drivers/perf: kill armpmu_register
[cascardo/linux.git] / drivers / perf / arm_pmu.c
1 #undef DEBUG
2
3 /*
4  * ARM performance counter support.
5  *
6  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8  *
9  * This code is based on the sparc64 perf event code, which is in turn based
10  * on the x86 code.
11  */
12 #define pr_fmt(fmt) "hw perfevents: " fmt
13
14 #include <linux/bitmap.h>
15 #include <linux/cpumask.h>
16 #include <linux/export.h>
17 #include <linux/kernel.h>
18 #include <linux/of_device.h>
19 #include <linux/perf/arm_pmu.h>
20 #include <linux/platform_device.h>
21 #include <linux/slab.h>
22 #include <linux/spinlock.h>
23 #include <linux/irq.h>
24 #include <linux/irqdesc.h>
25
26 #include <asm/cputype.h>
27 #include <asm/irq_regs.h>
28
29 static int
30 armpmu_map_cache_event(const unsigned (*cache_map)
31                                       [PERF_COUNT_HW_CACHE_MAX]
32                                       [PERF_COUNT_HW_CACHE_OP_MAX]
33                                       [PERF_COUNT_HW_CACHE_RESULT_MAX],
34                        u64 config)
35 {
36         unsigned int cache_type, cache_op, cache_result, ret;
37
38         cache_type = (config >>  0) & 0xff;
39         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
40                 return -EINVAL;
41
42         cache_op = (config >>  8) & 0xff;
43         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
44                 return -EINVAL;
45
46         cache_result = (config >> 16) & 0xff;
47         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
48                 return -EINVAL;
49
50         ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
51
52         if (ret == CACHE_OP_UNSUPPORTED)
53                 return -ENOENT;
54
55         return ret;
56 }
57
58 static int
59 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
60 {
61         int mapping;
62
63         if (config >= PERF_COUNT_HW_MAX)
64                 return -EINVAL;
65
66         mapping = (*event_map)[config];
67         return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
68 }
69
70 static int
71 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
72 {
73         return (int)(config & raw_event_mask);
74 }
75
76 int
77 armpmu_map_event(struct perf_event *event,
78                  const unsigned (*event_map)[PERF_COUNT_HW_MAX],
79                  const unsigned (*cache_map)
80                                 [PERF_COUNT_HW_CACHE_MAX]
81                                 [PERF_COUNT_HW_CACHE_OP_MAX]
82                                 [PERF_COUNT_HW_CACHE_RESULT_MAX],
83                  u32 raw_event_mask)
84 {
85         u64 config = event->attr.config;
86         int type = event->attr.type;
87
88         if (type == event->pmu->type)
89                 return armpmu_map_raw_event(raw_event_mask, config);
90
91         switch (type) {
92         case PERF_TYPE_HARDWARE:
93                 return armpmu_map_hw_event(event_map, config);
94         case PERF_TYPE_HW_CACHE:
95                 return armpmu_map_cache_event(cache_map, config);
96         case PERF_TYPE_RAW:
97                 return armpmu_map_raw_event(raw_event_mask, config);
98         }
99
100         return -ENOENT;
101 }
102
103 int armpmu_event_set_period(struct perf_event *event)
104 {
105         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
106         struct hw_perf_event *hwc = &event->hw;
107         s64 left = local64_read(&hwc->period_left);
108         s64 period = hwc->sample_period;
109         int ret = 0;
110
111         if (unlikely(left <= -period)) {
112                 left = period;
113                 local64_set(&hwc->period_left, left);
114                 hwc->last_period = period;
115                 ret = 1;
116         }
117
118         if (unlikely(left <= 0)) {
119                 left += period;
120                 local64_set(&hwc->period_left, left);
121                 hwc->last_period = period;
122                 ret = 1;
123         }
124
125         /*
126          * Limit the maximum period to prevent the counter value
127          * from overtaking the one we are about to program. In
128          * effect we are reducing max_period to account for
129          * interrupt latency (and we are being very conservative).
