Linux 4.8
[cascardo/linux.git] / drivers / net / wireless / intel / iwlwifi / pcie / rx.c
1 /******************************************************************************
2  *
3  * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
4  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
5  * Copyright(c) 2016 Intel Deutschland GmbH
6  *
7  * Portions of this file are derived from the ipw3945 project, as well
8  * as portions of the ieee80211 subsystem header files.
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but WITHOUT
15  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17  * more details.
18  *
19  * You should have received a copy of the GNU General Public License along with
20  * this program; if not, write to the Free Software Foundation, Inc.,
21  * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
22  *
23  * The full GNU General Public License is included in this distribution in the
24  * file called LICENSE.
25  *
26  * Contact Information:
27  *  Intel Linux Wireless <linuxwifi@intel.com>
28  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
29  *
30  *****************************************************************************/
31 #include <linux/sched.h>
32 #include <linux/wait.h>
33 #include <linux/gfp.h>
34
35 #include "iwl-prph.h"
36 #include "iwl-io.h"
37 #include "internal.h"
38 #include "iwl-op-mode.h"
39
40 /******************************************************************************
41  *
42  * RX path functions
43  *
44  ******************************************************************************/
45
46 /*
47  * Rx theory of operation
48  *
49  * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
50  * each of which point to Receive Buffers to be filled by the NIC.  These get
51  * used not only for Rx frames, but for any command response or notification
52  * from the NIC.  The driver and NIC manage the Rx buffers by means
53  * of indexes into the circular buffer.
54  *
55  * Rx Queue Indexes
56  * The host/firmware share two index registers for managing the Rx buffers.
57  *
58  * The READ index maps to the first position that the firmware may be writing
59  * to -- the driver can read up to (but not including) this position and get
60  * good data.
61  * The READ index is managed by the firmware once the card is enabled.
62  *
63  * The WRITE index maps to the last position the driver has read from -- the
64  * position preceding WRITE is the last slot the firmware can place a packet.
65  *
66  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
67  * WRITE = READ.
68  *
69  * During initialization, the host sets up the READ queue position to the first
70  * INDEX position, and WRITE to the last (READ - 1 wrapped)
71  *
72  * When the firmware places a packet in a buffer, it will advance the READ index
73  * and fire the RX interrupt.  The driver can then query the READ index and
74  * process as many packets as possible, moving the WRITE index forward as it
75  * resets the Rx queue buffers with new memory.
76  *
77  * The management in the driver is as follows:
78  * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
79  *   When the interrupt handler is called, the request is processed.
80  *   The page is either stolen - transferred to the upper layer
81  *   or reused - added immediately to the iwl->rxq->rx_free list.
82  * + When the page is stolen - the driver updates the matching queue's used
83  *   count, detaches the RBD and transfers it to the queue used list.
84  *   When there are two used RBDs - they are transferred to the allocator empty
85  *   list. Work is then scheduled for the allocator to start allocating
86  *   eight buffers.
87  *   When there are another 6 used RBDs - they are transferred to the allocator
88  *   empty list and the driver tries to claim the pre-allocated buffers and
89  *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
90  *   until ready.
91  *   When there are 8+ buffers in the free list - either from allocation or from
92  *   8 reused unstolen pages - restock is called to update the FW and indexes.
93  * + In order to make sure the allocator always has RBDs to use for allocation
94  *   the allocator has initial pool in the size of num_queues*(8-2) - the
95  *   maximum missing RBDs per allocation request (request posted with 2
96  *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
97  *   The queues supplies the recycle of the rest of the RBDs.
98  * + A received packet is processed and handed to the kernel network stack,
99  *   detached from the iwl->rxq.  The driver 'processed' index is updated.
100  * + If there are no allocated buffers in iwl->rxq->rx_free,
101  *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
102  *   If there were enough free buffers and RX_STALLED is set it is cleared.
103  *
104  *
105  * Driver sequence:
106  *
107  * iwl_rxq_alloc()            Allocates rx_free
108  * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
109  *                            iwl_pcie_rxq_restock.
110  *                            Used only during initialization.
111  * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
112  *                            queue, updates firmware pointers, and updates
113  *                            the WRITE index.
114  * iwl_pcie_rx_allocator()     Background work for allocating pages.
115  *
116  * -- enable interrupts --
117  * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
118  *                            READ INDEX, detaching the SKB from the pool.
119  *                            Moves the packet buffer from queue to rx_used.
120  *                            Posts and claims requests to the allocator.
121  *                            Calls iwl_pcie_rxq_restock to refill any empty
122  *                            slots.
123  *
124  * RBD life-cycle:
125  *
126  * Init:
127  * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
128  *
129  * Regular Receive interrupt:
130  * Page Stolen:
131  * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
132  * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
133  * Page not Stolen:
134  * rxq.queue -> rxq.rx_free -> rxq.queue
135  * ...
136  *
137  */
138
139 /*
140  * iwl_rxq_space - Return number of free slots available in queue.
141  */
142 static int iwl_rxq_space(const struct iwl_rxq *rxq)
143 {
144         /* Make sure rx queue size is a power of 2 */
145         WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
146
147         /*
148          * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
149          * between empty and completely full queues.
150          * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
151          * defined for negative dividends.
152          */
153         return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
154 }
155
156 /*
157  * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
158  */
159 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
160 {
161         return cpu_to_le32((u32)(dma_addr >> 8));
162 }
163
164 /*
165  * iwl_pcie_rx_stop - stops the Rx DMA
166  */
167 int iwl_pcie_rx_stop(struct iwl_trans *trans)
168 {
169         if (trans->cfg->mq_rx_supported) {
170                 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
171                 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
172                                            RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
173         } else {
174                 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
175                 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
176                                            FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
177                                            1000);
178         }
179 }
180
181 /*
182  * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
183  */
184 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
185                                     struct iwl_rxq *rxq)
186 {
187         u32 reg;
188
189         lockdep_assert_held(&rxq->lock);
190
191         /*
192          * explicitly wake up the NIC if:
193          * 1. shadow registers aren't enabled
194          * 2. there is a chance that the NIC is asleep
195          */
196         if (!trans->cfg->base_params->shadow_reg_enable &&
197             test_bit(STATUS_TPOWER_PMI, &trans->status)) {
198                 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
199
200                 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
201                         IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
202                                        reg);
203                         iwl_set_bit(trans, CSR_GP_CNTRL,
204                                     CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
205                         rxq->need_update = true;
206                         return;
207                 }
208         }
209
210         rxq->write_actual = round_down(rxq->write, 8);
211         if (trans->cfg->mq_rx_supported)
212                 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
213                             rxq->write_actual);
214         else
215                 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
216 }
217
218 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
219 {
220         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
221         int i;
222
223         for (i = 0; i < trans->num_rx_queues; i++) {
224                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
225
226                 if (!rxq->need_update)
227                         continue;
228                 spin_lock(&rxq->lock);
229                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
230                 rxq->need_update = false;
231                 spin_unlock(&rxq->lock);
232         }
233 }
234
235 /*
236  * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
237  */
238 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
239                                   struct iwl_rxq *rxq)
240 {
241         struct iwl_rx_mem_buffer *rxb;
242
243         /*
244          * If the device isn't enabled - no need to try to add buffers...
245          * This can happen when we stop the device and still have an interrupt
246          * pending. We stop the APM before we sync the interrupts because we
247          * have to (see comment there). On the other hand, since the APM is
248          * stopped, we cannot access the HW (in particular not prph).
249          * So don't try to restock if the APM has been already stopped.
250          */
251         if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
252                 return;
253
254         spin_lock(&rxq->lock);
255         while (rxq->free_count) {
256                 __le64 *bd = (__le64 *)rxq->bd;
257
258                 /* Get next free Rx buffer, remove from free list */
259                 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
260                                        list);
261                 list_del(&rxb->list);
262                 rxb->invalid = false;
263                 /* 12 first bits are expected to be empty */
264                 WARN_ON(rxb->page_dma & DMA_BIT_MASK(12));
265                 /* Point to Rx buffer via next RBD in circular buffer */
266                 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
267                 rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK;
268                 rxq->free_count--;
269         }
270         spin_unlock(&rxq->lock);
271
272         /*
273          * If we've added more space for the firmware to place data, tell it.
274          * Increment device's write pointer in multiples of 8.
