7ded308fd67bbcfad8b55257cb20f5a99a1f1f27
[cascardo/linux.git] / drivers / nvme / host / core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <scsi/sg.h>
30 #include <asm/unaligned.h>
31
32 #include "nvme.h"
33
34 #define NVME_MINORS             (1U << MINORBITS)
35
36 unsigned char admin_timeout = 60;
37 module_param(admin_timeout, byte, 0644);
38 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
39 EXPORT_SYMBOL_GPL(admin_timeout);
40
41 unsigned char nvme_io_timeout = 30;
42 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
43 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
44 EXPORT_SYMBOL_GPL(nvme_io_timeout);
45
46 unsigned char shutdown_timeout = 5;
47 module_param(shutdown_timeout, byte, 0644);
48 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
49
50 static int nvme_major;
51 module_param(nvme_major, int, 0);
52
53 static int nvme_char_major;
54 module_param(nvme_char_major, int, 0);
55
56 static LIST_HEAD(nvme_ctrl_list);
57 static DEFINE_SPINLOCK(dev_list_lock);
58
59 static struct class *nvme_class;
60
61 void nvme_cancel_request(struct request *req, void *data, bool reserved)
62 {
63         int status;
64
65         if (!blk_mq_request_started(req))
66                 return;
67
68         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
69                                 "Cancelling I/O %d", req->tag);
70
71         status = NVME_SC_ABORT_REQ;
72         if (blk_queue_dying(req->q))
73                 status |= NVME_SC_DNR;
74         blk_mq_complete_request(req, status);
75 }
76 EXPORT_SYMBOL_GPL(nvme_cancel_request);
77
78 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
79                 enum nvme_ctrl_state new_state)
80 {
81         enum nvme_ctrl_state old_state = ctrl->state;
82         bool changed = false;
83
84         spin_lock_irq(&ctrl->lock);
85         switch (new_state) {
86         case NVME_CTRL_LIVE:
87                 switch (old_state) {
88                 case NVME_CTRL_RESETTING:
89                         changed = true;
90                         /* FALLTHRU */
91                 default:
92                         break;
93                 }
94                 break;
95         case NVME_CTRL_RESETTING:
96                 switch (old_state) {
97                 case NVME_CTRL_NEW:
98                 case NVME_CTRL_LIVE:
99                         changed = true;
100                         /* FALLTHRU */
101                 default:
102                         break;
103                 }
104                 break;
105         case NVME_CTRL_DELETING:
106                 switch (old_state) {
107                 case NVME_CTRL_LIVE:
108                 case NVME_CTRL_RESETTING:
109                         changed = true;
110                         /* FALLTHRU */
111                 default:
112                         break;
113                 }
114                 break;
115         case NVME_CTRL_DEAD:
116                 switch (old_state) {
117                 case NVME_CTRL_DELETING:
118                         changed = true;
119                         /* FALLTHRU */
120                 default:
121                         break;
122                 }
123                 break;
124         default:
125                 break;
126         }
127         spin_unlock_irq(&ctrl->lock);
128
129         if (changed)
130                 ctrl->state = new_state;
131
132         return changed;
133 }
134 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
135
136 static void nvme_free_ns(struct kref *kref)
137 {
138         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
139
140         if (ns->type == NVME_NS_LIGHTNVM)
141                 nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
142
143         spin_lock(&dev_list_lock);
144         ns->disk->private_data = NULL;
145         spin_unlock(&dev_list_lock);
146
147         put_disk(ns->disk);
148         ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
149         nvme_put_ctrl(ns->ctrl);
150         kfree(ns);
151 }
152
153 static void nvme_put_ns(struct nvme_ns *ns)
154 {
155         kref_put(&ns->kref, nvme_free_ns);
156 }
157
158 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
159 {
160         struct nvme_ns *ns;
161
162         spin_lock(&dev_list_lock);
163         ns = disk->private_data;
164         if (ns) {
165                 if (!kref_get_unless_zero(&ns->kref))
166                         goto fail;
167                 if (!try_module_get(ns->ctrl->ops->module))
168                         goto fail_put_ns;
169         }
170         spin_unlock(&dev_list_lock);
171
172         return ns;
173
174 fail_put_ns:
175         kref_put(&ns->kref, nvme_free_ns);
176 fail:
177         spin_unlock(&dev_list_lock);
178         return NULL;
179 }
180
181 void nvme_requeue_req(struct request *req)
182 {
183         unsigned long flags;
184
185         blk_mq_requeue_request(req);
186         spin_lock_irqsave(req->q->queue_lock, flags);
187         if (!blk_queue_stopped(req->q))
188                 blk_mq_kick_requeue_list(req->q);
189         spin_unlock_irqrestore(req->q->queue_lock, flags);
190 }
191 EXPORT_SYMBOL_GPL(nvme_requeue_req);
192
193 struct request *nvme_alloc_request(struct request_queue *q,
194                 struct nvme_command *cmd, unsigned int flags)
195 {
196         bool write = cmd->common.opcode & 1;
197         struct request *req;
198
199         req = blk_mq_alloc_request(q, write, flags);
200         if (IS_ERR(req))
201                 return req;
202
203         req->cmd_type = REQ_TYPE_DRV_PRIV;
204         req->cmd_flags |= REQ_FAILFAST_DRIVER;
205         req->__data_len = 0;
206         req->__sector = (sector_t) -1;
207         req->bio = req->biotail = NULL;
208
209         req->cmd = (unsigned char *)cmd;
210         req->cmd_len = sizeof(struct nvme_command);
211
212         return req;
213 }
214 EXPORT_SYMBOL_GPL(nvme_alloc_request);
215
216 static inline void nvme_setup_flush(struct nvme_ns *ns,
217                 struct nvme_command *cmnd)
218 {
219         memset(cmnd, 0, sizeof(*cmnd));
220         cmnd->common.opcode = nvme_cmd_flush;
221         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
222 }
223
224 static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
225                 struct nvme_command *cmnd)
226 {
227         struct nvme_dsm_range *range;
228         struct page *page;
229         int offset;
230         unsigned int nr_bytes = blk_rq_bytes(req);
231
232         range = kmalloc(sizeof(*range), GFP_ATOMIC);
233         if (!range)
234                 return BLK_MQ_RQ_QUEUE_BUSY;
235
236         range->cattr = cpu_to_le32(0);
237         range->nlb = cpu_to_le32(nr_bytes >> ns->lba_shift);
238         range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
239
240         memset(cmnd, 0, sizeof(*cmnd));
241         cmnd->dsm.opcode = nvme_cmd_dsm;
242         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
243         cmnd->dsm.nr = 0;
244         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
245
246         req->completion_data = range;
247         page = virt_to_page(range);
248         offset = offset_in_page(range);
249         blk_add_request_payload(req, page, offset, sizeof(*range));
250
251         /*
252          * we set __data_len back to the size of the area to be discarded
253          * on disk. This allows us to report completion on the full amount
254          * of blocks described by the request.
