net: vrf: Remove direct access to skb->data
[cascardo/linux.git] / drivers / net / vrf.c
1 /*
2  * vrf.c: device driver to encapsulate a VRF space
3  *
4  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
7  *
8  * Based on dummy, team and ipvlan drivers
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  */
15
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ip.h>
21 #include <linux/init.h>
22 #include <linux/moduleparam.h>
23 #include <linux/netfilter.h>
24 #include <linux/rtnetlink.h>
25 #include <net/rtnetlink.h>
26 #include <linux/u64_stats_sync.h>
27 #include <linux/hashtable.h>
28
29 #include <linux/inetdevice.h>
30 #include <net/arp.h>
31 #include <net/ip.h>
32 #include <net/ip_fib.h>
33 #include <net/ip6_fib.h>
34 #include <net/ip6_route.h>
35 #include <net/rtnetlink.h>
36 #include <net/route.h>
37 #include <net/addrconf.h>
38 #include <net/l3mdev.h>
39
40 #define RT_FL_TOS(oldflp4) \
41         ((oldflp4)->flowi4_tos & (IPTOS_RT_MASK | RTO_ONLINK))
42
43 #define DRV_NAME        "vrf"
44 #define DRV_VERSION     "1.0"
45
46 #define vrf_master_get_rcu(dev) \
47         ((struct net_device *)rcu_dereference(dev->rx_handler_data))
48
49 struct net_vrf {
50         struct rtable           *rth;
51         struct rt6_info         *rt6;
52         u32                     tb_id;
53 };
54
55 struct pcpu_dstats {
56         u64                     tx_pkts;
57         u64                     tx_bytes;
58         u64                     tx_drps;
59         u64                     rx_pkts;
60         u64                     rx_bytes;
61         struct u64_stats_sync   syncp;
62 };
63
64 static struct dst_entry *vrf_ip_check(struct dst_entry *dst, u32 cookie)
65 {
66         return dst;
67 }
68
69 static int vrf_ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
70 {
71         return ip_local_out(net, sk, skb);
72 }
73
74 static unsigned int vrf_v4_mtu(const struct dst_entry *dst)
75 {
76         /* TO-DO: return max ethernet size? */
77         return dst->dev->mtu;
78 }
79
80 static void vrf_dst_destroy(struct dst_entry *dst)
81 {
82         /* our dst lives forever - or until the device is closed */
83 }
84
85 static unsigned int vrf_default_advmss(const struct dst_entry *dst)
86 {
87         return 65535 - 40;
88 }
89
90 static struct dst_ops vrf_dst_ops = {
91         .family         = AF_INET,
92         .local_out      = vrf_ip_local_out,
93         .check          = vrf_ip_check,
94         .mtu            = vrf_v4_mtu,
95         .destroy        = vrf_dst_destroy,
96         .default_advmss = vrf_default_advmss,
97 };
98
99 /* neighbor handling is done with actual device; do not want
100  * to flip skb->dev for those ndisc packets. This really fails
101  * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
102  * a start.
103  */
104 #if IS_ENABLED(CONFIG_IPV6)
105 static bool check_ipv6_frame(const struct sk_buff *skb)
106 {
107         const struct ipv6hdr *ipv6h;
108         struct ipv6hdr _ipv6h;
109         bool rc = true;
110
111         ipv6h = skb_header_pointer(skb, 0, sizeof(_ipv6h), &_ipv6h);
112         if (!ipv6h)
113                 goto out;
114
115         if (ipv6h->nexthdr == NEXTHDR_ICMP) {
116                 const struct icmp6hdr *icmph;
117                 struct icmp6hdr _icmph;
118
119                 icmph = skb_header_pointer(skb, sizeof(_ipv6h),
120                                            sizeof(_icmph), &_icmph);
121                 if (!icmph)
122                         goto out;
123
124                 switch (icmph->icmp6_type) {
125                 case NDISC_ROUTER_SOLICITATION:
126                 case NDISC_ROUTER_ADVERTISEMENT:
127                 case NDISC_NEIGHBOUR_SOLICITATION:
128                 case NDISC_NEIGHBOUR_ADVERTISEMENT:
129                 case NDISC_REDIRECT:
130                         rc = false;
131                         break;
132                 }
133         }
134
135 out:
136         return rc;
137 }
138 #else
139 static bool check_ipv6_frame(const struct sk_buff *skb)
140 {
141         return false;
142 }
143 #endif
144
145 static bool is_ip_rx_frame(struct sk_buff *skb)
146 {
147         switch (skb->protocol) {
148         case htons(ETH_P_IP):
149                 return true;
150         case htons(ETH_P_IPV6):
151                 return check_ipv6_frame(skb);
152         }
153         return false;
154 }
155
156 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
157 {