275          */
276         if (rxq->write_actual != (rxq->write & ~0x7)) {
277                 spin_lock(&rxq->lock);
278                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
279                 spin_unlock(&rxq->lock);
280         }
281 }
282
283 /*
284  * iwl_pcie_rxsq_restock - restock implementation for single queue rx
285  */
286 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
287                                   struct iwl_rxq *rxq)
288 {
289         struct iwl_rx_mem_buffer *rxb;
290
291         /*
292          * If the device isn't enabled - not need to try to add buffers...
293          * This can happen when we stop the device and still have an interrupt
294          * pending. We stop the APM before we sync the interrupts because we
295          * have to (see comment there). On the other hand, since the APM is
296          * stopped, we cannot access the HW (in particular not prph).
297          * So don't try to restock if the APM has been already stopped.
298          */
299         if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
300                 return;
301
302         spin_lock(&rxq->lock);
303         while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
304                 __le32 *bd = (__le32 *)rxq->bd;
305                 /* The overwritten rxb must be a used one */
306                 rxb = rxq->queue[rxq->write];
307                 BUG_ON(rxb && rxb->page);
308
309                 /* Get next free Rx buffer, remove from free list */
310                 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
311                                        list);
312                 list_del(&rxb->list);
313                 rxb->invalid = false;
314
315                 /* Point to Rx buffer via next RBD in circular buffer */
316                 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
317                 rxq->queue[rxq->write] = rxb;
318                 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
319                 rxq->free_count--;
320         }
321         spin_unlock(&rxq->lock);
322
323         /* If we've added more space for the firmware to place data, tell it.
324          * Increment device's write pointer in multiples of 8. */
325         if (rxq->write_actual != (rxq->write & ~0x7)) {
326                 spin_lock(&rxq->lock);
327                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
328                 spin_unlock(&rxq->lock);
329         }
330 }
331
332 /*
333  * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
334  *
335  * If there are slots in the RX queue that need to be restocked,
336  * and we have free pre-allocated buffers, fill the ranks as much
337  * as we can, pulling from rx_free.
338  *
339  * This moves the 'write' index forward to catch up with 'processed', and
340  * also updates the memory address in the firmware to reference the new
341  * target buffer.
342  */
343 static
344 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
345 {
346         if (trans->cfg->mq_rx_supported)
347                 iwl_pcie_rxmq_restock(trans, rxq);
348         else
349                 iwl_pcie_rxsq_restock(trans, rxq);
350 }
351
352 /*
353  * iwl_pcie_rx_alloc_page - allocates and returns a page.
354  *
355  */
356 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
357                                            gfp_t priority)
358 {
359         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
360         struct page *page;
361         gfp_t gfp_mask = priority;
362
363         if (trans_pcie->rx_page_order > 0)
364                 gfp_mask |= __GFP_COMP;
365
366         /* Alloc a new receive buffer */
367         page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
368         if (!page) {
369                 if (net_ratelimit())
370                         IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
371                                        trans_pcie->rx_page_order);
372                 /*
373                  * Issue an error if we don't have enough pre-allocated
374                   * buffers.
375 `                */
376                 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
377                         IWL_CRIT(trans,
378                                  "Failed to alloc_pages\n");
379                 return NULL;
380         }
381         return page;
382 }
383
384 /*
385  * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
386  *
387  * A used RBD is an Rx buffer that has been given to the stack. To use it again
388  * a page must be allocated and the RBD must point to the page. This function
389  * doesn't change the HW pointer but handles the list of pages that is used by
390  * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
391  * allocated buffers.
392  */
393 static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
394                                    struct iwl_rxq *rxq)
395 {
396         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
397         struct iwl_rx_mem_buffer *rxb;
398         struct page *page;
399
400         while (1) {
401                 spin_lock(&rxq->lock);
402                 if (list_empty(&rxq->rx_used)) {
403                         spin_unlock(&rxq->lock);
404                         return;
405                 }
406                 spin_unlock(&rxq->lock);
407
408                 /* Alloc a new receive buffer */
409                 page = iwl_pcie_rx_alloc_page(trans, priority);
410                 if (!page)
411                         return;
412
413                 spin_lock(&rxq->lock);
414
415                 if (list_empty(&rxq->rx_used)) {
416                         spin_unlock(&rxq->lock);
417                         __free_pages(page, trans_pcie->rx_page_order);
418                         return;
419                 }
420                 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
421                                        list);
422                 list_del(&rxb->list);
423                 spin_unlock(&rxq->lock);
424
425                 BUG_ON(rxb->page);
426                 rxb->page = page;
427                 /* Get physical address of the RB */
428                 rxb->page_dma =
429                         dma_map_page(trans->dev, page, 0,
430                                      PAGE_SIZE << trans_pcie->rx_page_order,
431                                      DMA_FROM_DEVICE);
432                 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
433                         rxb->page = NULL;
434                         spin_lock(&rxq->lock);
435                         list_add(&rxb->list, &rxq->rx_used);
436                         spin_unlock(&rxq->lock);
437                         __free_pages(page, trans_pcie->rx_page_order);
438                         return;
439                 }
440
441                 spin_lock(&rxq->lock);
442
443                 list_add_tail(&rxb->list, &rxq->rx_free);
444                 rxq->free_count++;
445
446                 spin_unlock(&rxq->lock);
447         }
448 }
449
450 static void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
451 {
452         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
453         int i;
454
455         for (i = 0; i < RX_POOL_SIZE; i++) {
456                 if (!trans_pcie->rx_pool[i].page)
457                         continue;
458                 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
459                                PAGE_SIZE << trans_pcie->rx_page_order,
460                                DMA_FROM_DEVICE);
461                 __free_pages(trans_pcie->rx_pool[i].page,
462                              trans_pcie->rx_page_order);
463                 trans_pcie->rx_pool[i].page = NULL;
464         }
465 }
466
467 /*
468  * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
469  *
470  * Allocates for each received request 8 pages
471  * Called as a scheduled work item.
472  */
473 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
474 {
475         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
476         struct iwl_rb_allocator *rba = &trans_pcie->rba;
477         struct list_head local_empty;
478         int pending = atomic_xchg(&rba->req_pending, 0);
479
480         IWL_DEBUG_RX(trans, "Pending allocation requests = %d\n", pending);
481
482         /* If we were scheduled - there is at least one request */
483         spin_lock(&rba->lock);
484         /* swap out the rba->rbd_empty to a local list */
485         list_replace_init(&rba->rbd_empty, &local_empty);
486         spin_unlock(&rba->lock);
487
488         while (pending) {
489                 int i;
490                 struct list_head local_allocated;
491                 gfp_t gfp_mask = GFP_KERNEL;
492
493                 /* Do not post a warning if there are only a few requests */
494                 if (pending < RX_PENDING_WATERMARK)
495                         gfp_mask |= __GFP_NOWARN;
496
497                 INIT_LIST_HEAD(&local_allocated);
498
499                 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
500                         struct iwl_rx_mem_buffer *rxb;
501                         struct page *page;
502
503                         /* List should never be empty - each reused RBD is
504                          * returned to the list, and initial pool covers any
505                          * possible gap between the time the page is allocated
506                          * to the time the RBD is added.
507                          */
508                         BUG_ON(list_empty(&local_empty));
509                         /* Get the first rxb from the rbd list */
510                         rxb = list_first_entry(&local_empty,
511                                                struct iwl_rx_mem_buffer, list);
512                         BUG_ON(rxb->page);
513
514                         /* Alloc a new receive buffer */
515                         page = iwl_pcie_rx_alloc_page(trans, gfp_mask);
516                         if (!page)
517                                 continue;
518                         rxb->page = page;
519
520                         /* Get physical address of the RB */
521                         rxb->page_dma = dma_map_page(trans->dev, page, 0,
522                                         PAGE_SIZE << trans_pcie->rx_page_order,
523                                         DMA_FROM_DEVICE);
524                         if (dma_mapping_error(trans->dev, rxb->page_dma)) {
525                                 rxb->page = NULL;
526                                 __free_pages(page, trans_pcie->rx_page_order);
527                                 continue;
528                         }
529
530                         /* move the allocated entry to the out list */
531                         list_move(&rxb->list, &local_allocated);
532                         i++;
533                 }
534
535                 pending--;
536                 if (!pending) {
537                         pending = atomic_xchg(&rba->req_pending, 0);
538                         IWL_DEBUG_RX(trans,
539                                      "Pending allocation requests = %d\n",
540                                      pending);
541                 }
542
543                 spin_lock(&rba->lock);
544                 /* add the allocated rbds to the allocator allocated list */
545                 list_splice_tail(&local_allocated, &rba->rbd_allocated);
546                 /* get more empty RBDs for current pending requests */
547                 list_splice_tail_init(&rba->rbd_empty, &local_empty);
548                 spin_unlock(&rba->lock);
549
550                 atomic_inc(&rba->req_ready);
551         }
552
553         spin_lock(&rba->lock);
554         /* return unused rbds to the allocator empty list */
555         list_splice_tail(&local_empty, &rba->rbd_empty);
556         spin_unlock(&rba->lock);
557 }
558
559 /*
560  * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
561 .*
562 .* Called by queue when the queue posted allocation request and
563  * has freed 8 RBDs in order to restock itself.
