nvme.h: add NVMe over Fabrics definitions
[cascardo/linux.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mutex.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/timer.h>
42 #include <linux/types.h>
43 #include <linux/io-64-nonatomic-lo-hi.h>
44 #include <asm/unaligned.h>
45
46 #include "nvme.h"
47
48 #define NVME_Q_DEPTH            1024
49 #define NVME_AQ_DEPTH           256
50 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
51 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
52                 
53 /*
54  * We handle AEN commands ourselves and don't even let the
55  * block layer know about them.
56  */
57 #define NVME_AQ_BLKMQ_DEPTH     (NVME_AQ_DEPTH - NVME_NR_AERS)
58
59 static int use_threaded_interrupts;
60 module_param(use_threaded_interrupts, int, 0);
61
62 static bool use_cmb_sqes = true;
63 module_param(use_cmb_sqes, bool, 0644);
64 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
65
66 static struct workqueue_struct *nvme_workq;
67
68 struct nvme_dev;
69 struct nvme_queue;
70
71 static int nvme_reset(struct nvme_dev *dev);
72 static void nvme_process_cq(struct nvme_queue *nvmeq);
73 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
74
75 /*
76  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
77  */
78 struct nvme_dev {
79         struct nvme_queue **queues;
80         struct blk_mq_tag_set tagset;
81         struct blk_mq_tag_set admin_tagset;
82         u32 __iomem *dbs;
83         struct device *dev;
84         struct dma_pool *prp_page_pool;
85         struct dma_pool *prp_small_pool;
86         unsigned queue_count;
87         unsigned online_queues;
88         unsigned max_qid;
89         int q_depth;
90         u32 db_stride;
91         struct msix_entry *entry;
92         void __iomem *bar;
93         struct work_struct reset_work;
94         struct work_struct remove_work;
95         struct timer_list watchdog_timer;
96         struct mutex shutdown_lock;
97         bool subsystem;
98         void __iomem *cmb;
99         dma_addr_t cmb_dma_addr;
100         u64 cmb_size;
101         u32 cmbsz;
102         struct nvme_ctrl ctrl;
103         struct completion ioq_wait;
104 };
105
106 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
107 {
108         return container_of(ctrl, struct nvme_dev, ctrl);
109 }
110
111 /*
112  * An NVM Express queue.  Each device has at least two (one for admin
113  * commands and one for I/O commands).
114  */
115 struct nvme_queue {
116         struct device *q_dmadev;
117         struct nvme_dev *dev;
118         char irqname[24];       /* nvme4294967295-65535\0 */
119         spinlock_t q_lock;
120         struct nvme_command *sq_cmds;
121         struct nvme_command __iomem *sq_cmds_io;
122         volatile struct nvme_completion *cqes;
123         struct blk_mq_tags **tags;
124         dma_addr_t sq_dma_addr;
125         dma_addr_t cq_dma_addr;
126         u32 __iomem *q_db;
127         u16 q_depth;
128         s16 cq_vector;
129         u16 sq_tail;
130         u16 cq_head;
131         u16 qid;
132         u8 cq_phase;
133         u8 cqe_seen;
134 };
135
136 /*
137  * The nvme_iod describes the data in an I/O, including the list of PRP
138  * entries.  You can't see it in this data structure because C doesn't let
139  * me express that.  Use nvme_init_iod to ensure there's enough space
140  * allocated to store the PRP list.
141  */
142 struct nvme_iod {
143         struct nvme_queue *nvmeq;
144         int aborted;
145         int npages;             /* In the PRP list. 0 means small pool in use */
146         int nents;              /* Used in scatterlist */
147         int length;             /* Of data, in bytes */
148         dma_addr_t first_dma;
149         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
150         struct scatterlist *sg;
151         struct scatterlist inline_sg[0];
152 };
153
154 /*
155  * Check we didin't inadvertently grow the command struct
156  */
157 static inline void _nvme_check_size(void)
158 {
159         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
160         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
161         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
162         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
163         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
164         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
165         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
166         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
167         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
168         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
169         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
170         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
171 }
172
173 /*
174  * Max size of iod being embedded in the request payload
175  */
176 #define NVME_INT_PAGES          2
177 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
178
179 /*
180  * Will slightly overestimate the number of pages needed.  This is OK
181  * as it only leads to a small amount of wasted memory for the lifetime of
182  * the I/O.
183  */
184 static int nvme_npages(unsigned size, struct nvme_dev *dev)
185 {
186         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
187                                       dev->ctrl.page_size);
188         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
189 }
190
191 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
192                 unsigned int size, unsigned int nseg)
193 {
194         return sizeof(__le64 *) * nvme_npages(size, dev) +
195                         sizeof(struct scatterlist) * nseg;
196 }
197
198 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
199 {
200         return sizeof(struct nvme_iod) +
201                 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
202 }
203
204 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
205                                 unsigned int hctx_idx)
206 {
207         struct nvme_dev *dev = data;
208         struct nvme_queue *nvmeq = dev->queues[0];
209
210         WARN_ON(hctx_idx != 0);
211         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
212         WARN_ON(nvmeq->tags);
213
214         hctx->driver_data = nvmeq;
215         nvmeq->tags = &dev->admin_tagset.tags[0];
216         return 0;
217 }
218
219 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
220 {
221         struct nvme_queue *nvmeq = hctx->driver_data;
222
223         nvmeq->tags = NULL;
224 }
225
226 static int nvme_admin_init_request(void *data, struct request *req,
227                                 unsigned int hctx_idx, unsigned int rq_idx,
228                                 unsigned int numa_node)
229 {
230         struct nvme_dev *dev = data;
231         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
232         struct nvme_queue *nvmeq = dev->queues[0];
233
234         BUG_ON(!nvmeq);
235         iod->nvmeq = nvmeq;
236         return 0;
237 }
238
239 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
240                           unsigned int hctx_idx)
241 {
242         struct nvme_dev *dev = data;
243         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
244
245         if (!nvmeq->tags)
246                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
247
248         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
249         hctx->driver_data = nvmeq;
250         return 0;
251 }
252
253 static int nvme_init_request(void *data, struct request *req,
254                                 unsigned int hctx_idx, unsigned int rq_idx,
255                                 unsigned int numa_node)
256 {
257         struct nvme_dev *dev = data;
258         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
259         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
260
261         BUG_ON(!nvmeq);
262         iod->nvmeq = nvmeq;
263         return 0;
264 }
265
266 /**
267  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
268  * @nvmeq: The queue to use
269  * @cmd: The command to send
270  *
271  * Safe to use from interrupt context
272  */
273 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
274                                                 struct nvme_command *cmd)
275 {
276         u16 tail = nvmeq->sq_tail;
277
278         if (nvmeq->sq_cmds_io)
279                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
280         else
281                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
282
283         if (++tail == nvmeq->q_depth)
284                 tail = 0;
285         writel(tail, nvmeq->q_db);
286         nvmeq->sq_tail = tail;
287 }
288
289 static __le64 **iod_list(struct request *req)
290 {
291         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
292         return (__le64 **)(iod->sg + req->nr_phys_segments);
293 }
294
295 static int nvme_init_iod(struct request *rq, unsigned size,
296                 struct nvme_dev *dev)
297 {
298         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
299         int nseg = rq->nr_phys_segments;
300
301         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
302                 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
303                 if (!iod->sg)
304                         return BLK_MQ_RQ_QUEUE_BUSY;
305         } else {
306                 iod->sg = iod->inline_sg;
307         }
308
309         iod->aborted = 0;
310         iod->npages = -1;
311         iod->nents = 0;
312         iod->length = size;
313         return 0;
314 }
315
316 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
317 {
318         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
319         const int last_prp = dev->ctrl.page_size / 8 - 1;
320         int i;
321         __le64 **list = iod_list(req);
322         dma_addr_t prp_dma = iod->first_dma;
323
324         nvme_cleanup_cmd(req);
325
326         if (iod->npages == 0)
327                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
328         for (i = 0; i < iod->npages; i++) {
329                 __le64 *prp_list = list[i];
330                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
331                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
332                 prp_dma = next_prp_dma;
333         }
334
335         if (iod->sg != iod->inline_sg)
336                 kfree(iod->sg);
337 }
338
339 #ifdef CONFIG_BLK_DEV_INTEGRITY
340 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
341 {
342         if (be32_to_cpu(pi->ref_tag) == v)
343                 pi->ref_tag = cpu_to_be32(p);
344 }
345
346 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
347 {
348         if (be32_to_cpu(pi->ref_tag) == p)
349                 pi->ref_tag = cpu_to_be32(v);
350 }
351
352 /**
353  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
354  *
355  * The virtual start sector is the one that was originally submitted by the
356  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
357  * start sector may be different. Remap protection information to match the
358  * physical LBA on writes, and back to the original seed on reads.
