THRSH(4) |
1521                 V_MAC_RX_RL_THRSH(8) |
1522                 0;
1523
1524         framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1525                 V_MAC_MAX_FRAMESZ_DEFAULT |
1526                 V_MAC_BACKOFF_SEL(1);
1527
1528         /*
1529          * Clear out the hash address map
1530          */
1531
1532         port = s->sbm_base + R_MAC_HASH_BASE;
1533         for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1534                 __raw_writeq(0, port);
1535                 port += sizeof(uint64_t);
1536         }
1537
1538         /*
1539          * Clear out the exact-match table
1540          */
1541
1542         port = s->sbm_base + R_MAC_ADDR_BASE;
1543         for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1544                 __raw_writeq(0, port);
1545                 port += sizeof(uint64_t);
1546         }
1547
1548         /*
1549          * Clear out the DMA Channel mapping table registers
1550          */
1551
1552         port = s->sbm_base + R_MAC_CHUP0_BASE;
1553         for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1554                 __raw_writeq(0, port);
1555                 port += sizeof(uint64_t);
1556         }
1557
1558
1559         port = s->sbm_base + R_MAC_CHLO0_BASE;
1560         for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1561                 __raw_writeq(0, port);
1562                 port += sizeof(uint64_t);
1563         }
1564
1565         /*
1566          * Program the hardware address.  It goes into the hardware-address
1567          * register as well as the first filter register.
1568          */
1569
1570         reg = sbmac_addr2reg(s->sbm_hwaddr);
1571
1572         port = s->sbm_base + R_MAC_ADDR_BASE;
1573         __raw_writeq(reg, port);
1574         port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1575
1576 #ifdef CONFIG_SB1_PASS_1_WORKAROUNDS
1577         /*
1578          * Pass1 SOCs do not receive packets addressed to the
1579          * destination address in the R_MAC_ETHERNET_ADDR register.
1580          * Set the value to zero.
1581          */
1582         __raw_writeq(0, port);
1583 #else
1584         __raw_writeq(reg, port);
1585 #endif
1586
1587         /*
1588          * Set the receive filter for no packets, and write values
1589          * to the various config registers
1590          */
1591
1592         __raw_writeq(0, s->sbm_rxfilter);
1593         __raw_writeq(0, s->sbm_imr);
1594         __raw_writeq(framecfg, s->sbm_framecfg);
1595         __raw_writeq(fifo, s->sbm_fifocfg);
1596         __raw_writeq(cfg, s->sbm_maccfg);
1597
1598         /*
1599          * Initialize DMA channels (rings should be ok now)
1600          */
1601
1602         sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1603         sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1604
1605         /*
1606          * Configure the speed, duplex, and flow control
1607          */
1608
1609         sbmac_set_speed(s,s->sbm_speed);
1610         sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1611
1612         /*
1613          * Fill the receive ring
1614          */
1615
1616         sbdma_fillring(&(s->sbm_rxdma));
1617
1618         /*
1619          * Turn on the rest of the bits in the enable register
1620          */
1621
1622 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1623         __raw_writeq(M_MAC_RXDMA_EN0 |
1624                        M_MAC_TXDMA_EN0, s->sbm_macenable);
1625 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1626         __raw_writeq(M_MAC_RXDMA_EN0 |
1627                        M_MAC_TXDMA_EN0 |
1628                        M_MAC_RX_ENABLE |
1629                        M_MAC_TX_ENABLE, s->sbm_macenable);
1630 #else
1631 #error invalid SiByte MAC configuation
1632 #endif
1633
1634 #ifdef CONFIG_SBMAC_COALESCE
1635         /*
1636          * Accept any TX interrupt and EOP count/timer RX interrupts on ch 0
1637          */
1638         __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1639                        ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1640 #else
1641         /*
1642          * Accept any kind of interrupt on TX and RX DMA channel 0
1643          */
1644         __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1645                        (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1646 #endif
1647
1648         /*
1649          * Enable receiving unicasts and broadcasts
1650          */
1651
1652         __raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1653
1654         /*
1655          * we're running now.
1656          */
1657
1658         s->sbm_state = sbmac_state_on;
1659
1660         /*
1661          * Program multicast addresses
1662          */
1663
1664         sbmac_setmulti(s);
1665
1666         /*
1667          * If channel was in promiscuous mode before, turn that on
1668          */
1669
1670         if (s->sbm_devflags & IFF_PROMISC) {
1671                 sbmac_promiscuous_mode(s,1);
1672         }
1673
1674 }
1675
1676
1677 /**********************************************************************
1678  *  SBMAC_CHANNEL_STOP(s)
1679  *
1680  *  Stop packet processing on this MAC.