255          */
256         req->__data_len = nr_bytes;
257
258         return 0;
259 }
260
261 static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
262                 struct nvme_command *cmnd)
263 {
264         u16 control = 0;
265         u32 dsmgmt = 0;
266
267         if (req->cmd_flags & REQ_FUA)
268                 control |= NVME_RW_FUA;
269         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
270                 control |= NVME_RW_LR;
271
272         if (req->cmd_flags & REQ_RAHEAD)
273                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
274
275         memset(cmnd, 0, sizeof(*cmnd));
276         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
277         cmnd->rw.command_id = req->tag;
278         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
279         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
280         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
281
282         if (ns->ms) {
283                 switch (ns->pi_type) {
284                 case NVME_NS_DPS_PI_TYPE3:
285                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
286                         break;
287                 case NVME_NS_DPS_PI_TYPE1:
288                 case NVME_NS_DPS_PI_TYPE2:
289                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
290                                         NVME_RW_PRINFO_PRCHK_REF;
291                         cmnd->rw.reftag = cpu_to_le32(
292                                         nvme_block_nr(ns, blk_rq_pos(req)));
293                         break;
294                 }
295                 if (!blk_integrity_rq(req))
296                         control |= NVME_RW_PRINFO_PRACT;
297         }
298
299         cmnd->rw.control = cpu_to_le16(control);
300         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
301 }
302
303 int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
304                 struct nvme_command *cmd)
305 {
306         int ret = 0;
307
308         if (req->cmd_type == REQ_TYPE_DRV_PRIV)
309                 memcpy(cmd, req->cmd, sizeof(*cmd));
310         else if (req_op(req) == REQ_OP_FLUSH)
311                 nvme_setup_flush(ns, cmd);
312         else if (req_op(req) == REQ_OP_DISCARD)
313                 ret = nvme_setup_discard(ns, req, cmd);
314         else
315                 nvme_setup_rw(ns, req, cmd);
316
317         return ret;
318 }
319 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
320
321 /*
322  * Returns 0 on success.  If the result is negative, it's a Linux error code;
323  * if the result is positive, it's an NVM Express status code
324  */
325 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
326                 struct nvme_completion *cqe, void *buffer, unsigned bufflen,
327                 unsigned timeout)
328 {
329         struct request *req;
330         int ret;
331
332         req = nvme_alloc_request(q, cmd, 0);
333         if (IS_ERR(req))
334                 return PTR_ERR(req);
335
336         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
337         req->special = cqe;
338
339         if (buffer && bufflen) {
340                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
341                 if (ret)
342                         goto out;
343         }
344
345         blk_execute_rq(req->q, NULL, req, 0);
346         ret = req->errors;
347  out:
348         blk_mq_free_request(req);
349         return ret;
350 }
351
352 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
353                 void *buffer, unsigned bufflen)
354 {
355         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0);
356 }
357 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
358
359 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
360                 void __user *ubuffer, unsigned bufflen,
361                 void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
362                 u32 *result, unsigned timeout)
363 {
364         bool write = cmd->common.opcode & 1;
365         struct nvme_completion cqe;
366         struct nvme_ns *ns = q->queuedata;
367         struct gendisk *disk = ns ? ns->disk : NULL;
368         struct request *req;
369         struct bio *bio = NULL;
370         void *meta = NULL;
371         int ret;
372
373         req = nvme_alloc_request(q, cmd, 0);
374         if (IS_ERR(req))
375                 return PTR_ERR(req);
376
377         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
378         req->special = &cqe;
379
380         if (ubuffer && bufflen) {
381                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
382                                 GFP_KERNEL);
383                 if (ret)
384                         goto out;
385                 bio = req->bio;
386
387                 if (!disk)
388                         goto submit;
389                 bio->bi_bdev = bdget_disk(disk, 0);
390                 if (!bio->bi_bdev) {
391                         ret = -ENODEV;
392                         goto out_unmap;
393                 }
394
395                 if (meta_buffer && meta_len) {
396                         struct bio_integrity_payload *bip;
397
398                         meta = kmalloc(meta_len, GFP_KERNEL);
399                         if (!meta) {
400                                 ret = -ENOMEM;
401                                 goto out_unmap;
402                         }
403
404                         if (write) {
405                                 if (copy_from_user(meta, meta_buffer,
406                                                 meta_len)) {
407                                         ret = -EFAULT;
408                                         goto out_free_meta;
409                                 }
410                         }
411
412                         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
413                         if (IS_ERR(bip)) {
414                                 ret = PTR_ERR(bip);
415                                 goto out_free_meta;
416                         }
417
418                         bip->bip_iter.bi_size = meta_len;
419                         bip->bip_iter.bi_sector = meta_seed;
420
421                         ret = bio_integrity_add_page(bio, virt_to_page(meta),
422                                         meta_len, offset_in_page(meta));
423                         if (ret != meta_len) {
424                                 ret = -ENOMEM;
425                                 goto out_free_meta;
426                         }
427                 }
428         }
429  submit:
430         blk_execute_rq(req->q, disk, req, 0);
431         ret = req->errors;
432         if (result)
433                 *result = le32_to_cpu(cqe.result);
434         if (meta && !ret && !write) {
435                 if (copy_to_user(meta_buffer, meta, meta_len))
436                         ret = -EFAULT;
437         }
438  out_free_meta:
439         kfree(meta);
440  out_unmap:
441         if (bio) {
442                 if (disk && bio->bi_bdev)
443                         bdput(bio->bi_bdev);
444                 blk_rq_unmap_user(bio);
445         }
446  out:
447         blk_mq_free_request(req);
448         return ret;
449 }
450
451 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
452                 void __user *ubuffer, unsigned bufflen, u32 *result,
453                 unsigned timeout)
454 {
455         return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
456                         result, timeout);
457 }
458
459 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
460 {
461         struct nvme_command c = { };
462         int error;
463
464         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
465         c.identify.opcode = nvme_admin_identify;
466         c.identify.cns = cpu_to_le32(1);
467
468         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
469         if (!*id)
470                 return -ENOMEM;
471
472         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
473                         sizeof(struct nvme_id_ctrl));
474         if (error)
475                 kfree(*id);
476         return error;
477 }
478
479 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
480 {
481         struct nvme_command c = { };
482
483         c.identify.opcode = nvme_admin_identify;
484         c.identify.cns = cpu_to_le32(2);
485         c.identify.nsid = cpu_to_le32(nsid);
486         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
487 }
488
489 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
490                 struct nvme_id_ns **id)
491 {
492         struct nvme_command c = { };
493         int error;
494
495         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
496         c.identify.opcode = nvme_admin_identify,
497         c.identify.nsid = cpu_to_le32(nsid),
498
499         *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
500         if (!*id)
501                 return -ENOMEM;
502
503         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
