Merge remote-tracking branches 'spi/topic/octeon', 'spi/topic/omap2-mcspi', 'spi...
[cascardo/linux.git] / drivers / nvme / host / core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <scsi/sg.h>
30 #include <asm/unaligned.h>
31
32 #include "nvme.h"
33
34 #define NVME_MINORS             (1U << MINORBITS)
35
36 unsigned char admin_timeout = 60;
37 module_param(admin_timeout, byte, 0644);
38 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
39 EXPORT_SYMBOL_GPL(admin_timeout);
40
41 unsigned char nvme_io_timeout = 30;
42 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
43 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
44 EXPORT_SYMBOL_GPL(nvme_io_timeout);
45
46 unsigned char shutdown_timeout = 5;
47 module_param(shutdown_timeout, byte, 0644);
48 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
49
50 static int nvme_major;
51 module_param(nvme_major, int, 0);
52
53 static int nvme_char_major;
54 module_param(nvme_char_major, int, 0);
55
56 static LIST_HEAD(nvme_ctrl_list);
57 static DEFINE_SPINLOCK(dev_list_lock);
58
59 static struct class *nvme_class;
60
61 static void nvme_free_ns(struct kref *kref)
62 {
63         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
64
65         if (ns->type == NVME_NS_LIGHTNVM)
66                 nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
67
68         spin_lock(&dev_list_lock);
69         ns->disk->private_data = NULL;
70         spin_unlock(&dev_list_lock);
71
72         put_disk(ns->disk);
73         ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
74         nvme_put_ctrl(ns->ctrl);
75         kfree(ns);
76 }
77
78 static void nvme_put_ns(struct nvme_ns *ns)
79 {
80         kref_put(&ns->kref, nvme_free_ns);
81 }
82
83 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
84 {
85         struct nvme_ns *ns;
86
87         spin_lock(&dev_list_lock);
88         ns = disk->private_data;
89         if (ns) {
90                 if (!kref_get_unless_zero(&ns->kref))
91                         goto fail;
92                 if (!try_module_get(ns->ctrl->ops->module))
93                         goto fail_put_ns;
94         }
95         spin_unlock(&dev_list_lock);
96
97         return ns;
98
99 fail_put_ns:
100         kref_put(&ns->kref, nvme_free_ns);
101 fail:
102         spin_unlock(&dev_list_lock);
103         return NULL;
104 }
105
106 void nvme_requeue_req(struct request *req)
107 {
108         unsigned long flags;
109
110         blk_mq_requeue_request(req);
111         spin_lock_irqsave(req->q->queue_lock, flags);
112         if (!blk_queue_stopped(req->q))
113                 blk_mq_kick_requeue_list(req->q);
114         spin_unlock_irqrestore(req->q->queue_lock, flags);
115 }
116 EXPORT_SYMBOL_GPL(nvme_requeue_req);
117
118 struct request *nvme_alloc_request(struct request_queue *q,
119                 struct nvme_command *cmd, unsigned int flags)
120 {
121         bool write = cmd->common.opcode & 1;
122         struct request *req;
123
124         req = blk_mq_alloc_request(q, write, flags);
125         if (IS_ERR(req))
126                 return req;
127
128         req->cmd_type = REQ_TYPE_DRV_PRIV;
129         req->cmd_flags |= REQ_FAILFAST_DRIVER;
130         req->__data_len = 0;
131         req->__sector = (sector_t) -1;
132         req->bio = req->biotail = NULL;
133
134         req->cmd = (unsigned char *)cmd;
135         req->cmd_len = sizeof(struct nvme_command);
136
137         return req;
138 }
139 EXPORT_SYMBOL_GPL(nvme_alloc_request);
140
141 /*
142  * Returns 0 on success.  If the result is negative, it's a Linux error code;
143  * if the result is positive, it's an NVM Express status code
144  */
145 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
146                 struct nvme_completion *cqe, void *buffer, unsigned bufflen,
147                 unsigned timeout)
148 {
149         struct request *req;
150         int ret;
151
152         req = nvme_alloc_request(q, cmd, 0);
153         if (IS_ERR(req))
154                 return PTR_ERR(req);
155
156         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
157         req->special = cqe;
158
159         if (buffer && bufflen) {
160                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
161                 if (ret)
162                         goto out;
163         }
164
165         blk_execute_rq(req->q, NULL, req, 0);
166         ret = req->errors;
167  out:
168         blk_mq_free_request(req);
169         return ret;
170 }
171
172 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
173                 void *buffer, unsigned bufflen)
174 {
175         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0);
176 }
177 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
178
179 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
180                 void __user *ubuffer, unsigned bufflen,
181                 void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
182                 u32 *result, unsigned timeout)
183 {
184         bool write = cmd->common.opcode & 1;
185         struct nvme_completion cqe;
186         struct nvme_ns *ns = q->queuedata;
187         struct gendisk *disk = ns ? ns->disk : NULL;
188         struct request *req;
189         struct bio *bio = NULL;
190         void *meta = NULL;
191         int ret;
192
193         req = nvme_alloc_request(q, cmd, 0);
194         if (IS_ERR(req))
195                 return PTR_ERR(req);
196
197         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
198         req->special = &cqe;
199
200         if (ubuffer && bufflen) {
201                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
202                                 GFP_KERNEL);
203                 if (ret)
204                         goto out;
205                 bio = req->bio;
206
207                 if (!disk)
208                         goto submit;
209                 bio->bi_bdev = bdget_disk(disk, 0);
210                 if (!bio->bi_bdev) {
211                         ret = -ENODEV;
212                         goto out_unmap;
213                 }
214
215                 if (meta_buffer && meta_len) {
216                         struct bio_integrity_payload *bip;
217
218                         meta = kmalloc(meta_len, GFP_KERNEL);
219                         if (!meta) {
220                                 ret = -ENOMEM;
221                                 goto out_unmap;
222                         }
223
224                         if (write) {
225                                 if (copy_from_user(meta, meta_buffer,
226                                                 meta_len)) {
227                                         ret = -EFAULT;
228                                         goto out_free_meta;
229                                 }
230                         }
231
232                         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
233                         if (IS_ERR(bip)) {
234                                 ret = PTR_ERR(bip);
235                                 goto out_free_meta;
236                         }
237
238                         bip->bip_iter.bi_size = meta_len;
239                         bip->bip_iter.bi_sector = meta_seed;
240
241                         ret = bio_integrity_add_page(bio, virt_to_page(meta),
