hpsa: Correct double unlock of mutex
[cascardo/linux.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <scsi/scsi_eh.h>
47 #include <scsi/scsi_dbg.h>
48 #include <linux/cciss_ioctl.h>
49 #include <linux/string.h>
50 #include <linux/bitmap.h>
51 #include <linux/atomic.h>
52 #include <linux/jiffies.h>
53 #include <linux/percpu-defs.h>
54 #include <linux/percpu.h>
55 #include <asm/unaligned.h>
56 #include <asm/div64.h>
57 #include "hpsa_cmd.h"
58 #include "hpsa.h"
59
60 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
61 #define HPSA_DRIVER_VERSION "3.4.10-0"
62 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
63 #define HPSA "hpsa"
64
65 /* How long to wait for CISS doorbell communication */
66 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
67 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
68 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
69 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
70 #define MAX_IOCTL_CONFIG_WAIT 1000
71
72 /*define how many times we will try a command because of bus resets */
73 #define MAX_CMD_RETRIES 3
74
75 /* Embedded module documentation macros - see modules.h */
76 MODULE_AUTHOR("Hewlett-Packard Company");
77 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
78         HPSA_DRIVER_VERSION);
79 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
80 MODULE_VERSION(HPSA_DRIVER_VERSION);
81 MODULE_LICENSE("GPL");
82
83 static int hpsa_allow_any;
84 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
85 MODULE_PARM_DESC(hpsa_allow_any,
86                 "Allow hpsa driver to access unknown HP Smart Array hardware");
87 static int hpsa_simple_mode;
88 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
89 MODULE_PARM_DESC(hpsa_simple_mode,
90         "Use 'simple mode' rather than 'performant mode'");
91
92 /* define the PCI info for the cards we can control */
93 static const struct pci_device_id hpsa_pci_device_id[] = {
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
134         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
135         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
136         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
137         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
138         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
139         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
140         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
141                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
142         {0,}
143 };
144
145 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
146
147 /*  board_id = Subsystem Device ID & Vendor ID
148  *  product = Marketing Name for the board
149  *  access = Address of the struct of function pointers
150  */
151 static struct board_type products[] = {
152         {0x3241103C, "Smart Array P212", &SA5_access},
153         {0x3243103C, "Smart Array P410", &SA5_access},
154         {0x3245103C, "Smart Array P410i", &SA5_access},
155         {0x3247103C, "Smart Array P411", &SA5_access},
156         {0x3249103C, "Smart Array P812", &SA5_access},
157         {0x324A103C, "Smart Array P712m", &SA5_access},
158         {0x324B103C, "Smart Array P711m", &SA5_access},
159         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
160         {0x3350103C, "Smart Array P222", &SA5_access},
161         {0x3351103C, "Smart Array P420", &SA5_access},
162         {0x3352103C, "Smart Array P421", &SA5_access},
163         {0x3353103C, "Smart Array P822", &SA5_access},
164         {0x3354103C, "Smart Array P420i", &SA5_access},
165         {0x3355103C, "Smart Array P220i", &SA5_access},
166         {0x3356103C, "Smart Array P721m", &SA5_access},
167         {0x1921103C, "Smart Array P830i", &SA5_access},
168         {0x1922103C, "Smart Array P430", &SA5_access},
169         {0x1923103C, "Smart Array P431", &SA5_access},
170         {0x1924103C, "Smart Array P830", &SA5_access},
171         {0x1926103C, "Smart Array P731m", &SA5_access},
172         {0x1928103C, "Smart Array P230i", &SA5_access},
173         {0x1929103C, "Smart Array P530", &SA5_access},
174         {0x21BD103C, "Smart Array P244br", &SA5_access},
175         {0x21BE103C, "Smart Array P741m", &SA5_access},
176         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
177         {0x21C0103C, "Smart Array P440ar", &SA5_access},
178         {0x21C1103C, "Smart Array P840ar", &SA5_access},
179         {0x21C2103C, "Smart Array P440", &SA5_access},
180         {0x21C3103C, "Smart Array P441", &SA5_access},
181         {0x21C4103C, "Smart Array", &SA5_access},
182         {0x21C5103C, "Smart Array P841", &SA5_access},
183         {0x21C6103C, "Smart HBA H244br", &SA5_access},
184         {0x21C7103C, "Smart HBA H240", &SA5_access},
185         {0x21C8103C, "Smart HBA H241", &SA5_access},
186         {0x21C9103C, "Smart Array", &SA5_access},
187         {0x21CA103C, "Smart Array P246br", &SA5_access},
188         {0x21CB103C, "Smart Array P840", &SA5_access},
189         {0x21CC103C, "Smart Array", &SA5_access},
190         {0x21CD103C, "Smart Array", &SA5_access},
191         {0x21CE103C, "Smart HBA", &SA5_access},
192         {0x05809005, "SmartHBA-SA", &SA5_access},
193         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
194         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
195         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
196         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
197         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
198         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
199 };
200
201 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
202 static const struct scsi_cmnd hpsa_cmd_busy;
203 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
204 static const struct scsi_cmnd hpsa_cmd_idle;
205 static int number_of_controllers;
206
207 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
208 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
209 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
210
211 #ifdef CONFIG_COMPAT
212 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
213         void __user *arg);
214 #endif
215
216 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
217 static struct CommandList *cmd_alloc(struct ctlr_info *h);
218 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
219 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
220                                             struct scsi_cmnd *scmd);
221 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
222         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
223         int cmd_type);
224 static void hpsa_free_cmd_pool(struct ctlr_info *h);
225 #define VPD_PAGE (1 << 8)
226
227 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
228 static void hpsa_scan_start(struct Scsi_Host *);
229 static int hpsa_scan_finished(struct Scsi_Host *sh,
230         unsigned long elapsed_time);
231 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
232
233 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
234 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
235 static int hpsa_slave_alloc(struct scsi_device *sdev);
236 static int hpsa_slave_configure(struct scsi_device *sdev);
237 static void hpsa_slave_destroy(struct scsi_device *sdev);
238
239 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
240 static int check_for_unit_attention(struct ctlr_info *h,
241         struct CommandList *c);
242 static void check_ioctl_unit_attention(struct ctlr_info *h,
243         struct CommandList *c);
244 /* performant mode helper functions */
245 static void calc_bucket_map(int *bucket, int num_buckets,
246         int nsgs, int min_blocks, u32 *bucket_map);
247 static void hpsa_free_performant_mode(struct ctlr_info *h);
248 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
249 static inline u32 next_command(struct ctlr_info *h, u8 q);
250 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
251                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
252                                u64 *cfg_offset);
253 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
254                                     unsigned long *memory_bar);
255 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
256 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
257                                      int wait_for_ready);
258 static inline void finish_cmd(struct CommandList *c);
259 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
260 #define BOARD_NOT_READY 0
261 #define BOARD_READY 1
262 static void hpsa_drain_accel_commands(struct ctlr_info *h);
263 static void hpsa_flush_cache(struct ctlr_info *h);
264 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
265         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
266         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
267 static void hpsa_command_resubmit_worker(struct work_struct *work);
268 static u32 lockup_detected(struct ctlr_info *h);
269 static int detect_controller_lockup(struct ctlr_info *h);
270
271 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
272 {
273         unsigned long *priv = shost_priv(sdev->host);
274         return (struct ctlr_info *) *priv;
275 }
276
277 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
278 {
279         unsigned long *priv = shost_priv(sh);
280         return (struct ctlr_info *) *priv;
281 }
282
283 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
284 {
285         return c->scsi_cmd == SCSI_CMD_IDLE;
286 }
287
288 static inline bool hpsa_is_pending_event(struct CommandList *c)
289 {
290         return c->abort_pending || c->reset_pending;
291 }
292
293 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
294 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
295                         u8 *sense_key, u8 *asc, u8 *ascq)
296 {
297         struct scsi_sense_hdr sshdr;
298         bool rc;
299
300         *sense_key = -1;
301         *asc = -1;
302         *ascq = -1;
303
304         if (sense_data_len < 1)
305                 return;
306
307         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
308         if (rc) {
309                 *sense_key = sshdr.sense_key;
310                 *asc = sshdr.asc;
311                 *ascq = sshdr.ascq;
312         }
313 }
314
315 static int check_for_unit_attention(struct ctlr_info *h,
316         struct CommandList *c)
317 {
318         u8 sense_key, asc, ascq;
319         int sense_len;
320
321         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
322                 sense_len = sizeof(c->err_info->SenseInfo);
323         else
324                 sense_len = c->err_info->SenseLen;
325
326         decode_sense_data(c->err_info->SenseInfo, sense_len,
327                                 &sense_key, &asc, &ascq);
328         if (sense_key != UNIT_ATTENTION || asc == -1)
329                 return 0;
330
331         switch (asc) {
332         case STATE_CHANGED:
333                 dev_warn(&h->pdev->dev,
334                         "%s: a state change detected, command retried\n",
335                         h->devname);
336                 break;
337         case LUN_FAILED:
338                 dev_warn(&h->pdev->dev,
339                         "%s: LUN failure detected\n", h->devname);
340                 break;
341         case REPORT_LUNS_CHANGED:
342                 dev_warn(&h->pdev->dev,
343                         "%s: report LUN data changed\n", h->devname);
344         /*
345          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
346          * target (array) devices.
347          */
348                 break;
349         case POWER_OR_RESET:
350                 dev_warn(&h->pdev->dev,
351                         "%s: a power on or device reset detected\n",
352                         h->devname);
353                 break;
354         case UNIT_ATTENTION_CLEARED:
355                 dev_warn(&h->pdev->dev,
356                         "%s: unit attention cleared by another initiator\n",
357                         h->devname);
358                 break;
359         default:
360                 dev_warn(&h->pdev->dev,
361                         "%s: unknown unit attention detected\n",
362                         h->devname);
363                 break;
364         }
365         return 1;
366 }
367
368 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
369 {
370         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
371                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
372                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
373                 return 0;
374         dev_warn(&h->pdev->dev, HPSA "device busy");
375         return 1;
376 }
377
378 static u32 lockup_detected(struct ctlr_info *h);
379 static ssize_t host_show_lockup_detected(struct device *dev,
380                 struct device_attribute *attr, char *buf)
381 {
382         int ld;
383         struct ctlr_info *h;
384         struct Scsi_Host *shost = class_to_shost(dev);
385
386         h = shost_to_hba(shost);
387         ld = lockup_detected(h);
388
389         return sprintf(buf, "ld=%d\n", ld);
390 }
391
392 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
393                                          struct device_attribute *attr,
394                                          const char *buf, size_t count)
395 {
396         int status, len;
397         struct ctlr_info *h;
398         struct Scsi_Host *shost = class_to_shost(dev);
399         char tmpbuf[10];
400
401         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
402                 return -EACCES;
403         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
404         strncpy(tmpbuf, buf, len);
405         tmpbuf[len] = '\0';
406         if (sscanf(tmpbuf, "%d", &status) != 1)
407                 return -EINVAL;
408         h = shost_to_hba(shost);
409         h->acciopath_status = !!status;
410         dev_warn(&h->pdev->dev,
411                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
412                 h->acciopath_status ? "enabled" : "disabled");
413         return count;
414 }
415
416 static ssize_t host_store_raid_offload_debug(struct device *dev,
417                                          struct device_attribute *attr,
418                                          const char *buf, size_t count)
419 {
420         int debug_level, len;
421         struct ctlr_info *h;
422         struct Scsi_Host *shost = class_to_shost(dev);
423         char tmpbuf[10];
424
425         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
426                 return -EACCES;
427         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
428         strncpy(tmpbuf, buf, len);
429         tmpbuf[len] = '\0';
430         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
431                 return -EINVAL;
432         if (debug_level < 0)
433                 debug_level = 0;
434         h = shost_to_hba(shost);
435         h->raid_offload_debug = debug_level;
436         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
437                 h->raid_offload_debug);
438         return count;
439 }
440
441 static ssize_t host_store_rescan(struct device *dev,
442                                  struct device_attribute *attr,
443                                  const char *buf, size_t count)
444 {
445         struct ctlr_info *h;
446         struct Scsi_Host *shost = class_to_shost(dev);
447         h = shost_to_hba(shost);
448         hpsa_scan_start(h->scsi_host);
449         return count;
450 }
451
452 static ssize_t host_show_firmware_revision(struct device *dev,
453              struct device_attribute *attr, char *buf)
454 {
455         struct ctlr_info *h;
456         struct Scsi_Host *shost = class_to_shost(dev);
457         unsigned char *fwrev;
458
459         h = shost_to_hba(shost);
460         if (!h->hba_inquiry_data)
461                 return 0;
462         fwrev = &h->hba_inquiry_data[32];
463         return snprintf(buf, 20, "%c%c%c%c\n",
464                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
465 }
466
467 static ssize_t host_show_commands_outstanding(struct device *dev,
468              struct device_attribute *attr, char *buf)
469 {
470         struct Scsi_Host *shost = class_to_shost(dev);
471         struct ctlr_info *h = shost_to_hba(shost);
472
473         return snprintf(buf, 20, "%d\n",
474                         atomic_read(&h->commands_outstanding));
475 }
476
477 static ssize_t host_show_transport_mode(struct device *dev,
478         struct device_attribute *attr, char *buf)
479 {
480         struct ctlr_info *h;
481         struct Scsi_Host *shost = class_to_shost(dev);
482
483         h = shost_to_hba(shost);
484         return snprintf(buf, 20, "%s\n",
485                 h->transMethod & CFGTBL_Trans_Performant ?
486                         "performant" : "simple");
487 }
488
489 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
490         struct device_attribute *attr, char *buf)
491 {
492         struct ctlr_info *h;
493         struct Scsi_Host *shost = class_to_shost(dev);
494
495         h = shost_to_hba(shost);
496         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
497                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
498 }
499
500 /* List of controllers which cannot be hard reset on kexec with reset_devices */
501 static u32 unresettable_controller[] = {
502         0x324a103C, /* Smart Array P712m */
503         0x324b103C, /* Smart Array P711m */
504         0x3223103C, /* Smart Array P800 */
505         0x3234103C, /* Smart Array P400 */
506         0x3235103C, /* Smart Array P400i */
507         0x3211103C, /* Smart Array E200i */
508         0x3212103C, /* Smart Array E200 */
509         0x3213103C, /* Smart Array E200i */
510         0x3214103C, /* Smart Array E200i */
511         0x3215103C, /* Smart Array E200i */
512         0x3237103C, /* Smart Array E500 */
513         0x323D103C, /* Smart Array P700m */
514         0x40800E11, /* Smart Array 5i */
515         0x409C0E11, /* Smart Array 6400 */
516         0x409D0E11, /* Smart Array 6400 EM */
517         0x40700E11, /* Smart Array 5300 */
518         0x40820E11, /* Smart Array 532 */
519         0x40830E11, /* Smart Array 5312 */
520         0x409A0E11, /* Smart Array 641 */
521         0x409B0E11, /* Smart Array 642 */
522         0x40910E11, /* Smart Array 6i */
523 };
524
525 /* List of controllers which cannot even be soft reset */
526 static u32 soft_unresettable_controller[] = {
527         0x40800E11, /* Smart Array 5i */
528         0x40700E11, /* Smart Array 5300 */
529         0x40820E11, /* Smart Array 532 */
530         0x40830E11, /* Smart Array 5312 */
531         0x409A0E11, /* Smart Array 641 */
532         0x409B0E11, /* Smart Array 642 */
533         0x40910E11, /* Smart Array 6i */
534         /* Exclude 640x boards.  These are two pci devices in one slot
535          * which share a battery backed cache module.  One controls the
536          * cache, the other accesses the cache through the one that controls
537          * it.  If we reset the one controlling the cache, the other will
538          * likely not be happy.  Just forbid resetting this conjoined mess.
539          * The 640x isn't really supported by hpsa anyway.
