CHROMIUM: ath9k: Merges for BTCOEX on 9462
[cascardo/linux.git] / drivers / net / wireless / ath / ath9k_btcoex / eeprom_4k.c
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9002_phy.h"
20
21 static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
22 {
23         return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
24 }
25
26 static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
27 {
28         return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
29 }
30
31 #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
32
33 static bool __ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
34 {
35         struct ath_common *common = ath9k_hw_common(ah);
36         u16 *eep_data = (u16 *)&ah->eeprom.map4k;
37         int addr, eep_start_loc = 64;
38
39         for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
40                 if (!ath9k_hw_nvram_read(common, addr + eep_start_loc, eep_data)) {
41                         ath_dbg(common, EEPROM,
42                                 "Unable to read eeprom region\n");
43                         return false;
44                 }
45                 eep_data++;
46         }
47
48         return true;
49 }
50
51 static bool __ath9k_hw_usb_4k_fill_eeprom(struct ath_hw *ah)
52 {
53         u16 *eep_data = (u16 *)&ah->eeprom.map4k;
54
55         ath9k_hw_usb_gen_fill_eeprom(ah, eep_data, 64, SIZE_EEPROM_4K);
56
57         return true;
58 }
59
60 static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
61 {
62         struct ath_common *common = ath9k_hw_common(ah);
63
64         if (!ath9k_hw_use_flash(ah)) {
65                 ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
66         }
67
68         if (common->bus_ops->ath_bus_type == ATH_USB)
69                 return __ath9k_hw_usb_4k_fill_eeprom(ah);
70         else
71                 return __ath9k_hw_4k_fill_eeprom(ah);
72 }
73
74 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
75 static u32 ath9k_dump_4k_modal_eeprom(char *buf, u32 len, u32 size,
76                                       struct modal_eep_4k_header *modal_hdr)
77 {
78         PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
79         PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
80         PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
81         PR_EEP("Switch Settle", modal_hdr->switchSettling);
82         PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
83         PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
84         PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
85         PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize);
86         PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]);
87         PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
88         PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
89         PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
90         PR_EEP("CCA Threshold)", modal_hdr->thresh62);
91         PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
92         PR_EEP("xpdGain", modal_hdr->xpdGain);
93         PR_EEP("External PD", modal_hdr->xpd);
94         PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
95         PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
96         PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
97         PR_EEP("O/D Bias Version", modal_hdr->version);
98         PR_EEP("CCK OutputBias", modal_hdr->ob_0);
99         PR_EEP("BPSK OutputBias", modal_hdr->ob_1);
100         PR_EEP("QPSK OutputBias", modal_hdr->ob_2);
101         PR_EEP("16QAM OutputBias", modal_hdr->ob_3);
102         PR_EEP("64QAM OutputBias", modal_hdr->ob_4);
103         PR_EEP("CCK Driver1_Bias", modal_hdr->db1_0);
104         PR_EEP("BPSK Driver1_Bias", modal_hdr->db1_1);
105         PR_EEP("QPSK Driver1_Bias", modal_hdr->db1_2);
106         PR_EEP("16QAM Driver1_Bias", modal_hdr->db1_3);
107         PR_EEP("64QAM Driver1_Bias", modal_hdr->db1_4);
108         PR_EEP("CCK Driver2_Bias", modal_hdr->db2_0);
109         PR_EEP("BPSK Driver2_Bias", modal_hdr->db2_1);
110         PR_EEP("QPSK Driver2_Bias", modal_hdr->db2_2);
111         PR_EEP("16QAM Driver2_Bias", modal_hdr->db2_3);
112         PR_EEP("64QAM Driver2_Bias", modal_hdr->db2_4);
113         PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
114         PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
115         PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
116         PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
117         PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
118         PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
119         PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
120         PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]);
121         PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]);
122         PR_EEP("Ant. Diversity ctl1", modal_hdr->antdiv_ctl1);
123         PR_EEP("Ant. Diversity ctl2", modal_hdr->antdiv_ctl2);
124         PR_EEP("TX Diversity", modal_hdr->tx_diversity);
125
126         return len;
127 }
128
129 static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
130                                        u8 *buf, u32 len, u32 size)
131 {
132         struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
133         struct base_eep_header_4k *pBase = &eep->baseEepHeader;
134
135         if (!dump_base_hdr) {
136                 len += snprintf(buf + len, size - len,
137                                 "%20s :\n", "2GHz modal Header");
138                 len = ath9k_dump_4k_modal_eeprom(buf, len, size,
139                                                   &eep->modalHeader);
140                 goto out;
141         }
142
143         PR_EEP("Major Version", pBase->version >> 12);
144         PR_EEP("Minor Version", pBase->version & 0xFFF);
145         PR_EEP("Checksum", pBase->checksum);
146         PR_EEP("Length", pBase->length);
147         PR_EEP("RegDomain1", pBase->regDmn[0]);
148         PR_EEP("RegDomain2", pBase->regDmn[1]);
149         PR_EEP("TX Mask", pBase->txMask);
150         PR_EEP("RX Mask", pBase->rxMask);
151         PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
152         PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
153         PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
154                                         AR5416_OPFLAGS_N_2G_HT20));
155         PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
156                                         AR5416_OPFLAGS_N_2G_HT40));
157         PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