504                         sizeof(struct nvme_id_ns));
505         if (error)
506                 kfree(*id);
507         return error;
508 }
509
510 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
511                                         dma_addr_t dma_addr, u32 *result)
512 {
513         struct nvme_command c;
514         struct nvme_completion cqe;
515         int ret;
516
517         memset(&c, 0, sizeof(c));
518         c.features.opcode = nvme_admin_get_features;
519         c.features.nsid = cpu_to_le32(nsid);
520         c.features.prp1 = cpu_to_le64(dma_addr);
521         c.features.fid = cpu_to_le32(fid);
522
523         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0);
524         if (ret >= 0)
525                 *result = le32_to_cpu(cqe.result);
526         return ret;
527 }
528
529 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
530                                         dma_addr_t dma_addr, u32 *result)
531 {
532         struct nvme_command c;
533         struct nvme_completion cqe;
534         int ret;
535
536         memset(&c, 0, sizeof(c));
537         c.features.opcode = nvme_admin_set_features;
538         c.features.prp1 = cpu_to_le64(dma_addr);
539         c.features.fid = cpu_to_le32(fid);
540         c.features.dword11 = cpu_to_le32(dword11);
541
542         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0);
543         if (ret >= 0)
544                 *result = le32_to_cpu(cqe.result);
545         return ret;
546 }
547
548 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
549 {
550         struct nvme_command c = { };
551         int error;
552
553         c.common.opcode = nvme_admin_get_log_page,
554         c.common.nsid = cpu_to_le32(0xFFFFFFFF),
555         c.common.cdw10[0] = cpu_to_le32(
556                         (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
557                          NVME_LOG_SMART),
558
559         *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
560         if (!*log)
561                 return -ENOMEM;
562
563         error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
564                         sizeof(struct nvme_smart_log));
565         if (error)
566                 kfree(*log);
567         return error;
568 }
569
570 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
571 {
572         u32 q_count = (*count - 1) | ((*count - 1) << 16);
573         u32 result;
574         int status, nr_io_queues;
575
576         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
577                         &result);
578         if (status)
579                 return status;
580
581         nr_io_queues = min(result & 0xffff, result >> 16) + 1;
582         *count = min(*count, nr_io_queues);
583         return 0;
584 }
585 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
586
587 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
588 {
589         struct nvme_user_io io;
590         struct nvme_command c;
591         unsigned length, meta_len;
592         void __user *metadata;
593
594         if (copy_from_user(&io, uio, sizeof(io)))
595                 return -EFAULT;
596         if (io.flags)
597                 return -EINVAL;
598
599         switch (io.opcode) {
600         case nvme_cmd_write:
601         case nvme_cmd_read:
602         case nvme_cmd_compare:
603                 break;
604         default:
605                 return -EINVAL;
606         }
607
608         length = (io.nblocks + 1) << ns->lba_shift;
609         meta_len = (io.nblocks + 1) * ns->ms;
610         metadata = (void __user *)(uintptr_t)io.metadata;
611
612         if (ns->ext) {
613                 length += meta_len;
614                 meta_len = 0;
615         } else if (meta_len) {
616                 if ((io.metadata & 3) || !io.metadata)
617                         return -EINVAL;
618         }
619
620         memset(&c, 0, sizeof(c));
621         c.rw.opcode = io.opcode;
622         c.rw.flags = io.flags;
623         c.rw.nsid = cpu_to_le32(ns->ns_id);
624         c.rw.slba = cpu_to_le64(io.slba);
625         c.rw.length = cpu_to_le16(io.nblocks);
626         c.rw.control = cpu_to_le16(io.control);
627         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
628         c.rw.reftag = cpu_to_le32(io.reftag);
629         c.rw.apptag = cpu_to_le16(io.apptag);
630         c.rw.appmask = cpu_to_le16(io.appmask);
631
632         return __nvme_submit_user_cmd(ns->queue, &c,
633                         (void __user *)(uintptr_t)io.addr, length,
634                         metadata, meta_len, io.slba, NULL, 0);
635 }
636
637 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
638                         struct nvme_passthru_cmd __user *ucmd)
639 {
640         struct nvme_passthru_cmd cmd;
641         struct nvme_command c;
642         unsigned timeout = 0;
643         int status;
644
645         if (!capable(CAP_SYS_ADMIN))
646                 return -EACCES;
647         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
648                 return -EFAULT;
649         if (cmd.flags)
650                 return -EINVAL;
651
652         memset(&c, 0, sizeof(c));
653         c.common.opcode = cmd.opcode;
654         c.common.flags = cmd.flags;
655         c.common.nsid = cpu_to_le32(cmd.nsid);
656         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
657         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
658         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
659         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
660         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
661         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
662         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
663         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
664
665         if (cmd.timeout_ms)
666                 timeout = msecs_to_jiffies(cmd.timeout_ms);
667
668         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
669                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
670                         &cmd.result, timeout);
671         if (status >= 0) {
672                 if (put_user(cmd.result, &ucmd->result))
673                         return -EFAULT;
674         }
675
676         return status;
677 }
678
679 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
680                 unsigned int cmd, unsigned long arg)
681 {
682         struct nvme_ns *ns = bdev->bd_disk->private_data;
683
684         switch (cmd) {
685         case NVME_IOCTL_ID:
686                 force_successful_syscall_return();
687                 return ns->ns_id;
688         case NVME_IOCTL_ADMIN_CMD:
689                 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
690         case NVME_IOCTL_IO_CMD:
691                 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
692         case NVME_IOCTL_SUBMIT_IO:
693                 return nvme_submit_io(ns, (void __user *)arg);
694 #ifdef CONFIG_BLK_DEV_NVME_SCSI
695         case SG_GET_VERSION_NUM:
696                 return nvme_sg_get_version_num((void __user *)arg);
697         case SG_IO:
698                 return nvme_sg_io(ns, (void __user *)arg);
699 #endif
700         default:
701                 return -ENOTTY;
702         }
703 }
704
705 #ifdef CONFIG_COMPAT
706 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
707                         unsigned int cmd, unsigned long arg)
708 {
709         switch (cmd) {
710         case SG_IO:
711                 return -ENOIOCTLCMD;
712         }
713         return nvme_ioctl(bdev, mode, cmd, arg);
714 }
715 #else
716 #define nvme_compat_ioctl       NULL
717 #endif
718
719 static int nvme_open(struct block_device *bdev, fmode_t mode)
720 {
721         return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
722 }
723
724 static void nvme_release(struct gendisk *disk, fmode_t mode)
725 {
726         struct nvme_ns *ns = disk->private_data;
727
728         module_put(ns->ctrl->ops->module);
729         nvme_put_ns(ns);
730 }
731
732 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
733 {
734         /* some standard values */
735         geo->heads = 1 << 6;
736         geo->sectors = 1 << 5;
737         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
738         return 0;
739 }
740
741 #ifdef CONFIG_BLK_DEV_INTEGRITY
742 static void nvme_init_integrity(struct nvme_ns *ns)
743 {
744         struct blk_integrity integrity;
745
746         switch (ns->pi_type) {
747         case NVME_NS_DPS_PI_TYPE3:
748                 integrity.profile = &t10_pi_type3_crc;
749                 integrity.tag_size = sizeof(u16) + sizeof(u32);
750                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
751                 break;
752         case NVME_NS_DPS_PI_TYPE1:
753         case NVME_NS_DPS_PI_TYPE2:
754                 integrity.profile = &t10_pi_type1_crc;
755                 integrity.tag_size = sizeof(u16);
756                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
757                 break;
758         default:
759                 integrity.profile = NULL;