540          */
541         0x409C0E11, /* Smart Array 6400 */
542         0x409D0E11, /* Smart Array 6400 EM */
543 };
544
545 static u32 needs_abort_tags_swizzled[] = {
546         0x323D103C, /* Smart Array P700m */
547         0x324a103C, /* Smart Array P712m */
548         0x324b103C, /* SmartArray P711m */
549 };
550
551 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
552 {
553         int i;
554
555         for (i = 0; i < nelems; i++)
556                 if (a[i] == board_id)
557                         return 1;
558         return 0;
559 }
560
561 static int ctlr_is_hard_resettable(u32 board_id)
562 {
563         return !board_id_in_array(unresettable_controller,
564                         ARRAY_SIZE(unresettable_controller), board_id);
565 }
566
567 static int ctlr_is_soft_resettable(u32 board_id)
568 {
569         return !board_id_in_array(soft_unresettable_controller,
570                         ARRAY_SIZE(soft_unresettable_controller), board_id);
571 }
572
573 static int ctlr_is_resettable(u32 board_id)
574 {
575         return ctlr_is_hard_resettable(board_id) ||
576                 ctlr_is_soft_resettable(board_id);
577 }
578
579 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
580 {
581         return board_id_in_array(needs_abort_tags_swizzled,
582                         ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
583 }
584
585 static ssize_t host_show_resettable(struct device *dev,
586         struct device_attribute *attr, char *buf)
587 {
588         struct ctlr_info *h;
589         struct Scsi_Host *shost = class_to_shost(dev);
590
591         h = shost_to_hba(shost);
592         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
593 }
594
595 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
596 {
597         return (scsi3addr[3] & 0xC0) == 0x40;
598 }
599
600 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
601         "1(+0)ADM", "UNKNOWN"
602 };
603 #define HPSA_RAID_0     0
604 #define HPSA_RAID_4     1
605 #define HPSA_RAID_1     2       /* also used for RAID 10 */
606 #define HPSA_RAID_5     3       /* also used for RAID 50 */
607 #define HPSA_RAID_51    4
608 #define HPSA_RAID_6     5       /* also used for RAID 60 */
609 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
610 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
611
612 static ssize_t raid_level_show(struct device *dev,
613              struct device_attribute *attr, char *buf)
614 {
615         ssize_t l = 0;
616         unsigned char rlevel;
617         struct ctlr_info *h;
618         struct scsi_device *sdev;
619         struct hpsa_scsi_dev_t *hdev;
620         unsigned long flags;
621
622         sdev = to_scsi_device(dev);
623         h = sdev_to_hba(sdev);
624         spin_lock_irqsave(&h->lock, flags);
625         hdev = sdev->hostdata;
626         if (!hdev) {
627                 spin_unlock_irqrestore(&h->lock, flags);
628                 return -ENODEV;
629         }
630
631         /* Is this even a logical drive? */
632         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
633                 spin_unlock_irqrestore(&h->lock, flags);
634                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
635                 return l;
636         }
637
638         rlevel = hdev->raid_level;
639         spin_unlock_irqrestore(&h->lock, flags);
640         if (rlevel > RAID_UNKNOWN)
641                 rlevel = RAID_UNKNOWN;
642         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
643         return l;
644 }
645
646 static ssize_t lunid_show(struct device *dev,
647              struct device_attribute *attr, char *buf)
648 {
649         struct ctlr_info *h;
650         struct scsi_device *sdev;
651         struct hpsa_scsi_dev_t *hdev;
652         unsigned long flags;
653         unsigned char lunid[8];
654
655         sdev = to_scsi_device(dev);
656         h = sdev_to_hba(sdev);
657         spin_lock_irqsave(&h->lock, flags);
658         hdev = sdev->hostdata;
659         if (!hdev) {
660                 spin_unlock_irqrestore(&h->lock, flags);
661                 return -ENODEV;
662         }
663         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
664         spin_unlock_irqrestore(&h->lock, flags);
665         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
666                 lunid[0], lunid[1], lunid[2], lunid[3],
667                 lunid[4], lunid[5], lunid[6], lunid[7]);
668 }
669
670 static ssize_t unique_id_show(struct device *dev,
671              struct device_attribute *attr, char *buf)
672 {
673         struct ctlr_info *h;
674         struct scsi_device *sdev;
675         struct hpsa_scsi_dev_t *hdev;
676         unsigned long flags;
677         unsigned char sn[16];
678
679         sdev = to_scsi_device(dev);
680         h = sdev_to_hba(sdev);
681         spin_lock_irqsave(&h->lock, flags);
682         hdev = sdev->hostdata;
683         if (!hdev) {
684                 spin_unlock_irqrestore(&h->lock, flags);
685                 return -ENODEV;
686         }
687         memcpy(sn, hdev->device_id, sizeof(sn));
688         spin_unlock_irqrestore(&h->lock, flags);
689         return snprintf(buf, 16 * 2 + 2,
690                         "%02X%02X%02X%02X%02X%02X%02X%02X"
691                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
692                         sn[0], sn[1], sn[2], sn[3],
693                         sn[4], sn[5], sn[6], sn[7],
694                         sn[8], sn[9], sn[10], sn[11],
695                         sn[12], sn[13], sn[14], sn[15]);
696 }
697
698 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
699              struct device_attribute *attr, char *buf)
700 {
701         struct ctlr_info *h;
702         struct scsi_device *sdev;
703         struct hpsa_scsi_dev_t *hdev;
704         unsigned long flags;
705         int offload_enabled;
706
707         sdev = to_scsi_device(dev);
708         h = sdev_to_hba(sdev);
709         spin_lock_irqsave(&h->lock, flags);
710         hdev = sdev->hostdata;
711         if (!hdev) {
712                 spin_unlock_irqrestore(&h->lock, flags);
713                 return -ENODEV;
714         }
715         offload_enabled = hdev->offload_enabled;
716         spin_unlock_irqrestore(&h->lock, flags);
717         return snprintf(buf, 20, "%d\n", offload_enabled);
718 }
719
720 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
721 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
722 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
723 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
724 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
725                         host_show_hp_ssd_smart_path_enabled, NULL);
726 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
727                 host_show_hp_ssd_smart_path_status,
728                 host_store_hp_ssd_smart_path_status);
729 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
730                         host_store_raid_offload_debug);
731 static DEVICE_ATTR(firmware_revision, S_IRUGO,
732         host_show_firmware_revision, NULL);
733 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
734         host_show_commands_outstanding, NULL);
735 static DEVICE_ATTR(transport_mode, S_IRUGO,
736         host_show_transport_mode, NULL);
737 static DEVICE_ATTR(resettable, S_IRUGO,
738         host_show_resettable, NULL);
739 static DEVICE_ATTR(lockup_detected, S_IRUGO,
740         host_show_lockup_detected, NULL);
741
742 static struct device_attribute *hpsa_sdev_attrs[] = {
743         &dev_attr_raid_level,
744         &dev_attr_lunid,
745         &dev_attr_unique_id,
746         &dev_attr_hp_ssd_smart_path_enabled,
747         &dev_attr_lockup_detected,
748         NULL,
749 };
750
751 static struct device_attribute *hpsa_shost_attrs[] = {
752         &dev_attr_rescan,
753         &dev_attr_firmware_revision,
754         &dev_attr_commands_outstanding,
755         &dev_attr_transport_mode,
756         &dev_attr_resettable,
757         &dev_attr_hp_ssd_smart_path_status,
758         &dev_attr_raid_offload_debug,
759         NULL,
760 };
761
762 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_ABORTS + \
763                 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
764
765 static struct scsi_host_template hpsa_driver_template = {
766         .module                 = THIS_MODULE,
767         .name                   = HPSA,
768         .proc_name              = HPSA,
769         .queuecommand           = hpsa_scsi_queue_command,
770         .scan_start             = hpsa_scan_start,
771         .scan_finished          = hpsa_scan_finished,
772         .change_queue_depth     = hpsa_change_queue_depth,
773         .this_id                = -1,
774         .use_clustering         = ENABLE_CLUSTERING,
775         .eh_abort_handler       = hpsa_eh_abort_handler,
776         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
777         .ioctl                  = hpsa_ioctl,
778         .slave_alloc            = hpsa_slave_alloc,
779         .slave_configure        = hpsa_slave_configure,
780         .slave_destroy          = hpsa_slave_destroy,
781 #ifdef CONFIG_COMPAT
782         .compat_ioctl           = hpsa_compat_ioctl,
783 #endif
784         .sdev_attrs = hpsa_sdev_attrs,
785         .shost_attrs = hpsa_shost_attrs,
786         .max_sectors = 8192,
787         .no_write_same = 1,
788 };
789
790 static inline u32 next_command(struct ctlr_info *h, u8 q)
791 {
792         u32 a;
793         struct reply_queue_buffer *rq = &h->reply_queue[q];
794
795         if (h->transMethod & CFGTBL_Trans_io_accel1)
796                 return h->access.command_completed(h, q);
797
798         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
799                 return h->access.command_completed(h, q);
800
801         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
802                 a = rq->head[rq->current_entry];
803                 rq->current_entry++;
804                 atomic_dec(&h->commands_outstanding);
805         } else {
806                 a = FIFO_EMPTY;
807         }
808         /* Check for wraparound */
809         if (rq->current_entry == h->max_commands) {
810                 rq->current_entry = 0;
811                 rq->wraparound ^= 1;
812         }
813         return a;
814 }
815
816 /*
817  * There are some special bits in the bus address of the
818  * command that we have to set for the controller to know
819  * how to process the command:
820  *
821  * Normal performant mode:
822  * bit 0: 1 means performant mode, 0 means simple mode.
823  * bits 1-3 = block fetch table entry
824  * bits 4-6 = command type (== 0)
825  *
826  * ioaccel1 mode:
827  * bit 0 = "performant mode" bit.
828  * bits 1-3 = block fetch table entry
829  * bits 4-6 = command type (== 110)
830  * (command type is needed because ioaccel1 mode
831  * commands are submitted through the same register as normal
832  * mode commands, so this is how the controller knows whether
833  * the command is normal mode or ioaccel1 mode.)
834  *
835  * ioaccel2 mode:
836  * bit 0 = "performant mode" bit.
837  * bits 1-4 = block fetch table entry (note extra bit)
838  * bits 4-6 = not needed, because ioaccel2 mode has
839  * a separate special register for submitting commands.
840  */
841
842 /*
843  * set_performant_mode: Modify the tag for cciss performant
844  * set bit 0 for pull model, bits 3-1 for block fetch
845  * register number
846  */
847 #define DEFAULT_REPLY_QUEUE (-1)
848 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
849                                         int reply_queue)
850 {
851         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
852                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
853                 if (unlikely(!h->msix_vector))
854                         return;
855                 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
856                         c->Header.ReplyQueue =
857                                 raw_smp_processor_id() % h->nreply_queues;
858                 else
859                         c->Header.ReplyQueue = reply_queue % h->nreply_queues;
860         }
861 }
862
863 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
864                                                 struct CommandList *c,
865                                                 int reply_queue)
866 {
867         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
868
869         /*
870          * Tell the controller to post the reply to the queue for this
871          * processor.  This seems to give the best I/O throughput.
872          */
873         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
874                 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
875         else
876                 cp->ReplyQueue = reply_queue % h->nreply_queues;
877         /*
878          * Set the bits in the address sent down to include:
879          *  - performant mode bit (bit 0)
880          *  - pull count (bits 1-3)
881          *  - command type (bits 4-6)
882          */
883         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
884                                         IOACCEL1_BUSADDR_CMDTYPE;
885 }
886
887 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
888                                                 struct CommandList *c,
889                                                 int reply_queue)
890 {
891         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
892                 &h->ioaccel2_cmd_pool[c->cmdindex];
893
894         /* Tell the controller to post the reply to the queue for this
895          * processor.  This seems to give the best I/O throughput.
896          */
897         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
898                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
899         else
900                 cp->reply_queue = reply_queue % h->nreply_queues;
901         /* Set the bits in the address sent down to include:
902          *  - performant mode bit not used in ioaccel mode 2
903          *  - pull count (bits 0-3)
904          *  - command type isn't needed for ioaccel2
905          */
906         c->busaddr |= h->ioaccel2_blockFetchTable[0];
907 }
908
909 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
910                                                 struct CommandList *c,
911                                                 int reply_queue)
912 {
913         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
914
915         /*
916          * Tell the controller to post the reply to the queue for this
917          * processor.  This seems to give the best I/O throughput.
918          */
919         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
920                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
921         else
922                 cp->reply_queue = reply_queue % h->nreply_queues;
923         /*
924          * Set the bits in the address sent down to include:
925          *  - performant mode bit not used in ioaccel mode 2
926          *  - pull count (bits 0-3)
927          *  - command type isn't needed for ioaccel2
928          */
929         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
930 }
931
932 static int is_firmware_flash_cmd(u8 *cdb)
933 {
934         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
935 }
936
937 /*
938  * During firmware flash, the heartbeat register may not update as frequently
939  * as it should.  So we dial down lockup detection during firmware flash. and
940  * dial it back up when firmware flash completes.
941  */
942 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
943 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
944 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
945                 struct CommandList *c)
946 {
947         if (!is_firmware_flash_cmd(c->Request.CDB))
948                 return;
949         atomic_inc(&h->firmware_flash_in_progress);
950         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
951 }
952
953 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
954                 struct CommandList *c)
955 {
956         if (is_firmware_flash_cmd(c->Request.CDB) &&
957                 atomic_dec_and_test(&h->firmware_flash_in_progress))
958                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
959 }
960
961 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
962         struct CommandList *c, int reply_queue)
963 {
964         dial_down_lockup_detection_during_fw_flash(h, c);
965         atomic_inc(&h->commands_outstanding);
966         switch (c->cmd_type) {
967         case CMD_IOACCEL1:
968                 set_ioaccel1_performant_mode(h, c, reply_queue);
969                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
970                 break;
971         case CMD_IOACCEL2:
972                 set_ioaccel2_performant_mode(h, c, reply_queue);
973                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
974                 break;
975         case IOACCEL2_TMF:
976                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
977                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
978                 break;
979         default:
980                 set_performant_mode(h, c, reply_queue);
981                 h->access.submit_command(h, c);
982         }
983 }
984
985 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
986 {
987         if (unlikely(hpsa_is_pending_event(c)))
988                 return finish_cmd(c);
989
990         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
991 }
992
993 static inline int is_hba_lunid(unsigned char scsi3addr[])
994 {
995         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
996 }
997
998 static inline int is_scsi_rev_5(struct ctlr_info *h)
999 {
1000         if (!h->hba_inquiry_data)
1001                 return 0;
1002         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1003                 return 1;
1004         return 0;
1005 }
1006
1007 static int hpsa_find_target_lun(struct ctlr_info *h,
1008         unsigned char scsi3addr[], int bus, int *target, int *lun)
1009 {
1010         /* finds an unused bus, target, lun for a new physical device
1011          * assumes h->devlock is held
1012          */
1013         int i, found = 0;
1014         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1015
1016         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1017
1018         for (i = 0; i < h->ndevices; i++) {
1019                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1020                         __set_bit(h->dev[i]->target, lun_taken);
1021         }
1022
1023         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1024         if (i < HPSA_MAX_DEVICES) {
1025                 /* *bus = 1; */
1026                 *target = i;
1027                 *lun = 0;
1028                 found = 1;
1029         }
1030         return !found;
1031 }
1032
1033 static inline void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1034         struct hpsa_scsi_dev_t *dev, char *description)
1035 {
1036         dev_printk(level, &h->pdev->dev,
1037                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s RAID-%s SSDSmartPathCap%c En%c Exp=%d\n",
1038                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1039                         description,
1040                         scsi_device_type(dev->devtype),
1041                         dev->vendor,
1042                         dev->model,
1043                         dev->raid_level > RAID_UNKNOWN ?
1044                                 "RAID-?" : raid_label[dev->raid_level],
1045                         dev->offload_config ? '+' : '-',
1046                         dev->offload_enabled ? '+' : '-',
1047                         dev->expose_state);
1048 }
1049
1050 /* Add an entry into h->dev[] array. */
1051 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
1052                 struct hpsa_scsi_dev_t *device,
1053                 struct hpsa_scsi_dev_t *added[], int *nadded)
1054 {
1055         /* assumes h->devlock is held */
1056         int n = h->ndevices;
1057         int i;
1058         unsigned char addr1[8], addr2[8];
1059         struct hpsa_scsi_dev_t *sd;
1060
1061         if (n >= HPSA_MAX_DEVICES) {
1062                 dev_err(&h->pdev->dev, "too many devices, some will be "
1063                         "inaccessible.\n");
1064                 return -1;
1065         }
1066
1067         /* physical devices do not have lun or target assigned until now. */
1068         if (device->lun != -1)
1069                 /* Logical device, lun is already assigned. */
1070                 goto lun_assigned;
1071
1072         /* If this device a non-zero lun of a multi-lun device
1073          * byte 4 of the 8-byte LUN addr will contain the logical
1074          * unit no, zero otherwise.
1075          */
1076         if (device->scsi3addr[4] == 0) {
1077                 /* This is not a non-zero lun of a multi-lun device */
1078                 if (hpsa_find_target_lun(h, device->scsi3addr,
1079                         device->bus, &device->target, &device->lun) != 0)
1080                         return -1;
1081                 goto lun_assigned;
1082         }
1083
1084         /* This is a non-zero lun of a multi-lun device.
1085          * Search through our list and find the device which
1086          * has the same 8 byte LUN address, excepting byte 4.
1087          * Assign the same bus and target for this new LUN.
1088          * Use the logical unit number from the firmware.
1089          */
1090         memcpy(addr1, device->scsi3addr, 8);
1091         addr1[4] = 0;
1092         for (i = 0; i < n; i++) {
1093                 sd = h->dev[i];
1094                 memcpy(addr2, sd->scsi3addr, 8);
1095                 addr2[4] = 0;
1096                 /* differ only in byte 4? */
1097                 if (memcmp(addr1, addr2, 8) == 0) {
1098                         device->bus = sd->bus;
1099                         device->target = sd->target;
1100                         device->lun = device->scsi3addr[4];
1101                         break;
1102                 }
1103         }
1104         if (device->lun == -1) {
1105                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1106                         " suspect firmware bug or unsupported hardware "
1107                         "configuration.\n");
1108                         return -1;
1109         }
1110
1111 lun_assigned:
1112
1113         h->dev[n] = device;
1114         h->ndevices++;
1115         added[*nadded] = device;
1116         (*nadded)++;
1117         hpsa_show_dev_msg(KERN_INFO, h, device,
1118                 device->expose_state & HPSA_SCSI_ADD ? "added" : "masked");
1119         device->offload_to_be_enabled = device->offload_enabled;
1120         device->offload_enabled = 0;
1121         return 0;
1122 }
1123
1124 /* Update an entry in h->dev[] array. */
1125 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
1126         int entry, struct hpsa_scsi_dev_t *new_entry)
1127 {
1128         int offload_enabled;
1129         /* assumes h->devlock is held */
1130         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1131
1132         /* Raid level changed. */
1133         h->dev[entry]->raid_level = new_entry->raid_level;
1134
1135         /* Raid offload parameters changed.  Careful about the ordering. */
1136         if (new_entry->offload_config && new_entry->offload_enabled) {
1137                 /*
1138                  * if drive is newly offload_enabled, we want to copy the
1139                  * raid map data first.  If previously offload_enabled and
1140                  * offload_config were set, raid map data had better be
1141                  * the same as it was before.  if raid map data is changed
1142                  * then it had better be the case that
1143                  * h->dev[entry]->offload_enabled is currently 0.
1144                  */
1145                 h->dev[entry]->raid_map = new_entry->raid_map;
1146                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1147         }
1148         if (new_entry->hba_ioaccel_enabled) {
1149                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1150                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1151         }
1152         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1153         h->dev[entry]->offload_config = new_entry->offload_config;
1154         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1155         h->dev[entry]->queue_depth = new_entry->queue_depth;
1156
1157         /*
1158          * We can turn off ioaccel offload now, but need to delay turning
1159          * it on until we can update h->dev[entry]->phys_disk[], but we
1160          * can't do that until all the devices are updated.
1161          */
1162         h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1163         if (!new_entry->offload_enabled)
1164                 h->dev[entry]->offload_enabled = 0;
1165
1166         offload_enabled = h->dev[entry]->offload_enabled;
1167         h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1168         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1169         h->dev[entry]->offload_enabled = offload_enabled;
1170 }
1171
1172 /* Replace an entry from h->dev[] array. */
1173 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
1174         int entry, struct hpsa_scsi_dev_t *new_entry,
1175         struct hpsa_scsi_dev_t *added[], int *nadded,
1176         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1177 {
1178         /* assumes h->devlock is held */
1179         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1180         removed[*nremoved] = h->dev[entry];
1181         (*nremoved)++;
1182
1183         /*
1184          * New physical devices won't have target/lun assigned yet
1185          * so we need to preserve the values in the slot we are replacing.
1186          */
1187         if (new_entry->target == -1) {
1188                 new_entry->target = h->dev[entry]->target;
1189                 new_entry->lun = h->dev[entry]->lun;
1190         }
1191
1192         h->dev[entry] = new_entry;
1193         added[*nadded] = new_entry;
1194         (*nadded)++;
1195         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1196         new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1197         new_entry->offload_enabled = 0;
1198 }
1199
1200 /* Remove an entry from h->dev[] array. */
1201 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1202         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1203 {
1204         /* assumes h->devlock is held */
1205         int i;
1206         struct hpsa_scsi_dev_t *sd;
1207
1208         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1209
1210         sd = h->dev[entry];
1211         removed[*nremoved] = h->dev[entry];
1212         (*nremoved)++;
1213
1214         for (i = entry; i < h->ndevices-1; i++)
1215                 h->dev[i] = h->dev[i+1];
1216         h->ndevices--;
1217         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1218 }
1219
1220 #define SCSI3ADDR_EQ(a, b) ( \
1221         (a)[7] == (b)[7] && \
1222         (a)[6] == (b)[6] && \
1223         (a)[5] == (b)[5] && \
1224         (a)[4] == (b)[4] && \
1225         (a)[3] == (b)[3] && \
1226         (a)[2] == (b)[2] && \
1227         (a)[1] == (b)[1] && \
1228         (a)[0] == (b)[0])
1229
1230 static void fixup_botched_add(struct ctlr_info *h,
1231         struct hpsa_scsi_dev_t *added)
1232 {
1233         /* called when scsi_add_device fails in order to re-adjust
1234          * h->dev[] to match the mid layer's view.
1235          */
1236         unsigned long flags;
1237         int i, j;
1238
1239         spin_lock_irqsave(&h->lock, flags);
1240         for (i = 0; i < h->ndevices; i++) {
1241                 if (h->dev[i] == added) {
1242                         for (j = i; j < h->ndevices-1; j++)
1243                                 h->dev[j] = h->dev[j+1];
1244                         h->ndevices--;
1245                         break;
1246                 }
1247         }
1248         spin_unlock_irqrestore(&h->lock, flags);
1249         kfree(added);
1250 }
1251
1252 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1253         struct hpsa_scsi_dev_t *dev2)
1254 {
1255         /* we compare everything except lun and target as these
1256          * are not yet assigned.  Compare parts likely
1257          * to differ first
1258          */
1259         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1260                 sizeof(dev1->scsi3addr)) != 0)
1261                 return 0;
1262         if (memcmp(dev1->device_id, dev2->device_id,
1263                 sizeof(dev1->device_id)) != 0)
1264                 return 0;
1265         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1266                 return 0;
1267         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1268                 return 0;
1269         if (dev1->devtype != dev2->devtype)
1270                 return 0;
1271         if (dev1->bus != dev2->bus)
1272                 return 0;
1273         return 1;
1274 }
1275
1276 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1277         struct hpsa_scsi_dev_t *dev2)
1278 {
1279         /* Device attributes that can change, but don't mean
1280          * that the device is a different device, nor that the OS
1281          * needs to be told anything about the change.
1282          */
1283         if (dev1->raid_level != dev2->raid_level)
1284                 return 1;
1285         if (dev1->offload_config != dev2->offload_config)
1286                 return 1;
1287         if (dev1->offload_enabled != dev2->offload_enabled)
1288                 return 1;
1289         if (dev1->queue_depth != dev2->queue_depth)
1290                 return 1;
1291         return 0;
1292 }
1293
1294 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1295  * and return needle location in *index.  If scsi3addr matches, but not
1296  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1297  * location in *index.
1298  * In the case of a minor device attribute change, such as RAID level, just
1299  * return DEVICE_UPDATED, along with the updated device's location in index.
1300  * If needle not found, return DEVICE_NOT_FOUND.
