Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[cascardo/linux.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/hdreg.h>
26 #include <linux/idr.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/io.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/mutex.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/timer.h>
43 #include <linux/types.h>
44 #include <linux/io-64-nonatomic-lo-hi.h>
45 #include <asm/unaligned.h>
46
47 #include "nvme.h"
48
49 #define NVME_Q_DEPTH            1024
50 #define NVME_AQ_DEPTH           256
51 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
52 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
53                 
54 /*
55  * We handle AEN commands ourselves and don't even let the
56  * block layer know about them.
57  */
58 #define NVME_AQ_BLKMQ_DEPTH     (NVME_AQ_DEPTH - NVME_NR_AERS)
59
60 static int use_threaded_interrupts;
61 module_param(use_threaded_interrupts, int, 0);
62
63 static bool use_cmb_sqes = true;
64 module_param(use_cmb_sqes, bool, 0644);
65 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
66
67 static struct workqueue_struct *nvme_workq;
68
69 struct nvme_dev;
70 struct nvme_queue;
71
72 static int nvme_reset(struct nvme_dev *dev);
73 static void nvme_process_cq(struct nvme_queue *nvmeq);
74 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
75
76 /*
77  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
78  */
79 struct nvme_dev {
80         struct nvme_queue **queues;
81         struct blk_mq_tag_set tagset;
82         struct blk_mq_tag_set admin_tagset;
83         u32 __iomem *dbs;
84         struct device *dev;
85         struct dma_pool *prp_page_pool;
86         struct dma_pool *prp_small_pool;
87         unsigned queue_count;
88         unsigned online_queues;
89         unsigned max_qid;
90         int q_depth;
91         u32 db_stride;
92         void __iomem *bar;
93         struct work_struct reset_work;
94         struct work_struct remove_work;
95         struct timer_list watchdog_timer;
96         struct mutex shutdown_lock;
97         bool subsystem;
98         void __iomem *cmb;
99         dma_addr_t cmb_dma_addr;
100         u64 cmb_size;
101         u32 cmbsz;
102         u32 cmbloc;
103         struct nvme_ctrl ctrl;
104         struct completion ioq_wait;
105 };
106
107 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
108 {
109         return container_of(ctrl, struct nvme_dev, ctrl);
110 }
111
112 /*
113  * An NVM Express queue.  Each device has at least two (one for admin
114  * commands and one for I/O commands).
115  */
116 struct nvme_queue {
117         struct device *q_dmadev;
118         struct nvme_dev *dev;
119         char irqname[24];       /* nvme4294967295-65535\0 */
120         spinlock_t q_lock;
121         struct nvme_command *sq_cmds;
122         struct nvme_command __iomem *sq_cmds_io;
123         volatile struct nvme_completion *cqes;
124         struct blk_mq_tags **tags;
125         dma_addr_t sq_dma_addr;
126         dma_addr_t cq_dma_addr;
127         u32 __iomem *q_db;
128         u16 q_depth;
129         s16 cq_vector;
130         u16 sq_tail;
131         u16 cq_head;
132         u16 qid;
133         u8 cq_phase;
134         u8 cqe_seen;
135 };
136
137 /*
138  * The nvme_iod describes the data in an I/O, including the list of PRP
139  * entries.  You can't see it in this data structure because C doesn't let
140  * me express that.  Use nvme_init_iod to ensure there's enough space
141  * allocated to store the PRP list.
142  */
143 struct nvme_iod {
144         struct nvme_queue *nvmeq;
145         int aborted;
146         int npages;             /* In the PRP list. 0 means small pool in use */
147         int nents;              /* Used in scatterlist */
148         int length;             /* Of data, in bytes */
149         dma_addr_t first_dma;
150         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
151         struct scatterlist *sg;
152         struct scatterlist inline_sg[0];
153 };
154
155 /*
156  * Check we didin't inadvertently grow the command struct
157  */
158 static inline void _nvme_check_size(void)
159 {
160         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
161         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
162         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
163         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
164         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
165         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
166         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
167         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
168         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
169         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
170         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
171         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
172 }
173
174 /*
175  * Max size of iod being embedded in the request payload
176  */
177 #define NVME_INT_PAGES          2
178 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
179
180 /*
181  * Will slightly overestimate the number of pages needed.  This is OK
182  * as it only leads to a small amount of wasted memory for the lifetime of
183  * the I/O.
184  */
185 static int nvme_npages(unsigned size, struct nvme_dev *dev)
186 {
187         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
188                                       dev->ctrl.page_size);
189         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
190 }
191
192 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
193                 unsigned int size, unsigned int nseg)
194 {
195         return sizeof(__le64 *) * nvme_npages(size, dev) +
196                         sizeof(struct scatterlist) * nseg;
197 }
198
199 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
200 {
201         return sizeof(struct nvme_iod) +
202                 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
203 }
204
205 static int nvmeq_irq(struct nvme_queue *nvmeq)
206 {
207         return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
208 }
209
210 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
211                                 unsigned int hctx_idx)
212 {
213         struct nvme_dev *dev = data;
214         struct nvme_queue *nvmeq = dev->queues[0];
215
216         WARN_ON(hctx_idx != 0);
217         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
218         WARN_ON(nvmeq->tags);
219
220         hctx->driver_data = nvmeq;
221         nvmeq->tags = &dev->admin_tagset.tags[0];
222         return 0;
223 }
224
225 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
226 {
227         struct nvme_queue *nvmeq = hctx->driver_data;
228
229         nvmeq->tags = NULL;
230 }
231
232 static int nvme_admin_init_request(void *data, struct request *req,
233                                 unsigned int hctx_idx, unsigned int rq_idx,
234                                 unsigned int numa_node)
235 {
236         struct nvme_dev *dev = data;
237         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
238         struct nvme_queue *nvmeq = dev->queues[0];
239
240         BUG_ON(!nvmeq);
241         iod->nvmeq = nvmeq;
242         return 0;
243 }
244
245 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
246                           unsigned int hctx_idx)
247 {
248         struct nvme_dev *dev = data;
249         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
250
251         if (!nvmeq->tags)
252                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
253
254         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
255         hctx->driver_data = nvmeq;
256         return 0;
257 }
258
259 static int nvme_init_request(void *data, struct request *req,
260                                 unsigned int hctx_idx, unsigned int rq_idx,
261                                 unsigned int numa_node)
262 {
263         struct nvme_dev *dev = data;
264         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
265         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
266
267         BUG_ON(!nvmeq);
268         iod->nvmeq = nvmeq;
269         return 0;
270 }
271
272 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
273 {
274         struct nvme_dev *dev = set->driver_data;
275
276         return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
277 }
278
279 /**
280  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
281  * @nvmeq: The queue to use
282  * @cmd: The command to send
283  *
284  * Safe to use from interrupt context
285  */
286 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
287                                                 struct nvme_command *cmd)
288 {
289         u16 tail = nvmeq->sq_tail;
290
291         if (nvmeq->sq_cmds_io)
292                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
293         else
294                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
295
296         if (++tail == nvmeq->q_depth)
297                 tail = 0;
298         writel(tail, nvmeq->q_db);
299         nvmeq->sq_tail = tail;
300 }
301
302 static __le64 **iod_list(struct request *req)
303 {
304         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
305         return (__le64 **)(iod->sg + req->nr_phys_segments);
306 }
307
308 static int nvme_init_iod(struct request *rq, unsigned size,
309                 struct nvme_dev *dev)
310 {
311         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
312         int nseg = rq->nr_phys_segments;
313
314         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
315                 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
316                 if (!iod->sg)
317                         return BLK_MQ_RQ_QUEUE_BUSY;
318         } else {
319                 iod->sg = iod->inline_sg;
320         }
321
322         iod->aborted = 0;
323         iod->npages = -1;
324         iod->nents = 0;
325         iod->length = size;
326
327         if (!(rq->cmd_flags & REQ_DONTPREP)) {
328                 rq->retries = 0;
329                 rq->cmd_flags |= REQ_DONTPREP;
330         }
331         return 0;
332 }
333
334 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
335 {
336         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
337         const int last_prp = dev->ctrl.page_size / 8 - 1;
338         int i;
339         __le64 **list = iod_list(req);
340         dma_addr_t prp_dma = iod->first_dma;
341
342         nvme_cleanup_cmd(req);
343
344         if (iod->npages == 0)
345                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
346         for (i = 0; i < iod->npages; i++) {
347                 __le64 *prp_list = list[i];
348                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
349                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
350                 prp_dma = next_prp_dma;
351         }
352
353         if (iod->sg != iod->inline_sg)
354                 kfree(iod->sg);
355 }
356
357 #ifdef CONFIG_BLK_DEV_INTEGRITY
358 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
359 {
360         if (be32_to_cpu(pi->ref_tag) == v)
361                 pi->ref_tag = cpu_to_be32(p);
362 }
363
364 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
365 {
366         if (be32_to_cpu(pi->ref_tag) == p)
367                 pi->ref_tag = cpu_to_be32(v);
368 }
369
370 /**
371  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
372  *
373  * The virtual start sector is the one that was originally submitted by the
374  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
375  * start sector may be different. Remap protection information to match the
376  * physical LBA on writes, and back to the original seed on reads.