359  *
360  * Type 0 and 3 do not have a ref tag, so no remapping required.
361  */
362 static void nvme_dif_remap(struct request *req,
363                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
364 {
365         struct nvme_ns *ns = req->rq_disk->private_data;
366         struct bio_integrity_payload *bip;
367         struct t10_pi_tuple *pi;
368         void *p, *pmap;
369         u32 i, nlb, ts, phys, virt;
370
371         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
372                 return;
373
374         bip = bio_integrity(req->bio);
375         if (!bip)
376                 return;
377
378         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
379
380         p = pmap;
381         virt = bip_get_seed(bip);
382         phys = nvme_block_nr(ns, blk_rq_pos(req));
383         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
384         ts = ns->disk->queue->integrity.tuple_size;
385
386         for (i = 0; i < nlb; i++, virt++, phys++) {
387                 pi = (struct t10_pi_tuple *)p;
388                 dif_swap(phys, virt, pi);
389                 p += ts;
390         }
391         kunmap_atomic(pmap);
392 }
393 #else /* CONFIG_BLK_DEV_INTEGRITY */
394 static void nvme_dif_remap(struct request *req,
395                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
396 {
397 }
398 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
399 {
400 }
401 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
402 {
403 }
404 #endif
405
406 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
407                 int total_len)
408 {
409         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
410         struct dma_pool *pool;
411         int length = total_len;
412         struct scatterlist *sg = iod->sg;
413         int dma_len = sg_dma_len(sg);
414         u64 dma_addr = sg_dma_address(sg);
415         u32 page_size = dev->ctrl.page_size;
416         int offset = dma_addr & (page_size - 1);
417         __le64 *prp_list;
418         __le64 **list = iod_list(req);
419         dma_addr_t prp_dma;
420         int nprps, i;
421
422         length -= (page_size - offset);
423         if (length <= 0)
424                 return true;
425
426         dma_len -= (page_size - offset);
427         if (dma_len) {
428                 dma_addr += (page_size - offset);
429         } else {
430                 sg = sg_next(sg);
431                 dma_addr = sg_dma_address(sg);
432                 dma_len = sg_dma_len(sg);
433         }
434
435         if (length <= page_size) {
436                 iod->first_dma = dma_addr;
437                 return true;
438         }
439
440         nprps = DIV_ROUND_UP(length, page_size);
441         if (nprps <= (256 / 8)) {
442                 pool = dev->prp_small_pool;
443                 iod->npages = 0;
444         } else {
445                 pool = dev->prp_page_pool;
446                 iod->npages = 1;
447         }
448
449         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
450         if (!prp_list) {
451                 iod->first_dma = dma_addr;
452                 iod->npages = -1;
453                 return false;
454         }
455         list[0] = prp_list;
456         iod->first_dma = prp_dma;
457         i = 0;
458         for (;;) {
459                 if (i == page_size >> 3) {
460                         __le64 *old_prp_list = prp_list;
461                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
462                         if (!prp_list)
463                                 return false;
464                         list[iod->npages++] = prp_list;
465                         prp_list[0] = old_prp_list[i - 1];
466                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
467                         i = 1;
468                 }
469                 prp_list[i++] = cpu_to_le64(dma_addr);
470                 dma_len -= page_size;
471                 dma_addr += page_size;
472                 length -= page_size;
473                 if (length <= 0)
474                         break;
475                 if (dma_len > 0)
476                         continue;
477                 BUG_ON(dma_len < 0);
478                 sg = sg_next(sg);
479                 dma_addr = sg_dma_address(sg);
480                 dma_len = sg_dma_len(sg);
481         }
482
483         return true;
484 }
485
486 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
487                 unsigned size, struct nvme_command *cmnd)
488 {
489         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
490         struct request_queue *q = req->q;
491         enum dma_data_direction dma_dir = rq_data_dir(req) ?
492                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
493         int ret = BLK_MQ_RQ_QUEUE_ERROR;
494
495         sg_init_table(iod->sg, req->nr_phys_segments);
496         iod->nents = blk_rq_map_sg(q, req, iod->sg);
497         if (!iod->nents)
498                 goto out;
499
500         ret = BLK_MQ_RQ_QUEUE_BUSY;
501         if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
502                 goto out;
503
504         if (!nvme_setup_prps(dev, req, size))
505                 goto out_unmap;
506
507         ret = BLK_MQ_RQ_QUEUE_ERROR;
508         if (blk_integrity_rq(req)) {
509                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
510                         goto out_unmap;
511
512                 sg_init_table(&iod->meta_sg, 1);
513                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
514                         goto out_unmap;
515
516                 if (rq_data_dir(req))
517                         nvme_dif_remap(req, nvme_dif_prep);
518
519                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
520                         goto out_unmap;
521         }
522
523         cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
524         cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
525         if (blk_integrity_rq(req))
526                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
527         return BLK_MQ_RQ_QUEUE_OK;
528
529 out_unmap:
530         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
531 out:
532         return ret;
533 }
534
535 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
536 {
537         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
538         enum dma_data_direction dma_dir = rq_data_dir(req) ?
539                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
540
541         if (iod->nents) {
542                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
543                 if (blk_integrity_rq(req)) {
544                         if (!rq_data_dir(req))
545                                 nvme_dif_remap(req, nvme_dif_complete);
546                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
547                 }
548         }
549
550         nvme_free_iod(dev, req);
551 }
552
553 /*
554  * NOTE: ns is NULL when called on the admin queue.
555  */
556 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
557                          const struct blk_mq_queue_data *bd)
558 {
559         struct nvme_ns *ns = hctx->queue->queuedata;
560         struct nvme_queue *nvmeq = hctx->driver_data;
561         struct nvme_dev *dev = nvmeq->dev;
562         struct request *req = bd->rq;
563         struct nvme_command cmnd;
564         unsigned map_len;
565         int ret = BLK_MQ_RQ_QUEUE_OK;
566
567         /*
568          * If formated with metadata, require the block layer provide a buffer
569          * unless this namespace is formated such that the metadata can be
570          * stripped/generated by the controller with PRACT=1.