1301  */
1302 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1303         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1304         int *index)
1305 {
1306         int i;
1307 #define DEVICE_NOT_FOUND 0
1308 #define DEVICE_CHANGED 1
1309 #define DEVICE_SAME 2
1310 #define DEVICE_UPDATED 3
1311         for (i = 0; i < haystack_size; i++) {
1312                 if (haystack[i] == NULL) /* previously removed. */
1313                         continue;
1314                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1315                         *index = i;
1316                         if (device_is_the_same(needle, haystack[i])) {
1317                                 if (device_updated(needle, haystack[i]))
1318                                         return DEVICE_UPDATED;
1319                                 return DEVICE_SAME;
1320                         } else {
1321                                 /* Keep offline devices offline */
1322                                 if (needle->volume_offline)
1323                                         return DEVICE_NOT_FOUND;
1324                                 return DEVICE_CHANGED;
1325                         }
1326                 }
1327         }
1328         *index = -1;
1329         return DEVICE_NOT_FOUND;
1330 }
1331
1332 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1333                                         unsigned char scsi3addr[])
1334 {
1335         struct offline_device_entry *device;
1336         unsigned long flags;
1337
1338         /* Check to see if device is already on the list */
1339         spin_lock_irqsave(&h->offline_device_lock, flags);
1340         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1341                 if (memcmp(device->scsi3addr, scsi3addr,
1342                         sizeof(device->scsi3addr)) == 0) {
1343                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1344                         return;
1345                 }
1346         }
1347         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1348
1349         /* Device is not on the list, add it. */
1350         device = kmalloc(sizeof(*device), GFP_KERNEL);
1351         if (!device) {
1352                 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1353                 return;
1354         }
1355         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1356         spin_lock_irqsave(&h->offline_device_lock, flags);
1357         list_add_tail(&device->offline_list, &h->offline_device_list);
1358         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1359 }
1360
1361 /* Print a message explaining various offline volume states */
1362 static void hpsa_show_volume_status(struct ctlr_info *h,
1363         struct hpsa_scsi_dev_t *sd)
1364 {
1365         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1366                 dev_info(&h->pdev->dev,
1367                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1368                         h->scsi_host->host_no,
1369                         sd->bus, sd->target, sd->lun);
1370         switch (sd->volume_offline) {
1371         case HPSA_LV_OK:
1372                 break;
1373         case HPSA_LV_UNDERGOING_ERASE:
1374                 dev_info(&h->pdev->dev,
1375                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1376                         h->scsi_host->host_no,
1377                         sd->bus, sd->target, sd->lun);
1378                 break;
1379         case HPSA_LV_UNDERGOING_RPI:
1380                 dev_info(&h->pdev->dev,
1381                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1382                         h->scsi_host->host_no,
1383                         sd->bus, sd->target, sd->lun);
1384                 break;
1385         case HPSA_LV_PENDING_RPI:
1386                 dev_info(&h->pdev->dev,
1387                                 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1388                                 h->scsi_host->host_no,
1389                                 sd->bus, sd->target, sd->lun);
1390                 break;
1391         case HPSA_LV_ENCRYPTED_NO_KEY:
1392                 dev_info(&h->pdev->dev,
1393                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1394                         h->scsi_host->host_no,
1395                         sd->bus, sd->target, sd->lun);
1396                 break;
1397         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1398                 dev_info(&h->pdev->dev,
1399                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1400                         h->scsi_host->host_no,
1401                         sd->bus, sd->target, sd->lun);
1402                 break;
1403         case HPSA_LV_UNDERGOING_ENCRYPTION:
1404                 dev_info(&h->pdev->dev,
1405                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1406                         h->scsi_host->host_no,
1407                         sd->bus, sd->target, sd->lun);
1408                 break;
1409         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1410                 dev_info(&h->pdev->dev,
1411                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1412                         h->scsi_host->host_no,
1413                         sd->bus, sd->target, sd->lun);
1414                 break;
1415         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1416                 dev_info(&h->pdev->dev,
1417                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1418                         h->scsi_host->host_no,
1419                         sd->bus, sd->target, sd->lun);
1420                 break;
1421         case HPSA_LV_PENDING_ENCRYPTION:
1422                 dev_info(&h->pdev->dev,
1423                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1424                         h->scsi_host->host_no,
1425                         sd->bus, sd->target, sd->lun);
1426                 break;
1427         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1428                 dev_info(&h->pdev->dev,
1429                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1430                         h->scsi_host->host_no,
1431                         sd->bus, sd->target, sd->lun);
1432                 break;
1433         }
1434 }
1435
1436 /*
1437  * Figure the list of physical drive pointers for a logical drive with
1438  * raid offload configured.
1439  */
1440 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1441                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1442                                 struct hpsa_scsi_dev_t *logical_drive)
1443 {
1444         struct raid_map_data *map = &logical_drive->raid_map;
1445         struct raid_map_disk_data *dd = &map->data[0];
1446         int i, j;
1447         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1448                                 le16_to_cpu(map->metadata_disks_per_row);
1449         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1450                                 le16_to_cpu(map->layout_map_count) *
1451                                 total_disks_per_row;
1452         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1453                                 total_disks_per_row;
1454         int qdepth;
1455
1456         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1457                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1458
1459         logical_drive->nphysical_disks = nraid_map_entries;
1460
1461         qdepth = 0;
1462         for (i = 0; i < nraid_map_entries; i++) {
1463                 logical_drive->phys_disk[i] = NULL;
1464                 if (!logical_drive->offload_config)
1465                         continue;
1466                 for (j = 0; j < ndevices; j++) {
1467                         if (dev[j]->devtype != TYPE_DISK)
1468                                 continue;
1469                         if (is_logical_dev_addr_mode(dev[j]->scsi3addr))
1470                                 continue;
1471                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1472                                 continue;
1473
1474                         logical_drive->phys_disk[i] = dev[j];
1475                         if (i < nphys_disk)
1476                                 qdepth = min(h->nr_cmds, qdepth +
1477                                     logical_drive->phys_disk[i]->queue_depth);
1478                         break;
1479                 }
1480
1481                 /*
1482                  * This can happen if a physical drive is removed and
1483                  * the logical drive is degraded.  In that case, the RAID
1484                  * map data will refer to a physical disk which isn't actually
1485                  * present.  And in that case offload_enabled should already
1486                  * be 0, but we'll turn it off here just in case
1487                  */
1488                 if (!logical_drive->phys_disk[i]) {
1489                         logical_drive->offload_enabled = 0;
1490                         logical_drive->offload_to_be_enabled = 0;
1491                         logical_drive->queue_depth = 8;
1492                 }
1493         }
1494         if (nraid_map_entries)
1495                 /*
1496                  * This is correct for reads, too high for full stripe writes,
1497                  * way too high for partial stripe writes
1498                  */
1499                 logical_drive->queue_depth = qdepth;
1500         else
1501                 logical_drive->queue_depth = h->nr_cmds;
1502 }
1503
1504 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1505                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1506 {
1507         int i;
1508
1509         for (i = 0; i < ndevices; i++) {
1510                 if (dev[i]->devtype != TYPE_DISK)
1511                         continue;
1512                 if (!is_logical_dev_addr_mode(dev[i]->scsi3addr))
1513                         continue;
1514
1515                 /*
1516                  * If offload is currently enabled, the RAID map and
1517                  * phys_disk[] assignment *better* not be changing
1518                  * and since it isn't changing, we do not need to
1519                  * update it.
1520                  */
1521                 if (dev[i]->offload_enabled)
1522                         continue;
1523
1524                 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1525         }
1526 }
1527
1528 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1529         struct hpsa_scsi_dev_t *sd[], int nsds)
1530 {
1531         /* sd contains scsi3 addresses and devtypes, and inquiry
1532          * data.  This function takes what's in sd to be the current
1533          * reality and updates h->dev[] to reflect that reality.
1534          */
1535         int i, entry, device_change, changes = 0;
1536         struct hpsa_scsi_dev_t *csd;
1537         unsigned long flags;
1538         struct hpsa_scsi_dev_t **added, **removed;
1539         int nadded, nremoved;
1540         struct Scsi_Host *sh = NULL;
1541
1542         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1543         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1544
1545         if (!added || !removed) {
1546                 dev_warn(&h->pdev->dev, "out of memory in "
1547                         "adjust_hpsa_scsi_table\n");
1548                 goto free_and_out;
1549         }
1550
1551         spin_lock_irqsave(&h->devlock, flags);
1552
1553         /* find any devices in h->dev[] that are not in
1554          * sd[] and remove them from h->dev[], and for any
1555          * devices which have changed, remove the old device
1556          * info and add the new device info.
1557          * If minor device attributes change, just update
1558          * the existing device structure.
1559          */
1560         i = 0;
1561         nremoved = 0;
1562         nadded = 0;
1563         while (i < h->ndevices) {
1564                 csd = h->dev[i];
1565                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1566                 if (device_change == DEVICE_NOT_FOUND) {
1567                         changes++;
1568                         hpsa_scsi_remove_entry(h, hostno, i,
1569                                 removed, &nremoved);
1570                         continue; /* remove ^^^, hence i not incremented */
1571                 } else if (device_change == DEVICE_CHANGED) {
1572                         changes++;
1573                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1574                                 added, &nadded, removed, &nremoved);
1575                         /* Set it to NULL to prevent it from being freed
1576                          * at the bottom of hpsa_update_scsi_devices()
1577                          */
1578                         sd[entry] = NULL;
1579                 } else if (device_change == DEVICE_UPDATED) {
1580                         hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1581                 }
1582                 i++;
1583         }
1584
1585         /* Now, make sure every device listed in sd[] is also
1586          * listed in h->dev[], adding them if they aren't found
1587          */
1588
1589         for (i = 0; i < nsds; i++) {
1590                 if (!sd[i]) /* if already added above. */
1591                         continue;
1592
1593                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1594                  * as the SCSI mid-layer does not handle such devices well.
1595                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1596                  * at 160Hz, and prevents the system from coming up.
1597                  */
1598                 if (sd[i]->volume_offline) {
1599                         hpsa_show_volume_status(h, sd[i]);
1600                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1601                         continue;
1602                 }
1603
1604                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1605                                         h->ndevices, &entry);
1606                 if (device_change == DEVICE_NOT_FOUND) {
1607                         changes++;
1608                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
1609                                 added, &nadded) != 0)
1610                                 break;
1611                         sd[i] = NULL; /* prevent from being freed later. */
1612                 } else if (device_change == DEVICE_CHANGED) {
1613                         /* should never happen... */
1614                         changes++;
1615                         dev_warn(&h->pdev->dev,
1616                                 "device unexpectedly changed.\n");
1617                         /* but if it does happen, we just ignore that device */
1618                 }
1619         }
1620         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1621
1622         /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1623          * any logical drives that need it enabled.
1624          */
1625         for (i = 0; i < h->ndevices; i++)
1626                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1627
1628         spin_unlock_irqrestore(&h->devlock, flags);
1629
1630         /* Monitor devices which are in one of several NOT READY states to be
1631          * brought online later. This must be done without holding h->devlock,
1632          * so don't touch h->dev[]
1633          */
1634         for (i = 0; i < nsds; i++) {
1635                 if (!sd[i]) /* if already added above. */
1636                         continue;
1637                 if (sd[i]->volume_offline)
1638                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1639         }
1640
1641         /* Don't notify scsi mid layer of any changes the first time through
1642          * (or if there are no changes) scsi_scan_host will do it later the
1643          * first time through.
1644          */
1645         if (hostno == -1 || !changes)
1646                 goto free_and_out;
1647
1648         sh = h->scsi_host;
1649         /* Notify scsi mid layer of any removed devices */
1650         for (i = 0; i < nremoved; i++) {
1651                 if (removed[i]->expose_state & HPSA_SCSI_ADD) {
1652                         struct scsi_device *sdev =
1653                                 scsi_device_lookup(sh, removed[i]->bus,
1654                                         removed[i]->target, removed[i]->lun);
1655                         if (sdev != NULL) {
1656                                 scsi_remove_device(sdev);
1657                                 scsi_device_put(sdev);
1658                         } else {
1659                                 /*
1660                                  * We don't expect to get here.
1661                                  * future cmds to this device will get selection
1662                                  * timeout as if the device was gone.
1663                                  */
1664                                 hpsa_show_dev_msg(KERN_WARNING, h, removed[i],
1665                                         "didn't find device for removal.");
1666                         }
1667                 }
1668                 kfree(removed[i]);
1669                 removed[i] = NULL;
1670         }
1671
1672         /* Notify scsi mid layer of any added devices */
1673         for (i = 0; i < nadded; i++) {
1674                 if (!(added[i]->expose_state & HPSA_SCSI_ADD))
1675                         continue;
1676                 if (scsi_add_device(sh, added[i]->bus,
1677                         added[i]->target, added[i]->lun) == 0)
1678                         continue;
1679                 hpsa_show_dev_msg(KERN_WARNING, h, added[i],
1680                                         "addition failed, device not added.");
1681                 /* now we have to remove it from h->dev,
1682                  * since it didn't get added to scsi mid layer
1683                  */
1684                 fixup_botched_add(h, added[i]);
1685                 added[i] = NULL;
1686         }
1687
1688 free_and_out:
1689         kfree(added);
1690         kfree(removed);
1691 }
1692
1693 /*
1694  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1695  * Assume's h->devlock is held.
1696  */
1697 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1698         int bus, int target, int lun)
1699 {
1700         int i;
1701         struct hpsa_scsi_dev_t *sd;
1702
1703         for (i = 0; i < h->ndevices; i++) {
1704                 sd = h->dev[i];
1705                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1706                         return sd;
1707         }
1708         return NULL;
1709 }
1710
1711 static int hpsa_slave_alloc(struct scsi_device *sdev)
1712 {
1713         struct hpsa_scsi_dev_t *sd;
1714         unsigned long flags;
1715         struct ctlr_info *h;
1716
1717         h = sdev_to_hba(sdev);
1718         spin_lock_irqsave(&h->devlock, flags);
1719         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1720                 sdev_id(sdev), sdev->lun);
1721         if (likely(sd)) {
1722                 atomic_set(&sd->ioaccel_cmds_out, 0);
1723                 sdev->hostdata = (sd->expose_state & HPSA_SCSI_ADD) ? sd : NULL;
1724         } else
1725                 sdev->hostdata = NULL;
1726         spin_unlock_irqrestore(&h->devlock, flags);
1727         return 0;
1728 }
1729
1730 /* configure scsi device based on internal per-device structure */
1731 static int hpsa_slave_configure(struct scsi_device *sdev)
1732 {
1733         struct hpsa_scsi_dev_t *sd;
1734         int queue_depth;
1735
1736         sd = sdev->hostdata;
1737         sdev->no_uld_attach = !sd || !(sd->expose_state & HPSA_ULD_ATTACH);
1738
1739         if (sd)
1740                 queue_depth = sd->queue_depth != 0 ?
1741                         sd->queue_depth : sdev->host->can_queue;
1742         else
1743                 queue_depth = sdev->host->can_queue;
1744
1745         scsi_change_queue_depth(sdev, queue_depth);
1746
1747         return 0;
1748 }
1749
1750 static void hpsa_slave_destroy(struct scsi_device *sdev)
1751 {
1752         /* nothing to do. */
1753 }
1754
1755 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1756 {
1757         int i;
1758
1759         if (!h->ioaccel2_cmd_sg_list)
1760                 return;
1761         for (i = 0; i < h->nr_cmds; i++) {
1762                 kfree(h->ioaccel2_cmd_sg_list[i]);
1763                 h->ioaccel2_cmd_sg_list[i] = NULL;
1764         }
1765         kfree(h->ioaccel2_cmd_sg_list);
1766         h->ioaccel2_cmd_sg_list = NULL;
1767 }
1768
1769 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1770 {
1771         int i;
1772
1773         if (h->chainsize <= 0)
1774                 return 0;
1775
1776         h->ioaccel2_cmd_sg_list =
1777                 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
1778                                         GFP_KERNEL);
1779         if (!h->ioaccel2_cmd_sg_list)
1780                 return -ENOMEM;
1781         for (i = 0; i < h->nr_cmds; i++) {
1782                 h->ioaccel2_cmd_sg_list[i] =
1783                         kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
1784                                         h->maxsgentries, GFP_KERNEL);
1785                 if (!h->ioaccel2_cmd_sg_list[i])
1786                         goto clean;
1787         }
1788         return 0;
1789
1790 clean:
1791         hpsa_free_ioaccel2_sg_chain_blocks(h);
1792         return -ENOMEM;
1793 }
1794
1795 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1796 {
1797         int i;
1798
1799         if (!h->cmd_sg_list)
1800                 return;
1801         for (i = 0; i < h->nr_cmds; i++) {
1802                 kfree(h->cmd_sg_list[i]);
1803                 h->cmd_sg_list[i] = NULL;
1804         }
1805         kfree(h->cmd_sg_list);
1806         h->cmd_sg_list = NULL;
1807 }
1808
1809 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
1810 {
1811         int i;
1812
1813         if (h->chainsize <= 0)
1814                 return 0;
1815
1816         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1817                                 GFP_KERNEL);
1818         if (!h->cmd_sg_list) {
1819                 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
1820                 return -ENOMEM;
1821         }
1822         for (i = 0; i < h->nr_cmds; i++) {
1823                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1824                                                 h->chainsize, GFP_KERNEL);
1825                 if (!h->cmd_sg_list[i]) {
1826                         dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
1827                         goto clean;
1828                 }
1829         }
1830         return 0;
1831
1832 clean:
1833         hpsa_free_sg_chain_blocks(h);
1834         return -ENOMEM;
1835 }
1836
1837 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
1838         struct io_accel2_cmd *cp, struct CommandList *c)
1839 {
1840         struct ioaccel2_sg_element *chain_block;
1841         u64 temp64;
1842         u32 chain_size;
1843
1844         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
1845         chain_size = le32_to_cpu(cp->data_len);
1846         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
1847                                 PCI_DMA_TODEVICE);
1848         if (dma_mapping_error(&h->pdev->dev, temp64)) {
1849                 /* prevent subsequent unmapping */
1850                 cp->sg->address = 0;
1851                 return -1;
1852         }
1853         cp->sg->address = cpu_to_le64(temp64);
1854         return 0;
1855 }
1856
1857 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
1858         struct io_accel2_cmd *cp)
1859 {
1860         struct ioaccel2_sg_element *chain_sg;
1861         u64 temp64;
1862         u32 chain_size;
1863
1864         chain_sg = cp->sg;
1865         temp64 = le64_to_cpu(chain_sg->address);
1866         chain_size = le32_to_cpu(cp->data_len);
1867         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
1868 }
1869
1870 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1871         struct CommandList *c)
1872 {
1873         struct SGDescriptor *chain_sg, *chain_block;
1874         u64 temp64;
1875         u32 chain_len;
1876
1877         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1878         chain_block = h->cmd_sg_list[c->cmdindex];
1879         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
1880         chain_len = sizeof(*chain_sg) *
1881                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
1882         chain_sg->Len = cpu_to_le32(chain_len);
1883         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1884                                 PCI_DMA_TODEVICE);
1885         if (dma_mapping_error(&h->pdev->dev, temp64)) {
1886                 /* prevent subsequent unmapping */
1887                 chain_sg->Addr = cpu_to_le64(0);
1888                 return -1;
1889         }
1890         chain_sg->Addr = cpu_to_le64(temp64);
1891         return 0;
1892 }
1893
1894 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1895         struct CommandList *c)
1896 {
1897         struct SGDescriptor *chain_sg;
1898
1899         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
1900                 return;
1901
1902         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1903         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
1904                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
1905 }
1906
1907
1908 /* Decode the various types of errors on ioaccel2 path.
1909  * Return 1 for any error that should generate a RAID path retry.
1910  * Return 0 for errors that don't require a RAID path retry.