377  *
378  * Type 0 and 3 do not have a ref tag, so no remapping required.
379  */
380 static void nvme_dif_remap(struct request *req,
381                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
382 {
383         struct nvme_ns *ns = req->rq_disk->private_data;
384         struct bio_integrity_payload *bip;
385         struct t10_pi_tuple *pi;
386         void *p, *pmap;
387         u32 i, nlb, ts, phys, virt;
388
389         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
390                 return;
391
392         bip = bio_integrity(req->bio);
393         if (!bip)
394                 return;
395
396         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
397
398         p = pmap;
399         virt = bip_get_seed(bip);
400         phys = nvme_block_nr(ns, blk_rq_pos(req));
401         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
402         ts = ns->disk->queue->integrity.tuple_size;
403
404         for (i = 0; i < nlb; i++, virt++, phys++) {
405                 pi = (struct t10_pi_tuple *)p;
406                 dif_swap(phys, virt, pi);
407                 p += ts;
408         }
409         kunmap_atomic(pmap);
410 }
411 #else /* CONFIG_BLK_DEV_INTEGRITY */
412 static void nvme_dif_remap(struct request *req,
413                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
414 {
415 }
416 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
417 {
418 }
419 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
420 {
421 }
422 #endif
423
424 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
425                 int total_len)
426 {
427         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
428         struct dma_pool *pool;
429         int length = total_len;
430         struct scatterlist *sg = iod->sg;
431         int dma_len = sg_dma_len(sg);
432         u64 dma_addr = sg_dma_address(sg);
433         u32 page_size = dev->ctrl.page_size;
434         int offset = dma_addr & (page_size - 1);
435         __le64 *prp_list;
436         __le64 **list = iod_list(req);
437         dma_addr_t prp_dma;
438         int nprps, i;
439
440         length -= (page_size - offset);
441         if (length <= 0)
442                 return true;
443
444         dma_len -= (page_size - offset);
445         if (dma_len) {
446                 dma_addr += (page_size - offset);
447         } else {
448                 sg = sg_next(sg);
449                 dma_addr = sg_dma_address(sg);
450                 dma_len = sg_dma_len(sg);
451         }
452
453         if (length <= page_size) {
454                 iod->first_dma = dma_addr;
455                 return true;
456         }
457
458         nprps = DIV_ROUND_UP(length, page_size);
459         if (nprps <= (256 / 8)) {
460                 pool = dev->prp_small_pool;
461                 iod->npages = 0;
462         } else {
463                 pool = dev->prp_page_pool;
464                 iod->npages = 1;
465         }
466
467         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
468         if (!prp_list) {
469                 iod->first_dma = dma_addr;
470                 iod->npages = -1;
471                 return false;
472         }
473         list[0] = prp_list;
474         iod->first_dma = prp_dma;
475         i = 0;
476         for (;;) {
477                 if (i == page_size >> 3) {
478                         __le64 *old_prp_list = prp_list;
479                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
480                         if (!prp_list)
481                                 return false;
482                         list[iod->npages++] = prp_list;
483                         prp_list[0] = old_prp_list[i - 1];
484                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
485                         i = 1;
486                 }
487                 prp_list[i++] = cpu_to_le64(dma_addr);
488                 dma_len -= page_size;
489                 dma_addr += page_size;
490                 length -= page_size;
491                 if (length <= 0)
492                         break;
493                 if (dma_len > 0)
494                         continue;
495                 BUG_ON(dma_len < 0);
496                 sg = sg_next(sg);
497                 dma_addr = sg_dma_address(sg);
498                 dma_len = sg_dma_len(sg);
499         }
500
501         return true;
502 }
503
504 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
505                 unsigned size, struct nvme_command *cmnd)
506 {
507         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
508         struct request_queue *q = req->q;
509         enum dma_data_direction dma_dir = rq_data_dir(req) ?
510                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
511         int ret = BLK_MQ_RQ_QUEUE_ERROR;
512
513         sg_init_table(iod->sg, req->nr_phys_segments);
514         iod->nents = blk_rq_map_sg(q, req, iod->sg);
515         if (!iod->nents)
516                 goto out;
517
518         ret = BLK_MQ_RQ_QUEUE_BUSY;
519         if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
520                                 DMA_ATTR_NO_WARN))
521                 goto out;
522
523         if (!nvme_setup_prps(dev, req, size))
524                 goto out_unmap;
525
526         ret = BLK_MQ_RQ_QUEUE_ERROR;
527         if (blk_integrity_rq(req)) {
528                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
529                         goto out_unmap;
530
531                 sg_init_table(&iod->meta_sg, 1);
532                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
533                         goto out_unmap;
534
535                 if (rq_data_dir(req))
536                         nvme_dif_remap(req, nvme_dif_prep);
537
538                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
539                         goto out_unmap;
540         }
541
542         cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
543         cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
544         if (blk_integrity_rq(req))
545                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
546         return BLK_MQ_RQ_QUEUE_OK;
547
548 out_unmap:
549         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
550 out:
551         return ret;
552 }
553
554 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
555 {
556         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
557         enum dma_data_direction dma_dir = rq_data_dir(req) ?
558                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
559
560         if (iod->nents) {
561                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
562                 if (blk_integrity_rq(req)) {
563                         if (!rq_data_dir(req))
564                                 nvme_dif_remap(req, nvme_dif_complete);
565                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
566                 }
567         }
568
569         nvme_free_iod(dev, req);
570 }
571
572 /*
573  * NOTE: ns is NULL when called on the admin queue.
574  */
575 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
576                          const struct blk_mq_queue_data *bd)
577 {
578         struct nvme_ns *ns = hctx->queue->queuedata;
579         struct nvme_queue *nvmeq = hctx->driver_data;
580         struct nvme_dev *dev = nvmeq->dev;
581         struct request *req = bd->rq;
582         struct nvme_command cmnd;
583         unsigned map_len;
584         int ret = BLK_MQ_RQ_QUEUE_OK;
585
586         /*
587          * If formated with metadata, require the block layer provide a buffer
588          * unless this namespace is formated such that the metadata can be
589          * stripped/generated by the controller with PRACT=1.