760                 break;
761         }
762         integrity.tuple_size = ns->ms;
763         blk_integrity_register(ns->disk, &integrity);
764         blk_queue_max_integrity_segments(ns->queue, 1);
765 }
766 #else
767 static void nvme_init_integrity(struct nvme_ns *ns)
768 {
769 }
770 #endif /* CONFIG_BLK_DEV_INTEGRITY */
771
772 static void nvme_config_discard(struct nvme_ns *ns)
773 {
774         struct nvme_ctrl *ctrl = ns->ctrl;
775         u32 logical_block_size = queue_logical_block_size(ns->queue);
776
777         if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
778                 ns->queue->limits.discard_zeroes_data = 1;
779         else
780                 ns->queue->limits.discard_zeroes_data = 0;
781
782         ns->queue->limits.discard_alignment = logical_block_size;
783         ns->queue->limits.discard_granularity = logical_block_size;
784         blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
785         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
786 }
787
788 static int nvme_revalidate_disk(struct gendisk *disk)
789 {
790         struct nvme_ns *ns = disk->private_data;
791         struct nvme_id_ns *id;
792         u8 lbaf, pi_type;
793         u16 old_ms;
794         unsigned short bs;
795
796         if (test_bit(NVME_NS_DEAD, &ns->flags)) {
797                 set_capacity(disk, 0);
798                 return -ENODEV;
799         }
800         if (nvme_identify_ns(ns->ctrl, ns->ns_id, &id)) {
801                 dev_warn(disk_to_dev(ns->disk), "%s: Identify failure\n",
802                                 __func__);
803                 return -ENODEV;
804         }
805         if (id->ncap == 0) {
806                 kfree(id);
807                 return -ENODEV;
808         }
809
810         if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
811                 if (nvme_nvm_register(ns->queue, disk->disk_name)) {
812                         dev_warn(disk_to_dev(ns->disk),
813                                 "%s: LightNVM init failure\n", __func__);
814                         kfree(id);
815                         return -ENODEV;
816                 }
817                 ns->type = NVME_NS_LIGHTNVM;
818         }
819
820         if (ns->ctrl->vs >= NVME_VS(1, 1))
821                 memcpy(ns->eui, id->eui64, sizeof(ns->eui));
822         if (ns->ctrl->vs >= NVME_VS(1, 2))
823                 memcpy(ns->uuid, id->nguid, sizeof(ns->uuid));
824
825         old_ms = ns->ms;
826         lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
827         ns->lba_shift = id->lbaf[lbaf].ds;
828         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
829         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
830
831         /*
832          * If identify namespace failed, use default 512 byte block size so
833          * block layer can use before failing read/write for 0 capacity.
834          */
835         if (ns->lba_shift == 0)
836                 ns->lba_shift = 9;
837         bs = 1 << ns->lba_shift;
838         /* XXX: PI implementation requires metadata equal t10 pi tuple size */
839         pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
840                                         id->dps & NVME_NS_DPS_PI_MASK : 0;
841
842         blk_mq_freeze_queue(disk->queue);
843         if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
844                                 ns->ms != old_ms ||
845                                 bs != queue_logical_block_size(disk->queue) ||
846                                 (ns->ms && ns->ext)))
847                 blk_integrity_unregister(disk);
848
849         ns->pi_type = pi_type;
850         blk_queue_logical_block_size(ns->queue, bs);
851
852         if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
853                 nvme_init_integrity(ns);
854         if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
855                 set_capacity(disk, 0);
856         else
857                 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
858
859         if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
860                 nvme_config_discard(ns);
861         blk_mq_unfreeze_queue(disk->queue);
862
863         kfree(id);
864         return 0;
865 }
866
867 static char nvme_pr_type(enum pr_type type)
868 {
869         switch (type) {
870         case PR_WRITE_EXCLUSIVE:
871                 return 1;
872         case PR_EXCLUSIVE_ACCESS:
873                 return 2;
874         case PR_WRITE_EXCLUSIVE_REG_ONLY:
875                 return 3;
876         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
877                 return 4;
878         case PR_WRITE_EXCLUSIVE_ALL_REGS:
879                 return 5;
880         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
881                 return 6;
882         default:
883                 return 0;
884         }
885 };
886
887 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
888                                 u64 key, u64 sa_key, u8 op)
889 {
890         struct nvme_ns *ns = bdev->bd_disk->private_data;
891         struct nvme_command c;
892         u8 data[16] = { 0, };
893
894         put_unaligned_le64(key, &data[0]);
895         put_unaligned_le64(sa_key, &data[8]);
896
897         memset(&c, 0, sizeof(c));
898         c.common.opcode = op;
899         c.common.nsid = cpu_to_le32(ns->ns_id);
900         c.common.cdw10[0] = cpu_to_le32(cdw10);
901
902         return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
903 }
904
905 static int nvme_pr_register(struct block_device *bdev, u64 old,
906                 u64 new, unsigned flags)
907 {
908         u32 cdw10;
909
910         if (flags & ~PR_FL_IGNORE_KEY)
911                 return -EOPNOTSUPP;
912
913         cdw10 = old ? 2 : 0;
914         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
915         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
916         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
917 }
918
919 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
920                 enum pr_type type, unsigned flags)
921 {
922         u32 cdw10;
923
924         if (flags & ~PR_FL_IGNORE_KEY)
925                 return -EOPNOTSUPP;
926
927         cdw10 = nvme_pr_type(type) << 8;
928         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
929         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
930 }
931
932 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
933                 enum pr_type type, bool abort)
934 {
935         u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
936         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
937 }
938
939 static int nvme_pr_clear(struct block_device *bdev, u64 key)
940 {
941         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
942         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
943 }
944
945 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
946 {
947         u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
948         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
949 }
950
951 static const struct pr_ops nvme_pr_ops = {
952         .pr_register    = nvme_pr_register,
953         .pr_reserve     = nvme_pr_reserve,
954         .pr_release     = nvme_pr_release,
955         .pr_preempt     = nvme_pr_preempt,
956         .pr_clear       = nvme_pr_clear,
957 };
958
959 static const struct block_device_operations nvme_fops = {
960         .owner          = THIS_MODULE,
961         .ioctl          = nvme_ioctl,
962         .compat_ioctl   = nvme_compat_ioctl,
963         .open           = nvme_open,
964         .release        = nvme_release,
965         .getgeo         = nvme_getgeo,
966         .revalidate_disk= nvme_revalidate_disk,
967         .pr_ops         = &nvme_pr_ops,
968 };
969
970 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
971 {
972         unsigned long timeout =
973                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
974         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
975         int ret;
976
977         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
978                 if ((csts & NVME_CSTS_RDY) == bit)
979                         break;
980
981                 msleep(100);
982                 if (fatal_signal_pending(current))
983                         return -EINTR;
984                 if (time_after(jiffies, timeout)) {
985                         dev_err(ctrl->device,
986                                 "Device not ready; aborting %s\n", enabled ?
987                                                 "initialisation" : "reset");
988                         return -ENODEV;
989                 }
990         }
991
992         return ret;
993 }
994
995 /*
996  * If the device has been passed off to us in an enabled state, just clear
997  * the enabled bit.  The spec says we should set the 'shutdown notification
998  * bits', but doing so may cause the device to complete commands to the
999  * admin queue ... and we don't know what memory that might be pointing at!