130          */
131         if (left > (armpmu->max_period >> 1))
132                 left = armpmu->max_period >> 1;
133
134         local64_set(&hwc->prev_count, (u64)-left);
135
136         armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
137
138         perf_event_update_userpage(event);
139
140         return ret;
141 }
142
143 u64 armpmu_event_update(struct perf_event *event)
144 {
145         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
146         struct hw_perf_event *hwc = &event->hw;
147         u64 delta, prev_raw_count, new_raw_count;
148
149 again:
150         prev_raw_count = local64_read(&hwc->prev_count);
151         new_raw_count = armpmu->read_counter(event);
152
153         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
154                              new_raw_count) != prev_raw_count)
155                 goto again;
156
157         delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
158
159         local64_add(delta, &event->count);
160         local64_sub(delta, &hwc->period_left);
161
162         return new_raw_count;
163 }
164
165 static void
166 armpmu_read(struct perf_event *event)
167 {
168         armpmu_event_update(event);
169 }
170
171 static void
172 armpmu_stop(struct perf_event *event, int flags)
173 {
174         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
175         struct hw_perf_event *hwc = &event->hw;
176
177         /*
178          * ARM pmu always has to update the counter, so ignore
179          * PERF_EF_UPDATE, see comments in armpmu_start().
180          */
181         if (!(hwc->state & PERF_HES_STOPPED)) {
182                 armpmu->disable(event);
183                 armpmu_event_update(event);
184                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
185         }
186 }
187
188 static void armpmu_start(struct perf_event *event, int flags)
189 {
190         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
191         struct hw_perf_event *hwc = &event->hw;
192
193         /*
194          * ARM pmu always has to reprogram the period, so ignore
195          * PERF_EF_RELOAD, see the comment below.
196          */
197         if (flags & PERF_EF_RELOAD)
198                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
199
200         hwc->state = 0;
201         /*
202          * Set the period again. Some counters can't be stopped, so when we
203          * were stopped we simply disabled the IRQ source and the counter
204          * may have been left counting. If we don't do this step then we may
205          * get an interrupt too soon or *way* too late if the overflow has
206          * happened since disabling.
207          */
208         armpmu_event_set_period(event);
209         armpmu->enable(event);
210 }
211
212 static void
213 armpmu_del(struct perf_event *event, int flags)
214 {
215         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
216         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
217         struct hw_perf_event *hwc = &event->hw;
218         int idx = hwc->idx;
219
220         armpmu_stop(event, PERF_EF_UPDATE);
221         hw_events->events[idx] = NULL;
222         clear_bit(idx, hw_events->used_mask);
223         if (armpmu->clear_event_idx)
224                 armpmu->clear_event_idx(hw_events, event);
225
226         perf_event_update_userpage(event);
227 }
228
229 static int
230 armpmu_add(struct perf_event *event, int flags)
231 {
232         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
233         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
234         struct hw_perf_event *hwc = &event->hw;
235         int idx;
236         int err = 0;
237
238         /* An event following a process won't be stopped earlier */
239         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
240                 return -ENOENT;
241
242         perf_pmu_disable(event->pmu);
243
244         /* If we don't have a space for the counter then finish early. */
245         idx = armpmu->get_event_idx(hw_events, event);
246         if (idx < 0) {
247                 err = idx;
248                 goto out;
249         }
250
251         /*
252          * If there is an event in the counter we are going to use then make
253          * sure it is disabled.
254          */
255         event->hw.idx = idx;
256         armpmu->disable(event);
257         hw_events->events[idx] = event;
258
259         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
260         if (flags & PERF_EF_START)
261                 armpmu_start(event, PERF_EF_RELOAD);
262
263         /* Propagate our changes to the userspace mapping. */
264         perf_event_update_userpage(event);
265
266 out:
267         perf_pmu_enable(event->pmu);
268         return err;
269 }
270
271 static int
272 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
273                                struct perf_event *event)
274 {
275         struct arm_pmu *armpmu;
276
277         if (is_software_event(event))
278                 return 1;
279
280         /*
281          * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
282          * core perf code won't check that the pmu->ctx == leader->ctx
283          * until after pmu->event_init(event).