590          */
591         if (ns && ns->ms && !blk_integrity_rq(req)) {
592                 if (!(ns->pi_type && ns->ms == 8) &&
593                                         req->cmd_type != REQ_TYPE_DRV_PRIV) {
594                         blk_mq_end_request(req, -EFAULT);
595                         return BLK_MQ_RQ_QUEUE_OK;
596                 }
597         }
598
599         map_len = nvme_map_len(req);
600         ret = nvme_init_iod(req, map_len, dev);
601         if (ret)
602                 return ret;
603
604         ret = nvme_setup_cmd(ns, req, &cmnd);
605         if (ret)
606                 goto out;
607
608         if (req->nr_phys_segments)
609                 ret = nvme_map_data(dev, req, map_len, &cmnd);
610
611         if (ret)
612                 goto out;
613
614         cmnd.common.command_id = req->tag;
615         blk_mq_start_request(req);
616
617         spin_lock_irq(&nvmeq->q_lock);
618         if (unlikely(nvmeq->cq_vector < 0)) {
619                 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
620                         ret = BLK_MQ_RQ_QUEUE_BUSY;
621                 else
622                         ret = BLK_MQ_RQ_QUEUE_ERROR;
623                 spin_unlock_irq(&nvmeq->q_lock);
624                 goto out;
625         }
626         __nvme_submit_cmd(nvmeq, &cmnd);
627         nvme_process_cq(nvmeq);
628         spin_unlock_irq(&nvmeq->q_lock);
629         return BLK_MQ_RQ_QUEUE_OK;
630 out:
631         nvme_free_iod(dev, req);
632         return ret;
633 }
634
635 static void nvme_complete_rq(struct request *req)
636 {
637         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
638         struct nvme_dev *dev = iod->nvmeq->dev;
639         int error = 0;
640
641         nvme_unmap_data(dev, req);
642
643         if (unlikely(req->errors)) {
644                 if (nvme_req_needs_retry(req, req->errors)) {
645                         req->retries++;
646                         nvme_requeue_req(req);
647                         return;
648                 }
649
650                 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
651                         error = req->errors;
652                 else
653                         error = nvme_error_status(req->errors);
654         }
655
656         if (unlikely(iod->aborted)) {
657                 dev_warn(dev->ctrl.device,
658                         "completing aborted command with status: %04x\n",
659                         req->errors);
660         }
661
662         blk_mq_end_request(req, error);
663 }
664
665 /* We read the CQE phase first to check if the rest of the entry is valid */
666 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
667                 u16 phase)
668 {
669         return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
670 }
671
672 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
673 {
674         u16 head, phase;
675
676         head = nvmeq->cq_head;
677         phase = nvmeq->cq_phase;
678
679         while (nvme_cqe_valid(nvmeq, head, phase)) {
680                 struct nvme_completion cqe = nvmeq->cqes[head];
681                 struct request *req;
682
683                 if (++head == nvmeq->q_depth) {
684                         head = 0;
685                         phase = !phase;
686                 }
687
688                 if (tag && *tag == cqe.command_id)
689                         *tag = -1;
690
691                 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
692                         dev_warn(nvmeq->dev->ctrl.device,
693                                 "invalid id %d completed on queue %d\n",
694                                 cqe.command_id, le16_to_cpu(cqe.sq_id));
695                         continue;
696                 }
697
698                 /*
699                  * AEN requests are special as they don't time out and can
700                  * survive any kind of queue freeze and often don't respond to
701                  * aborts.  We don't even bother to allocate a struct request
702                  * for them but rather special case them here.
703                  */
704                 if (unlikely(nvmeq->qid == 0 &&
705                                 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
706                         nvme_complete_async_event(&nvmeq->dev->ctrl, &cqe);
707                         continue;
708                 }
709
710                 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
711                 if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
712                         memcpy(req->special, &cqe, sizeof(cqe));
713                 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
714
715         }
716
717         /* If the controller ignores the cq head doorbell and continuously
718          * writes to the queue, it is theoretically possible to wrap around
719          * the queue twice and mistakenly return IRQ_NONE.  Linux only
720          * requires that 0.1% of your interrupts are handled, so this isn't
721          * a big problem.
722          */
723         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
724                 return;
725
726         if (likely(nvmeq->cq_vector >= 0))
727                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
728         nvmeq->cq_head = head;
729         nvmeq->cq_phase = phase;
730
731         nvmeq->cqe_seen = 1;
732 }
733
734 static void nvme_process_cq(struct nvme_queue *nvmeq)
735 {
736         __nvme_process_cq(nvmeq, NULL);
737 }
738
739 static irqreturn_t nvme_irq(int irq, void *data)
740 {
741         irqreturn_t result;
742         struct nvme_queue *nvmeq = data;
743         spin_lock(&nvmeq->q_lock);
744         nvme_process_cq(nvmeq);
745         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
746         nvmeq->cqe_seen = 0;
747         spin_unlock(&nvmeq->q_lock);
748         return result;
749 }
750
751 static irqreturn_t nvme_irq_check(int irq, void *data)
752 {
753         struct nvme_queue *nvmeq = data;
754         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
755                 return IRQ_WAKE_THREAD;
756         return IRQ_NONE;
757 }
758
759 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
760 {
761         struct nvme_queue *nvmeq = hctx->driver_data;
762
763         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
764                 spin_lock_irq(&nvmeq->q_lock);
765                 __nvme_process_cq(nvmeq, &tag);
766                 spin_unlock_irq(&nvmeq->q_lock);
767
768                 if (tag == -1)
769                         return 1;
770         }
771
772         return 0;
773 }
774
775 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
776 {
777         struct nvme_dev *dev = to_nvme_dev(ctrl);
778         struct nvme_queue *nvmeq = dev->queues[0];
779         struct nvme_command c;
780
781         memset(&c, 0, sizeof(c));
782         c.common.opcode = nvme_admin_async_event;
783         c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
784
785         spin_lock_irq(&nvmeq->q_lock);
786         __nvme_submit_cmd(nvmeq, &c);
787         spin_unlock_irq(&nvmeq->q_lock);
788 }
789
790 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
791 {
792         struct nvme_command c;
793
794         memset(&c, 0, sizeof(c));
795         c.delete_queue.opcode = opcode;
796         c.delete_queue.qid = cpu_to_le16(id);
797
798         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
799 }
800
801 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
802                                                 struct nvme_queue *nvmeq)
803 {
804         struct nvme_command c;
805         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
806
807         /*
808          * Note: we (ab)use the fact the the prp fields survive if no data
809          * is attached to the request.
810          */
811         memset(&c, 0, sizeof(c));
812         c.create_cq.opcode = nvme_admin_create_cq;
813         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
814         c.create_cq.cqid = cpu_to_le16(qid);
815         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
816         c.create_cq.cq_flags = cpu_to_le16(flags);
817         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
818
819         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
820 }
821
822 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
823                                                 struct nvme_queue *nvmeq)
824 {
825         struct nvme_command c;
826         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
827
828         /*
829          * Note: we (ab)use the fact the the prp fields survive if no data
830          * is attached to the request.
831          */
832         memset(&c, 0, sizeof(c));
833         c.create_sq.opcode = nvme_admin_create_sq;
834         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
835         c.create_sq.sqid = cpu_to_le16(qid);
836         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
837         c.create_sq.sq_flags = cpu_to_le16(flags);
838         c.create_sq.cqid = cpu_to_le16(qid);
839
840         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
841 }
842
843 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
844 {
845         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
846 }
847
848 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
849 {
850         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
851 }
852
853 static void abort_endio(struct request *req, int error)
854 {
855         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
856         struct nvme_queue *nvmeq = iod->nvmeq;
857         u16 status = req->errors;
858
859         dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
860         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
861         blk_mq_free_request(req);
862 }
863
864 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
865 {
866         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
867         struct nvme_queue *nvmeq = iod->nvmeq;
868         struct nvme_dev *dev = nvmeq->dev;
869         struct request *abort_req;
870         struct nvme_command cmd;
871
872         /*
873          * Shutdown immediately if controller times out while starting. The
874          * reset work will see the pci device disabled when it gets the forced
875          * cancellation error. All outstanding requests are completed on
876          * shutdown, so we return BLK_EH_HANDLED.