1681  *
1682  *  Input parameters:
1683  *         s - sbmac structure
1684  *
1685  *  Return value:
1686  *         nothing
1687  ********************************************************************* */
1688
1689 static void sbmac_channel_stop(struct sbmac_softc *s)
1690 {
1691         /* don't do this if already stopped */
1692
1693         if (s->sbm_state == sbmac_state_off)
1694                 return;
1695
1696         /* don't accept any packets, disable all interrupts */
1697
1698         __raw_writeq(0, s->sbm_rxfilter);
1699         __raw_writeq(0, s->sbm_imr);
1700
1701         /* Turn off ticker */
1702
1703         /* XXX */
1704
1705         /* turn off receiver and transmitter */
1706
1707         __raw_writeq(0, s->sbm_macenable);
1708
1709         /* We're stopped now. */
1710
1711         s->sbm_state = sbmac_state_off;
1712
1713         /*
1714          * Stop DMA channels (rings should be ok now)
1715          */
1716
1717         sbdma_channel_stop(&(s->sbm_rxdma));
1718         sbdma_channel_stop(&(s->sbm_txdma));
1719
1720         /* Empty the receive and transmit rings */
1721
1722         sbdma_emptyring(&(s->sbm_rxdma));
1723         sbdma_emptyring(&(s->sbm_txdma));
1724
1725 }
1726
1727 /**********************************************************************
1728  *  SBMAC_SET_CHANNEL_STATE(state)
1729  *
1730  *  Set the channel's state ON or OFF
1731  *
1732  *  Input parameters:
1733  *         state - new state
1734  *
1735  *  Return value:
1736  *         old state
1737  ********************************************************************* */
1738 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *sc,
1739                                              sbmac_state_t state)
1740 {
1741         sbmac_state_t oldstate = sc->sbm_state;
1742
1743         /*
1744          * If same as previous state, return
1745          */
1746
1747         if (state == oldstate) {
1748                 return oldstate;
1749         }
1750
1751         /*
1752          * If new state is ON, turn channel on
1753          */
1754
1755         if (state == sbmac_state_on) {
1756                 sbmac_channel_start(sc);
1757         }
1758         else {
1759                 sbmac_channel_stop(sc);
1760         }
1761
1762         /*
1763          * Return previous state
1764          */
1765
1766         return oldstate;
1767 }
1768
1769
1770 /**********************************************************************
1771  *  SBMAC_PROMISCUOUS_MODE(sc,onoff)
1772  *
1773  *  Turn on or off promiscuous mode
1774  *
1775  *  Input parameters:
1776  *         sc - softc
1777  *      onoff - 1 to turn on, 0 to turn off
1778  *
1779  *  Return value:
1780  *         nothing
1781  ********************************************************************* */
1782
1783 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1784 {
1785         uint64_t reg;
1786
1787         if (sc->sbm_state != sbmac_state_on)
1788                 return;
1789
1790         if (onoff) {
1791                 reg = __raw_readq(sc->sbm_rxfilter);
1792                 reg |= M_MAC_ALLPKT_EN;
1793                 __raw_writeq(reg, sc->sbm_rxfilter);
1794         }
1795         else {
1796                 reg = __raw_readq(sc->sbm_rxfilter);
1797                 reg &= ~M_MAC_ALLPKT_EN;
1798                 __raw_writeq(reg, sc->sbm_rxfilter);
1799         }
1800 }
1801
1802 /**********************************************************************
1803  *  SBMAC_SETIPHDR_OFFSET(sc,onoff)
1804  *
1805  *  Set the iphdr offset as 15 assuming ethernet encapsulation
1806  *
1807  *  Input parameters:
1808  *         sc - softc
1809  *
1810  *  Return value:
1811  *         nothing
1812  ********************************************************************* */
1813
1814 static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1815 {
1816         uint64_t reg;
1817
1818         /* Hard code the off set to 15 for now */
1819         reg = __raw_readq(sc->sbm_rxfilter);
1820         reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1821         __raw_writeq(reg, sc->sbm_rxfilter);
1822
1823         /* BCM1250 pass1 didn't have hardware checksum.  Everything
1824            later does.  */
1825         if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1826                 sc->rx_hw_checksum = DISABLE;
1827         } else {
1828                 sc->rx_hw_checksum = ENABLE;
1829         }
1830 }
1831
1832
1833 /**********************************************************************
1834  *  SBMAC_ADDR2REG(ptr)
1835  *
1836  *  Convert six bytes into the 64-bit register value that
1837  *  we typically write into the SBMAC's address/mcast registers
1838  *
1839  *  Input parameters:
1840  *         ptr - pointer to 6 bytes
1841  *
1842  *  Return value:
1843  *         register value
1844  ********************************************************************* */
1845
1846 static uint64_t sbmac_addr2reg(unsigned char *ptr)
1847 {
1848         uint64_t reg = 0;
1849
1850         ptr += 6;
1851
1852         reg |= (uint64_t) *(--ptr);
1853         reg <<= 8;
1854         reg |= (uint64_t) *(--ptr);
1855         reg <<= 8;
1856         reg |= (uint64_t) *(--ptr);
1857         reg <<= 8;
1858         reg |= (uint64_t) *(--ptr);
1859         reg <<= 8;
1860         reg |= (uint64_t) *(--ptr);
1861         reg <<= 8;
1862         reg |= (uint64_t) *(--ptr);
1863
1864         return reg;
1865 }
1866
1867
1868 /**********************************************************************
1869  *  SBMAC_SET_SPEED(s,speed)
1870  *
1871  *  Configure LAN speed for the specified MAC.
1872  *  Warning: must be called when MAC is off!
1873  *
1874  *  Input parameters:
1875  *         s - sbmac structure
1876  *         speed - speed to set MAC to (see sbmac_speed_t enum)
1877  *
1878  *  Return value:
1879  *         1 if successful
1880  *      0 indicates invalid parameters
1881  ********************************************************************* */
1882
1883 static int sbmac_set_speed(struct sbmac_softc *s,sbmac_speed_t speed)
1884 {
1885         uint64_t cfg;
1886         uint64_t framecfg;
1887
1888         /*
1889          * Save new current values
1890          */
1891
1892         s->sbm_speed = speed;
1893
1894         if (s->sbm_state == sbmac_state_on)
1895                 return 0;       /* save for next restart */
1896
1897         /*
1898          * Read current register values
1899          */
1900
1901         cfg = __raw_readq(s->sbm_maccfg);
1902         framecfg = __raw_readq(s->sbm_framecfg);
1903
1904         /*
1905          * Mask out the stuff we want to change
1906          */
1907
1908         cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1909         framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1910                       M_MAC_SLOT_SIZE);
1911
1912         /*
1913          * Now add in the new bits
1914          */
1915
1916         switch (speed) {
1917         case sbmac_speed_10:
1918                 framecfg |= V_MAC_IFG_RX_10 |
1919                         V_MAC_IFG_TX_10 |
1920                         K_MAC_IFG_THRSH_10 |
1921                         V_MAC_SLOT_SIZE_10;
1922                 cfg |= V_MAC_SPEED_SEL_10MBPS;
1923                 break;
1924
1925         case sbmac_speed_100:
1926                 framecfg |= V_MAC_IFG_RX_100 |
1927                         V_MAC_IFG_TX_100 |
1928                         V_MAC_IFG_THRSH_100 |
1929                         V_MAC_SLOT_SIZE_100;
1930                 cfg |= V_MAC_SPEED_SEL_100MBPS ;
1931                 break;
1932
1933         case sbmac_speed_1000:
1934                 framecfg |= V_MAC_IFG_RX_1000 |
1935                         V_MAC_IFG_TX_1000 |
1936                         V_MAC_IFG_THRSH_1000 |
1937                         V_MAC_SLOT_SIZE_1000;
1938                 cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1939                 break;
1940
1941         case sbmac_speed_auto:          /* XXX not implemented */
1942                 /* fall through */
1943         default:
1944                 return 0;
1945         }
1946
1947         /*
1948          * Send the bits back to the hardware
1949          */
1950
1951         __raw_writeq(framecfg, s->sbm_framecfg);
1952         __raw_writeq(cfg, s->sbm_maccfg);
1953
1954         return 1;
1955 }
1956
1957 /**********************************************************************
1958  *  SBMAC_SET_DUPLEX(s,duplex,fc)
1959  *
1960  *  Set Ethernet duplex and flow control options for this MAC
1961  *  Warning: must be called when MAC is off!