1911  */
1912 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1913                                         struct CommandList *c,
1914                                         struct scsi_cmnd *cmd,
1915                                         struct io_accel2_cmd *c2)
1916 {
1917         int data_len;
1918         int retry = 0;
1919         u32 ioaccel2_resid = 0;
1920
1921         switch (c2->error_data.serv_response) {
1922         case IOACCEL2_SERV_RESPONSE_COMPLETE:
1923                 switch (c2->error_data.status) {
1924                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
1925                         break;
1926                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1927                         cmd->result |= SAM_STAT_CHECK_CONDITION;
1928                         if (c2->error_data.data_present !=
1929                                         IOACCEL2_SENSE_DATA_PRESENT) {
1930                                 memset(cmd->sense_buffer, 0,
1931                                         SCSI_SENSE_BUFFERSIZE);
1932                                 break;
1933                         }
1934                         /* copy the sense data */
1935                         data_len = c2->error_data.sense_data_len;
1936                         if (data_len > SCSI_SENSE_BUFFERSIZE)
1937                                 data_len = SCSI_SENSE_BUFFERSIZE;
1938                         if (data_len > sizeof(c2->error_data.sense_data_buff))
1939                                 data_len =
1940                                         sizeof(c2->error_data.sense_data_buff);
1941                         memcpy(cmd->sense_buffer,
1942                                 c2->error_data.sense_data_buff, data_len);
1943                         retry = 1;
1944                         break;
1945                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1946                         retry = 1;
1947                         break;
1948                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1949                         retry = 1;
1950                         break;
1951                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1952                         retry = 1;
1953                         break;
1954                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1955                         retry = 1;
1956                         break;
1957                 default:
1958                         retry = 1;
1959                         break;
1960                 }
1961                 break;
1962         case IOACCEL2_SERV_RESPONSE_FAILURE:
1963                 switch (c2->error_data.status) {
1964                 case IOACCEL2_STATUS_SR_IO_ERROR:
1965                 case IOACCEL2_STATUS_SR_IO_ABORTED:
1966                 case IOACCEL2_STATUS_SR_OVERRUN:
1967                         retry = 1;
1968                         break;
1969                 case IOACCEL2_STATUS_SR_UNDERRUN:
1970                         cmd->result = (DID_OK << 16);           /* host byte */
1971                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1972                         ioaccel2_resid = get_unaligned_le32(
1973                                                 &c2->error_data.resid_cnt[0]);
1974                         scsi_set_resid(cmd, ioaccel2_resid);
1975                         break;
1976                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
1977                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
1978                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
1979                         /* We will get an event from ctlr to trigger rescan */
1980                         retry = 1;
1981                         break;
1982                 default:
1983                         retry = 1;
1984                 }
1985                 break;
1986         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
1987                 break;
1988         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
1989                 break;
1990         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1991                 retry = 1;
1992                 break;
1993         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
1994                 break;
1995         default:
1996                 retry = 1;
1997                 break;
1998         }
1999
2000         return retry;   /* retry on raid path? */
2001 }
2002
2003 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2004                 struct CommandList *c)
2005 {
2006         bool do_wake = false;
2007
2008         /*
2009          * Prevent the following race in the abort handler:
2010          *
2011          * 1. LLD is requested to abort a SCSI command
2012          * 2. The SCSI command completes
2013          * 3. The struct CommandList associated with step 2 is made available
2014          * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2015          * 5. Abort handler follows scsi_cmnd->host_scribble and
2016          *    finds struct CommandList and tries to aborts it
2017          * Now we have aborted the wrong command.
2018          *
2019          * Reset c->scsi_cmd here so that the abort or reset handler will know
2020          * this command has completed.  Then, check to see if the handler is
2021          * waiting for this command, and, if so, wake it.
2022          */
2023         c->scsi_cmd = SCSI_CMD_IDLE;
2024         mb();   /* Declare command idle before checking for pending events. */
2025         if (c->abort_pending) {
2026                 do_wake = true;
2027                 c->abort_pending = false;
2028         }
2029         if (c->reset_pending) {
2030                 unsigned long flags;
2031                 struct hpsa_scsi_dev_t *dev;
2032
2033                 /*
2034                  * There appears to be a reset pending; lock the lock and
2035                  * reconfirm.  If so, then decrement the count of outstanding
2036                  * commands and wake the reset command if this is the last one.
2037                  */
2038                 spin_lock_irqsave(&h->lock, flags);
2039                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2040                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2041                         do_wake = true;
2042                 c->reset_pending = NULL;
2043                 spin_unlock_irqrestore(&h->lock, flags);
2044         }
2045
2046         if (do_wake)
2047                 wake_up_all(&h->event_sync_wait_queue);
2048 }
2049
2050 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2051                                       struct CommandList *c)
2052 {
2053         hpsa_cmd_resolve_events(h, c);
2054         cmd_tagged_free(h, c);
2055 }
2056
2057 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2058                 struct CommandList *c, struct scsi_cmnd *cmd)
2059 {
2060         hpsa_cmd_resolve_and_free(h, c);
2061         cmd->scsi_done(cmd);
2062 }
2063
2064 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2065 {
2066         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2067         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2068 }
2069
2070 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2071 {
2072         cmd->result = DID_ABORT << 16;
2073 }
2074
2075 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2076                                     struct scsi_cmnd *cmd)
2077 {
2078         hpsa_set_scsi_cmd_aborted(cmd);
2079         dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2080                          c->Request.CDB, c->err_info->ScsiStatus);
2081         hpsa_cmd_resolve_and_free(h, c);
2082 }
2083
2084 static void process_ioaccel2_completion(struct ctlr_info *h,
2085                 struct CommandList *c, struct scsi_cmnd *cmd,
2086                 struct hpsa_scsi_dev_t *dev)
2087 {
2088         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2089
2090         /* check for good status */
2091         if (likely(c2->error_data.serv_response == 0 &&
2092                         c2->error_data.status == 0))
2093                 return hpsa_cmd_free_and_done(h, c, cmd);
2094
2095         /*
2096          * Any RAID offload error results in retry which will use
2097          * the normal I/O path so the controller can handle whatever's
2098          * wrong.
2099          */
2100         if (is_logical_dev_addr_mode(dev->scsi3addr) &&
2101                 c2->error_data.serv_response ==
2102                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2103                 if (c2->error_data.status ==
2104                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
2105                         dev->offload_enabled = 0;
2106
2107                 return hpsa_retry_cmd(h, c);
2108         }
2109
2110         if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2111                 return hpsa_retry_cmd(h, c);
2112
2113         return hpsa_cmd_free_and_done(h, c, cmd);
2114 }
2115
2116 /* Returns 0 on success, < 0 otherwise. */
2117 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2118                                         struct CommandList *cp)
2119 {
2120         u8 tmf_status = cp->err_info->ScsiStatus;
2121
2122         switch (tmf_status) {
2123         case CISS_TMF_COMPLETE:
2124                 /*
2125                  * CISS_TMF_COMPLETE never happens, instead,
2126                  * ei->CommandStatus == 0 for this case.
2127                  */
2128         case CISS_TMF_SUCCESS:
2129                 return 0;
2130         case CISS_TMF_INVALID_FRAME:
2131         case CISS_TMF_NOT_SUPPORTED:
2132         case CISS_TMF_FAILED:
2133         case CISS_TMF_WRONG_LUN:
2134         case CISS_TMF_OVERLAPPED_TAG:
2135                 break;
2136         default:
2137                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2138                                 tmf_status);
2139                 break;
2140         }
2141         return -tmf_status;
2142 }
2143
2144 static void complete_scsi_command(struct CommandList *cp)
2145 {
2146         struct scsi_cmnd *cmd;
2147         struct ctlr_info *h;
2148         struct ErrorInfo *ei;
2149         struct hpsa_scsi_dev_t *dev;
2150         struct io_accel2_cmd *c2;
2151
2152         u8 sense_key;
2153         u8 asc;      /* additional sense code */
2154         u8 ascq;     /* additional sense code qualifier */
2155         unsigned long sense_data_size;
2156
2157         ei = cp->err_info;
2158         cmd = cp->scsi_cmd;
2159         h = cp->h;
2160         dev = cmd->device->hostdata;
2161         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2162
2163         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2164         if ((cp->cmd_type == CMD_SCSI) &&
2165                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2166                 hpsa_unmap_sg_chain_block(h, cp);
2167
2168         if ((cp->cmd_type == CMD_IOACCEL2) &&
2169                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2170                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2171
2172         cmd->result = (DID_OK << 16);           /* host byte */
2173         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2174
2175         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2176                 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2177
2178         /*
2179          * We check for lockup status here as it may be set for
2180          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2181          * fail_all_oustanding_cmds()
2182          */
2183         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2184                 /* DID_NO_CONNECT will prevent a retry */
2185                 cmd->result = DID_NO_CONNECT << 16;
2186                 return hpsa_cmd_free_and_done(h, cp, cmd);
2187         }
2188
2189         if ((unlikely(hpsa_is_pending_event(cp)))) {
2190                 if (cp->reset_pending)
2191                         return hpsa_cmd_resolve_and_free(h, cp);
2192                 if (cp->abort_pending)
2193                         return hpsa_cmd_abort_and_free(h, cp, cmd);
2194         }
2195
2196         if (cp->cmd_type == CMD_IOACCEL2)
2197                 return process_ioaccel2_completion(h, cp, cmd, dev);
2198
2199         scsi_set_resid(cmd, ei->ResidualCnt);
2200         if (ei->CommandStatus == 0)
2201                 return hpsa_cmd_free_and_done(h, cp, cmd);
2202
2203         /* For I/O accelerator commands, copy over some fields to the normal
2204          * CISS header used below for error handling.
2205          */
2206         if (cp->cmd_type == CMD_IOACCEL1) {
2207                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2208                 cp->Header.SGList = scsi_sg_count(cmd);
2209                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2210                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2211                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2212                 cp->Header.tag = c->tag;
2213                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2214                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2215
2216                 /* Any RAID offload error results in retry which will use
2217                  * the normal I/O path so the controller can handle whatever's
2218                  * wrong.
2219                  */
2220                 if (is_logical_dev_addr_mode(dev->scsi3addr)) {
2221                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2222                                 dev->offload_enabled = 0;
2223                         return hpsa_retry_cmd(h, cp);
2224                 }
2225         }
2226
2227         /* an error has occurred */
2228         switch (ei->CommandStatus) {
2229
2230         case CMD_TARGET_STATUS:
2231                 cmd->result |= ei->ScsiStatus;
2232                 /* copy the sense data */
2233                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2234                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2235                 else
2236                         sense_data_size = sizeof(ei->SenseInfo);
2237                 if (ei->SenseLen < sense_data_size)
2238                         sense_data_size = ei->SenseLen;
2239                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2240                 if (ei->ScsiStatus)
2241                         decode_sense_data(ei->SenseInfo, sense_data_size,
2242                                 &sense_key, &asc, &ascq);
2243                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2244                         if (sense_key == ABORTED_COMMAND) {
2245                                 cmd->result |= DID_SOFT_ERROR << 16;
2246                                 break;
2247                         }
2248                         break;
2249                 }
2250                 /* Problem was not a check condition
2251                  * Pass it up to the upper layers...
2252                  */
2253                 if (ei->ScsiStatus) {
2254                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2255                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2256                                 "Returning result: 0x%x\n",
2257                                 cp, ei->ScsiStatus,
2258                                 sense_key, asc, ascq,
2259                                 cmd->result);
2260                 } else {  /* scsi status is zero??? How??? */
2261                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2262                                 "Returning no connection.\n", cp),
2263
2264                         /* Ordinarily, this case should never happen,
2265                          * but there is a bug in some released firmware
2266                          * revisions that allows it to happen if, for
2267                          * example, a 4100 backplane loses power and
2268                          * the tape drive is in it.  We assume that
2269                          * it's a fatal error of some kind because we
2270                          * can't show that it wasn't. We will make it
2271                          * look like selection timeout since that is
2272                          * the most common reason for this to occur,
2273                          * and it's severe enough.
2274                          */
2275
2276                         cmd->result = DID_NO_CONNECT << 16;
2277                 }
2278                 break;
2279
2280         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2281                 break;
2282         case CMD_DATA_OVERRUN:
2283                 dev_warn(&h->pdev->dev,
2284                         "CDB %16phN data overrun\n", cp->Request.CDB);
2285                 break;
2286         case CMD_INVALID: {
2287                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2288                 print_cmd(cp); */
2289                 /* We get CMD_INVALID if you address a non-existent device
2290                  * instead of a selection timeout (no response).  You will
2291                  * see this if you yank out a drive, then try to access it.
2292                  * This is kind of a shame because it means that any other
2293                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2294                  * missing target. */
2295                 cmd->result = DID_NO_CONNECT << 16;
2296         }
2297                 break;
2298         case CMD_PROTOCOL_ERR:
2299                 cmd->result = DID_ERROR << 16;
2300                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2301                                 cp->Request.CDB);
2302                 break;
2303         case CMD_HARDWARE_ERR:
2304                 cmd->result = DID_ERROR << 16;
2305                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2306                         cp->Request.CDB);
2307                 break;
2308         case CMD_CONNECTION_LOST:
2309                 cmd->result = DID_ERROR << 16;
2310                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2311                         cp->Request.CDB);
2312                 break;
2313         case CMD_ABORTED:
2314                 /* Return now to avoid calling scsi_done(). */
2315                 return hpsa_cmd_abort_and_free(h, cp, cmd);
2316         case CMD_ABORT_FAILED:
2317                 cmd->result = DID_ERROR << 16;
2318                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2319                         cp->Request.CDB);
2320                 break;
2321         case CMD_UNSOLICITED_ABORT:
2322                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2323                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2324                         cp->Request.CDB);
2325                 break;
2326         case CMD_TIMEOUT:
2327                 cmd->result = DID_TIME_OUT << 16;
2328                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2329                         cp->Request.CDB);
2330                 break;
2331         case CMD_UNABORTABLE:
2332                 cmd->result = DID_ERROR << 16;
2333                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2334                 break;
2335         case CMD_TMF_STATUS:
2336                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2337                         cmd->result = DID_ERROR << 16;
2338                 break;
2339         case CMD_IOACCEL_DISABLED:
2340                 /* This only handles the direct pass-through case since RAID
2341                  * offload is handled above.  Just attempt a retry.
2342                  */
2343                 cmd->result = DID_SOFT_ERROR << 16;
2344                 dev_warn(&h->pdev->dev,
2345                                 "cp %p had HP SSD Smart Path error\n", cp);
2346                 break;
2347         default:
2348                 cmd->result = DID_ERROR << 16;
2349                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2350                                 cp, ei->CommandStatus);
2351         }
2352
2353         return hpsa_cmd_free_and_done(h, cp, cmd);
2354 }
2355
2356 static void hpsa_pci_unmap(struct pci_dev *pdev,
2357         struct CommandList *c, int sg_used, int data_direction)
2358 {
2359         int i;
2360
2361         for (i = 0; i < sg_used; i++)
2362                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2363                                 le32_to_cpu(c->SG[i].Len),
2364                                 data_direction);
2365 }
2366
2367 static int hpsa_map_one(struct pci_dev *pdev,
2368                 struct CommandList *cp,
2369                 unsigned char *buf,
2370                 size_t buflen,
2371                 int data_direction)
2372 {
2373         u64 addr64;
2374
2375         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2376                 cp->Header.SGList = 0;
2377                 cp->Header.SGTotal = cpu_to_le16(0);
2378                 return 0;
2379         }
2380
2381         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2382         if (dma_mapping_error(&pdev->dev, addr64)) {
2383                 /* Prevent subsequent unmap of something never mapped */
2384                 cp->Header.SGList = 0;
2385                 cp->Header.SGTotal = cpu_to_le16(0);
2386                 return -1;
2387         }
2388         cp->SG[0].Addr = cpu_to_le64(addr64);
2389         cp->SG[0].Len = cpu_to_le32(buflen);
2390         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2391         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2392         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2393         return 0;
2394 }
2395
2396 #define NO_TIMEOUT ((unsigned long) -1)
2397 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2398 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2399         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2400 {
2401         DECLARE_COMPLETION_ONSTACK(wait);
2402
2403         c->waiting = &wait;
2404         __enqueue_cmd_and_start_io(h, c, reply_queue);
2405         if (timeout_msecs == NO_TIMEOUT) {
2406                 /* TODO: get rid of this no-timeout thing */
2407                 wait_for_completion_io(&wait);
2408                 return IO_OK;
2409         }
2410         if (!wait_for_completion_io_timeout(&wait,
2411                                         msecs_to_jiffies(timeout_msecs))) {
2412                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2413                 return -ETIMEDOUT;
2414         }
2415         return IO_OK;
2416 }
2417
2418 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2419                                    int reply_queue, unsigned long timeout_msecs)
2420 {
2421         if (unlikely(lockup_detected(h))) {
2422                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2423                 return IO_OK;
2424         }
2425         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2426 }
2427
2428 static u32 lockup_detected(struct ctlr_info *h)
2429 {
2430         int cpu;
2431         u32 rc, *lockup_detected;
2432
2433         cpu = get_cpu();
2434         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2435         rc = *lockup_detected;
2436         put_cpu();
2437         return rc;
2438 }
2439
2440 #define MAX_DRIVER_CMD_RETRIES 25
2441 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2442         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2443 {
2444         int backoff_time = 10, retry_count = 0;
2445         int rc;
2446
2447         do {
2448                 memset(c->err_info, 0, sizeof(*c->err_info));
2449                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2450                                                   timeout_msecs);
2451                 if (rc)
2452                         break;
2453                 retry_count++;
2454                 if (retry_count > 3) {
2455                         msleep(backoff_time);
2456                         if (backoff_time < 1000)
2457                                 backoff_time *= 2;
2458                 }
2459         } while ((check_for_unit_attention(h, c) ||
2460                         check_for_busy(h, c)) &&
2461                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2462         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2463         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2464                 rc = -EIO;
2465         return rc;
2466 }
2467
2468 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2469                                 struct CommandList *c)
2470 {
2471         const u8 *cdb = c->Request.CDB;
2472         const u8 *lun = c->Header.LUN.LunAddrBytes;
2473
2474         dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2475         " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2476                 txt, lun[0], lun[1], lun[2], lun[3],
2477                 lun[4], lun[5], lun[6], lun[7],
2478                 cdb[0], cdb[1], cdb[2], cdb[3],
2479                 cdb[4], cdb[5], cdb[6], cdb[7],
2480                 cdb[8], cdb[9], cdb[10], cdb[11],
2481                 cdb[12], cdb[13], cdb[14], cdb[15]);
2482 }
2483
2484 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2485                         struct CommandList *cp)
2486 {
2487         const struct ErrorInfo *ei = cp->err_info;
2488         struct device *d = &cp->h->pdev->dev;
2489         u8 sense_key, asc, ascq;
2490         int sense_len;
2491
2492         switch (ei->CommandStatus) {
2493         case CMD_TARGET_STATUS:
2494                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2495                         sense_len = sizeof(ei->SenseInfo);
2496                 else
2497                         sense_len = ei->SenseLen;
2498                 decode_sense_data(ei->SenseInfo, sense_len,
2499                                         &sense_key, &asc, &ascq);
2500                 hpsa_print_cmd(h, "SCSI status", cp);
2501                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2502                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2503                                 sense_key, asc, ascq);
2504                 else
2505                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2506                 if (ei->ScsiStatus == 0)
2507                         dev_warn(d, "SCSI status is abnormally zero.  "
2508                         "(probably indicates selection timeout "
2509                         "reported incorrectly due to a known "
2510                         "firmware bug, circa July, 2001.)\n");
2511                 break;
2512         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2513                 break;
2514         case CMD_DATA_OVERRUN:
2515                 hpsa_print_cmd(h, "overrun condition", cp);
2516                 break;
2517         case CMD_INVALID: {
2518                 /* controller unfortunately reports SCSI passthru's
2519                  * to non-existent targets as invalid commands.