564  * This function directly moves the allocated RBs to the queue's ownership
565  * and updates the relevant counters.
566  */
567 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
568                                       struct iwl_rxq *rxq)
569 {
570         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
571         struct iwl_rb_allocator *rba = &trans_pcie->rba;
572         int i;
573
574         lockdep_assert_held(&rxq->lock);
575
576         /*
577          * atomic_dec_if_positive returns req_ready - 1 for any scenario.
578          * If req_ready is 0 atomic_dec_if_positive will return -1 and this
579          * function will return early, as there are no ready requests.
580          * atomic_dec_if_positive will perofrm the *actual* decrement only if
581          * req_ready > 0, i.e. - there are ready requests and the function
582          * hands one request to the caller.
583          */
584         if (atomic_dec_if_positive(&rba->req_ready) < 0)
585                 return;
586
587         spin_lock(&rba->lock);
588         for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
589                 /* Get next free Rx buffer, remove it from free list */
590                 struct iwl_rx_mem_buffer *rxb =
591                         list_first_entry(&rba->rbd_allocated,
592                                          struct iwl_rx_mem_buffer, list);
593
594                 list_move(&rxb->list, &rxq->rx_free);
595         }
596         spin_unlock(&rba->lock);
597
598         rxq->used_count -= RX_CLAIM_REQ_ALLOC;
599         rxq->free_count += RX_CLAIM_REQ_ALLOC;
600 }
601
602 static void iwl_pcie_rx_allocator_work(struct work_struct *data)
603 {
604         struct iwl_rb_allocator *rba_p =
605                 container_of(data, struct iwl_rb_allocator, rx_alloc);
606         struct iwl_trans_pcie *trans_pcie =
607                 container_of(rba_p, struct iwl_trans_pcie, rba);
608
609         iwl_pcie_rx_allocator(trans_pcie->trans);
610 }
611
612 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
613 {
614         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
615         struct iwl_rb_allocator *rba = &trans_pcie->rba;
616         struct device *dev = trans->dev;
617         int i;
618         int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
619                                                       sizeof(__le32);
620
621         if (WARN_ON(trans_pcie->rxq))
622                 return -EINVAL;
623
624         trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
625                                   GFP_KERNEL);
626         if (!trans_pcie->rxq)
627                 return -EINVAL;
628
629         spin_lock_init(&rba->lock);
630
631         for (i = 0; i < trans->num_rx_queues; i++) {
632                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
633
634                 spin_lock_init(&rxq->lock);
635                 if (trans->cfg->mq_rx_supported)
636                         rxq->queue_size = MQ_RX_TABLE_SIZE;
637                 else
638                         rxq->queue_size = RX_QUEUE_SIZE;
639
640                 /*
641                  * Allocate the circular buffer of Read Buffer Descriptors
642                  * (RBDs)
643                  */
644                 rxq->bd = dma_zalloc_coherent(dev,
645                                              free_size * rxq->queue_size,
646                                              &rxq->bd_dma, GFP_KERNEL);
647                 if (!rxq->bd)
648                         goto err;
649
650                 if (trans->cfg->mq_rx_supported) {
651                         rxq->used_bd = dma_zalloc_coherent(dev,
652                                                            sizeof(__le32) *
653                                                            rxq->queue_size,
654                                                            &rxq->used_bd_dma,
655                                                            GFP_KERNEL);
656                         if (!rxq->used_bd)
657                                 goto err;
658                 }
659
660                 /*Allocate the driver's pointer to receive buffer status */
661                 rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts),
662                                                    &rxq->rb_stts_dma,
663                                                    GFP_KERNEL);
664                 if (!rxq->rb_stts)
665                         goto err;
666         }
667         return 0;
668
669 err:
670         for (i = 0; i < trans->num_rx_queues; i++) {
671                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
672
673                 if (rxq->bd)
674                         dma_free_coherent(dev, free_size * rxq->queue_size,
675                                           rxq->bd, rxq->bd_dma);
676                 rxq->bd_dma = 0;
677                 rxq->bd = NULL;
678
679                 if (rxq->rb_stts)
680                         dma_free_coherent(trans->dev,
681                                           sizeof(struct iwl_rb_status),
682                                           rxq->rb_stts, rxq->rb_stts_dma);
683
684                 if (rxq->used_bd)
685                         dma_free_coherent(dev, sizeof(__le32) * rxq->queue_size,
686                                           rxq->used_bd, rxq->used_bd_dma);
687                 rxq->used_bd_dma = 0;
688                 rxq->used_bd = NULL;
689         }
690         kfree(trans_pcie->rxq);
691
692         return -ENOMEM;
693 }
694
695 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
696 {
697         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
698         u32 rb_size;
699         unsigned long flags;
700         const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
701
702         switch (trans_pcie->rx_buf_size) {
703         case IWL_AMSDU_4K:
704                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
705                 break;
706         case IWL_AMSDU_8K:
707                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
708                 break;
709         case IWL_AMSDU_12K:
710                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
711                 break;
712         default:
713                 WARN_ON(1);
714                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
715         }
716
717         if (!iwl_trans_grab_nic_access(trans, &flags))
718                 return;
719
720         /* Stop Rx DMA */
721         iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
722         /* reset and flush pointers */
723         iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
724         iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
725         iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
726
727         /* Reset driver's Rx queue write index */
728         iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
729
730         /* Tell device where to find RBD circular buffer in DRAM */
731         iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
732                     (u32)(rxq->bd_dma >> 8));
733
734         /* Tell device where in DRAM to update its Rx status */
735         iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
736                     rxq->rb_stts_dma >> 4);
737
738         /* Enable Rx DMA
739          * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
740          *      the credit mechanism in 5000 HW RX FIFO
741          * Direct rx interrupts to hosts
742          * Rx buffer size 4 or 8k or 12k
743          * RB timeout 0x10
744          * 256 RBDs
745          */
746         iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
747                     FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
748                     FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
749                     FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
750                     rb_size |
751                     (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
752                     (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
753
754         iwl_trans_release_nic_access(trans, &flags);
755
756         /* Set interrupt coalescing timer to default (2048 usecs) */
757         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
758
759         /* W/A for interrupt coalescing bug in 7260 and 3160 */
760         if (trans->cfg->host_interrupt_operation_mode)
761                 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
762 }
763
764 void iwl_pcie_enable_rx_wake(struct iwl_trans *trans, bool enable)
765 {
766         /*
767          * Turn on the chicken-bits that cause MAC wakeup for RX-related
768          * values.