1962  *
1963  *  Input parameters:
1964  *         s - sbmac structure
1965  *         duplex - duplex setting (see sbmac_duplex_t)
1966  *         fc - flow control setting (see sbmac_fc_t)
1967  *
1968  *  Return value:
1969  *         1 if ok
1970  *         0 if an invalid parameter combination was specified
1971  ********************************************************************* */
1972
1973 static int sbmac_set_duplex(struct sbmac_softc *s,sbmac_duplex_t duplex,sbmac_fc_t fc)
1974 {
1975         uint64_t cfg;
1976
1977         /*
1978          * Save new current values
1979          */
1980
1981         s->sbm_duplex = duplex;
1982         s->sbm_fc = fc;
1983
1984         if (s->sbm_state == sbmac_state_on)
1985                 return 0;       /* save for next restart */
1986
1987         /*
1988          * Read current register values
1989          */
1990
1991         cfg = __raw_readq(s->sbm_maccfg);
1992
1993         /*
1994          * Mask off the stuff we're about to change
1995          */
1996
1997         cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1998
1999
2000         switch (duplex) {
2001         case sbmac_duplex_half:
2002                 switch (fc) {
2003                 case sbmac_fc_disabled:
2004                         cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
2005                         break;
2006
2007                 case sbmac_fc_collision:
2008                         cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
2009                         break;
2010
2011                 case sbmac_fc_carrier:
2012                         cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
2013                         break;
2014
2015                 case sbmac_fc_auto:             /* XXX not implemented */
2016                         /* fall through */
2017                 case sbmac_fc_frame:            /* not valid in half duplex */
2018                 default:                        /* invalid selection */
2019                         return 0;
2020                 }
2021                 break;
2022
2023         case sbmac_duplex_full:
2024                 switch (fc) {
2025                 case sbmac_fc_disabled:
2026                         cfg |= V_MAC_FC_CMD_DISABLED;
2027                         break;
2028
2029                 case sbmac_fc_frame:
2030                         cfg |= V_MAC_FC_CMD_ENABLED;
2031                         break;
2032
2033                 case sbmac_fc_collision:        /* not valid in full duplex */
2034                 case sbmac_fc_carrier:          /* not valid in full duplex */
2035                 case sbmac_fc_auto:             /* XXX not implemented */
2036                         /* fall through */
2037                 default:
2038                         return 0;
2039                 }
2040                 break;
2041         case sbmac_duplex_auto:
2042                 /* XXX not implemented */
2043                 break;
2044         }
2045
2046         /*
2047          * Send the bits back to the hardware
2048          */
2049
2050         __raw_writeq(cfg, s->sbm_maccfg);
2051
2052         return 1;
2053 }
2054
2055
2056
2057
2058 /**********************************************************************
2059  *  SBMAC_INTR()
2060  *
2061  *  Interrupt handler for MAC interrupts
2062  *
2063  *  Input parameters:
2064  *         MAC structure
2065  *
2066  *  Return value:
2067  *         nothing
2068  ********************************************************************* */
2069 static irqreturn_t sbmac_intr(int irq,void *dev_instance)
2070 {
2071         struct net_device *dev = (struct net_device *) dev_instance;
2072         struct sbmac_softc *sc = netdev_priv(dev);
2073         uint64_t isr;
2074         int handled = 0;
2075
2076         for (;;) {
2077
2078                 /*
2079                  * Read the ISR (this clears the bits in the real
2080                  * register, except for counter addr)
2081                  */
2082
2083                 isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
2084
2085                 if (isr == 0)
2086                         break;
2087
2088                 handled = 1;
2089
2090                 /*
2091                  * Transmits on channel 0
2092                  */
2093
2094                 if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0)) {
2095                         sbdma_tx_process(sc,&(sc->sbm_txdma));
2096                 }
2097
2098                 /*
2099                  * Receives on channel 0
2100                  */
2101
2102                 /*
2103                  * It's important to test all the bits (or at least the
2104                  * EOP_SEEN bit) when deciding to do the RX process
2105                  * particularly when coalescing, to make sure we
2106                  * take care of the following:
2107                  *
2108                  * If you have some packets waiting (have been received
2109                  * but no interrupt) and get a TX interrupt before
2110                  * the RX timer or counter expires, reading the ISR
2111                  * above will clear the timer and counter, and you
2112                  * won't get another interrupt until a packet shows
2113                  * up to start the timer again.  Testing
2114                  * EOP_SEEN here takes care of this case.