877          */
878         if (dev->ctrl.state == NVME_CTRL_RESETTING) {
879                 dev_warn(dev->ctrl.device,
880                          "I/O %d QID %d timeout, disable controller\n",
881                          req->tag, nvmeq->qid);
882                 nvme_dev_disable(dev, false);
883                 req->errors = NVME_SC_CANCELLED;
884                 return BLK_EH_HANDLED;
885         }
886
887         /*
888          * Shutdown the controller immediately and schedule a reset if the
889          * command was already aborted once before and still hasn't been
890          * returned to the driver, or if this is the admin queue.
891          */
892         if (!nvmeq->qid || iod->aborted) {
893                 dev_warn(dev->ctrl.device,
894                          "I/O %d QID %d timeout, reset controller\n",
895                          req->tag, nvmeq->qid);
896                 nvme_dev_disable(dev, false);
897                 nvme_reset(dev);
898
899                 /*
900                  * Mark the request as handled, since the inline shutdown
901                  * forces all outstanding requests to complete.
902                  */
903                 req->errors = NVME_SC_CANCELLED;
904                 return BLK_EH_HANDLED;
905         }
906
907         iod->aborted = 1;
908
909         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
910                 atomic_inc(&dev->ctrl.abort_limit);
911                 return BLK_EH_RESET_TIMER;
912         }
913
914         memset(&cmd, 0, sizeof(cmd));
915         cmd.abort.opcode = nvme_admin_abort_cmd;
916         cmd.abort.cid = req->tag;
917         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
918
919         dev_warn(nvmeq->dev->ctrl.device,
920                 "I/O %d QID %d timeout, aborting\n",
921                  req->tag, nvmeq->qid);
922
923         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
924                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
925         if (IS_ERR(abort_req)) {
926                 atomic_inc(&dev->ctrl.abort_limit);
927                 return BLK_EH_RESET_TIMER;
928         }
929
930         abort_req->timeout = ADMIN_TIMEOUT;
931         abort_req->end_io_data = NULL;
932         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
933
934         /*
935          * The aborted req will be completed on receiving the abort req.
936          * We enable the timer again. If hit twice, it'll cause a device reset,
937          * as the device then is in a faulty state.
938          */
939         return BLK_EH_RESET_TIMER;
940 }
941
942 static void nvme_free_queue(struct nvme_queue *nvmeq)
943 {
944         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
945                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
946         if (nvmeq->sq_cmds)
947                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
948                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
949         kfree(nvmeq);
950 }
951
952 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
953 {
954         int i;
955
956         for (i = dev->queue_count - 1; i >= lowest; i--) {
957                 struct nvme_queue *nvmeq = dev->queues[i];
958                 dev->queue_count--;
959                 dev->queues[i] = NULL;
960                 nvme_free_queue(nvmeq);
961         }
962 }
963
964 /**
965  * nvme_suspend_queue - put queue into suspended state
966  * @nvmeq - queue to suspend
967  */
968 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
969 {
970         int vector;
971
972         spin_lock_irq(&nvmeq->q_lock);
973         if (nvmeq->cq_vector == -1) {
974                 spin_unlock_irq(&nvmeq->q_lock);
975                 return 1;
976         }
977         vector = nvmeq_irq(nvmeq);
978         nvmeq->dev->online_queues--;
979         nvmeq->cq_vector = -1;
980         spin_unlock_irq(&nvmeq->q_lock);
981
982         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
983                 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
984
985         free_irq(vector, nvmeq);
986
987         return 0;
988 }
989
990 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
991 {
992         struct nvme_queue *nvmeq = dev->queues[0];
993
994         if (!nvmeq)
995                 return;
996         if (nvme_suspend_queue(nvmeq))
997                 return;
998
999         if (shutdown)
1000                 nvme_shutdown_ctrl(&dev->ctrl);
1001         else
1002                 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1003                                                 dev->bar + NVME_REG_CAP));
1004
1005         spin_lock_irq(&nvmeq->q_lock);
1006         nvme_process_cq(nvmeq);
1007         spin_unlock_irq(&nvmeq->q_lock);
1008 }
1009
1010 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1011                                 int entry_size)
1012 {
1013         int q_depth = dev->q_depth;
1014         unsigned q_size_aligned = roundup(q_depth * entry_size,
1015                                           dev->ctrl.page_size);
1016
1017         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1018                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1019                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1020                 q_depth = div_u64(mem_per_q, entry_size);
1021
1022                 /*
1023                  * Ensure the reduced q_depth is above some threshold where it
1024                  * would be better to map queues in system memory with the
1025                  * original depth
1026                  */
1027                 if (q_depth < 64)
1028                         return -ENOMEM;
1029         }
1030
1031         return q_depth;
1032 }
1033
1034 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1035                                 int qid, int depth)
1036 {
1037         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1038                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1039                                                       dev->ctrl.page_size);
1040                 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1041                 nvmeq->sq_cmds_io = dev->cmb + offset;
1042         } else {
1043                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1044                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1045                 if (!nvmeq->sq_cmds)
1046                         return -ENOMEM;
1047         }
1048
1049         return 0;
1050 }
1051
1052 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1053                                                         int depth)
1054 {
1055         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1056         if (!nvmeq)
1057                 return NULL;
1058
1059         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1060                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1061         if (!nvmeq->cqes)
1062                 goto free_nvmeq;
1063
1064         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1065                 goto free_cqdma;
1066
1067         nvmeq->q_dmadev = dev->dev;
1068         nvmeq->dev = dev;
1069         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1070                         dev->ctrl.instance, qid);
1071         spin_lock_init(&nvmeq->q_lock);
1072         nvmeq->cq_head = 0;
1073         nvmeq->cq_phase = 1;
1074         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1075         nvmeq->q_depth = depth;
1076         nvmeq->qid = qid;
1077         nvmeq->cq_vector = -1;
1078         dev->queues[qid] = nvmeq;
1079         dev->queue_count++;
1080
1081         return nvmeq;
1082
1083  free_cqdma:
1084         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1085                                                         nvmeq->cq_dma_addr);
1086  free_nvmeq:
1087         kfree(nvmeq);
1088         return NULL;
1089 }
1090
1091 static int queue_request_irq(struct nvme_queue *nvmeq)
1092 {
1093         if (use_threaded_interrupts)
1094                 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1095                                 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1096         else
1097                 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1098                                 nvmeq->irqname, nvmeq);
1099 }
1100
1101 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1102 {
1103         struct nvme_dev *dev = nvmeq->dev;
1104
1105         spin_lock_irq(&nvmeq->q_lock);
1106         nvmeq->sq_tail = 0;
1107         nvmeq->cq_head = 0;
1108         nvmeq->cq_phase = 1;
1109         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1110         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1111         dev->online_queues++;
1112         spin_unlock_irq(&nvmeq->q_lock);
1113 }
1114
1115 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1116 {
1117         struct nvme_dev *dev = nvmeq->dev;
1118         int result;
1119
1120         nvmeq->cq_vector = qid - 1;
1121         result = adapter_alloc_cq(dev, qid, nvmeq);
1122         if (result < 0)
1123                 return result;
1124
1125         result = adapter_alloc_sq(dev, qid, nvmeq);
1126         if (result < 0)
1127                 goto release_cq;
1128
1129         result = queue_request_irq(nvmeq);
1130         if (result < 0)
1131                 goto release_sq;
1132
1133         nvme_init_queue(nvmeq, qid);
1134         return result;
1135
1136  release_sq:
1137         adapter_delete_sq(dev, qid);
1138  release_cq:
1139         adapter_delete_cq(dev, qid);
1140         return result;
1141 }
1142
1143 static struct blk_mq_ops nvme_mq_admin_ops = {
1144         .queue_rq       = nvme_queue_rq,
1145         .complete       = nvme_complete_rq,
1146         .init_hctx      = nvme_admin_init_hctx,
1147         .exit_hctx      = nvme_admin_exit_hctx,
1148         .init_request   = nvme_admin_init_request,
1149         .timeout        = nvme_timeout,
1150 };
1151
1152 static struct blk_mq_ops nvme_mq_ops = {
1153         .queue_rq       = nvme_queue_rq,
1154         .complete       = nvme_complete_rq,
1155         .init_hctx      = nvme_init_hctx,
1156         .init_request   = nvme_init_request,
1157         .map_queues     = nvme_pci_map_queues,
1158         .timeout        = nvme_timeout,
1159         .poll           = nvme_poll,
1160 };
1161
1162 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1163 {
1164         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1165                 /*
1166                  * If the controller was reset during removal, it's possible
1167                  * user requests may be waiting on a stopped queue. Start the
1168                  * queue to flush these to completion.
