Merge tag 'tegra-for-4.8-bus' of git://git.kernel.org/pub/scm/linux/kernel/git/tegra...
[cascardo/linux.git] / drivers / of / of_reserved_mem.c
1 /*
2  * Device tree based initialization code for reserved memory.
3  *
4  * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
5  * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
6  *              http://www.samsung.com
7  * Author: Marek Szyprowski <m.szyprowski@samsung.com>
8  * Author: Josh Cartwright <joshc@codeaurora.org>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License or (at your optional) any later version of the license.
14  */
15
16 #include <linux/err.h>
17 #include <linux/of.h>
18 #include <linux/of_fdt.h>
19 #include <linux/of_platform.h>
20 #include <linux/mm.h>
21 #include <linux/sizes.h>
22 #include <linux/of_reserved_mem.h>
23 #include <linux/sort.h>
24 #include <linux/slab.h>
25
26 #define MAX_RESERVED_REGIONS    16
27 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
28 static int reserved_mem_count;
29
30 #if defined(CONFIG_HAVE_MEMBLOCK)
31 #include <linux/memblock.h>
32 int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
33         phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
34         phys_addr_t *res_base)
35 {
36         phys_addr_t base;
37         /*
38          * We use __memblock_alloc_base() because memblock_alloc_base()
39          * panic()s on allocation failure.
40          */
41         end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
42         base = __memblock_alloc_base(size, align, end);
43         if (!base)
44                 return -ENOMEM;
45
46         /*
47          * Check if the allocated region fits in to start..end window
48          */
49         if (base < start) {
50                 memblock_free(base, size);
51                 return -ENOMEM;
52         }
53
54         *res_base = base;
55         if (nomap)
56                 return memblock_remove(base, size);
57         return 0;
58 }
59 #else
60 int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
61         phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
62         phys_addr_t *res_base)
63 {
64         pr_err("Reserved memory not supported, ignoring region 0x%llx%s\n",
65                   size, nomap ? " (nomap)" : "");
66         return -ENOSYS;
67 }
68 #endif
69
70 /**
71  * res_mem_save_node() - save fdt node for second pass initialization
72  */
73 void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
74                                       phys_addr_t base, phys_addr_t size)
75 {
76         struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
77
78         if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
79                 pr_err("Reserved memory: not enough space all defined regions.\n");
80                 return;
81         }
82
83         rmem->fdt_node = node;
84         rmem->name = uname;
85         rmem->base = base;
86         rmem->size = size;
87
88         reserved_mem_count++;
89         return;
90 }
91
92 /**
93  * res_mem_alloc_size() - allocate reserved memory described by 'size', 'align'
94  *                        and 'alloc-ranges' properties
95  */
96 static int __init __reserved_mem_alloc_size(unsigned long node,
97         const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
98 {
99         int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
100         phys_addr_t start = 0, end = 0;
101         phys_addr_t base = 0, align = 0, size;
102         int len;
103         const __be32 *prop;
104         int nomap;
105         int ret;
106
107         prop = of_get_flat_dt_prop(node, "size", &len);
108         if (!prop)
109                 return -EINVAL;
110
111         if (len != dt_root_size_cells * sizeof(__be32)) {
112                 pr_err("Reserved memory: invalid size property in '%s' node.\n",
113                                 uname);
114                 return -EINVAL;
115         }
116         size = dt_mem_next_cell(dt_root_size_cells, &prop);
117
118         nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
119
120         prop = of_get_flat_dt_prop(node, "alignment", &len);
121         if (prop) {
122                 if (len != dt_root_addr_cells * sizeof(__be32)) {
123                         pr_err("Reserved memory: invalid alignment property in '%s' node.\n",
124                                 uname);
125                         return -EINVAL;
126                 }
127                 align = dt_mem_next_cell(dt_root_addr_cells, &prop);
128         }
129
130         /* Need adjust the alignment to satisfy the CMA requirement */
131         if (IS_ENABLED(CONFIG_CMA) && of_flat_dt_is_compatible(node, "shared-dma-pool"))