2115                  * (EOP_SEEN is part of M_MAC_INT_CHANNEL << S_MAC_RX_CH0)
2116                  */
2117
2118
2119                 if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2120                         sbdma_rx_process(sc,&(sc->sbm_rxdma));
2121                 }
2122         }
2123         return IRQ_RETVAL(handled);
2124 }
2125
2126
2127 /**********************************************************************
2128  *  SBMAC_START_TX(skb,dev)
2129  *
2130  *  Start output on the specified interface.  Basically, we
2131  *  queue as many buffers as we can until the ring fills up, or
2132  *  we run off the end of the queue, whichever comes first.
2133  *
2134  *  Input parameters:
2135  *
2136  *
2137  *  Return value:
2138  *         nothing
2139  ********************************************************************* */
2140 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2141 {
2142         struct sbmac_softc *sc = netdev_priv(dev);
2143
2144         /* lock eth irq */
2145         spin_lock_irq (&sc->sbm_lock);
2146
2147         /*
2148          * Put the buffer on the transmit ring.  If we
2149          * don't have room, stop the queue.
2150          */
2151
2152         if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2153                 /* XXX save skb that we could not send */
2154                 netif_stop_queue(dev);
2155                 spin_unlock_irq(&sc->sbm_lock);
2156
2157                 return 1;
2158         }
2159
2160         dev->trans_start = jiffies;
2161
2162         spin_unlock_irq (&sc->sbm_lock);
2163
2164         return 0;
2165 }
2166
2167 /**********************************************************************
2168  *  SBMAC_SETMULTI(sc)
2169  *
2170  *  Reprogram the multicast table into the hardware, given
2171  *  the list of multicasts associated with the interface
2172  *  structure.
2173  *
2174  *  Input parameters:
2175  *         sc - softc
2176  *
2177  *  Return value:
2178  *         nothing
2179  ********************************************************************* */
2180
2181 static void sbmac_setmulti(struct sbmac_softc *sc)
2182 {
2183         uint64_t reg;
2184         volatile void __iomem *port;
2185         int idx;
2186         struct dev_mc_list *mclist;
2187         struct net_device *dev = sc->sbm_dev;
2188
2189         /*
2190          * Clear out entire multicast table.  We do this by nuking
2191          * the entire hash table and all the direct matches except
2192          * the first one, which is used for our station address
2193          */
2194
2195         for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2196                 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2197                 __raw_writeq(0, port);
2198         }
2199
2200         for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2201                 port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2202                 __raw_writeq(0, port);
2203         }
2204
2205         /*
2206          * Clear the filter to say we don't want any multicasts.
2207          */
2208
2209         reg = __raw_readq(sc->sbm_rxfilter);
2210         reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2211         __raw_writeq(reg, sc->sbm_rxfilter);
2212
2213         if (dev->flags & IFF_ALLMULTI) {
2214                 /*
2215                  * Enable ALL multicasts.  Do this by inverting the
2216                  * multicast enable bit.
2217                  */
2218                 reg = __raw_readq(sc->sbm_rxfilter);
2219                 reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2220                 __raw_writeq(reg, sc->sbm_rxfilter);
2221                 return;
2222         }
2223
2224
2225         /*
2226          * Progam new multicast entries.  For now, only use the
2227          * perfect filter.  In the future we'll need to use the
2228          * hash filter if the perfect filter overflows
2229          */
2230
2231         /* XXX only using perfect filter for now, need to use hash
2232          * XXX if the table overflows */
2233
2234         idx = 1;                /* skip station address */
2235         mclist = dev->mc_list;
2236         while (mclist && (idx < MAC_ADDR_COUNT)) {
2237                 reg = sbmac_addr2reg(mclist->dmi_addr);
2238                 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2239                 __raw_writeq(reg, port);
2240                 idx++;
2241                 mclist = mclist->next;
2242         }
2243
2244         /*
2245          * Enable the "accept multicast bits" if we programmed at least one
2246          * multicast.
2247          */
2248
2249         if (idx > 1) {
2250                 reg = __raw_readq(sc->sbm_rxfilter);
2251                 reg |= M_MAC_MCAST_EN;
2252                 __raw_writeq(reg, sc->sbm_rxfilter);
2253         }
2254 }
2255
2256
2257
2258 #if defined(SBMAC_ETH0_HWADDR) || defined(SBMAC_ETH1_HWADDR) || defined(SBMAC_ETH2_HWADDR) || defined(SBMAC_ETH3_HWADDR)
2259 /**********************************************************************
2260  *  SBMAC_PARSE_XDIGIT(str)
2261  *
2262  *  Parse a hex digit, returning its value
2263  *
2264  *  Input parameters:
2265  *         str - character
2266  *
2267  *  Return value:
2268  *         hex value, or -1 if invalid
2269  ********************************************************************* */
2270
2271 static int sbmac_parse_xdigit(char str)
2272 {
2273         int digit;
2274
2275         if ((str >= '0') && (str <= '9'))
2276                 digit = str - '0';
2277         else if ((str >= 'a') && (str <= 'f'))
2278                 digit = str - 'a' + 10;
2279         else if ((str >= 'A') && (str <= 'F'))
2280                 digit = str - 'A' + 10;
2281         else
2282                 return -1;
2283
2284         return digit;
2285 }
2286
2287 /**********************************************************************
2288  *  SBMAC_PARSE_HWADDR(str,hwaddr)
2289  *
2290  *  Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
2291  *  Ethernet address.
