Merge tag 'platform-drivers-x86-v4.7-1' of git://git.infradead.org/users/dvhart/linux...
[cascardo/linux.git] / drivers / net / wireless / intel / iwlwifi / pcie / rx.c
1 /******************************************************************************
2  *
3  * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
4  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
5  * Copyright(c) 2016 Intel Deutschland GmbH
6  *
7  * Portions of this file are derived from the ipw3945 project, as well
8  * as portions of the ieee80211 subsystem header files.
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but WITHOUT
15  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17  * more details.
18  *
19  * You should have received a copy of the GNU General Public License along with
20  * this program; if not, write to the Free Software Foundation, Inc.,
21  * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
22  *
23  * The full GNU General Public License is included in this distribution in the
24  * file called LICENSE.
25  *
26  * Contact Information:
27  *  Intel Linux Wireless <linuxwifi@intel.com>
28  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
29  *
30  *****************************************************************************/
31 #include <linux/sched.h>
32 #include <linux/wait.h>
33 #include <linux/gfp.h>
34
35 #include "iwl-prph.h"
36 #include "iwl-io.h"
37 #include "internal.h"
38 #include "iwl-op-mode.h"
39
40 /******************************************************************************
41  *
42  * RX path functions
43  *
44  ******************************************************************************/
45
46 /*
47  * Rx theory of operation
48  *
49  * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
50  * each of which point to Receive Buffers to be filled by the NIC.  These get
51  * used not only for Rx frames, but for any command response or notification
52  * from the NIC.  The driver and NIC manage the Rx buffers by means
53  * of indexes into the circular buffer.
54  *
55  * Rx Queue Indexes
56  * The host/firmware share two index registers for managing the Rx buffers.
57  *
58  * The READ index maps to the first position that the firmware may be writing
59  * to -- the driver can read up to (but not including) this position and get
60  * good data.
61  * The READ index is managed by the firmware once the card is enabled.
62  *
63  * The WRITE index maps to the last position the driver has read from -- the
64  * position preceding WRITE is the last slot the firmware can place a packet.
65  *
66  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
67  * WRITE = READ.
68  *
69  * During initialization, the host sets up the READ queue position to the first
70  * INDEX position, and WRITE to the last (READ - 1 wrapped)
71  *
72  * When the firmware places a packet in a buffer, it will advance the READ index
73  * and fire the RX interrupt.  The driver can then query the READ index and
74  * process as many packets as possible, moving the WRITE index forward as it
75  * resets the Rx queue buffers with new memory.
76  *
77  * The management in the driver is as follows:
78  * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
79  *   When the interrupt handler is called, the request is processed.
80  *   The page is either stolen - transferred to the upper layer
81  *   or reused - added immediately to the iwl->rxq->rx_free list.
82  * + When the page is stolen - the driver updates the matching queue's used
83  *   count, detaches the RBD and transfers it to the queue used list.
84  *   When there are two used RBDs - they are transferred to the allocator empty
85  *   list. Work is then scheduled for the allocator to start allocating
86  *   eight buffers.
87  *   When there are another 6 used RBDs - they are transferred to the allocator
88  *   empty list and the driver tries to claim the pre-allocated buffers and
89  *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
90  *   until ready.
91  *   When there are 8+ buffers in the free list - either from allocation or from
92  *   8 reused unstolen pages - restock is called to update the FW and indexes.
93  * + In order to make sure the allocator always has RBDs to use for allocation
94  *   the allocator has initial pool in the size of num_queues*(8-2) - the
95  *   maximum missing RBDs per allocation request (request posted with 2
96  *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
97  *   The queues supplies the recycle of the rest of the RBDs.
98  * + A received packet is processed and handed to the kernel network stack,
99  *   detached from the iwl->rxq.  The driver 'processed' index is updated.
100  * + If there are no allocated buffers in iwl->rxq->rx_free,
101  *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
102  *   If there were enough free buffers and RX_STALLED is set it is cleared.
103  *
104  *
105  * Driver sequence:
106  *
107  * iwl_rxq_alloc()            Allocates rx_free
108  * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
109  *                            iwl_pcie_rxq_restock.
110  *                            Used only during initialization.
111  * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
112  *                            queue, updates firmware pointers, and updates
113  *                            the WRITE index.
114  * iwl_pcie_rx_allocator()     Background work for allocating pages.
115  *
116  * -- enable interrupts --
117  * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
118  *                            READ INDEX, detaching the SKB from the pool.
119  *                            Moves the packet buffer from queue to rx_used.
120  *                            Posts and claims requests to the allocator.
121  *                            Calls iwl_pcie_rxq_restock to refill any empty
122  *                            slots.
123  *
124  * RBD life-cycle:
125  *
126  * Init:
127  * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
128  *
129  * Regular Receive interrupt:
130  * Page Stolen:
131  * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
132  * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
133  * Page not Stolen:
134  * rxq.queue -> rxq.rx_free -> rxq.queue
135  * ...
136  *
137  */
138
139 /*
140  * iwl_rxq_space - Return number of free slots available in queue.
141  */
142 static int iwl_rxq_space(const struct iwl_rxq *rxq)
143 {
144         /* Make sure rx queue size is a power of 2 */
145         WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
146
147         /*
148          * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
149          * between empty and completely full queues.
150          * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
151          * defined for negative dividends.
152          */
153         return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
154 }
155
156 /*
157  * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
158  */
159 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
160 {
161         return cpu_to_le32((u32)(dma_addr >> 8));
162 }
163
164 static void iwl_pcie_write_prph_64_no_grab(struct iwl_trans *trans, u64 ofs,
165                                            u64 val)
166 {
167         iwl_write_prph_no_grab(trans, ofs, val & 0xffffffff);
168         iwl_write_prph_no_grab(trans, ofs + 4, val >> 32);
169 }
170
171 /*
172  * iwl_pcie_rx_stop - stops the Rx DMA
173  */
174 int iwl_pcie_rx_stop(struct iwl_trans *trans)
175 {
176         iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
177         return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
178                                    FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 1000);
179 }
180
181 /*
182  * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
183  */
184 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
185                                     struct iwl_rxq *rxq)
186 {
187         u32 reg;
188
189         lockdep_assert_held(&rxq->lock);
190
191         /*
192          * explicitly wake up the NIC if:
193          * 1. shadow registers aren't enabled
194          * 2. there is a chance that the NIC is asleep
195          */
196         if (!trans->cfg->base_params->shadow_reg_enable &&
197             test_bit(STATUS_TPOWER_PMI, &trans->status)) {
198                 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
199
200                 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
201                         IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
202                                        reg);
203                         iwl_set_bit(trans, CSR_GP_CNTRL,
204                                     CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
205                         rxq->need_update = true;
206                         return;
207                 }
208         }
209
210         rxq->write_actual = round_down(rxq->write, 8);
211         if (trans->cfg->mq_rx_supported)
212                 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
213                             rxq->write_actual);
214         /*
215          * write to FH_RSCSR_CHNL0_WPTR register even in MQ as a W/A to
216          * hardware shadow registers bug - writing to RFH_Q_FRBDCB_WIDX will
217          * not wake the NIC.
218          */
219         iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
220 }
221
222 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
223 {
224         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
225         int i;
226
227         for (i = 0; i < trans->num_rx_queues; i++) {
228                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
229
230                 if (!rxq->need_update)
231                         continue;
232                 spin_lock(&rxq->lock);
233                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
234                 rxq->need_update = false;
235                 spin_unlock(&rxq->lock);
236         }
237 }
238
239 /*
240  * iwl_pcie_rxq_mq_restock - restock implementation for multi-queue rx
241  */
242 static void iwl_pcie_rxq_mq_restock(struct iwl_trans *trans,
243                                     struct iwl_rxq *rxq)
244 {
245         struct iwl_rx_mem_buffer *rxb;
246
247         /*
248          * If the device isn't enabled - no need to try to add buffers...
249          * This can happen when we stop the device and still have an interrupt
250          * pending. We stop the APM before we sync the interrupts because we
251          * have to (see comment there). On the other hand, since the APM is
252          * stopped, we cannot access the HW (in particular not prph).
253          * So don't try to restock if the APM has been already stopped.
