cfg80211: handle failed skb allocation
[cascardo/linux.git] / drivers / of / of_reserved_mem.c
1 /*
2  * Device tree based initialization code for reserved memory.
3  *
4  * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
5  * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
6  *              http://www.samsung.com
7  * Author: Marek Szyprowski <m.szyprowski@samsung.com>
8  * Author: Josh Cartwright <joshc@codeaurora.org>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License or (at your optional) any later version of the license.
14  */
15
16 #include <linux/err.h>
17 #include <linux/of.h>
18 #include <linux/of_fdt.h>
19 #include <linux/of_platform.h>
20 #include <linux/mm.h>
21 #include <linux/sizes.h>
22 #include <linux/of_reserved_mem.h>
23 #include <linux/sort.h>
24
25 #define MAX_RESERVED_REGIONS    16
26 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
27 static int reserved_mem_count;
28
29 #if defined(CONFIG_HAVE_MEMBLOCK)
30 #include <linux/memblock.h>
31 int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
32         phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
33         phys_addr_t *res_base)
34 {
35         phys_addr_t base;
36         /*
37          * We use __memblock_alloc_base() because memblock_alloc_base()
38          * panic()s on allocation failure.
39          */
40         end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
41         base = __memblock_alloc_base(size, align, end);
42         if (!base)
43                 return -ENOMEM;
44
45         /*
46          * Check if the allocated region fits in to start..end window
47          */
48         if (base < start) {
49                 memblock_free(base, size);
50                 return -ENOMEM;
51         }
52
53         *res_base = base;
54         if (nomap)
55                 return memblock_remove(base, size);
56         return 0;
57 }
58 #else
59 int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
60         phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
61         phys_addr_t *res_base)
62 {
63         pr_err("Reserved memory not supported, ignoring region 0x%llx%s\n",
64                   size, nomap ? " (nomap)" : "");
65         return -ENOSYS;
66 }
67 #endif
68
69 /**
70  * res_mem_save_node() - save fdt node for second pass initialization
71  */
72 void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
73                                       phys_addr_t base, phys_addr_t size)
74 {
75         struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
76
77         if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
78                 pr_err("Reserved memory: not enough space all defined regions.\n");
79                 return;
80         }
81
82         rmem->fdt_node = node;
83         rmem->name = uname;
84         rmem->base = base;
85         rmem->size = size;
86
87         reserved_mem_count++;
88         return;
89 }
90
91 /**
92  * res_mem_alloc_size() - allocate reserved memory described by 'size', 'align'
93  *                        and 'alloc-ranges' properties
94  */
95 static int __init __reserved_mem_alloc_size(unsigned long node,
96         const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
97 {
98         int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
99         phys_addr_t start = 0, end = 0;
100         phys_addr_t base = 0, align = 0, size;
101         int len;
102         const __be32 *prop;
103         int nomap;
104         int ret;
105
106         prop = of_get_flat_dt_prop(node, "size", &len);
107         if (!prop)
108                 return -EINVAL;
109
110         if (len != dt_root_size_cells * sizeof(__be32)) {
111                 pr_err("Reserved memory: invalid size property in '%s' node.\n",
112                                 uname);
113                 return -EINVAL;
114         }
115         size = dt_mem_next_cell(dt_root_size_cells, &prop);
116
117         nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
118
119         prop = of_get_flat_dt_prop(node, "alignment", &len);
120         if (prop) {
121                 if (len != dt_root_addr_cells * sizeof(__be32)) {
122                         pr_err("Reserved memory: invalid alignment property in '%s' node.\n",
123                                 uname);
124                         return -EINVAL;
125                 }
126                 align = dt_mem_next_cell(dt_root_addr_cells, &prop);
127         }
128
129         /* Need adjust the alignment to satisfy the CMA requirement */
130         if (IS_ENABLED(CONFIG_CMA) && of_flat_dt_is_compatible(node, "shared-dma-pool"))
131                 align = max(align, (phys_addr_t)PAGE_SIZE << max(MAX_ORDER - 1, pageblock_order));
132
133         prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
134         if (prop) {
135
136                 if (len % t_len != 0) {
137                         pr_err("Reserved memory: invalid alloc-ranges property in '%s', skipping node.\n",
138                                uname);
139                         return -EINVAL;
140                 }
141
142                 base = 0;
143
144                 while (len > 0) {
145                         start = dt_mem_next_cell(dt_root_addr_cells, &prop);
146                         end = start + dt_mem_next_cell(dt_root_size_cells,
147                                                        &prop);
148
149                         ret = early_init_dt_alloc_reserved_memory_arch(size,
150                                         align, start, end, nomap, &base);
151                         if (ret == 0) {
152                                 pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
153                                         uname, &base,
154                                         (unsigned long)size / SZ_1M);
155                                 break;
156                         }
157                         len -= t_len;
158                 }
159
160         } else {
161                 ret = early_init_dt_alloc_reserved_memory_arch(size, align,
162                                                         0, 0, nomap, &base);
163                 if (ret == 0)