158         vrf_dev->stats.tx_errors++;
159         kfree_skb(skb);
160 }
161
162 /* note: already called with rcu_read_lock */
163 static rx_handler_result_t vrf_handle_frame(struct sk_buff **pskb)
164 {
165         struct sk_buff *skb = *pskb;
166
167         if (is_ip_rx_frame(skb)) {
168                 struct net_device *dev = vrf_master_get_rcu(skb->dev);
169                 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
170
171                 u64_stats_update_begin(&dstats->syncp);
172                 dstats->rx_pkts++;
173                 dstats->rx_bytes += skb->len;
174                 u64_stats_update_end(&dstats->syncp);
175
176                 skb->dev = dev;
177
178                 return RX_HANDLER_ANOTHER;
179         }
180         return RX_HANDLER_PASS;
181 }
182
183 static struct rtnl_link_stats64 *vrf_get_stats64(struct net_device *dev,
184                                                  struct rtnl_link_stats64 *stats)
185 {
186         int i;
187
188         for_each_possible_cpu(i) {
189                 const struct pcpu_dstats *dstats;
190                 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
191                 unsigned int start;
192
193                 dstats = per_cpu_ptr(dev->dstats, i);
194                 do {
195                         start = u64_stats_fetch_begin_irq(&dstats->syncp);
196                         tbytes = dstats->tx_bytes;
197                         tpkts = dstats->tx_pkts;
198                         tdrops = dstats->tx_drps;
199                         rbytes = dstats->rx_bytes;
200                         rpkts = dstats->rx_pkts;
201                 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
202                 stats->tx_bytes += tbytes;
203                 stats->tx_packets += tpkts;
204                 stats->tx_dropped += tdrops;
205                 stats->rx_bytes += rbytes;
206                 stats->rx_packets += rpkts;
207         }
208         return stats;
209 }
210
211 #if IS_ENABLED(CONFIG_IPV6)
212 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
213                                            struct net_device *dev)
214 {
215         const struct ipv6hdr *iph = ipv6_hdr(skb);
216         struct net *net = dev_net(skb->dev);
217         struct flowi6 fl6 = {
218                 /* needed to match OIF rule */
219                 .flowi6_oif = dev->ifindex,
220                 .flowi6_iif = LOOPBACK_IFINDEX,
221                 .daddr = iph->daddr,
222                 .saddr = iph->saddr,
223                 .flowlabel = ip6_flowinfo(iph),
224                 .flowi6_mark = skb->mark,
225                 .flowi6_proto = iph->nexthdr,
226                 .flowi6_flags = FLOWI_FLAG_L3MDEV_SRC | FLOWI_FLAG_SKIP_NH_OIF,
227         };
228         int ret = NET_XMIT_DROP;
229         struct dst_entry *dst;
230         struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
231
232         dst = ip6_route_output(net, NULL, &fl6);
233         if (dst == dst_null)
234                 goto err;
235
236         skb_dst_drop(skb);
237         skb_dst_set(skb, dst);
238
239         ret = ip6_local_out(net, skb->sk, skb);
240         if (unlikely(net_xmit_eval(ret)))
241                 dev->stats.tx_errors++;
242         else
243                 ret = NET_XMIT_SUCCESS;
244
245         return ret;
246 err:
247         vrf_tx_error(dev, skb);
248         return NET_XMIT_DROP;
249 }
250 #else
251 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
252                                            struct net_device *dev)
253 {
254         vrf_tx_error(dev, skb);
255         return NET_XMIT_DROP;
256 }
257 #endif
258
259 static int vrf_send_v4_prep(struct sk_buff *skb, struct flowi4 *fl4,
260                             struct net_device *vrf_dev)
261 {
262         struct rtable *rt;
263         int err = 1;
264
265         rt = ip_route_output_flow(dev_net(vrf_dev), fl4, NULL);
266         if (IS_ERR(rt))
267                 goto out;
268
269         /* TO-DO: what about broadcast ? */
270         if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
271                 ip_rt_put(rt);
272                 goto out;
273         }
274
275         skb_dst_drop(skb);
276         skb_dst_set(skb, &rt->dst);
277         err = 0;
278 out:
279         return err;
280 }
281
282 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
283                                            struct net_device *vrf_dev)