254          */
255         if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
256                 return;
257
258         spin_lock(&rxq->lock);
259         while (rxq->free_count) {
260                 __le64 *bd = (__le64 *)rxq->bd;
261
262                 /* Get next free Rx buffer, remove from free list */
263                 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
264                                        list);
265                 list_del(&rxb->list);
266
267                 /* 12 first bits are expected to be empty */
268                 WARN_ON(rxb->page_dma & DMA_BIT_MASK(12));
269                 /* Point to Rx buffer via next RBD in circular buffer */
270                 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
271                 rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK;
272                 rxq->free_count--;
273         }
274         spin_unlock(&rxq->lock);
275
276         /*
277          * If we've added more space for the firmware to place data, tell it.
278          * Increment device's write pointer in multiples of 8.
279          */
280         if (rxq->write_actual != (rxq->write & ~0x7)) {
281                 spin_lock(&rxq->lock);
282                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
283                 spin_unlock(&rxq->lock);
284         }
285 }
286
287 /*
288  * iwl_pcie_rxq_sq_restock - restock implementation for single queue rx
289  */
290 static void iwl_pcie_rxq_sq_restock(struct iwl_trans *trans,
291                                     struct iwl_rxq *rxq)
292 {
293         struct iwl_rx_mem_buffer *rxb;
294
295         /*
296          * If the device isn't enabled - not need to try to add buffers...
297          * This can happen when we stop the device and still have an interrupt
298          * pending. We stop the APM before we sync the interrupts because we
299          * have to (see comment there). On the other hand, since the APM is
300          * stopped, we cannot access the HW (in particular not prph).
301          * So don't try to restock if the APM has been already stopped.
302          */
303         if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
304                 return;
305
306         spin_lock(&rxq->lock);
307         while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
308                 __le32 *bd = (__le32 *)rxq->bd;
309                 /* The overwritten rxb must be a used one */
310                 rxb = rxq->queue[rxq->write];
311                 BUG_ON(rxb && rxb->page);
312
313                 /* Get next free Rx buffer, remove from free list */
314                 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
315                                        list);
316                 list_del(&rxb->list);
317
318                 /* Point to Rx buffer via next RBD in circular buffer */
319                 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
320                 rxq->queue[rxq->write] = rxb;
321                 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
322                 rxq->free_count--;
323         }
324         spin_unlock(&rxq->lock);
325
326         /* If we've added more space for the firmware to place data, tell it.
327          * Increment device's write pointer in multiples of 8. */
328         if (rxq->write_actual != (rxq->write & ~0x7)) {
329                 spin_lock(&rxq->lock);
330                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
331                 spin_unlock(&rxq->lock);
332         }
333 }
334
335 /*
336  * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
337  *
338  * If there are slots in the RX queue that need to be restocked,
339  * and we have free pre-allocated buffers, fill the ranks as much
340  * as we can, pulling from rx_free.
341  *
342  * This moves the 'write' index forward to catch up with 'processed', and
343  * also updates the memory address in the firmware to reference the new
344  * target buffer.
345  */
346 static
347 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
348 {
349         if (trans->cfg->mq_rx_supported)
350                 iwl_pcie_rxq_mq_restock(trans, rxq);
351         else
352                 iwl_pcie_rxq_sq_restock(trans, rxq);
353 }
354
355 /*
356  * iwl_pcie_rx_alloc_page - allocates and returns a page.
357  *
358  */
359 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
360                                            gfp_t priority)
361 {
362         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
363         struct page *page;
364         gfp_t gfp_mask = priority;
365
366         if (trans_pcie->rx_page_order > 0)
367                 gfp_mask |= __GFP_COMP;
368
369         /* Alloc a new receive buffer */
370         page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
371         if (!page) {
372                 if (net_ratelimit())
373                         IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
374                                        trans_pcie->rx_page_order);
375                 /*
376                  * Issue an error if we don't have enough pre-allocated
377                   * buffers.
378 `                */
379                 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
380                         IWL_CRIT(trans,
381                                  "Failed to alloc_pages\n");
382                 return NULL;
383         }
384         return page;
385 }
386
387 /*
388  * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
389  *
390  * A used RBD is an Rx buffer that has been given to the stack. To use it again
391  * a page must be allocated and the RBD must point to the page. This function
392  * doesn't change the HW pointer but handles the list of pages that is used by
393  * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
394  * allocated buffers.
395  */
396 static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
397                                    struct iwl_rxq *rxq)
398 {
399         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
400         struct iwl_rx_mem_buffer *rxb;
401         struct page *page;
402
403         while (1) {
404                 spin_lock(&rxq->lock);
405                 if (list_empty(&rxq->rx_used)) {
406                         spin_unlock(&rxq->lock);
407                         return;
408                 }
409                 spin_unlock(&rxq->lock);
410
411                 /* Alloc a new receive buffer */
412                 page = iwl_pcie_rx_alloc_page(trans, priority);
413                 if (!page)
414                         return;
415
416                 spin_lock(&rxq->lock);
417
418                 if (list_empty(&rxq->rx_used)) {
419                         spin_unlock(&rxq->lock);
420                         __free_pages(page, trans_pcie->rx_page_order);
421                         return;
422                 }
423                 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
424                                        list);
425                 list_del(&rxb->list);
426                 spin_unlock(&rxq->lock);
427
428                 BUG_ON(rxb->page);
429                 rxb->page = page;
430                 /* Get physical address of the RB */
431                 rxb->page_dma =
432                         dma_map_page(trans->dev, page, 0,
433                                      PAGE_SIZE << trans_pcie->rx_page_order,
434                                      DMA_FROM_DEVICE);
435                 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
436                         rxb->page = NULL;
437                         spin_lock(&rxq->lock);
438                         list_add(&rxb->list, &rxq->rx_used);
439                         spin_unlock(&rxq->lock);
440                         __free_pages(page, trans_pcie->rx_page_order);
441                         return;
442                 }
443
444                 spin_lock(&rxq->lock);
445
446                 list_add_tail(&rxb->list, &rxq->rx_free);
447                 rxq->free_count++;
448
449                 spin_unlock(&rxq->lock);
450         }
451 }
452
453 static void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
454 {
455         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
456         int i;
457
458         for (i = 0; i < RX_POOL_SIZE; i++) {
459                 if (!trans_pcie->rx_pool[i].page)
460                         continue;
461                 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
462                                PAGE_SIZE << trans_pcie->rx_page_order,
463                                DMA_FROM_DEVICE);
464                 __free_pages(trans_pcie->rx_pool[i].page,
465                              trans_pcie->rx_page_order);
466                 trans_pcie->rx_pool[i].page = NULL;
467         }
468 }
469
470 /*
471  * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
472  *
473  * Allocates for each received request 8 pages
474  * Called as a scheduled work item.
475  */
476 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
477 {
478         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
479         struct iwl_rb_allocator *rba = &trans_pcie->rba;
480         struct list_head local_empty;
481         int pending = atomic_xchg(&rba->req_pending, 0);
482
483         IWL_DEBUG_RX(trans, "Pending allocation requests = %d\n", pending);
484
485         /* If we were scheduled - there is at least one request */
486         spin_lock(&rba->lock);
487         /* swap out the rba->rbd_empty to a local list */
488         list_replace_init(&rba->rbd_empty, &local_empty);
489         spin_unlock(&rba->lock);
490
491         while (pending) {
492                 int i;
493                 struct list_head local_allocated;
494                 gfp_t gfp_mask = GFP_KERNEL;
495
496                 /* Do not post a warning if there are only a few requests */
497                 if (pending < RX_PENDING_WATERMARK)
498                         gfp_mask |= __GFP_NOWARN;
499
500                 INIT_LIST_HEAD(&local_allocated);
501
502                 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
503                         struct iwl_rx_mem_buffer *rxb;
504                         struct page *page;
505
506                         /* List should never be empty - each reused RBD is
507                          * returned to the list, and initial pool covers any
508                          * possible gap between the time the page is allocated
509                          * to the time the RBD is added.