2520                  */
2521                 hpsa_print_cmd(h, "invalid command", cp);
2522                 dev_warn(d, "probably means device no longer present\n");
2523                 }
2524                 break;
2525         case CMD_PROTOCOL_ERR:
2526                 hpsa_print_cmd(h, "protocol error", cp);
2527                 break;
2528         case CMD_HARDWARE_ERR:
2529                 hpsa_print_cmd(h, "hardware error", cp);
2530                 break;
2531         case CMD_CONNECTION_LOST:
2532                 hpsa_print_cmd(h, "connection lost", cp);
2533                 break;
2534         case CMD_ABORTED:
2535                 hpsa_print_cmd(h, "aborted", cp);
2536                 break;
2537         case CMD_ABORT_FAILED:
2538                 hpsa_print_cmd(h, "abort failed", cp);
2539                 break;
2540         case CMD_UNSOLICITED_ABORT:
2541                 hpsa_print_cmd(h, "unsolicited abort", cp);
2542                 break;
2543         case CMD_TIMEOUT:
2544                 hpsa_print_cmd(h, "timed out", cp);
2545                 break;
2546         case CMD_UNABORTABLE:
2547                 hpsa_print_cmd(h, "unabortable", cp);
2548                 break;
2549         case CMD_CTLR_LOCKUP:
2550                 hpsa_print_cmd(h, "controller lockup detected", cp);
2551                 break;
2552         default:
2553                 hpsa_print_cmd(h, "unknown status", cp);
2554                 dev_warn(d, "Unknown command status %x\n",
2555                                 ei->CommandStatus);
2556         }
2557 }
2558
2559 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2560                         u16 page, unsigned char *buf,
2561                         unsigned char bufsize)
2562 {
2563         int rc = IO_OK;
2564         struct CommandList *c;
2565         struct ErrorInfo *ei;
2566
2567         c = cmd_alloc(h);
2568
2569         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2570                         page, scsi3addr, TYPE_CMD)) {
2571                 rc = -1;
2572                 goto out;
2573         }
2574         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2575                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2576         if (rc)
2577                 goto out;
2578         ei = c->err_info;
2579         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2580                 hpsa_scsi_interpret_error(h, c);
2581                 rc = -1;
2582         }
2583 out:
2584         cmd_free(h, c);
2585         return rc;
2586 }
2587
2588 static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
2589                 unsigned char *scsi3addr, unsigned char page,
2590                 struct bmic_controller_parameters *buf, size_t bufsize)
2591 {
2592         int rc = IO_OK;
2593         struct CommandList *c;
2594         struct ErrorInfo *ei;
2595
2596         c = cmd_alloc(h);
2597         if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
2598                         page, scsi3addr, TYPE_CMD)) {
2599                 rc = -1;
2600                 goto out;
2601         }
2602         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2603                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2604         if (rc)
2605                 goto out;
2606         ei = c->err_info;
2607         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2608                 hpsa_scsi_interpret_error(h, c);
2609                 rc = -1;
2610         }
2611 out:
2612         cmd_free(h, c);
2613         return rc;
2614 }
2615
2616 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2617         u8 reset_type, int reply_queue)
2618 {
2619         int rc = IO_OK;
2620         struct CommandList *c;
2621         struct ErrorInfo *ei;
2622
2623         c = cmd_alloc(h);
2624
2625
2626         /* fill_cmd can't fail here, no data buffer to map. */
2627         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2628                         scsi3addr, TYPE_MSG);
2629         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2630         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2631         if (rc) {
2632                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2633                 goto out;
2634         }
2635         /* no unmap needed here because no data xfer. */
2636
2637         ei = c->err_info;
2638         if (ei->CommandStatus != 0) {
2639                 hpsa_scsi_interpret_error(h, c);
2640                 rc = -1;
2641         }
2642 out:
2643         cmd_free(h, c);
2644         return rc;
2645 }
2646
2647 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2648                                struct hpsa_scsi_dev_t *dev,
2649                                unsigned char *scsi3addr)
2650 {
2651         int i;
2652         bool match = false;
2653         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2654         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2655
2656         if (hpsa_is_cmd_idle(c))
2657                 return false;
2658
2659         switch (c->cmd_type) {
2660         case CMD_SCSI:
2661         case CMD_IOCTL_PEND:
2662                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2663                                 sizeof(c->Header.LUN.LunAddrBytes));
2664                 break;
2665
2666         case CMD_IOACCEL1:
2667         case CMD_IOACCEL2:
2668                 if (c->phys_disk == dev) {
2669                         /* HBA mode match */
2670                         match = true;
2671                 } else {
2672                         /* Possible RAID mode -- check each phys dev. */
2673                         /* FIXME:  Do we need to take out a lock here?  If
2674                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2675                          * instead. */
2676                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
2677                                 /* FIXME: an alternate test might be
2678                                  *
2679                                  * match = dev->phys_disk[i]->ioaccel_handle
2680                                  *              == c2->scsi_nexus;      */
2681                                 match = dev->phys_disk[i] == c->phys_disk;
2682                         }
2683                 }
2684                 break;
2685
2686         case IOACCEL2_TMF:
2687                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2688                         match = dev->phys_disk[i]->ioaccel_handle ==
2689                                         le32_to_cpu(ac->it_nexus);
2690                 }
2691                 break;
2692
2693         case 0:         /* The command is in the middle of being initialized. */
2694                 match = false;
2695                 break;
2696
2697         default:
2698                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
2699                         c->cmd_type);
2700                 BUG();
2701         }
2702
2703         return match;
2704 }
2705
2706 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
2707         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
2708 {
2709         int i;
2710         int rc = 0;
2711
2712         /* We can really only handle one reset at a time */
2713         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
2714                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
2715                 return -EINTR;
2716         }
2717
2718         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
2719
2720         for (i = 0; i < h->nr_cmds; i++) {
2721                 struct CommandList *c = h->cmd_pool + i;
2722                 int refcount = atomic_inc_return(&c->refcount);
2723
2724                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
2725                         unsigned long flags;
2726
2727                         /*
2728                          * Mark the target command as having a reset pending,
2729                          * then lock a lock so that the command cannot complete
2730                          * while we're considering it.  If the command is not
2731                          * idle then count it; otherwise revoke the event.
2732                          */
2733                         c->reset_pending = dev;
2734                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
2735                         if (!hpsa_is_cmd_idle(c))
2736                                 atomic_inc(&dev->reset_cmds_out);
2737                         else
2738                                 c->reset_pending = NULL;
2739                         spin_unlock_irqrestore(&h->lock, flags);
2740                 }
2741
2742                 cmd_free(h, c);
2743         }
2744
2745         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
2746         if (!rc)
2747                 wait_event(h->event_sync_wait_queue,
2748                         atomic_read(&dev->reset_cmds_out) == 0 ||
2749                         lockup_detected(h));
2750
2751         if (unlikely(lockup_detected(h))) {
2752                 dev_warn(&h->pdev->dev,
2753                          "Controller lockup detected during reset wait\n");
2754                 rc = -ENODEV;
2755         }
2756
2757         if (unlikely(rc))
2758                 atomic_set(&dev->reset_cmds_out, 0);
2759
2760         mutex_unlock(&h->reset_mutex);
2761         return rc;
2762 }
2763
2764 static void hpsa_get_raid_level(struct ctlr_info *h,
2765         unsigned char *scsi3addr, unsigned char *raid_level)
2766 {
2767         int rc;
2768         unsigned char *buf;
2769
2770         *raid_level = RAID_UNKNOWN;
2771         buf = kzalloc(64, GFP_KERNEL);
2772         if (!buf)
2773                 return;
2774         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2775         if (rc == 0)
2776                 *raid_level = buf[8];
2777         if (*raid_level > RAID_UNKNOWN)
2778                 *raid_level = RAID_UNKNOWN;
2779         kfree(buf);
2780         return;
2781 }
2782
2783 #define HPSA_MAP_DEBUG
2784 #ifdef HPSA_MAP_DEBUG
2785 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2786                                 struct raid_map_data *map_buff)
2787 {
2788         struct raid_map_disk_data *dd = &map_buff->data[0];
2789         int map, row, col;
2790         u16 map_cnt, row_cnt, disks_per_row;
2791
2792         if (rc != 0)
2793                 return;
2794
2795         /* Show details only if debugging has been activated. */
2796         if (h->raid_offload_debug < 2)
2797                 return;
2798
2799         dev_info(&h->pdev->dev, "structure_size = %u\n",
2800                                 le32_to_cpu(map_buff->structure_size));
2801         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2802                         le32_to_cpu(map_buff->volume_blk_size));
2803         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2804                         le64_to_cpu(map_buff->volume_blk_cnt));
2805         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2806                         map_buff->phys_blk_shift);
2807         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2808                         map_buff->parity_rotation_shift);
2809         dev_info(&h->pdev->dev, "strip_size = %u\n",
2810                         le16_to_cpu(map_buff->strip_size));
2811         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2812                         le64_to_cpu(map_buff->disk_starting_blk));
2813         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2814                         le64_to_cpu(map_buff->disk_blk_cnt));
2815         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2816                         le16_to_cpu(map_buff->data_disks_per_row));
2817         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2818                         le16_to_cpu(map_buff->metadata_disks_per_row));
2819         dev_info(&h->pdev->dev, "row_cnt = %u\n",
2820                         le16_to_cpu(map_buff->row_cnt));
2821         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2822                         le16_to_cpu(map_buff->layout_map_count));
2823         dev_info(&h->pdev->dev, "flags = 0x%x\n",
2824                         le16_to_cpu(map_buff->flags));
2825         dev_info(&h->pdev->dev, "encrypytion = %s\n",
2826                         le16_to_cpu(map_buff->flags) &
2827                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
2828         dev_info(&h->pdev->dev, "dekindex = %u\n",
2829                         le16_to_cpu(map_buff->dekindex));
2830         map_cnt = le16_to_cpu(map_buff->layout_map_count);
2831         for (map = 0; map < map_cnt; map++) {
2832                 dev_info(&h->pdev->dev, "Map%u:\n", map);
2833                 row_cnt = le16_to_cpu(map_buff->row_cnt);
2834                 for (row = 0; row < row_cnt; row++) {
2835                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
2836                         disks_per_row =
2837                                 le16_to_cpu(map_buff->data_disks_per_row);
2838                         for (col = 0; col < disks_per_row; col++, dd++)
2839                                 dev_info(&h->pdev->dev,
2840                                         "    D%02u: h=0x%04x xor=%u,%u\n",
2841                                         col, dd->ioaccel_handle,
2842                                         dd->xor_mult[0], dd->xor_mult[1]);
2843                         disks_per_row =
2844                                 le16_to_cpu(map_buff->metadata_disks_per_row);
2845                         for (col = 0; col < disks_per_row; col++, dd++)
2846                                 dev_info(&h->pdev->dev,
2847                                         "    M%02u: h=0x%04x xor=%u,%u\n",
2848                                         col, dd->ioaccel_handle,
2849                                         dd->xor_mult[0], dd->xor_mult[1]);
2850                 }
2851         }
2852 }
2853 #else
2854 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2855                         __attribute__((unused)) int rc,
2856                         __attribute__((unused)) struct raid_map_data *map_buff)
2857 {
2858 }
2859 #endif
2860
2861 static int hpsa_get_raid_map(struct ctlr_info *h,
2862         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2863 {
2864         int rc = 0;
2865         struct CommandList *c;
2866         struct ErrorInfo *ei;
2867
2868         c = cmd_alloc(h);
2869
2870         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2871                         sizeof(this_device->raid_map), 0,
2872                         scsi3addr, TYPE_CMD)) {
2873                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
2874                 cmd_free(h, c);
2875                 return -1;
2876         }
2877         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2878                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2879         if (rc)
2880                 goto out;
2881         ei = c->err_info;
2882         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2883                 hpsa_scsi_interpret_error(h, c);
2884                 rc = -1;
2885                 goto out;
2886         }
2887         cmd_free(h, c);
2888
2889         /* @todo in the future, dynamically allocate RAID map memory */
2890         if (le32_to_cpu(this_device->raid_map.structure_size) >
2891                                 sizeof(this_device->raid_map)) {
2892                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2893                 rc = -1;
2894         }
2895         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2896         return rc;
2897 out:
2898         cmd_free(h, c);
2899         return rc;
2900 }
2901
2902 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
2903                 unsigned char scsi3addr[], u16 bmic_device_index,
2904                 struct bmic_identify_physical_device *buf, size_t bufsize)
2905 {
2906         int rc = IO_OK;
2907         struct CommandList *c;
2908         struct ErrorInfo *ei;
2909
2910         c = cmd_alloc(h);
2911         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
2912                 0, RAID_CTLR_LUNID, TYPE_CMD);
2913         if (rc)
2914                 goto out;
2915
2916         c->Request.CDB[2] = bmic_device_index & 0xff;
2917         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
2918
2919         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
2920                                                 NO_TIMEOUT);
2921         ei = c->err_info;
2922         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2923                 hpsa_scsi_interpret_error(h, c);
2924                 rc = -1;
2925         }
2926 out:
2927         cmd_free(h, c);
2928         return rc;
2929 }
2930
2931 static int hpsa_vpd_page_supported(struct ctlr_info *h,
2932         unsigned char scsi3addr[], u8 page)
2933 {
2934         int rc;
2935         int i;
2936         int pages;
2937         unsigned char *buf, bufsize;
2938
2939         buf = kzalloc(256, GFP_KERNEL);
2940         if (!buf)
2941                 return 0;
2942
2943         /* Get the size of the page list first */
2944         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2945                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2946                                 buf, HPSA_VPD_HEADER_SZ);
2947         if (rc != 0)
2948                 goto exit_unsupported;
2949         pages = buf[3];
2950         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
2951                 bufsize = pages + HPSA_VPD_HEADER_SZ;
2952         else
2953                 bufsize = 255;
2954
2955         /* Get the whole VPD page list */
2956         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2957                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2958                                 buf, bufsize);
2959         if (rc != 0)
2960                 goto exit_unsupported;
2961
2962         pages = buf[3];
2963         for (i = 1; i <= pages; i++)
2964                 if (buf[3 + i] == page)
2965                         goto exit_supported;
2966 exit_unsupported:
2967         kfree(buf);
2968         return 0;
2969 exit_supported:
2970         kfree(buf);
2971         return 1;
2972 }
2973
2974 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
2975         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2976 {
2977         int rc;
2978         unsigned char *buf;
2979         u8 ioaccel_status;
2980
2981         this_device->offload_config = 0;
2982         this_device->offload_enabled = 0;
2983         this_device->offload_to_be_enabled = 0;
2984
2985         buf = kzalloc(64, GFP_KERNEL);
2986         if (!buf)
2987                 return;
2988         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
2989                 goto out;
2990         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2991                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2992         if (rc != 0)
2993                 goto out;
2994
2995 #define IOACCEL_STATUS_BYTE 4
2996 #define OFFLOAD_CONFIGURED_BIT 0x01
2997 #define OFFLOAD_ENABLED_BIT 0x02
2998         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
2999         this_device->offload_config =
3000                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3001         if (this_device->offload_config) {
3002                 this_device->offload_enabled =
3003                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3004                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3005                         this_device->offload_enabled = 0;
3006         }
3007         this_device->offload_to_be_enabled = this_device->offload_enabled;
3008 out:
3009         kfree(buf);
3010         return;
3011 }
3012
3013 /* Get the device id from inquiry page 0x83 */
3014 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3015         unsigned char *device_id, int buflen)
3016 {
3017         int rc;
3018         unsigned char *buf;
3019
3020         if (buflen > 16)
3021                 buflen = 16;
3022         buf = kzalloc(64, GFP_KERNEL);
3023         if (!buf)
3024                 return -ENOMEM;
3025         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3026         if (rc == 0)
3027                 memcpy(device_id, &buf[8], buflen);
3028         kfree(buf);
3029         return rc != 0;
3030 }
3031
3032 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3033                 void *buf, int bufsize,
3034                 int extended_response)
3035 {
3036         int rc = IO_OK;
3037         struct CommandList *c;
3038         unsigned char scsi3addr[8];
3039         struct ErrorInfo *ei;
3040
3041         c = cmd_alloc(h);
3042
3043         /* address the controller */
3044         memset(scsi3addr, 0, sizeof(scsi3addr));
3045         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3046                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3047                 rc = -1;
3048                 goto out;
3049         }
3050         if (extended_response)
3051                 c->Request.CDB[1] = extended_response;
3052         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3053                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3054         if (rc)
3055                 goto out;
3056         ei = c->err_info;
3057         if (ei->CommandStatus != 0 &&
3058             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3059                 hpsa_scsi_interpret_error(h, c);
3060                 rc = -1;
3061         } else {
3062                 struct ReportLUNdata *rld = buf;
3063
3064                 if (rld->extended_response_flag != extended_response) {
3065                         dev_err(&h->pdev->dev,
3066                                 "report luns requested format %u, got %u\n",
3067                                 extended_response,
3068                                 rld->extended_response_flag);
3069                         rc = -1;
3070                 }
3071         }
3072 out:
3073         cmd_free(h, c);
3074         return rc;
3075 }
3076
3077 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3078                 struct ReportExtendedLUNdata *buf, int bufsize)
3079 {
3080         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3081                                                 HPSA_REPORT_PHYS_EXTENDED);
3082 }
3083
3084 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3085                 struct ReportLUNdata *buf, int bufsize)
3086 {
3087         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3088 }
3089
3090 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3091         int bus, int target, int lun)
3092 {
3093         device->bus = bus;
3094         device->target = target;
3095         device->lun = lun;
3096 }
3097
3098 /* Use VPD inquiry to get details of volume status */
3099 static int hpsa_get_volume_status(struct ctlr_info *h,
3100                                         unsigned char scsi3addr[])
3101 {
3102         int rc;
3103         int status;
3104         int size;
3105         unsigned char *buf;
3106
3107         buf = kzalloc(64, GFP_KERNEL);
3108         if (!buf)
3109                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3110
3111         /* Does controller have VPD for logical volume status? */
3112         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3113                 goto exit_failed;
3114
3115         /* Get the size of the VPD return buffer */
3116         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3117                                         buf, HPSA_VPD_HEADER_SZ);
3118         if (rc != 0)
3119                 goto exit_failed;
3120         size = buf[3];
3121
3122         /* Now get the whole VPD buffer */
3123         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3124                                         buf, size + HPSA_VPD_HEADER_SZ);
3125         if (rc != 0)
3126                 goto exit_failed;
3127         status = buf[4]; /* status byte */
3128
3129         kfree(buf);
3130         return status;
3131 exit_failed:
3132         kfree(buf);
3133         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3134 }
3135
3136 /* Determine offline status of a volume.
3137  * Return either:
3138  *  0 (not offline)
3139  *  0xff (offline for unknown reasons)
3140  *  # (integer code indicating one of several NOT READY states
3141  *     describing why a volume is to be kept offline)
3142  */
3143 static int hpsa_volume_offline(struct ctlr_info *h,
3144                                         unsigned char scsi3addr[])
3145 {
3146         struct CommandList *c;
3147         unsigned char *sense;
3148         u8 sense_key, asc, ascq;
3149         int sense_len;
3150         int rc, ldstat = 0;
3151         u16 cmd_status;
3152         u8 scsi_status;
3153 #define ASC_LUN_NOT_READY 0x04
3154 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3155 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3156
3157         c = cmd_alloc(h);
3158
3159         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3160         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3161         if (rc) {
3162                 cmd_free(h, c);
3163                 return 0;
3164         }
3165         sense = c->err_info->SenseInfo;
3166         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3167                 sense_len = sizeof(c->err_info->SenseInfo);
3168         else
3169                 sense_len = c->err_info->SenseLen;
3170         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3171         cmd_status = c->err_info->CommandStatus;
3172         scsi_status = c->err_info->ScsiStatus;
3173         cmd_free(h, c);
3174         /* Is the volume 'not ready'? */
3175         if (cmd_status != CMD_TARGET_STATUS ||
3176                 scsi_status != SAM_STAT_CHECK_CONDITION ||
3177                 sense_key != NOT_READY ||
3178                 asc != ASC_LUN_NOT_READY)  {
3179                 return 0;
3180         }
3181
3182         /* Determine the reason for not ready state */
3183         ldstat = hpsa_get_volume_status(h, scsi3addr);
3184
3185         /* Keep volume offline in certain cases: */
3186         switch (ldstat) {
3187         case HPSA_LV_UNDERGOING_ERASE:
3188         case HPSA_LV_UNDERGOING_RPI:
3189         case HPSA_LV_PENDING_RPI:
3190         case HPSA_LV_ENCRYPTED_NO_KEY:
3191         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3192         case HPSA_LV_UNDERGOING_ENCRYPTION:
3193         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3194         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3195                 return ldstat;
3196         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3197                 /* If VPD status page isn't available,
3198                  * use ASC/ASCQ to determine state
3199                  */
3200                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3201                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3202                         return ldstat;
3203                 break;
3204         default:
3205                 break;
3206         }
3207         return 0;
3208 }
3209
3210 /*
3211  * Find out if a logical device supports aborts by simply trying one.
3212  * Smart Array may claim not to support aborts on logical drives, but
3213  * if a MSA2000 * is connected, the drives on that will be presented
3214  * by the Smart Array as logical drives, and aborts may be sent to
3215  * those devices successfully.  So the simplest way to find out is
3216  * to simply try an abort and see how the device responds.