769          * This costs some power, but needed for W/A 9000 integrated A-step
770          * bug where shadow registers are not in the retention list and their
771          * value is lost when NIC powers down
772          */
773         if (trans->cfg->integrated) {
774                 iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL,
775                             CSR_MAC_SHADOW_REG_CTRL_RX_WAKE);
776                 iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTL2,
777                             CSR_MAC_SHADOW_REG_CTL2_RX_WAKE);
778         }
779 }
780
781 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
782 {
783         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
784         u32 rb_size, enabled = 0;
785         unsigned long flags;
786         int i;
787
788         switch (trans_pcie->rx_buf_size) {
789         case IWL_AMSDU_4K:
790                 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
791                 break;
792         case IWL_AMSDU_8K:
793                 rb_size = RFH_RXF_DMA_RB_SIZE_8K;
794                 break;
795         case IWL_AMSDU_12K:
796                 rb_size = RFH_RXF_DMA_RB_SIZE_12K;
797                 break;
798         default:
799                 WARN_ON(1);
800                 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
801         }
802
803         if (!iwl_trans_grab_nic_access(trans, &flags))
804                 return;
805
806         /* Stop Rx DMA */
807         iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
808         /* disable free amd used rx queue operation */
809         iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
810
811         for (i = 0; i < trans->num_rx_queues; i++) {
812                 /* Tell device where to find RBD free table in DRAM */
813                 iwl_write_prph64_no_grab(trans,
814                                          RFH_Q_FRBDCB_BA_LSB(i),
815                                          trans_pcie->rxq[i].bd_dma);
816                 /* Tell device where to find RBD used table in DRAM */
817                 iwl_write_prph64_no_grab(trans,
818                                          RFH_Q_URBDCB_BA_LSB(i),
819                                          trans_pcie->rxq[i].used_bd_dma);
820                 /* Tell device where in DRAM to update its Rx status */
821                 iwl_write_prph64_no_grab(trans,
822                                          RFH_Q_URBD_STTS_WPTR_LSB(i),
823                                          trans_pcie->rxq[i].rb_stts_dma);
824                 /* Reset device indice tables */
825                 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
826                 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
827                 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
828
829                 enabled |= BIT(i) | BIT(i + 16);
830         }
831
832         /*
833          * Enable Rx DMA
834          * Rx buffer size 4 or 8k or 12k
835          * Min RB size 4 or 8
836          * Drop frames that exceed RB size
837          * 512 RBDs
838          */
839         iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
840                                RFH_DMA_EN_ENABLE_VAL | rb_size |
841                                RFH_RXF_DMA_MIN_RB_4_8 |
842                                RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
843                                RFH_RXF_DMA_RBDCB_SIZE_512);
844
845         /*
846          * Activate DMA snooping.
847          * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
848          * Default queue is 0
849          */
850         iwl_write_prph_no_grab(trans, RFH_GEN_CFG, RFH_GEN_CFG_RFH_DMA_SNOOP |
851                                (DEFAULT_RXQ_NUM <<
852                                 RFH_GEN_CFG_DEFAULT_RXQ_NUM_POS) |
853                                RFH_GEN_CFG_SERVICE_DMA_SNOOP |
854                                (trans->cfg->integrated ?
855                                 RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
856                                 RFH_GEN_CFG_RB_CHUNK_SIZE_128) <<
857                                RFH_GEN_CFG_RB_CHUNK_SIZE_POS);
858         /* Enable the relevant rx queues */
859         iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
860
861         iwl_trans_release_nic_access(trans, &flags);
862
863         /* Set interrupt coalescing timer to default (2048 usecs) */
864         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
865
866         iwl_pcie_enable_rx_wake(trans, true);
867 }
868
869 static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
870 {
871         lockdep_assert_held(&rxq->lock);
872
873         INIT_LIST_HEAD(&rxq->rx_free);
874         INIT_LIST_HEAD(&rxq->rx_used);
875         rxq->free_count = 0;
876         rxq->used_count = 0;
877 }
878
879 static int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
880 {
881         WARN_ON(1);
882         return 0;
883 }
884
885 int iwl_pcie_rx_init(struct iwl_trans *trans)
886 {
887         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
888         struct iwl_rxq *def_rxq;
889         struct iwl_rb_allocator *rba = &trans_pcie->rba;
890         int i, err, queue_size, allocator_pool_size, num_alloc;
891
892         if (!trans_pcie->rxq) {
893                 err = iwl_pcie_rx_alloc(trans);
894                 if (err)
895                         return err;
896         }
897         def_rxq = trans_pcie->rxq;
898         if (!rba->alloc_wq)
899                 rba->alloc_wq = alloc_workqueue("rb_allocator",
900                                                 WQ_HIGHPRI | WQ_UNBOUND, 1);
901         INIT_WORK(&rba->rx_alloc, iwl_pcie_rx_allocator_work);
902
903         spin_lock(&rba->lock);
904         atomic_set(&rba->req_pending, 0);
905         atomic_set(&rba->req_ready, 0);
906         INIT_LIST_HEAD(&rba->rbd_allocated);
907         INIT_LIST_HEAD(&rba->rbd_empty);
908         spin_unlock(&rba->lock);
909
910         /* free all first - we might be reconfigured for a different size */
911         iwl_pcie_free_rbs_pool(trans);
912
913         for (i = 0; i < RX_QUEUE_SIZE; i++)
914                 def_rxq->queue[i] = NULL;
915
916         for (i = 0; i < trans->num_rx_queues; i++) {
917                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
918
919                 rxq->id = i;
920
921                 spin_lock(&rxq->lock);
922                 /*
923                  * Set read write pointer to reflect that we have processed
924                  * and used all buffers, but have not restocked the Rx queue
925                  * with fresh buffers
926                  */
927                 rxq->read = 0;
928                 rxq->write = 0;
929                 rxq->write_actual = 0;
930                 memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts));
931
932                 iwl_pcie_rx_init_rxb_lists(rxq);
933
934                 if (!rxq->napi.poll)
935                         netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
936                                        iwl_pcie_dummy_napi_poll, 64);
937
938                 spin_unlock(&rxq->lock);
939         }
940
941         /* move the pool to the default queue and allocator ownerships */
942         queue_size = trans->cfg->mq_rx_supported ?
943                      MQ_RX_NUM_RBDS : RX_QUEUE_SIZE;
944         allocator_pool_size = trans->num_rx_queues *
945                 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
946         num_alloc = queue_size + allocator_pool_size;
947         BUILD_BUG_ON(ARRAY_SIZE(trans_pcie->global_table) !=
948                      ARRAY_SIZE(trans_pcie->rx_pool));
949         for (i = 0; i < num_alloc; i++) {
950                 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
951
952                 if (i < allocator_pool_size)
953                         list_add(&rxb->list, &rba->rbd_empty);
954                 else
955                         list_add(&rxb->list, &def_rxq->rx_used);
956                 trans_pcie->global_table[i] = rxb;
957                 rxb->vid = (u16)(i + 1);
958                 rxb->invalid = true;
959         }
960
961         iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
962
963         if (trans->cfg->mq_rx_supported)
964                 iwl_pcie_rx_mq_hw_init(trans);
965         else
966                 iwl_pcie_rx_hw_init(trans, def_rxq);
967
968         iwl_pcie_rxq_restock(trans, def_rxq);
969
970         spin_lock(&def_rxq->lock);
971         iwl_pcie_rxq_inc_wr_ptr(trans, def_rxq);
972         spin_unlock(&def_rxq->lock);
973
974         return 0;
975 }
976
977 void iwl_pcie_rx_free(struct iwl_trans *trans)
978 {
979         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
980         struct iwl_rb_allocator *rba = &trans_pcie->rba;
981         int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
982                                               sizeof(__le32);
983         int i;
984
985         /*
986          * if rxq is NULL, it means that nothing has been allocated,
987          * exit now
988          */
989         if (!trans_pcie->rxq) {
990                 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
991                 return;
992         }
993
994         cancel_work_sync(&rba->rx_alloc);
995         if (rba->alloc_wq) {
996                 destroy_workqueue(rba->alloc_wq);
997                 rba->alloc_wq = NULL;
998         }
999
1000         iwl_pcie_free_rbs_pool(trans);
1001
1002         for (i = 0; i < trans->num_rx_queues; i++) {
1003                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1004
1005                 if (rxq->bd)
1006                         dma_free_coherent(trans->dev,
1007                                           free_size * rxq->queue_size,
1008                                           rxq->bd, rxq->bd_dma);
1009                 rxq->bd_dma = 0;
1010                 rxq->bd = NULL;
1011
1012                 if (rxq->rb_stts)
1013                         dma_free_coherent(trans->dev,
1014                                           sizeof(struct iwl_rb_status),
1015                                           rxq->rb_stts, rxq->rb_stts_dma);
1016                 else
1017                         IWL_DEBUG_INFO(trans,
1018                                        "Free rxq->rb_stts which is NULL\n");
1019
1020                 if (rxq->used_bd)
1021                         dma_free_coherent(trans->dev,
1022                                           sizeof(__le32) * rxq->queue_size,
1023                                           rxq->used_bd, rxq->used_bd_dma);
1024                 rxq->used_bd_dma = 0;
1025                 rxq->used_bd = NULL;
1026
1027                 if (rxq->napi.poll)
1028                         netif_napi_del(&rxq->napi);
1029         }
1030         kfree(trans_pcie->rxq);
1031 }
1032
1033 /*
1034  * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1035  *
1036  * Called when a RBD can be reused. The RBD is transferred to the allocator.