510                          */
511                         BUG_ON(list_empty(&local_empty));
512                         /* Get the first rxb from the rbd list */
513                         rxb = list_first_entry(&local_empty,
514                                                struct iwl_rx_mem_buffer, list);
515                         BUG_ON(rxb->page);
516
517                         /* Alloc a new receive buffer */
518                         page = iwl_pcie_rx_alloc_page(trans, gfp_mask);
519                         if (!page)
520                                 continue;
521                         rxb->page = page;
522
523                         /* Get physical address of the RB */
524                         rxb->page_dma = dma_map_page(trans->dev, page, 0,
525                                         PAGE_SIZE << trans_pcie->rx_page_order,
526                                         DMA_FROM_DEVICE);
527                         if (dma_mapping_error(trans->dev, rxb->page_dma)) {
528                                 rxb->page = NULL;
529                                 __free_pages(page, trans_pcie->rx_page_order);
530                                 continue;
531                         }
532
533                         /* move the allocated entry to the out list */
534                         list_move(&rxb->list, &local_allocated);
535                         i++;
536                 }
537
538                 pending--;
539                 if (!pending) {
540                         pending = atomic_xchg(&rba->req_pending, 0);
541                         IWL_DEBUG_RX(trans,
542                                      "Pending allocation requests = %d\n",
543                                      pending);
544                 }
545
546                 spin_lock(&rba->lock);
547                 /* add the allocated rbds to the allocator allocated list */
548                 list_splice_tail(&local_allocated, &rba->rbd_allocated);
549                 /* get more empty RBDs for current pending requests */
550                 list_splice_tail_init(&rba->rbd_empty, &local_empty);
551                 spin_unlock(&rba->lock);
552
553                 atomic_inc(&rba->req_ready);
554         }
555
556         spin_lock(&rba->lock);
557         /* return unused rbds to the allocator empty list */
558         list_splice_tail(&local_empty, &rba->rbd_empty);
559         spin_unlock(&rba->lock);
560 }
561
562 /*
563  * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
564 .*
565 .* Called by queue when the queue posted allocation request and
566  * has freed 8 RBDs in order to restock itself.
567  * This function directly moves the allocated RBs to the queue's ownership
568  * and updates the relevant counters.
569  */
570 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
571                                       struct iwl_rxq *rxq)
572 {
573         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
574         struct iwl_rb_allocator *rba = &trans_pcie->rba;
575         int i;
576
577         lockdep_assert_held(&rxq->lock);
578
579         /*
580          * atomic_dec_if_positive returns req_ready - 1 for any scenario.
581          * If req_ready is 0 atomic_dec_if_positive will return -1 and this
582          * function will return early, as there are no ready requests.
583          * atomic_dec_if_positive will perofrm the *actual* decrement only if
584          * req_ready > 0, i.e. - there are ready requests and the function
585          * hands one request to the caller.
586          */
587         if (atomic_dec_if_positive(&rba->req_ready) < 0)
588                 return;
589
590         spin_lock(&rba->lock);
591         for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
592                 /* Get next free Rx buffer, remove it from free list */
593                 struct iwl_rx_mem_buffer *rxb =
594                         list_first_entry(&rba->rbd_allocated,
595                                          struct iwl_rx_mem_buffer, list);
596
597                 list_move(&rxb->list, &rxq->rx_free);
598         }
599         spin_unlock(&rba->lock);
600
601         rxq->used_count -= RX_CLAIM_REQ_ALLOC;
602         rxq->free_count += RX_CLAIM_REQ_ALLOC;
603 }
604
605 static void iwl_pcie_rx_allocator_work(struct work_struct *data)
606 {
607         struct iwl_rb_allocator *rba_p =
608                 container_of(data, struct iwl_rb_allocator, rx_alloc);
609         struct iwl_trans_pcie *trans_pcie =
610                 container_of(rba_p, struct iwl_trans_pcie, rba);
611
612         iwl_pcie_rx_allocator(trans_pcie->trans);
613 }
614
615 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
616 {
617         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
618         struct iwl_rb_allocator *rba = &trans_pcie->rba;
619         struct device *dev = trans->dev;
620         int i;
621         int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
622                                                       sizeof(__le32);
623
624         if (WARN_ON(trans_pcie->rxq))
625                 return -EINVAL;
626
627         trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
628                                   GFP_KERNEL);
629         if (!trans_pcie->rxq)
630                 return -EINVAL;
631
632         spin_lock_init(&rba->lock);
633
634         for (i = 0; i < trans->num_rx_queues; i++) {
635                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
636
637                 spin_lock_init(&rxq->lock);
638                 if (trans->cfg->mq_rx_supported)
639                         rxq->queue_size = MQ_RX_TABLE_SIZE;
640                 else
641                         rxq->queue_size = RX_QUEUE_SIZE;
642
643                 /*
644                  * Allocate the circular buffer of Read Buffer Descriptors
645                  * (RBDs)
646                  */
647                 rxq->bd = dma_zalloc_coherent(dev,
648                                              free_size * rxq->queue_size,
649                                              &rxq->bd_dma, GFP_KERNEL);
650                 if (!rxq->bd)
651                         goto err;
652
653                 if (trans->cfg->mq_rx_supported) {
654                         rxq->used_bd = dma_zalloc_coherent(dev,
655                                                            sizeof(__le32) *
656                                                            rxq->queue_size,
657                                                            &rxq->used_bd_dma,
658                                                            GFP_KERNEL);
659                         if (!rxq->used_bd)
660                                 goto err;
661                 }
662
663                 /*Allocate the driver's pointer to receive buffer status */
664                 rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts),
665                                                    &rxq->rb_stts_dma,
666                                                    GFP_KERNEL);
667                 if (!rxq->rb_stts)
668                         goto err;
669         }
670         return 0;
671
672 err:
673         for (i = 0; i < trans->num_rx_queues; i++) {
674                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
675
676                 if (rxq->bd)
677                         dma_free_coherent(dev, free_size * rxq->queue_size,
678                                           rxq->bd, rxq->bd_dma);
679                 rxq->bd_dma = 0;
680                 rxq->bd = NULL;
681
682                 if (rxq->rb_stts)
683                         dma_free_coherent(trans->dev,
684                                           sizeof(struct iwl_rb_status),
685                                           rxq->rb_stts, rxq->rb_stts_dma);
686
687                 if (rxq->used_bd)
688                         dma_free_coherent(dev, sizeof(__le32) * rxq->queue_size,
689                                           rxq->used_bd, rxq->used_bd_dma);
690                 rxq->used_bd_dma = 0;
691                 rxq->used_bd = NULL;
692         }
693         kfree(trans_pcie->rxq);
694
695         return -ENOMEM;
696 }
697
698 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
699 {
700         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
701         u32 rb_size;
702         unsigned long flags;
703         const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
704
705         switch (trans_pcie->rx_buf_size) {
706         case IWL_AMSDU_4K:
707                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
708                 break;
709         case IWL_AMSDU_8K:
710                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
711                 break;
712         case IWL_AMSDU_12K:
713                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
714                 break;
715         default:
716                 WARN_ON(1);
717                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
718         }
719
720         if (!iwl_trans_grab_nic_access(trans, &flags))
721                 return;
722
723         /* Stop Rx DMA */
724         iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
725         /* reset and flush pointers */
726         iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
727         iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
728         iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
729
730         /* Reset driver's Rx queue write index */
731         iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
732
733         /* Tell device where to find RBD circular buffer in DRAM */
734         iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
735                     (u32)(rxq->bd_dma >> 8));
736
737         /* Tell device where in DRAM to update its Rx status */
738         iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
739                     rxq->rb_stts_dma >> 4);
740
741         /* Enable Rx DMA
742          * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
743          *      the credit mechanism in 5000 HW RX FIFO
744          * Direct rx interrupts to hosts
745          * Rx buffer size 4 or 8k or 12k
746          * RB timeout 0x10
747          * 256 RBDs
748          */
749         iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
750                     FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
751                     FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
752                     FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
753                     rb_size |
754                     (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
755                     (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
756
757         iwl_trans_release_nic_access(trans, &flags);
758
759         /* Set interrupt coalescing timer to default (2048 usecs) */
760         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
761
762         /* W/A for interrupt coalescing bug in 7260 and 3160 */
763         if (trans->cfg->host_interrupt_operation_mode)
764                 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
765 }
766
767 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
768 {
769         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
770         u32 rb_size, enabled = 0;
771         unsigned long flags;
772         int i;
773
774         switch (trans_pcie->rx_buf_size) {
775         case IWL_AMSDU_4K:
776                 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
777                 break;
778         case IWL_AMSDU_8K:
779                 rb_size = RFH_RXF_DMA_RB_SIZE_8K;
780                 break;
781         case IWL_AMSDU_12K:
782                 rb_size = RFH_RXF_DMA_RB_SIZE_12K;
783                 break;
784         default:
785                 WARN_ON(1);
786                 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
787         }
788
789         if (!iwl_trans_grab_nic_access(trans, &flags))
790                 return;
791
792         /* Stop Rx DMA */
793         iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
794         /* disable free amd used rx queue operation */
795         iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
796
797         for (i = 0; i < trans->num_rx_queues; i++) {
798                 /* Tell device where to find RBD free table in DRAM */
799                 iwl_pcie_write_prph_64_no_grab(trans,
800                                                RFH_Q_FRBDCB_BA_LSB(i),
801                                                trans_pcie->rxq[i].bd_dma);
802                 /* Tell device where to find RBD used table in DRAM */
803                 iwl_pcie_write_prph_64_no_grab(trans,
804                                                RFH_Q_URBDCB_BA_LSB(i),
805                                                trans_pcie->rxq[i].used_bd_dma);
806                 /* Tell device where in DRAM to update its Rx status */
807                 iwl_pcie_write_prph_64_no_grab(trans,
808                                                RFH_Q_URBD_STTS_WPTR_LSB(i),
809                                                trans_pcie->rxq[i].rb_stts_dma);
810                 /* Reset device indice tables */
811                 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
812                 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
813                 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
814
815                 enabled |= BIT(i) | BIT(i + 16);
816         }
817
818         /* restock default queue */
819         iwl_pcie_rxq_mq_restock(trans, &trans_pcie->rxq[0]);
820
821         /*
822          * Enable Rx DMA
823          * Single frame mode
824          * Rx buffer size 4 or 8k or 12k
825          * Min RB size 4 or 8
826          * Drop frames that exceed RB size
827          * 512 RBDs
828          */
829         iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
830                                RFH_DMA_EN_ENABLE_VAL |
831                                rb_size | RFH_RXF_DMA_SINGLE_FRAME_MASK |
832                                RFH_RXF_DMA_MIN_RB_4_8 |
833                                RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
834                                RFH_RXF_DMA_RBDCB_SIZE_512);
835
836         /*
837          * Activate DMA snooping.