284          */
285         if (event->pmu != pmu)
286                 return 0;
287
288         if (event->state < PERF_EVENT_STATE_OFF)
289                 return 1;
290
291         if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
292                 return 1;
293
294         armpmu = to_arm_pmu(event->pmu);
295         return armpmu->get_event_idx(hw_events, event) >= 0;
296 }
297
298 static int
299 validate_group(struct perf_event *event)
300 {
301         struct perf_event *sibling, *leader = event->group_leader;
302         struct pmu_hw_events fake_pmu;
303
304         /*
305          * Initialise the fake PMU. We only need to populate the
306          * used_mask for the purposes of validation.
307          */
308         memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
309
310         if (!validate_event(event->pmu, &fake_pmu, leader))
311                 return -EINVAL;
312
313         list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
314                 if (!validate_event(event->pmu, &fake_pmu, sibling))
315                         return -EINVAL;
316         }
317
318         if (!validate_event(event->pmu, &fake_pmu, event))
319                 return -EINVAL;
320
321         return 0;
322 }
323
324 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
325 {
326         struct arm_pmu *armpmu;
327         struct platform_device *plat_device;
328         struct arm_pmu_platdata *plat;
329         int ret;
330         u64 start_clock, finish_clock;
331
332         /*
333          * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
334          * the handlers expect a struct arm_pmu*. The percpu_irq framework will
335          * do any necessary shifting, we just need to perform the first
336          * dereference.
337          */
338         armpmu = *(void **)dev;
339         plat_device = armpmu->plat_device;
340         plat = dev_get_platdata(&plat_device->dev);
341
342         start_clock = sched_clock();
343         if (plat && plat->handle_irq)
344                 ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
345         else
346                 ret = armpmu->handle_irq(irq, armpmu);
347         finish_clock = sched_clock();
348
349         perf_sample_event_took(finish_clock - start_clock);
350         return ret;
351 }
352
353 static void
354 armpmu_release_hardware(struct arm_pmu *armpmu)
355 {
356         armpmu->free_irq(armpmu);
357 }
358
359 static int
360 armpmu_reserve_hardware(struct arm_pmu *armpmu)
361 {
362         int err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
363         if (err) {
364                 armpmu_release_hardware(armpmu);
365                 return err;
366         }
367
368         return 0;
369 }
370
371 static void
372 hw_perf_event_destroy(struct perf_event *event)
373 {
374         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
375         atomic_t *active_events  = &armpmu->active_events;
376         struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
377
378         if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
379                 armpmu_release_hardware(armpmu);
380                 mutex_unlock(pmu_reserve_mutex);
381         }
382 }
383
384 static int
385 event_requires_mode_exclusion(struct perf_event_attr *attr)
386 {
387         return attr->exclude_idle || attr->exclude_user ||
388                attr->exclude_kernel || attr->exclude_hv;
389 }
390
391 static int
392 __hw_perf_event_init(struct perf_event *event)
393 {
394         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
395         struct hw_perf_event *hwc = &event->hw;
396         int mapping;
397
398         mapping = armpmu->map_event(event);
399
400         if (mapping < 0) {
401                 pr_debug("event %x:%llx not supported\n", event->attr.type,
402                          event->attr.config);
403                 return mapping;
404         }
405
406         /*
407          * We don't assign an index until we actually place the event onto
408          * hardware. Use -1 to signify that we haven't decided where to put it
409          * yet. For SMP systems, each core has it's own PMU so we can't do any
410          * clever allocation or constraints checking at this point.
411          */
412         hwc->idx                = -1;
413         hwc->config_base        = 0;
414         hwc->config             = 0;
415         hwc->event_base         = 0;
416
417         /*
418          * Check whether we need to exclude the counter from certain modes.
419          */
420         if ((!armpmu->set_event_filter ||
421              armpmu->set_event_filter(hwc, &event->attr)) &&
422              event_requires_mode_exclusion(&event->attr)) {
423                 pr_debug("ARM performance counters do not support "
424                          "mode exclusion\n");
425                 return -EOPNOTSUPP;
426         }
427
428         /*
429          * Store the event encoding into the config_base field.