1169                  */
1170                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1171                 blk_cleanup_queue(dev->ctrl.admin_q);
1172                 blk_mq_free_tag_set(&dev->admin_tagset);
1173         }
1174 }
1175
1176 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1177 {
1178         if (!dev->ctrl.admin_q) {
1179                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1180                 dev->admin_tagset.nr_hw_queues = 1;
1181
1182                 /*
1183                  * Subtract one to leave an empty queue entry for 'Full Queue'
1184                  * condition. See NVM-Express 1.2 specification, section 4.1.2.
1185                  */
1186                 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1187                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1188                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1189                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1190                 dev->admin_tagset.driver_data = dev;
1191
1192                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1193                         return -ENOMEM;
1194
1195                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1196                 if (IS_ERR(dev->ctrl.admin_q)) {
1197                         blk_mq_free_tag_set(&dev->admin_tagset);
1198                         return -ENOMEM;
1199                 }
1200                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1201                         nvme_dev_remove_admin(dev);
1202                         dev->ctrl.admin_q = NULL;
1203                         return -ENODEV;
1204                 }
1205         } else
1206                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1207
1208         return 0;
1209 }
1210
1211 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1212 {
1213         int result;
1214         u32 aqa;
1215         u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1216         struct nvme_queue *nvmeq;
1217
1218         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1219                                                 NVME_CAP_NSSRC(cap) : 0;
1220
1221         if (dev->subsystem &&
1222             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1223                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1224
1225         result = nvme_disable_ctrl(&dev->ctrl, cap);
1226         if (result < 0)
1227                 return result;
1228
1229         nvmeq = dev->queues[0];
1230         if (!nvmeq) {
1231                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1232                 if (!nvmeq)
1233                         return -ENOMEM;
1234         }
1235
1236         aqa = nvmeq->q_depth - 1;
1237         aqa |= aqa << 16;
1238
1239         writel(aqa, dev->bar + NVME_REG_AQA);
1240         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1241         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1242
1243         result = nvme_enable_ctrl(&dev->ctrl, cap);
1244         if (result)
1245                 goto free_nvmeq;
1246
1247         nvmeq->cq_vector = 0;
1248         result = queue_request_irq(nvmeq);
1249         if (result) {
1250                 nvmeq->cq_vector = -1;
1251                 goto free_nvmeq;
1252         }
1253
1254         return result;
1255
1256  free_nvmeq:
1257         nvme_free_queues(dev, 0);
1258         return result;
1259 }
1260
1261 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1262 {
1263
1264         /* If true, indicates loss of adapter communication, possibly by a
1265          * NVMe Subsystem reset.
1266          */
1267         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1268
1269         /* If there is a reset ongoing, we shouldn't reset again. */
1270         if (work_busy(&dev->reset_work))
1271                 return false;
1272
1273         /* We shouldn't reset unless the controller is on fatal error state
1274          * _or_ if we lost the communication with it.
1275          */
1276         if (!(csts & NVME_CSTS_CFS) && !nssro)
1277                 return false;
1278
1279         /* If PCI error recovery process is happening, we cannot reset or
1280          * the recovery mechanism will surely fail.
1281          */
1282         if (pci_channel_offline(to_pci_dev(dev->dev)))
1283                 return false;
1284
1285         return true;
1286 }
1287
1288 static void nvme_watchdog_timer(unsigned long data)
1289 {
1290         struct nvme_dev *dev = (struct nvme_dev *)data;
1291         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1292
1293         /* Skip controllers under certain specific conditions. */
1294         if (nvme_should_reset(dev, csts)) {
1295                 if (!nvme_reset(dev))
1296                         dev_warn(dev->dev,
1297                                 "Failed status: 0x%x, reset controller.\n",
1298                                 csts);
1299                 return;
1300         }
1301
1302         mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1303 }
1304
1305 static int nvme_create_io_queues(struct nvme_dev *dev)
1306 {
1307         unsigned i, max;
1308         int ret = 0;
1309
1310         for (i = dev->queue_count; i <= dev->max_qid; i++) {
1311                 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1312                         ret = -ENOMEM;
1313                         break;
1314                 }
1315         }
1316
1317         max = min(dev->max_qid, dev->queue_count - 1);
1318         for (i = dev->online_queues; i <= max; i++) {
1319                 ret = nvme_create_queue(dev->queues[i], i);
1320                 if (ret) {
1321                         nvme_free_queues(dev, i);
1322                         break;
1323                 }
1324         }
1325
1326         /*
1327          * Ignore failing Create SQ/CQ commands, we can continue with less
1328          * than the desired aount of queues, and even a controller without
1329          * I/O queues an still be used to issue admin commands.  This might
1330          * be useful to upgrade a buggy firmware for example.
1331          */
1332         return ret >= 0 ? 0 : ret;
1333 }
1334
1335 static ssize_t nvme_cmb_show(struct device *dev,
1336                              struct device_attribute *attr,
1337                              char *buf)
1338 {
1339         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1340
1341         return snprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1342                        ndev->cmbloc, ndev->cmbsz);
1343 }
1344 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1345
1346 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1347 {
1348         u64 szu, size, offset;
1349         resource_size_t bar_size;
1350         struct pci_dev *pdev = to_pci_dev(dev->dev);
1351         void __iomem *cmb;
1352         dma_addr_t dma_addr;
1353
1354         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1355         if (!(NVME_CMB_SZ(dev->cmbsz)))
1356                 return NULL;
1357         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1358
1359         if (!use_cmb_sqes)
1360                 return NULL;
1361
1362         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1363         size = szu * NVME_CMB_SZ(dev->cmbsz);
1364         offset = szu * NVME_CMB_OFST(dev->cmbloc);
1365         bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1366
1367         if (offset > bar_size)
1368                 return NULL;
1369
1370         /*
1371          * Controllers may support a CMB size larger than their BAR,
1372          * for example, due to being behind a bridge. Reduce the CMB to
1373          * the reported size of the BAR
1374          */
1375         if (size > bar_size - offset)
1376                 size = bar_size - offset;
1377
1378         dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1379         cmb = ioremap_wc(dma_addr, size);
1380         if (!cmb)
1381                 return NULL;
1382
1383         dev->cmb_dma_addr = dma_addr;
1384         dev->cmb_size = size;
1385         return cmb;
1386 }
1387
1388 static inline void nvme_release_cmb(struct nvme_dev *dev)
1389 {
1390         if (dev->cmb) {
1391                 iounmap(dev->cmb);
1392                 dev->cmb = NULL;
1393         }
1394 }
1395
1396 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1397 {
1398         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1399 }
1400
1401 static int nvme_setup_io_queues(struct nvme_dev *dev)
1402 {
1403         struct nvme_queue *adminq = dev->queues[0];
1404         struct pci_dev *pdev = to_pci_dev(dev->dev);
1405         int result, nr_io_queues, size;
1406
1407         nr_io_queues = num_online_cpus();
1408         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1409         if (result < 0)
1410                 return result;
1411
1412         if (nr_io_queues == 0)
1413                 return 0;
1414
1415         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1416                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1417                                 sizeof(struct nvme_command));
1418                 if (result > 0)
1419                         dev->q_depth = result;
1420                 else
1421                         nvme_release_cmb(dev);
1422         }
1423
1424         size = db_bar_size(dev, nr_io_queues);
1425         if (size > 8192) {
1426                 iounmap(dev->bar);
1427                 do {
1428                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1429                         if (dev->bar)
1430                                 break;
1431                         if (!--nr_io_queues)
1432                                 return -ENOMEM;
1433                         size = db_bar_size(dev, nr_io_queues);
1434                 } while (1);
1435                 dev->dbs = dev->bar + 4096;
1436                 adminq->q_db = dev->dbs;
1437         }
1438
1439         /* Deregister the admin queue's interrupt */
1440         free_irq(pci_irq_vector(pdev, 0), adminq);
1441
1442         /*
1443          * If we enable msix early due to not intx, disable it again before
1444          * setting up the full range we need.