1037  * When there are 2 empty RBDs - a request for allocation is posted
1038  */
1039 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1040                                   struct iwl_rx_mem_buffer *rxb,
1041                                   struct iwl_rxq *rxq, bool emergency)
1042 {
1043         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1044         struct iwl_rb_allocator *rba = &trans_pcie->rba;
1045
1046         /* Move the RBD to the used list, will be moved to allocator in batches
1047          * before claiming or posting a request*/
1048         list_add_tail(&rxb->list, &rxq->rx_used);
1049
1050         if (unlikely(emergency))
1051                 return;
1052
1053         /* Count the allocator owned RBDs */
1054         rxq->used_count++;
1055
1056         /* If we have RX_POST_REQ_ALLOC new released rx buffers -
1057          * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1058          * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1059          * after but we still need to post another request.
1060          */
1061         if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1062                 /* Move the 2 RBDs to the allocator ownership.
1063                  Allocator has another 6 from pool for the request completion*/
1064                 spin_lock(&rba->lock);
1065                 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1066                 spin_unlock(&rba->lock);
1067
1068                 atomic_inc(&rba->req_pending);
1069                 queue_work(rba->alloc_wq, &rba->rx_alloc);
1070         }
1071 }
1072
1073 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1074                                 struct iwl_rxq *rxq,
1075                                 struct iwl_rx_mem_buffer *rxb,
1076                                 bool emergency)
1077 {
1078         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1079         struct iwl_txq *txq = &trans_pcie->txq[trans_pcie->cmd_queue];
1080         bool page_stolen = false;
1081         int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
1082         u32 offset = 0;
1083
1084         if (WARN_ON(!rxb))
1085                 return;
1086
1087         dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1088
1089         while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1090                 struct iwl_rx_packet *pkt;
1091                 u16 sequence;
1092                 bool reclaim;
1093                 int index, cmd_index, len;
1094                 struct iwl_rx_cmd_buffer rxcb = {
1095                         ._offset = offset,
1096                         ._rx_page_order = trans_pcie->rx_page_order,
1097                         ._page = rxb->page,
1098                         ._page_stolen = false,
1099                         .truesize = max_len,
1100                 };
1101
1102                 pkt = rxb_addr(&rxcb);
1103
1104                 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID))
1105                         break;
1106
1107                 WARN_ON((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1108                         FH_RSCSR_RXQ_POS != rxq->id);
1109
1110                 IWL_DEBUG_RX(trans,
1111                              "cmd at offset %d: %s (0x%.2x, seq 0x%x)\n",
1112                              rxcb._offset,
1113                              iwl_get_cmd_string(trans,
1114                                                 iwl_cmd_id(pkt->hdr.cmd,
1115                                                            pkt->hdr.group_id,
1116                                                            0)),
1117                              pkt->hdr.cmd, le16_to_cpu(pkt->hdr.sequence));
1118
1119                 len = iwl_rx_packet_len(pkt);
1120                 len += sizeof(u32); /* account for status word */
1121                 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1122                 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1123
1124                 /* Reclaim a command buffer only if this packet is a response
1125                  *   to a (driver-originated) command.
1126                  * If the packet (e.g. Rx frame) originated from uCode,
1127                  *   there is no command buffer to reclaim.
1128                  * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1129                  *   but apparently a few don't get set; catch them here. */
1130                 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1131                 if (reclaim) {
1132                         int i;
1133
1134                         for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1135                                 if (trans_pcie->no_reclaim_cmds[i] ==
1136                                                         pkt->hdr.cmd) {
1137                                         reclaim = false;
1138                                         break;
1139                                 }
1140                         }
1141                 }
1142
1143                 sequence = le16_to_cpu(pkt->hdr.sequence);
1144                 index = SEQ_TO_INDEX(sequence);
1145                 cmd_index = get_cmd_index(&txq->q, index);
1146
1147                 if (rxq->id == 0)
1148                         iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1149                                        &rxcb);
1150                 else
1151                         iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1152                                            &rxcb, rxq->id);
1153
1154                 if (reclaim) {
1155                         kzfree(txq->entries[cmd_index].free_buf);
1156                         txq->entries[cmd_index].free_buf = NULL;
1157                 }
1158
1159                 /*
1160                  * After here, we should always check rxcb._page_stolen,
1161                  * if it is true then one of the handlers took the page.
1162                  */
1163
1164                 if (reclaim) {
1165                         /* Invoke any callbacks, transfer the buffer to caller,
1166                          * and fire off the (possibly) blocking
1167                          * iwl_trans_send_cmd()
1168                          * as we reclaim the driver command queue */
1169                         if (!rxcb._page_stolen)
1170                                 iwl_pcie_hcmd_complete(trans, &rxcb);
1171                         else
1172                                 IWL_WARN(trans, "Claim null rxb?\n");
1173                 }
1174
1175                 page_stolen |= rxcb._page_stolen;
1176                 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1177         }
1178
1179         /* page was stolen from us -- free our reference */
1180         if (page_stolen) {
1181                 __free_pages(rxb->page, trans_pcie->rx_page_order);
1182                 rxb->page = NULL;
1183         }
1184
1185         /* Reuse the page if possible. For notification packets and
1186          * SKBs that fail to Rx correctly, add them back into the
1187          * rx_free list for reuse later. */
1188         if (rxb->page != NULL) {
1189                 rxb->page_dma =
1190                         dma_map_page(trans->dev, rxb->page, 0,
1191                                      PAGE_SIZE << trans_pcie->rx_page_order,
1192                                      DMA_FROM_DEVICE);
1193                 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1194                         /*
1195                          * free the page(s) as well to not break
1196                          * the invariant that the items on the used
1197                          * list have no page(s)
1198                          */
1199                         __free_pages(rxb->page, trans_pcie->rx_page_order);
1200                         rxb->page = NULL;
1201                         iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1202                 } else {
1203                         list_add_tail(&rxb->list, &rxq->rx_free);
1204                         rxq->free_count++;
1205                 }
1206         } else
1207                 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1208 }
1209
1210 /*
1211  * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1212  */
1213 static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
1214 {
1215         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1216         struct iwl_rxq *rxq = &trans_pcie->rxq[queue];
1217         u32 r, i, count = 0;
1218         bool emergency = false;
1219
1220 restart:
1221         spin_lock(&rxq->lock);
1222         /* uCode's read index (stored in shared DRAM) indicates the last Rx
1223          * buffer that the driver may process (last buffer filled by ucode). */
1224         r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF;
1225         i = rxq->read;
1226
1227         /* W/A 9000 device step A0 wrap-around bug */
1228         r &= (rxq->queue_size - 1);
1229
1230         /* Rx interrupt, but nothing sent from uCode */
1231         if (i == r)
1232                 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1233
1234         while (i != r) {
1235                 struct iwl_rx_mem_buffer *rxb;
1236
1237                 if (unlikely(rxq->used_count == rxq->queue_size / 2))
1238                         emergency = true;
1239
1240                 if (trans->cfg->mq_rx_supported) {
1241                         /*
1242                          * used_bd is a 32 bit but only 12 are used to retrieve
1243                          * the vid
1244                          */
1245                         u16 vid = le32_to_cpu(rxq->used_bd[i]) & 0x0FFF;
1246
1247                         if (WARN(!vid ||
1248                                  vid > ARRAY_SIZE(trans_pcie->global_table),
1249                                  "Invalid rxb index from HW %u\n", (u32)vid)) {
1250                                 iwl_force_nmi(trans);
1251                                 goto out;
1252                         }
1253                         rxb = trans_pcie->global_table[vid - 1];
1254                         if (WARN(rxb->invalid,
1255                                  "Invalid rxb from HW %u\n", (u32)vid)) {
1256                                 iwl_force_nmi(trans);
1257                                 goto out;
1258                         }
1259                         rxb->invalid = true;
1260                 } else {
1261                         rxb = rxq->queue[i];
1262                         rxq->queue[i] = NULL;
1263                 }
1264
1265                 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1266                 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency);
1267
1268                 i = (i + 1) & (rxq->queue_size - 1);
1269
1270                 /*
1271                  * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1272                  * try to claim the pre-allocated buffers from the allocator.