838          * Set RX DMA chunk size to 64B
839          * Default queue is 0
840          */
841         iwl_write_prph_no_grab(trans, RFH_GEN_CFG, RFH_GEN_CFG_RFH_DMA_SNOOP |
842                                (DEFAULT_RXQ_NUM <<
843                                 RFH_GEN_CFG_DEFAULT_RXQ_NUM_POS) |
844                                RFH_GEN_CFG_SERVICE_DMA_SNOOP);
845         /* Enable the relevant rx queues */
846         iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
847
848         iwl_trans_release_nic_access(trans, &flags);
849
850         /* Set interrupt coalescing timer to default (2048 usecs) */
851         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
852 }
853
854 static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
855 {
856         lockdep_assert_held(&rxq->lock);
857
858         INIT_LIST_HEAD(&rxq->rx_free);
859         INIT_LIST_HEAD(&rxq->rx_used);
860         rxq->free_count = 0;
861         rxq->used_count = 0;
862 }
863
864 static int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
865 {
866         WARN_ON(1);
867         return 0;
868 }
869
870 int iwl_pcie_rx_init(struct iwl_trans *trans)
871 {
872         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
873         struct iwl_rxq *def_rxq;
874         struct iwl_rb_allocator *rba = &trans_pcie->rba;
875         int i, err, queue_size, allocator_pool_size, num_alloc;
876
877         if (!trans_pcie->rxq) {
878                 err = iwl_pcie_rx_alloc(trans);
879                 if (err)
880                         return err;
881         }
882         def_rxq = trans_pcie->rxq;
883         if (!rba->alloc_wq)
884                 rba->alloc_wq = alloc_workqueue("rb_allocator",
885                                                 WQ_HIGHPRI | WQ_UNBOUND, 1);
886         INIT_WORK(&rba->rx_alloc, iwl_pcie_rx_allocator_work);
887
888         spin_lock(&rba->lock);
889         atomic_set(&rba->req_pending, 0);
890         atomic_set(&rba->req_ready, 0);
891         INIT_LIST_HEAD(&rba->rbd_allocated);
892         INIT_LIST_HEAD(&rba->rbd_empty);
893         spin_unlock(&rba->lock);
894
895         /* free all first - we might be reconfigured for a different size */
896         iwl_pcie_free_rbs_pool(trans);
897
898         for (i = 0; i < RX_QUEUE_SIZE; i++)
899                 def_rxq->queue[i] = NULL;
900
901         for (i = 0; i < trans->num_rx_queues; i++) {
902                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
903
904                 rxq->id = i;
905
906                 spin_lock(&rxq->lock);
907                 /*
908                  * Set read write pointer to reflect that we have processed
909                  * and used all buffers, but have not restocked the Rx queue
910                  * with fresh buffers
911                  */
912                 rxq->read = 0;
913                 rxq->write = 0;
914                 rxq->write_actual = 0;
915                 memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts));
916
917                 iwl_pcie_rx_init_rxb_lists(rxq);
918
919                 if (!rxq->napi.poll)
920                         netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
921                                        iwl_pcie_dummy_napi_poll, 64);
922
923                 spin_unlock(&rxq->lock);
924         }
925
926         /* move the pool to the default queue and allocator ownerships */
927         queue_size = trans->cfg->mq_rx_supported ?
928                      MQ_RX_NUM_RBDS : RX_QUEUE_SIZE;
929         allocator_pool_size = trans->num_rx_queues *
930                 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
931         num_alloc = queue_size + allocator_pool_size;
932         BUILD_BUG_ON(ARRAY_SIZE(trans_pcie->global_table) !=
933                      ARRAY_SIZE(trans_pcie->rx_pool));
934         for (i = 0; i < num_alloc; i++) {
935                 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
936
937                 if (i < allocator_pool_size)
938                         list_add(&rxb->list, &rba->rbd_empty);
939                 else
940                         list_add(&rxb->list, &def_rxq->rx_used);
941                 trans_pcie->global_table[i] = rxb;
942                 rxb->vid = (u16)i;
943         }
944
945         iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
946         if (trans->cfg->mq_rx_supported) {
947                 iwl_pcie_rx_mq_hw_init(trans);
948         } else {
949                 iwl_pcie_rxq_sq_restock(trans, def_rxq);
950                 iwl_pcie_rx_hw_init(trans, def_rxq);
951         }
952
953         spin_lock(&def_rxq->lock);
954         iwl_pcie_rxq_inc_wr_ptr(trans, def_rxq);
955         spin_unlock(&def_rxq->lock);
956
957         return 0;
958 }
959
960 void iwl_pcie_rx_free(struct iwl_trans *trans)
961 {
962         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
963         struct iwl_rb_allocator *rba = &trans_pcie->rba;
964         int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
965                                               sizeof(__le32);
966         int i;
967
968         /*
969          * if rxq is NULL, it means that nothing has been allocated,
970          * exit now
971          */
972         if (!trans_pcie->rxq) {
973                 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
974                 return;
975         }
976
977         cancel_work_sync(&rba->rx_alloc);
978         if (rba->alloc_wq) {
979                 destroy_workqueue(rba->alloc_wq);
980                 rba->alloc_wq = NULL;
981         }
982
983         iwl_pcie_free_rbs_pool(trans);
984
985         for (i = 0; i < trans->num_rx_queues; i++) {
986                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
987
988                 if (rxq->bd)
989                         dma_free_coherent(trans->dev,
990                                           free_size * rxq->queue_size,
991                                           rxq->bd, rxq->bd_dma);
992                 rxq->bd_dma = 0;
993                 rxq->bd = NULL;
994
995                 if (rxq->rb_stts)
996                         dma_free_coherent(trans->dev,
997                                           sizeof(struct iwl_rb_status),
998                                           rxq->rb_stts, rxq->rb_stts_dma);
999                 else
1000                         IWL_DEBUG_INFO(trans,
1001                                        "Free rxq->rb_stts which is NULL\n");
1002
1003                 if (rxq->used_bd)
1004                         dma_free_coherent(trans->dev,
1005                                           sizeof(__le32) * rxq->queue_size,
1006                                           rxq->used_bd, rxq->used_bd_dma);
1007                 rxq->used_bd_dma = 0;
1008                 rxq->used_bd = NULL;
1009
1010                 if (rxq->napi.poll)
1011                         netif_napi_del(&rxq->napi);
1012         }
1013         kfree(trans_pcie->rxq);
1014 }
1015
1016 /*
1017  * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1018  *
1019  * Called when a RBD can be reused. The RBD is transferred to the allocator.