571          */
572         if (ns && ns->ms && !blk_integrity_rq(req)) {
573                 if (!(ns->pi_type && ns->ms == 8) &&
574                                         req->cmd_type != REQ_TYPE_DRV_PRIV) {
575                         blk_mq_end_request(req, -EFAULT);
576                         return BLK_MQ_RQ_QUEUE_OK;
577                 }
578         }
579
580         map_len = nvme_map_len(req);
581         ret = nvme_init_iod(req, map_len, dev);
582         if (ret)
583                 return ret;
584
585         ret = nvme_setup_cmd(ns, req, &cmnd);
586         if (ret)
587                 goto out;
588
589         if (req->nr_phys_segments)
590                 ret = nvme_map_data(dev, req, map_len, &cmnd);
591
592         if (ret)
593                 goto out;
594
595         cmnd.common.command_id = req->tag;
596         blk_mq_start_request(req);
597
598         spin_lock_irq(&nvmeq->q_lock);
599         if (unlikely(nvmeq->cq_vector < 0)) {
600                 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
601                         ret = BLK_MQ_RQ_QUEUE_BUSY;
602                 else
603                         ret = BLK_MQ_RQ_QUEUE_ERROR;
604                 spin_unlock_irq(&nvmeq->q_lock);
605                 goto out;
606         }
607         __nvme_submit_cmd(nvmeq, &cmnd);
608         nvme_process_cq(nvmeq);
609         spin_unlock_irq(&nvmeq->q_lock);
610         return BLK_MQ_RQ_QUEUE_OK;
611 out:
612         nvme_free_iod(dev, req);
613         return ret;
614 }
615
616 static void nvme_complete_rq(struct request *req)
617 {
618         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
619         struct nvme_dev *dev = iod->nvmeq->dev;
620         int error = 0;
621
622         nvme_unmap_data(dev, req);
623
624         if (unlikely(req->errors)) {
625                 if (nvme_req_needs_retry(req, req->errors)) {
626                         nvme_requeue_req(req);
627                         return;
628                 }
629
630                 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
631                         error = req->errors;
632                 else
633                         error = nvme_error_status(req->errors);
634         }
635
636         if (unlikely(iod->aborted)) {
637                 dev_warn(dev->ctrl.device,
638                         "completing aborted command with status: %04x\n",
639                         req->errors);
640         }
641
642         blk_mq_end_request(req, error);
643 }
644
645 /* We read the CQE phase first to check if the rest of the entry is valid */
646 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
647                 u16 phase)
648 {
649         return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
650 }
651
652 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
653 {
654         u16 head, phase;
655
656         head = nvmeq->cq_head;
657         phase = nvmeq->cq_phase;
658
659         while (nvme_cqe_valid(nvmeq, head, phase)) {
660                 struct nvme_completion cqe = nvmeq->cqes[head];
661                 struct request *req;
662
663                 if (++head == nvmeq->q_depth) {
664                         head = 0;
665                         phase = !phase;
666                 }
667
668                 if (tag && *tag == cqe.command_id)
669                         *tag = -1;
670
671                 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
672                         dev_warn(nvmeq->dev->ctrl.device,
673                                 "invalid id %d completed on queue %d\n",
674                                 cqe.command_id, le16_to_cpu(cqe.sq_id));
675                         continue;
676                 }
677
678                 /*
679                  * AEN requests are special as they don't time out and can
680                  * survive any kind of queue freeze and often don't respond to
681                  * aborts.  We don't even bother to allocate a struct request
682                  * for them but rather special case them here.
683                  */
684                 if (unlikely(nvmeq->qid == 0 &&
685                                 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
686                         nvme_complete_async_event(&nvmeq->dev->ctrl, &cqe);
687                         continue;
688                 }
689
690                 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
691                 if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
692                         memcpy(req->special, &cqe, sizeof(cqe));
693                 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
694
695         }
696
697         /* If the controller ignores the cq head doorbell and continuously
698          * writes to the queue, it is theoretically possible to wrap around
699          * the queue twice and mistakenly return IRQ_NONE.  Linux only
700          * requires that 0.1% of your interrupts are handled, so this isn't
701          * a big problem.
702          */
703         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
704                 return;
705
706         if (likely(nvmeq->cq_vector >= 0))
707                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
708         nvmeq->cq_head = head;
709         nvmeq->cq_phase = phase;
710
711         nvmeq->cqe_seen = 1;
712 }
713
714 static void nvme_process_cq(struct nvme_queue *nvmeq)
715 {
716         __nvme_process_cq(nvmeq, NULL);
717 }
718
719 static irqreturn_t nvme_irq(int irq, void *data)
720 {
721         irqreturn_t result;
722         struct nvme_queue *nvmeq = data;
723         spin_lock(&nvmeq->q_lock);
724         nvme_process_cq(nvmeq);
725         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
726         nvmeq->cqe_seen = 0;
727         spin_unlock(&nvmeq->q_lock);
728         return result;
729 }
730
731 static irqreturn_t nvme_irq_check(int irq, void *data)
732 {
733         struct nvme_queue *nvmeq = data;
734         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
735                 return IRQ_WAKE_THREAD;
736         return IRQ_NONE;
737 }
738
739 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
740 {
741         struct nvme_queue *nvmeq = hctx->driver_data;
742
743         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
744                 spin_lock_irq(&nvmeq->q_lock);
745                 __nvme_process_cq(nvmeq, &tag);
746                 spin_unlock_irq(&nvmeq->q_lock);
747
748                 if (tag == -1)
749                         return 1;
750         }
751
752         return 0;
753 }
754
755 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
756 {
757         struct nvme_dev *dev = to_nvme_dev(ctrl);
758         struct nvme_queue *nvmeq = dev->queues[0];
759         struct nvme_command c;
760
761         memset(&c, 0, sizeof(c));
762         c.common.opcode = nvme_admin_async_event;
763         c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
764
765         spin_lock_irq(&nvmeq->q_lock);
766         __nvme_submit_cmd(nvmeq, &c);
767         spin_unlock_irq(&nvmeq->q_lock);
768 }
769
770 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
771 {
772         struct nvme_command c;
773
774         memset(&c, 0, sizeof(c));
775         c.delete_queue.opcode = opcode;
776         c.delete_queue.qid = cpu_to_le16(id);
777
778         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
779 }
780
781 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
782                                                 struct nvme_queue *nvmeq)
783 {
784         struct nvme_command c;
785         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
786
787         /*
788          * Note: we (ab)use the fact the the prp fields survive if no data
789          * is attached to the request.
790          */
791         memset(&c, 0, sizeof(c));
792         c.create_cq.opcode = nvme_admin_create_cq;
793         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
794         c.create_cq.cqid = cpu_to_le16(qid);
795         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
796         c.create_cq.cq_flags = cpu_to_le16(flags);
797         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
798
799         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
800 }
801
802 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
803                                                 struct nvme_queue *nvmeq)
804 {
805         struct nvme_command c;
806         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
807
808         /*
809          * Note: we (ab)use the fact the the prp fields survive if no data
810          * is attached to the request.
811          */
812         memset(&c, 0, sizeof(c));
813         c.create_sq.opcode = nvme_admin_create_sq;
814         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
815         c.create_sq.sqid = cpu_to_le16(qid);
816         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
817         c.create_sq.sq_flags = cpu_to_le16(flags);
818         c.create_sq.cqid = cpu_to_le16(qid);
819
820         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
821 }
822
823 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
824 {
825         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
826 }
827
828 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
829 {
830         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
831 }
832
833 static void abort_endio(struct request *req, int error)
834 {
835         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
836         struct nvme_queue *nvmeq = iod->nvmeq;
837         u16 status = req->errors;
838
839         dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
840         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
841         blk_mq_free_request(req);
842 }
843
844 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
845 {
846         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
847         struct nvme_queue *nvmeq = iod->nvmeq;
848         struct nvme_dev *dev = nvmeq->dev;
849         struct request *abort_req;
850         struct nvme_command cmd;
851
852         /*
853          * Shutdown immediately if controller times out while starting. The
854          * reset work will see the pci device disabled when it gets the forced
855          * cancellation error. All outstanding requests are completed on
856          * shutdown, so we return BLK_EH_HANDLED.