2292  *
2293  *  Input parameters:
2294  *         str - string
2295  *         hwaddr - pointer to hardware address
2296  *
2297  *  Return value:
2298  *         0 if ok, else -1
2299  ********************************************************************* */
2300
2301 static int sbmac_parse_hwaddr(char *str, unsigned char *hwaddr)
2302 {
2303         int digit1,digit2;
2304         int idx = 6;
2305
2306         while (*str && (idx > 0)) {
2307                 digit1 = sbmac_parse_xdigit(*str);
2308                 if (digit1 < 0)
2309                         return -1;
2310                 str++;
2311                 if (!*str)
2312                         return -1;
2313
2314                 if ((*str == ':') || (*str == '-')) {
2315                         digit2 = digit1;
2316                         digit1 = 0;
2317                 }
2318                 else {
2319                         digit2 = sbmac_parse_xdigit(*str);
2320                         if (digit2 < 0)
2321                                 return -1;
2322                         str++;
2323                 }
2324
2325                 *hwaddr++ = (digit1 << 4) | digit2;
2326                 idx--;
2327
2328                 if (*str == '-')
2329                         str++;
2330                 if (*str == ':')
2331                         str++;
2332         }
2333         return 0;
2334 }
2335 #endif
2336
2337 static int sb1250_change_mtu(struct net_device *_dev, int new_mtu)
2338 {
2339         if (new_mtu >  ENET_PACKET_SIZE)
2340                 return -EINVAL;
2341         _dev->mtu = new_mtu;
2342         printk(KERN_INFO "changing the mtu to %d\n", new_mtu);
2343         return 0;
2344 }
2345
2346 /**********************************************************************
2347  *  SBMAC_INIT(dev)
2348  *
2349  *  Attach routine - init hardware and hook ourselves into linux
2350  *
2351  *  Input parameters:
2352  *         dev - net_device structure
2353  *
2354  *  Return value:
2355  *         status
2356  ********************************************************************* */
2357
2358 static int sbmac_init(struct net_device *dev, int idx)
2359 {
2360         struct sbmac_softc *sc;
2361         unsigned char *eaddr;
2362         uint64_t ea_reg;
2363         int i;
2364         int err;
2365
2366         sc = netdev_priv(dev);
2367
2368         /* Determine controller base address */
2369
2370         sc->sbm_base = IOADDR(dev->base_addr);
2371         sc->sbm_dev = dev;
2372         sc->sbe_idx = idx;
2373
2374         eaddr = sc->sbm_hwaddr;
2375
2376         /*
2377          * Read the ethernet address.  The firwmare left this programmed
2378          * for us in the ethernet address register for each mac.
2379          */
2380
2381         ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2382         __raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2383         for (i = 0; i < 6; i++) {
2384                 eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2385                 ea_reg >>= 8;
2386         }
2387
2388         for (i = 0; i < 6; i++) {
2389                 dev->dev_addr[i] = eaddr[i];
2390         }
2391
2392
2393         /*
2394          * Init packet size
2395          */
2396
2397         sc->sbm_buffersize = ENET_PACKET_SIZE + SMP_CACHE_BYTES * 2 + ETHER_ALIGN;
2398
2399         /*
2400          * Initialize context (get pointers to registers and stuff), then
2401          * allocate the memory for the descriptor tables.
2402          */
2403
2404         sbmac_initctx(sc);
2405
2406         /*
2407          * Set up Linux device callins
2408          */
2409
2410         spin_lock_init(&(sc->sbm_lock));
2411
2412         dev->open               = sbmac_open;
2413         dev->hard_start_xmit    = sbmac_start_tx;
2414         dev->stop               = sbmac_close;
2415         dev->get_stats          = sbmac_get_stats;
2416         dev->set_multicast_list = sbmac_set_rx_mode;
2417         dev->do_ioctl           = sbmac_mii_ioctl;
2418         dev->tx_timeout         = sbmac_tx_timeout;
2419         dev->watchdog_timeo     = TX_TIMEOUT;
2420
2421         dev->change_mtu         = sb1250_change_mtu;
2422 #ifdef CONFIG_NET_POLL_CONTROLLER
2423         dev->poll_controller = sbmac_netpoll;
2424 #endif
2425
2426         /* This is needed for PASS2 for Rx H/W checksum feature */
2427         sbmac_set_iphdr_offset(sc);
2428
2429         err = register_netdev(dev);
2430         if (err)
2431                 goto out_uninit;
2432
2433         if (sc->rx_hw_checksum == ENABLE) {
2434                 printk(KERN_INFO "%s: enabling TCP rcv checksum\n",
2435                         sc->sbm_dev->name);
2436         }
2437
2438         /*
2439          * Display Ethernet address (this is called during the config
2440          * process so we need to finish off the config message that
2441          * was being displayed)
2442          */
2443         printk(KERN_INFO
2444                "%s: SiByte Ethernet at 0x%08lX, address: %02X:%02X:%02X:%02X:%02X:%02X\n",
2445                dev->name, dev->base_addr,
2446                eaddr[0],eaddr[1],eaddr[2],eaddr[3],eaddr[4],eaddr[5]);
2447
2448
2449         return 0;
2450
2451 out_uninit:
2452         sbmac_uninitctx(sc);
2453
2454         return err;
2455 }
2456
2457
2458 static int sbmac_open(struct net_device *dev)
2459 {
2460         struct sbmac_softc *sc = netdev_priv(dev);
2461
2462         if (debug > 1) {
2463                 printk(KERN_DEBUG "%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2464         }
2465
2466         /*