1000  */
1001 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1002 {
1003         int ret;
1004
1005         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1006         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1007
1008         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1009         if (ret)
1010                 return ret;
1011         return nvme_wait_ready(ctrl, cap, false);
1012 }
1013 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1014
1015 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1016 {
1017         /*
1018          * Default to a 4K page size, with the intention to update this
1019          * path in the future to accomodate architectures with differing
1020          * kernel and IO page sizes.
1021          */
1022         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1023         int ret;
1024
1025         if (page_shift < dev_page_min) {
1026                 dev_err(ctrl->device,
1027                         "Minimum device page size %u too large for host (%u)\n",
1028                         1 << dev_page_min, 1 << page_shift);
1029                 return -ENODEV;
1030         }
1031
1032         ctrl->page_size = 1 << page_shift;
1033
1034         ctrl->ctrl_config = NVME_CC_CSS_NVM;
1035         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1036         ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1037         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1038         ctrl->ctrl_config |= NVME_CC_ENABLE;
1039
1040         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1041         if (ret)
1042                 return ret;
1043         return nvme_wait_ready(ctrl, cap, true);
1044 }
1045 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1046
1047 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1048 {
1049         unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
1050         u32 csts;
1051         int ret;
1052
1053         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1054         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1055
1056         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1057         if (ret)
1058                 return ret;
1059
1060         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1061                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1062                         break;
1063
1064                 msleep(100);
1065                 if (fatal_signal_pending(current))
1066                         return -EINTR;
1067                 if (time_after(jiffies, timeout)) {
1068                         dev_err(ctrl->device,
1069                                 "Device shutdown incomplete; abort shutdown\n");
1070                         return -ENODEV;
1071                 }
1072         }
1073
1074         return ret;
1075 }
1076 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1077
1078 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1079                 struct request_queue *q)
1080 {
1081         bool vwc = false;
1082
1083         if (ctrl->max_hw_sectors) {
1084                 u32 max_segments =
1085                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1086
1087                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1088                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1089         }
1090         if (ctrl->stripe_size)
1091                 blk_queue_chunk_sectors(q, ctrl->stripe_size >> 9);
1092         blk_queue_virt_boundary(q, ctrl->page_size - 1);
1093         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1094                 vwc = true;
1095         blk_queue_write_cache(q, vwc, vwc);
1096 }
1097
1098 /*
1099  * Initialize the cached copies of the Identify data and various controller
1100  * register in our nvme_ctrl structure.  This should be called as soon as
1101  * the admin queue is fully up and running.
1102  */
1103 int nvme_init_identify(struct nvme_ctrl *ctrl)
1104 {
1105         struct nvme_id_ctrl *id;
1106         u64 cap;
1107         int ret, page_shift;
1108         u32 max_hw_sectors;
1109
1110         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1111         if (ret) {
1112                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1113                 return ret;
1114         }
1115
1116         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1117         if (ret) {
1118                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1119                 return ret;
1120         }
1121         page_shift = NVME_CAP_MPSMIN(cap) + 12;
1122
1123         if (ctrl->vs >= NVME_VS(1, 1))
1124                 ctrl->subsystem = NVME_CAP_NSSRC(cap);
1125
1126         ret = nvme_identify_ctrl(ctrl, &id);
1127         if (ret) {
1128                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1129                 return -EIO;
1130         }
1131
1132         ctrl->vid = le16_to_cpu(id->vid);
1133         ctrl->oncs = le16_to_cpup(&id->oncs);
1134         atomic_set(&ctrl->abort_limit, id->acl + 1);
1135         ctrl->vwc = id->vwc;
1136         ctrl->cntlid = le16_to_cpup(&id->cntlid);
1137         memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1138         memcpy(ctrl->model, id->mn, sizeof(id->mn));
1139         memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1140         if (id->mdts)
1141                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1142         else
1143                 max_hw_sectors = UINT_MAX;
1144         ctrl->max_hw_sectors =
1145                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1146
1147         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
1148                 unsigned int max_hw_sectors;
1149
1150                 ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
1151                 max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
1152                 if (ctrl->max_hw_sectors) {
1153                         ctrl->max_hw_sectors = min(max_hw_sectors,
1154                                                         ctrl->max_hw_sectors);
1155                 } else {
1156                         ctrl->max_hw_sectors = max_hw_sectors;
1157                 }
1158         }
1159
1160         nvme_set_queue_limits(ctrl, ctrl->admin_q);
1161
1162         kfree(id);
1163         return 0;
1164 }
1165 EXPORT_SYMBOL_GPL(nvme_init_identify);
1166
1167 static int nvme_dev_open(struct inode *inode, struct file *file)
1168 {
1169         struct nvme_ctrl *ctrl;
1170         int instance = iminor(inode);
1171         int ret = -ENODEV;
1172
1173         spin_lock(&dev_list_lock);
1174         list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1175                 if (ctrl->instance != instance)
1176                         continue;
1177
1178                 if (!ctrl->admin_q) {
1179                         ret = -EWOULDBLOCK;
1180                         break;
1181                 }
1182                 if (!kref_get_unless_zero(&ctrl->kref))
1183                         break;
1184                 file->private_data = ctrl;
1185                 ret = 0;
1186                 break;
1187         }
1188         spin_unlock(&dev_list_lock);
1189
1190         return ret;
1191 }
1192
1193 static int nvme_dev_release(struct inode *inode, struct file *file)
1194 {
1195         nvme_put_ctrl(file->private_data);
1196         return 0;
1197 }
1198
1199 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1200 {
1201         struct nvme_ns *ns;
1202         int ret;
1203
1204         mutex_lock(&ctrl->namespaces_mutex);
1205         if (list_empty(&ctrl->namespaces)) {
1206                 ret = -ENOTTY;
1207                 goto out_unlock;
1208         }
1209
1210         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1211         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1212                 dev_warn(ctrl->device,