857          */
858         if (dev->ctrl.state == NVME_CTRL_RESETTING) {
859                 dev_warn(dev->ctrl.device,
860                          "I/O %d QID %d timeout, disable controller\n",
861                          req->tag, nvmeq->qid);
862                 nvme_dev_disable(dev, false);
863                 req->errors = NVME_SC_CANCELLED;
864                 return BLK_EH_HANDLED;
865         }
866
867         /*
868          * Shutdown the controller immediately and schedule a reset if the
869          * command was already aborted once before and still hasn't been
870          * returned to the driver, or if this is the admin queue.
871          */
872         if (!nvmeq->qid || iod->aborted) {
873                 dev_warn(dev->ctrl.device,
874                          "I/O %d QID %d timeout, reset controller\n",
875                          req->tag, nvmeq->qid);
876                 nvme_dev_disable(dev, false);
877                 queue_work(nvme_workq, &dev->reset_work);
878
879                 /*
880                  * Mark the request as handled, since the inline shutdown
881                  * forces all outstanding requests to complete.
882                  */
883                 req->errors = NVME_SC_CANCELLED;
884                 return BLK_EH_HANDLED;
885         }
886
887         iod->aborted = 1;
888
889         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
890                 atomic_inc(&dev->ctrl.abort_limit);
891                 return BLK_EH_RESET_TIMER;
892         }
893
894         memset(&cmd, 0, sizeof(cmd));
895         cmd.abort.opcode = nvme_admin_abort_cmd;
896         cmd.abort.cid = req->tag;
897         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
898
899         dev_warn(nvmeq->dev->ctrl.device,
900                 "I/O %d QID %d timeout, aborting\n",
901                  req->tag, nvmeq->qid);
902
903         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
904                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
905         if (IS_ERR(abort_req)) {
906                 atomic_inc(&dev->ctrl.abort_limit);
907                 return BLK_EH_RESET_TIMER;
908         }
909
910         abort_req->timeout = ADMIN_TIMEOUT;
911         abort_req->end_io_data = NULL;
912         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
913
914         /*
915          * The aborted req will be completed on receiving the abort req.
916          * We enable the timer again. If hit twice, it'll cause a device reset,
917          * as the device then is in a faulty state.
918          */
919         return BLK_EH_RESET_TIMER;
920 }
921
922 static void nvme_free_queue(struct nvme_queue *nvmeq)
923 {
924         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
925                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
926         if (nvmeq->sq_cmds)
927                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
928                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
929         kfree(nvmeq);
930 }
931
932 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
933 {
934         int i;
935
936         for (i = dev->queue_count - 1; i >= lowest; i--) {
937                 struct nvme_queue *nvmeq = dev->queues[i];
938                 dev->queue_count--;
939                 dev->queues[i] = NULL;
940                 nvme_free_queue(nvmeq);
941         }
942 }
943
944 /**
945  * nvme_suspend_queue - put queue into suspended state
946  * @nvmeq - queue to suspend
947  */
948 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
949 {
950         int vector;
951
952         spin_lock_irq(&nvmeq->q_lock);
953         if (nvmeq->cq_vector == -1) {
954                 spin_unlock_irq(&nvmeq->q_lock);
955                 return 1;
956         }
957         vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
958         nvmeq->dev->online_queues--;
959         nvmeq->cq_vector = -1;
960         spin_unlock_irq(&nvmeq->q_lock);
961
962         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
963                 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
964
965         irq_set_affinity_hint(vector, NULL);
966         free_irq(vector, nvmeq);
967
968         return 0;
969 }
970
971 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
972 {
973         struct nvme_queue *nvmeq = dev->queues[0];
974
975         if (!nvmeq)
976                 return;
977         if (nvme_suspend_queue(nvmeq))
978                 return;
979
980         if (shutdown)
981                 nvme_shutdown_ctrl(&dev->ctrl);
982         else
983                 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
984                                                 dev->bar + NVME_REG_CAP));
985
986         spin_lock_irq(&nvmeq->q_lock);
987         nvme_process_cq(nvmeq);
988         spin_unlock_irq(&nvmeq->q_lock);
989 }
990
991 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
992                                 int entry_size)
993 {
994         int q_depth = dev->q_depth;
995         unsigned q_size_aligned = roundup(q_depth * entry_size,
996                                           dev->ctrl.page_size);
997
998         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
999                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1000                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1001                 q_depth = div_u64(mem_per_q, entry_size);
1002
1003                 /*
1004                  * Ensure the reduced q_depth is above some threshold where it
1005                  * would be better to map queues in system memory with the
1006                  * original depth
1007                  */
1008                 if (q_depth < 64)
1009                         return -ENOMEM;
1010         }
1011
1012         return q_depth;
1013 }
1014
1015 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1016                                 int qid, int depth)
1017 {
1018         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1019                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1020                                                       dev->ctrl.page_size);
1021                 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1022                 nvmeq->sq_cmds_io = dev->cmb + offset;
1023         } else {
1024                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1025                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1026                 if (!nvmeq->sq_cmds)
1027                         return -ENOMEM;
1028         }
1029
1030         return 0;
1031 }
1032
1033 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1034                                                         int depth)
1035 {
1036         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1037         if (!nvmeq)
1038                 return NULL;
1039
1040         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1041                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1042         if (!nvmeq->cqes)
1043                 goto free_nvmeq;
1044
1045         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1046                 goto free_cqdma;
1047
1048         nvmeq->q_dmadev = dev->dev;
1049         nvmeq->dev = dev;
1050         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1051                         dev->ctrl.instance, qid);
1052         spin_lock_init(&nvmeq->q_lock);
1053         nvmeq->cq_head = 0;
1054         nvmeq->cq_phase = 1;
1055         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1056         nvmeq->q_depth = depth;
1057         nvmeq->qid = qid;
1058         nvmeq->cq_vector = -1;
1059         dev->queues[qid] = nvmeq;
1060         dev->queue_count++;
1061
1062         return nvmeq;
1063
1064  free_cqdma:
1065         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1066                                                         nvmeq->cq_dma_addr);
1067  free_nvmeq:
1068         kfree(nvmeq);
1069         return NULL;
1070 }
1071
1072 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1073                                                         const char *name)
1074 {
1075         if (use_threaded_interrupts)
1076                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1077                                         nvme_irq_check, nvme_irq, IRQF_SHARED,
1078                                         name, nvmeq);
1079         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1080                                 IRQF_SHARED, name, nvmeq);
1081 }
1082
1083 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1084 {
1085         struct nvme_dev *dev = nvmeq->dev;
1086
1087         spin_lock_irq(&nvmeq->q_lock);
1088         nvmeq->sq_tail = 0;
1089         nvmeq->cq_head = 0;
1090         nvmeq->cq_phase = 1;
1091         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1092         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1093         dev->online_queues++;
1094         spin_unlock_irq(&nvmeq->q_lock);
1095 }
1096
1097 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1098 {
1099         struct nvme_dev *dev = nvmeq->dev;
1100         int result;
1101
1102         nvmeq->cq_vector = qid - 1;
1103         result = adapter_alloc_cq(dev, qid, nvmeq);
1104         if (result < 0)
1105                 return result;
1106
1107         result = adapter_alloc_sq(dev, qid, nvmeq);
1108         if (result < 0)
1109                 goto release_cq;
1110
1111         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1112         if (result < 0)
1113                 goto release_sq;
1114
1115         nvme_init_queue(nvmeq, qid);
1116         return result;
1117
1118  release_sq:
1119         adapter_delete_sq(dev, qid);
1120  release_cq:
1121         adapter_delete_cq(dev, qid);
1122         return result;
1123 }
1124
1125 static struct blk_mq_ops nvme_mq_admin_ops = {
1126         .queue_rq       = nvme_queue_rq,
1127         .complete       = nvme_complete_rq,
1128         .map_queue      = blk_mq_map_queue,
1129         .init_hctx      = nvme_admin_init_hctx,
1130         .exit_hctx      = nvme_admin_exit_hctx,
1131         .init_request   = nvme_admin_init_request,
1132         .timeout        = nvme_timeout,
1133 };
1134
1135 static struct blk_mq_ops nvme_mq_ops = {
1136         .queue_rq       = nvme_queue_rq,
1137         .complete       = nvme_complete_rq,
1138         .map_queue      = blk_mq_map_queue,
1139         .init_hctx      = nvme_init_hctx,
1140         .init_request   = nvme_init_request,
1141         .timeout        = nvme_timeout,
1142         .poll           = nvme_poll,
1143 };
1144
1145 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1146 {
1147         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1148                 /*
1149                  * If the controller was reset during removal, it's possible
1150                  * user requests may be waiting on a stopped queue. Start the
1151                  * queue to flush these to completion.