158                                         AR5416_OPFLAGS_N_5G_HT20));
159         PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
160                                         AR5416_OPFLAGS_N_5G_HT40));
161         PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
162         PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
163         PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
164         PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
165         PR_EEP("TX Gain type", pBase->txGainType);
166
167         len += snprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
168                         pBase->macAddr);
169
170 out:
171         if (len > size)
172                 len = size;
173
174         return len;
175 }
176 #else
177 static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
178                                        u8 *buf, u32 len, u32 size)
179 {
180         return 0;
181 }
182 #endif
183
184
185 #undef SIZE_EEPROM_4K
186
187 static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
188 {
189 #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
190         struct ath_common *common = ath9k_hw_common(ah);
191         struct ar5416_eeprom_4k *eep =
192                 (struct ar5416_eeprom_4k *) &ah->eeprom.map4k;
193         u16 *eepdata, temp, magic, magic2;
194         u32 sum = 0, el;
195         bool need_swap = false;
196         int i, addr;
197
198
199         if (!ath9k_hw_use_flash(ah)) {
200                 if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
201                                          &magic)) {
202                         ath_err(common, "Reading Magic # failed\n");
203                         return false;
204                 }
205
206                 ath_dbg(common, EEPROM, "Read Magic = 0x%04X\n", magic);
207
208                 if (magic != AR5416_EEPROM_MAGIC) {
209                         magic2 = swab16(magic);
210
211                         if (magic2 == AR5416_EEPROM_MAGIC) {
212                                 need_swap = true;
213                                 eepdata = (u16 *) (&ah->eeprom);
214
215                                 for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
216                                         temp = swab16(*eepdata);
217                                         *eepdata = temp;
218                                         eepdata++;
219                                 }
220                         } else {
221                                 ath_err(common,
222                                         "Invalid EEPROM Magic. Endianness mismatch.\n");
223                                 return -EINVAL;
224                         }
225                 }
226         }
227
228         ath_dbg(common, EEPROM, "need_swap = %s\n",
229                 need_swap ? "True" : "False");
230
231         if (need_swap)
232                 el = swab16(ah->eeprom.map4k.baseEepHeader.length);
233         else
234                 el = ah->eeprom.map4k.baseEepHeader.length;
235
236         if (el > sizeof(struct ar5416_eeprom_4k))
237                 el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
238         else
239                 el = el / sizeof(u16);
240
241         eepdata = (u16 *)(&ah->eeprom);
242
243         for (i = 0; i < el; i++)
244                 sum ^= *eepdata++;
245
246         if (need_swap) {
247                 u32 integer;
248                 u16 word;
249
250                 ath_dbg(common, EEPROM,
251                         "EEPROM Endianness is not native.. Changing\n");
252
253                 word = swab16(eep->baseEepHeader.length);
254                 eep->baseEepHeader.length = word;
255
256                 word = swab16(eep->baseEepHeader.checksum);
257                 eep->baseEepHeader.checksum = word;
258
259                 word = swab16(eep->baseEepHeader.version);
260                 eep->baseEepHeader.version = word;
261
262                 word = swab16(eep->baseEepHeader.regDmn[0]);
263                 eep->baseEepHeader.regDmn[0] = word;
264
265                 word = swab16(eep->baseEepHeader.regDmn[1]);
266                 eep->baseEepHeader.regDmn[1] = word;
267
268                 word = swab16(eep->baseEepHeader.rfSilent);
269                 eep->baseEepHeader.rfSilent = word;
270
271                 word = swab16(eep->baseEepHeader.blueToothOptions);
272                 eep->baseEepHeader.blueToothOptions = word;
273
274                 word = swab16(eep->baseEepHeader.deviceCap);
275                 eep->baseEepHeader.deviceCap = word;
276
277                 integer = swab32(eep->modalHeader.antCtrlCommon);
278                 eep->modalHeader.antCtrlCommon = integer;
279
280                 for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
281                         integer = swab32(eep->modalHeader.antCtrlChain[i]);
282                         eep->modalHeader.antCtrlChain[i] = integer;
283                 }
284
285                 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
286                         word = swab16(eep->modalHeader.spurChans[i].spurChan);
287                         eep->modalHeader.spurChans[i].spurChan = word;
288                 }
289         }
290
291         if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
292             ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
293                 ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
294                         sum, ah->eep_ops->get_eeprom_ver(ah));
295                 return -EINVAL;
296         }
297
298         return 0;
299 #undef EEPROM_4K_SIZE
300 }
301
302 static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
303                                   enum eeprom_param param)
304 {
305         struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
306         struct modal_eep_4k_header *pModal = &eep->modalHeader;
307         struct base_eep_header_4k *pBase = &eep->baseEepHeader;
308         u16 ver_minor;
309
310         ver_minor = pBase->version & AR5416_EEP_VER_MINOR_MASK;
311
312         switch (param) {
313         case EEP_NFTHRESH_2:
314                 return pModal->noiseFloorThreshCh[0];
315         case EEP_MAC_LSW:
316                 return get_unaligned_be16(pBase->macAddr);
317         case EEP_MAC_MID:
318                 return get_unaligned_be16(pBase->macAddr + 2);
319         case EEP_MAC_MSW:
320                 return get_unaligned_be16(pBase->macAddr + 4);
321         case EEP_REG_0:
322                 return pBase->regDmn[0];
323         case EEP_OP_CAP:
