Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[cascardo/linux.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31
32 /*
33  * Link tuning handlers
34  */
35 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
36 {
37         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
38                 return;
39
40         /*
41          * Reset link information.
42          * Both the currently active vgc level as well as
43          * the link tuner counter should be reset. Resetting
44          * the counter is important for devices where the
45          * device should only perform link tuning during the
46          * first minute after being enabled.
47          */
48         rt2x00dev->link.count = 0;
49         rt2x00dev->link.vgc_level = 0;
50
51         /*
52          * Reset the link tuner.
53          */
54         rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
55 }
56
57 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
58 {
59         /*
60          * Clear all (possibly) pre-existing quality statistics.
61          */
62         memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
63
64         /*
65          * The RX and TX percentage should start at 50%
66          * this will assure we will get at least get some
67          * decent value when the link tuner starts.
68          * The value will be dropped and overwritten with
69          * the correct (measured )value anyway during the
70          * first run of the link tuner.
71          */
72         rt2x00dev->link.qual.rx_percentage = 50;
73         rt2x00dev->link.qual.tx_percentage = 50;
74
75         rt2x00lib_reset_link_tuner(rt2x00dev);
76
77         queue_delayed_work(rt2x00dev->hw->workqueue,
78                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
79 }
80
81 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
82 {
83         cancel_delayed_work_sync(&rt2x00dev->link.work);
84 }
85
86 /*
87  * Radio control handlers.
88  */
89 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
90 {
91         int status;
92
93         /*
94          * Don't enable the radio twice.
95          * And check if the hardware button has been disabled.
96          */
97         if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
98             test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
99                 return 0;
100
101         /*
102          * Initialize all data queues.
103          */
104         rt2x00queue_init_rx(rt2x00dev);
105         rt2x00queue_init_tx(rt2x00dev);
106
107         /*
108          * Enable radio.
109          */
110         status =
111             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
112         if (status)
113                 return status;
114
115         rt2x00leds_led_radio(rt2x00dev, true);
116         rt2x00led_led_activity(rt2x00dev, true);
117
118         __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
119
120         /*
121          * Enable RX.
122          */
123         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
124
125         /*
126          * Start the TX queues.
127          */
128         ieee80211_wake_queues(rt2x00dev->hw);
129
130         return 0;
131 }
132
133 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
134 {
135         if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
136                 return;
137
138         /*
139          * Stop all scheduled work.
140          */
141         if (work_pending(&rt2x00dev->intf_work))
142                 cancel_work_sync(&rt2x00dev->intf_work);
143         if (work_pending(&rt2x00dev->filter_work))
144                 cancel_work_sync(&rt2x00dev->filter_work);
145
146         /*
147          * Stop the TX queues.
148          */
149         ieee80211_stop_queues(rt2x00dev->hw);
150
151         /*
152          * Disable RX.
153          */
154         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
155
156         /*
157          * Disable radio.
158          */
159         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
160         rt2x00led_led_activity(rt2x00dev, false);
161         rt2x00leds_led_radio(rt2x00dev, false);
162 }
163
164 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
165 {
166         /*
167          * When we are disabling the RX, we should also stop the link tuner.
168          */
169         if (state == STATE_RADIO_RX_OFF)
170                 rt2x00lib_stop_link_tuner(rt2x00dev);
171
172         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
173
174         /*
175          * When we are enabling the RX, we should also start the link tuner.
176          */
177         if (state == STATE_RADIO_RX_ON &&
178             (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
179                 rt2x00lib_start_link_tuner(rt2x00dev);
180 }
181
182 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
183 {
184         enum antenna rx = rt2x00dev->link.ant.active.rx;
185         enum antenna tx = rt2x00dev->link.ant.active.tx;
186         int sample_a =
187             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
188         int sample_b =
189             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
190
191         /*
192          * We are done sampling. Now we should evaluate the results.
193          */
194         rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
195
196         /*
197          * During the last period we have sampled the RSSI
198          * from both antenna's. It now is time to determine
199          * which antenna demonstrated the best performance.
200          * When we are already on the antenna with the best
201          * performance, then there really is nothing for us
202          * left to do.