1445          */
1446         pci_free_irq_vectors(pdev);
1447         nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1448                         PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1449         if (nr_io_queues <= 0)
1450                 return -EIO;
1451         dev->max_qid = nr_io_queues;
1452
1453         /*
1454          * Should investigate if there's a performance win from allocating
1455          * more queues than interrupt vectors; it might allow the submission
1456          * path to scale better, even if the receive path is limited by the
1457          * number of interrupts.
1458          */
1459
1460         result = queue_request_irq(adminq);
1461         if (result) {
1462                 adminq->cq_vector = -1;
1463                 goto free_queues;
1464         }
1465         return nvme_create_io_queues(dev);
1466
1467  free_queues:
1468         nvme_free_queues(dev, 1);
1469         return result;
1470 }
1471
1472 static void nvme_del_queue_end(struct request *req, int error)
1473 {
1474         struct nvme_queue *nvmeq = req->end_io_data;
1475
1476         blk_mq_free_request(req);
1477         complete(&nvmeq->dev->ioq_wait);
1478 }
1479
1480 static void nvme_del_cq_end(struct request *req, int error)
1481 {
1482         struct nvme_queue *nvmeq = req->end_io_data;
1483
1484         if (!error) {
1485                 unsigned long flags;
1486
1487                 /*
1488                  * We might be called with the AQ q_lock held
1489                  * and the I/O queue q_lock should always
1490                  * nest inside the AQ one.
1491                  */
1492                 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1493                                         SINGLE_DEPTH_NESTING);
1494                 nvme_process_cq(nvmeq);
1495                 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1496         }
1497
1498         nvme_del_queue_end(req, error);
1499 }
1500
1501 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1502 {
1503         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1504         struct request *req;
1505         struct nvme_command cmd;
1506
1507         memset(&cmd, 0, sizeof(cmd));
1508         cmd.delete_queue.opcode = opcode;
1509         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1510
1511         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1512         if (IS_ERR(req))
1513                 return PTR_ERR(req);
1514
1515         req->timeout = ADMIN_TIMEOUT;
1516         req->end_io_data = nvmeq;
1517
1518         blk_execute_rq_nowait(q, NULL, req, false,
1519                         opcode == nvme_admin_delete_cq ?
1520                                 nvme_del_cq_end : nvme_del_queue_end);
1521         return 0;
1522 }
1523
1524 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1525 {
1526         int pass;
1527         unsigned long timeout;
1528         u8 opcode = nvme_admin_delete_sq;
1529
1530         for (pass = 0; pass < 2; pass++) {
1531                 int sent = 0, i = queues;
1532
1533                 reinit_completion(&dev->ioq_wait);
1534  retry:
1535                 timeout = ADMIN_TIMEOUT;
1536                 for (; i > 0; i--, sent++)
1537                         if (nvme_delete_queue(dev->queues[i], opcode))
1538                                 break;
1539
1540                 while (sent--) {
1541                         timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1542                         if (timeout == 0)
1543                                 return;
1544                         if (i)
1545                                 goto retry;
1546                 }
1547                 opcode = nvme_admin_delete_cq;
1548         }
1549 }
1550
1551 /*
1552  * Return: error value if an error occurred setting up the queues or calling
1553  * Identify Device.  0 if these succeeded, even if adding some of the
1554  * namespaces failed.  At the moment, these failures are silent.  TBD which
1555  * failures should be reported.
1556  */
1557 static int nvme_dev_add(struct nvme_dev *dev)
1558 {
1559         if (!dev->ctrl.tagset) {
1560                 dev->tagset.ops = &nvme_mq_ops;
1561                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1562                 dev->tagset.timeout = NVME_IO_TIMEOUT;
1563                 dev->tagset.numa_node = dev_to_node(dev->dev);
1564                 dev->tagset.queue_depth =
1565                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1566                 dev->tagset.cmd_size = nvme_cmd_size(dev);
1567                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1568                 dev->tagset.driver_data = dev;
1569
1570                 if (blk_mq_alloc_tag_set(&dev->tagset))
1571                         return 0;
1572                 dev->ctrl.tagset = &dev->tagset;
1573         } else {
1574                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1575
1576                 /* Free previously allocated queues that are no longer usable */
1577                 nvme_free_queues(dev, dev->online_queues);
1578         }
1579
1580         return 0;
1581 }
1582
1583 static int nvme_pci_enable(struct nvme_dev *dev)
1584 {
1585         u64 cap;
1586         int result = -ENOMEM;
1587         struct pci_dev *pdev = to_pci_dev(dev->dev);
1588
1589         if (pci_enable_device_mem(pdev))
1590                 return result;
1591
1592         pci_set_master(pdev);
1593
1594         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1595             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1596                 goto disable;
1597
1598         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1599                 result = -ENODEV;
1600                 goto disable;
1601         }
1602
1603         /*
1604          * Some devices and/or platforms don't advertise or work with INTx
1605          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1606          * adjust this later.
1607          */
1608         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1609         if (result < 0)
1610                 return result;
1611
1612         cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1613
1614         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1615         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1616         dev->dbs = dev->bar + 4096;
1617
1618         /*
1619          * Temporary fix for the Apple controller found in the MacBook8,1 and
1620          * some MacBook7,1 to avoid controller resets and data loss.
1621          */
1622         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1623                 dev->q_depth = 2;
1624                 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1625                         "queue depth=%u to work around controller resets\n",
1626                         dev->q_depth);
1627         }
1628
1629         /*
1630          * CMBs can currently only exist on >=1.2 PCIe devices. We only
1631          * populate sysfs if a CMB is implemented. Note that we add the
1632          * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1633          * it on exit. Since nvme_dev_attrs_group has no name we can pass
1634          * NULL as final argument to sysfs_add_file_to_group.