324                 return pBase->deviceCap;
325         case EEP_OP_MODE:
326                 return pBase->opCapFlags;
327         case EEP_RF_SILENT:
328                 return pBase->rfSilent;
329         case EEP_OB_2:
330                 return pModal->ob_0;
331         case EEP_DB_2:
332                 return pModal->db1_1;
333         case EEP_MINOR_REV:
334                 return ver_minor;
335         case EEP_TX_MASK:
336                 return pBase->txMask;
337         case EEP_RX_MASK:
338                 return pBase->rxMask;
339         case EEP_FRAC_N_5G:
340                 return 0;
341         case EEP_PWR_TABLE_OFFSET:
342                 return AR5416_PWR_TABLE_OFFSET_DB;
343         case EEP_MODAL_VER:
344                 return pModal->version;
345         case EEP_ANT_DIV_CTL1:
346                 return pModal->antdiv_ctl1;
347         case EEP_TXGAIN_TYPE:
348                 return pBase->txGainType;
349         case EEP_ANTENNA_GAIN_2G:
350                 return pModal->antennaGainCh[0];
351         default:
352                 return 0;
353         }
354 }
355
356 static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
357                                   struct ath9k_channel *chan)
358 {
359         struct ath_common *common = ath9k_hw_common(ah);
360         struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
361         struct cal_data_per_freq_4k *pRawDataset;
362         u8 *pCalBChans = NULL;
363         u16 pdGainOverlap_t2;
364         static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
365         u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
366         u16 numPiers, i, j;
367         u16 numXpdGain, xpdMask;
368         u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
369         u32 reg32, regOffset, regChainOffset;
370
371         xpdMask = pEepData->modalHeader.xpdGain;
372
373         if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
374             AR5416_EEP_MINOR_VER_2) {
375                 pdGainOverlap_t2 =
376                         pEepData->modalHeader.pdGainOverlap;
377         } else {
378                 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
379                                             AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
380         }
381
382         pCalBChans = pEepData->calFreqPier2G;
383         numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
384
385         numXpdGain = 0;
386
387         for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
388                 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
389                         if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
390                                 break;
391                         xpdGainValues[numXpdGain] =
392                                 (u16)(AR5416_PD_GAINS_IN_MASK - i);
393                         numXpdGain++;
394                 }
395         }
396
397         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
398                       (numXpdGain - 1) & 0x3);
399         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
400                       xpdGainValues[0]);
401         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
402                       xpdGainValues[1]);
403         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
404
405         for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
406                 regChainOffset = i * 0x1000;
407
408                 if (pEepData->baseEepHeader.txMask & (1 << i)) {
409                         pRawDataset = pEepData->calPierData2G[i];
410
411                         ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
412                                             pRawDataset, pCalBChans,
413                                             numPiers, pdGainOverlap_t2,
414                                             gainBoundaries,
415                                             pdadcValues, numXpdGain);
416
417                         ENABLE_REGWRITE_BUFFER(ah);
418
419                         REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
420                                   SM(pdGainOverlap_t2,
421                                      AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
422                                   | SM(gainBoundaries[0],
423                                        AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
424                                   | SM(gainBoundaries[1],
425                                        AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
426                                   | SM(gainBoundaries[2],
427                                        AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
428                                   | SM(gainBoundaries[3],
429                                AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
430
431                         regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
432                         for (j = 0; j < 32; j++) {
433                                 reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
434                                 REG_WRITE(ah, regOffset, reg32);
435
436                                 ath_dbg(common, EEPROM,
437                                         "PDADC (%d,%4x): %4.4x %8.8x\n",
438                                         i, regChainOffset, regOffset,
439                                         reg32);
440                                 ath_dbg(common, EEPROM,
441                                         "PDADC: Chain %d | "
442                                         "PDADC %3d Value %3d | "
443                                         "PDADC %3d Value %3d | "
444                                         "PDADC %3d Value %3d | "
445                                         "PDADC %3d Value %3d |\n",
446                                         i, 4 * j, pdadcValues[4 * j],
447                                         4 * j + 1, pdadcValues[4 * j + 1],
448                                         4 * j + 2, pdadcValues[4 * j + 2],
449                                         4 * j + 3, pdadcValues[4 * j + 3]);
450
451                                 regOffset += 4;
452                         }
453
454                         REGWRITE_BUFFER_FLUSH(ah);
455                 }
456         }
457 }
458
459 static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
460                                                  struct ath9k_channel *chan,
461                                                  int16_t *ratesArray,