2467          * map/route interrupt (clear status first, in case something
2468          * weird is pending; we haven't initialized the mac registers
2469          * yet)
2470          */
2471
2472         __raw_readq(sc->sbm_isr);
2473         if (request_irq(dev->irq, &sbmac_intr, IRQF_SHARED, dev->name, dev))
2474                 return -EBUSY;
2475
2476         /*
2477          * Probe phy address
2478          */
2479
2480         if(sbmac_mii_probe(dev) == -1) {
2481                 printk("%s: failed to probe PHY.\n", dev->name);
2482                 return -EINVAL;
2483         }
2484
2485         /*
2486          * Configure default speed
2487          */
2488
2489         sbmac_mii_poll(sc,noisy_mii);
2490
2491         /*
2492          * Turn on the channel
2493          */
2494
2495         sbmac_set_channel_state(sc,sbmac_state_on);
2496
2497         /*
2498          * XXX Station address is in dev->dev_addr
2499          */
2500
2501         if (dev->if_port == 0)
2502                 dev->if_port = 0;
2503
2504         netif_start_queue(dev);
2505
2506         sbmac_set_rx_mode(dev);
2507
2508         /* Set the timer to check for link beat. */
2509         init_timer(&sc->sbm_timer);
2510         sc->sbm_timer.expires = jiffies + 2 * HZ/100;
2511         sc->sbm_timer.data = (unsigned long)dev;
2512         sc->sbm_timer.function = &sbmac_timer;
2513         add_timer(&sc->sbm_timer);
2514
2515         return 0;
2516 }
2517
2518 static int sbmac_mii_probe(struct net_device *dev)
2519 {
2520         int i;
2521         struct sbmac_softc *s = netdev_priv(dev);
2522         u16 bmsr, id1, id2;
2523         u32 vendor, device;
2524
2525         for (i=1; i<31; i++) {
2526         bmsr = sbmac_mii_read(s, i, MII_BMSR);
2527                 if (bmsr != 0) {
2528                         s->sbm_phys[0] = i;
2529                         id1 = sbmac_mii_read(s, i, MII_PHYIDR1);
2530                         id2 = sbmac_mii_read(s, i, MII_PHYIDR2);
2531                         vendor = ((u32)id1 << 6) | ((id2 >> 10) & 0x3f);
2532                         device = (id2 >> 4) & 0x3f;
2533
2534                         printk(KERN_INFO "%s: found phy %d, vendor %06x part %02x\n",
2535                                 dev->name, i, vendor, device);
2536                         return i;
2537                 }
2538         }
2539         return -1;
2540 }
2541
2542
2543 static int sbmac_mii_poll(struct sbmac_softc *s,int noisy)
2544 {
2545     int bmsr,bmcr,k1stsr,anlpar;
2546     int chg;
2547     char buffer[100];
2548     char *p = buffer;
2549
2550     /* Read the mode status and mode control registers. */
2551     bmsr = sbmac_mii_read(s,s->sbm_phys[0],MII_BMSR);
2552     bmcr = sbmac_mii_read(s,s->sbm_phys[0],MII_BMCR);
2553
2554     /* get the link partner status */
2555     anlpar = sbmac_mii_read(s,s->sbm_phys[0],MII_ANLPAR);
2556
2557     /* if supported, read the 1000baseT register */
2558     if (bmsr & BMSR_1000BT_XSR) {
2559         k1stsr = sbmac_mii_read(s,s->sbm_phys[0],MII_K1STSR);
2560         }
2561     else {
2562         k1stsr = 0;
2563         }
2564
2565     chg = 0;
2566
2567     if ((bmsr & BMSR_LINKSTAT) == 0) {
2568         /*
2569          * If link status is down, clear out old info so that when
2570          * it comes back up it will force us to reconfigure speed
2571          */
2572         s->sbm_phy_oldbmsr = 0;
2573         s->sbm_phy_oldanlpar = 0;
2574         s->sbm_phy_oldk1stsr = 0;
2575         return 0;
2576         }
2577
2578     if ((s->sbm_phy_oldbmsr != bmsr) ||
2579         (s->sbm_phy_oldanlpar != anlpar) ||
2580         (s->sbm_phy_oldk1stsr != k1stsr)) {
2581         if (debug > 1) {
2582             printk(KERN_DEBUG "%s: bmsr:%x/%x anlpar:%x/%x  k1stsr:%x/%x\n",
2583                s->sbm_dev->name,
2584                s->sbm_phy_oldbmsr,bmsr,
2585                s->sbm_phy_oldanlpar,anlpar,
2586                s->sbm_phy_oldk1stsr,k1stsr);
2587             }
2588         s->sbm_phy_oldbmsr = bmsr;
2589         s->sbm_phy_oldanlpar = anlpar;
2590         s->sbm_phy_oldk1stsr = k1stsr;
2591         chg = 1;
2592         }
2593
2594     if (chg == 0)
2595             return 0;
2596
2597     p += sprintf(p,"Link speed: ");
2598
2599     if (k1stsr & K1STSR_LP1KFD) {
2600         s->sbm_speed = sbmac_speed_1000;
2601         s->sbm_duplex = sbmac_duplex_full;
2602         s->sbm_fc = sbmac_fc_frame;
2603         p += sprintf(p,"1000BaseT FDX");
2604         }
2605     else if (k1stsr & K1STSR_LP1KHD) {
2606         s->sbm_speed = sbmac_speed_1000;
2607         s->sbm_duplex = sbmac_duplex_half;
2608         s->sbm_fc = sbmac_fc_disabled;
2609         p += sprintf(p,"1000BaseT HDX");
2610         }
2611     else if (anlpar & ANLPAR_TXFD) {
2612         s->sbm_speed = sbmac_speed_100;
2613         s->sbm_duplex = sbmac_duplex_full;
2614         s->sbm_fc = (anlpar & ANLPAR_PAUSE) ? sbmac_fc_frame : sbmac_fc_disabled;
2615         p += sprintf(p,"100BaseT FDX");
2616         }
2617     else if (anlpar & ANLPAR_TXHD) {
2618         s->sbm_speed = sbmac_speed_100;
2619         s->sbm_duplex = sbmac_duplex_half;
2620         s->sbm_fc = sbmac_fc_disabled;
2621         p += sprintf(p,"100BaseT HDX");
2622         }
2623     else if (anlpar & ANLPAR_10FD) {
2624         s->sbm_speed = sbmac_speed_10;
2625         s->sbm_duplex = sbmac_duplex_full;
2626         s->sbm_fc = sbmac_fc_frame;
2627         p += sprintf(p,"10BaseT FDX");
2628         }
2629     else if (anlpar & ANLPAR_10HD) {
2630         s->sbm_speed = sbmac_speed_10;