430          */
431         hwc->config_base            |= (unsigned long)mapping;
432
433         if (!is_sampling_event(event)) {
434                 /*
435                  * For non-sampling runs, limit the sample_period to half
436                  * of the counter width. That way, the new counter value
437                  * is far less likely to overtake the previous one unless
438                  * you have some serious IRQ latency issues.
439                  */
440                 hwc->sample_period  = armpmu->max_period >> 1;
441                 hwc->last_period    = hwc->sample_period;
442                 local64_set(&hwc->period_left, hwc->sample_period);
443         }
444
445         if (event->group_leader != event) {
446                 if (validate_group(event) != 0)
447                         return -EINVAL;
448         }
449
450         return 0;
451 }
452
453 static int armpmu_event_init(struct perf_event *event)
454 {
455         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
456         int err = 0;
457         atomic_t *active_events = &armpmu->active_events;
458
459         /*
460          * Reject CPU-affine events for CPUs that are of a different class to
461          * that which this PMU handles. Process-following events (where
462          * event->cpu == -1) can be migrated between CPUs, and thus we have to
463          * reject them later (in armpmu_add) if they're scheduled on a
464          * different class of CPU.
465          */
466         if (event->cpu != -1 &&
467                 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
468                 return -ENOENT;
469
470         /* does not support taken branch sampling */
471         if (has_branch_stack(event))
472                 return -EOPNOTSUPP;
473
474         if (armpmu->map_event(event) == -ENOENT)
475                 return -ENOENT;
476
477         event->destroy = hw_perf_event_destroy;
478
479         if (!atomic_inc_not_zero(active_events)) {
480                 mutex_lock(&armpmu->reserve_mutex);
481                 if (atomic_read(active_events) == 0)
482                         err = armpmu_reserve_hardware(armpmu);
483
484                 if (!err)
485                         atomic_inc(active_events);
486                 mutex_unlock(&armpmu->reserve_mutex);
487         }
488
489         if (err)
490                 return err;
491
492         err = __hw_perf_event_init(event);
493         if (err)
494                 hw_perf_event_destroy(event);
495
496         return err;
497 }
498
499 static void armpmu_enable(struct pmu *pmu)
500 {
501         struct arm_pmu *armpmu = to_arm_pmu(pmu);
502         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
503         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
504
505         /* For task-bound events we may be called on other CPUs */
506         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
507                 return;
508
509         if (enabled)
510                 armpmu->start(armpmu);
511 }
512
513 static void armpmu_disable(struct pmu *pmu)
514 {
515         struct arm_pmu *armpmu = to_arm_pmu(pmu);
516
517         /* For task-bound events we may be called on other CPUs */
518         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
519                 return;
520
521         armpmu->stop(armpmu);
522 }
523
524 /*
525  * In heterogeneous systems, events are specific to a particular
526  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
527  * the same microarchitecture.
528  */
529 static int armpmu_filter_match(struct perf_event *event)
530 {
531         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
532         unsigned int cpu = smp_processor_id();
533         return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
534 }
535
536 static void armpmu_init(struct arm_pmu *armpmu)
537 {
538         atomic_set(&armpmu->active_events, 0);
539         mutex_init(&armpmu->reserve_mutex);
540
541         armpmu->pmu = (struct pmu) {
542                 .pmu_enable     = armpmu_enable,
543                 .pmu_disable    = armpmu_disable,
544                 .event_init     = armpmu_event_init,
545                 .add            = armpmu_add,
546                 .del            = armpmu_del,
547                 .start          = armpmu_start,
548                 .stop           = armpmu_stop,
549                 .read           = armpmu_read,
550                 .filter_match   = armpmu_filter_match,
551         };
552 }
553
554 /* Set at runtime when we know what CPU type we are. */
555 static struct arm_pmu *__oprofile_cpu_pmu;
556
557 /*
558  * Despite the names, these two functions are CPU-specific and are used
559  * by the OProfile/perf code.