1152                  */
1153                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1154                 blk_cleanup_queue(dev->ctrl.admin_q);
1155                 blk_mq_free_tag_set(&dev->admin_tagset);
1156         }
1157 }
1158
1159 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1160 {
1161         if (!dev->ctrl.admin_q) {
1162                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1163                 dev->admin_tagset.nr_hw_queues = 1;
1164
1165                 /*
1166                  * Subtract one to leave an empty queue entry for 'Full Queue'
1167                  * condition. See NVM-Express 1.2 specification, section 4.1.2.
1168                  */
1169                 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1170                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1171                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1172                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1173                 dev->admin_tagset.driver_data = dev;
1174
1175                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1176                         return -ENOMEM;
1177
1178                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1179                 if (IS_ERR(dev->ctrl.admin_q)) {
1180                         blk_mq_free_tag_set(&dev->admin_tagset);
1181                         return -ENOMEM;
1182                 }
1183                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1184                         nvme_dev_remove_admin(dev);
1185                         dev->ctrl.admin_q = NULL;
1186                         return -ENODEV;
1187                 }
1188         } else
1189                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1190
1191         return 0;
1192 }
1193
1194 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1195 {
1196         int result;
1197         u32 aqa;
1198         u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1199         struct nvme_queue *nvmeq;
1200
1201         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1202                                                 NVME_CAP_NSSRC(cap) : 0;
1203
1204         if (dev->subsystem &&
1205             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1206                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1207
1208         result = nvme_disable_ctrl(&dev->ctrl, cap);
1209         if (result < 0)
1210                 return result;
1211
1212         nvmeq = dev->queues[0];
1213         if (!nvmeq) {
1214                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1215                 if (!nvmeq)
1216                         return -ENOMEM;
1217         }
1218
1219         aqa = nvmeq->q_depth - 1;
1220         aqa |= aqa << 16;
1221
1222         writel(aqa, dev->bar + NVME_REG_AQA);
1223         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1224         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1225
1226         result = nvme_enable_ctrl(&dev->ctrl, cap);
1227         if (result)
1228                 goto free_nvmeq;
1229
1230         nvmeq->cq_vector = 0;
1231         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1232         if (result) {
1233                 nvmeq->cq_vector = -1;
1234                 goto free_nvmeq;
1235         }
1236
1237         return result;
1238
1239  free_nvmeq:
1240         nvme_free_queues(dev, 0);
1241         return result;
1242 }
1243
1244 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1245 {
1246
1247         /* If true, indicates loss of adapter communication, possibly by a
1248          * NVMe Subsystem reset.
1249          */
1250         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1251
1252         /* If there is a reset ongoing, we shouldn't reset again. */
1253         if (work_busy(&dev->reset_work))
1254                 return false;
1255
1256         /* We shouldn't reset unless the controller is on fatal error state
1257          * _or_ if we lost the communication with it.
1258          */
1259         if (!(csts & NVME_CSTS_CFS) && !nssro)
1260                 return false;
1261
1262         /* If PCI error recovery process is happening, we cannot reset or
1263          * the recovery mechanism will surely fail.
1264          */
1265         if (pci_channel_offline(to_pci_dev(dev->dev)))
1266                 return false;
1267
1268         return true;
1269 }
1270
1271 static void nvme_watchdog_timer(unsigned long data)
1272 {
1273         struct nvme_dev *dev = (struct nvme_dev *)data;
1274         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1275
1276         /* Skip controllers under certain specific conditions. */
1277         if (nvme_should_reset(dev, csts)) {
1278                 if (queue_work(nvme_workq, &dev->reset_work))
1279                         dev_warn(dev->dev,
1280                                 "Failed status: 0x%x, reset controller.\n",
1281                                 csts);
1282                 return;
1283         }
1284
1285         mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1286 }
1287
1288 static int nvme_create_io_queues(struct nvme_dev *dev)
1289 {
1290         unsigned i, max;
1291         int ret = 0;
1292
1293         for (i = dev->queue_count; i <= dev->max_qid; i++) {
1294                 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1295                         ret = -ENOMEM;
1296                         break;
1297                 }
1298         }
1299
1300         max = min(dev->max_qid, dev->queue_count - 1);
1301         for (i = dev->online_queues; i <= max; i++) {
1302                 ret = nvme_create_queue(dev->queues[i], i);
1303                 if (ret) {
1304                         nvme_free_queues(dev, i);
1305                         break;
1306                 }
1307         }
1308
1309         /*
1310          * Ignore failing Create SQ/CQ commands, we can continue with less
1311          * than the desired aount of queues, and even a controller without
1312          * I/O queues an still be used to issue admin commands.  This might
1313          * be useful to upgrade a buggy firmware for example.
1314          */
1315         return ret >= 0 ? 0 : ret;
1316 }
1317
1318 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1319 {
1320         u64 szu, size, offset;
1321         u32 cmbloc;
1322         resource_size_t bar_size;
1323         struct pci_dev *pdev = to_pci_dev(dev->dev);
1324         void __iomem *cmb;
1325         dma_addr_t dma_addr;
1326
1327         if (!use_cmb_sqes)
1328                 return NULL;
1329
1330         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1331         if (!(NVME_CMB_SZ(dev->cmbsz)))
1332                 return NULL;
1333
1334         cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1335
1336         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1337         size = szu * NVME_CMB_SZ(dev->cmbsz);
1338         offset = szu * NVME_CMB_OFST(cmbloc);
1339         bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1340
1341         if (offset > bar_size)
1342                 return NULL;
1343
1344         /*
1345          * Controllers may support a CMB size larger than their BAR,
1346          * for example, due to being behind a bridge. Reduce the CMB to
1347          * the reported size of the BAR
1348          */
1349         if (size > bar_size - offset)
1350                 size = bar_size - offset;
1351
1352         dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1353         cmb = ioremap_wc(dma_addr, size);
1354         if (!cmb)
1355                 return NULL;
1356
1357         dev->cmb_dma_addr = dma_addr;
1358         dev->cmb_size = size;
1359         return cmb;
1360 }
1361
1362 static inline void nvme_release_cmb(struct nvme_dev *dev)
1363 {
1364         if (dev->cmb) {
1365                 iounmap(dev->cmb);
1366                 dev->cmb = NULL;
1367         }
1368 }
1369
1370 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1371 {
1372         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1373 }
1374
1375 static int nvme_setup_io_queues(struct nvme_dev *dev)
1376 {
1377         struct nvme_queue *adminq = dev->queues[0];
1378         struct pci_dev *pdev = to_pci_dev(dev->dev);
1379         int result, i, vecs, nr_io_queues, size;
1380
1381         nr_io_queues = num_online_cpus();
1382         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1383         if (result < 0)
1384                 return result;
1385
1386         if (nr_io_queues == 0)
1387                 return 0;
1388
1389         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1390                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1391                                 sizeof(struct nvme_command));
1392                 if (result > 0)
1393                         dev->q_depth = result;
1394                 else
1395                         nvme_release_cmb(dev);
1396         }
1397
1398         size = db_bar_size(dev, nr_io_queues);
1399         if (size > 8192) {
1400                 iounmap(dev->bar);
1401                 do {
1402                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1403                         if (dev->bar)
1404                                 break;
1405                         if (!--nr_io_queues)
1406                                 return -ENOMEM;
1407                         size = db_bar_size(dev, nr_io_queues);
1408                 } while (1);
1409                 dev->dbs = dev->bar + 4096;
1410                 adminq->q_db = dev->dbs;
1411         }
1412
1413         /* Deregister the admin queue's interrupt */
1414         free_irq(dev->entry[0].vector, adminq);
1415
1416         /*
1417          * If we enable msix early due to not intx, disable it again before
1418          * setting up the full range we need.