284 {
285         struct iphdr *ip4h = ip_hdr(skb);
286         int ret = NET_XMIT_DROP;
287         struct flowi4 fl4 = {
288                 /* needed to match OIF rule */
289                 .flowi4_oif = vrf_dev->ifindex,
290                 .flowi4_iif = LOOPBACK_IFINDEX,
291                 .flowi4_tos = RT_TOS(ip4h->tos),
292                 .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_L3MDEV_SRC |
293                                 FLOWI_FLAG_SKIP_NH_OIF,
294                 .daddr = ip4h->daddr,
295         };
296
297         if (vrf_send_v4_prep(skb, &fl4, vrf_dev))
298                 goto err;
299
300         if (!ip4h->saddr) {
301                 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
302                                                RT_SCOPE_LINK);
303         }
304
305         ret = ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
306         if (unlikely(net_xmit_eval(ret)))
307                 vrf_dev->stats.tx_errors++;
308         else
309                 ret = NET_XMIT_SUCCESS;
310
311 out:
312         return ret;
313 err:
314         vrf_tx_error(vrf_dev, skb);
315         goto out;
316 }
317
318 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
319 {
320         /* strip the ethernet header added for pass through VRF device */
321         __skb_pull(skb, skb_network_offset(skb));
322
323         switch (skb->protocol) {
324         case htons(ETH_P_IP):
325                 return vrf_process_v4_outbound(skb, dev);
326         case htons(ETH_P_IPV6):
327                 return vrf_process_v6_outbound(skb, dev);
328         default:
329                 vrf_tx_error(dev, skb);
330                 return NET_XMIT_DROP;
331         }
332 }
333
334 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
335 {
336         netdev_tx_t ret = is_ip_tx_frame(skb, dev);
337
338         if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
339                 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
340
341                 u64_stats_update_begin(&dstats->syncp);
342                 dstats->tx_pkts++;
343                 dstats->tx_bytes += skb->len;
344                 u64_stats_update_end(&dstats->syncp);
345         } else {
346                 this_cpu_inc(dev->dstats->tx_drps);
347         }
348
349         return ret;
350 }
351
352 #if IS_ENABLED(CONFIG_IPV6)
353 static struct dst_entry *vrf_ip6_check(struct dst_entry *dst, u32 cookie)
354 {
355         return dst;
356 }
357
358 static struct dst_ops vrf_dst_ops6 = {
359         .family         = AF_INET6,
360         .local_out      = ip6_local_out,
361         .check          = vrf_ip6_check,
362         .mtu            = vrf_v4_mtu,
363         .destroy        = vrf_dst_destroy,
364         .default_advmss = vrf_default_advmss,
365 };
366
367 static int init_dst_ops6_kmem_cachep(void)
368 {
369         vrf_dst_ops6.kmem_cachep = kmem_cache_create("vrf_ip6_dst_cache",
370                                                      sizeof(struct rt6_info),
371                                                      0,
372                                                      SLAB_HWCACHE_ALIGN,
373                                                      NULL);
374
375         if (!vrf_dst_ops6.kmem_cachep)
376                 return -ENOMEM;
377
378         return 0;
379 }
380
381 static void free_dst_ops6_kmem_cachep(void)
382 {
383         kmem_cache_destroy(vrf_dst_ops6.kmem_cachep);
384 }
385
386 static int vrf_input6(struct sk_buff *skb)
387 {
388         skb->dev->stats.rx_errors++;
389         kfree_skb(skb);
390         return 0;
391 }
392
393 /* modelled after ip6_finish_output2 */
394 static int vrf_finish_output6(struct net *net, struct sock *sk,
395                               struct sk_buff *skb)
396 {
397         struct dst_entry *dst = skb_dst(skb);
398         struct net_device *dev = dst->dev;
399         struct neighbour *neigh;
400         struct in6_addr *nexthop;
401         int ret;
402
403         skb->protocol = htons(ETH_P_IPV6);
404         skb->dev = dev;
405
406         rcu_read_lock_bh();
407         nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
408         neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
409         if (unlikely(!neigh))
410                 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
411         if (!IS_ERR(neigh)) {
412                 ret = dst_neigh_output(dst, neigh, skb);