242                                         meta_len, offset_in_page(meta));
243                         if (ret != meta_len) {
244                                 ret = -ENOMEM;
245                                 goto out_free_meta;
246                         }
247                 }
248         }
249  submit:
250         blk_execute_rq(req->q, disk, req, 0);
251         ret = req->errors;
252         if (result)
253                 *result = le32_to_cpu(cqe.result);
254         if (meta && !ret && !write) {
255                 if (copy_to_user(meta_buffer, meta, meta_len))
256                         ret = -EFAULT;
257         }
258  out_free_meta:
259         kfree(meta);
260  out_unmap:
261         if (bio) {
262                 if (disk && bio->bi_bdev)
263                         bdput(bio->bi_bdev);
264                 blk_rq_unmap_user(bio);
265         }
266  out:
267         blk_mq_free_request(req);
268         return ret;
269 }
270
271 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
272                 void __user *ubuffer, unsigned bufflen, u32 *result,
273                 unsigned timeout)
274 {
275         return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
276                         result, timeout);
277 }
278
279 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
280 {
281         struct nvme_command c = { };
282         int error;
283
284         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
285         c.identify.opcode = nvme_admin_identify;
286         c.identify.cns = cpu_to_le32(1);
287
288         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
289         if (!*id)
290                 return -ENOMEM;
291
292         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
293                         sizeof(struct nvme_id_ctrl));
294         if (error)
295                 kfree(*id);
296         return error;
297 }
298
299 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
300 {
301         struct nvme_command c = { };
302
303         c.identify.opcode = nvme_admin_identify;
304         c.identify.cns = cpu_to_le32(2);
305         c.identify.nsid = cpu_to_le32(nsid);
306         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
307 }
308
309 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
310                 struct nvme_id_ns **id)
311 {
312         struct nvme_command c = { };
313         int error;
314
315         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
316         c.identify.opcode = nvme_admin_identify,
317         c.identify.nsid = cpu_to_le32(nsid),
318
319         *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
320         if (!*id)
321                 return -ENOMEM;
322
323         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
324                         sizeof(struct nvme_id_ns));
325         if (error)
326                 kfree(*id);
327         return error;
328 }
329
330 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
331                                         dma_addr_t dma_addr, u32 *result)
332 {
333         struct nvme_command c;
334         struct nvme_completion cqe;
335         int ret;
336
337         memset(&c, 0, sizeof(c));
338         c.features.opcode = nvme_admin_get_features;
339         c.features.nsid = cpu_to_le32(nsid);
340         c.features.prp1 = cpu_to_le64(dma_addr);
341         c.features.fid = cpu_to_le32(fid);
342
343         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0);
344         if (ret >= 0)
345                 *result = le32_to_cpu(cqe.result);
346         return ret;
347 }
348
349 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
350                                         dma_addr_t dma_addr, u32 *result)
351 {
352         struct nvme_command c;
353         struct nvme_completion cqe;
354         int ret;
355
356         memset(&c, 0, sizeof(c));
357         c.features.opcode = nvme_admin_set_features;
358         c.features.prp1 = cpu_to_le64(dma_addr);
359         c.features.fid = cpu_to_le32(fid);
360         c.features.dword11 = cpu_to_le32(dword11);
361
362         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0);
363         if (ret >= 0)
364                 *result = le32_to_cpu(cqe.result);
365         return ret;
366 }
367
368 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
369 {
370         struct nvme_command c = { };
371         int error;
372
373         c.common.opcode = nvme_admin_get_log_page,
374         c.common.nsid = cpu_to_le32(0xFFFFFFFF),
375         c.common.cdw10[0] = cpu_to_le32(
376                         (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
377                          NVME_LOG_SMART),
378
379         *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
380         if (!*log)
381                 return -ENOMEM;
382
383         error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
384                         sizeof(struct nvme_smart_log));
385         if (error)
386                 kfree(*log);
387         return error;
388 }
389
390 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
391 {
392         u32 q_count = (*count - 1) | ((*count - 1) << 16);
393         u32 result;
394         int status, nr_io_queues;
395
396         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
397                         &result);
398         if (status)
399                 return status;
400
401         nr_io_queues = min(result & 0xffff, result >> 16) + 1;
402         *count = min(*count, nr_io_queues);
403         return 0;
404 }
405 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
406
407 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
408 {
409         struct nvme_user_io io;
410         struct nvme_command c;
411         unsigned length, meta_len;
412         void __user *metadata;
413
414         if (copy_from_user(&io, uio, sizeof(io)))
415                 return -EFAULT;
416         if (io.flags)
417                 return -EINVAL;
418
419         switch (io.opcode) {
420         case nvme_cmd_write:
421         case nvme_cmd_read:
422         case nvme_cmd_compare:
423                 break;
424         default:
425                 return -EINVAL;
426         }
427
428         length = (io.nblocks + 1) << ns->lba_shift;
429         meta_len = (io.nblocks + 1) * ns->ms;
430         metadata = (void __user *)(uintptr_t)io.metadata;
431
432         if (ns->ext) {
433                 length += meta_len;
434                 meta_len = 0;
435         } else if (meta_len) {
436                 if ((io.metadata & 3) || !io.metadata)
437                         return -EINVAL;
438         }
439
440         memset(&c, 0, sizeof(c));
441         c.rw.opcode = io.opcode;
442         c.rw.flags = io.flags;
443         c.rw.nsid = cpu_to_le32(ns->ns_id);
444         c.rw.slba = cpu_to_le64(io.slba);
445         c.rw.length = cpu_to_le16(io.nblocks);
446         c.rw.control = cpu_to_le16(io.control);
447         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
448         c.rw.reftag = cpu_to_le32(io.reftag);
449         c.rw.apptag = cpu_to_le16(io.apptag);
450         c.rw.appmask = cpu_to_le16(io.appmask);
451
452         return __nvme_submit_user_cmd(ns->queue, &c,