203          */
204         if (sample_a == sample_b)
205                 return;
206
207         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
208                 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
209
210         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
211                 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
212
213         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
214 }
215
216 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
217 {
218         enum antenna rx = rt2x00dev->link.ant.active.rx;
219         enum antenna tx = rt2x00dev->link.ant.active.tx;
220         int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
221         int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
222
223         /*
224          * Legacy driver indicates that we should swap antenna's
225          * when the difference in RSSI is greater that 5. This
226          * also should be done when the RSSI was actually better
227          * then the previous sample.
228          * When the difference exceeds the threshold we should
229          * sample the rssi from the other antenna to make a valid
230          * comparison between the 2 antennas.
231          */
232         if (abs(rssi_curr - rssi_old) < 5)
233                 return;
234
235         rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
236
237         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
238                 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
239
240         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
241                 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
242
243         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
244 }
245
246 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
247 {
248         /*
249          * Determine if software diversity is enabled for
250          * either the TX or RX antenna (or both).
251          * Always perform this check since within the link
252          * tuner interval the configuration might have changed.
253          */
254         rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
255         rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
256
257         if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
258             rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
259                 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
260         if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
261             rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
262                 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
263
264         if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
265             !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
266                 rt2x00dev->link.ant.flags = 0;
267                 return;
268         }
269
270         /*
271          * If we have only sampled the data over the last period
272          * we should now harvest the data. Otherwise just evaluate
273          * the data. The latter should only be performed once
274          * every 2 seconds.
275          */
276         if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
277                 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
278         else if (rt2x00dev->link.count & 1)
279                 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
280 }
281
282 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
283 {
284         int avg_rssi = rssi;
285
286         /*
287          * Update global RSSI
288          */
289         if (link->qual.avg_rssi)
290                 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
291         link->qual.avg_rssi = avg_rssi;
292
293         /*
294          * Update antenna RSSI
295          */
296         if (link->ant.rssi_ant)
297                 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
298         link->ant.rssi_ant = rssi;
299 }
300
301 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
302 {
303         if (qual->rx_failed || qual->rx_success)
304                 qual->rx_percentage =
305                     (qual->rx_success * 100) /
306                     (qual->rx_failed + qual->rx_success);
307         else
308                 qual->rx_percentage = 50;
309
310         if (qual->tx_failed || qual->tx_success)
311                 qual->tx_percentage =
312                     (qual->tx_success * 100) /
313                     (qual->tx_failed + qual->tx_success);
314         else
315                 qual->tx_percentage = 50;
316
317         qual->rx_success = 0;
318         qual->rx_failed = 0;
319         qual->tx_success = 0;
320         qual->tx_failed = 0;
321 }
322
323 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
324                                            int rssi)
325 {
326         int rssi_percentage = 0;
327         int signal;
328
329         /*
330          * We need a positive value for the RSSI.
331          */
332         if (rssi < 0)
333                 rssi += rt2x00dev->rssi_offset;
334
335         /*
336          * Calculate the different percentages,
337          * which will be used for the signal.
338          */
339         if (rt2x00dev->rssi_offset)
340                 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
341
342         /*
343          * Add the individual percentages and use the WEIGHT
344          * defines to calculate the current link signal.
345          */
346         signal = ((WEIGHT_RSSI * rssi_percentage) +
347                   (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
348                   (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
349
350         return (signal > 100) ? 100 : signal;
351 }
352
353 static void rt2x00lib_link_tuner(struct work_struct *work)
354 {
355         struct rt2x00_dev *rt2x00dev =
356             container_of(work, struct rt2x00_dev, link.work.work);
357
358         /*
359          * When the radio is shutting down we should
360          * immediately cease all link tuning.
361          */
362         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
363                 return;
364
365         /*
366          * Update statistics.
367          */
368         rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
369         rt2x00dev->low_level_stats.dot11FCSErrorCount +=
370             rt2x00dev->link.qual.rx_failed;
371
372         /*
373          * Only perform the link tuning when Link tuning
374          * has been enabled (This could have been disabled from the EEPROM).
375          */
376         if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
377                 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
378
379         /*
380          * Precalculate a portion of the link signal which is
381          * in based on the tx/rx success/failure counters.
382          */
383         rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
384
385         /*
386          * Send a signal to the led to update the led signal strength.
387          */
388         rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
389
390         /*
391          * Evaluate antenna setup, make this the last step since this could
392          * possibly reset some statistics.