413                 rcu_read_unlock_bh();
414                 return ret;
415         }
416         rcu_read_unlock_bh();
417
418         IP6_INC_STATS(dev_net(dst->dev),
419                       ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
420         kfree_skb(skb);
421         return -EINVAL;
422 }
423
424 /* modelled after ip6_output */
425 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
426 {
427         return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
428                             net, sk, skb, NULL, skb_dst(skb)->dev,
429                             vrf_finish_output6,
430                             !(IP6CB(skb)->flags & IP6SKB_REROUTED));
431 }
432
433 static void vrf_rt6_destroy(struct net_vrf *vrf)
434 {
435         dst_destroy(&vrf->rt6->dst);
436         free_percpu(vrf->rt6->rt6i_pcpu);
437         vrf->rt6 = NULL;
438 }
439
440 static int vrf_rt6_create(struct net_device *dev)
441 {
442         struct net_vrf *vrf = netdev_priv(dev);
443         struct dst_entry *dst;
444         struct rt6_info *rt6;
445         int cpu;
446         int rc = -ENOMEM;
447
448         rt6 = dst_alloc(&vrf_dst_ops6, dev, 0,
449                         DST_OBSOLETE_NONE,
450                         (DST_HOST | DST_NOPOLICY | DST_NOXFRM));
451         if (!rt6)
452                 goto out;
453
454         dst = &rt6->dst;
455
456         rt6->rt6i_pcpu = alloc_percpu_gfp(struct rt6_info *, GFP_KERNEL);
457         if (!rt6->rt6i_pcpu) {
458                 dst_destroy(dst);
459                 goto out;
460         }
461         for_each_possible_cpu(cpu) {
462                 struct rt6_info **p = per_cpu_ptr(rt6->rt6i_pcpu, cpu);
463                 *p =  NULL;
464         }
465
466         memset(dst + 1, 0, sizeof(*rt6) - sizeof(*dst));
467
468         INIT_LIST_HEAD(&rt6->rt6i_siblings);
469         INIT_LIST_HEAD(&rt6->rt6i_uncached);
470
471         rt6->dst.input  = vrf_input6;
472         rt6->dst.output = vrf_output6;
473
474         rt6->rt6i_table = fib6_get_table(dev_net(dev), vrf->tb_id);
475
476         atomic_set(&rt6->dst.__refcnt, 2);
477
478         vrf->rt6 = rt6;
479         rc = 0;
480 out:
481         return rc;
482 }
483 #else
484 static int init_dst_ops6_kmem_cachep(void)
485 {
486         return 0;
487 }
488
489 static void free_dst_ops6_kmem_cachep(void)
490 {
491 }
492
493 static void vrf_rt6_destroy(struct net_vrf *vrf)
494 {
495 }
496
497 static int vrf_rt6_create(struct net_device *dev)
498 {
499         return 0;
500 }
501 #endif
502
503 /* modelled after ip_finish_output2 */
504 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
505 {
506         struct dst_entry *dst = skb_dst(skb);
507         struct rtable *rt = (struct rtable *)dst;
508         struct net_device *dev = dst->dev;
509         unsigned int hh_len = LL_RESERVED_SPACE(dev);
510         struct neighbour *neigh;
511         u32 nexthop;
512         int ret = -EINVAL;
513
514         /* Be paranoid, rather than too clever. */
515         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
516                 struct sk_buff *skb2;
517
518                 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
519                 if (!skb2) {
520                         ret = -ENOMEM;
521                         goto err;
522                 }
523                 if (skb->sk)
524                         skb_set_owner_w(skb2, skb->sk);
525
526                 consume_skb(skb);
527                 skb = skb2;
528         }
529
530         rcu_read_lock_bh();
531
532         nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
533         neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
534         if (unlikely(!neigh))
535                 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
536         if (!IS_ERR(neigh))
537                 ret = dst_neigh_output(dst, neigh, skb);
538
539         rcu_read_unlock_bh();
540 err:
541         if (unlikely(ret < 0))
542                 vrf_tx_error(skb->dev, skb);
543         return ret;
544 }
545
546 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
547 {
548         struct net_device *dev = skb_dst(skb)->dev;
549
550         IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
551
552         skb->dev = dev;
553         skb->protocol = htons(ETH_P_IP);
554
555         return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
556                             net, sk, skb, NULL, dev,