2631         s->sbm_duplex = sbmac_duplex_half;
2632         s->sbm_fc = sbmac_fc_collision;
2633         p += sprintf(p,"10BaseT HDX");
2634         }
2635     else {
2636         p += sprintf(p,"Unknown");
2637         }
2638
2639     if (noisy) {
2640             printk(KERN_INFO "%s: %s\n",s->sbm_dev->name,buffer);
2641             }
2642
2643     return 1;
2644 }
2645
2646
2647 static void sbmac_timer(unsigned long data)
2648 {
2649         struct net_device *dev = (struct net_device *)data;
2650         struct sbmac_softc *sc = netdev_priv(dev);
2651         int next_tick = HZ;
2652         int mii_status;
2653
2654         spin_lock_irq (&sc->sbm_lock);
2655
2656         /* make IFF_RUNNING follow the MII status bit "Link established" */
2657         mii_status = sbmac_mii_read(sc, sc->sbm_phys[0], MII_BMSR);
2658
2659         if ( (mii_status & BMSR_LINKSTAT) != (sc->sbm_phy_oldlinkstat) ) {
2660                 sc->sbm_phy_oldlinkstat = mii_status & BMSR_LINKSTAT;
2661                 if (mii_status & BMSR_LINKSTAT) {
2662                         netif_carrier_on(dev);
2663                 }
2664                 else {
2665                         netif_carrier_off(dev);
2666                 }
2667         }
2668
2669         /*
2670          * Poll the PHY to see what speed we should be running at
2671          */
2672
2673         if (sbmac_mii_poll(sc,noisy_mii)) {
2674                 if (sc->sbm_state != sbmac_state_off) {
2675                         /*
2676                          * something changed, restart the channel
2677                          */
2678                         if (debug > 1) {
2679                                 printk("%s: restarting channel because speed changed\n",
2680                                        sc->sbm_dev->name);
2681                         }
2682                         sbmac_channel_stop(sc);
2683                         sbmac_channel_start(sc);
2684                 }
2685         }
2686
2687         spin_unlock_irq (&sc->sbm_lock);
2688
2689         sc->sbm_timer.expires = jiffies + next_tick;
2690         add_timer(&sc->sbm_timer);
2691 }
2692
2693
2694 static void sbmac_tx_timeout (struct net_device *dev)
2695 {
2696         struct sbmac_softc *sc = netdev_priv(dev);
2697
2698         spin_lock_irq (&sc->sbm_lock);
2699
2700
2701         dev->trans_start = jiffies;
2702         sc->sbm_stats.tx_errors++;
2703
2704         spin_unlock_irq (&sc->sbm_lock);
2705
2706         printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2707 }
2708
2709
2710
2711
2712 static struct net_device_stats *sbmac_get_stats(struct net_device *dev)
2713 {
2714         struct sbmac_softc *sc = netdev_priv(dev);
2715         unsigned long flags;
2716
2717         spin_lock_irqsave(&sc->sbm_lock, flags);
2718
2719         /* XXX update other stats here */
2720
2721         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2722
2723         return &sc->sbm_stats;
2724 }
2725
2726
2727
2728 static void sbmac_set_rx_mode(struct net_device *dev)
2729 {
2730         unsigned long flags;
2731         struct sbmac_softc *sc = netdev_priv(dev);
2732
2733         spin_lock_irqsave(&sc->sbm_lock, flags);
2734         if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2735                 /*
2736                  * Promiscuous changed.
2737                  */
2738
2739                 if (dev->flags & IFF_PROMISC) {
2740                         sbmac_promiscuous_mode(sc,1);
2741                 }
2742                 else {
2743                         sbmac_promiscuous_mode(sc,0);
2744                 }
2745         }
2746         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2747
2748         /*
2749          * Program the multicasts.  Do this every time.
2750          */
2751
2752         sbmac_setmulti(sc);
2753
2754 }
2755
2756 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2757 {
2758         struct sbmac_softc *sc = netdev_priv(dev);
2759         u16 *data = (u16 *)&rq->ifr_ifru;
2760         unsigned long flags;
2761         int retval;
2762
2763         spin_lock_irqsave(&sc->sbm_lock, flags);
2764         retval = 0;
2765
2766         switch(cmd) {
2767         case SIOCDEVPRIVATE:            /* Get the address of the PHY in use. */
2768                 data[0] = sc->sbm_phys[0] & 0x1f;
2769                 /* Fall Through */
2770         case SIOCDEVPRIVATE+1:          /* Read the specified MII register. */
2771                 data[3] = sbmac_mii_read(sc, data[0] & 0x1f, data[1] & 0x1f);
2772                 break;
2773         case SIOCDEVPRIVATE+2:          /* Write the specified MII register */
2774                 if (!capable(CAP_NET_ADMIN)) {
2775                         retval = -EPERM;
2776                         break;
2777                 }
2778                 if (debug > 1) {
2779                     printk(KERN_DEBUG "%s: sbmac_mii_ioctl: write %02X %02X %02X\n",dev->name,
2780                        data[0],data[1],data[2]);
2781                     }
2782                 sbmac_mii_write(sc, data[0] & 0x1f, data[1] & 0x1f, data[2]);
2783                 break;
2784         default:
2785                 retval = -EOPNOTSUPP;
2786         }
2787
2788         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2789         return retval;
2790 }
2791
2792 static int sbmac_close(struct net_device *dev)
2793 {
2794         struct sbmac_softc *sc = netdev_priv(dev);
2795         unsigned long flags;
2796         int irq;
2797
2798         sbmac_set_channel_state(sc,sbmac_state_off);
2799
2800         del_timer_sync(&sc->sbm_timer);