1273                  * If not ready - will try to reclaim next time.
1274                  * There is no need to reschedule work - allocator exits only
1275                  * on success
1276                  */
1277                 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1278                         iwl_pcie_rx_allocator_get(trans, rxq);
1279
1280                 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1281                         struct iwl_rb_allocator *rba = &trans_pcie->rba;
1282
1283                         /* Add the remaining empty RBDs for allocator use */
1284                         spin_lock(&rba->lock);
1285                         list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1286                         spin_unlock(&rba->lock);
1287                 } else if (emergency) {
1288                         count++;
1289                         if (count == 8) {
1290                                 count = 0;
1291                                 if (rxq->used_count < rxq->queue_size / 3)
1292                                         emergency = false;
1293
1294                                 rxq->read = i;
1295                                 spin_unlock(&rxq->lock);
1296                                 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1297                                 iwl_pcie_rxq_restock(trans, rxq);
1298                                 goto restart;
1299                         }
1300                 }
1301         }
1302 out:
1303         /* Backtrack one entry */
1304         rxq->read = i;
1305         spin_unlock(&rxq->lock);
1306
1307         /*
1308          * handle a case where in emergency there are some unallocated RBDs.
1309          * those RBDs are in the used list, but are not tracked by the queue's
1310          * used_count which counts allocator owned RBDs.
1311          * unallocated emergency RBDs must be allocated on exit, otherwise
1312          * when called again the function may not be in emergency mode and
1313          * they will be handed to the allocator with no tracking in the RBD
1314          * allocator counters, which will lead to them never being claimed back
1315          * by the queue.
1316          * by allocating them here, they are now in the queue free list, and
1317          * will be restocked by the next call of iwl_pcie_rxq_restock.
1318          */
1319         if (unlikely(emergency && count))
1320                 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1321
1322         if (rxq->napi.poll)
1323                 napi_gro_flush(&rxq->napi, false);
1324
1325         iwl_pcie_rxq_restock(trans, rxq);
1326 }
1327
1328 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1329 {
1330         u8 queue = entry->entry;
1331         struct msix_entry *entries = entry - queue;
1332
1333         return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1334 }
1335
1336 static inline void iwl_pcie_clear_irq(struct iwl_trans *trans,
1337                                       struct msix_entry *entry)
1338 {
1339         /*
1340          * Before sending the interrupt the HW disables it to prevent
1341          * a nested interrupt. This is done by writing 1 to the corresponding
1342          * bit in the mask register. After handling the interrupt, it should be
1343          * re-enabled by clearing this bit. This register is defined as
1344          * write 1 clear (W1C) register, meaning that it's being clear
1345          * by writing 1 to the bit.
1346          */
1347         iwl_write32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(entry->entry));
1348 }
1349
1350 /*
1351  * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1352  * This interrupt handler should be used with RSS queue only.
1353  */
1354 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1355 {
1356         struct msix_entry *entry = dev_id;
1357         struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1358         struct iwl_trans *trans = trans_pcie->trans;
1359
1360         if (WARN_ON(entry->entry >= trans->num_rx_queues))
1361                 return IRQ_NONE;
1362
1363         lock_map_acquire(&trans->sync_cmd_lockdep_map);
1364
1365         local_bh_disable();
1366         iwl_pcie_rx_handle(trans, entry->entry);
1367         local_bh_enable();
1368
1369         iwl_pcie_clear_irq(trans, entry);
1370
1371         lock_map_release(&trans->sync_cmd_lockdep_map);
1372
1373         return IRQ_HANDLED;
1374 }
1375
1376 /*
1377  * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1378  */
1379 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1380 {
1381         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1382         int i;
1383
1384         /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1385         if (trans->cfg->internal_wimax_coex &&
1386             !trans->cfg->apmg_not_supported &&
1387             (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1388                              APMS_CLK_VAL_MRB_FUNC_MODE) ||
1389              (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1390                             APMG_PS_CTRL_VAL_RESET_REQ))) {
1391                 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1392                 iwl_op_mode_wimax_active(trans->op_mode);
1393                 wake_up(&trans_pcie->wait_command_queue);
1394                 return;
1395         }
1396
1397         iwl_pcie_dump_csr(trans);
1398         iwl_dump_fh(trans, NULL);
1399
1400         local_bh_disable();
1401         /* The STATUS_FW_ERROR bit is set in this function. This must happen
1402          * before we wake up the command caller, to ensure a proper cleanup. */
1403         iwl_trans_fw_error(trans);
1404         local_bh_enable();
1405
1406         for (i = 0; i < trans->cfg->base_params->num_of_queues; i++)
1407                 del_timer(&trans_pcie->txq[i].stuck_timer);
1408
1409         clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1410         wake_up(&trans_pcie->wait_command_queue);
1411 }
1412
1413 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1414 {
1415         u32 inta;
1416
1417         lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1418
1419         trace_iwlwifi_dev_irq(trans->dev);
1420
1421         /* Discover which interrupts are active/pending */
1422         inta = iwl_read32(trans, CSR_INT);
1423
1424         /* the thread will service interrupts and re-enable them */
1425         return inta;
1426 }
1427
1428 /* a device (PCI-E) page is 4096 bytes long */
1429 #define ICT_SHIFT       12
1430 #define ICT_SIZE        (1 << ICT_SHIFT)
1431 #define ICT_COUNT       (ICT_SIZE / sizeof(u32))
1432
1433 /* interrupt handler using ict table, with this interrupt driver will
1434  * stop using INTA register to get device's interrupt, reading this register
1435  * is expensive, device will write interrupts in ICT dram table, increment
1436  * index then will fire interrupt to driver, driver will OR all ICT table
1437  * entries from current index up to table entry with 0 value. the result is
1438  * the interrupt we need to service, driver will set the entries back to 0 and
1439  * set index.
1440  */
1441 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1442 {
1443         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1444         u32 inta;
1445         u32 val = 0;
1446         u32 read;
1447
1448         trace_iwlwifi_dev_irq(trans->dev);
1449
1450         /* Ignore interrupt if there's nothing in NIC to service.
1451          * This may be due to IRQ shared with another device,
1452          * or due to sporadic interrupts thrown from our NIC. */
1453         read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1454         trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1455         if (!read)
1456                 return 0;
1457
1458         /*
1459          * Collect all entries up to the first 0, starting from ict_index;
1460          * note we already read at ict_index.
1461          */
1462         do {
1463                 val |= read;
1464                 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1465                                 trans_pcie->ict_index, read);
1466                 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1467                 trans_pcie->ict_index =
1468                         ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1469
1470                 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1471                 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1472                                            read);
1473         } while (read);
1474
1475         /* We should not get this value, just ignore it. */
1476         if (val == 0xffffffff)
1477                 val = 0;
1478
1479         /*
1480          * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1481          * (bit 15 before shifting it to 31) to clear when using interrupt
1482          * coalescing. fortunately, bits 18 and 19 stay set when this happens
1483          * so we use them to decide on the real state of the Rx bit.
1484          * In order words, bit 15 is set if bit 18 or bit 19 are set.
1485          */
1486         if (val & 0xC0000)
1487                 val |= 0x8000;
1488
1489         inta = (0xff & val) | ((0xff00 & val) << 16);
1490         return inta;
1491 }
1492
1493 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1494 {
1495         struct iwl_trans *trans = dev_id;
1496         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1497         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1498         u32 inta = 0;
1499         u32 handled = 0;
1500
1501         lock_map_acquire(&trans->sync_cmd_lockdep_map);
1502
1503         spin_lock(&trans_pcie->irq_lock);
1504
1505         /* dram interrupt table not set yet,
1506          * use legacy interrupt.