3217  */
3218 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3219                                         unsigned char *scsi3addr)
3220 {
3221         struct CommandList *c;
3222         struct ErrorInfo *ei;
3223         int rc = 0;
3224
3225         u64 tag = (u64) -1; /* bogus tag */
3226
3227         /* Assume that physical devices support aborts */
3228         if (!is_logical_dev_addr_mode(scsi3addr))
3229                 return 1;
3230
3231         c = cmd_alloc(h);
3232
3233         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3234         (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3235         /* no unmap needed here because no data xfer. */
3236         ei = c->err_info;
3237         switch (ei->CommandStatus) {
3238         case CMD_INVALID:
3239                 rc = 0;
3240                 break;
3241         case CMD_UNABORTABLE:
3242         case CMD_ABORT_FAILED:
3243                 rc = 1;
3244                 break;
3245         case CMD_TMF_STATUS:
3246                 rc = hpsa_evaluate_tmf_status(h, c);
3247                 break;
3248         default:
3249                 rc = 0;
3250                 break;
3251         }
3252         cmd_free(h, c);
3253         return rc;
3254 }
3255
3256 static int hpsa_update_device_info(struct ctlr_info *h,
3257         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3258         unsigned char *is_OBDR_device)
3259 {
3260
3261 #define OBDR_SIG_OFFSET 43
3262 #define OBDR_TAPE_SIG "$DR-10"
3263 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3264 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3265
3266         unsigned char *inq_buff;
3267         unsigned char *obdr_sig;
3268
3269         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3270         if (!inq_buff)
3271                 goto bail_out;
3272
3273         /* Do an inquiry to the device to see what it is. */
3274         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3275                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3276                 /* Inquiry failed (msg printed already) */
3277                 dev_err(&h->pdev->dev,
3278                         "hpsa_update_device_info: inquiry failed\n");
3279                 goto bail_out;
3280         }
3281
3282         this_device->devtype = (inq_buff[0] & 0x1f);
3283         memcpy(this_device->scsi3addr, scsi3addr, 8);
3284         memcpy(this_device->vendor, &inq_buff[8],
3285                 sizeof(this_device->vendor));
3286         memcpy(this_device->model, &inq_buff[16],
3287                 sizeof(this_device->model));
3288         memset(this_device->device_id, 0,
3289                 sizeof(this_device->device_id));
3290         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
3291                 sizeof(this_device->device_id));
3292
3293         if (this_device->devtype == TYPE_DISK &&
3294                 is_logical_dev_addr_mode(scsi3addr)) {
3295                 int volume_offline;
3296
3297                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3298                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3299                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3300                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3301                 if (volume_offline < 0 || volume_offline > 0xff)
3302                         volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3303                 this_device->volume_offline = volume_offline & 0xff;
3304         } else {
3305                 this_device->raid_level = RAID_UNKNOWN;
3306                 this_device->offload_config = 0;
3307                 this_device->offload_enabled = 0;
3308                 this_device->offload_to_be_enabled = 0;
3309                 this_device->hba_ioaccel_enabled = 0;
3310                 this_device->volume_offline = 0;
3311                 this_device->queue_depth = h->nr_cmds;
3312         }
3313
3314         if (is_OBDR_device) {
3315                 /* See if this is a One-Button-Disaster-Recovery device
3316                  * by looking for "$DR-10" at offset 43 in inquiry data.
3317                  */
3318                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3319                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3320                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
3321                                                 OBDR_SIG_LEN) == 0);
3322         }
3323         kfree(inq_buff);
3324         return 0;
3325
3326 bail_out:
3327         kfree(inq_buff);
3328         return 1;
3329 }
3330
3331 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3332                         struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3333 {
3334         unsigned long flags;
3335         int rc, entry;
3336         /*
3337          * See if this device supports aborts.  If we already know
3338          * the device, we already know if it supports aborts, otherwise
3339          * we have to find out if it supports aborts by trying one.
3340          */
3341         spin_lock_irqsave(&h->devlock, flags);
3342         rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3343         if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3344                 entry >= 0 && entry < h->ndevices) {
3345                 dev->supports_aborts = h->dev[entry]->supports_aborts;
3346                 spin_unlock_irqrestore(&h->devlock, flags);
3347         } else {
3348                 spin_unlock_irqrestore(&h->devlock, flags);
3349                 dev->supports_aborts =
3350                                 hpsa_device_supports_aborts(h, scsi3addr);
3351                 if (dev->supports_aborts < 0)
3352                         dev->supports_aborts = 0;
3353         }
3354 }
3355
3356 static unsigned char *ext_target_model[] = {
3357         "MSA2012",
3358         "MSA2024",
3359         "MSA2312",
3360         "MSA2324",
3361         "P2000 G3 SAS",
3362         "MSA 2040 SAS",
3363         NULL,
3364 };
3365
3366 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
3367 {
3368         int i;
3369
3370         for (i = 0; ext_target_model[i]; i++)
3371                 if (strncmp(device->model, ext_target_model[i],
3372                         strlen(ext_target_model[i])) == 0)
3373                         return 1;
3374         return 0;
3375 }
3376
3377 /* Helper function to assign bus, target, lun mapping of devices.
3378  * Puts non-external target logical volumes on bus 0, external target logical
3379  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
3380  * Logical drive target and lun are assigned at this time, but
3381  * physical device lun and target assignment are deferred (assigned
3382  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3383  */
3384 static void figure_bus_target_lun(struct ctlr_info *h,
3385         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3386 {
3387         u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
3388
3389         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3390                 /* physical device, target and lun filled in later */
3391                 if (is_hba_lunid(lunaddrbytes))
3392                         hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
3393                 else
3394                         /* defer target, lun assignment for physical devices */
3395                         hpsa_set_bus_target_lun(device, 2, -1, -1);
3396                 return;
3397         }
3398         /* It's a logical device */
3399         if (is_ext_target(h, device)) {
3400                 /* external target way, put logicals on bus 1
3401                  * and match target/lun numbers box
3402                  * reports, other smart array, bus 0, target 0, match lunid
3403                  */
3404                 hpsa_set_bus_target_lun(device,
3405                         1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
3406                 return;
3407         }
3408         hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
3409 }
3410
3411 /*
3412  * If there is no lun 0 on a target, linux won't find any devices.
3413  * For the external targets (arrays), we have to manually detect the enclosure
3414  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
3415  * it for some reason.  *tmpdevice is the target we're adding,
3416  * this_device is a pointer into the current element of currentsd[]
3417  * that we're building up in update_scsi_devices(), below.
3418  * lunzerobits is a bitmap that tracks which targets already have a
3419  * lun 0 assigned.
3420  * Returns 1 if an enclosure was added, 0 if not.
3421  */
3422 static int add_ext_target_dev(struct ctlr_info *h,
3423         struct hpsa_scsi_dev_t *tmpdevice,
3424         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
3425         unsigned long lunzerobits[], int *n_ext_target_devs)
3426 {
3427         unsigned char scsi3addr[8];
3428
3429         if (test_bit(tmpdevice->target, lunzerobits))
3430                 return 0; /* There is already a lun 0 on this target. */
3431
3432         if (!is_logical_dev_addr_mode(lunaddrbytes))
3433                 return 0; /* It's the logical targets that may lack lun 0. */
3434
3435         if (!is_ext_target(h, tmpdevice))
3436                 return 0; /* Only external target devices have this problem. */
3437
3438         if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
3439                 return 0;
3440
3441         memset(scsi3addr, 0, 8);
3442         scsi3addr[3] = tmpdevice->target;
3443         if (is_hba_lunid(scsi3addr))
3444                 return 0; /* Don't add the RAID controller here. */
3445
3446         if (is_scsi_rev_5(h))
3447                 return 0; /* p1210m doesn't need to do this. */
3448
3449         if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
3450                 dev_warn(&h->pdev->dev, "Maximum number of external "
3451                         "target devices exceeded.  Check your hardware "
3452                         "configuration.");
3453                 return 0;
3454         }
3455
3456         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
3457                 return 0;
3458         (*n_ext_target_devs)++;
3459         hpsa_set_bus_target_lun(this_device,
3460                                 tmpdevice->bus, tmpdevice->target, 0);
3461         hpsa_update_device_supports_aborts(h, this_device, scsi3addr);
3462         set_bit(tmpdevice->target, lunzerobits);
3463         return 1;
3464 }
3465
3466 /*
3467  * Get address of physical disk used for an ioaccel2 mode command:
3468  *      1. Extract ioaccel2 handle from the command.
3469  *      2. Find a matching ioaccel2 handle from list of physical disks.
3470  *      3. Return:
3471  *              1 and set scsi3addr to address of matching physical
3472  *              0 if no matching physical disk was found.
3473  */
3474 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3475         struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3476 {
3477         struct io_accel2_cmd *c2 =
3478                         &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3479         unsigned long flags;
3480         int i;
3481
3482         spin_lock_irqsave(&h->devlock, flags);
3483         for (i = 0; i < h->ndevices; i++)
3484                 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3485                         memcpy(scsi3addr, h->dev[i]->scsi3addr,
3486                                 sizeof(h->dev[i]->scsi3addr));
3487                         spin_unlock_irqrestore(&h->devlock, flags);
3488                         return 1;
3489                 }
3490         spin_unlock_irqrestore(&h->devlock, flags);
3491         return 0;
3492 }
3493
3494 /*
3495  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3496  * logdev.  The number of luns in physdev and logdev are returned in
3497  * *nphysicals and *nlogicals, respectively.
3498  * Returns 0 on success, -1 otherwise.
3499  */
3500 static int hpsa_gather_lun_info(struct ctlr_info *h,
3501         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3502         struct ReportLUNdata *logdev, u32 *nlogicals)
3503 {
3504         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3505                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3506                 return -1;
3507         }
3508         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3509         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3510                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3511                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3512                 *nphysicals = HPSA_MAX_PHYS_LUN;
3513         }
3514         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3515                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3516                 return -1;
3517         }
3518         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3519         /* Reject Logicals in excess of our max capability. */
3520         if (*nlogicals > HPSA_MAX_LUN) {
3521                 dev_warn(&h->pdev->dev,
3522                         "maximum logical LUNs (%d) exceeded.  "
3523                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
3524                         *nlogicals - HPSA_MAX_LUN);
3525                         *nlogicals = HPSA_MAX_LUN;
3526         }
3527         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3528                 dev_warn(&h->pdev->dev,
3529                         "maximum logical + physical LUNs (%d) exceeded. "
3530                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3531                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3532                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3533         }
3534         return 0;
3535 }
3536
3537 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3538         int i, int nphysicals, int nlogicals,
3539         struct ReportExtendedLUNdata *physdev_list,
3540         struct ReportLUNdata *logdev_list)
3541 {
3542         /* Helper function, figure out where the LUN ID info is coming from
3543          * given index i, lists of physical and logical devices, where in
3544          * the list the raid controller is supposed to appear (first or last)
3545          */
3546
3547         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3548         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3549
3550         if (i == raid_ctlr_position)
3551                 return RAID_CTLR_LUNID;
3552
3553         if (i < logicals_start)
3554                 return &physdev_list->LUN[i -
3555                                 (raid_ctlr_position == 0)].lunid[0];
3556
3557         if (i < last_device)
3558                 return &logdev_list->LUN[i - nphysicals -
3559                         (raid_ctlr_position == 0)][0];
3560         BUG();
3561         return NULL;
3562 }
3563
3564 static int hpsa_hba_mode_enabled(struct ctlr_info *h)
3565 {
3566         int rc;
3567         int hba_mode_enabled;
3568         struct bmic_controller_parameters *ctlr_params;
3569         ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
3570                 GFP_KERNEL);
3571
3572         if (!ctlr_params)
3573                 return -ENOMEM;
3574         rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
3575                 sizeof(struct bmic_controller_parameters));
3576         if (rc) {
3577                 kfree(ctlr_params);
3578                 return rc;
3579         }
3580
3581         hba_mode_enabled =
3582                 ((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
3583         kfree(ctlr_params);
3584         return hba_mode_enabled;
3585 }
3586
3587 /* get physical drive ioaccel handle and queue depth */
3588 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3589                 struct hpsa_scsi_dev_t *dev,
3590                 u8 *lunaddrbytes,
3591                 struct bmic_identify_physical_device *id_phys)
3592 {
3593         int rc;
3594         struct ext_report_lun_entry *rle =
3595                 (struct ext_report_lun_entry *) lunaddrbytes;
3596
3597         dev->ioaccel_handle = rle->ioaccel_handle;
3598         if (PHYS_IOACCEL(lunaddrbytes) && dev->ioaccel_handle)
3599                 dev->hba_ioaccel_enabled = 1;
3600         memset(id_phys, 0, sizeof(*id_phys));
3601         rc = hpsa_bmic_id_physical_device(h, lunaddrbytes,
3602                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes), id_phys,
3603                         sizeof(*id_phys));
3604         if (!rc)
3605                 /* Reserve space for FW operations */
3606 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3607 #define DRIVE_QUEUE_DEPTH 7
3608                 dev->queue_depth =
3609                         le16_to_cpu(id_phys->current_queue_depth_limit) -
3610                                 DRIVE_CMDS_RESERVED_FOR_FW;
3611         else
3612                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3613         atomic_set(&dev->ioaccel_cmds_out, 0);
3614         atomic_set(&dev->reset_cmds_out, 0);
3615 }
3616
3617 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
3618 {
3619         /* the idea here is we could get notified
3620          * that some devices have changed, so we do a report
3621          * physical luns and report logical luns cmd, and adjust
3622          * our list of devices accordingly.
3623          *
3624          * The scsi3addr's of devices won't change so long as the
3625          * adapter is not reset.  That means we can rescan and
3626          * tell which devices we already know about, vs. new
3627          * devices, vs.  disappearing devices.
3628          */
3629         struct ReportExtendedLUNdata *physdev_list = NULL;
3630         struct ReportLUNdata *logdev_list = NULL;
3631         struct bmic_identify_physical_device *id_phys = NULL;
3632         u32 nphysicals = 0;
3633         u32 nlogicals = 0;
3634         u32 ndev_allocated = 0;
3635         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3636         int ncurrent = 0;
3637         int i, n_ext_target_devs, ndevs_to_allocate;
3638         int raid_ctlr_position;
3639         int rescan_hba_mode;
3640         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3641
3642         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3643         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
3644         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3645         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3646         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3647
3648         if (!currentsd || !physdev_list || !logdev_list ||
3649                 !tmpdevice || !id_phys) {
3650                 dev_err(&h->pdev->dev, "out of memory\n");
3651                 goto out;
3652         }
3653         memset(lunzerobits, 0, sizeof(lunzerobits));
3654
3655         rescan_hba_mode = hpsa_hba_mode_enabled(h);
3656         if (rescan_hba_mode < 0)
3657                 goto out;
3658
3659         if (!h->hba_mode_enabled && rescan_hba_mode)
3660                 dev_warn(&h->pdev->dev, "HBA mode enabled\n");
3661         else if (h->hba_mode_enabled && !rescan_hba_mode)
3662                 dev_warn(&h->pdev->dev, "HBA mode disabled\n");
3663
3664         h->hba_mode_enabled = rescan_hba_mode;
3665
3666         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
3667                         logdev_list, &nlogicals))
3668                 goto out;
3669
3670         /* We might see up to the maximum number of logical and physical disks
3671          * plus external target devices, and a device for the local RAID
3672          * controller.
3673          */
3674         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3675
3676         /* Allocate the per device structures */
3677         for (i = 0; i < ndevs_to_allocate; i++) {
3678                 if (i >= HPSA_MAX_DEVICES) {
3679                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
3680                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
3681                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
3682                         break;
3683                 }
3684
3685                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
3686                 if (!currentsd[i]) {
3687                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
3688                                 __FILE__, __LINE__);
3689                         goto out;
3690                 }
3691                 ndev_allocated++;
3692         }
3693
3694         if (is_scsi_rev_5(h))
3695                 raid_ctlr_position = 0;
3696         else
3697                 raid_ctlr_position = nphysicals + nlogicals;
3698
3699         /* adjust our table of devices */
3700         n_ext_target_devs = 0;
3701         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3702                 u8 *lunaddrbytes, is_OBDR = 0;
3703
3704                 /* Figure out where the LUN ID info is coming from */
3705                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3706                         i, nphysicals, nlogicals, physdev_list, logdev_list);
3707
3708                 /* skip masked non-disk devices */
3709                 if (MASKED_DEVICE(lunaddrbytes))
3710                         if (i < nphysicals + (raid_ctlr_position == 0) &&
3711                                 NON_DISK_PHYS_DEV(lunaddrbytes))
3712                                 continue;
3713
3714                 /* Get device type, vendor, model, device id */
3715                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3716                                                         &is_OBDR))
3717                         continue; /* skip it if we can't talk to it. */
3718                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3719                 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
3720                 this_device = currentsd[ncurrent];
3721
3722                 /*
3723                  * For external target devices, we have to insert a LUN 0 which
3724                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3725                  * is nonetheless an enclosure device there.  We have to
3726                  * present that otherwise linux won't find anything if
3727                  * there is no lun 0.
3728                  */
3729                 if (add_ext_target_dev(h, tmpdevice, this_device,
3730                                 lunaddrbytes, lunzerobits,
3731                                 &n_ext_target_devs)) {
3732                         ncurrent++;
3733                         this_device = currentsd[ncurrent];
3734                 }
3735
3736                 *this_device = *tmpdevice;
3737
3738                 /* do not expose masked devices */
3739                 if (MASKED_DEVICE(lunaddrbytes) &&
3740                         i < nphysicals + (raid_ctlr_position == 0)) {
3741                         if (h->hba_mode_enabled)
3742                                 dev_warn(&h->pdev->dev,
3743                                         "Masked physical device detected\n");
3744                         this_device->expose_state = HPSA_DO_NOT_EXPOSE;
3745                 } else {
3746                         this_device->expose_state =
3747                                         HPSA_SG_ATTACH | HPSA_ULD_ATTACH;
3748                 }
3749
3750                 switch (this_device->devtype) {
3751                 case TYPE_ROM:
3752                         /* We don't *really* support actual CD-ROM devices,
3753                          * just "One Button Disaster Recovery" tape drive
3754                          * which temporarily pretends to be a CD-ROM drive.
3755                          * So we check that the device is really an OBDR tape
3756                          * device by checking for "$DR-10" in bytes 43-48 of
3757                          * the inquiry data.
3758                          */
3759                         if (is_OBDR)
3760                                 ncurrent++;
3761                         break;
3762                 case TYPE_DISK:
3763                         if (i >= nphysicals) {
3764                                 ncurrent++;
3765                                 break;
3766                         }
3767
3768                         if (h->hba_mode_enabled)
3769                                 /* never use raid mapper in HBA mode */
3770                                 this_device->offload_enabled = 0;
3771                         else if (!(h->transMethod & CFGTBL_Trans_io_accel1 ||
3772                                 h->transMethod & CFGTBL_Trans_io_accel2))
3773                                 break;
3774
3775                         hpsa_get_ioaccel_drive_info(h, this_device,
3776                                                 lunaddrbytes, id_phys);
3777                         atomic_set(&this_device->ioaccel_cmds_out, 0);
3778                         ncurrent++;
3779                         break;
3780                 case TYPE_TAPE:
3781                 case TYPE_MEDIUM_CHANGER:
3782                         ncurrent++;
3783                         break;
3784                 case TYPE_ENCLOSURE:
3785                         if (h->hba_mode_enabled)
3786                                 ncurrent++;
3787                         break;
3788                 case TYPE_RAID:
3789                         /* Only present the Smartarray HBA as a RAID controller.
3790                          * If it's a RAID controller other than the HBA itself
3791                          * (an external RAID controller, MSA500 or similar)
3792                          * don't present it.
3793                          */
3794                         if (!is_hba_lunid(lunaddrbytes))
3795                                 break;
3796                         ncurrent++;
3797                         break;
3798                 default:
3799                         break;
3800                 }
3801                 if (ncurrent >= HPSA_MAX_DEVICES)
3802                         break;
3803         }
3804         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3805 out:
3806         kfree(tmpdevice);
3807         for (i = 0; i < ndev_allocated; i++)
3808                 kfree(currentsd[i]);
3809         kfree(currentsd);
3810         kfree(physdev_list);
3811         kfree(logdev_list);
3812         kfree(id_phys);
3813 }
3814
3815 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
3816                                    struct scatterlist *sg)
3817 {
3818         u64 addr64 = (u64) sg_dma_address(sg);
3819         unsigned int len = sg_dma_len(sg);
3820
3821         desc->Addr = cpu_to_le64(addr64);
3822         desc->Len = cpu_to_le32(len);
3823         desc->Ext = 0;
3824 }
3825
3826 /*
3827  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3828  * dma mapping  and fills in the scatter gather entries of the
3829  * hpsa command, cp.