132                 align = max(align, (phys_addr_t)PAGE_SIZE << max(MAX_ORDER - 1, pageblock_order));
133
134         prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
135         if (prop) {
136
137                 if (len % t_len != 0) {
138                         pr_err("Reserved memory: invalid alloc-ranges property in '%s', skipping node.\n",
139                                uname);
140                         return -EINVAL;
141                 }
142
143                 base = 0;
144
145                 while (len > 0) {
146                         start = dt_mem_next_cell(dt_root_addr_cells, &prop);
147                         end = start + dt_mem_next_cell(dt_root_size_cells,
148                                                        &prop);
149
150                         ret = early_init_dt_alloc_reserved_memory_arch(size,
151                                         align, start, end, nomap, &base);
152                         if (ret == 0) {
153                                 pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
154                                         uname, &base,
155                                         (unsigned long)size / SZ_1M);
156                                 break;
157                         }
158                         len -= t_len;
159                 }
160
161         } else {
162                 ret = early_init_dt_alloc_reserved_memory_arch(size, align,
163                                                         0, 0, nomap, &base);
164                 if (ret == 0)
165                         pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
166                                 uname, &base, (unsigned long)size / SZ_1M);
167         }
168
169         if (base == 0) {
170                 pr_info("Reserved memory: failed to allocate memory for node '%s'\n",
171                         uname);
172                 return -ENOMEM;
173         }
174
175         *res_base = base;
176         *res_size = size;
177
178         return 0;
179 }
180
181 static const struct of_device_id __rmem_of_table_sentinel
182         __used __section(__reservedmem_of_table_end);
183
184 /**
185  * res_mem_init_node() - call region specific reserved memory init code
186  */
187 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
188 {
189         extern const struct of_device_id __reservedmem_of_table[];
190         const struct of_device_id *i;
191
192         for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
193                 reservedmem_of_init_fn initfn = i->data;
194                 const char *compat = i->compatible;
195
196                 if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
197                         continue;
198
199                 if (initfn(rmem) == 0) {
200                         pr_info("Reserved memory: initialized node %s, compatible id %s\n",
201                                 rmem->name, compat);
202                         return 0;
203                 }
204         }
205         return -ENOENT;
206 }
207
208 static int __init __rmem_cmp(const void *a, const void *b)
209 {
210         const struct reserved_mem *ra = a, *rb = b;
211
212         if (ra->base < rb->base)
213                 return -1;
214
215         if (ra->base > rb->base)
216                 return 1;
217
218         return 0;
219 }
220
221 static void __init __rmem_check_for_overlap(void)
222 {
223         int i;
224
225         if (reserved_mem_count < 2)
226                 return;
227
228         sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
229              __rmem_cmp, NULL);
230         for (i = 0; i < reserved_mem_count - 1; i++) {
231                 struct reserved_mem *this, *next;
232
233                 this = &reserved_mem[i];
234                 next = &reserved_mem[i + 1];
235                 if (!(this->base && next->base))
236                         continue;
237                 if (this->base + this->size > next->base) {
238                         phys_addr_t this_end, next_end;
239
240                         this_end = this->base + this->size;
241                         next_end = next->base + next->size;
242                         pr_err("Reserved memory: OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
243                                this->name, &this->base, &this_end,
244                                next->name, &next->base, &next_end);
245                 }
246         }
247 }
248
249 /**
250  * fdt_init_reserved_mem - allocate and init all saved reserved memory regions
251  */
252 void __init fdt_init_reserved_mem(void)
253 {
254         int i;
255
256         /* check for overlapping reserved regions */
257         __rmem_check_for_overlap();
258