1020  * When there are 2 empty RBDs - a request for allocation is posted
1021  */
1022 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1023                                   struct iwl_rx_mem_buffer *rxb,
1024                                   struct iwl_rxq *rxq, bool emergency)
1025 {
1026         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1027         struct iwl_rb_allocator *rba = &trans_pcie->rba;
1028
1029         /* Move the RBD to the used list, will be moved to allocator in batches
1030          * before claiming or posting a request*/
1031         list_add_tail(&rxb->list, &rxq->rx_used);
1032
1033         if (unlikely(emergency))
1034                 return;
1035
1036         /* Count the allocator owned RBDs */
1037         rxq->used_count++;
1038
1039         /* If we have RX_POST_REQ_ALLOC new released rx buffers -
1040          * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1041          * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1042          * after but we still need to post another request.
1043          */
1044         if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1045                 /* Move the 2 RBDs to the allocator ownership.
1046                  Allocator has another 6 from pool for the request completion*/
1047                 spin_lock(&rba->lock);
1048                 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1049                 spin_unlock(&rba->lock);
1050
1051                 atomic_inc(&rba->req_pending);
1052                 queue_work(rba->alloc_wq, &rba->rx_alloc);
1053         }
1054 }
1055
1056 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1057                                 struct iwl_rxq *rxq,
1058                                 struct iwl_rx_mem_buffer *rxb,
1059                                 bool emergency)
1060 {
1061         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1062         struct iwl_txq *txq = &trans_pcie->txq[trans_pcie->cmd_queue];
1063         bool page_stolen = false;
1064         int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
1065         u32 offset = 0;
1066
1067         if (WARN_ON(!rxb))
1068                 return;
1069
1070         dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1071
1072         while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1073                 struct iwl_rx_packet *pkt;
1074                 u16 sequence;
1075                 bool reclaim;
1076                 int index, cmd_index, len;
1077                 struct iwl_rx_cmd_buffer rxcb = {
1078                         ._offset = offset,
1079                         ._rx_page_order = trans_pcie->rx_page_order,
1080                         ._page = rxb->page,
1081                         ._page_stolen = false,
1082                         .truesize = max_len,
1083                 };
1084
1085                 pkt = rxb_addr(&rxcb);
1086
1087                 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID))
1088                         break;
1089
1090                 IWL_DEBUG_RX(trans,
1091                              "cmd at offset %d: %s (0x%.2x, seq 0x%x)\n",
1092                              rxcb._offset,
1093                              iwl_get_cmd_string(trans,
1094                                                 iwl_cmd_id(pkt->hdr.cmd,
1095                                                            pkt->hdr.group_id,
1096                                                            0)),
1097                              pkt->hdr.cmd, le16_to_cpu(pkt->hdr.sequence));
1098
1099                 len = iwl_rx_packet_len(pkt);
1100                 len += sizeof(u32); /* account for status word */
1101                 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1102                 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1103
1104                 /* Reclaim a command buffer only if this packet is a response
1105                  *   to a (driver-originated) command.
1106                  * If the packet (e.g. Rx frame) originated from uCode,
1107                  *   there is no command buffer to reclaim.
1108                  * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1109                  *   but apparently a few don't get set; catch them here. */
1110                 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1111                 if (reclaim) {
1112                         int i;
1113
1114                         for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1115                                 if (trans_pcie->no_reclaim_cmds[i] ==
1116                                                         pkt->hdr.cmd) {
1117                                         reclaim = false;
1118                                         break;
1119                                 }
1120                         }
1121                 }
1122
1123                 sequence = le16_to_cpu(pkt->hdr.sequence);
1124                 index = SEQ_TO_INDEX(sequence);
1125                 cmd_index = get_cmd_index(&txq->q, index);
1126
1127                 if (rxq->id == 0)
1128                         iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1129                                        &rxcb);
1130                 else
1131                         iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1132                                            &rxcb, rxq->id);
1133
1134                 if (reclaim) {
1135                         kzfree(txq->entries[cmd_index].free_buf);
1136                         txq->entries[cmd_index].free_buf = NULL;
1137                 }
1138
1139                 /*
1140                  * After here, we should always check rxcb._page_stolen,
1141                  * if it is true then one of the handlers took the page.
1142                  */
1143
1144                 if (reclaim) {
1145                         /* Invoke any callbacks, transfer the buffer to caller,
1146                          * and fire off the (possibly) blocking
1147                          * iwl_trans_send_cmd()
1148                          * as we reclaim the driver command queue */
1149                         if (!rxcb._page_stolen)
1150                                 iwl_pcie_hcmd_complete(trans, &rxcb);
1151                         else
1152                                 IWL_WARN(trans, "Claim null rxb?\n");
1153                 }
1154
1155                 page_stolen |= rxcb._page_stolen;
1156                 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1157         }
1158
1159         /* page was stolen from us -- free our reference */
1160         if (page_stolen) {
1161                 __free_pages(rxb->page, trans_pcie->rx_page_order);
1162                 rxb->page = NULL;
1163         }
1164
1165         /* Reuse the page if possible. For notification packets and
1166          * SKBs that fail to Rx correctly, add them back into the
1167          * rx_free list for reuse later. */
1168         if (rxb->page != NULL) {
1169                 rxb->page_dma =
1170                         dma_map_page(trans->dev, rxb->page, 0,
1171                                      PAGE_SIZE << trans_pcie->rx_page_order,
1172                                      DMA_FROM_DEVICE);
1173                 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1174                         /*
1175                          * free the page(s) as well to not break
1176                          * the invariant that the items on the used
1177                          * list have no page(s)
1178                          */
1179                         __free_pages(rxb->page, trans_pcie->rx_page_order);
1180                         rxb->page = NULL;
1181                         iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1182                 } else {
1183                         list_add_tail(&rxb->list, &rxq->rx_free);
1184                         rxq->free_count++;
1185                 }
1186         } else
1187                 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1188 }
1189
1190 /*
1191  * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1192  */
1193 static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
1194 {
1195         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1196         struct iwl_rxq *rxq = &trans_pcie->rxq[queue];
1197         u32 r, i, count = 0;
1198         bool emergency = false;
1199
1200 restart:
1201         spin_lock(&rxq->lock);
1202         /* uCode's read index (stored in shared DRAM) indicates the last Rx
1203          * buffer that the driver may process (last buffer filled by ucode). */
1204         r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF;
1205         i = rxq->read;
1206
1207         /* W/A 9000 device step A0 wrap-around bug */
1208         r &= (rxq->queue_size - 1);
1209
1210         /* Rx interrupt, but nothing sent from uCode */
1211         if (i == r)
1212                 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1213
1214         while (i != r) {
1215                 struct iwl_rx_mem_buffer *rxb;
1216
1217                 if (unlikely(rxq->used_count == rxq->queue_size / 2))
1218                         emergency = true;
1219
1220                 if (trans->cfg->mq_rx_supported) {
1221                         /*
1222                          * used_bd is a 32 bit but only 12 are used to retrieve
1223                          * the vid
1224                          */
1225                         u16 vid = le32_to_cpu(rxq->used_bd[i]) & 0x0FFF;
1226
1227                         if (WARN(vid >= ARRAY_SIZE(trans_pcie->global_table),
1228                                  "Invalid rxb index from HW %u\n", (u32)vid))
1229                                 goto out;
1230                         rxb = trans_pcie->global_table[vid];
1231                 } else {
1232                         rxb = rxq->queue[i];
1233                         rxq->queue[i] = NULL;
1234                 }
1235
1236                 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1237                 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency);
1238
1239                 i = (i + 1) & (rxq->queue_size - 1);
1240
1241                 /*
1242                  * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1243                  * try to claim the pre-allocated buffers from the allocator.