453                         (void __user *)(uintptr_t)io.addr, length,
454                         metadata, meta_len, io.slba, NULL, 0);
455 }
456
457 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
458                         struct nvme_passthru_cmd __user *ucmd)
459 {
460         struct nvme_passthru_cmd cmd;
461         struct nvme_command c;
462         unsigned timeout = 0;
463         int status;
464
465         if (!capable(CAP_SYS_ADMIN))
466                 return -EACCES;
467         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
468                 return -EFAULT;
469         if (cmd.flags)
470                 return -EINVAL;
471
472         memset(&c, 0, sizeof(c));
473         c.common.opcode = cmd.opcode;
474         c.common.flags = cmd.flags;
475         c.common.nsid = cpu_to_le32(cmd.nsid);
476         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
477         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
478         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
479         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
480         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
481         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
482         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
483         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
484
485         if (cmd.timeout_ms)
486                 timeout = msecs_to_jiffies(cmd.timeout_ms);
487
488         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
489                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
490                         &cmd.result, timeout);
491         if (status >= 0) {
492                 if (put_user(cmd.result, &ucmd->result))
493                         return -EFAULT;
494         }
495
496         return status;
497 }
498
499 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
500                 unsigned int cmd, unsigned long arg)
501 {
502         struct nvme_ns *ns = bdev->bd_disk->private_data;
503
504         switch (cmd) {
505         case NVME_IOCTL_ID:
506                 force_successful_syscall_return();
507                 return ns->ns_id;
508         case NVME_IOCTL_ADMIN_CMD:
509                 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
510         case NVME_IOCTL_IO_CMD:
511                 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
512         case NVME_IOCTL_SUBMIT_IO:
513                 return nvme_submit_io(ns, (void __user *)arg);
514 #ifdef CONFIG_BLK_DEV_NVME_SCSI
515         case SG_GET_VERSION_NUM:
516                 return nvme_sg_get_version_num((void __user *)arg);
517         case SG_IO:
518                 return nvme_sg_io(ns, (void __user *)arg);
519 #endif
520         default:
521                 return -ENOTTY;
522         }
523 }
524
525 #ifdef CONFIG_COMPAT
526 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
527                         unsigned int cmd, unsigned long arg)
528 {
529         switch (cmd) {
530         case SG_IO:
531                 return -ENOIOCTLCMD;
532         }
533         return nvme_ioctl(bdev, mode, cmd, arg);
534 }
535 #else
536 #define nvme_compat_ioctl       NULL
537 #endif
538
539 static int nvme_open(struct block_device *bdev, fmode_t mode)
540 {
541         return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
542 }
543
544 static void nvme_release(struct gendisk *disk, fmode_t mode)
545 {
546         struct nvme_ns *ns = disk->private_data;
547
548         module_put(ns->ctrl->ops->module);
549         nvme_put_ns(ns);
550 }
551
552 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
553 {
554         /* some standard values */
555         geo->heads = 1 << 6;
556         geo->sectors = 1 << 5;
557         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
558         return 0;
559 }
560
561 #ifdef CONFIG_BLK_DEV_INTEGRITY
562 static void nvme_init_integrity(struct nvme_ns *ns)
563 {
564         struct blk_integrity integrity;
565
566         switch (ns->pi_type) {
567         case NVME_NS_DPS_PI_TYPE3:
568                 integrity.profile = &t10_pi_type3_crc;
569                 break;
570         case NVME_NS_DPS_PI_TYPE1:
571         case NVME_NS_DPS_PI_TYPE2:
572                 integrity.profile = &t10_pi_type1_crc;
573                 break;
574         default:
575                 integrity.profile = NULL;
576                 break;
577         }
578         integrity.tuple_size = ns->ms;
579         blk_integrity_register(ns->disk, &integrity);
580         blk_queue_max_integrity_segments(ns->queue, 1);
581 }
582 #else
583 static void nvme_init_integrity(struct nvme_ns *ns)
584 {
585 }
586 #endif /* CONFIG_BLK_DEV_INTEGRITY */
587
588 static void nvme_config_discard(struct nvme_ns *ns)
589 {
590         struct nvme_ctrl *ctrl = ns->ctrl;
591         u32 logical_block_size = queue_logical_block_size(ns->queue);
592
593         if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
594                 ns->queue->limits.discard_zeroes_data = 1;
595         else
596                 ns->queue->limits.discard_zeroes_data = 0;
597
598         ns->queue->limits.discard_alignment = logical_block_size;
599         ns->queue->limits.discard_granularity = logical_block_size;
600         blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
601         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
602 }
603
604 static int nvme_revalidate_disk(struct gendisk *disk)
605 {
606         struct nvme_ns *ns = disk->private_data;
607         struct nvme_id_ns *id;
608         u8 lbaf, pi_type;
609         u16 old_ms;
610         unsigned short bs;
611
612         if (test_bit(NVME_NS_DEAD, &ns->flags)) {
613                 set_capacity(disk, 0);
614                 return -ENODEV;
615         }
616         if (nvme_identify_ns(ns->ctrl, ns->ns_id, &id)) {
617                 dev_warn(disk_to_dev(ns->disk), "%s: Identify failure\n",
618                                 __func__);
619                 return -ENODEV;
620         }
621         if (id->ncap == 0) {
622                 kfree(id);
623                 return -ENODEV;
624         }
625
626         if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
627                 if (nvme_nvm_register(ns->queue, disk->disk_name)) {
628                         dev_warn(disk_to_dev(ns->disk),
629                                 "%s: LightNVM init failure\n", __func__);
630                         kfree(id);
631                         return -ENODEV;
632                 }
633                 ns->type = NVME_NS_LIGHTNVM;
634         }
635
636         if (ns->ctrl->vs >= NVME_VS(1, 1))
637                 memcpy(ns->eui, id->eui64, sizeof(ns->eui));
638         if (ns->ctrl->vs >= NVME_VS(1, 2))
639                 memcpy(ns->uuid, id->nguid, sizeof(ns->uuid));
640
641         old_ms = ns->ms;
642         lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
643         ns->lba_shift = id->lbaf[lbaf].ds;
644         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
645         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
646
647         /*
648          * If identify namespace failed, use default 512 byte block size so
649          * block layer can use before failing read/write for 0 capacity.