1213                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1214                 ret = -EINVAL;
1215                 goto out_unlock;
1216         }
1217
1218         dev_warn(ctrl->device,
1219                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1220         kref_get(&ns->kref);
1221         mutex_unlock(&ctrl->namespaces_mutex);
1222
1223         ret = nvme_user_cmd(ctrl, ns, argp);
1224         nvme_put_ns(ns);
1225         return ret;
1226
1227 out_unlock:
1228         mutex_unlock(&ctrl->namespaces_mutex);
1229         return ret;
1230 }
1231
1232 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1233                 unsigned long arg)
1234 {
1235         struct nvme_ctrl *ctrl = file->private_data;
1236         void __user *argp = (void __user *)arg;
1237
1238         switch (cmd) {
1239         case NVME_IOCTL_ADMIN_CMD:
1240                 return nvme_user_cmd(ctrl, NULL, argp);
1241         case NVME_IOCTL_IO_CMD:
1242                 return nvme_dev_user_cmd(ctrl, argp);
1243         case NVME_IOCTL_RESET:
1244                 dev_warn(ctrl->device, "resetting controller\n");
1245                 return ctrl->ops->reset_ctrl(ctrl);
1246         case NVME_IOCTL_SUBSYS_RESET:
1247                 return nvme_reset_subsystem(ctrl);
1248         case NVME_IOCTL_RESCAN:
1249                 nvme_queue_scan(ctrl);
1250                 return 0;
1251         default:
1252                 return -ENOTTY;
1253         }
1254 }
1255
1256 static const struct file_operations nvme_dev_fops = {
1257         .owner          = THIS_MODULE,
1258         .open           = nvme_dev_open,
1259         .release        = nvme_dev_release,
1260         .unlocked_ioctl = nvme_dev_ioctl,
1261         .compat_ioctl   = nvme_dev_ioctl,
1262 };
1263
1264 static ssize_t nvme_sysfs_reset(struct device *dev,
1265                                 struct device_attribute *attr, const char *buf,
1266                                 size_t count)
1267 {
1268         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1269         int ret;
1270
1271         ret = ctrl->ops->reset_ctrl(ctrl);
1272         if (ret < 0)
1273                 return ret;
1274         return count;
1275 }
1276 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1277
1278 static ssize_t nvme_sysfs_rescan(struct device *dev,
1279                                 struct device_attribute *attr, const char *buf,
1280                                 size_t count)
1281 {
1282         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1283
1284         nvme_queue_scan(ctrl);
1285         return count;
1286 }
1287 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
1288
1289 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
1290                                                                 char *buf)
1291 {
1292         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1293         struct nvme_ctrl *ctrl = ns->ctrl;
1294         int serial_len = sizeof(ctrl->serial);
1295         int model_len = sizeof(ctrl->model);
1296
1297         if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1298                 return sprintf(buf, "eui.%16phN\n", ns->uuid);
1299
1300         if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1301                 return sprintf(buf, "eui.%8phN\n", ns->eui);
1302
1303         while (ctrl->serial[serial_len - 1] == ' ')
1304                 serial_len--;
1305         while (ctrl->model[model_len - 1] == ' ')
1306                 model_len--;
1307
1308         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
1309                 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
1310 }
1311 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
1312
1313 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
1314                                                                 char *buf)
1315 {
1316         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1317         return sprintf(buf, "%pU\n", ns->uuid);
1318 }
1319 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
1320
1321 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
1322                                                                 char *buf)
1323 {
1324         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1325         return sprintf(buf, "%8phd\n", ns->eui);
1326 }
1327 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
1328
1329 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
1330                                                                 char *buf)
1331 {
1332         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1333         return sprintf(buf, "%d\n", ns->ns_id);
1334 }
1335 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
1336
1337 static struct attribute *nvme_ns_attrs[] = {
1338         &dev_attr_wwid.attr,
1339         &dev_attr_uuid.attr,
1340         &dev_attr_eui.attr,
1341         &dev_attr_nsid.attr,
1342         NULL,
1343 };
1344
1345 static umode_t nvme_attrs_are_visible(struct kobject *kobj,
1346                 struct attribute *a, int n)
1347 {
1348         struct device *dev = container_of(kobj, struct device, kobj);
1349         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1350
1351         if (a == &dev_attr_uuid.attr) {
1352                 if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1353                         return 0;
1354         }
1355         if (a == &dev_attr_eui.attr) {
1356                 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1357                         return 0;
1358         }
1359         return a->mode;
1360 }
1361
1362 static const struct attribute_group nvme_ns_attr_group = {
1363         .attrs          = nvme_ns_attrs,
1364         .is_visible     = nvme_attrs_are_visible,
1365 };
1366
1367 #define nvme_show_str_function(field)                                           \
1368 static ssize_t  field##_show(struct device *dev,                                \
1369                             struct device_attribute *attr, char *buf)           \
1370 {                                                                               \
1371         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
1372         return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);   \
1373 }                                                                               \
1374 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1375
1376 #define nvme_show_int_function(field)                                           \
1377 static ssize_t  field##_show(struct device *dev,                                \
1378                             struct device_attribute *attr, char *buf)           \
1379 {                                                                               \
1380         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
1381         return sprintf(buf, "%d\n", ctrl->field);       \
1382 }                                                                               \
1383 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1384
1385 nvme_show_str_function(model);
1386 nvme_show_str_function(serial);
1387 nvme_show_str_function(firmware_rev);
1388 nvme_show_int_function(cntlid);
1389
1390 static struct attribute *nvme_dev_attrs[] = {
1391         &dev_attr_reset_controller.attr,
1392         &dev_attr_rescan_controller.attr,
1393         &dev_attr_model.attr,
1394         &dev_attr_serial.attr,
1395         &dev_attr_firmware_rev.attr,
1396         &dev_attr_cntlid.attr,
1397         NULL
1398 };
1399
1400 static struct attribute_group nvme_dev_attrs_group = {
1401         .attrs = nvme_dev_attrs,
1402 };
1403
1404 static const struct attribute_group *nvme_dev_attr_groups[] = {
1405         &nvme_dev_attrs_group,
1406         NULL,
1407 };
1408
1409 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1410 {
1411         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1412         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