557                             vrf_finish_output,
558                             !(IPCB(skb)->flags & IPSKB_REROUTED));
559 }
560
561 static void vrf_rtable_destroy(struct net_vrf *vrf)
562 {
563         struct dst_entry *dst = (struct dst_entry *)vrf->rth;
564
565         dst_destroy(dst);
566         vrf->rth = NULL;
567 }
568
569 static struct rtable *vrf_rtable_create(struct net_device *dev)
570 {
571         struct net_vrf *vrf = netdev_priv(dev);
572         struct rtable *rth;
573
574         rth = dst_alloc(&vrf_dst_ops, dev, 2,
575                         DST_OBSOLETE_NONE,
576                         (DST_HOST | DST_NOPOLICY | DST_NOXFRM));
577         if (rth) {
578                 rth->dst.output = vrf_output;
579                 rth->rt_genid   = rt_genid_ipv4(dev_net(dev));
580                 rth->rt_flags   = 0;
581                 rth->rt_type    = RTN_UNICAST;
582                 rth->rt_is_input = 0;
583                 rth->rt_iif     = 0;
584                 rth->rt_pmtu    = 0;
585                 rth->rt_gateway = 0;
586                 rth->rt_uses_gateway = 0;
587                 rth->rt_table_id = vrf->tb_id;
588                 INIT_LIST_HEAD(&rth->rt_uncached);
589                 rth->rt_uncached_list = NULL;
590         }
591
592         return rth;
593 }
594
595 /**************************** device handling ********************/
596
597 /* cycle interface to flush neighbor cache and move routes across tables */
598 static void cycle_netdev(struct net_device *dev)
599 {
600         unsigned int flags = dev->flags;
601         int ret;
602
603         if (!netif_running(dev))
604                 return;
605
606         ret = dev_change_flags(dev, flags & ~IFF_UP);
607         if (ret >= 0)
608                 ret = dev_change_flags(dev, flags);
609
610         if (ret < 0) {
611                 netdev_err(dev,
612                            "Failed to cycle device %s; route tables might be wrong!\n",
613                            dev->name);
614         }
615 }
616
617 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
618 {
619         int ret;
620
621         /* register the packet handler for slave ports */
622         ret = netdev_rx_handler_register(port_dev, vrf_handle_frame, dev);
623         if (ret) {
624                 netdev_err(port_dev,
625                            "Device %s failed to register rx_handler\n",
626                            port_dev->name);
627                 goto out_fail;
628         }
629
630         ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL);
631         if (ret < 0)
632                 goto out_unregister;
633
634         port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
635         cycle_netdev(port_dev);
636
637         return 0;
638
639 out_unregister:
640         netdev_rx_handler_unregister(port_dev);
641 out_fail:
642         return ret;
643 }
644
645 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
646 {
647         if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev))
648                 return -EINVAL;
649
650         return do_vrf_add_slave(dev, port_dev);
651 }
652
653 /* inverse of do_vrf_add_slave */
654 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
655 {
656         netdev_upper_dev_unlink(port_dev, dev);
657         port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
658
659         netdev_rx_handler_unregister(port_dev);
660
661         cycle_netdev(port_dev);
662
663         return 0;
664 }
665
666 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
667 {
668         return do_vrf_del_slave(dev, port_dev);
669 }
670
671 static void vrf_dev_uninit(struct net_device *dev)
672 {
673         struct net_vrf *vrf = netdev_priv(dev);
674         struct net_device *port_dev;
675         struct list_head *iter;
676
677         vrf_rtable_destroy(vrf);
678         vrf_rt6_destroy(vrf);
679
680         netdev_for_each_lower_dev(dev, port_dev, iter)
681                 vrf_del_slave(dev, port_dev);
682
683         free_percpu(dev->dstats);
684         dev->dstats = NULL;
685 }
686
687 static int vrf_dev_init(struct net_device *dev)
688 {
689         struct net_vrf *vrf = netdev_priv(dev);
690
691         dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
692         if (!dev->dstats)
693                 goto out_nomem;
694
695         /* create the default dst which points back to us */
696         vrf->rth = vrf_rtable_create(dev);
697         if (!vrf->rth)