1507          */
1508         if (likely(trans_pcie->use_ict))
1509                 inta = iwl_pcie_int_cause_ict(trans);
1510         else
1511                 inta = iwl_pcie_int_cause_non_ict(trans);
1512
1513         if (iwl_have_debug_level(IWL_DL_ISR)) {
1514                 IWL_DEBUG_ISR(trans,
1515                               "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1516                               inta, trans_pcie->inta_mask,
1517                               iwl_read32(trans, CSR_INT_MASK),
1518                               iwl_read32(trans, CSR_FH_INT_STATUS));
1519                 if (inta & (~trans_pcie->inta_mask))
1520                         IWL_DEBUG_ISR(trans,
1521                                       "We got a masked interrupt (0x%08x)\n",
1522                                       inta & (~trans_pcie->inta_mask));
1523         }
1524
1525         inta &= trans_pcie->inta_mask;
1526
1527         /*
1528          * Ignore interrupt if there's nothing in NIC to service.
1529          * This may be due to IRQ shared with another device,
1530          * or due to sporadic interrupts thrown from our NIC.
1531          */
1532         if (unlikely(!inta)) {
1533                 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1534                 /*
1535                  * Re-enable interrupts here since we don't
1536                  * have anything to service
1537                  */
1538                 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1539                         _iwl_enable_interrupts(trans);
1540                 spin_unlock(&trans_pcie->irq_lock);
1541                 lock_map_release(&trans->sync_cmd_lockdep_map);
1542                 return IRQ_NONE;
1543         }
1544
1545         if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1546                 /*
1547                  * Hardware disappeared. It might have
1548                  * already raised an interrupt.
1549                  */
1550                 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1551                 spin_unlock(&trans_pcie->irq_lock);
1552                 goto out;
1553         }
1554
1555         /* Ack/clear/reset pending uCode interrupts.
1556          * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1557          */
1558         /* There is a hardware bug in the interrupt mask function that some
1559          * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1560          * they are disabled in the CSR_INT_MASK register. Furthermore the
1561          * ICT interrupt handling mechanism has another bug that might cause
1562          * these unmasked interrupts fail to be detected. We workaround the
1563          * hardware bugs here by ACKing all the possible interrupts so that
1564          * interrupt coalescing can still be achieved.
1565          */
1566         iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1567
1568         if (iwl_have_debug_level(IWL_DL_ISR))
1569                 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1570                               inta, iwl_read32(trans, CSR_INT_MASK));
1571
1572         spin_unlock(&trans_pcie->irq_lock);
1573
1574         /* Now service all interrupt bits discovered above. */
1575         if (inta & CSR_INT_BIT_HW_ERR) {
1576                 IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1577
1578                 /* Tell the device to stop sending interrupts */
1579                 iwl_disable_interrupts(trans);
1580
1581                 isr_stats->hw++;
1582                 iwl_pcie_irq_handle_error(trans);
1583
1584                 handled |= CSR_INT_BIT_HW_ERR;
1585
1586                 goto out;
1587         }
1588
1589         if (iwl_have_debug_level(IWL_DL_ISR)) {
1590                 /* NIC fires this, but we don't use it, redundant with WAKEUP */
1591                 if (inta & CSR_INT_BIT_SCD) {
1592                         IWL_DEBUG_ISR(trans,
1593                                       "Scheduler finished to transmit the frame/frames.\n");
1594                         isr_stats->sch++;
1595                 }
1596
1597                 /* Alive notification via Rx interrupt will do the real work */
1598                 if (inta & CSR_INT_BIT_ALIVE) {
1599                         IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1600                         isr_stats->alive++;
1601                 }
1602         }
1603
1604         /* Safely ignore these bits for debug checks below */
1605         inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1606
1607         /* HW RF KILL switch toggled */
1608         if (inta & CSR_INT_BIT_RF_KILL) {
1609                 bool hw_rfkill;
1610
1611                 hw_rfkill = iwl_is_rfkill_set(trans);
1612                 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1613                          hw_rfkill ? "disable radio" : "enable radio");
1614
1615                 isr_stats->rfkill++;
1616
1617                 mutex_lock(&trans_pcie->mutex);
1618                 iwl_trans_pcie_rf_kill(trans, hw_rfkill);
1619                 mutex_unlock(&trans_pcie->mutex);
1620                 if (hw_rfkill) {
1621                         set_bit(STATUS_RFKILL, &trans->status);
1622                         if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1623                                                &trans->status))
1624                                 IWL_DEBUG_RF_KILL(trans,
1625                                                   "Rfkill while SYNC HCMD in flight\n");
1626                         wake_up(&trans_pcie->wait_command_queue);
1627                 } else {
1628                         clear_bit(STATUS_RFKILL, &trans->status);
1629                 }
1630
1631                 handled |= CSR_INT_BIT_RF_KILL;
1632         }
1633
1634         /* Chip got too hot and stopped itself */
1635         if (inta & CSR_INT_BIT_CT_KILL) {
1636                 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1637                 isr_stats->ctkill++;
1638                 handled |= CSR_INT_BIT_CT_KILL;
1639         }
1640
1641         /* Error detected by uCode */
1642         if (inta & CSR_INT_BIT_SW_ERR) {
1643                 IWL_ERR(trans, "Microcode SW error detected. "
1644                         " Restarting 0x%X.\n", inta);
1645                 isr_stats->sw++;
1646                 iwl_pcie_irq_handle_error(trans);
1647                 handled |= CSR_INT_BIT_SW_ERR;
1648         }
1649
1650         /* uCode wakes up after power-down sleep */
1651         if (inta & CSR_INT_BIT_WAKEUP) {
1652                 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1653                 iwl_pcie_rxq_check_wrptr(trans);
1654                 iwl_pcie_txq_check_wrptrs(trans);
1655
1656                 isr_stats->wakeup++;
1657
1658                 handled |= CSR_INT_BIT_WAKEUP;
1659         }
1660
1661         /* All uCode command responses, including Tx command responses,
1662          * Rx "responses" (frame-received notification), and other
1663          * notifications from uCode come through here*/
1664         if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1665                     CSR_INT_BIT_RX_PERIODIC)) {
1666                 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1667                 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1668                         handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1669                         iwl_write32(trans, CSR_FH_INT_STATUS,
1670                                         CSR_FH_INT_RX_MASK);
1671                 }
1672                 if (inta & CSR_INT_BIT_RX_PERIODIC) {
1673                         handled |= CSR_INT_BIT_RX_PERIODIC;
1674                         iwl_write32(trans,
1675                                 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1676                 }
1677                 /* Sending RX interrupt require many steps to be done in the
1678                  * the device:
1679                  * 1- write interrupt to current index in ICT table.
1680                  * 2- dma RX frame.
1681                  * 3- update RX shared data to indicate last write index.
1682                  * 4- send interrupt.
1683                  * This could lead to RX race, driver could receive RX interrupt
1684                  * but the shared data changes does not reflect this;
1685                  * periodic interrupt will detect any dangling Rx activity.
1686                  */
1687
1688                 /* Disable periodic interrupt; we use it as just a one-shot. */
1689                 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1690                             CSR_INT_PERIODIC_DIS);
1691
1692                 /*
1693                  * Enable periodic interrupt in 8 msec only if we received
1694                  * real RX interrupt (instead of just periodic int), to catch
1695                  * any dangling Rx interrupt.  If it was just the periodic
1696                  * interrupt, there was no dangling Rx activity, and no need
1697                  * to extend the periodic interrupt; one-shot is enough.