1635          */
1636
1637         if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1638                 dev->cmb = nvme_map_cmb(dev);
1639
1640                 if (dev->cmbsz) {
1641                         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1642                                                     &dev_attr_cmb.attr, NULL))
1643                                 dev_warn(dev->dev,
1644                                          "failed to add sysfs attribute for CMB\n");
1645                 }
1646         }
1647
1648         pci_enable_pcie_error_reporting(pdev);
1649         pci_save_state(pdev);
1650         return 0;
1651
1652  disable:
1653         pci_disable_device(pdev);
1654         return result;
1655 }
1656
1657 static void nvme_dev_unmap(struct nvme_dev *dev)
1658 {
1659         if (dev->bar)
1660                 iounmap(dev->bar);
1661         pci_release_mem_regions(to_pci_dev(dev->dev));
1662 }
1663
1664 static void nvme_pci_disable(struct nvme_dev *dev)
1665 {
1666         struct pci_dev *pdev = to_pci_dev(dev->dev);
1667
1668         pci_free_irq_vectors(pdev);
1669
1670         if (pci_is_enabled(pdev)) {
1671                 pci_disable_pcie_error_reporting(pdev);
1672                 pci_disable_device(pdev);
1673         }
1674 }
1675
1676 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1677 {
1678         int i, queues;
1679         u32 csts = -1;
1680
1681         del_timer_sync(&dev->watchdog_timer);
1682
1683         mutex_lock(&dev->shutdown_lock);
1684         if (pci_is_enabled(to_pci_dev(dev->dev))) {
1685                 nvme_stop_queues(&dev->ctrl);
1686                 csts = readl(dev->bar + NVME_REG_CSTS);
1687         }
1688
1689         queues = dev->online_queues - 1;
1690         for (i = dev->queue_count - 1; i > 0; i--)
1691                 nvme_suspend_queue(dev->queues[i]);
1692
1693         if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1694                 /* A device might become IO incapable very soon during
1695                  * probe, before the admin queue is configured. Thus,
1696                  * queue_count can be 0 here.
1697                  */
1698                 if (dev->queue_count)
1699                         nvme_suspend_queue(dev->queues[0]);
1700         } else {
1701                 nvme_disable_io_queues(dev, queues);
1702                 nvme_disable_admin_queue(dev, shutdown);
1703         }
1704         nvme_pci_disable(dev);
1705
1706         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1707         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
1708         mutex_unlock(&dev->shutdown_lock);
1709 }
1710
1711 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1712 {
1713         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1714                                                 PAGE_SIZE, PAGE_SIZE, 0);
1715         if (!dev->prp_page_pool)
1716                 return -ENOMEM;
1717
1718         /* Optimisation for I/Os between 4k and 128k */
1719         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1720                                                 256, 256, 0);
1721         if (!dev->prp_small_pool) {
1722                 dma_pool_destroy(dev->prp_page_pool);
1723                 return -ENOMEM;
1724         }
1725         return 0;
1726 }
1727
1728 static void nvme_release_prp_pools(struct nvme_dev *dev)
1729 {
1730         dma_pool_destroy(dev->prp_page_pool);
1731         dma_pool_destroy(dev->prp_small_pool);
1732 }
1733
1734 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1735 {
1736         struct nvme_dev *dev = to_nvme_dev(ctrl);
1737
1738         put_device(dev->dev);
1739         if (dev->tagset.tags)
1740                 blk_mq_free_tag_set(&dev->tagset);
1741         if (dev->ctrl.admin_q)
1742                 blk_put_queue(dev->ctrl.admin_q);
1743         kfree(dev->queues);
1744         kfree(dev);
1745 }
1746
1747 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1748 {
1749         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1750
1751         kref_get(&dev->ctrl.kref);
1752         nvme_dev_disable(dev, false);
1753         if (!schedule_work(&dev->remove_work))
1754                 nvme_put_ctrl(&dev->ctrl);
1755 }
1756
1757 static void nvme_reset_work(struct work_struct *work)
1758 {
1759         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1760         int result = -ENODEV;
1761
1762         if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1763                 goto out;
1764
1765         /*
1766          * If we're called to reset a live controller first shut it down before
1767          * moving on.
1768          */
1769         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1770                 nvme_dev_disable(dev, false);
1771
1772         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1773                 goto out;
1774
1775         result = nvme_pci_enable(dev);
1776         if (result)
1777                 goto out;
1778
1779         result = nvme_configure_admin_queue(dev);
1780         if (result)
1781                 goto out;
1782
1783         nvme_init_queue(dev->queues[0], 0);
1784         result = nvme_alloc_admin_tags(dev);
1785         if (result)
1786                 goto out;
1787
1788         result = nvme_init_identify(&dev->ctrl);
1789         if (result)
1790                 goto out;
1791
1792         result = nvme_setup_io_queues(dev);
1793         if (result)
1794                 goto out;
1795
1796         /*
1797          * A controller that can not execute IO typically requires user
1798          * intervention to correct. For such degraded controllers, the driver
1799          * should not submit commands the user did not request, so skip
1800          * registering for asynchronous event notification on this condition.
1801          */
1802         if (dev->online_queues > 1)
1803                 nvme_queue_async_events(&dev->ctrl);
1804
1805         mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1806
1807         /*
1808          * Keep the controller around but remove all namespaces if we don't have
1809          * any working I/O queue.
1810          */
1811         if (dev->online_queues < 2) {
1812                 dev_warn(dev->ctrl.device, "IO queues not created\n");
1813                 nvme_kill_queues(&dev->ctrl);
1814                 nvme_remove_namespaces(&dev->ctrl);
1815         } else {
1816                 nvme_start_queues(&dev->ctrl);
1817                 nvme_dev_add(dev);
1818         }
1819
1820         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1821                 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1822                 goto out;
1823         }
1824
1825         if (dev->online_queues > 1)
1826                 nvme_queue_scan(&dev->ctrl);
1827         return;
1828
1829  out:
1830         nvme_remove_dead_ctrl(dev, result);
1831 }
1832
1833 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1834 {
1835         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1836         struct pci_dev *pdev = to_pci_dev(dev->dev);
1837
1838         nvme_kill_queues(&dev->ctrl);
1839         if (pci_get_drvdata(pdev))
1840                 device_release_driver(&pdev->dev);
1841         nvme_put_ctrl(&dev->ctrl);
1842 }
1843
1844 static int nvme_reset(struct nvme_dev *dev)
1845 {
1846         if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1847                 return -ENODEV;
1848         if (work_busy(&dev->reset_work))
1849                 return -ENODEV;
1850         if (!queue_work(nvme_workq, &dev->reset_work))
1851                 return -EBUSY;
1852         return 0;
1853 }
1854
1855 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1856 {
1857         *val = readl(to_nvme_dev(ctrl)->bar + off);
1858         return 0;
1859 }
1860
1861 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1862 {
1863         writel(val, to_nvme_dev(ctrl)->bar + off);
1864         return 0;
1865 }
1866
1867 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1868 {
1869         *val = readq(to_nvme_dev(ctrl)->bar + off);
1870         return 0;
1871 }
1872
1873 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1874 {
1875         struct nvme_dev *dev = to_nvme_dev(ctrl);
1876         int ret = nvme_reset(dev);
1877
1878         if (!ret)
1879                 flush_work(&dev->reset_work);
1880         return ret;
1881 }
1882
1883 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1884         .name                   = "pcie",
1885         .module                 = THIS_MODULE,
1886         .reg_read32             = nvme_pci_reg_read32,
1887         .reg_write32            = nvme_pci_reg_write32,
1888         .reg_read64             = nvme_pci_reg_read64,
1889         .reset_ctrl             = nvme_pci_reset_ctrl,
1890         .free_ctrl              = nvme_pci_free_ctrl,
1891         .submit_async_event     = nvme_pci_submit_async_event,
1892 };
1893
1894 static int nvme_dev_map(struct nvme_dev *dev)
1895 {
1896         struct pci_dev *pdev = to_pci_dev(dev->dev);
1897
1898         if (pci_request_mem_regions(pdev, "nvme"))
1899                 return -ENODEV;
1900
1901         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1902         if (!dev->bar)
1903                 goto release;
1904
1905        return 0;
1906   release:
1907        pci_release_mem_regions(pdev);
1908        return -ENODEV;
1909 }
1910
1911 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1912 {
1913         int node, result = -ENOMEM;
1914         struct nvme_dev *dev;
1915
1916         node = dev_to_node(&pdev->dev);
1917         if (node == NUMA_NO_NODE)
1918                 set_dev_node(&pdev->dev, first_memory_node);
1919
1920         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1921         if (!dev)
1922                 return -ENOMEM;
1923         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1924                                                         GFP_KERNEL, node);
1925         if (!dev->queues)
1926                 goto free;
1927
1928         dev->dev = get_device(&pdev->dev);
1929         pci_set_drvdata(pdev, dev);
1930
1931         result = nvme_dev_map(dev);
1932         if (result)
1933                 goto free;
1934
1935         INIT_WORK(&dev->reset_work, nvme_reset_work);
1936         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1937         setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1938                 (unsigned long)dev);
1939         mutex_init(&dev->shutdown_lock);
1940         init_completion(&dev->ioq_wait);
1941
1942         result = nvme_setup_prp_pools(dev);
1943         if (result)
1944                 goto put_pci;
1945
1946         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1947                         id->driver_data);
1948         if (result)
1949                 goto release_pools;
1950
1951         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1952
1953         queue_work(nvme_workq, &dev->reset_work);
1954         return 0;
1955
1956  release_pools:
1957         nvme_release_prp_pools(dev);
1958  put_pci:
1959         put_device(dev->dev);
1960         nvme_dev_unmap(dev);
1961  free:
1962         kfree(dev->queues);
1963         kfree(dev);
1964         return result;
1965 }
1966
1967 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1968 {
1969         struct nvme_dev *dev = pci_get_drvdata(pdev);
1970
1971         if (prepare)
1972                 nvme_dev_disable(dev, false);
1973         else
1974                 nvme_reset(dev);
1975 }
1976
1977 static void nvme_shutdown(struct pci_dev *pdev)
1978 {
1979         struct nvme_dev *dev = pci_get_drvdata(pdev);
1980         nvme_dev_disable(dev, true);
1981 }
1982
1983 /*
1984  * The driver's remove may be called on a device in a partially initialized
1985  * state. This function must not have any dependencies on the device state in
1986  * order to proceed.