650          */
651         if (ns->lba_shift == 0)
652                 ns->lba_shift = 9;
653         bs = 1 << ns->lba_shift;
654         /* XXX: PI implementation requires metadata equal t10 pi tuple size */
655         pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
656                                         id->dps & NVME_NS_DPS_PI_MASK : 0;
657
658         blk_mq_freeze_queue(disk->queue);
659         if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
660                                 ns->ms != old_ms ||
661                                 bs != queue_logical_block_size(disk->queue) ||
662                                 (ns->ms && ns->ext)))
663                 blk_integrity_unregister(disk);
664
665         ns->pi_type = pi_type;
666         blk_queue_logical_block_size(ns->queue, bs);
667
668         if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
669                 nvme_init_integrity(ns);
670         if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
671                 set_capacity(disk, 0);
672         else
673                 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
674
675         if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
676                 nvme_config_discard(ns);
677         blk_mq_unfreeze_queue(disk->queue);
678
679         kfree(id);
680         return 0;
681 }
682
683 static char nvme_pr_type(enum pr_type type)
684 {
685         switch (type) {
686         case PR_WRITE_EXCLUSIVE:
687                 return 1;
688         case PR_EXCLUSIVE_ACCESS:
689                 return 2;
690         case PR_WRITE_EXCLUSIVE_REG_ONLY:
691                 return 3;
692         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
693                 return 4;
694         case PR_WRITE_EXCLUSIVE_ALL_REGS:
695                 return 5;
696         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
697                 return 6;
698         default:
699                 return 0;
700         }
701 };
702
703 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
704                                 u64 key, u64 sa_key, u8 op)
705 {
706         struct nvme_ns *ns = bdev->bd_disk->private_data;
707         struct nvme_command c;
708         u8 data[16] = { 0, };
709
710         put_unaligned_le64(key, &data[0]);
711         put_unaligned_le64(sa_key, &data[8]);
712
713         memset(&c, 0, sizeof(c));
714         c.common.opcode = op;
715         c.common.nsid = cpu_to_le32(ns->ns_id);
716         c.common.cdw10[0] = cpu_to_le32(cdw10);
717
718         return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
719 }
720
721 static int nvme_pr_register(struct block_device *bdev, u64 old,
722                 u64 new, unsigned flags)
723 {
724         u32 cdw10;
725
726         if (flags & ~PR_FL_IGNORE_KEY)
727                 return -EOPNOTSUPP;
728
729         cdw10 = old ? 2 : 0;
730         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
731         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
732         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
733 }
734
735 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
736                 enum pr_type type, unsigned flags)
737 {
738         u32 cdw10;
739
740         if (flags & ~PR_FL_IGNORE_KEY)
741                 return -EOPNOTSUPP;
742
743         cdw10 = nvme_pr_type(type) << 8;
744         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
745         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
746 }
747
748 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
749                 enum pr_type type, bool abort)
750 {
751         u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
752         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
753 }
754
755 static int nvme_pr_clear(struct block_device *bdev, u64 key)
756 {
757         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
758         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
759 }
760
761 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
762 {
763         u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
764         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
765 }
766
767 static const struct pr_ops nvme_pr_ops = {
768         .pr_register    = nvme_pr_register,
769         .pr_reserve     = nvme_pr_reserve,
770         .pr_release     = nvme_pr_release,
771         .pr_preempt     = nvme_pr_preempt,
772         .pr_clear       = nvme_pr_clear,
773 };
774
775 static const struct block_device_operations nvme_fops = {
776         .owner          = THIS_MODULE,
777         .ioctl          = nvme_ioctl,
778         .compat_ioctl   = nvme_compat_ioctl,
779         .open           = nvme_open,
780         .release        = nvme_release,
781         .getgeo         = nvme_getgeo,
782         .revalidate_disk= nvme_revalidate_disk,
783         .pr_ops         = &nvme_pr_ops,
784 };
785
786 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
787 {
788         unsigned long timeout =
789                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
790         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
791         int ret;
792
793         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
794                 if ((csts & NVME_CSTS_RDY) == bit)
795                         break;
796
797                 msleep(100);
798                 if (fatal_signal_pending(current))
799                         return -EINTR;
800                 if (time_after(jiffies, timeout)) {
801                         dev_err(ctrl->device,
802                                 "Device not ready; aborting %s\n", enabled ?
803                                                 "initialisation" : "reset");
804                         return -ENODEV;
805                 }
806         }
807
808         return ret;
809 }
810
811 /*
812  * If the device has been passed off to us in an enabled state, just clear
813  * the enabled bit.  The spec says we should set the 'shutdown notification
814  * bits', but doing so may cause the device to complete commands to the
815  * admin queue ... and we don't know what memory that might be pointing at!
816  */
817 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
818 {
819         int ret;
820
821         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
822         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
823
824         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
825         if (ret)
826                 return ret;
827         return nvme_wait_ready(ctrl, cap, false);
828 }
829 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
830
831 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
832 {
833         /*
834          * Default to a 4K page size, with the intention to update this
835          * path in the future to accomodate architectures with differing
836          * kernel and IO page sizes.