1413
1414         return nsa->ns_id - nsb->ns_id;
1415 }
1416
1417 static struct nvme_ns *nvme_find_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1418 {
1419         struct nvme_ns *ns;
1420
1421         lockdep_assert_held(&ctrl->namespaces_mutex);
1422
1423         list_for_each_entry(ns, &ctrl->namespaces, list) {
1424                 if (ns->ns_id == nsid)
1425                         return ns;
1426                 if (ns->ns_id > nsid)
1427                         break;
1428         }
1429         return NULL;
1430 }
1431
1432 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1433 {
1434         struct nvme_ns *ns;
1435         struct gendisk *disk;
1436         int node = dev_to_node(ctrl->dev);
1437
1438         lockdep_assert_held(&ctrl->namespaces_mutex);
1439
1440         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1441         if (!ns)
1442                 return;
1443
1444         ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
1445         if (ns->instance < 0)
1446                 goto out_free_ns;
1447
1448         ns->queue = blk_mq_init_queue(ctrl->tagset);
1449         if (IS_ERR(ns->queue))
1450                 goto out_release_instance;
1451         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1452         ns->queue->queuedata = ns;
1453         ns->ctrl = ctrl;
1454
1455         disk = alloc_disk_node(0, node);
1456         if (!disk)
1457                 goto out_free_queue;
1458
1459         kref_init(&ns->kref);
1460         ns->ns_id = nsid;
1461         ns->disk = disk;
1462         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
1463
1464
1465         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1466         nvme_set_queue_limits(ctrl, ns->queue);
1467
1468         disk->major = nvme_major;
1469         disk->first_minor = 0;
1470         disk->fops = &nvme_fops;
1471         disk->private_data = ns;
1472         disk->queue = ns->queue;
1473         disk->driverfs_dev = ctrl->device;
1474         disk->flags = GENHD_FL_EXT_DEVT;
1475         sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1476
1477         if (nvme_revalidate_disk(ns->disk))
1478                 goto out_free_disk;
1479
1480         list_add_tail_rcu(&ns->list, &ctrl->namespaces);
1481         kref_get(&ctrl->kref);
1482         if (ns->type == NVME_NS_LIGHTNVM)
1483                 return;
1484
1485         add_disk(ns->disk);
1486         if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
1487                                         &nvme_ns_attr_group))
1488                 pr_warn("%s: failed to create sysfs group for identification\n",
1489                         ns->disk->disk_name);
1490         return;
1491  out_free_disk:
1492         kfree(disk);
1493  out_free_queue:
1494         blk_cleanup_queue(ns->queue);
1495  out_release_instance:
1496         ida_simple_remove(&ctrl->ns_ida, ns->instance);
1497  out_free_ns:
1498         kfree(ns);
1499 }
1500
1501 static void nvme_ns_remove(struct nvme_ns *ns)
1502 {
1503         lockdep_assert_held(&ns->ctrl->namespaces_mutex);
1504
1505         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
1506                 return;
1507
1508         if (ns->disk->flags & GENHD_FL_UP) {
1509                 if (blk_get_integrity(ns->disk))
1510                         blk_integrity_unregister(ns->disk);
1511                 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
1512                                         &nvme_ns_attr_group);
1513                 del_gendisk(ns->disk);
1514                 blk_mq_abort_requeue_list(ns->queue);
1515                 blk_cleanup_queue(ns->queue);
1516         }
1517         list_del_init(&ns->list);
1518         synchronize_rcu();
1519         nvme_put_ns(ns);
1520 }
1521
1522 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1523 {
1524         struct nvme_ns *ns;
1525
1526         ns = nvme_find_ns(ctrl, nsid);
1527         if (ns) {
1528                 if (revalidate_disk(ns->disk))
1529                         nvme_ns_remove(ns);
1530         } else
1531                 nvme_alloc_ns(ctrl, nsid);
1532 }
1533
1534 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
1535                                         unsigned nsid)
1536 {
1537         struct nvme_ns *ns, *next;
1538
1539         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
1540                 if (ns->ns_id > nsid)
1541                         nvme_ns_remove(ns);
1542         }
1543 }
1544
1545 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
1546 {
1547         struct nvme_ns *ns;
1548         __le32 *ns_list;
1549         unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
1550         int ret = 0;
1551
1552         ns_list = kzalloc(0x1000, GFP_KERNEL);
1553         if (!ns_list)
1554                 return -ENOMEM;
1555
1556         for (i = 0; i < num_lists; i++) {
1557                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
1558                 if (ret)
1559                         goto free;
1560
1561                 for (j = 0; j < min(nn, 1024U); j++) {
1562                         nsid = le32_to_cpu(ns_list[j]);
1563                         if (!nsid)
1564                                 goto out;
1565
1566                         nvme_validate_ns(ctrl, nsid);
1567
1568                         while (++prev < nsid) {
1569                                 ns = nvme_find_ns(ctrl, prev);
1570                                 if (ns)
1571                                         nvme_ns_remove(ns);
1572                         }
1573                 }
1574                 nn -= j;
1575         }
1576  out:
1577         nvme_remove_invalid_namespaces(ctrl, prev);
1578  free:
1579         kfree(ns_list);
1580         return ret;
1581 }
1582
1583 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
1584 {
1585         unsigned i;
1586
1587         lockdep_assert_held(&ctrl->namespaces_mutex);
1588
1589         for (i = 1; i <= nn; i++)
1590                 nvme_validate_ns(ctrl, i);
1591
1592         nvme_remove_invalid_namespaces(ctrl, nn);
1593 }
1594
1595 static void nvme_scan_work(struct work_struct *work)
1596 {
1597         struct nvme_ctrl *ctrl =
1598                 container_of(work, struct nvme_ctrl, scan_work);
1599         struct nvme_id_ctrl *id;
1600         unsigned nn;
1601
1602         if (ctrl->state != NVME_CTRL_LIVE)
1603                 return;
1604
1605         if (nvme_identify_ctrl(ctrl, &id))
1606                 return;
1607
1608         mutex_lock(&ctrl->namespaces_mutex);
1609         nn = le32_to_cpu(id->nn);
1610         if (ctrl->vs >= NVME_VS(1, 1) &&
1611             !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
1612                 if (!nvme_scan_ns_list(ctrl, nn))
1613                         goto done;
1614         }
1615         nvme_scan_ns_sequential(ctrl, nn);
1616  done:
1617         list_sort(NULL, &ctrl->namespaces, ns_cmp);
1618         mutex_unlock(&ctrl->namespaces_mutex);
1619         kfree(id);
1620
1621         if (ctrl->ops->post_scan)
1622                 ctrl->ops->post_scan(ctrl);
1623 }
1624
1625 void nvme_queue_scan(struct nvme_ctrl *ctrl)
1626 {
1627         /*
1628          * Do not queue new scan work when a controller is reset during
1629          * removal.
1630          */
1631         if (ctrl->state == NVME_CTRL_LIVE)
1632                 schedule_work(&ctrl->scan_work);
1633 }
1634 EXPORT_SYMBOL_GPL(nvme_queue_scan);
1635
1636 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
1637 {
1638         struct nvme_ns *ns, *next;
1639
1640         /*
1641          * The dead states indicates the controller was not gracefully
1642          * disconnected. In that case, we won't be able to flush any data while
1643          * removing the namespaces' disks; fail all the queues now to avoid
1644          * potentially having to clean up the failed sync later.