560  */
561 const char *perf_pmu_name(void)
562 {
563         if (!__oprofile_cpu_pmu)
564                 return NULL;
565
566         return __oprofile_cpu_pmu->name;
567 }
568 EXPORT_SYMBOL_GPL(perf_pmu_name);
569
570 int perf_num_counters(void)
571 {
572         int max_events = 0;
573
574         if (__oprofile_cpu_pmu != NULL)
575                 max_events = __oprofile_cpu_pmu->num_events;
576
577         return max_events;
578 }
579 EXPORT_SYMBOL_GPL(perf_num_counters);
580
581 static void cpu_pmu_enable_percpu_irq(void *data)
582 {
583         int irq = *(int *)data;
584
585         enable_percpu_irq(irq, IRQ_TYPE_NONE);
586 }
587
588 static void cpu_pmu_disable_percpu_irq(void *data)
589 {
590         int irq = *(int *)data;
591
592         disable_percpu_irq(irq);
593 }
594
595 static void cpu_pmu_free_irq(struct arm_pmu *cpu_pmu)
596 {
597         int i, irq, irqs;
598         struct platform_device *pmu_device = cpu_pmu->plat_device;
599         struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
600
601         irqs = min(pmu_device->num_resources, num_possible_cpus());
602
603         irq = platform_get_irq(pmu_device, 0);
604         if (irq >= 0 && irq_is_percpu(irq)) {
605                 on_each_cpu(cpu_pmu_disable_percpu_irq, &irq, 1);
606                 free_percpu_irq(irq, &hw_events->percpu_pmu);
607         } else {
608                 for (i = 0; i < irqs; ++i) {
609                         int cpu = i;
610
611                         if (cpu_pmu->irq_affinity)
612                                 cpu = cpu_pmu->irq_affinity[i];
613
614                         if (!cpumask_test_and_clear_cpu(cpu, &cpu_pmu->active_irqs))
615                                 continue;
616                         irq = platform_get_irq(pmu_device, i);
617                         if (irq >= 0)
618                                 free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu));
619                 }
620         }
621 }
622
623 static int cpu_pmu_request_irq(struct arm_pmu *cpu_pmu, irq_handler_t handler)
624 {
625         int i, err, irq, irqs;
626         struct platform_device *pmu_device = cpu_pmu->plat_device;
627         struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
628
629         if (!pmu_device)
630                 return -ENODEV;
631
632         irqs = min(pmu_device->num_resources, num_possible_cpus());
633         if (irqs < 1) {
634                 pr_warn_once("perf/ARM: No irqs for PMU defined, sampling events not supported\n");
635                 return 0;
636         }
637
638         irq = platform_get_irq(pmu_device, 0);
639         if (irq >= 0 && irq_is_percpu(irq)) {
640                 err = request_percpu_irq(irq, handler, "arm-pmu",
641                                          &hw_events->percpu_pmu);
642                 if (err) {
643                         pr_err("unable to request IRQ%d for ARM PMU counters\n",
644                                 irq);
645                         return err;
646                 }
647                 on_each_cpu(cpu_pmu_enable_percpu_irq, &irq, 1);
648         } else {
649                 for (i = 0; i < irqs; ++i) {
650                         int cpu = i;
651
652                         err = 0;
653                         irq = platform_get_irq(pmu_device, i);
654                         if (irq < 0)
655                                 continue;
656
657                         if (cpu_pmu->irq_affinity)
658                                 cpu = cpu_pmu->irq_affinity[i];
659
660                         /*
661                          * If we have a single PMU interrupt that we can't shift,
662                          * assume that we're running on a uniprocessor machine and
663                          * continue. Otherwise, continue without this interrupt.