1419          */
1420         if (pdev->msi_enabled)
1421                 pci_disable_msi(pdev);
1422         else if (pdev->msix_enabled)
1423                 pci_disable_msix(pdev);
1424
1425         for (i = 0; i < nr_io_queues; i++)
1426                 dev->entry[i].entry = i;
1427         vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1428         if (vecs < 0) {
1429                 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1430                 if (vecs < 0) {
1431                         vecs = 1;
1432                 } else {
1433                         for (i = 0; i < vecs; i++)
1434                                 dev->entry[i].vector = i + pdev->irq;
1435                 }
1436         }
1437
1438         /*
1439          * Should investigate if there's a performance win from allocating
1440          * more queues than interrupt vectors; it might allow the submission
1441          * path to scale better, even if the receive path is limited by the
1442          * number of interrupts.
1443          */
1444         nr_io_queues = vecs;
1445         dev->max_qid = nr_io_queues;
1446
1447         result = queue_request_irq(dev, adminq, adminq->irqname);
1448         if (result) {
1449                 adminq->cq_vector = -1;
1450                 goto free_queues;
1451         }
1452         return nvme_create_io_queues(dev);
1453
1454  free_queues:
1455         nvme_free_queues(dev, 1);
1456         return result;
1457 }
1458
1459 static void nvme_pci_post_scan(struct nvme_ctrl *ctrl)
1460 {
1461         struct nvme_dev *dev = to_nvme_dev(ctrl);
1462         struct nvme_queue *nvmeq;
1463         int i;
1464
1465         for (i = 0; i < dev->online_queues; i++) {
1466                 nvmeq = dev->queues[i];
1467
1468                 if (!nvmeq->tags || !(*nvmeq->tags))
1469                         continue;
1470
1471                 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1472                                         blk_mq_tags_cpumask(*nvmeq->tags));
1473         }
1474 }
1475
1476 static void nvme_del_queue_end(struct request *req, int error)
1477 {
1478         struct nvme_queue *nvmeq = req->end_io_data;
1479
1480         blk_mq_free_request(req);
1481         complete(&nvmeq->dev->ioq_wait);
1482 }
1483
1484 static void nvme_del_cq_end(struct request *req, int error)
1485 {
1486         struct nvme_queue *nvmeq = req->end_io_data;
1487
1488         if (!error) {
1489                 unsigned long flags;
1490
1491                 /*
1492                  * We might be called with the AQ q_lock held
1493                  * and the I/O queue q_lock should always
1494                  * nest inside the AQ one.
1495                  */
1496                 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1497                                         SINGLE_DEPTH_NESTING);
1498                 nvme_process_cq(nvmeq);
1499                 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1500         }
1501
1502         nvme_del_queue_end(req, error);
1503 }
1504
1505 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1506 {
1507         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1508         struct request *req;
1509         struct nvme_command cmd;
1510
1511         memset(&cmd, 0, sizeof(cmd));
1512         cmd.delete_queue.opcode = opcode;
1513         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1514
1515         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1516         if (IS_ERR(req))
1517                 return PTR_ERR(req);
1518
1519         req->timeout = ADMIN_TIMEOUT;
1520         req->end_io_data = nvmeq;
1521
1522         blk_execute_rq_nowait(q, NULL, req, false,
1523                         opcode == nvme_admin_delete_cq ?
1524                                 nvme_del_cq_end : nvme_del_queue_end);
1525         return 0;
1526 }
1527
1528 static void nvme_disable_io_queues(struct nvme_dev *dev)
1529 {
1530         int pass, queues = dev->online_queues - 1;
1531         unsigned long timeout;
1532         u8 opcode = nvme_admin_delete_sq;
1533
1534         for (pass = 0; pass < 2; pass++) {
1535                 int sent = 0, i = queues;
1536
1537                 reinit_completion(&dev->ioq_wait);
1538  retry:
1539                 timeout = ADMIN_TIMEOUT;
1540                 for (; i > 0; i--) {
1541                         struct nvme_queue *nvmeq = dev->queues[i];
1542
1543                         if (!pass)
1544                                 nvme_suspend_queue(nvmeq);
1545                         if (nvme_delete_queue(nvmeq, opcode))
1546                                 break;
1547                         ++sent;
1548                 }
1549                 while (sent--) {
1550                         timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1551                         if (timeout == 0)
1552                                 return;
1553                         if (i)
1554                                 goto retry;
1555                 }
1556                 opcode = nvme_admin_delete_cq;
1557         }
1558 }
1559
1560 /*
1561  * Return: error value if an error occurred setting up the queues or calling
1562  * Identify Device.  0 if these succeeded, even if adding some of the
1563  * namespaces failed.  At the moment, these failures are silent.  TBD which
1564  * failures should be reported.
1565  */
1566 static int nvme_dev_add(struct nvme_dev *dev)
1567 {
1568         if (!dev->ctrl.tagset) {
1569                 dev->tagset.ops = &nvme_mq_ops;
1570                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1571                 dev->tagset.timeout = NVME_IO_TIMEOUT;
1572                 dev->tagset.numa_node = dev_to_node(dev->dev);
1573                 dev->tagset.queue_depth =
1574                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1575                 dev->tagset.cmd_size = nvme_cmd_size(dev);
1576                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1577                 dev->tagset.driver_data = dev;
1578
1579                 if (blk_mq_alloc_tag_set(&dev->tagset))
1580                         return 0;
1581                 dev->ctrl.tagset = &dev->tagset;
1582         } else {
1583                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1584
1585                 /* Free previously allocated queues that are no longer usable */
1586                 nvme_free_queues(dev, dev->online_queues);
1587         }
1588
1589         return 0;
1590 }
1591
1592 static int nvme_pci_enable(struct nvme_dev *dev)
1593 {
1594         u64 cap;
1595         int result = -ENOMEM;
1596         struct pci_dev *pdev = to_pci_dev(dev->dev);
1597
1598         if (pci_enable_device_mem(pdev))
1599                 return result;
1600
1601         pci_set_master(pdev);
1602
1603         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1604             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1605                 goto disable;
1606
1607         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1608                 result = -ENODEV;
1609                 goto disable;
1610         }
1611
1612         /*
1613          * Some devices and/or platforms don't advertise or work with INTx
1614          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1615          * adjust this later.
1616          */
1617         if (pci_enable_msix(pdev, dev->entry, 1)) {
1618                 pci_enable_msi(pdev);
1619                 dev->entry[0].vector = pdev->irq;
1620         }
1621
1622         if (!dev->entry[0].vector) {
1623                 result = -ENODEV;
1624                 goto disable;
1625         }
1626
1627         cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1628
1629         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1630         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1631         dev->dbs = dev->bar + 4096;
1632
1633         /*
1634          * Temporary fix for the Apple controller found in the MacBook8,1 and
1635          * some MacBook7,1 to avoid controller resets and data loss.