3830  */
3831 static int hpsa_scatter_gather(struct ctlr_info *h,
3832                 struct CommandList *cp,
3833                 struct scsi_cmnd *cmd)
3834 {
3835         struct scatterlist *sg;
3836         int use_sg, i, sg_limit, chained, last_sg;
3837         struct SGDescriptor *curr_sg;
3838
3839         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3840
3841         use_sg = scsi_dma_map(cmd);
3842         if (use_sg < 0)
3843                 return use_sg;
3844
3845         if (!use_sg)
3846                 goto sglist_finished;
3847
3848         /*
3849          * If the number of entries is greater than the max for a single list,
3850          * then we have a chained list; we will set up all but one entry in the
3851          * first list (the last entry is saved for link information);
3852          * otherwise, we don't have a chained list and we'll set up at each of
3853          * the entries in the one list.
3854          */
3855         curr_sg = cp->SG;
3856         chained = use_sg > h->max_cmd_sg_entries;
3857         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
3858         last_sg = scsi_sg_count(cmd) - 1;
3859         scsi_for_each_sg(cmd, sg, sg_limit, i) {
3860                 hpsa_set_sg_descriptor(curr_sg, sg);
3861                 curr_sg++;
3862         }
3863
3864         if (chained) {
3865                 /*
3866                  * Continue with the chained list.  Set curr_sg to the chained
3867                  * list.  Modify the limit to the total count less the entries
3868                  * we've already set up.  Resume the scan at the list entry
3869                  * where the previous loop left off.
3870                  */
3871                 curr_sg = h->cmd_sg_list[cp->cmdindex];
3872                 sg_limit = use_sg - sg_limit;
3873                 for_each_sg(sg, sg, sg_limit, i) {
3874                         hpsa_set_sg_descriptor(curr_sg, sg);
3875                         curr_sg++;
3876                 }
3877         }
3878
3879         /* Back the pointer up to the last entry and mark it as "last". */
3880         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
3881
3882         if (use_sg + chained > h->maxSG)
3883                 h->maxSG = use_sg + chained;
3884
3885         if (chained) {
3886                 cp->Header.SGList = h->max_cmd_sg_entries;
3887                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3888                 if (hpsa_map_sg_chain_block(h, cp)) {
3889                         scsi_dma_unmap(cmd);
3890                         return -1;
3891                 }
3892                 return 0;
3893         }
3894
3895 sglist_finished:
3896
3897         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
3898         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
3899         return 0;
3900 }
3901
3902 #define IO_ACCEL_INELIGIBLE (1)
3903 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3904 {
3905         int is_write = 0;
3906         u32 block;
3907         u32 block_cnt;
3908
3909         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
3910         switch (cdb[0]) {
3911         case WRITE_6:
3912         case WRITE_12:
3913                 is_write = 1;
3914         case READ_6:
3915         case READ_12:
3916                 if (*cdb_len == 6) {
3917                         block = (((u32) cdb[2]) << 8) | cdb[3];
3918                         block_cnt = cdb[4];
3919                 } else {
3920                         BUG_ON(*cdb_len != 12);
3921                         block = (((u32) cdb[2]) << 24) |
3922                                 (((u32) cdb[3]) << 16) |
3923                                 (((u32) cdb[4]) << 8) |
3924                                 cdb[5];
3925                         block_cnt =
3926                                 (((u32) cdb[6]) << 24) |
3927                                 (((u32) cdb[7]) << 16) |
3928                                 (((u32) cdb[8]) << 8) |
3929                                 cdb[9];
3930                 }
3931                 if (block_cnt > 0xffff)
3932                         return IO_ACCEL_INELIGIBLE;
3933
3934                 cdb[0] = is_write ? WRITE_10 : READ_10;
3935                 cdb[1] = 0;
3936                 cdb[2] = (u8) (block >> 24);
3937                 cdb[3] = (u8) (block >> 16);
3938                 cdb[4] = (u8) (block >> 8);
3939                 cdb[5] = (u8) (block);
3940                 cdb[6] = 0;
3941                 cdb[7] = (u8) (block_cnt >> 8);
3942                 cdb[8] = (u8) (block_cnt);
3943                 cdb[9] = 0;
3944                 *cdb_len = 10;
3945                 break;
3946         }
3947         return 0;
3948 }
3949
3950 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3951         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3952         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3953 {
3954         struct scsi_cmnd *cmd = c->scsi_cmd;
3955         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
3956         unsigned int len;
3957         unsigned int total_len = 0;
3958         struct scatterlist *sg;
3959         u64 addr64;
3960         int use_sg, i;
3961         struct SGDescriptor *curr_sg;
3962         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
3963
3964         /* TODO: implement chaining support */
3965         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
3966                 atomic_dec(&phys_disk->ioaccel_cmds_out);
3967                 return IO_ACCEL_INELIGIBLE;
3968         }
3969
3970         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
3971
3972         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
3973                 atomic_dec(&phys_disk->ioaccel_cmds_out);
3974                 return IO_ACCEL_INELIGIBLE;
3975         }
3976
3977         c->cmd_type = CMD_IOACCEL1;
3978
3979         /* Adjust the DMA address to point to the accelerated command buffer */
3980         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
3981                                 (c->cmdindex * sizeof(*cp));
3982         BUG_ON(c->busaddr & 0x0000007F);
3983
3984         use_sg = scsi_dma_map(cmd);
3985         if (use_sg < 0) {
3986                 atomic_dec(&phys_disk->ioaccel_cmds_out);
3987                 return use_sg;
3988         }
3989
3990         if (use_sg) {
3991                 curr_sg = cp->SG;
3992                 scsi_for_each_sg(cmd, sg, use_sg, i) {
3993                         addr64 = (u64) sg_dma_address(sg);
3994                         len  = sg_dma_len(sg);
3995                         total_len += len;
3996                         curr_sg->Addr = cpu_to_le64(addr64);
3997                         curr_sg->Len = cpu_to_le32(len);
3998                         curr_sg->Ext = cpu_to_le32(0);
3999                         curr_sg++;
4000                 }
4001                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4002
4003                 switch (cmd->sc_data_direction) {
4004                 case DMA_TO_DEVICE:
4005                         control |= IOACCEL1_CONTROL_DATA_OUT;
4006                         break;
4007                 case DMA_FROM_DEVICE:
4008                         control |= IOACCEL1_CONTROL_DATA_IN;
4009                         break;
4010                 case DMA_NONE:
4011                         control |= IOACCEL1_CONTROL_NODATAXFER;
4012                         break;
4013                 default:
4014                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4015                         cmd->sc_data_direction);
4016                         BUG();
4017                         break;
4018                 }
4019         } else {
4020                 control |= IOACCEL1_CONTROL_NODATAXFER;
4021         }
4022
4023         c->Header.SGList = use_sg;
4024         /* Fill out the command structure to submit */
4025         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4026         cp->transfer_len = cpu_to_le32(total_len);
4027         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4028                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4029         cp->control = cpu_to_le32(control);
4030         memcpy(cp->CDB, cdb, cdb_len);
4031         memcpy(cp->CISS_LUN, scsi3addr, 8);
4032         /* Tag was already set at init time. */
4033         enqueue_cmd_and_start_io(h, c);
4034         return 0;
4035 }
4036
4037 /*
4038  * Queue a command directly to a device behind the controller using the
4039  * I/O accelerator path.
4040  */
4041 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4042         struct CommandList *c)
4043 {
4044         struct scsi_cmnd *cmd = c->scsi_cmd;
4045         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4046
4047         c->phys_disk = dev;
4048
4049         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4050                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4051 }
4052
4053 /*
4054  * Set encryption parameters for the ioaccel2 request
4055  */
4056 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4057         struct CommandList *c, struct io_accel2_cmd *cp)
4058 {
4059         struct scsi_cmnd *cmd = c->scsi_cmd;
4060         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4061         struct raid_map_data *map = &dev->raid_map;
4062         u64 first_block;
4063
4064         /* Are we doing encryption on this device */
4065         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4066                 return;
4067         /* Set the data encryption key index. */
4068         cp->dekindex = map->dekindex;
4069
4070         /* Set the encryption enable flag, encoded into direction field. */
4071         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4072
4073         /* Set encryption tweak values based on logical block address
4074          * If block size is 512, tweak value is LBA.
4075          * For other block sizes, tweak is (LBA * block size)/ 512)
4076          */
4077         switch (cmd->cmnd[0]) {
4078         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4079         case WRITE_6:
4080         case READ_6:
4081                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4082                 break;
4083         case WRITE_10:
4084         case READ_10:
4085         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4086         case WRITE_12:
4087         case READ_12:
4088                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4089                 break;
4090         case WRITE_16:
4091         case READ_16:
4092                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4093                 break;
4094         default:
4095                 dev_err(&h->pdev->dev,
4096                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4097                         __func__, cmd->cmnd[0]);
4098                 BUG();
4099                 break;
4100         }
4101
4102         if (le32_to_cpu(map->volume_blk_size) != 512)
4103                 first_block = first_block *
4104                                 le32_to_cpu(map->volume_blk_size)/512;
4105
4106         cp->tweak_lower = cpu_to_le32(first_block);
4107         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4108 }
4109
4110 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4111         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4112         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4113 {
4114         struct scsi_cmnd *cmd = c->scsi_cmd;
4115         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4116         struct ioaccel2_sg_element *curr_sg;
4117         int use_sg, i;
4118         struct scatterlist *sg;
4119         u64 addr64;
4120         u32 len;
4121         u32 total_len = 0;
4122
4123         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4124
4125         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4126                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4127                 return IO_ACCEL_INELIGIBLE;
4128         }
4129
4130         c->cmd_type = CMD_IOACCEL2;
4131         /* Adjust the DMA address to point to the accelerated command buffer */
4132         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4133                                 (c->cmdindex * sizeof(*cp));
4134         BUG_ON(c->busaddr & 0x0000007F);
4135
4136         memset(cp, 0, sizeof(*cp));
4137         cp->IU_type = IOACCEL2_IU_TYPE;
4138
4139         use_sg = scsi_dma_map(cmd);
4140         if (use_sg < 0) {
4141                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4142                 return use_sg;
4143         }
4144
4145         if (use_sg) {
4146                 curr_sg = cp->sg;
4147                 if (use_sg > h->ioaccel_maxsg) {
4148                         addr64 = le64_to_cpu(
4149                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4150                         curr_sg->address = cpu_to_le64(addr64);
4151                         curr_sg->length = 0;
4152                         curr_sg->reserved[0] = 0;
4153                         curr_sg->reserved[1] = 0;
4154                         curr_sg->reserved[2] = 0;
4155                         curr_sg->chain_indicator = 0x80;
4156
4157                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4158                 }
4159                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4160                         addr64 = (u64) sg_dma_address(sg);
4161                         len  = sg_dma_len(sg);
4162                         total_len += len;
4163                         curr_sg->address = cpu_to_le64(addr64);
4164                         curr_sg->length = cpu_to_le32(len);
4165                         curr_sg->reserved[0] = 0;
4166                         curr_sg->reserved[1] = 0;
4167                         curr_sg->reserved[2] = 0;
4168                         curr_sg->chain_indicator = 0;
4169                         curr_sg++;
4170                 }
4171
4172                 switch (cmd->sc_data_direction) {
4173                 case DMA_TO_DEVICE:
4174                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4175                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4176                         break;
4177                 case DMA_FROM_DEVICE:
4178                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4179                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4180                         break;
4181                 case DMA_NONE:
4182                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4183                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4184                         break;
4185                 default:
4186                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4187                                 cmd->sc_data_direction);
4188                         BUG();
4189                         break;
4190                 }
4191         } else {
4192                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4193                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4194         }
4195
4196         /* Set encryption parameters, if necessary */
4197         set_encrypt_ioaccel2(h, c, cp);
4198
4199         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4200         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4201         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4202
4203         cp->data_len = cpu_to_le32(total_len);
4204         cp->err_ptr = cpu_to_le64(c->busaddr +
4205                         offsetof(struct io_accel2_cmd, error_data));
4206         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4207
4208         /* fill in sg elements */
4209         if (use_sg > h->ioaccel_maxsg) {
4210                 cp->sg_count = 1;
4211                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4212                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4213                         scsi_dma_unmap(cmd);
4214                         return -1;
4215                 }
4216         } else
4217                 cp->sg_count = (u8) use_sg;
4218
4219         enqueue_cmd_and_start_io(h, c);
4220         return 0;
4221 }
4222
4223 /*
4224  * Queue a command to the correct I/O accelerator path.
4225  */
4226 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4227         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4228         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4229 {
4230         /* Try to honor the device's queue depth */
4231         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4232                                         phys_disk->queue_depth) {
4233                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4234                 return IO_ACCEL_INELIGIBLE;
4235         }
4236         if (h->transMethod & CFGTBL_Trans_io_accel1)
4237                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4238                                                 cdb, cdb_len, scsi3addr,
4239                                                 phys_disk);
4240         else
4241                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4242                                                 cdb, cdb_len, scsi3addr,
4243                                                 phys_disk);
4244 }
4245
4246 static void raid_map_helper(struct raid_map_data *map,
4247                 int offload_to_mirror, u32 *map_index, u32 *current_group)
4248 {
4249         if (offload_to_mirror == 0)  {
4250                 /* use physical disk in the first mirrored group. */
4251                 *map_index %= le16_to_cpu(map->data_disks_per_row);
4252                 return;
4253         }
4254         do {
4255                 /* determine mirror group that *map_index indicates */
4256                 *current_group = *map_index /
4257                         le16_to_cpu(map->data_disks_per_row);
4258                 if (offload_to_mirror == *current_group)
4259                         continue;
4260                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4261                         /* select map index from next group */
4262                         *map_index += le16_to_cpu(map->data_disks_per_row);
4263                         (*current_group)++;
4264                 } else {
4265                         /* select map index from first group */
4266                         *map_index %= le16_to_cpu(map->data_disks_per_row);
4267                         *current_group = 0;
4268                 }
4269         } while (offload_to_mirror != *current_group);
4270 }
4271
4272 /*
4273  * Attempt to perform offload RAID mapping for a logical volume I/O.
4274  */
4275 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4276         struct CommandList *c)
4277 {
4278         struct scsi_cmnd *cmd = c->scsi_cmd;
4279         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4280         struct raid_map_data *map = &dev->raid_map;
4281         struct raid_map_disk_data *dd = &map->data[0];
4282         int is_write = 0;
4283         u32 map_index;
4284         u64 first_block, last_block;
4285         u32 block_cnt;
4286         u32 blocks_per_row;
4287         u64 first_row, last_row;
4288         u32 first_row_offset, last_row_offset;
4289         u32 first_column, last_column;
4290         u64 r0_first_row, r0_last_row;
4291         u32 r5or6_blocks_per_row;
4292         u64 r5or6_first_row, r5or6_last_row;
4293         u32 r5or6_first_row_offset, r5or6_last_row_offset;
4294         u32 r5or6_first_column, r5or6_last_column;
4295         u32 total_disks_per_row;
4296         u32 stripesize;
4297         u32 first_group, last_group, current_group;
4298         u32 map_row;
4299         u32 disk_handle;
4300         u64 disk_block;
4301         u32 disk_block_cnt;
4302         u8 cdb[16];
4303         u8 cdb_len;
4304         u16 strip_size;
4305 #if BITS_PER_LONG == 32
4306         u64 tmpdiv;
4307 #endif
4308         int offload_to_mirror;
4309
4310         /* check for valid opcode, get LBA and block count */
4311         switch (cmd->cmnd[0]) {
4312         case WRITE_6:
4313                 is_write = 1;
4314         case READ_6:
4315                 first_block =
4316                         (((u64) cmd->cmnd[2]) << 8) |
4317                         cmd->cmnd[3];
4318                 block_cnt = cmd->cmnd[4];
4319                 if (block_cnt == 0)
4320                         block_cnt = 256;
4321                 break;
4322         case WRITE_10:
4323                 is_write = 1;
4324         case READ_10:
4325                 first_block =
4326                         (((u64) cmd->cmnd[2]) << 24) |
4327                         (((u64) cmd->cmnd[3]) << 16) |
4328                         (((u64) cmd->cmnd[4]) << 8) |
4329                         cmd->cmnd[5];
4330                 block_cnt =
4331                         (((u32) cmd->cmnd[7]) << 8) |
4332                         cmd->cmnd[8];
4333                 break;
4334         case WRITE_12:
4335                 is_write = 1;
4336         case READ_12:
4337                 first_block =
4338                         (((u64) cmd->cmnd[2]) << 24) |
4339                         (((u64) cmd->cmnd[3]) << 16) |
4340                         (((u64) cmd->cmnd[4]) << 8) |
4341                         cmd->cmnd[5];
4342                 block_cnt =
4343                         (((u32) cmd->cmnd[6]) << 24) |
4344                         (((u32) cmd->cmnd[7]) << 16) |
4345                         (((u32) cmd->cmnd[8]) << 8) |
4346                 cmd->cmnd[9];
4347                 break;
4348         case WRITE_16:
4349                 is_write = 1;
4350         case READ_16:
4351                 first_block =
4352                         (((u64) cmd->cmnd[2]) << 56) |
4353                         (((u64) cmd->cmnd[3]) << 48) |
4354                         (((u64) cmd->cmnd[4]) << 40) |
4355                         (((u64) cmd->cmnd[5]) << 32) |
4356                         (((u64) cmd->cmnd[6]) << 24) |
4357                         (((u64) cmd->cmnd[7]) << 16) |
4358                         (((u64) cmd->cmnd[8]) << 8) |
4359                         cmd->cmnd[9];
4360                 block_cnt =
4361                         (((u32) cmd->cmnd[10]) << 24) |
4362                         (((u32) cmd->cmnd[11]) << 16) |
4363                         (((u32) cmd->cmnd[12]) << 8) |
4364                         cmd->cmnd[13];
4365                 break;
4366         default:
4367                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4368         }
4369         last_block = first_block + block_cnt - 1;
4370
4371         /* check for write to non-RAID-0 */
4372         if (is_write && dev->raid_level != 0)
4373                 return IO_ACCEL_INELIGIBLE;
4374
4375         /* check for invalid block or wraparound */
4376         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4377                 last_block < first_block)
4378                 return IO_ACCEL_INELIGIBLE;
4379
4380         /* calculate stripe information for the request */
4381         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4382                                 le16_to_cpu(map->strip_size);
4383         strip_size = le16_to_cpu(map->strip_size);
4384 #if BITS_PER_LONG == 32
4385         tmpdiv = first_block;
4386         (void) do_div(tmpdiv, blocks_per_row);
4387         first_row = tmpdiv;
4388         tmpdiv = last_block;
4389         (void) do_div(tmpdiv, blocks_per_row);
4390         last_row = tmpdiv;
4391         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4392         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4393         tmpdiv = first_row_offset;
4394         (void) do_div(tmpdiv, strip_size);
4395         first_column = tmpdiv;
4396         tmpdiv = last_row_offset;
4397         (void) do_div(tmpdiv, strip_size);
4398         last_column = tmpdiv;
4399 #else
4400         first_row = first_block / blocks_per_row;
4401         last_row = last_block / blocks_per_row;
4402         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4403         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4404         first_column = first_row_offset / strip_size;
4405         last_column = last_row_offset / strip_size;
4406 #endif
4407
4408         /* if this isn't a single row/column then give to the controller */
4409         if ((first_row != last_row) || (first_column != last_column))
4410                 return IO_ACCEL_INELIGIBLE;
4411
4412         /* proceeding with driver mapping */
4413         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4414                                 le16_to_cpu(map->metadata_disks_per_row);
4415         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4416                                 le16_to_cpu(map->row_cnt);
4417         map_index = (map_row * total_disks_per_row) + first_column;
4418
4419         switch (dev->raid_level) {
4420         case HPSA_RAID_0:
4421                 break; /* nothing special to do */
4422         case HPSA_RAID_1:
4423                 /* Handles load balance across RAID 1 members.
4424                  * (2-drive R1 and R10 with even # of drives.)