1698                  */
1699                 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1700                         iwl_write8(trans, CSR_INT_PERIODIC_REG,
1701                                    CSR_INT_PERIODIC_ENA);
1702
1703                 isr_stats->rx++;
1704
1705                 local_bh_disable();
1706                 iwl_pcie_rx_handle(trans, 0);
1707                 local_bh_enable();
1708         }
1709
1710         /* This "Tx" DMA channel is used only for loading uCode */
1711         if (inta & CSR_INT_BIT_FH_TX) {
1712                 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1713                 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1714                 isr_stats->tx++;
1715                 handled |= CSR_INT_BIT_FH_TX;
1716                 /* Wake up uCode load routine, now that load is complete */
1717                 trans_pcie->ucode_write_complete = true;
1718                 wake_up(&trans_pcie->ucode_write_waitq);
1719         }
1720
1721         if (inta & ~handled) {
1722                 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1723                 isr_stats->unhandled++;
1724         }
1725
1726         if (inta & ~(trans_pcie->inta_mask)) {
1727                 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
1728                          inta & ~trans_pcie->inta_mask);
1729         }
1730
1731         spin_lock(&trans_pcie->irq_lock);
1732         /* only Re-enable all interrupt if disabled by irq */
1733         if (test_bit(STATUS_INT_ENABLED, &trans->status))
1734                 _iwl_enable_interrupts(trans);
1735         /* we are loading the firmware, enable FH_TX interrupt only */
1736         else if (handled & CSR_INT_BIT_FH_TX)
1737                 iwl_enable_fw_load_int(trans);
1738         /* Re-enable RF_KILL if it occurred */
1739         else if (handled & CSR_INT_BIT_RF_KILL)
1740                 iwl_enable_rfkill_int(trans);
1741         spin_unlock(&trans_pcie->irq_lock);
1742
1743 out:
1744         lock_map_release(&trans->sync_cmd_lockdep_map);
1745         return IRQ_HANDLED;
1746 }
1747
1748 /******************************************************************************
1749  *
1750  * ICT functions
1751  *
1752  ******************************************************************************/
1753
1754 /* Free dram table */
1755 void iwl_pcie_free_ict(struct iwl_trans *trans)
1756 {
1757         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1758
1759         if (trans_pcie->ict_tbl) {
1760                 dma_free_coherent(trans->dev, ICT_SIZE,
1761                                   trans_pcie->ict_tbl,
1762                                   trans_pcie->ict_tbl_dma);
1763                 trans_pcie->ict_tbl = NULL;
1764                 trans_pcie->ict_tbl_dma = 0;
1765         }
1766 }
1767
1768 /*
1769  * allocate dram shared table, it is an aligned memory
1770  * block of ICT_SIZE.
1771  * also reset all data related to ICT table interrupt.
1772  */
1773 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
1774 {
1775         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1776
1777         trans_pcie->ict_tbl =
1778                 dma_zalloc_coherent(trans->dev, ICT_SIZE,
1779                                    &trans_pcie->ict_tbl_dma,
1780                                    GFP_KERNEL);
1781         if (!trans_pcie->ict_tbl)
1782                 return -ENOMEM;
1783
1784         /* just an API sanity check ... it is guaranteed to be aligned */
1785         if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
1786                 iwl_pcie_free_ict(trans);
1787                 return -EINVAL;
1788         }
1789
1790         return 0;
1791 }
1792
1793 /* Device is going up inform it about using ICT interrupt table,
1794  * also we need to tell the driver to start using ICT interrupt.
1795  */
1796 void iwl_pcie_reset_ict(struct iwl_trans *trans)
1797 {
1798         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1799         u32 val;
1800
1801         if (!trans_pcie->ict_tbl)
1802                 return;
1803
1804         spin_lock(&trans_pcie->irq_lock);
1805         _iwl_disable_interrupts(trans);
1806
1807         memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
1808
1809         val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
1810
1811         val |= CSR_DRAM_INT_TBL_ENABLE |
1812                CSR_DRAM_INIT_TBL_WRAP_CHECK |
1813                CSR_DRAM_INIT_TBL_WRITE_POINTER;
1814
1815         IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
1816
1817         iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
1818         trans_pcie->use_ict = true;
1819         trans_pcie->ict_index = 0;
1820         iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
1821         _iwl_enable_interrupts(trans);
1822         spin_unlock(&trans_pcie->irq_lock);
1823 }
1824
1825 /* Device is going down disable ict interrupt usage */
1826 void iwl_pcie_disable_ict(struct iwl_trans *trans)
1827 {
1828         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1829
1830         spin_lock(&trans_pcie->irq_lock);
1831         trans_pcie->use_ict = false;
1832         spin_unlock(&trans_pcie->irq_lock);
1833 }
1834
1835 irqreturn_t iwl_pcie_isr(int irq, void *data)
1836 {
1837         struct iwl_trans *trans = data;
1838
1839         if (!trans)
1840                 return IRQ_NONE;
1841
1842         /* Disable (but don't clear!) interrupts here to avoid
1843          * back-to-back ISRs and sporadic interrupts from our NIC.
1844          * If we have something to service, the tasklet will re-enable ints.
1845          * If we *don't* have something, we'll re-enable before leaving here.
1846          */
1847         iwl_write32(trans, CSR_INT_MASK, 0x00000000);
1848
1849         return IRQ_WAKE_THREAD;
1850 }
1851
1852 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
1853 {
1854         return IRQ_WAKE_THREAD;
1855 }
1856
1857 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
1858 {
1859         struct msix_entry *entry = dev_id;
1860         struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1861         struct iwl_trans *trans = trans_pcie->trans;
1862         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1863         u32 inta_fh, inta_hw;
1864
1865         lock_map_acquire(&trans->sync_cmd_lockdep_map);
1866
1867         spin_lock(&trans_pcie->irq_lock);
1868         inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
1869         inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
1870         /*
1871          * Clear causes registers to avoid being handling the same cause.
1872          */
1873         iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
1874         iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
1875         spin_unlock(&trans_pcie->irq_lock);
1876
1877         if (unlikely(!(inta_fh | inta_hw))) {
1878                 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1879                 lock_map_release(&trans->sync_cmd_lockdep_map);
1880                 return IRQ_NONE;
1881         }
1882
1883         if (iwl_have_debug_level(IWL_DL_ISR))
1884                 IWL_DEBUG_ISR(trans, "ISR inta_fh 0x%08x, enabled 0x%08x\n",
1885                               inta_fh,
1886                               iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
1887
1888         /* This "Tx" DMA channel is used only for loading uCode */
1889         if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
1890                 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1891                 isr_stats->tx++;
1892                 /*
1893                  * Wake up uCode load routine,
1894                  * now that load is complete
1895                  */
1896                 trans_pcie->ucode_write_complete = true;
1897                 wake_up(&trans_pcie->ucode_write_waitq);
1898         }
1899
1900         /* Error detected by uCode */
1901         if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
1902             (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) {
1903                 IWL_ERR(trans,
1904                         "Microcode SW error detected. Restarting 0x%X.\n",
1905                         inta_fh);
1906                 isr_stats->sw++;
1907                 iwl_pcie_irq_handle_error(trans);
1908         }
1909
1910         /* After checking FH register check HW register */
1911         if (iwl_have_debug_level(IWL_DL_ISR))
1912                 IWL_DEBUG_ISR(trans,
1913                               "ISR inta_hw 0x%08x, enabled 0x%08x\n",
1914                               inta_hw,
1915                               iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
1916
1917         /* Alive notification via Rx interrupt will do the real work */
1918         if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
1919                 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1920                 isr_stats->alive++;
1921         }
1922
1923         /* uCode wakes up after power-down sleep */
1924         if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
1925                 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1926                 iwl_pcie_rxq_check_wrptr(trans);
1927                 iwl_pcie_txq_check_wrptrs(trans);
1928
1929                 isr_stats->wakeup++;
1930         }
1931
1932         /* Chip got too hot and stopped itself */
1933         if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
1934                 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1935                 isr_stats->ctkill++;
1936         }
1937
1938         /* HW RF KILL switch toggled */
1939         if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL) {
1940                 bool hw_rfkill;
1941
1942                 hw_rfkill = iwl_is_rfkill_set(trans);
1943                 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1944                          hw_rfkill ? "disable radio" : "enable radio");
1945
1946                 isr_stats->rfkill++;
1947
1948                 mutex_lock(&trans_pcie->mutex);
1949                 iwl_trans_pcie_rf_kill(trans, hw_rfkill);
1950                 mutex_unlock(&trans_pcie->mutex);
1951                 if (hw_rfkill) {
1952                         set_bit(STATUS_RFKILL, &trans->status);
1953                         if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1954                                                &trans->status))
1955                                 IWL_DEBUG_RF_KILL(trans,
1956                                                   "Rfkill while SYNC HCMD in flight\n");
1957                         wake_up(&trans_pcie->wait_command_queue);
1958                 } else {
1959                         clear_bit(STATUS_RFKILL, &trans->status);
1960                 }
1961         }
1962
1963         if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
1964                 IWL_ERR(trans,
1965                         "Hardware error detected. Restarting.\n");
1966
1967                 isr_stats->hw++;
1968                 iwl_pcie_irq_handle_error(trans);
1969         }
1970
1971         iwl_pcie_clear_irq(trans, entry);
1972
1973         lock_map_release(&trans->sync_cmd_lockdep_map);
1974
1975         return IRQ_HANDLED;
1976 }