837          */
838         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
839         int ret;
840
841         if (page_shift < dev_page_min) {
842                 dev_err(ctrl->device,
843                         "Minimum device page size %u too large for host (%u)\n",
844                         1 << dev_page_min, 1 << page_shift);
845                 return -ENODEV;
846         }
847
848         ctrl->page_size = 1 << page_shift;
849
850         ctrl->ctrl_config = NVME_CC_CSS_NVM;
851         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
852         ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
853         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
854         ctrl->ctrl_config |= NVME_CC_ENABLE;
855
856         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
857         if (ret)
858                 return ret;
859         return nvme_wait_ready(ctrl, cap, true);
860 }
861 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
862
863 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
864 {
865         unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
866         u32 csts;
867         int ret;
868
869         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
870         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
871
872         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
873         if (ret)
874                 return ret;
875
876         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
877                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
878                         break;
879
880                 msleep(100);
881                 if (fatal_signal_pending(current))
882                         return -EINTR;
883                 if (time_after(jiffies, timeout)) {
884                         dev_err(ctrl->device,
885                                 "Device shutdown incomplete; abort shutdown\n");
886                         return -ENODEV;
887                 }
888         }
889
890         return ret;
891 }
892 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
893
894 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
895                 struct request_queue *q)
896 {
897         if (ctrl->max_hw_sectors) {
898                 u32 max_segments =
899                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
900
901                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
902                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
903         }
904         if (ctrl->stripe_size)
905                 blk_queue_chunk_sectors(q, ctrl->stripe_size >> 9);
906         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
907                 blk_queue_flush(q, REQ_FLUSH | REQ_FUA);
908         blk_queue_virt_boundary(q, ctrl->page_size - 1);
909 }
910
911 /*
912  * Initialize the cached copies of the Identify data and various controller
913  * register in our nvme_ctrl structure.  This should be called as soon as
914  * the admin queue is fully up and running.
915  */
916 int nvme_init_identify(struct nvme_ctrl *ctrl)
917 {
918         struct nvme_id_ctrl *id;
919         u64 cap;
920         int ret, page_shift;
921
922         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
923         if (ret) {
924                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
925                 return ret;
926         }
927
928         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
929         if (ret) {
930                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
931                 return ret;
932         }
933         page_shift = NVME_CAP_MPSMIN(cap) + 12;
934
935         if (ctrl->vs >= NVME_VS(1, 1))
936                 ctrl->subsystem = NVME_CAP_NSSRC(cap);
937
938         ret = nvme_identify_ctrl(ctrl, &id);
939         if (ret) {
940                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
941                 return -EIO;
942         }
943
944         ctrl->vid = le16_to_cpu(id->vid);
945         ctrl->oncs = le16_to_cpup(&id->oncs);
946         atomic_set(&ctrl->abort_limit, id->acl + 1);
947         ctrl->vwc = id->vwc;
948         ctrl->cntlid = le16_to_cpup(&id->cntlid);
949         memcpy(ctrl->serial, id->sn, sizeof(id->sn));
950         memcpy(ctrl->model, id->mn, sizeof(id->mn));
951         memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
952         if (id->mdts)
953                 ctrl->max_hw_sectors = 1 << (id->mdts + page_shift - 9);
954         else
955                 ctrl->max_hw_sectors = UINT_MAX;
956
957         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
958                 unsigned int max_hw_sectors;
959
960                 ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
961                 max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
962                 if (ctrl->max_hw_sectors) {
963                         ctrl->max_hw_sectors = min(max_hw_sectors,
964                                                         ctrl->max_hw_sectors);
965                 } else {
966                         ctrl->max_hw_sectors = max_hw_sectors;
967                 }
968         }
969
970         nvme_set_queue_limits(ctrl, ctrl->admin_q);
971
972         kfree(id);
973         return 0;
974 }
975 EXPORT_SYMBOL_GPL(nvme_init_identify);
976
977 static int nvme_dev_open(struct inode *inode, struct file *file)
978 {
979         struct nvme_ctrl *ctrl;
980         int instance = iminor(inode);
981         int ret = -ENODEV;
982
983         spin_lock(&dev_list_lock);
984         list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
985                 if (ctrl->instance != instance)
986                         continue;
987
988                 if (!ctrl->admin_q) {
989                         ret = -EWOULDBLOCK;
990                         break;
991                 }
992                 if (!kref_get_unless_zero(&ctrl->kref))
993                         break;
994                 file->private_data = ctrl;
995                 ret = 0;
996                 break;
997         }
998         spin_unlock(&dev_list_lock);
999
1000         return ret;
1001 }
1002
1003 static int nvme_dev_release(struct inode *inode, struct file *file)
1004 {
1005         nvme_put_ctrl(file->private_data);
1006         return 0;
1007 }
1008
1009 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1010 {
1011         struct nvme_ns *ns;
1012         int ret;
1013
1014         mutex_lock(&ctrl->namespaces_mutex);
1015         if (list_empty(&ctrl->namespaces)) {
1016                 ret = -ENOTTY;
1017                 goto out_unlock;
1018         }
1019
1020         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1021         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1022                 dev_warn(ctrl->device,
1023                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1024                 ret = -EINVAL;
1025                 goto out_unlock;
1026         }
1027
1028         dev_warn(ctrl->device,
1029                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1030         kref_get(&ns->kref);
1031         mutex_unlock(&ctrl->namespaces_mutex);
1032
1033         ret = nvme_user_cmd(ctrl, ns, argp);
1034         nvme_put_ns(ns);
1035         return ret;
1036
1037 out_unlock:
1038         mutex_unlock(&ctrl->namespaces_mutex);
1039         return ret;
1040 }
1041
1042 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1043                 unsigned long arg)
1044 {
1045         struct nvme_ctrl *ctrl = file->private_data;
1046         void __user *argp = (void __user *)arg;
1047
1048         switch (cmd) {
1049         case NVME_IOCTL_ADMIN_CMD:
1050                 return nvme_user_cmd(ctrl, NULL, argp);
1051         case NVME_IOCTL_IO_CMD:
1052                 return nvme_dev_user_cmd(ctrl, argp);
1053         case NVME_IOCTL_RESET:
1054                 dev_warn(ctrl->device, "resetting controller\n");
1055                 return ctrl->ops->reset_ctrl(ctrl);
1056         case NVME_IOCTL_SUBSYS_RESET:
1057                 return nvme_reset_subsystem(ctrl);
1058         default:
1059                 return -ENOTTY;
1060         }
1061 }
1062
1063 static const struct file_operations nvme_dev_fops = {
1064         .owner          = THIS_MODULE,
1065         .open           = nvme_dev_open,
1066         .release        = nvme_dev_release,
1067         .unlocked_ioctl = nvme_dev_ioctl,
1068         .compat_ioctl   = nvme_dev_ioctl,
1069 };
1070
1071 static ssize_t nvme_sysfs_reset(struct device *dev,
1072                                 struct device_attribute *attr, const char *buf,
1073                                 size_t count)
1074 {
1075         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1076         int ret;
1077
1078         ret = ctrl->ops->reset_ctrl(ctrl);
1079         if (ret < 0)
1080                 return ret;
1081         return count;
1082 }
1083 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1084
1085 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
1086                                                                 char *buf)
1087 {
1088         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1089         struct nvme_ctrl *ctrl = ns->ctrl;
1090         int serial_len = sizeof(ctrl->serial);
1091         int model_len = sizeof(ctrl->model);
1092
1093         if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1094                 return sprintf(buf, "eui.%16phN\n", ns->uuid);
1095
1096         if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1097                 return sprintf(buf, "eui.%8phN\n", ns->eui);
1098
1099         while (ctrl->serial[serial_len - 1] == ' ')
1100                 serial_len--;
1101         while (ctrl->model[model_len - 1] == ' ')
1102                 model_len--;
1103
1104         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
1105                 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
1106 }
1107 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
1108
1109 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
1110                                                                 char *buf)
1111 {
1112         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1113         return sprintf(buf, "%pU\n", ns->uuid);
1114 }
1115 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
1116
1117 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
1118                                                                 char *buf)
1119 {
1120         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1121         return sprintf(buf, "%8phd\n", ns->eui);
1122 }
1123 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
1124
1125 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
1126                                                                 char *buf)
1127 {
1128         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1129         return sprintf(buf, "%d\n", ns->ns_id);
1130 }
1131 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
1132
1133 static struct attribute *nvme_ns_attrs[] = {
1134         &dev_attr_wwid.attr,
1135         &dev_attr_uuid.attr,
1136         &dev_attr_eui.attr,
1137         &dev_attr_nsid.attr,
1138         NULL,
1139 };
1140
1141 static umode_t nvme_attrs_are_visible(struct kobject *kobj,
1142                 struct attribute *a, int n)
1143 {
1144         struct device *dev = container_of(kobj, struct device, kobj);
1145         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1146
1147         if (a == &dev_attr_uuid.attr) {
1148                 if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1149                         return 0;
1150         }
1151         if (a == &dev_attr_eui.attr) {
1152                 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1153                         return 0;
1154         }
1155         return a->mode;
1156 }
1157
1158 static const struct attribute_group nvme_ns_attr_group = {
1159         .attrs          = nvme_ns_attrs,
1160         .is_visible     = nvme_attrs_are_visible,
1161 };
1162
1163 #define nvme_show_str_function(field)                                           \
1164 static ssize_t  field##_show(struct device *dev,                                \
1165                             struct device_attribute *attr, char *buf)           \
1166 {                                                                               \
1167         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
1168         return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);   \
1169 }                                                                               \
1170 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1171
1172 #define nvme_show_int_function(field)                                           \
1173 static ssize_t  field##_show(struct device *dev,                                \
1174                             struct device_attribute *attr, char *buf)           \
1175 {                                                                               \
1176         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
1177         return sprintf(buf, "%d\n", ctrl->field);       \
1178 }                                                                               \
1179 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1180
1181 nvme_show_str_function(model);
1182 nvme_show_str_function(serial);
1183 nvme_show_str_function(firmware_rev);
1184 nvme_show_int_function(cntlid);
1185
1186 static struct attribute *nvme_dev_attrs[] = {
1187         &dev_attr_reset_controller.attr,
1188         &dev_attr_model.attr,
1189         &dev_attr_serial.attr,
1190         &dev_attr_firmware_rev.attr,
1191         &dev_attr_cntlid.attr,
1192         NULL
1193 };
1194
1195 static struct attribute_group nvme_dev_attrs_group = {
1196         .attrs = nvme_dev_attrs,
1197 };
1198
1199 static const struct attribute_group *nvme_dev_attr_groups[] = {
1200         &nvme_dev_attrs_group,
1201         NULL,
1202 };
1203
1204 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1205 {
1206         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1207         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
1208
1209         return nsa->ns_id - nsb->ns_id;
1210 }
1211
1212 static struct nvme_ns *nvme_find_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1213 {
1214         struct nvme_ns *ns;
1215
1216         lockdep_assert_held(&ctrl->namespaces_mutex);
1217
1218         list_for_each_entry(ns, &ctrl->namespaces, list) {
1219                 if (ns->ns_id == nsid)
1220                         return ns;
1221                 if (ns->ns_id > nsid)
1222                         break;
1223         }
1224         return NULL;
1225 }
1226
1227 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1228 {
1229         struct nvme_ns *ns;
1230         struct gendisk *disk;
1231         int node = dev_to_node(ctrl->dev);
1232
1233         lockdep_assert_held(&ctrl->namespaces_mutex);
1234
1235         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1236         if (!ns)
1237                 return;
1238
1239         ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
1240         if (ns->instance < 0)
1241                 goto out_free_ns;
1242
1243         ns->queue = blk_mq_init_queue(ctrl->tagset);
1244         if (IS_ERR(ns->queue))