393          */
394         rt2x00lib_evaluate_antenna(rt2x00dev);
395
396         /*
397          * Increase tuner counter, and reschedule the next link tuner run.
398          */
399         rt2x00dev->link.count++;
400         queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
401                            LINK_TUNE_INTERVAL);
402 }
403
404 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
405 {
406         struct rt2x00_dev *rt2x00dev =
407             container_of(work, struct rt2x00_dev, filter_work);
408
409         rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
410 }
411
412 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
413                                           struct ieee80211_vif *vif)
414 {
415         struct rt2x00_dev *rt2x00dev = data;
416         struct rt2x00_intf *intf = vif_to_intf(vif);
417         struct sk_buff *skb;
418         struct ieee80211_bss_conf conf;
419         int delayed_flags;
420
421         /*
422          * Copy all data we need during this action under the protection
423          * of a spinlock. Otherwise race conditions might occur which results
424          * into an invalid configuration.
425          */
426         spin_lock(&intf->lock);
427
428         memcpy(&conf, &intf->conf, sizeof(conf));
429         delayed_flags = intf->delayed_flags;
430         intf->delayed_flags = 0;
431
432         spin_unlock(&intf->lock);
433
434         if (delayed_flags & DELAYED_UPDATE_BEACON) {
435                 skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
436                 if (skb &&
437                     rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb))
438                         dev_kfree_skb(skb);
439         }
440
441         if (delayed_flags & DELAYED_CONFIG_ERP)
442                 rt2x00lib_config_erp(rt2x00dev, intf, &intf->conf);
443
444         if (delayed_flags & DELAYED_LED_ASSOC)
445                 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
446 }
447
448 static void rt2x00lib_intf_scheduled(struct work_struct *work)
449 {
450         struct rt2x00_dev *rt2x00dev =
451             container_of(work, struct rt2x00_dev, intf_work);
452
453         /*
454          * Iterate over each interface and perform the
455          * requested configurations.
456          */
457         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
458                                             rt2x00lib_intf_scheduled_iter,
459                                             rt2x00dev);
460 }
461
462 /*
463  * Interrupt context handlers.
464  */
465 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
466                                       struct ieee80211_vif *vif)
467 {
468         struct rt2x00_intf *intf = vif_to_intf(vif);
469
470         if (vif->type != IEEE80211_IF_TYPE_AP &&
471             vif->type != IEEE80211_IF_TYPE_IBSS)
472                 return;
473
474         spin_lock(&intf->lock);
475         intf->delayed_flags |= DELAYED_UPDATE_BEACON;
476         spin_unlock(&intf->lock);
477 }
478
479 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
480 {
481         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
482                 return;
483
484         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
485                                                    rt2x00lib_beacondone_iter,
486                                                    rt2x00dev);
487
488         queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
489 }
490 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
491
492 void rt2x00lib_txdone(struct queue_entry *entry,
493                       struct txdone_entry_desc *txdesc)
494 {
495         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
496         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
497
498         /*
499          * Send frame to debugfs immediately, after this call is completed
500          * we are going to overwrite the skb->cb array.
501          */
502         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
503
504         /*
505          * Update TX statistics.
506          */
507         rt2x00dev->link.qual.tx_success +=
508             test_bit(TXDONE_SUCCESS, &txdesc->flags);
509         rt2x00dev->link.qual.tx_failed +=
510             txdesc->retry + !!test_bit(TXDONE_FAILURE, &txdesc->flags);
511
512         /*
513          * Initialize TX status
514          */
515         memset(&tx_info->status, 0, sizeof(tx_info->status));
516         tx_info->status.ack_signal = 0;
517         tx_info->status.excessive_retries =
518             test_bit(TXDONE_EXCESSIVE_RETRY, &txdesc->flags);
519         tx_info->status.retry_count = txdesc->retry;
520
521         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
522                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
523                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
524                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
525                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
526         }
527
528         if (tx_info->flags & IEEE80211_TX_CTL_USE_RTS_CTS) {
529                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
530                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
531                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
532                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
533         }
534
535         /*
536          * Only send the status report to mac80211 when TX status was
537          * requested by it. If this was a extra frame coming through
538          * a mac80211 library call (RTS/CTS) then we should not send the
539          * status report back.