462                                                  u16 cfgCtl,
463                                                  u16 antenna_reduction,
464                                                  u16 powerLimit)
465 {
466 #define CMP_TEST_GRP \
467         (((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) ==  \
468          pEepData->ctlIndex[i])                                         \
469         || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
470             ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
471
472         int i;
473         u16 twiceMinEdgePower;
474         u16 twiceMaxEdgePower;
475         u16 scaledPower = 0, minCtlPower;
476         u16 numCtlModes;
477         const u16 *pCtlMode;
478         u16 ctlMode, freq;
479         struct chan_centers centers;
480         struct cal_ctl_data_4k *rep;
481         struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
482         struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
483                 0, { 0, 0, 0, 0}
484         };
485         struct cal_target_power_leg targetPowerOfdmExt = {
486                 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
487                 0, { 0, 0, 0, 0 }
488         };
489         struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
490                 0, {0, 0, 0, 0}
491         };
492         static const u16 ctlModesFor11g[] = {
493                 CTL_11B, CTL_11G, CTL_2GHT20,
494                 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
495         };
496
497         ath9k_hw_get_channel_centers(ah, chan, &centers);
498
499         scaledPower = powerLimit - antenna_reduction;
500         numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
501         pCtlMode = ctlModesFor11g;
502
503         ath9k_hw_get_legacy_target_powers(ah, chan,
504                         pEepData->calTargetPowerCck,
505                         AR5416_NUM_2G_CCK_TARGET_POWERS,
506                         &targetPowerCck, 4, false);
507         ath9k_hw_get_legacy_target_powers(ah, chan,
508                         pEepData->calTargetPower2G,
509                         AR5416_NUM_2G_20_TARGET_POWERS,
510                         &targetPowerOfdm, 4, false);
511         ath9k_hw_get_target_powers(ah, chan,
512                         pEepData->calTargetPower2GHT20,
513                         AR5416_NUM_2G_20_TARGET_POWERS,
514                         &targetPowerHt20, 8, false);
515
516         if (IS_CHAN_HT40(chan)) {
517                 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
518                 ath9k_hw_get_target_powers(ah, chan,
519                                 pEepData->calTargetPower2GHT40,
520                                 AR5416_NUM_2G_40_TARGET_POWERS,
521                                 &targetPowerHt40, 8, true);
522                 ath9k_hw_get_legacy_target_powers(ah, chan,
523                                 pEepData->calTargetPowerCck,
524                                 AR5416_NUM_2G_CCK_TARGET_POWERS,
525                                 &targetPowerCckExt, 4, true);
526                 ath9k_hw_get_legacy_target_powers(ah, chan,
527                                 pEepData->calTargetPower2G,
528                                 AR5416_NUM_2G_20_TARGET_POWERS,
529                                 &targetPowerOfdmExt, 4, true);
530         }
531
532         for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
533                 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
534                         (pCtlMode[ctlMode] == CTL_2GHT40);
535
536                 if (isHt40CtlMode)
537                         freq = centers.synth_center;
538                 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
539                         freq = centers.ext_center;
540                 else
541                         freq = centers.ctl_center;
542
543                 twiceMaxEdgePower = MAX_RATE_POWER;
544
545                 for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
546                              pEepData->ctlIndex[i]; i++) {
547
548                         if (CMP_TEST_GRP) {
549                                 rep = &(pEepData->ctlData[i]);
550
551                                 twiceMinEdgePower = ath9k_hw_get_max_edge_power(
552                                         freq,
553                                         rep->ctlEdges[
554                                         ar5416_get_ntxchains(ah->txchainmask) - 1],
555                                         IS_CHAN_2GHZ(chan),
556                                         AR5416_EEP4K_NUM_BAND_EDGES);
557
558                                 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
559                                         twiceMaxEdgePower =
560                                                 min(twiceMaxEdgePower,
561                                                     twiceMinEdgePower);
562                                 } else {
563                                         twiceMaxEdgePower = twiceMinEdgePower;
564                                         break;
565                                 }
566                         }
567                 }
568
569                 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
570
571                 switch (pCtlMode[ctlMode]) {
572                 case CTL_11B:
573                         for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
574                                 targetPowerCck.tPow2x[i] =
575                                         min((u16)targetPowerCck.tPow2x[i],
576                                             minCtlPower);
577                         }
578                         break;
579                 case CTL_11G:
580                         for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
581                                 targetPowerOfdm.tPow2x[i] =
582                                         min((u16)targetPowerOfdm.tPow2x[i],
583                                             minCtlPower);
584                         }
585                         break;
586                 case CTL_2GHT20:
587                         for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
588                                 targetPowerHt20.tPow2x[i] =
589                                         min((u16)targetPowerHt20.tPow2x[i],
590                                             minCtlPower);
591                         }
592                         break;
593                 case CTL_11B_EXT:
594                         targetPowerCckExt.tPow2x[0] =