1244                  * If not ready - will try to reclaim next time.
1245                  * There is no need to reschedule work - allocator exits only
1246                  * on success
1247                  */
1248                 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1249                         iwl_pcie_rx_allocator_get(trans, rxq);
1250
1251                 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1252                         struct iwl_rb_allocator *rba = &trans_pcie->rba;
1253
1254                         /* Add the remaining empty RBDs for allocator use */
1255                         spin_lock(&rba->lock);
1256                         list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1257                         spin_unlock(&rba->lock);
1258                 } else if (emergency) {
1259                         count++;
1260                         if (count == 8) {
1261                                 count = 0;
1262                                 if (rxq->used_count < rxq->queue_size / 3)
1263                                         emergency = false;
1264
1265                                 rxq->read = i;
1266                                 spin_unlock(&rxq->lock);
1267                                 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1268                                 iwl_pcie_rxq_restock(trans, rxq);
1269                                 goto restart;
1270                         }
1271                 }
1272         }
1273 out:
1274         /* Backtrack one entry */
1275         rxq->read = i;
1276         spin_unlock(&rxq->lock);
1277
1278         /*
1279          * handle a case where in emergency there are some unallocated RBDs.
1280          * those RBDs are in the used list, but are not tracked by the queue's
1281          * used_count which counts allocator owned RBDs.
1282          * unallocated emergency RBDs must be allocated on exit, otherwise
1283          * when called again the function may not be in emergency mode and
1284          * they will be handed to the allocator with no tracking in the RBD
1285          * allocator counters, which will lead to them never being claimed back
1286          * by the queue.
1287          * by allocating them here, they are now in the queue free list, and
1288          * will be restocked by the next call of iwl_pcie_rxq_restock.
1289          */
1290         if (unlikely(emergency && count))
1291                 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1292
1293         if (rxq->napi.poll)
1294                 napi_gro_flush(&rxq->napi, false);
1295
1296         iwl_pcie_rxq_restock(trans, rxq);
1297 }
1298
1299 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1300 {
1301         u8 queue = entry->entry;
1302         struct msix_entry *entries = entry - queue;
1303
1304         return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1305 }
1306
1307 static inline void iwl_pcie_clear_irq(struct iwl_trans *trans,
1308                                       struct msix_entry *entry)
1309 {
1310         /*
1311          * Before sending the interrupt the HW disables it to prevent
1312          * a nested interrupt. This is done by writing 1 to the corresponding
1313          * bit in the mask register. After handling the interrupt, it should be
1314          * re-enabled by clearing this bit. This register is defined as
1315          * write 1 clear (W1C) register, meaning that it's being clear
1316          * by writing 1 to the bit.
1317          */
1318         iwl_write32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(entry->entry));
1319 }
1320
1321 /*
1322  * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1323  * This interrupt handler should be used with RSS queue only.
1324  */
1325 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1326 {
1327         struct msix_entry *entry = dev_id;
1328         struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1329         struct iwl_trans *trans = trans_pcie->trans;
1330
1331         if (WARN_ON(entry->entry >= trans->num_rx_queues))
1332                 return IRQ_NONE;
1333
1334         lock_map_acquire(&trans->sync_cmd_lockdep_map);
1335
1336         local_bh_disable();
1337         iwl_pcie_rx_handle(trans, entry->entry);
1338         local_bh_enable();
1339
1340         iwl_pcie_clear_irq(trans, entry);
1341
1342         lock_map_release(&trans->sync_cmd_lockdep_map);
1343
1344         return IRQ_HANDLED;
1345 }
1346
1347 /*
1348  * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1349  */
1350 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1351 {
1352         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1353         int i;
1354
1355         /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1356         if (trans->cfg->internal_wimax_coex &&
1357             !trans->cfg->apmg_not_supported &&
1358             (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1359                              APMS_CLK_VAL_MRB_FUNC_MODE) ||
1360              (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1361                             APMG_PS_CTRL_VAL_RESET_REQ))) {
1362                 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1363                 iwl_op_mode_wimax_active(trans->op_mode);
1364                 wake_up(&trans_pcie->wait_command_queue);
1365                 return;
1366         }
1367
1368         iwl_pcie_dump_csr(trans);
1369         iwl_dump_fh(trans, NULL);
1370
1371         local_bh_disable();
1372         /* The STATUS_FW_ERROR bit is set in this function. This must happen
1373          * before we wake up the command caller, to ensure a proper cleanup. */
1374         iwl_trans_fw_error(trans);
1375         local_bh_enable();
1376
1377         for (i = 0; i < trans->cfg->base_params->num_of_queues; i++)
1378                 del_timer(&trans_pcie->txq[i].stuck_timer);
1379
1380         clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1381         wake_up(&trans_pcie->wait_command_queue);
1382 }
1383
1384 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1385 {
1386         u32 inta;
1387
1388         lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1389
1390         trace_iwlwifi_dev_irq(trans->dev);
1391
1392         /* Discover which interrupts are active/pending */
1393         inta = iwl_read32(trans, CSR_INT);
1394
1395         /* the thread will service interrupts and re-enable them */
1396         return inta;
1397 }
1398
1399 /* a device (PCI-E) page is 4096 bytes long */
1400 #define ICT_SHIFT       12
1401 #define ICT_SIZE        (1 << ICT_SHIFT)
1402 #define ICT_COUNT       (ICT_SIZE / sizeof(u32))
1403
1404 /* interrupt handler using ict table, with this interrupt driver will
1405  * stop using INTA register to get device's interrupt, reading this register
1406  * is expensive, device will write interrupts in ICT dram table, increment
1407  * index then will fire interrupt to driver, driver will OR all ICT table
1408  * entries from current index up to table entry with 0 value. the result is
1409  * the interrupt we need to service, driver will set the entries back to 0 and
1410  * set index.
1411  */
1412 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1413 {
1414         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1415         u32 inta;
1416         u32 val = 0;
1417         u32 read;
1418
1419         trace_iwlwifi_dev_irq(trans->dev);
1420
1421         /* Ignore interrupt if there's nothing in NIC to service.
1422          * This may be due to IRQ shared with another device,
1423          * or due to sporadic interrupts thrown from our NIC. */
1424         read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1425         trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1426         if (!read)
1427                 return 0;
1428
1429         /*
1430          * Collect all entries up to the first 0, starting from ict_index;
1431          * note we already read at ict_index.
1432          */
1433         do {
1434                 val |= read;
1435                 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1436                                 trans_pcie->ict_index, read);
1437                 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1438                 trans_pcie->ict_index =
1439                         ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1440
1441                 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1442                 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1443                                            read);
1444         } while (read);
1445
1446         /* We should not get this value, just ignore it. */
1447         if (val == 0xffffffff)
1448                 val = 0;
1449
1450         /*
1451          * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1452          * (bit 15 before shifting it to 31) to clear when using interrupt
1453          * coalescing. fortunately, bits 18 and 19 stay set when this happens
1454          * so we use them to decide on the real state of the Rx bit.
1455          * In order words, bit 15 is set if bit 18 or bit 19 are set.
1456          */
1457         if (val & 0xC0000)
1458                 val |= 0x8000;
1459
1460         inta = (0xff & val) | ((0xff00 & val) << 16);
1461         return inta;
1462 }
1463
1464 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1465 {
1466         struct iwl_trans *trans = dev_id;
1467         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1468         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1469         u32 inta = 0;
1470         u32 handled = 0;
1471
1472         lock_map_acquire(&trans->sync_cmd_lockdep_map);
1473
1474         spin_lock(&trans_pcie->irq_lock);
1475
1476         /* dram interrupt table not set yet,
1477          * use legacy interrupt.