540          */
541         if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
542                 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
543         else
544                 dev_kfree_skb_irq(entry->skb);
545         entry->skb = NULL;
546 }
547 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
548
549 void rt2x00lib_rxdone(struct queue_entry *entry,
550                       struct rxdone_entry_desc *rxdesc)
551 {
552         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
553         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
554         struct ieee80211_supported_band *sband;
555         struct ieee80211_hdr *hdr;
556         const struct rt2x00_rate *rate;
557         unsigned int i;
558         int idx = -1;
559         u16 fc;
560
561         /*
562          * Update RX statistics.
563          */
564         sband = &rt2x00dev->bands[rt2x00dev->curr_band];
565         for (i = 0; i < sband->n_bitrates; i++) {
566                 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
567
568                 if (((rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) &&
569                      (rate->plcp == rxdesc->signal)) ||
570                     (!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) &&
571                       (rate->bitrate == rxdesc->signal))) {
572                         idx = i;
573                         break;
574                 }
575         }
576
577         if (idx < 0) {
578                 WARNING(rt2x00dev, "Frame received with unrecognized signal,"
579                         "signal=0x%.2x, plcp=%d.\n", rxdesc->signal,
580                         !!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP));
581                 idx = 0;
582         }
583
584         /*
585          * Only update link status if this is a beacon frame carrying our bssid.
586          */
587         hdr = (struct ieee80211_hdr *)entry->skb->data;
588         fc = le16_to_cpu(hdr->frame_control);
589         if (is_beacon(fc) && (rxdesc->dev_flags & RXDONE_MY_BSS))
590                 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc->rssi);
591
592         rt2x00dev->link.qual.rx_success++;
593
594         rx_status->rate_idx = idx;
595         rx_status->qual =
596             rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc->rssi);
597         rx_status->signal = rxdesc->rssi;
598         rx_status->flag = rxdesc->flags;
599         rx_status->antenna = rt2x00dev->link.ant.active.rx;
600
601         /*
602          * Send frame to mac80211 & debugfs.
603          * mac80211 will clean up the skb structure.
604          */
605         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
606         ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
607         entry->skb = NULL;
608 }
609 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
610
611 /*
612  * Driver initialization handlers.
613  */
614 const struct rt2x00_rate rt2x00_supported_rates[12] = {
615         {
616                 .flags = DEV_RATE_CCK | DEV_RATE_BASIC,
617                 .bitrate = 10,
618                 .ratemask = BIT(0),
619                 .plcp = 0x00,
620         },
621         {
622                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
623                 .bitrate = 20,
624                 .ratemask = BIT(1),
625                 .plcp = 0x01,
626         },
627         {
628                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
629                 .bitrate = 55,
630                 .ratemask = BIT(2),
631                 .plcp = 0x02,
632         },
633         {
634                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
635                 .bitrate = 110,
636                 .ratemask = BIT(3),
637                 .plcp = 0x03,
638         },
639         {
640                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
641                 .bitrate = 60,
642                 .ratemask = BIT(4),
643                 .plcp = 0x0b,
644         },
645         {
646                 .flags = DEV_RATE_OFDM,
647                 .bitrate = 90,
648                 .ratemask = BIT(5),
649                 .plcp = 0x0f,
650         },
651         {
652                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
653                 .bitrate = 120,
654                 .ratemask = BIT(6),
655                 .plcp = 0x0a,
656         },
657         {
658                 .flags = DEV_RATE_OFDM,
659                 .bitrate = 180,
660                 .ratemask = BIT(7),
661                 .plcp = 0x0e,
662         },
663         {
664                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
665                 .bitrate = 240,
666                 .ratemask = BIT(8),
667                 .plcp = 0x09,
668         },
669         {
670                 .flags = DEV_RATE_OFDM,
671                 .bitrate = 360,
672                 .ratemask = BIT(9),
673                 .plcp = 0x0d,
674         },
675         {
676                 .flags = DEV_RATE_OFDM,
677                 .bitrate = 480,
678                 .ratemask = BIT(10),
679                 .plcp = 0x08,
680         },
681         {
682                 .flags = DEV_RATE_OFDM,
683                 .bitrate = 540,
684                 .ratemask = BIT(11),
685                 .plcp = 0x0c,
686         },
687 };
688
689 static void rt2x00lib_channel(struct ieee80211_channel *entry,
690                               const int channel, const int tx_power,
691                               const int value)
692 {
693         entry->center_freq = ieee80211_channel_to_frequency(channel);
694         entry->hw_value = value;
695         entry->max_power = tx_power;
696         entry->max_antenna_gain = 0xff;
697 }
698
699 static void rt2x00lib_rate(struct ieee80211_rate *entry,
700                            const u16 index, const struct rt2x00_rate *rate)
701 {
702         entry->flags = 0;
703         entry->bitrate = rate->bitrate;
704         entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