2801
2802         spin_lock_irqsave(&sc->sbm_lock, flags);
2803
2804         netif_stop_queue(dev);
2805
2806         if (debug > 1) {
2807                 printk(KERN_DEBUG "%s: Shutting down ethercard\n",dev->name);
2808         }
2809
2810         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2811
2812         irq = dev->irq;
2813         synchronize_irq(irq);
2814         free_irq(irq, dev);
2815
2816         sbdma_emptyring(&(sc->sbm_txdma));
2817         sbdma_emptyring(&(sc->sbm_rxdma));
2818
2819         return 0;
2820 }
2821
2822
2823
2824 #if defined(SBMAC_ETH0_HWADDR) || defined(SBMAC_ETH1_HWADDR) || defined(SBMAC_ETH2_HWADDR) || defined(SBMAC_ETH3_HWADDR)
2825 static void
2826 sbmac_setup_hwaddr(int chan,char *addr)
2827 {
2828         uint8_t eaddr[6];
2829         uint64_t val;
2830         unsigned long port;
2831
2832         port = A_MAC_CHANNEL_BASE(chan);
2833         sbmac_parse_hwaddr(addr,eaddr);
2834         val = sbmac_addr2reg(eaddr);
2835         __raw_writeq(val, IOADDR(port+R_MAC_ETHERNET_ADDR));
2836         val = __raw_readq(IOADDR(port+R_MAC_ETHERNET_ADDR));
2837 }
2838 #endif
2839
2840 static struct net_device *dev_sbmac[MAX_UNITS];
2841
2842 static int __init
2843 sbmac_init_module(void)
2844 {
2845         int idx;
2846         struct net_device *dev;
2847         unsigned long port;
2848         int chip_max_units;
2849
2850         /* Set the number of available units based on the SOC type.  */
2851         switch (soc_type) {
2852         case K_SYS_SOC_TYPE_BCM1250:
2853         case K_SYS_SOC_TYPE_BCM1250_ALT:
2854                 chip_max_units = 3;
2855                 break;
2856         case K_SYS_SOC_TYPE_BCM1120:
2857         case K_SYS_SOC_TYPE_BCM1125:
2858         case K_SYS_SOC_TYPE_BCM1125H:
2859         case K_SYS_SOC_TYPE_BCM1250_ALT2: /* Hybrid */
2860                 chip_max_units = 2;
2861                 break;
2862         case K_SYS_SOC_TYPE_BCM1x55:
2863         case K_SYS_SOC_TYPE_BCM1x80:
2864                 chip_max_units = 4;
2865                 break;
2866         default:
2867                 chip_max_units = 0;
2868                 break;
2869         }
2870         if (chip_max_units > MAX_UNITS)
2871                 chip_max_units = MAX_UNITS;
2872
2873         /*
2874          * For bringup when not using the firmware, we can pre-fill
2875          * the MAC addresses using the environment variables
2876          * specified in this file (or maybe from the config file?)
2877          */
2878 #ifdef SBMAC_ETH0_HWADDR
2879         if (chip_max_units > 0)
2880           sbmac_setup_hwaddr(0,SBMAC_ETH0_HWADDR);
2881 #endif
2882 #ifdef SBMAC_ETH1_HWADDR
2883         if (chip_max_units > 1)
2884           sbmac_setup_hwaddr(1,SBMAC_ETH1_HWADDR);
2885 #endif
2886 #ifdef SBMAC_ETH2_HWADDR
2887         if (chip_max_units > 2)
2888           sbmac_setup_hwaddr(2,SBMAC_ETH2_HWADDR);
2889 #endif
2890 #ifdef SBMAC_ETH3_HWADDR
2891         if (chip_max_units > 3)
2892           sbmac_setup_hwaddr(3,SBMAC_ETH3_HWADDR);
2893 #endif
2894
2895         /*
2896          * Walk through the Ethernet controllers and find
2897          * those who have their MAC addresses set.
2898          */
2899         for (idx = 0; idx < chip_max_units; idx++) {
2900
2901                 /*
2902                  * This is the base address of the MAC.
2903                  */
2904
2905                 port = A_MAC_CHANNEL_BASE(idx);
2906
2907                 /*
2908                  * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2909                  * value for us by the firmware if we're going to use this MAC.
2910                  * If we find a zero, skip this MAC.
2911                  */
2912
2913                 sbmac_orig_hwaddr[idx] = __raw_readq(IOADDR(port+R_MAC_ETHERNET_ADDR));
2914                 if (sbmac_orig_hwaddr[idx] == 0) {
2915                         printk(KERN_DEBUG "sbmac: not configuring MAC at "
2916                                "%lx\n", port);
2917                     continue;
2918                 }
2919
2920                 /*
2921                  * Okay, cool.  Initialize this MAC.
2922                  */
2923
2924                 dev = alloc_etherdev(sizeof(struct sbmac_softc));
2925                 if (!dev)
2926                         return -ENOMEM;
2927
2928                 printk(KERN_DEBUG "sbmac: configuring MAC at %lx\n", port);
2929
2930                 dev->irq = UNIT_INT(idx);
2931                 dev->base_addr = port;
2932                 dev->mem_end = 0;
2933                 if (sbmac_init(dev, idx)) {
2934                         port = A_MAC_CHANNEL_BASE(idx);
2935                         __raw_writeq(sbmac_orig_hwaddr[idx], IOADDR(port+R_MAC_ETHERNET_ADDR));
2936                         free_netdev(dev);
2937                         continue;
2938                 }
2939                 dev_sbmac[idx] = dev;
2940         }
2941         return 0;
2942 }
2943
2944
2945 static void __exit
2946 sbmac_cleanup_module(void)
2947 {
2948         struct net_device *dev;
2949         int idx;
2950
2951         for (idx = 0; idx < MAX_UNITS; idx++) {
2952                 struct sbmac_softc *sc;
2953                 dev = dev_sbmac[idx];
2954                 if (!dev)
2955                         continue;
2956
2957                 sc = netdev_priv(dev);
2958                 unregister_netdev(dev);
2959                 sbmac_uninitctx(sc);
2960                 free_netdev(dev);
2961         }
2962 }
2963
2964 module_init(sbmac_init_module);
2965 module_exit(sbmac_cleanup_module);