1478          */
1479         if (likely(trans_pcie->use_ict))
1480                 inta = iwl_pcie_int_cause_ict(trans);
1481         else
1482                 inta = iwl_pcie_int_cause_non_ict(trans);
1483
1484         if (iwl_have_debug_level(IWL_DL_ISR)) {
1485                 IWL_DEBUG_ISR(trans,
1486                               "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1487                               inta, trans_pcie->inta_mask,
1488                               iwl_read32(trans, CSR_INT_MASK),
1489                               iwl_read32(trans, CSR_FH_INT_STATUS));
1490                 if (inta & (~trans_pcie->inta_mask))
1491                         IWL_DEBUG_ISR(trans,
1492                                       "We got a masked interrupt (0x%08x)\n",
1493                                       inta & (~trans_pcie->inta_mask));
1494         }
1495
1496         inta &= trans_pcie->inta_mask;
1497
1498         /*
1499          * Ignore interrupt if there's nothing in NIC to service.
1500          * This may be due to IRQ shared with another device,
1501          * or due to sporadic interrupts thrown from our NIC.
1502          */
1503         if (unlikely(!inta)) {
1504                 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1505                 /*
1506                  * Re-enable interrupts here since we don't
1507                  * have anything to service
1508                  */
1509                 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1510                         iwl_enable_interrupts(trans);
1511                 spin_unlock(&trans_pcie->irq_lock);
1512                 lock_map_release(&trans->sync_cmd_lockdep_map);
1513                 return IRQ_NONE;
1514         }
1515
1516         if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1517                 /*
1518                  * Hardware disappeared. It might have
1519                  * already raised an interrupt.
1520                  */
1521                 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1522                 spin_unlock(&trans_pcie->irq_lock);
1523                 goto out;
1524         }
1525
1526         /* Ack/clear/reset pending uCode interrupts.
1527          * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1528          */
1529         /* There is a hardware bug in the interrupt mask function that some
1530          * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1531          * they are disabled in the CSR_INT_MASK register. Furthermore the
1532          * ICT interrupt handling mechanism has another bug that might cause
1533          * these unmasked interrupts fail to be detected. We workaround the
1534          * hardware bugs here by ACKing all the possible interrupts so that
1535          * interrupt coalescing can still be achieved.
1536          */
1537         iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1538
1539         if (iwl_have_debug_level(IWL_DL_ISR))
1540                 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1541                               inta, iwl_read32(trans, CSR_INT_MASK));
1542
1543         spin_unlock(&trans_pcie->irq_lock);
1544
1545         /* Now service all interrupt bits discovered above. */
1546         if (inta & CSR_INT_BIT_HW_ERR) {
1547                 IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1548
1549                 /* Tell the device to stop sending interrupts */
1550                 iwl_disable_interrupts(trans);
1551
1552                 isr_stats->hw++;
1553                 iwl_pcie_irq_handle_error(trans);
1554
1555                 handled |= CSR_INT_BIT_HW_ERR;
1556
1557                 goto out;
1558         }
1559
1560         if (iwl_have_debug_level(IWL_DL_ISR)) {
1561                 /* NIC fires this, but we don't use it, redundant with WAKEUP */
1562                 if (inta & CSR_INT_BIT_SCD) {
1563                         IWL_DEBUG_ISR(trans,
1564                                       "Scheduler finished to transmit the frame/frames.\n");
1565                         isr_stats->sch++;
1566                 }
1567
1568                 /* Alive notification via Rx interrupt will do the real work */
1569                 if (inta & CSR_INT_BIT_ALIVE) {
1570                         IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1571                         isr_stats->alive++;
1572                 }
1573         }
1574
1575         /* Safely ignore these bits for debug checks below */
1576         inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1577
1578         /* HW RF KILL switch toggled */
1579         if (inta & CSR_INT_BIT_RF_KILL) {
1580                 bool hw_rfkill;
1581
1582                 hw_rfkill = iwl_is_rfkill_set(trans);
1583                 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1584                          hw_rfkill ? "disable radio" : "enable radio");
1585
1586                 isr_stats->rfkill++;
1587
1588                 mutex_lock(&trans_pcie->mutex);
1589                 iwl_trans_pcie_rf_kill(trans, hw_rfkill);
1590                 mutex_unlock(&trans_pcie->mutex);
1591                 if (hw_rfkill) {
1592                         set_bit(STATUS_RFKILL, &trans->status);
1593                         if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1594                                                &trans->status))
1595                                 IWL_DEBUG_RF_KILL(trans,
1596                                                   "Rfkill while SYNC HCMD in flight\n");
1597                         wake_up(&trans_pcie->wait_command_queue);
1598                 } else {
1599                         clear_bit(STATUS_RFKILL, &trans->status);
1600                 }
1601
1602                 handled |= CSR_INT_BIT_RF_KILL;
1603         }
1604
1605         /* Chip got too hot and stopped itself */
1606         if (inta & CSR_INT_BIT_CT_KILL) {
1607                 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1608                 isr_stats->ctkill++;
1609                 handled |= CSR_INT_BIT_CT_KILL;
1610         }
1611
1612         /* Error detected by uCode */
1613         if (inta & CSR_INT_BIT_SW_ERR) {
1614                 IWL_ERR(trans, "Microcode SW error detected. "
1615                         " Restarting 0x%X.\n", inta);
1616                 isr_stats->sw++;
1617                 iwl_pcie_irq_handle_error(trans);
1618                 handled |= CSR_INT_BIT_SW_ERR;
1619         }
1620
1621         /* uCode wakes up after power-down sleep */
1622         if (inta & CSR_INT_BIT_WAKEUP) {
1623                 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1624                 iwl_pcie_rxq_check_wrptr(trans);
1625                 iwl_pcie_txq_check_wrptrs(trans);
1626
1627                 isr_stats->wakeup++;
1628
1629                 handled |= CSR_INT_BIT_WAKEUP;
1630         }
1631
1632         /* All uCode command responses, including Tx command responses,
1633          * Rx "responses" (frame-received notification), and other
1634          * notifications from uCode come through here*/
1635         if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1636                     CSR_INT_BIT_RX_PERIODIC)) {
1637                 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1638                 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1639                         handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1640                         iwl_write32(trans, CSR_FH_INT_STATUS,
1641                                         CSR_FH_INT_RX_MASK);
1642                 }
1643                 if (inta & CSR_INT_BIT_RX_PERIODIC) {
1644                         handled |= CSR_INT_BIT_RX_PERIODIC;
1645                         iwl_write32(trans,
1646                                 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1647                 }
1648                 /* Sending RX interrupt require many steps to be done in the
1649                  * the device:
1650                  * 1- write interrupt to current index in ICT table.
1651                  * 2- dma RX frame.
1652                  * 3- update RX shared data to indicate last write index.
1653                  * 4- send interrupt.
1654                  * This could lead to RX race, driver could receive RX interrupt
1655                  * but the shared data changes does not reflect this;
1656                  * periodic interrupt will detect any dangling Rx activity.
1657                  */
1658
1659                 /* Disable periodic interrupt; we use it as just a one-shot. */
1660                 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1661                             CSR_INT_PERIODIC_DIS);
1662
1663                 /*
1664                  * Enable periodic interrupt in 8 msec only if we received
1665                  * real RX interrupt (instead of just periodic int), to catch
1666                  * any dangling Rx interrupt.  If it was just the periodic
1667                  * interrupt, there was no dangling Rx activity, and no need
1668                  * to extend the periodic interrupt; one-shot is enough.