1987  */
1988 static void nvme_remove(struct pci_dev *pdev)
1989 {
1990         struct nvme_dev *dev = pci_get_drvdata(pdev);
1991
1992         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1993
1994         pci_set_drvdata(pdev, NULL);
1995
1996         if (!pci_device_is_present(pdev))
1997                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
1998
1999         flush_work(&dev->reset_work);
2000         nvme_uninit_ctrl(&dev->ctrl);
2001         nvme_dev_disable(dev, true);
2002         nvme_dev_remove_admin(dev);
2003         nvme_free_queues(dev, 0);
2004         nvme_release_cmb(dev);
2005         nvme_release_prp_pools(dev);
2006         nvme_dev_unmap(dev);
2007         nvme_put_ctrl(&dev->ctrl);
2008 }
2009
2010 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2011 {
2012         int ret = 0;
2013
2014         if (numvfs == 0) {
2015                 if (pci_vfs_assigned(pdev)) {
2016                         dev_warn(&pdev->dev,
2017                                 "Cannot disable SR-IOV VFs while assigned\n");
2018                         return -EPERM;
2019                 }
2020                 pci_disable_sriov(pdev);
2021                 return 0;
2022         }
2023
2024         ret = pci_enable_sriov(pdev, numvfs);
2025         return ret ? ret : numvfs;
2026 }
2027
2028 #ifdef CONFIG_PM_SLEEP
2029 static int nvme_suspend(struct device *dev)
2030 {
2031         struct pci_dev *pdev = to_pci_dev(dev);
2032         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2033
2034         nvme_dev_disable(ndev, true);
2035         return 0;
2036 }
2037
2038 static int nvme_resume(struct device *dev)
2039 {
2040         struct pci_dev *pdev = to_pci_dev(dev);
2041         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2042
2043         nvme_reset(ndev);
2044         return 0;
2045 }
2046 #endif
2047
2048 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2049
2050 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2051                                                 pci_channel_state_t state)
2052 {
2053         struct nvme_dev *dev = pci_get_drvdata(pdev);
2054
2055         /*
2056          * A frozen channel requires a reset. When detected, this method will
2057          * shutdown the controller to quiesce. The controller will be restarted
2058          * after the slot reset through driver's slot_reset callback.
2059          */
2060         switch (state) {
2061         case pci_channel_io_normal:
2062                 return PCI_ERS_RESULT_CAN_RECOVER;
2063         case pci_channel_io_frozen:
2064                 dev_warn(dev->ctrl.device,
2065                         "frozen state error detected, reset controller\n");
2066                 nvme_dev_disable(dev, false);
2067                 return PCI_ERS_RESULT_NEED_RESET;
2068         case pci_channel_io_perm_failure:
2069                 dev_warn(dev->ctrl.device,
2070                         "failure state error detected, request disconnect\n");
2071                 return PCI_ERS_RESULT_DISCONNECT;
2072         }
2073         return PCI_ERS_RESULT_NEED_RESET;
2074 }
2075
2076 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2077 {
2078         struct nvme_dev *dev = pci_get_drvdata(pdev);
2079
2080         dev_info(dev->ctrl.device, "restart after slot reset\n");
2081         pci_restore_state(pdev);
2082         nvme_reset(dev);
2083         return PCI_ERS_RESULT_RECOVERED;
2084 }
2085
2086 static void nvme_error_resume(struct pci_dev *pdev)
2087 {
2088         pci_cleanup_aer_uncorrect_error_status(pdev);
2089 }
2090
2091 static const struct pci_error_handlers nvme_err_handler = {
2092         .error_detected = nvme_error_detected,
2093         .slot_reset     = nvme_slot_reset,
2094         .resume         = nvme_error_resume,
2095         .reset_notify   = nvme_reset_notify,
2096 };
2097
2098 /* Move to pci_ids.h later */
2099 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
2100
2101 static const struct pci_device_id nvme_id_table[] = {
2102         { PCI_VDEVICE(INTEL, 0x0953),
2103                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2104                                 NVME_QUIRK_DISCARD_ZEROES, },
2105         { PCI_VDEVICE(INTEL, 0x0a53),
2106                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2107                                 NVME_QUIRK_DISCARD_ZEROES, },
2108         { PCI_VDEVICE(INTEL, 0x0a54),
2109                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2110                                 NVME_QUIRK_DISCARD_ZEROES, },
2111         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2112                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2113         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2114                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2115         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2116                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2117         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2118         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2119         { 0, }
2120 };
2121 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2122
2123 static struct pci_driver nvme_driver = {
2124         .name           = "nvme",
2125         .id_table       = nvme_id_table,
2126         .probe          = nvme_probe,
2127         .remove         = nvme_remove,
2128         .shutdown       = nvme_shutdown,
2129         .driver         = {
2130                 .pm     = &nvme_dev_pm_ops,
2131         },
2132         .sriov_configure = nvme_pci_sriov_configure,
2133         .err_handler    = &nvme_err_handler,
2134 };
2135
2136 static int __init nvme_init(void)
2137 {
2138         int result;
2139
2140         nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2141         if (!nvme_workq)
2142                 return -ENOMEM;
2143
2144         result = pci_register_driver(&nvme_driver);
2145         if (result)
2146                 destroy_workqueue(nvme_workq);
2147         return result;
2148 }
2149
2150 static void __exit nvme_exit(void)
2151 {
2152         pci_unregister_driver(&nvme_driver);
2153         destroy_workqueue(nvme_workq);
2154         _nvme_check_size();
2155 }
2156
2157 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2158 MODULE_LICENSE("GPL");
2159 MODULE_VERSION("1.0");
2160 module_init(nvme_init);
2161 module_exit(nvme_exit);