705         entry->hw_value_short = entry->hw_value;
706
707         if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
708                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
709                 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
710         }
711 }
712
713 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
714                                     struct hw_mode_spec *spec)
715 {
716         struct ieee80211_hw *hw = rt2x00dev->hw;
717         struct ieee80211_channel *channels;
718         struct ieee80211_rate *rates;
719         unsigned int num_rates;
720         unsigned int i;
721         unsigned char tx_power;
722
723         num_rates = 0;
724         if (spec->supported_rates & SUPPORT_RATE_CCK)
725                 num_rates += 4;
726         if (spec->supported_rates & SUPPORT_RATE_OFDM)
727                 num_rates += 8;
728
729         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
730         if (!channels)
731                 return -ENOMEM;
732
733         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
734         if (!rates)
735                 goto exit_free_channels;
736
737         /*
738          * Initialize Rate list.
739          */
740         for (i = 0; i < num_rates; i++)
741                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
742
743         /*
744          * Initialize Channel list.
745          */
746         for (i = 0; i < spec->num_channels; i++) {
747                 if (spec->channels[i].channel <= 14) {
748                         if (spec->tx_power_bg)
749                                 tx_power = spec->tx_power_bg[i];
750                         else
751                                 tx_power = spec->tx_power_default;
752                 } else {
753                         if (spec->tx_power_a)
754                                 tx_power = spec->tx_power_a[i];
755                         else
756                                 tx_power = spec->tx_power_default;
757                 }
758
759                 rt2x00lib_channel(&channels[i],
760                                   spec->channels[i].channel, tx_power, i);
761         }
762
763         /*
764          * Intitialize 802.11b, 802.11g
765          * Rates: CCK, OFDM.
766          * Channels: 2.4 GHz
767          */
768         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
769                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
770                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
771                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
772                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
773                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
774                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
775         }
776
777         /*
778          * Intitialize 802.11a
779          * Rates: OFDM.
780          * Channels: OFDM, UNII, HiperLAN2.
781          */
782         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
783                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
784                     spec->num_channels - 14;
785                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
786                     num_rates - 4;
787                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
788                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
789                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
790                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
791         }
792
793         return 0;
794
795  exit_free_channels:
796         kfree(channels);
797         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
798         return -ENOMEM;
799 }
800
801 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
802 {
803         if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
804                 ieee80211_unregister_hw(rt2x00dev->hw);
805
806         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
807                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
808                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
809                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
810                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
811         }
812 }
813
814 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
815 {
816         struct hw_mode_spec *spec = &rt2x00dev->spec;
817         int status;
818
819         /*
820          * Initialize HW modes.
821          */
822         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
823         if (status)
824                 return status;
825
826         /*
827          * Initialize HW fields.
828          */
829         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
830
831         /*
832          * Register HW.
833          */
834         status = ieee80211_register_hw(rt2x00dev->hw);
835         if (status) {
836                 rt2x00lib_remove_hw(rt2x00dev);
837                 return status;
838         }
839
840         __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
841
842         return 0;
843 }
844
845 /*
846  * Initialization/uninitialization handlers.
847  */
848 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
849 {
850         if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
851                 return;
852
853         /*
854          * Unregister extra components.
855          */
856         rt2x00rfkill_unregister(rt2x00dev);
857
858         /*
859          * Allow the HW to uninitialize.
860          */
861         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
862
863         /*
864          * Free allocated queue entries.
865          */
866         rt2x00queue_uninitialize(rt2x00dev);
867 }
868
869 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
870 {
871         int status;
872
873         if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
874                 return 0;
875
876         /*
877          * Allocate all queue entries.