1669                  */
1670                 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1671                         iwl_write8(trans, CSR_INT_PERIODIC_REG,
1672                                    CSR_INT_PERIODIC_ENA);
1673
1674                 isr_stats->rx++;
1675
1676                 local_bh_disable();
1677                 iwl_pcie_rx_handle(trans, 0);
1678                 local_bh_enable();
1679         }
1680
1681         /* This "Tx" DMA channel is used only for loading uCode */
1682         if (inta & CSR_INT_BIT_FH_TX) {
1683                 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1684                 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1685                 isr_stats->tx++;
1686                 handled |= CSR_INT_BIT_FH_TX;
1687                 /* Wake up uCode load routine, now that load is complete */
1688                 trans_pcie->ucode_write_complete = true;
1689                 wake_up(&trans_pcie->ucode_write_waitq);
1690         }
1691
1692         if (inta & ~handled) {
1693                 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1694                 isr_stats->unhandled++;
1695         }
1696
1697         if (inta & ~(trans_pcie->inta_mask)) {
1698                 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
1699                          inta & ~trans_pcie->inta_mask);
1700         }
1701
1702         /* we are loading the firmware, enable FH_TX interrupt only */
1703         if (handled & CSR_INT_BIT_FH_TX)
1704                 iwl_enable_fw_load_int(trans);
1705         /* only Re-enable all interrupt if disabled by irq */
1706         else if (test_bit(STATUS_INT_ENABLED, &trans->status))
1707                 iwl_enable_interrupts(trans);
1708         /* Re-enable RF_KILL if it occurred */
1709         else if (handled & CSR_INT_BIT_RF_KILL)
1710                 iwl_enable_rfkill_int(trans);
1711
1712 out:
1713         lock_map_release(&trans->sync_cmd_lockdep_map);
1714         return IRQ_HANDLED;
1715 }
1716
1717 /******************************************************************************
1718  *
1719  * ICT functions
1720  *
1721  ******************************************************************************/
1722
1723 /* Free dram table */
1724 void iwl_pcie_free_ict(struct iwl_trans *trans)
1725 {
1726         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1727
1728         if (trans_pcie->ict_tbl) {
1729                 dma_free_coherent(trans->dev, ICT_SIZE,
1730                                   trans_pcie->ict_tbl,
1731                                   trans_pcie->ict_tbl_dma);
1732                 trans_pcie->ict_tbl = NULL;
1733                 trans_pcie->ict_tbl_dma = 0;
1734         }
1735 }
1736
1737 /*
1738  * allocate dram shared table, it is an aligned memory
1739  * block of ICT_SIZE.
1740  * also reset all data related to ICT table interrupt.
1741  */
1742 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
1743 {
1744         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1745
1746         trans_pcie->ict_tbl =
1747                 dma_zalloc_coherent(trans->dev, ICT_SIZE,
1748                                    &trans_pcie->ict_tbl_dma,
1749                                    GFP_KERNEL);
1750         if (!trans_pcie->ict_tbl)
1751                 return -ENOMEM;
1752
1753         /* just an API sanity check ... it is guaranteed to be aligned */
1754         if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
1755                 iwl_pcie_free_ict(trans);
1756                 return -EINVAL;
1757         }
1758
1759         return 0;
1760 }
1761
1762 /* Device is going up inform it about using ICT interrupt table,
1763  * also we need to tell the driver to start using ICT interrupt.
1764  */
1765 void iwl_pcie_reset_ict(struct iwl_trans *trans)
1766 {
1767         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1768         u32 val;
1769
1770         if (!trans_pcie->ict_tbl)
1771                 return;
1772
1773         spin_lock(&trans_pcie->irq_lock);
1774         iwl_disable_interrupts(trans);
1775
1776         memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
1777
1778         val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
1779
1780         val |= CSR_DRAM_INT_TBL_ENABLE |
1781                CSR_DRAM_INIT_TBL_WRAP_CHECK |
1782                CSR_DRAM_INIT_TBL_WRITE_POINTER;
1783
1784         IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
1785
1786         iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
1787         trans_pcie->use_ict = true;
1788         trans_pcie->ict_index = 0;
1789         iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
1790         iwl_enable_interrupts(trans);
1791         spin_unlock(&trans_pcie->irq_lock);
1792 }
1793
1794 /* Device is going down disable ict interrupt usage */
1795 void iwl_pcie_disable_ict(struct iwl_trans *trans)
1796 {
1797         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1798
1799         spin_lock(&trans_pcie->irq_lock);
1800         trans_pcie->use_ict = false;
1801         spin_unlock(&trans_pcie->irq_lock);
1802 }
1803
1804 irqreturn_t iwl_pcie_isr(int irq, void *data)
1805 {
1806         struct iwl_trans *trans = data;
1807
1808         if (!trans)
1809                 return IRQ_NONE;
1810
1811         /* Disable (but don't clear!) interrupts here to avoid
1812          * back-to-back ISRs and sporadic interrupts from our NIC.
1813          * If we have something to service, the tasklet will re-enable ints.
1814          * If we *don't* have something, we'll re-enable before leaving here.
1815          */
1816         iwl_write32(trans, CSR_INT_MASK, 0x00000000);
1817
1818         return IRQ_WAKE_THREAD;
1819 }
1820
1821 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
1822 {
1823         return IRQ_WAKE_THREAD;
1824 }
1825
1826 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
1827 {
1828         struct msix_entry *entry = dev_id;
1829         struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1830         struct iwl_trans *trans = trans_pcie->trans;
1831         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1832         u32 inta_fh, inta_hw;
1833
1834         lock_map_acquire(&trans->sync_cmd_lockdep_map);
1835
1836         spin_lock(&trans_pcie->irq_lock);
1837         inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
1838         inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
1839         /*
1840          * Clear causes registers to avoid being handling the same cause.
1841          */
1842         iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
1843         iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
1844         spin_unlock(&trans_pcie->irq_lock);
1845
1846         if (unlikely(!(inta_fh | inta_hw))) {
1847                 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1848                 lock_map_release(&trans->sync_cmd_lockdep_map);
1849                 return IRQ_NONE;
1850         }
1851
1852         if (iwl_have_debug_level(IWL_DL_ISR))
1853                 IWL_DEBUG_ISR(trans, "ISR inta_fh 0x%08x, enabled 0x%08x\n",
1854                               inta_fh,
1855                               iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
1856
1857         /* This "Tx" DMA channel is used only for loading uCode */
1858         if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
1859                 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1860                 isr_stats->tx++;
1861                 /*
1862                  * Wake up uCode load routine,
1863                  * now that load is complete
1864                  */
1865                 trans_pcie->ucode_write_complete = true;
1866                 wake_up(&trans_pcie->ucode_write_waitq);
1867         }
1868
1869         /* Error detected by uCode */
1870         if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
1871             (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) {
1872                 IWL_ERR(trans,
1873                         "Microcode SW error detected. Restarting 0x%X.\n",
1874                         inta_fh);
1875                 isr_stats->sw++;
1876                 iwl_pcie_irq_handle_error(trans);
1877         }
1878
1879         /* After checking FH register check HW register */
1880         if (iwl_have_debug_level(IWL_DL_ISR))
1881                 IWL_DEBUG_ISR(trans,
1882                               "ISR inta_hw 0x%08x, enabled 0x%08x\n",
1883                               inta_hw,
1884                               iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
1885
1886         /* Alive notification via Rx interrupt will do the real work */
1887         if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
1888                 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1889                 isr_stats->alive++;
1890         }
1891
1892         /* uCode wakes up after power-down sleep */
1893         if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
1894                 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1895                 iwl_pcie_rxq_check_wrptr(trans);
1896                 iwl_pcie_txq_check_wrptrs(trans);
1897
1898                 isr_stats->wakeup++;
1899         }
1900
1901         /* Chip got too hot and stopped itself */
1902         if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
1903                 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1904                 isr_stats->ctkill++;
1905         }
1906
1907         /* HW RF KILL switch toggled */
1908         if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL) {
1909                 bool hw_rfkill;
1910
1911                 hw_rfkill = iwl_is_rfkill_set(trans);
1912                 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1913                          hw_rfkill ? "disable radio" : "enable radio");
1914
1915                 isr_stats->rfkill++;
1916
1917                 mutex_lock(&trans_pcie->mutex);
1918                 iwl_trans_pcie_rf_kill(trans, hw_rfkill);
1919                 mutex_unlock(&trans_pcie->mutex);
1920                 if (hw_rfkill) {
1921                         set_bit(STATUS_RFKILL, &trans->status);
1922                         if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1923                                                &trans->status))
1924                                 IWL_DEBUG_RF_KILL(trans,
1925                                                   "Rfkill while SYNC HCMD in flight\n");
1926                         wake_up(&trans_pcie->wait_command_queue);
1927                 } else {
1928                         clear_bit(STATUS_RFKILL, &trans->status);
1929                 }
1930         }
1931
1932         if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
1933                 IWL_ERR(trans,
1934                         "Hardware error detected. Restarting.\n");
1935
1936                 isr_stats->hw++;
1937                 iwl_pcie_irq_handle_error(trans);
1938         }
1939
1940         iwl_pcie_clear_irq(trans, entry);
1941
1942         lock_map_release(&trans->sync_cmd_lockdep_map);
1943
1944         return IRQ_HANDLED;
1945 }