698                 goto out_stats;
699
700         if (vrf_rt6_create(dev) != 0)
701                 goto out_rth;
702
703         dev->flags = IFF_MASTER | IFF_NOARP;
704
705         return 0;
706
707 out_rth:
708         vrf_rtable_destroy(vrf);
709 out_stats:
710         free_percpu(dev->dstats);
711         dev->dstats = NULL;
712 out_nomem:
713         return -ENOMEM;
714 }
715
716 static const struct net_device_ops vrf_netdev_ops = {
717         .ndo_init               = vrf_dev_init,
718         .ndo_uninit             = vrf_dev_uninit,
719         .ndo_start_xmit         = vrf_xmit,
720         .ndo_get_stats64        = vrf_get_stats64,
721         .ndo_add_slave          = vrf_add_slave,
722         .ndo_del_slave          = vrf_del_slave,
723 };
724
725 static u32 vrf_fib_table(const struct net_device *dev)
726 {
727         struct net_vrf *vrf = netdev_priv(dev);
728
729         return vrf->tb_id;
730 }
731
732 static struct rtable *vrf_get_rtable(const struct net_device *dev,
733                                      const struct flowi4 *fl4)
734 {
735         struct rtable *rth = NULL;
736
737         if (!(fl4->flowi4_flags & FLOWI_FLAG_L3MDEV_SRC)) {
738                 struct net_vrf *vrf = netdev_priv(dev);
739
740                 rth = vrf->rth;
741                 atomic_inc(&rth->dst.__refcnt);
742         }
743
744         return rth;
745 }
746
747 /* called under rcu_read_lock */
748 static int vrf_get_saddr(struct net_device *dev, struct flowi4 *fl4)
749 {
750         struct fib_result res = { .tclassid = 0 };
751         struct net *net = dev_net(dev);
752         u32 orig_tos = fl4->flowi4_tos;
753         u8 flags = fl4->flowi4_flags;
754         u8 scope = fl4->flowi4_scope;
755         u8 tos = RT_FL_TOS(fl4);
756         int rc;
757
758         if (unlikely(!fl4->daddr))
759                 return 0;
760
761         fl4->flowi4_flags |= FLOWI_FLAG_SKIP_NH_OIF;
762         fl4->flowi4_iif = LOOPBACK_IFINDEX;
763         fl4->flowi4_tos = tos & IPTOS_RT_MASK;
764         fl4->flowi4_scope = ((tos & RTO_ONLINK) ?
765                              RT_SCOPE_LINK : RT_SCOPE_UNIVERSE);
766
767         rc = fib_lookup(net, fl4, &res, 0);
768         if (!rc) {
769                 if (res.type == RTN_LOCAL)
770                         fl4->saddr = res.fi->fib_prefsrc ? : fl4->daddr;
771                 else
772                         fib_select_path(net, &res, fl4, -1);
773         }
774
775         fl4->flowi4_flags = flags;
776         fl4->flowi4_tos = orig_tos;
777         fl4->flowi4_scope = scope;
778
779         return rc;
780 }
781
782 #if IS_ENABLED(CONFIG_IPV6)
783 static struct dst_entry *vrf_get_rt6_dst(const struct net_device *dev,
784                                          const struct flowi6 *fl6)
785 {
786         struct rt6_info *rt = NULL;
787
788         if (!(fl6->flowi6_flags & FLOWI_FLAG_L3MDEV_SRC)) {
789                 struct net_vrf *vrf = netdev_priv(dev);
790
791                 rt = vrf->rt6;
792                 atomic_inc(&rt->dst.__refcnt);
793         }
794
795         return (struct dst_entry *)rt;
796 }
797 #endif
798
799 static const struct l3mdev_ops vrf_l3mdev_ops = {
800         .l3mdev_fib_table       = vrf_fib_table,
801         .l3mdev_get_rtable      = vrf_get_rtable,
802         .l3mdev_get_saddr       = vrf_get_saddr,
803 #if IS_ENABLED(CONFIG_IPV6)
804         .l3mdev_get_rt6_dst     = vrf_get_rt6_dst,
805 #endif
806 };
807
808 static void vrf_get_drvinfo(struct net_device *dev,
809                             struct ethtool_drvinfo *info)
810 {
811         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
812         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
813 }
814
815 static const struct ethtool_ops vrf_ethtool_ops = {
816         .get_drvinfo    = vrf_get_drvinfo,
817 };
818
819 static void vrf_setup(struct net_device *dev)
820 {
821         ether_setup(dev);
822
823         /* Initialize the device structure. */
824         dev->netdev_ops = &vrf_netdev_ops;
825         dev->l3mdev_ops = &vrf_l3mdev_ops;
826         dev->ethtool_ops = &vrf_ethtool_ops;
827         dev->destructor = free_netdev;
828
829         /* Fill in device structure with ethernet-generic values. */
830         eth_hw_addr_random(dev);
831
832         /* don't acquire vrf device's netif_tx_lock when transmitting */
833         dev->features |= NETIF_F_LLTX;
834
835         /* don't allow vrf devices to change network namespaces. */