259         for (i = 0; i < reserved_mem_count; i++) {
260                 struct reserved_mem *rmem = &reserved_mem[i];
261                 unsigned long node = rmem->fdt_node;
262                 int len;
263                 const __be32 *prop;
264                 int err = 0;
265
266                 prop = of_get_flat_dt_prop(node, "phandle", &len);
267                 if (!prop)
268                         prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
269                 if (prop)
270                         rmem->phandle = of_read_number(prop, len/4);
271
272                 if (rmem->size == 0)
273                         err = __reserved_mem_alloc_size(node, rmem->name,
274                                                  &rmem->base, &rmem->size);
275                 if (err == 0)
276                         __reserved_mem_init_node(rmem);
277         }
278 }
279
280 static inline struct reserved_mem *__find_rmem(struct device_node *node)
281 {
282         unsigned int i;
283
284         if (!node->phandle)
285                 return NULL;
286
287         for (i = 0; i < reserved_mem_count; i++)
288                 if (reserved_mem[i].phandle == node->phandle)
289                         return &reserved_mem[i];
290         return NULL;
291 }
292
293 struct rmem_assigned_device {
294         struct device *dev;
295         struct reserved_mem *rmem;
296         struct list_head list;
297 };
298
299 static LIST_HEAD(of_rmem_assigned_device_list);
300 static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
301
302 /**
303  * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
304  *                                        given device
305  * @dev:        Pointer to the device to configure
306  * @np:         Pointer to the device_node with 'reserved-memory' property
307  * @idx:        Index of selected region
308  *
309  * This function assigns respective DMA-mapping operations based on reserved
310  * memory region specified by 'memory-region' property in @np node to the @dev
311  * device. When driver needs to use more than one reserved memory region, it
312  * should allocate child devices and initialize regions by name for each of
313  * child device.
314  *
315  * Returns error code or zero on success.
316  */
317 int of_reserved_mem_device_init_by_idx(struct device *dev,
318                                        struct device_node *np, int idx)
319 {
320         struct rmem_assigned_device *rd;
321         struct device_node *target;
322         struct reserved_mem *rmem;
323         int ret;
324
325         if (!np || !dev)
326                 return -EINVAL;
327
328         target = of_parse_phandle(np, "memory-region", idx);
329         if (!target)
330                 return -EINVAL;
331
332         rmem = __find_rmem(target);
333         of_node_put(target);
334
335         if (!rmem || !rmem->ops || !rmem->ops->device_init)
336                 return -EINVAL;
337
338         rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
339         if (!rd)
340                 return -ENOMEM;
341
342         ret = rmem->ops->device_init(rmem, dev);
343         if (ret == 0) {
344                 rd->dev = dev;
345                 rd->rmem = rmem;
346
347                 mutex_lock(&of_rmem_assigned_device_mutex);
348                 list_add(&rd->list, &of_rmem_assigned_device_list);
349                 mutex_unlock(&of_rmem_assigned_device_mutex);
350
351                 dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
352         } else {
353                 kfree(rd);
354         }
355
356         return ret;
357 }
358 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
359
360 /**
361  * of_reserved_mem_device_release() - release reserved memory device structures
362  * @dev:        Pointer to the device to deconfigure
363  *
364  * This function releases structures allocated for memory region handling for
365  * the given device.
366  */
367 void of_reserved_mem_device_release(struct device *dev)
368 {
369         struct rmem_assigned_device *rd;
370         struct reserved_mem *rmem = NULL;
371
372         mutex_lock(&of_rmem_assigned_device_mutex);
373         list_for_each_entry(rd, &of_rmem_assigned_device_list, list) {
374                 if (rd->dev == dev) {
375                         rmem = rd->rmem;
376                         list_del(&rd->list);
377                         kfree(rd);
378                         break;
379                 }
380         }
381         mutex_unlock(&of_rmem_assigned_device_mutex);
382
383         if (!rmem || !rmem->ops || !rmem->ops->device_release)
384                 return;
385
386         rmem->ops->device_release(rmem, dev);
387 }
388 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);