878          */
879         status = rt2x00queue_initialize(rt2x00dev);
880         if (status)
881                 return status;
882
883         /*
884          * Initialize the device.
885          */
886         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
887         if (status) {
888                 rt2x00queue_uninitialize(rt2x00dev);
889                 return status;
890         }
891
892         __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
893
894         /*
895          * Register the extra components.
896          */
897         rt2x00rfkill_register(rt2x00dev);
898
899         return 0;
900 }
901
902 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
903 {
904         int retval;
905
906         if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
907                 return 0;
908
909         /*
910          * If this is the first interface which is added,
911          * we should load the firmware now.
912          */
913         retval = rt2x00lib_load_firmware(rt2x00dev);
914         if (retval)
915                 return retval;
916
917         /*
918          * Initialize the device.
919          */
920         retval = rt2x00lib_initialize(rt2x00dev);
921         if (retval)
922                 return retval;
923
924         /*
925          * Enable radio.
926          */
927         retval = rt2x00lib_enable_radio(rt2x00dev);
928         if (retval) {
929                 rt2x00lib_uninitialize(rt2x00dev);
930                 return retval;
931         }
932
933         rt2x00dev->intf_ap_count = 0;
934         rt2x00dev->intf_sta_count = 0;
935         rt2x00dev->intf_associated = 0;
936
937         __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
938
939         return 0;
940 }
941
942 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
943 {
944         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
945                 return;
946
947         /*
948          * Perhaps we can add something smarter here,
949          * but for now just disabling the radio should do.
950          */
951         rt2x00lib_disable_radio(rt2x00dev);
952
953         rt2x00dev->intf_ap_count = 0;
954         rt2x00dev->intf_sta_count = 0;
955         rt2x00dev->intf_associated = 0;
956
957         __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
958 }
959
960 /*
961  * driver allocation handlers.
962  */
963 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
964 {
965         int retval = -ENOMEM;
966
967         /*
968          * Make room for rt2x00_intf inside the per-interface
969          * structure ieee80211_vif.
970          */
971         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
972
973         /*
974          * Let the driver probe the device to detect the capabilities.
975          */
976         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
977         if (retval) {
978                 ERROR(rt2x00dev, "Failed to allocate device.\n");
979                 goto exit;
980         }
981
982         /*
983          * Initialize configuration work.
984          */
985         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
986         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
987         INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
988
989         /*
990          * Allocate queue array.
991          */
992         retval = rt2x00queue_allocate(rt2x00dev);
993         if (retval)
994                 goto exit;
995
996         /*
997          * Initialize ieee80211 structure.
998          */
999         retval = rt2x00lib_probe_hw(rt2x00dev);
1000         if (retval) {
1001                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1002                 goto exit;
1003         }
1004
1005         /*
1006          * Register extra components.
1007          */
1008         rt2x00leds_register(rt2x00dev);
1009         rt2x00rfkill_allocate(rt2x00dev);
1010         rt2x00debug_register(rt2x00dev);
1011
1012         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1013
1014         return 0;
1015
1016 exit:
1017         rt2x00lib_remove_dev(rt2x00dev);
1018
1019         return retval;
1020 }
1021 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1022
1023 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1024 {
1025         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1026
1027         /*
1028          * Disable radio.
1029          */
1030         rt2x00lib_disable_radio(rt2x00dev);
1031
1032         /*
1033          * Uninitialize device.
1034          */
1035         rt2x00lib_uninitialize(rt2x00dev);
1036
1037         /*
1038          * Free extra components
1039          */
1040         rt2x00debug_deregister(rt2x00dev);
1041         rt2x00rfkill_free(rt2x00dev);
1042         rt2x00leds_unregister(rt2x00dev);
1043
1044         /*
1045          * Free ieee80211_hw memory.
1046          */
1047         rt2x00lib_remove_hw(rt2x00dev);
1048
1049         /*
1050          * Free firmware image.
1051          */
1052         rt2x00lib_free_firmware(rt2x00dev);
1053
1054         /*
1055          * Free queue structures.
1056          */
1057         rt2x00queue_free(rt2x00dev);
1058 }
1059 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1060
1061 /*
1062  * Device state handlers
1063  */
1064 #ifdef CONFIG_PM
1065 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1066 {
1067         int retval;
1068
1069         NOTICE(rt2x00dev, "Going to sleep.\n");
1070         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1071
1072         /*
1073          * Only continue if mac80211 has open interfaces.