1245                 goto out_release_instance;
1246         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1247         ns->queue->queuedata = ns;
1248         ns->ctrl = ctrl;
1249
1250         disk = alloc_disk_node(0, node);
1251         if (!disk)
1252                 goto out_free_queue;
1253
1254         kref_init(&ns->kref);
1255         ns->ns_id = nsid;
1256         ns->disk = disk;
1257         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
1258
1259
1260         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1261         nvme_set_queue_limits(ctrl, ns->queue);
1262
1263         disk->major = nvme_major;
1264         disk->first_minor = 0;
1265         disk->fops = &nvme_fops;
1266         disk->private_data = ns;
1267         disk->queue = ns->queue;
1268         disk->driverfs_dev = ctrl->device;
1269         disk->flags = GENHD_FL_EXT_DEVT;
1270         sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1271
1272         if (nvme_revalidate_disk(ns->disk))
1273                 goto out_free_disk;
1274
1275         list_add_tail(&ns->list, &ctrl->namespaces);
1276         kref_get(&ctrl->kref);
1277         if (ns->type == NVME_NS_LIGHTNVM)
1278                 return;
1279
1280         add_disk(ns->disk);
1281         if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
1282                                         &nvme_ns_attr_group))
1283                 pr_warn("%s: failed to create sysfs group for identification\n",
1284                         ns->disk->disk_name);
1285         return;
1286  out_free_disk:
1287         kfree(disk);
1288  out_free_queue:
1289         blk_cleanup_queue(ns->queue);
1290  out_release_instance:
1291         ida_simple_remove(&ctrl->ns_ida, ns->instance);
1292  out_free_ns:
1293         kfree(ns);
1294 }
1295
1296 static void nvme_ns_remove(struct nvme_ns *ns)
1297 {
1298         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
1299                 return;
1300
1301         if (ns->disk->flags & GENHD_FL_UP) {
1302                 if (blk_get_integrity(ns->disk))
1303                         blk_integrity_unregister(ns->disk);
1304                 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
1305                                         &nvme_ns_attr_group);
1306                 del_gendisk(ns->disk);
1307                 blk_mq_abort_requeue_list(ns->queue);
1308                 blk_cleanup_queue(ns->queue);
1309         }
1310         mutex_lock(&ns->ctrl->namespaces_mutex);
1311         list_del_init(&ns->list);
1312         mutex_unlock(&ns->ctrl->namespaces_mutex);
1313         nvme_put_ns(ns);
1314 }
1315
1316 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1317 {
1318         struct nvme_ns *ns;
1319
1320         ns = nvme_find_ns(ctrl, nsid);
1321         if (ns) {
1322                 if (revalidate_disk(ns->disk))
1323                         nvme_ns_remove(ns);
1324         } else
1325                 nvme_alloc_ns(ctrl, nsid);
1326 }
1327
1328 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
1329 {
1330         struct nvme_ns *ns;
1331         __le32 *ns_list;
1332         unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
1333         int ret = 0;
1334
1335         ns_list = kzalloc(0x1000, GFP_KERNEL);
1336         if (!ns_list)
1337                 return -ENOMEM;
1338
1339         for (i = 0; i < num_lists; i++) {
1340                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
1341                 if (ret)
1342                         goto out;
1343
1344                 for (j = 0; j < min(nn, 1024U); j++) {
1345                         nsid = le32_to_cpu(ns_list[j]);
1346                         if (!nsid)
1347                                 goto out;
1348
1349                         nvme_validate_ns(ctrl, nsid);
1350
1351                         while (++prev < nsid) {
1352                                 ns = nvme_find_ns(ctrl, prev);
1353                                 if (ns)
1354                                         nvme_ns_remove(ns);
1355                         }
1356                 }
1357                 nn -= j;
1358         }
1359  out:
1360         kfree(ns_list);
1361         return ret;
1362 }
1363
1364 static void __nvme_scan_namespaces(struct nvme_ctrl *ctrl, unsigned nn)
1365 {
1366         struct nvme_ns *ns, *next;
1367         unsigned i;
1368
1369         lockdep_assert_held(&ctrl->namespaces_mutex);
1370
1371         for (i = 1; i <= nn; i++)
1372                 nvme_validate_ns(ctrl, i);
1373
1374         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
1375                 if (ns->ns_id > nn)
1376                         nvme_ns_remove(ns);
1377         }
1378 }
1379
1380 void nvme_scan_namespaces(struct nvme_ctrl *ctrl)
1381 {
1382         struct nvme_id_ctrl *id;
1383         unsigned nn;
1384
1385         if (nvme_identify_ctrl(ctrl, &id))
1386                 return;
1387
1388         mutex_lock(&ctrl->namespaces_mutex);
1389         nn = le32_to_cpu(id->nn);
1390         if (ctrl->vs >= NVME_VS(1, 1) &&
1391             !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
1392                 if (!nvme_scan_ns_list(ctrl, nn))
1393                         goto done;
1394         }
1395         __nvme_scan_namespaces(ctrl, le32_to_cpup(&id->nn));
1396  done:
1397         list_sort(NULL, &ctrl->namespaces, ns_cmp);
1398         mutex_unlock(&ctrl->namespaces_mutex);
1399         kfree(id);
1400 }
1401 EXPORT_SYMBOL_GPL(nvme_scan_namespaces);
1402
1403 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
1404 {
1405         struct nvme_ns *ns, *next;
1406
1407         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
1408                 nvme_ns_remove(ns);
1409 }
1410 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
1411
1412 static DEFINE_IDA(nvme_instance_ida);
1413
1414 static int nvme_set_instance(struct nvme_ctrl *ctrl)
1415 {
1416         int instance, error;
1417
1418         do {
1419                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1420                         return -ENODEV;
1421
1422                 spin_lock(&dev_list_lock);
1423                 error = ida_get_new(&nvme_instance_ida, &instance);
1424                 spin_unlock(&dev_list_lock);
1425         } while (error == -EAGAIN);
1426
1427         if (error)
1428                 return -ENODEV;
1429
1430         ctrl->instance = instance;
1431         return 0;
1432 }
1433
1434 static void nvme_release_instance(struct nvme_ctrl *ctrl)
1435 {
1436         spin_lock(&dev_list_lock);
1437         ida_remove(&nvme_instance_ida, ctrl->instance);
1438         spin_unlock(&dev_list_lock);
1439 }
1440
1441 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
1442 {
1443         device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1444
1445         spin_lock(&dev_list_lock);
1446         list_del(&ctrl->node);
1447         spin_unlock(&dev_list_lock);
1448 }
1449 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
1450
1451 static void nvme_free_ctrl(struct kref *kref)
1452 {
1453         struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
1454
1455         put_device(ctrl->device);
1456         nvme_release_instance(ctrl);
1457         ida_destroy(&ctrl->ns_ida);
1458
1459         ctrl->ops->free_ctrl(ctrl);
1460 }
1461
1462 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
1463 {
1464         kref_put(&ctrl->kref, nvme_free_ctrl);
1465 }
1466 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
1467
1468 /*
1469  * Initialize a NVMe controller structures.  This needs to be called during
1470  * earliest initialization so that we have the initialized structured around
1471  * during probing.