595                                 min((u16)targetPowerCckExt.tPow2x[0],
596                                     minCtlPower);
597                         break;
598                 case CTL_11G_EXT:
599                         targetPowerOfdmExt.tPow2x[0] =
600                                 min((u16)targetPowerOfdmExt.tPow2x[0],
601                                     minCtlPower);
602                         break;
603                 case CTL_2GHT40:
604                         for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
605                                 targetPowerHt40.tPow2x[i] =
606                                         min((u16)targetPowerHt40.tPow2x[i],
607                                             minCtlPower);
608                         }
609                         break;
610                 default:
611                         break;
612                 }
613         }
614
615         ratesArray[rate6mb] =
616         ratesArray[rate9mb] =
617         ratesArray[rate12mb] =
618         ratesArray[rate18mb] =
619         ratesArray[rate24mb] =
620         targetPowerOfdm.tPow2x[0];
621
622         ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
623         ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
624         ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
625         ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
626
627         for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
628                 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
629
630         ratesArray[rate1l] = targetPowerCck.tPow2x[0];
631         ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
632         ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
633         ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
634
635         if (IS_CHAN_HT40(chan)) {
636                 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
637                         ratesArray[rateHt40_0 + i] =
638                                 targetPowerHt40.tPow2x[i];
639                 }
640                 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
641                 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
642                 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
643                 ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
644         }
645
646 #undef CMP_TEST_GRP
647 }
648
649 static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
650                                     struct ath9k_channel *chan,
651                                     u16 cfgCtl,
652                                     u8 twiceAntennaReduction,
653                                     u8 powerLimit, bool test)
654 {
655         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
656         struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
657         struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
658         int16_t ratesArray[Ar5416RateSize];
659         u8 ht40PowerIncForPdadc = 2;
660         int i;
661
662         memset(ratesArray, 0, sizeof(ratesArray));
663
664         if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
665             AR5416_EEP_MINOR_VER_2) {
666                 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
667         }
668
669         ath9k_hw_set_4k_power_per_rate_table(ah, chan,
670                                              &ratesArray[0], cfgCtl,
671                                              twiceAntennaReduction,
672                                              powerLimit);
673
674         ath9k_hw_set_4k_power_cal_table(ah, chan);
675
676         regulatory->max_power_level = 0;
677         for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
678                 if (ratesArray[i] > MAX_RATE_POWER)
679                         ratesArray[i] = MAX_RATE_POWER;
680
681                 if (ratesArray[i] > regulatory->max_power_level)
682                         regulatory->max_power_level = ratesArray[i];
683         }
684
685         if (test)
686             return;
687
688         for (i = 0; i < Ar5416RateSize; i++)
689                 ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
690
691         ENABLE_REGWRITE_BUFFER(ah);
692
693         /* OFDM power per rate */
694         REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
695                   ATH9K_POW_SM(ratesArray[rate18mb], 24)
696                   | ATH9K_POW_SM(ratesArray[rate12mb], 16)
697                   | ATH9K_POW_SM(ratesArray[rate9mb], 8)
698                   | ATH9K_POW_SM(ratesArray[rate6mb], 0));
699         REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
700                   ATH9K_POW_SM(ratesArray[rate54mb], 24)
701                   | ATH9K_POW_SM(ratesArray[rate48mb], 16)
702                   | ATH9K_POW_SM(ratesArray[rate36mb], 8)
703                   | ATH9K_POW_SM(ratesArray[rate24mb], 0));
704
705         /* CCK power per rate */
706         REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
707                   ATH9K_POW_SM(ratesArray[rate2s], 24)
708                   | ATH9K_POW_SM(ratesArray[rate2l], 16)
709                   | ATH9K_POW_SM(ratesArray[rateXr], 8)
710                   | ATH9K_POW_SM(ratesArray[rate1l], 0));
711         REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
712                   ATH9K_POW_SM(ratesArray[rate11s], 24)
713                   | ATH9K_POW_SM(ratesArray[rate11l], 16)
714                   | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
715                   | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
716
717         /* HT20 power per rate */
718         REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
719                   ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
720                   | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
721                   | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
722                   | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
723         REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
724                   ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
725                   | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
726                   | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
727                   | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
728
729         /* HT40 power per rate */
730         if (IS_CHAN_HT40(chan)) {
731                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
732                           ATH9K_POW_SM(ratesArray[rateHt40_3] +