664                          */
665                         if (irq_set_affinity(irq, cpumask_of(cpu)) && irqs > 1) {
666                                 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
667                                         irq, cpu);
668                                 continue;
669                         }
670
671                         err = request_irq(irq, handler,
672                                           IRQF_NOBALANCING | IRQF_NO_THREAD, "arm-pmu",
673                                           per_cpu_ptr(&hw_events->percpu_pmu, cpu));
674                         if (err) {
675                                 pr_err("unable to request IRQ%d for ARM PMU counters\n",
676                                         irq);
677                                 return err;
678                         }
679
680                         cpumask_set_cpu(cpu, &cpu_pmu->active_irqs);
681                 }
682         }
683
684         return 0;
685 }
686
687 /*
688  * PMU hardware loses all context when a CPU goes offline.
689  * When a CPU is hotplugged back in, since some hardware registers are
690  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
691  * junk values out of them.
692  */
693 static int cpu_pmu_notify(struct notifier_block *b, unsigned long action,
694                           void *hcpu)
695 {
696         int cpu = (unsigned long)hcpu;
697         struct arm_pmu *pmu = container_of(b, struct arm_pmu, hotplug_nb);
698
699         if ((action & ~CPU_TASKS_FROZEN) != CPU_STARTING)
700                 return NOTIFY_DONE;
701
702         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
703                 return NOTIFY_DONE;
704
705         if (pmu->reset)
706                 pmu->reset(pmu);
707         else
708                 return NOTIFY_DONE;
709
710         return NOTIFY_OK;
711 }
712
713 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
714 {
715         int err;
716         int cpu;
717         struct pmu_hw_events __percpu *cpu_hw_events;
718
719         cpu_hw_events = alloc_percpu(struct pmu_hw_events);
720         if (!cpu_hw_events)
721                 return -ENOMEM;
722
723         cpu_pmu->hotplug_nb.notifier_call = cpu_pmu_notify;
724         err = register_cpu_notifier(&cpu_pmu->hotplug_nb);
725         if (err)
726                 goto out_hw_events;
727
728         for_each_possible_cpu(cpu) {
729                 struct pmu_hw_events *events = per_cpu_ptr(cpu_hw_events, cpu);
730                 raw_spin_lock_init(&events->pmu_lock);
731                 events->percpu_pmu = cpu_pmu;
732         }
733
734         cpu_pmu->hw_events      = cpu_hw_events;
735         cpu_pmu->request_irq    = cpu_pmu_request_irq;
736         cpu_pmu->free_irq       = cpu_pmu_free_irq;
737
738         /* Ensure the PMU has sane values out of reset. */
739         if (cpu_pmu->reset)
740                 on_each_cpu_mask(&cpu_pmu->supported_cpus, cpu_pmu->reset,
741                          cpu_pmu, 1);
742
743         /* If no interrupts available, set the corresponding capability flag */
744         if (!platform_get_irq(cpu_pmu->plat_device, 0))
745                 cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
746
747         return 0;
748
749 out_hw_events:
750         free_percpu(cpu_hw_events);
751         return err;
752 }
753
754 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
755 {
756         unregister_cpu_notifier(&cpu_pmu->hotplug_nb);
757         free_percpu(cpu_pmu->hw_events);
758 }
759
760 /*
761  * CPU PMU identification and probing.