1074          */
1075         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1076                 goto exit;
1077         __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1078
1079         /*
1080          * Disable radio.
1081          */
1082         rt2x00lib_stop(rt2x00dev);
1083         rt2x00lib_uninitialize(rt2x00dev);
1084
1085         /*
1086          * Suspend/disable extra components.
1087          */
1088         rt2x00leds_suspend(rt2x00dev);
1089         rt2x00rfkill_suspend(rt2x00dev);
1090         rt2x00debug_deregister(rt2x00dev);
1091
1092 exit:
1093         /*
1094          * Set device mode to sleep for power management,
1095          * on some hardware this call seems to consistently fail.
1096          * From the specifications it is hard to tell why it fails,
1097          * and if this is a "bad thing".
1098          * Overall it is safe to just ignore the failure and
1099          * continue suspending. The only downside is that the
1100          * device will not be in optimal power save mode, but with
1101          * the radio and the other components already disabled the
1102          * device is as good as disabled.
1103          */
1104         retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1105         if (retval)
1106                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1107                         "continue suspending.\n");
1108
1109         return 0;
1110 }
1111 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1112
1113 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1114                                   struct ieee80211_vif *vif)
1115 {
1116         struct rt2x00_dev *rt2x00dev = data;
1117         struct rt2x00_intf *intf = vif_to_intf(vif);
1118
1119         spin_lock(&intf->lock);
1120
1121         rt2x00lib_config_intf(rt2x00dev, intf,
1122                               vif->type, intf->mac, intf->bssid);
1123
1124
1125         /*
1126          * Master or Ad-hoc mode require a new beacon update.
1127          */
1128         if (vif->type == IEEE80211_IF_TYPE_AP ||
1129             vif->type == IEEE80211_IF_TYPE_IBSS)
1130                 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1131
1132         spin_unlock(&intf->lock);
1133 }
1134
1135 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1136 {
1137         int retval;
1138
1139         NOTICE(rt2x00dev, "Waking up.\n");
1140
1141         /*
1142          * Restore/enable extra components.
1143          */
1144         rt2x00debug_register(rt2x00dev);
1145         rt2x00rfkill_resume(rt2x00dev);
1146         rt2x00leds_resume(rt2x00dev);
1147
1148         /*
1149          * Only continue if mac80211 had open interfaces.
1150          */
1151         if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1152                 return 0;
1153
1154         /*
1155          * Reinitialize device and all active interfaces.
1156          */
1157         retval = rt2x00lib_start(rt2x00dev);
1158         if (retval)
1159                 goto exit;
1160
1161         /*
1162          * Reconfigure device.
1163          */
1164         rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1165         if (!rt2x00dev->hw->conf.radio_enabled)
1166                 rt2x00lib_disable_radio(rt2x00dev);
1167
1168         /*
1169          * Iterator over each active interface to
1170          * reconfigure the hardware.
1171          */
1172         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1173                                             rt2x00lib_resume_intf, rt2x00dev);
1174
1175         /*
1176          * We are ready again to receive requests from mac80211.
1177          */
1178         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1179
1180         /*
1181          * It is possible that during that mac80211 has attempted
1182          * to send frames while we were suspending or resuming.
1183          * In that case we have disabled the TX queue and should
1184          * now enable it again
1185          */
1186         ieee80211_wake_queues(rt2x00dev->hw);
1187
1188         /*
1189          * During interface iteration we might have changed the
1190          * delayed_flags, time to handles the event by calling
1191          * the work handler directly.
1192          */
1193         rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1194
1195         return 0;
1196
1197 exit:
1198         rt2x00lib_disable_radio(rt2x00dev);
1199         rt2x00lib_uninitialize(rt2x00dev);
1200         rt2x00debug_deregister(rt2x00dev);
1201
1202         return retval;
1203 }
1204 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1205 #endif /* CONFIG_PM */
1206
1207 /*
1208  * rt2x00lib module information.
1209  */
1210 MODULE_AUTHOR(DRV_PROJECT);
1211 MODULE_VERSION(DRV_VERSION);
1212 MODULE_DESCRIPTION("rt2x00 library");
1213 MODULE_LICENSE("GPL");