164                         pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
165                                 uname, &base, (unsigned long)size / SZ_1M);
166         }
167
168         if (base == 0) {
169                 pr_info("Reserved memory: failed to allocate memory for node '%s'\n",
170                         uname);
171                 return -ENOMEM;
172         }
173
174         *res_base = base;
175         *res_size = size;
176
177         return 0;
178 }
179
180 static const struct of_device_id __rmem_of_table_sentinel
181         __used __section(__reservedmem_of_table_end);
182
183 /**
184  * res_mem_init_node() - call region specific reserved memory init code
185  */
186 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
187 {
188         extern const struct of_device_id __reservedmem_of_table[];
189         const struct of_device_id *i;
190
191         for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
192                 reservedmem_of_init_fn initfn = i->data;
193                 const char *compat = i->compatible;
194
195                 if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
196                         continue;
197
198                 if (initfn(rmem) == 0) {
199                         pr_info("Reserved memory: initialized node %s, compatible id %s\n",
200                                 rmem->name, compat);
201                         return 0;
202                 }
203         }
204         return -ENOENT;
205 }
206
207 static int __init __rmem_cmp(const void *a, const void *b)
208 {
209         const struct reserved_mem *ra = a, *rb = b;
210
211         if (ra->base < rb->base)
212                 return -1;
213
214         if (ra->base > rb->base)
215                 return 1;
216
217         return 0;
218 }
219
220 static void __init __rmem_check_for_overlap(void)
221 {
222         int i;
223
224         if (reserved_mem_count < 2)
225                 return;
226
227         sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
228              __rmem_cmp, NULL);
229         for (i = 0; i < reserved_mem_count - 1; i++) {
230                 struct reserved_mem *this, *next;
231
232                 this = &reserved_mem[i];
233                 next = &reserved_mem[i + 1];
234                 if (!(this->base && next->base))
235                         continue;
236                 if (this->base + this->size > next->base) {
237                         phys_addr_t this_end, next_end;
238
239                         this_end = this->base + this->size;
240                         next_end = next->base + next->size;
241                         pr_err("Reserved memory: OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
242                                this->name, &this->base, &this_end,
243                                next->name, &next->base, &next_end);
244                 }
245         }
246 }
247
248 /**
249  * fdt_init_reserved_mem - allocate and init all saved reserved memory regions
250  */
251 void __init fdt_init_reserved_mem(void)
252 {
253         int i;
254
255         /* check for overlapping reserved regions */
256         __rmem_check_for_overlap();
257
258         for (i = 0; i < reserved_mem_count; i++) {
259                 struct reserved_mem *rmem = &reserved_mem[i];
260                 unsigned long node = rmem->fdt_node;
261                 int len;
262                 const __be32 *prop;
263                 int err = 0;
264
265                 prop = of_get_flat_dt_prop(node, "phandle", &len);
266                 if (!prop)
267                         prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
268                 if (prop)
269                         rmem->phandle = of_read_number(prop, len/4);
270
271                 if (rmem->size == 0)
272                         err = __reserved_mem_alloc_size(node, rmem->name,
273                                                  &rmem->base, &rmem->size);
274                 if (err == 0)
275                         __reserved_mem_init_node(rmem);
276         }
277 }
278
279 static inline struct reserved_mem *__find_rmem(struct device_node *node)
280 {
281         unsigned int i;
282
283         if (!node->phandle)
284                 return NULL;
285
286         for (i = 0; i < reserved_mem_count; i++)
287                 if (reserved_mem[i].phandle == node->phandle)
288                         return &reserved_mem[i];
289         return NULL;
290 }
291
292 /**
293  * of_reserved_mem_device_init() - assign reserved memory region to given device
294  *
295  * This function assign memory region pointed by "memory-region" device tree
296  * property to the given device.
297  */
298 int of_reserved_mem_device_init(struct device *dev)
299 {
300         struct reserved_mem *rmem;
301         struct device_node *np;
302         int ret;
303
304         np = of_parse_phandle(dev->of_node, "memory-region", 0);
305         if (!np)
306                 return -ENODEV;
307
308         rmem = __find_rmem(np);
309         of_node_put(np);
310
311         if (!rmem || !rmem->ops || !rmem->ops->device_init)
312                 return -EINVAL;
313
314         ret = rmem->ops->device_init(rmem, dev);
315         if (ret == 0)
316                 dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
317
318         return ret;
319 }
320 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init);
321
322 /**
323  * of_reserved_mem_device_release() - release reserved memory device structures
324  *
325  * This function releases structures allocated for memory region handling for
326  * the given device.
327  */
328 void of_reserved_mem_device_release(struct device *dev)
329 {
330         struct reserved_mem *rmem;
331         struct device_node *np;
332
333         np = of_parse_phandle(dev->of_node, "memory-region", 0);
334         if (!np)
335                 return;
336
337         rmem = __find_rmem(np);
338         of_node_put(np);
339
340         if (!rmem || !rmem->ops || !rmem->ops->device_release)
341                 return;
342
343         rmem->ops->device_release(rmem, dev);
344 }
345 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);