733                                        ht40PowerIncForPdadc, 24)
734                           | ATH9K_POW_SM(ratesArray[rateHt40_2] +
735                                          ht40PowerIncForPdadc, 16)
736                           | ATH9K_POW_SM(ratesArray[rateHt40_1] +
737                                          ht40PowerIncForPdadc, 8)
738                           | ATH9K_POW_SM(ratesArray[rateHt40_0] +
739                                          ht40PowerIncForPdadc, 0));
740                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
741                           ATH9K_POW_SM(ratesArray[rateHt40_7] +
742                                        ht40PowerIncForPdadc, 24)
743                           | ATH9K_POW_SM(ratesArray[rateHt40_6] +
744                                          ht40PowerIncForPdadc, 16)
745                           | ATH9K_POW_SM(ratesArray[rateHt40_5] +
746                                          ht40PowerIncForPdadc, 8)
747                           | ATH9K_POW_SM(ratesArray[rateHt40_4] +
748                                          ht40PowerIncForPdadc, 0));
749                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
750                           ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
751                           | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
752                           | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
753                           | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
754         }
755
756         REGWRITE_BUFFER_FLUSH(ah);
757 }
758
759 static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
760                                  struct modal_eep_4k_header *pModal,
761                                  struct ar5416_eeprom_4k *eep,
762                                  u8 txRxAttenLocal)
763 {
764         REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
765                   pModal->antCtrlChain[0]);
766
767         REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0),
768                   (REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) &
769                    ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
770                      AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
771                   SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
772                   SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
773
774         if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
775             AR5416_EEP_MINOR_VER_3) {
776                 txRxAttenLocal = pModal->txRxAttenCh[0];
777
778                 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
779                               AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
780                 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
781                               AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
782                 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
783                               AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
784                               pModal->xatten2Margin[0]);
785                 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
786                               AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
787
788                 /* Set the block 1 value to block 0 value */
789                 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
790                               AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
791                               pModal->bswMargin[0]);
792                 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
793                               AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
794                 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
795                               AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
796                               pModal->xatten2Margin[0]);
797                 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
798                               AR_PHY_GAIN_2GHZ_XATTEN2_DB,
799                               pModal->xatten2Db[0]);
800         }
801
802         REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
803                       AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
804         REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
805                       AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
806
807         REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
808                       AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
809         REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
810                       AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
811 }
812
813 /*
814  * Read EEPROM header info and program the device for correct operation
815  * given the channel value.
816  */
817 static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
818                                          struct ath9k_channel *chan)
819 {
820         struct modal_eep_4k_header *pModal;
821         struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
822         struct base_eep_header_4k *pBase = &eep->baseEepHeader;
823         u8 txRxAttenLocal;
824         u8 ob[5], db1[5], db2[5];
825         u8 ant_div_control1, ant_div_control2;
826         u8 bb_desired_scale;
827         u32 regVal;
828
829         pModal = &eep->modalHeader;
830         txRxAttenLocal = 23;
831
832         REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
833
834         /* Single chain for 4K EEPROM*/
835         ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
836
837         /* Initialize Ant Diversity settings from EEPROM */
838         if (pModal->version >= 3) {
839                 ant_div_control1 = pModal->antdiv_ctl1;
840                 ant_div_control2 = pModal->antdiv_ctl2;
841
842                 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
843                 regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
844
845                 regVal |= SM(ant_div_control1,
846                              AR_PHY_9285_ANT_DIV_CTL);
847                 regVal |= SM(ant_div_control2,
848                              AR_PHY_9285_ANT_DIV_ALT_LNACONF);
849                 regVal |= SM((ant_div_control2 >> 2),
850                              AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
851                 regVal |= SM((ant_div_control1 >> 1),
852                              AR_PHY_9285_ANT_DIV_ALT_GAINTB);