1636          */
1637         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1638                 dev->q_depth = 2;
1639                 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1640                         "queue depth=%u to work around controller resets\n",
1641                         dev->q_depth);
1642         }
1643
1644         if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1645                 dev->cmb = nvme_map_cmb(dev);
1646
1647         pci_enable_pcie_error_reporting(pdev);
1648         pci_save_state(pdev);
1649         return 0;
1650
1651  disable:
1652         pci_disable_device(pdev);
1653         return result;
1654 }
1655
1656 static void nvme_dev_unmap(struct nvme_dev *dev)
1657 {
1658         if (dev->bar)
1659                 iounmap(dev->bar);
1660         pci_release_regions(to_pci_dev(dev->dev));
1661 }
1662
1663 static void nvme_pci_disable(struct nvme_dev *dev)
1664 {
1665         struct pci_dev *pdev = to_pci_dev(dev->dev);
1666
1667         if (pdev->msi_enabled)
1668                 pci_disable_msi(pdev);
1669         else if (pdev->msix_enabled)
1670                 pci_disable_msix(pdev);
1671
1672         if (pci_is_enabled(pdev)) {
1673                 pci_disable_pcie_error_reporting(pdev);
1674                 pci_disable_device(pdev);
1675         }
1676 }
1677
1678 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1679 {
1680         int i;
1681         u32 csts = -1;
1682
1683         del_timer_sync(&dev->watchdog_timer);
1684
1685         mutex_lock(&dev->shutdown_lock);
1686         if (pci_is_enabled(to_pci_dev(dev->dev))) {
1687                 nvme_stop_queues(&dev->ctrl);
1688                 csts = readl(dev->bar + NVME_REG_CSTS);
1689         }
1690         if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1691                 for (i = dev->queue_count - 1; i >= 0; i--) {
1692                         struct nvme_queue *nvmeq = dev->queues[i];
1693                         nvme_suspend_queue(nvmeq);
1694                 }
1695         } else {
1696                 nvme_disable_io_queues(dev);
1697                 nvme_disable_admin_queue(dev, shutdown);
1698         }
1699         nvme_pci_disable(dev);
1700
1701         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1702         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
1703         mutex_unlock(&dev->shutdown_lock);
1704 }
1705
1706 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1707 {
1708         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1709                                                 PAGE_SIZE, PAGE_SIZE, 0);
1710         if (!dev->prp_page_pool)
1711                 return -ENOMEM;
1712
1713         /* Optimisation for I/Os between 4k and 128k */
1714         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1715                                                 256, 256, 0);
1716         if (!dev->prp_small_pool) {
1717                 dma_pool_destroy(dev->prp_page_pool);
1718                 return -ENOMEM;
1719         }
1720         return 0;
1721 }
1722
1723 static void nvme_release_prp_pools(struct nvme_dev *dev)
1724 {
1725         dma_pool_destroy(dev->prp_page_pool);
1726         dma_pool_destroy(dev->prp_small_pool);
1727 }
1728
1729 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1730 {
1731         struct nvme_dev *dev = to_nvme_dev(ctrl);
1732
1733         put_device(dev->dev);
1734         if (dev->tagset.tags)
1735                 blk_mq_free_tag_set(&dev->tagset);
1736         if (dev->ctrl.admin_q)
1737                 blk_put_queue(dev->ctrl.admin_q);
1738         kfree(dev->queues);
1739         kfree(dev->entry);
1740         kfree(dev);
1741 }
1742
1743 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1744 {
1745         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1746
1747         kref_get(&dev->ctrl.kref);
1748         nvme_dev_disable(dev, false);
1749         if (!schedule_work(&dev->remove_work))
1750                 nvme_put_ctrl(&dev->ctrl);
1751 }
1752
1753 static void nvme_reset_work(struct work_struct *work)
1754 {
1755         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1756         int result = -ENODEV;
1757
1758         if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1759                 goto out;
1760
1761         /*
1762          * If we're called to reset a live controller first shut it down before
1763          * moving on.
1764          */
1765         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1766                 nvme_dev_disable(dev, false);
1767
1768         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1769                 goto out;
1770
1771         result = nvme_pci_enable(dev);
1772         if (result)
1773                 goto out;
1774
1775         result = nvme_configure_admin_queue(dev);
1776         if (result)
1777                 goto out;
1778
1779         nvme_init_queue(dev->queues[0], 0);
1780         result = nvme_alloc_admin_tags(dev);
1781         if (result)
1782                 goto out;
1783
1784         result = nvme_init_identify(&dev->ctrl);
1785         if (result)
1786                 goto out;
1787
1788         result = nvme_setup_io_queues(dev);
1789         if (result)
1790                 goto out;
1791
1792         /*
1793          * A controller that can not execute IO typically requires user
1794          * intervention to correct. For such degraded controllers, the driver
1795          * should not submit commands the user did not request, so skip
1796          * registering for asynchronous event notification on this condition.
1797          */
1798         if (dev->online_queues > 1)
1799                 nvme_queue_async_events(&dev->ctrl);
1800
1801         mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1802
1803         /*
1804          * Keep the controller around but remove all namespaces if we don't have
1805          * any working I/O queue.
1806          */
1807         if (dev->online_queues < 2) {
1808                 dev_warn(dev->ctrl.device, "IO queues not created\n");
1809                 nvme_kill_queues(&dev->ctrl);
1810                 nvme_remove_namespaces(&dev->ctrl);
1811         } else {
1812                 nvme_start_queues(&dev->ctrl);
1813                 nvme_dev_add(dev);
1814         }
1815
1816         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1817                 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1818                 goto out;
1819         }
1820
1821         if (dev->online_queues > 1)
1822                 nvme_queue_scan(&dev->ctrl);
1823         return;
1824
1825  out:
1826         nvme_remove_dead_ctrl(dev, result);
1827 }
1828
1829 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1830 {
1831         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1832         struct pci_dev *pdev = to_pci_dev(dev->dev);
1833
1834         nvme_kill_queues(&dev->ctrl);
1835         if (pci_get_drvdata(pdev))
1836                 device_release_driver(&pdev->dev);
1837         nvme_put_ctrl(&dev->ctrl);
1838 }
1839
1840 static int nvme_reset(struct nvme_dev *dev)
1841 {
1842         if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1843                 return -ENODEV;
1844
1845         if (!queue_work(nvme_workq, &dev->reset_work))
1846                 return -EBUSY;
1847
1848         flush_work(&dev->reset_work);
1849         return 0;
1850 }
1851
1852 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1853 {
1854         *val = readl(to_nvme_dev(ctrl)->bar + off);
1855         return 0;
1856 }
1857
1858 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1859 {
1860         writel(val, to_nvme_dev(ctrl)->bar + off);
1861         return 0;
1862 }
1863
1864 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1865 {
1866         *val = readq(to_nvme_dev(ctrl)->bar + off);
1867         return 0;
1868 }
1869
1870 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1871 {
1872         return nvme_reset(to_nvme_dev(ctrl));
1873 }
1874
1875 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1876         .name                   = "pcie",
1877         .module                 = THIS_MODULE,
1878         .reg_read32             = nvme_pci_reg_read32,
1879         .reg_write32            = nvme_pci_reg_write32,
1880         .reg_read64             = nvme_pci_reg_read64,
1881         .reset_ctrl             = nvme_pci_reset_ctrl,
1882         .free_ctrl              = nvme_pci_free_ctrl,
1883         .post_scan              = nvme_pci_post_scan,
1884         .submit_async_event     = nvme_pci_submit_async_event,
1885 };
1886
1887 static int nvme_dev_map(struct nvme_dev *dev)
1888 {
1889         int bars;
1890         struct pci_dev *pdev = to_pci_dev(dev->dev);
1891