836         dev->features |= NETIF_F_NETNS_LOCAL;
837 }
838
839 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[])
840 {
841         if (tb[IFLA_ADDRESS]) {
842                 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
843                         return -EINVAL;
844                 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
845                         return -EADDRNOTAVAIL;
846         }
847         return 0;
848 }
849
850 static void vrf_dellink(struct net_device *dev, struct list_head *head)
851 {
852         unregister_netdevice_queue(dev, head);
853 }
854
855 static int vrf_newlink(struct net *src_net, struct net_device *dev,
856                        struct nlattr *tb[], struct nlattr *data[])
857 {
858         struct net_vrf *vrf = netdev_priv(dev);
859
860         if (!data || !data[IFLA_VRF_TABLE])
861                 return -EINVAL;
862
863         vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
864
865         dev->priv_flags |= IFF_L3MDEV_MASTER;
866
867         return register_netdevice(dev);
868 }
869
870 static size_t vrf_nl_getsize(const struct net_device *dev)
871 {
872         return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
873 }
874
875 static int vrf_fillinfo(struct sk_buff *skb,
876                         const struct net_device *dev)
877 {
878         struct net_vrf *vrf = netdev_priv(dev);
879
880         return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
881 }
882
883 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
884         [IFLA_VRF_TABLE] = { .type = NLA_U32 },
885 };
886
887 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
888         .kind           = DRV_NAME,
889         .priv_size      = sizeof(struct net_vrf),
890
891         .get_size       = vrf_nl_getsize,
892         .policy         = vrf_nl_policy,
893         .validate       = vrf_validate,
894         .fill_info      = vrf_fillinfo,
895
896         .newlink        = vrf_newlink,
897         .dellink        = vrf_dellink,
898         .setup          = vrf_setup,
899         .maxtype        = IFLA_VRF_MAX,
900 };
901
902 static int vrf_device_event(struct notifier_block *unused,
903                             unsigned long event, void *ptr)
904 {
905         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
906
907         /* only care about unregister events to drop slave references */
908         if (event == NETDEV_UNREGISTER) {
909                 struct net_device *vrf_dev;
910
911                 if (!netif_is_l3_slave(dev))
912                         goto out;
913
914                 vrf_dev = netdev_master_upper_dev_get(dev);
915                 vrf_del_slave(vrf_dev, dev);
916         }
917 out:
918         return NOTIFY_DONE;
919 }
920
921 static struct notifier_block vrf_notifier_block __read_mostly = {
922         .notifier_call = vrf_device_event,
923 };
924
925 static int __init vrf_init_module(void)
926 {
927         int rc;
928
929         vrf_dst_ops.kmem_cachep =
930                 kmem_cache_create("vrf_ip_dst_cache",
931                                   sizeof(struct rtable), 0,
932                                   SLAB_HWCACHE_ALIGN,
933                                   NULL);
934
935         if (!vrf_dst_ops.kmem_cachep)
936                 return -ENOMEM;
937
938         rc = init_dst_ops6_kmem_cachep();
939         if (rc != 0)
940                 goto error2;
941
942         register_netdevice_notifier(&vrf_notifier_block);
943
944         rc = rtnl_link_register(&vrf_link_ops);
945         if (rc < 0)
946                 goto error;
947
948         return 0;
949
950 error:
951         unregister_netdevice_notifier(&vrf_notifier_block);
952         free_dst_ops6_kmem_cachep();
953 error2:
954         kmem_cache_destroy(vrf_dst_ops.kmem_cachep);
955         return rc;
956 }
957
958 static void __exit vrf_cleanup_module(void)
959 {
960         rtnl_link_unregister(&vrf_link_ops);
961         unregister_netdevice_notifier(&vrf_notifier_block);
962         kmem_cache_destroy(vrf_dst_ops.kmem_cachep);
963         free_dst_ops6_kmem_cachep();
964 }
965
966 module_init(vrf_init_module);
967 module_exit(vrf_cleanup_module);
968 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
969 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
970 MODULE_LICENSE("GPL");
971 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
972 MODULE_VERSION(DRV_VERSION);