853                 regVal |= SM((ant_div_control1 >> 2),
854                              AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
855
856
857                 REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
858                 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
859                 regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
860                 regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
861                 regVal |= SM((ant_div_control1 >> 3),
862                              AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
863
864                 REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
865                 regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
866         }
867
868         if (pModal->version >= 2) {
869                 ob[0] = pModal->ob_0;
870                 ob[1] = pModal->ob_1;
871                 ob[2] = pModal->ob_2;
872                 ob[3] = pModal->ob_3;
873                 ob[4] = pModal->ob_4;
874
875                 db1[0] = pModal->db1_0;
876                 db1[1] = pModal->db1_1;
877                 db1[2] = pModal->db1_2;
878                 db1[3] = pModal->db1_3;
879                 db1[4] = pModal->db1_4;
880
881                 db2[0] = pModal->db2_0;
882                 db2[1] = pModal->db2_1;
883                 db2[2] = pModal->db2_2;
884                 db2[3] = pModal->db2_3;
885                 db2[4] = pModal->db2_4;
886         } else if (pModal->version == 1) {
887                 ob[0] = pModal->ob_0;
888                 ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
889                 db1[0] = pModal->db1_0;
890                 db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
891                 db2[0] = pModal->db2_0;
892                 db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
893         } else {
894                 int i;
895
896                 for (i = 0; i < 5; i++) {
897                         ob[i] = pModal->ob_0;
898                         db1[i] = pModal->db1_0;
899                         db2[i] = pModal->db1_0;
900                 }
901         }
902
903         if (AR_SREV_9271(ah)) {
904                 ath9k_hw_analog_shift_rmw(ah,
905                                           AR9285_AN_RF2G3,
906                                           AR9271_AN_RF2G3_OB_cck,
907                                           AR9271_AN_RF2G3_OB_cck_S,
908                                           ob[0]);
909                 ath9k_hw_analog_shift_rmw(ah,
910                                           AR9285_AN_RF2G3,
911                                           AR9271_AN_RF2G3_OB_psk,
912                                           AR9271_AN_RF2G3_OB_psk_S,
913                                           ob[1]);
914                 ath9k_hw_analog_shift_rmw(ah,
915                                           AR9285_AN_RF2G3,
916                                           AR9271_AN_RF2G3_OB_qam,
917                                           AR9271_AN_RF2G3_OB_qam_S,
918                                           ob[2]);
919                 ath9k_hw_analog_shift_rmw(ah,
920                                           AR9285_AN_RF2G3,
921                                           AR9271_AN_RF2G3_DB_1,
922                                           AR9271_AN_RF2G3_DB_1_S,
923                                           db1[0]);
924                 ath9k_hw_analog_shift_rmw(ah,
925                                           AR9285_AN_RF2G4,
926                                           AR9271_AN_RF2G4_DB_2,
927                                           AR9271_AN_RF2G4_DB_2_S,
928                                           db2[0]);
929         } else {
930                 ath9k_hw_analog_shift_rmw(ah,
931                                           AR9285_AN_RF2G3,
932                                           AR9285_AN_RF2G3_OB_0,
933                                           AR9285_AN_RF2G3_OB_0_S,
934                                           ob[0]);
935                 ath9k_hw_analog_shift_rmw(ah,
936                                           AR9285_AN_RF2G3,
937                                           AR9285_AN_RF2G3_OB_1,
938                                           AR9285_AN_RF2G3_OB_1_S,
939                                           ob[1]);
940                 ath9k_hw_analog_shift_rmw(ah,
941                                           AR9285_AN_RF2G3,
942                                           AR9285_AN_RF2G3_OB_2,
943                                           AR9285_AN_RF2G3_OB_2_S,
944                                           ob[2]);
945                 ath9k_hw_analog_shift_rmw(ah,
946                                           AR9285_AN_RF2G3,
947                                           AR9285_AN_RF2G3_OB_3,
948                                           AR9285_AN_RF2G3_OB_3_S,
949                                           ob[3]);
950                 ath9k_hw_analog_shift_rmw(ah,
951                                           AR9285_AN_RF2G3,
952                                           AR9285_AN_RF2G3_OB_4,
953                                           AR9285_AN_RF2G3_OB_4_S,
954                                           ob[4]);
955
956                 ath9k_hw_analog_shift_rmw(ah,
957                                           AR9285_AN_RF2G3,
958                                           AR9285_AN_RF2G3_DB1_0,
959                                           AR9285_AN_RF2G3_DB1_0_S,
960                                           db1[0]);
961                 ath9k_hw_analog_shift_rmw(ah,
962                                           AR9285_AN_RF2G3,
963                                           AR9285_AN_RF2G3_DB1_1,
964                                           AR9285_AN_RF2G3_DB1_1_S,
965                                           db1[1]);
966                 ath9k_hw_analog_shift_rmw(ah,
967                                           AR9285_AN_RF2G3,
968                                           AR9285_AN_RF2G3_DB1_2,
969                                           AR9285_AN_RF2G3_DB1_2_S,
970                                           db1[2]);
971                 ath9k_hw_analog_shift_rmw(ah,
972                                           AR9285_AN_RF2G4,
973                                           AR9285_AN_RF2G4_DB1_3,
974                                           AR9285_AN_RF2G4_DB1_3_S,
975                                           db1[3]);
976                 ath9k_hw_analog_shift_rmw(ah,
977                                           AR9285_AN_RF2G4,