1892         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1893         if (!bars)
1894                 return -ENODEV;
1895         if (pci_request_selected_regions(pdev, bars, "nvme"))
1896                 return -ENODEV;
1897
1898         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1899         if (!dev->bar)
1900                 goto release;
1901
1902        return 0;
1903   release:
1904        pci_release_regions(pdev);
1905        return -ENODEV;
1906 }
1907
1908 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1909 {
1910         int node, result = -ENOMEM;
1911         struct nvme_dev *dev;
1912
1913         node = dev_to_node(&pdev->dev);
1914         if (node == NUMA_NO_NODE)
1915                 set_dev_node(&pdev->dev, 0);
1916
1917         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1918         if (!dev)
1919                 return -ENOMEM;
1920         dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
1921                                                         GFP_KERNEL, node);
1922         if (!dev->entry)
1923                 goto free;
1924         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1925                                                         GFP_KERNEL, node);
1926         if (!dev->queues)
1927                 goto free;
1928
1929         dev->dev = get_device(&pdev->dev);
1930         pci_set_drvdata(pdev, dev);
1931
1932         result = nvme_dev_map(dev);
1933         if (result)
1934                 goto free;
1935
1936         INIT_WORK(&dev->reset_work, nvme_reset_work);
1937         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1938         setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1939                 (unsigned long)dev);
1940         mutex_init(&dev->shutdown_lock);
1941         init_completion(&dev->ioq_wait);
1942
1943         result = nvme_setup_prp_pools(dev);
1944         if (result)
1945                 goto put_pci;
1946
1947         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1948                         id->driver_data);
1949         if (result)
1950                 goto release_pools;
1951
1952         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1953
1954         queue_work(nvme_workq, &dev->reset_work);
1955         return 0;
1956
1957  release_pools:
1958         nvme_release_prp_pools(dev);
1959  put_pci:
1960         put_device(dev->dev);
1961         nvme_dev_unmap(dev);
1962  free:
1963         kfree(dev->queues);
1964         kfree(dev->entry);
1965         kfree(dev);
1966         return result;
1967 }
1968
1969 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1970 {
1971         struct nvme_dev *dev = pci_get_drvdata(pdev);
1972
1973         if (prepare)
1974                 nvme_dev_disable(dev, false);
1975         else
1976                 queue_work(nvme_workq, &dev->reset_work);
1977 }
1978
1979 static void nvme_shutdown(struct pci_dev *pdev)
1980 {
1981         struct nvme_dev *dev = pci_get_drvdata(pdev);
1982         nvme_dev_disable(dev, true);
1983 }
1984
1985 /*
1986  * The driver's remove may be called on a device in a partially initialized
1987  * state. This function must not have any dependencies on the device state in
1988  * order to proceed.
1989  */
1990 static void nvme_remove(struct pci_dev *pdev)
1991 {
1992         struct nvme_dev *dev = pci_get_drvdata(pdev);
1993
1994         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1995
1996         pci_set_drvdata(pdev, NULL);
1997
1998         if (!pci_device_is_present(pdev))
1999                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2000
2001         flush_work(&dev->reset_work);
2002         nvme_uninit_ctrl(&dev->ctrl);
2003         nvme_dev_disable(dev, true);
2004         nvme_dev_remove_admin(dev);
2005         nvme_free_queues(dev, 0);
2006         nvme_release_cmb(dev);
2007         nvme_release_prp_pools(dev);
2008         nvme_dev_unmap(dev);
2009         nvme_put_ctrl(&dev->ctrl);
2010 }
2011
2012 #ifdef CONFIG_PM_SLEEP
2013 static int nvme_suspend(struct device *dev)
2014 {
2015         struct pci_dev *pdev = to_pci_dev(dev);
2016         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2017
2018         nvme_dev_disable(ndev, true);
2019         return 0;
2020 }
2021
2022 static int nvme_resume(struct device *dev)
2023 {
2024         struct pci_dev *pdev = to_pci_dev(dev);
2025         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2026
2027         queue_work(nvme_workq, &ndev->reset_work);
2028         return 0;
2029 }
2030 #endif
2031
2032 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2033
2034 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2035                                                 pci_channel_state_t state)
2036 {
2037         struct nvme_dev *dev = pci_get_drvdata(pdev);
2038
2039         /*
2040          * A frozen channel requires a reset. When detected, this method will
2041          * shutdown the controller to quiesce. The controller will be restarted
2042          * after the slot reset through driver's slot_reset callback.
2043          */
2044         switch (state) {
2045         case pci_channel_io_normal:
2046                 return PCI_ERS_RESULT_CAN_RECOVER;
2047         case pci_channel_io_frozen:
2048                 dev_warn(dev->ctrl.device,
2049                         "frozen state error detected, reset controller\n");
2050                 nvme_dev_disable(dev, false);
2051                 return PCI_ERS_RESULT_NEED_RESET;
2052         case pci_channel_io_perm_failure:
2053                 dev_warn(dev->ctrl.device,
2054                         "failure state error detected, request disconnect\n");
2055                 return PCI_ERS_RESULT_DISCONNECT;
2056         }
2057         return PCI_ERS_RESULT_NEED_RESET;
2058 }
2059
2060 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2061 {
2062         struct nvme_dev *dev = pci_get_drvdata(pdev);
2063
2064         dev_info(dev->ctrl.device, "restart after slot reset\n");
2065         pci_restore_state(pdev);
2066         queue_work(nvme_workq, &dev->reset_work);
2067         return PCI_ERS_RESULT_RECOVERED;
2068 }
2069
2070 static void nvme_error_resume(struct pci_dev *pdev)
2071 {
2072         pci_cleanup_aer_uncorrect_error_status(pdev);
2073 }
2074
2075 static const struct pci_error_handlers nvme_err_handler = {
2076         .error_detected = nvme_error_detected,
2077         .slot_reset     = nvme_slot_reset,
2078         .resume         = nvme_error_resume,
2079         .reset_notify   = nvme_reset_notify,
2080 };
2081
2082 /* Move to pci_ids.h later */
2083 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
2084
2085 static const struct pci_device_id nvme_id_table[] = {
2086         { PCI_VDEVICE(INTEL, 0x0953),
2087                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2088                                 NVME_QUIRK_DISCARD_ZEROES, },
2089         { PCI_VDEVICE(INTEL, 0x0a53),
2090                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2091                                 NVME_QUIRK_DISCARD_ZEROES, },
2092         { PCI_VDEVICE(INTEL, 0x0a54),
2093                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2094                                 NVME_QUIRK_DISCARD_ZEROES, },
2095         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2096                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2097         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2098         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2099         { 0, }
2100 };
2101 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2102
2103 static struct pci_driver nvme_driver = {
2104         .name           = "nvme",
2105         .id_table       = nvme_id_table,
2106         .probe          = nvme_probe,
2107         .remove         = nvme_remove,
2108         .shutdown       = nvme_shutdown,
2109         .driver         = {
2110                 .pm     = &nvme_dev_pm_ops,
2111         },
2112         .err_handler    = &nvme_err_handler,
2113 };
2114
2115 static int __init nvme_init(void)
2116 {
2117         int result;
2118
2119         nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2120         if (!nvme_workq)
2121                 return -ENOMEM;
2122
2123         result = pci_register_driver(&nvme_driver);
2124         if (result)
2125                 destroy_workqueue(nvme_workq);
2126         return result;
2127 }
2128
2129 static void __exit nvme_exit(void)
2130 {
2131         pci_unregister_driver(&nvme_driver);
2132         destroy_workqueue(nvme_workq);
2133         _nvme_check_size();
2134 }
2135
2136 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2137 MODULE_LICENSE("GPL");
2138 MODULE_VERSION("1.0");
2139 module_init(nvme_init);
2140 module_exit(nvme_exit);