762  */
763 static int probe_current_pmu(struct arm_pmu *pmu,
764                              const struct pmu_probe_info *info)
765 {
766         int cpu = get_cpu();
767         unsigned int cpuid = read_cpuid_id();
768         int ret = -ENODEV;
769
770         pr_info("probing PMU on CPU %d\n", cpu);
771
772         for (; info->init != NULL; info++) {
773                 if ((cpuid & info->mask) != info->cpuid)
774                         continue;
775                 ret = info->init(pmu);
776                 break;
777         }
778
779         put_cpu();
780         return ret;
781 }
782
783 static int of_pmu_irq_cfg(struct arm_pmu *pmu)
784 {
785         int *irqs, i = 0;
786         bool using_spi = false;
787         struct platform_device *pdev = pmu->plat_device;
788
789         irqs = kcalloc(pdev->num_resources, sizeof(*irqs), GFP_KERNEL);
790         if (!irqs)
791                 return -ENOMEM;
792
793         do {
794                 struct device_node *dn;
795                 int cpu, irq;
796
797                 /* See if we have an affinity entry */
798                 dn = of_parse_phandle(pdev->dev.of_node, "interrupt-affinity", i);
799                 if (!dn)
800                         break;
801
802                 /* Check the IRQ type and prohibit a mix of PPIs and SPIs */
803                 irq = platform_get_irq(pdev, i);
804                 if (irq >= 0) {
805                         bool spi = !irq_is_percpu(irq);
806
807                         if (i > 0 && spi != using_spi) {
808                                 pr_err("PPI/SPI IRQ type mismatch for %s!\n",
809                                         dn->name);
810                                 kfree(irqs);
811                                 return -EINVAL;
812                         }
813
814                         using_spi = spi;
815                 }
816
817                 /* Now look up the logical CPU number */
818                 for_each_possible_cpu(cpu) {
819                         struct device_node *cpu_dn;
820
821                         cpu_dn = of_cpu_device_node_get(cpu);
822                         of_node_put(cpu_dn);
823
824                         if (dn == cpu_dn)
825                                 break;
826                 }
827
828                 if (cpu >= nr_cpu_ids) {
829                         pr_warn("Failed to find logical CPU for %s\n",
830                                 dn->name);
831                         of_node_put(dn);
832                         cpumask_setall(&pmu->supported_cpus);
833                         break;
834                 }
835                 of_node_put(dn);
836
837                 /* For SPIs, we need to track the affinity per IRQ */
838                 if (using_spi) {
839                         if (i >= pdev->num_resources) {
840                                 of_node_put(dn);
841                                 break;
842                         }
843
844                         irqs[i] = cpu;
845                 }
846
847                 /* Keep track of the CPUs containing this PMU type */
848                 cpumask_set_cpu(cpu, &pmu->supported_cpus);
849                 of_node_put(dn);
850                 i++;
851         } while (1);
852
853         /* If we didn't manage to parse anything, claim to support all CPUs */
854         if (cpumask_weight(&pmu->supported_cpus) == 0)
855                 cpumask_setall(&pmu->supported_cpus);
856
857         /* If we matched up the IRQ affinities, use them to route the SPIs */
858         if (using_spi && i == pdev->num_resources)
859                 pmu->irq_affinity = irqs;
860         else
861                 kfree(irqs);
862
863         return 0;
864 }
865
866 int arm_pmu_device_probe(struct platform_device *pdev,
867                          const struct of_device_id *of_table,
868                          const struct pmu_probe_info *probe_table)
869 {
870         const struct of_device_id *of_id;
871         const int (*init_fn)(struct arm_pmu *);
872         struct device_node *node = pdev->dev.of_node;
873         struct arm_pmu *pmu;
874         int ret = -ENODEV;
875
876         pmu = kzalloc(sizeof(struct arm_pmu), GFP_KERNEL);
877         if (!pmu) {
878                 pr_info("failed to allocate PMU device!\n");
879                 return -ENOMEM;
880         }
881
882         armpmu_init(pmu);
883
884         if (!__oprofile_cpu_pmu)
885                 __oprofile_cpu_pmu = pmu;
886
887         pmu->plat_device = pdev;
888
889         if (node && (of_id = of_match_node(of_table, pdev->dev.of_node))) {
890                 init_fn = of_id->data;
891
892                 ret = of_pmu_irq_cfg(pmu);
893                 if (!ret)
894                         ret = init_fn(pmu);
895         } else {
896                 ret = probe_current_pmu(pmu, probe_table);
897                 cpumask_setall(&pmu->supported_cpus);
898         }
899
900         if (ret) {
901                 pr_info("failed to probe PMU!\n");
902                 goto out_free;
903         }
904
905         ret = cpu_pmu_init(pmu);
906         if (ret)
907                 goto out_free;
908
909         ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
910         if (ret)
911                 goto out_destroy;
912
913         pr_info("enabled with %s PMU driver, %d counters available\n",
914                         pmu->name, pmu->num_events);
915
916         return 0;
917
918 out_destroy:
919         cpu_pmu_destroy(pmu);
920 out_free:
921         pr_info("failed to register PMU devices!\n");
922         kfree(pmu);
923         return ret;
924 }