978                                           AR9285_AN_RF2G4_DB1_4,
979                                           AR9285_AN_RF2G4_DB1_4_S, db1[4]);
980
981                 ath9k_hw_analog_shift_rmw(ah,
982                                           AR9285_AN_RF2G4,
983                                           AR9285_AN_RF2G4_DB2_0,
984                                           AR9285_AN_RF2G4_DB2_0_S,
985                                           db2[0]);
986                 ath9k_hw_analog_shift_rmw(ah,
987                                           AR9285_AN_RF2G4,
988                                           AR9285_AN_RF2G4_DB2_1,
989                                           AR9285_AN_RF2G4_DB2_1_S,
990                                           db2[1]);
991                 ath9k_hw_analog_shift_rmw(ah,
992                                           AR9285_AN_RF2G4,
993                                           AR9285_AN_RF2G4_DB2_2,
994                                           AR9285_AN_RF2G4_DB2_2_S,
995                                           db2[2]);
996                 ath9k_hw_analog_shift_rmw(ah,
997                                           AR9285_AN_RF2G4,
998                                           AR9285_AN_RF2G4_DB2_3,
999                                           AR9285_AN_RF2G4_DB2_3_S,
1000                                           db2[3]);
1001                 ath9k_hw_analog_shift_rmw(ah,
1002                                           AR9285_AN_RF2G4,
1003                                           AR9285_AN_RF2G4_DB2_4,
1004                                           AR9285_AN_RF2G4_DB2_4_S,
1005                                           db2[4]);
1006         }
1007
1008
1009         REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
1010                       pModal->switchSettling);
1011         REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
1012                       pModal->adcDesiredSize);
1013
1014         REG_WRITE(ah, AR_PHY_RF_CTL4,
1015                   SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
1016                   SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
1017                   SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)  |
1018                   SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1019
1020         REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1021                       pModal->txEndToRxOn);
1022
1023         if (AR_SREV_9271_10(ah))
1024                 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1025                               pModal->txEndToRxOn);
1026         REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1027                       pModal->thresh62);
1028         REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1029                       pModal->thresh62);
1030
1031         if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1032                                                 AR5416_EEP_MINOR_VER_2) {
1033                 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
1034                               pModal->txFrameToDataStart);
1035                 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
1036                               pModal->txFrameToPaOn);
1037         }
1038
1039         if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1040                                                 AR5416_EEP_MINOR_VER_3) {
1041                 if (IS_CHAN_HT40(chan))
1042                         REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1043                                       AR_PHY_SETTLING_SWITCH,
1044                                       pModal->swSettleHt40);
1045         }
1046
1047         bb_desired_scale = (pModal->bb_scale_smrt_antenna &
1048                         EEP_4K_BB_DESIRED_SCALE_MASK);
1049         if ((pBase->txGainType == 0) && (bb_desired_scale != 0)) {
1050                 u32 pwrctrl, mask, clr;
1051
1052                 mask = BIT(0)|BIT(5)|BIT(10)|BIT(15)|BIT(20)|BIT(25);
1053                 pwrctrl = mask * bb_desired_scale;
1054                 clr = mask * 0x1f;
1055                 REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr);
1056                 REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr);
1057                 REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr);
1058
1059                 mask = BIT(0)|BIT(5)|BIT(15);
1060                 pwrctrl = mask * bb_desired_scale;
1061                 clr = mask * 0x1f;
1062                 REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr);
1063
1064                 mask = BIT(0)|BIT(5);
1065                 pwrctrl = mask * bb_desired_scale;
1066                 clr = mask * 0x1f;
1067                 REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr);
1068                 REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr);
1069         }
1070 }
1071
1072 static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1073 {
1074 #define EEP_MAP4K_SPURCHAN \
1075         (ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
1076         struct ath_common *common = ath9k_hw_common(ah);
1077
1078         u16 spur_val = AR_NO_SPUR;
1079
1080         ath_dbg(common, ANI, "Getting spur idx:%d is2Ghz:%d val:%x\n",
1081                 i, is2GHz, ah->config.spurchans[i][is2GHz]);
1082
1083         switch (ah->config.spurmode) {
1084         case SPUR_DISABLE:
1085                 break;
1086         case SPUR_ENABLE_IOCTL:
1087                 spur_val = ah->config.spurchans[i][is2GHz];
1088                 ath_dbg(common, ANI, "Getting spur val from new loc. %d\n",
1089                         spur_val);
1090                 break;
1091         case SPUR_ENABLE_EEPROM:
1092                 spur_val = EEP_MAP4K_SPURCHAN;
1093                 break;
1094         }
1095
1096         return spur_val;
1097
1098 #undef EEP_MAP4K_SPURCHAN
1099 }
1100
1101 const struct eeprom_ops eep_4k_ops = {
1102         .check_eeprom           = ath9k_hw_4k_check_eeprom,
1103         .get_eeprom             = ath9k_hw_4k_get_eeprom,
1104         .fill_eeprom            = ath9k_hw_4k_fill_eeprom,
1105         .dump_eeprom            = ath9k_hw_4k_dump_eeprom,
1106         .get_eeprom_ver         = ath9k_hw_4k_get_eeprom_ver,
1107         .get_eeprom_rev         = ath9k_hw_4k_get_eeprom_rev,
1108         .set_board_values       = ath9k_hw_4k_set_board_values,
1109         .set_txpower            = ath9k_hw_4k_set_txpower,
1110         .get_spur_channel       = ath9k_hw_4k_get_spur_channel
1111 };