1472  */
1473 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
1474                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
1475 {
1476         int ret;
1477
1478         INIT_LIST_HEAD(&ctrl->namespaces);
1479         mutex_init(&ctrl->namespaces_mutex);
1480         kref_init(&ctrl->kref);
1481         ctrl->dev = dev;
1482         ctrl->ops = ops;
1483         ctrl->quirks = quirks;
1484
1485         ret = nvme_set_instance(ctrl);
1486         if (ret)
1487                 goto out;
1488
1489         ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
1490                                 MKDEV(nvme_char_major, ctrl->instance),
1491                                 ctrl, nvme_dev_attr_groups,
1492                                 "nvme%d", ctrl->instance);
1493         if (IS_ERR(ctrl->device)) {
1494                 ret = PTR_ERR(ctrl->device);
1495                 goto out_release_instance;
1496         }
1497         get_device(ctrl->device);
1498         ida_init(&ctrl->ns_ida);
1499
1500         spin_lock(&dev_list_lock);
1501         list_add_tail(&ctrl->node, &nvme_ctrl_list);
1502         spin_unlock(&dev_list_lock);
1503
1504         return 0;
1505 out_release_instance:
1506         nvme_release_instance(ctrl);
1507 out:
1508         return ret;
1509 }
1510 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
1511
1512 /**
1513  * nvme_kill_queues(): Ends all namespace queues
1514  * @ctrl: the dead controller that needs to end
1515  *
1516  * Call this function when the driver determines it is unable to get the
1517  * controller in a state capable of servicing IO.
1518  */
1519 void nvme_kill_queues(struct nvme_ctrl *ctrl)
1520 {
1521         struct nvme_ns *ns;
1522
1523         mutex_lock(&ctrl->namespaces_mutex);
1524         list_for_each_entry(ns, &ctrl->namespaces, list) {
1525                 if (!kref_get_unless_zero(&ns->kref))
1526                         continue;
1527
1528                 /*
1529                  * Revalidating a dead namespace sets capacity to 0. This will
1530                  * end buffered writers dirtying pages that can't be synced.
1531                  */
1532                 if (!test_and_set_bit(NVME_NS_DEAD, &ns->flags))
1533                         revalidate_disk(ns->disk);
1534
1535                 blk_set_queue_dying(ns->queue);
1536                 blk_mq_abort_requeue_list(ns->queue);
1537                 blk_mq_start_stopped_hw_queues(ns->queue, true);
1538
1539                 nvme_put_ns(ns);
1540         }
1541         mutex_unlock(&ctrl->namespaces_mutex);
1542 }
1543 EXPORT_SYMBOL_GPL(nvme_kill_queues);
1544
1545 void nvme_stop_queues(struct nvme_ctrl *ctrl)
1546 {
1547         struct nvme_ns *ns;
1548
1549         mutex_lock(&ctrl->namespaces_mutex);
1550         list_for_each_entry(ns, &ctrl->namespaces, list) {
1551                 spin_lock_irq(ns->queue->queue_lock);
1552                 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
1553                 spin_unlock_irq(ns->queue->queue_lock);
1554
1555                 blk_mq_cancel_requeue_work(ns->queue);
1556                 blk_mq_stop_hw_queues(ns->queue);
1557         }
1558         mutex_unlock(&ctrl->namespaces_mutex);
1559 }
1560 EXPORT_SYMBOL_GPL(nvme_stop_queues);
1561
1562 void nvme_start_queues(struct nvme_ctrl *ctrl)
1563 {
1564         struct nvme_ns *ns;
1565
1566         mutex_lock(&ctrl->namespaces_mutex);
1567         list_for_each_entry(ns, &ctrl->namespaces, list) {
1568                 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
1569                 blk_mq_start_stopped_hw_queues(ns->queue, true);
1570                 blk_mq_kick_requeue_list(ns->queue);
1571         }
1572         mutex_unlock(&ctrl->namespaces_mutex);
1573 }
1574 EXPORT_SYMBOL_GPL(nvme_start_queues);
1575
1576 int __init nvme_core_init(void)
1577 {
1578         int result;
1579
1580         result = register_blkdev(nvme_major, "nvme");
1581         if (result < 0)
1582                 return result;
1583         else if (result > 0)
1584                 nvme_major = result;
1585
1586         result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
1587                                                         &nvme_dev_fops);
1588         if (result < 0)
1589                 goto unregister_blkdev;
1590         else if (result > 0)
1591                 nvme_char_major = result;
1592
1593         nvme_class = class_create(THIS_MODULE, "nvme");
1594         if (IS_ERR(nvme_class)) {
1595                 result = PTR_ERR(nvme_class);
1596                 goto unregister_chrdev;
1597         }
1598
1599         return 0;
1600
1601  unregister_chrdev:
1602         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1603  unregister_blkdev:
1604         unregister_blkdev(nvme_major, "nvme");
1605         return result;
1606 }
1607
1608 void nvme_core_exit(void)
1609 {
1610         unregister_blkdev(nvme_major, "nvme");
1611         class_destroy(nvme_class);
1612         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1613 }
1614
1615 MODULE_LICENSE("GPL");
1616 MODULE_VERSION("1.0");
1617 module_init(nvme_core_init);
1618 module_exit(nvme_core_exit);