1645          */
1646         if (ctrl->state == NVME_CTRL_DEAD)
1647                 nvme_kill_queues(ctrl);
1648
1649         mutex_lock(&ctrl->namespaces_mutex);
1650         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
1651                 nvme_ns_remove(ns);
1652         mutex_unlock(&ctrl->namespaces_mutex);
1653 }
1654 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
1655
1656 static void nvme_async_event_work(struct work_struct *work)
1657 {
1658         struct nvme_ctrl *ctrl =
1659                 container_of(work, struct nvme_ctrl, async_event_work);
1660
1661         spin_lock_irq(&ctrl->lock);
1662         while (ctrl->event_limit > 0) {
1663                 int aer_idx = --ctrl->event_limit;
1664
1665                 spin_unlock_irq(&ctrl->lock);
1666                 ctrl->ops->submit_async_event(ctrl, aer_idx);
1667                 spin_lock_irq(&ctrl->lock);
1668         }
1669         spin_unlock_irq(&ctrl->lock);
1670 }
1671
1672 void nvme_complete_async_event(struct nvme_ctrl *ctrl,
1673                 struct nvme_completion *cqe)
1674 {
1675         u16 status = le16_to_cpu(cqe->status) >> 1;
1676         u32 result = le32_to_cpu(cqe->result);
1677
1678         if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) {
1679                 ++ctrl->event_limit;
1680                 schedule_work(&ctrl->async_event_work);
1681         }
1682
1683         if (status != NVME_SC_SUCCESS)
1684                 return;
1685
1686         switch (result & 0xff07) {
1687         case NVME_AER_NOTICE_NS_CHANGED:
1688                 dev_info(ctrl->device, "rescanning\n");
1689                 nvme_queue_scan(ctrl);
1690                 break;
1691         default:
1692                 dev_warn(ctrl->device, "async event result %08x\n", result);
1693         }
1694 }
1695 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
1696
1697 void nvme_queue_async_events(struct nvme_ctrl *ctrl)
1698 {
1699         ctrl->event_limit = NVME_NR_AERS;
1700         schedule_work(&ctrl->async_event_work);
1701 }
1702 EXPORT_SYMBOL_GPL(nvme_queue_async_events);
1703
1704 static DEFINE_IDA(nvme_instance_ida);
1705
1706 static int nvme_set_instance(struct nvme_ctrl *ctrl)
1707 {
1708         int instance, error;
1709
1710         do {
1711                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1712                         return -ENODEV;
1713
1714                 spin_lock(&dev_list_lock);
1715                 error = ida_get_new(&nvme_instance_ida, &instance);
1716                 spin_unlock(&dev_list_lock);
1717         } while (error == -EAGAIN);
1718
1719         if (error)
1720                 return -ENODEV;
1721
1722         ctrl->instance = instance;
1723         return 0;
1724 }
1725
1726 static void nvme_release_instance(struct nvme_ctrl *ctrl)
1727 {
1728         spin_lock(&dev_list_lock);
1729         ida_remove(&nvme_instance_ida, ctrl->instance);
1730         spin_unlock(&dev_list_lock);
1731 }
1732
1733 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
1734 {
1735         flush_work(&ctrl->async_event_work);
1736         flush_work(&ctrl->scan_work);
1737         nvme_remove_namespaces(ctrl);
1738
1739         device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1740
1741         spin_lock(&dev_list_lock);
1742         list_del(&ctrl->node);
1743         spin_unlock(&dev_list_lock);
1744 }
1745 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
1746
1747 static void nvme_free_ctrl(struct kref *kref)
1748 {
1749         struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
1750
1751         put_device(ctrl->device);
1752         nvme_release_instance(ctrl);
1753         ida_destroy(&ctrl->ns_ida);
1754
1755         ctrl->ops->free_ctrl(ctrl);
1756 }
1757
1758 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
1759 {
1760         kref_put(&ctrl->kref, nvme_free_ctrl);
1761 }
1762 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
1763
1764 /*
1765  * Initialize a NVMe controller structures.  This needs to be called during
1766  * earliest initialization so that we have the initialized structured around
1767  * during probing.
1768  */
1769 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
1770                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
1771 {
1772         int ret;
1773
1774         ctrl->state = NVME_CTRL_NEW;
1775         spin_lock_init(&ctrl->lock);
1776         INIT_LIST_HEAD(&ctrl->namespaces);
1777         mutex_init(&ctrl->namespaces_mutex);
1778         kref_init(&ctrl->kref);
1779         ctrl->dev = dev;
1780         ctrl->ops = ops;
1781         ctrl->quirks = quirks;
1782         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
1783         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
1784
1785         ret = nvme_set_instance(ctrl);
1786         if (ret)
1787                 goto out;
1788
1789         ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
1790                                 MKDEV(nvme_char_major, ctrl->instance),
1791                                 ctrl, nvme_dev_attr_groups,
1792                                 "nvme%d", ctrl->instance);
1793         if (IS_ERR(ctrl->device)) {
1794                 ret = PTR_ERR(ctrl->device);
1795                 goto out_release_instance;
1796         }
1797         get_device(ctrl->device);
1798         ida_init(&ctrl->ns_ida);
1799
1800         spin_lock(&dev_list_lock);
1801         list_add_tail(&ctrl->node, &nvme_ctrl_list);
1802         spin_unlock(&dev_list_lock);
1803
1804         return 0;
1805 out_release_instance:
1806         nvme_release_instance(ctrl);
1807 out:
1808         return ret;
1809 }
1810 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
1811
1812 /**
1813  * nvme_kill_queues(): Ends all namespace queues
1814  * @ctrl: the dead controller that needs to end
1815  *
1816  * Call this function when the driver determines it is unable to get the
1817  * controller in a state capable of servicing IO.
1818  */
1819 void nvme_kill_queues(struct nvme_ctrl *ctrl)
1820 {
1821         struct nvme_ns *ns;
1822
1823         rcu_read_lock();
1824         list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
1825                 if (!kref_get_unless_zero(&ns->kref))
1826                         continue;
1827
1828                 /*
1829                  * Revalidating a dead namespace sets capacity to 0. This will
1830                  * end buffered writers dirtying pages that can't be synced.
1831                  */
1832                 if (!test_and_set_bit(NVME_NS_DEAD, &ns->flags))
1833                         revalidate_disk(ns->disk);
1834
1835                 blk_set_queue_dying(ns->queue);
1836                 blk_mq_abort_requeue_list(ns->queue);
1837                 blk_mq_start_stopped_hw_queues(ns->queue, true);
1838
1839                 nvme_put_ns(ns);
1840         }
1841         rcu_read_unlock();
1842 }
1843 EXPORT_SYMBOL_GPL(nvme_kill_queues);
1844
1845 void nvme_stop_queues(struct nvme_ctrl *ctrl)
1846 {
1847         struct nvme_ns *ns;
1848
1849         rcu_read_lock();
1850         list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
1851                 spin_lock_irq(ns->queue->queue_lock);
1852                 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
1853                 spin_unlock_irq(ns->queue->queue_lock);
1854
1855                 blk_mq_cancel_requeue_work(ns->queue);
1856                 blk_mq_stop_hw_queues(ns->queue);
1857         }
1858         rcu_read_unlock();
1859 }
1860 EXPORT_SYMBOL_GPL(nvme_stop_queues);
1861
1862 void nvme_start_queues(struct nvme_ctrl *ctrl)
1863 {
1864         struct nvme_ns *ns;
1865
1866         rcu_read_lock();
1867         list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
1868                 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
1869                 blk_mq_start_stopped_hw_queues(ns->queue, true);
1870                 blk_mq_kick_requeue_list(ns->queue);
1871         }
1872         rcu_read_unlock();
1873 }
1874 EXPORT_SYMBOL_GPL(nvme_start_queues);
1875
1876 int __init nvme_core_init(void)
1877 {
1878         int result;
1879
1880         result = register_blkdev(nvme_major, "nvme");
1881         if (result < 0)
1882                 return result;
1883         else if (result > 0)
1884                 nvme_major = result;
1885
1886         result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
1887                                                         &nvme_dev_fops);
1888         if (result < 0)
1889                 goto unregister_blkdev;
1890         else if (result > 0)
1891                 nvme_char_major = result;
1892
1893         nvme_class = class_create(THIS_MODULE, "nvme");
1894         if (IS_ERR(nvme_class)) {
1895                 result = PTR_ERR(nvme_class);
1896                 goto unregister_chrdev;
1897         }
1898
1899         return 0;
1900
1901  unregister_chrdev:
1902         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1903  unregister_blkdev:
1904         unregister_blkdev(nvme_major, "nvme");
1905         return result;
1906 }
1907
1908 void nvme_core_exit(void)
1909 {
1910         class_destroy(nvme_class);
1911         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1912         unregister_blkdev(nvme_major, "nvme");
1913 }
1914
1915 MODULE_LICENSE("GPL");
1916 MODULE_VERSION("1.0");
1917 module_init(nvme_core_init);
1918 module_exit(nvme_core_exit);