4425                  * Appropriate for SSDs, not optimal for HDDs
4426                  */
4427                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4428                 if (dev->offload_to_mirror)
4429                         map_index += le16_to_cpu(map->data_disks_per_row);
4430                 dev->offload_to_mirror = !dev->offload_to_mirror;
4431                 break;
4432         case HPSA_RAID_ADM:
4433                 /* Handles N-way mirrors  (R1-ADM)
4434                  * and R10 with # of drives divisible by 3.)
4435                  */
4436                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4437
4438                 offload_to_mirror = dev->offload_to_mirror;
4439                 raid_map_helper(map, offload_to_mirror,
4440                                 &map_index, &current_group);
4441                 /* set mirror group to use next time */
4442                 offload_to_mirror =
4443                         (offload_to_mirror >=
4444                         le16_to_cpu(map->layout_map_count) - 1)
4445                         ? 0 : offload_to_mirror + 1;
4446                 dev->offload_to_mirror = offload_to_mirror;
4447                 /* Avoid direct use of dev->offload_to_mirror within this
4448                  * function since multiple threads might simultaneously
4449                  * increment it beyond the range of dev->layout_map_count -1.
4450                  */
4451                 break;
4452         case HPSA_RAID_5:
4453         case HPSA_RAID_6:
4454                 if (le16_to_cpu(map->layout_map_count) <= 1)
4455                         break;
4456
4457                 /* Verify first and last block are in same RAID group */
4458                 r5or6_blocks_per_row =
4459                         le16_to_cpu(map->strip_size) *
4460                         le16_to_cpu(map->data_disks_per_row);
4461                 BUG_ON(r5or6_blocks_per_row == 0);
4462                 stripesize = r5or6_blocks_per_row *
4463                         le16_to_cpu(map->layout_map_count);
4464 #if BITS_PER_LONG == 32
4465                 tmpdiv = first_block;
4466                 first_group = do_div(tmpdiv, stripesize);
4467                 tmpdiv = first_group;
4468                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4469                 first_group = tmpdiv;
4470                 tmpdiv = last_block;
4471                 last_group = do_div(tmpdiv, stripesize);
4472                 tmpdiv = last_group;
4473                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4474                 last_group = tmpdiv;
4475 #else
4476                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4477                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
4478 #endif
4479                 if (first_group != last_group)
4480                         return IO_ACCEL_INELIGIBLE;
4481
4482                 /* Verify request is in a single row of RAID 5/6 */
4483 #if BITS_PER_LONG == 32
4484                 tmpdiv = first_block;
4485                 (void) do_div(tmpdiv, stripesize);
4486                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
4487                 tmpdiv = last_block;
4488                 (void) do_div(tmpdiv, stripesize);
4489                 r5or6_last_row = r0_last_row = tmpdiv;
4490 #else
4491                 first_row = r5or6_first_row = r0_first_row =
4492                                                 first_block / stripesize;
4493                 r5or6_last_row = r0_last_row = last_block / stripesize;
4494 #endif
4495                 if (r5or6_first_row != r5or6_last_row)
4496                         return IO_ACCEL_INELIGIBLE;
4497
4498
4499                 /* Verify request is in a single column */
4500 #if BITS_PER_LONG == 32
4501                 tmpdiv = first_block;
4502                 first_row_offset = do_div(tmpdiv, stripesize);
4503                 tmpdiv = first_row_offset;
4504                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4505                 r5or6_first_row_offset = first_row_offset;
4506                 tmpdiv = last_block;
4507                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4508                 tmpdiv = r5or6_last_row_offset;
4509                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4510                 tmpdiv = r5or6_first_row_offset;
4511                 (void) do_div(tmpdiv, map->strip_size);
4512                 first_column = r5or6_first_column = tmpdiv;
4513                 tmpdiv = r5or6_last_row_offset;
4514                 (void) do_div(tmpdiv, map->strip_size);
4515                 r5or6_last_column = tmpdiv;
4516 #else
4517                 first_row_offset = r5or6_first_row_offset =
4518                         (u32)((first_block % stripesize) %
4519                                                 r5or6_blocks_per_row);
4520
4521                 r5or6_last_row_offset =
4522                         (u32)((last_block % stripesize) %
4523                                                 r5or6_blocks_per_row);
4524
4525                 first_column = r5or6_first_column =
4526                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4527                 r5or6_last_column =
4528                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4529 #endif
4530                 if (r5or6_first_column != r5or6_last_column)
4531                         return IO_ACCEL_INELIGIBLE;
4532
4533                 /* Request is eligible */
4534                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4535                         le16_to_cpu(map->row_cnt);
4536
4537                 map_index = (first_group *
4538                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4539                         (map_row * total_disks_per_row) + first_column;
4540                 break;
4541         default:
4542                 return IO_ACCEL_INELIGIBLE;
4543         }
4544
4545         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4546                 return IO_ACCEL_INELIGIBLE;
4547
4548         c->phys_disk = dev->phys_disk[map_index];
4549
4550         disk_handle = dd[map_index].ioaccel_handle;
4551         disk_block = le64_to_cpu(map->disk_starting_blk) +
4552                         first_row * le16_to_cpu(map->strip_size) +
4553                         (first_row_offset - first_column *
4554                         le16_to_cpu(map->strip_size));
4555         disk_block_cnt = block_cnt;
4556
4557         /* handle differing logical/physical block sizes */
4558         if (map->phys_blk_shift) {
4559                 disk_block <<= map->phys_blk_shift;
4560                 disk_block_cnt <<= map->phys_blk_shift;
4561         }
4562         BUG_ON(disk_block_cnt > 0xffff);
4563
4564         /* build the new CDB for the physical disk I/O */
4565         if (disk_block > 0xffffffff) {
4566                 cdb[0] = is_write ? WRITE_16 : READ_16;
4567                 cdb[1] = 0;
4568                 cdb[2] = (u8) (disk_block >> 56);
4569                 cdb[3] = (u8) (disk_block >> 48);
4570                 cdb[4] = (u8) (disk_block >> 40);
4571                 cdb[5] = (u8) (disk_block >> 32);
4572                 cdb[6] = (u8) (disk_block >> 24);
4573                 cdb[7] = (u8) (disk_block >> 16);
4574                 cdb[8] = (u8) (disk_block >> 8);
4575                 cdb[9] = (u8) (disk_block);
4576                 cdb[10] = (u8) (disk_block_cnt >> 24);
4577                 cdb[11] = (u8) (disk_block_cnt >> 16);
4578                 cdb[12] = (u8) (disk_block_cnt >> 8);
4579                 cdb[13] = (u8) (disk_block_cnt);
4580                 cdb[14] = 0;
4581                 cdb[15] = 0;
4582                 cdb_len = 16;
4583         } else {
4584                 cdb[0] = is_write ? WRITE_10 : READ_10;
4585                 cdb[1] = 0;
4586                 cdb[2] = (u8) (disk_block >> 24);
4587                 cdb[3] = (u8) (disk_block >> 16);
4588                 cdb[4] = (u8) (disk_block >> 8);
4589                 cdb[5] = (u8) (disk_block);
4590                 cdb[6] = 0;
4591                 cdb[7] = (u8) (disk_block_cnt >> 8);
4592                 cdb[8] = (u8) (disk_block_cnt);
4593                 cdb[9] = 0;
4594                 cdb_len = 10;
4595         }
4596         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
4597                                                 dev->scsi3addr,
4598                                                 dev->phys_disk[map_index]);
4599 }
4600
4601 /*
4602  * Submit commands down the "normal" RAID stack path
4603  * All callers to hpsa_ciss_submit must check lockup_detected
4604  * beforehand, before (opt.) and after calling cmd_alloc
4605  */
4606 static int hpsa_ciss_submit(struct ctlr_info *h,
4607         struct CommandList *c, struct scsi_cmnd *cmd,
4608         unsigned char scsi3addr[])
4609 {
4610         cmd->host_scribble = (unsigned char *) c;
4611         c->cmd_type = CMD_SCSI;
4612         c->scsi_cmd = cmd;
4613         c->Header.ReplyQueue = 0;  /* unused in simple mode */
4614         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4615         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
4616
4617         /* Fill in the request block... */
4618
4619         c->Request.Timeout = 0;
4620         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4621         c->Request.CDBLen = cmd->cmd_len;
4622         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
4623         switch (cmd->sc_data_direction) {
4624         case DMA_TO_DEVICE:
4625                 c->Request.type_attr_dir =
4626                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4627                 break;
4628         case DMA_FROM_DEVICE:
4629                 c->Request.type_attr_dir =
4630                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4631                 break;
4632         case DMA_NONE:
4633                 c->Request.type_attr_dir =
4634                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4635                 break;
4636         case DMA_BIDIRECTIONAL:
4637                 /* This can happen if a buggy application does a scsi passthru
4638                  * and sets both inlen and outlen to non-zero. ( see
4639                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4640                  */
4641
4642                 c->Request.type_attr_dir =
4643                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4644                 /* This is technically wrong, and hpsa controllers should
4645                  * reject it with CMD_INVALID, which is the most correct
4646                  * response, but non-fibre backends appear to let it
4647                  * slide by, and give the same results as if this field
4648                  * were set correctly.  Either way is acceptable for
4649                  * our purposes here.
4650                  */
4651
4652                 break;
4653
4654         default:
4655                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4656                         cmd->sc_data_direction);
4657                 BUG();
4658                 break;
4659         }
4660
4661         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4662                 hpsa_cmd_resolve_and_free(h, c);
4663                 return SCSI_MLQUEUE_HOST_BUSY;
4664         }
4665         enqueue_cmd_and_start_io(h, c);
4666         /* the cmd'll come back via intr handler in complete_scsi_command()  */
4667         return 0;
4668 }
4669
4670 static void hpsa_cmd_init(struct ctlr_info *h, int index,
4671                                 struct CommandList *c)
4672 {
4673         dma_addr_t cmd_dma_handle, err_dma_handle;
4674
4675         /* Zero out all of commandlist except the last field, refcount */
4676         memset(c, 0, offsetof(struct CommandList, refcount));
4677         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
4678         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4679         c->err_info = h->errinfo_pool + index;
4680         memset(c->err_info, 0, sizeof(*c->err_info));
4681         err_dma_handle = h->errinfo_pool_dhandle
4682             + index * sizeof(*c->err_info);
4683         c->cmdindex = index;
4684         c->busaddr = (u32) cmd_dma_handle;
4685         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
4686         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
4687         c->h = h;
4688         c->scsi_cmd = SCSI_CMD_IDLE;
4689 }
4690
4691 static void hpsa_preinitialize_commands(struct ctlr_info *h)
4692 {
4693         int i;
4694
4695         for (i = 0; i < h->nr_cmds; i++) {
4696                 struct CommandList *c = h->cmd_pool + i;
4697
4698                 hpsa_cmd_init(h, i, c);
4699                 atomic_set(&c->refcount, 0);
4700         }
4701 }
4702
4703 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
4704                                 struct CommandList *c)
4705 {
4706         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4707
4708         BUG_ON(c->cmdindex != index);
4709
4710         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
4711         memset(c->err_info, 0, sizeof(*c->err_info));
4712         c->busaddr = (u32) cmd_dma_handle;
4713 }
4714
4715 static int hpsa_ioaccel_submit(struct ctlr_info *h,
4716                 struct CommandList *c, struct scsi_cmnd *cmd,
4717                 unsigned char *scsi3addr)
4718 {
4719         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4720         int rc = IO_ACCEL_INELIGIBLE;
4721
4722         cmd->host_scribble = (unsigned char *) c;
4723
4724         if (dev->offload_enabled) {
4725                 hpsa_cmd_init(h, c->cmdindex, c);
4726                 c->cmd_type = CMD_SCSI;
4727                 c->scsi_cmd = cmd;
4728                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
4729                 if (rc < 0)     /* scsi_dma_map failed. */
4730                         rc = SCSI_MLQUEUE_HOST_BUSY;
4731         } else if (dev->hba_ioaccel_enabled) {
4732                 hpsa_cmd_init(h, c->cmdindex, c);
4733                 c->cmd_type = CMD_SCSI;
4734                 c->scsi_cmd = cmd;
4735                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
4736                 if (rc < 0)     /* scsi_dma_map failed. */
4737                         rc = SCSI_MLQUEUE_HOST_BUSY;
4738         }
4739         return rc;
4740 }
4741
4742 static void hpsa_command_resubmit_worker(struct work_struct *work)
4743 {
4744         struct scsi_cmnd *cmd;
4745         struct hpsa_scsi_dev_t *dev;
4746         struct CommandList *c = container_of(work, struct CommandList, work);
4747
4748         cmd = c->scsi_cmd;
4749         dev = cmd->device->hostdata;
4750         if (!dev) {
4751                 cmd->result = DID_NO_CONNECT << 16;
4752                 return hpsa_cmd_free_and_done(c->h, c, cmd);
4753         }
4754         if (c->reset_pending)
4755                 return hpsa_cmd_resolve_and_free(c->h, c);
4756         if (c->abort_pending)
4757                 return hpsa_cmd_abort_and_free(c->h, c, cmd);
4758         if (c->cmd_type == CMD_IOACCEL2) {
4759                 struct ctlr_info *h = c->h;
4760                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
4761                 int rc;
4762
4763                 if (c2->error_data.serv_response ==
4764                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
4765                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
4766                         if (rc == 0)
4767                                 return;
4768                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4769                                 /*
4770                                  * If we get here, it means dma mapping failed.
4771                                  * Try again via scsi mid layer, which will
4772                                  * then get SCSI_MLQUEUE_HOST_BUSY.
4773                                  */
4774                                 cmd->result = DID_IMM_RETRY << 16;
4775                                 return hpsa_cmd_free_and_done(h, c, cmd);
4776                         }
4777                         /* else, fall thru and resubmit down CISS path */
4778                 }
4779         }
4780         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
4781         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
4782                 /*
4783                  * If we get here, it means dma mapping failed. Try
4784                  * again via scsi mid layer, which will then get
4785                  * SCSI_MLQUEUE_HOST_BUSY.
4786                  *
4787                  * hpsa_ciss_submit will have already freed c
4788                  * if it encountered a dma mapping failure.
4789                  */
4790                 cmd->result = DID_IMM_RETRY << 16;
4791                 cmd->scsi_done(cmd);
4792         }
4793 }
4794
4795 /* Running in struct Scsi_Host->host_lock less mode */
4796 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
4797 {
4798         struct ctlr_info *h;
4799         struct hpsa_scsi_dev_t *dev;
4800         unsigned char scsi3addr[8];
4801         struct CommandList *c;
4802         int rc = 0;
4803
4804         /* Get the ptr to our adapter structure out of cmd->host. */
4805         h = sdev_to_hba(cmd->device);
4806
4807         BUG_ON(cmd->request->tag < 0);
4808
4809         dev = cmd->device->hostdata;
4810         if (!dev) {
4811                 cmd->result = DID_NO_CONNECT << 16;
4812                 cmd->scsi_done(cmd);
4813                 return 0;
4814         }
4815
4816         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
4817
4818         if (unlikely(lockup_detected(h))) {
4819                 cmd->result = DID_NO_CONNECT << 16;
4820                 cmd->scsi_done(cmd);
4821                 return 0;
4822         }
4823         c = cmd_tagged_alloc(h, cmd);
4824
4825         /*
4826          * Call alternate submit routine for I/O accelerated commands.
4827          * Retries always go down the normal I/O path.
4828          */
4829         if (likely(cmd->retries == 0 &&
4830                 cmd->request->cmd_type == REQ_TYPE_FS &&
4831                 h->acciopath_status)) {
4832                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
4833                 if (rc == 0)
4834                         return 0;
4835                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4836                         hpsa_cmd_resolve_and_free(h, c);
4837                         return SCSI_MLQUEUE_HOST_BUSY;
4838                 }
4839         }
4840         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
4841 }
4842
4843 static void hpsa_scan_complete(struct ctlr_info *h)
4844 {
4845         unsigned long flags;
4846
4847         spin_lock_irqsave(&h->scan_lock, flags);
4848         h->scan_finished = 1;
4849         wake_up_all(&h->scan_wait_queue);
4850         spin_unlock_irqrestore(&h->scan_lock, flags);
4851 }
4852
4853 static void hpsa_scan_start(struct Scsi_Host *sh)
4854 {
4855         struct ctlr_info *h = shost_to_hba(sh);
4856         unsigned long flags;
4857
4858         /*
4859          * Don't let rescans be initiated on a controller known to be locked
4860          * up.  If the controller locks up *during* a rescan, that thread is
4861          * probably hosed, but at least we can prevent new rescan threads from
4862          * piling up on a locked up controller.
4863          */
4864         if (unlikely(lockup_detected(h)))
4865                 return hpsa_scan_complete(h);
4866
4867         /* wait until any scan already in progress is finished. */
4868         while (1) {
4869                 spin_lock_irqsave(&h->scan_lock, flags);
4870                 if (h->scan_finished)
4871                         break;
4872                 spin_unlock_irqrestore(&h->scan_lock, flags);
4873                 wait_event(h->scan_wait_queue, h->scan_finished);
4874                 /* Note: We don't need to worry about a race between this
4875                  * thread and driver unload because the midlayer will
4876                  * have incremented the reference count, so unload won't
4877                  * happen if we're in here.
4878                  */
4879         }
4880         h->scan_finished = 0; /* mark scan as in progress */
4881         spin_unlock_irqrestore(&h->scan_lock, flags);
4882
4883         if (unlikely(lockup_detected(h)))
4884                 return hpsa_scan_complete(h);
4885
4886         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4887
4888         hpsa_scan_complete(h);
4889 }
4890
4891 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
4892 {
4893         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
4894
4895         if (!logical_drive)
4896                 return -ENODEV;
4897
4898         if (qdepth < 1)
4899                 qdepth = 1;
4900         else if (qdepth > logical_drive->queue_depth)
4901                 qdepth = logical_drive->queue_depth;
4902
4903         return scsi_change_queue_depth(sdev, qdepth);
4904 }
4905
4906 static int hpsa_scan_finished(struct Scsi_Host *sh,
4907         unsigned long elapsed_time)
4908 {
4909         struct ctlr_info *h = shost_to_hba(sh);
4910         unsigned long flags;
4911         int finished;
4912
4913         spin_lock_irqsave(&h->scan_lock, flags);
4914         finished = h->scan_finished;
4915         spin_unlock_irqrestore(&h->scan_lock, flags);
4916         return finished;
4917 }
4918
4919 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
4920 {
4921         struct Scsi_Host *sh;
4922         int error;
4923
4924         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4925         if (sh == NULL) {
4926                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
4927                 return -ENOMEM;
4928         }
4929
4930         sh->io_port = 0;
4931         sh->n_io_port = 0;
4932         sh->this_id = -1;
4933         sh->max_channel = 3;
4934         sh->max_cmd_len = MAX_COMMAND_SIZE;
4935         sh->max_lun = HPSA_MAX_LUN;
4936         sh->max_id = HPSA_MAX_LUN;
4937         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
4938         sh->cmd_per_lun = sh->can_queue;
4939         sh->sg_tablesize = h->maxsgentries;
4940         sh->hostdata[0] = (unsigned long) h;
4941         sh->irq = h->intr[h->intr_mode];
4942         sh->unique_id = sh->irq;
4943         error = scsi_init_shared_tag_map(sh, sh->can_queue);
4944         if (error) {
4945                 dev_err(&h->pdev->dev,
4946                         "%s: scsi_init_shared_tag_map failed for controller %d\n",
4947                         __func__, h->ctlr);
4948                         scsi_host_put(sh);
4949                         return error;
4950         }
4951         h->scsi_host = sh;
4952         return 0;
4953 }
4954
4955 static int hpsa_scsi_add_host(struct ctlr_info *h)
4956 {
4957         int rv;
4958
4959         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
4960         if (rv) {
4961                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
4962                 return rv;
4963         }
4964         scsi_scan_host(h->scsi_host);
4965         return 0;
4966 }
4967
4968 /*
4969  * The block layer has already gone to the trouble of picking out a unique,
4970  * small-integer tag for this request.  We use an offset from that value as
4971  * an index to select our command block.  (The offset allows us to reserve the
4972  * low-numbered entries for our own uses.)
4973  */
4974 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
4975 {
4976         int idx = scmd->request->tag;
4977
4978         if (idx < 0)
4979                 return idx;
4980
4981         /* Offset to leave space for internal cmds. */
4982         return idx += HPSA_NRESERVED_CMDS;
4983 }
4984
4985 /*
4986  * Send a TEST_UNIT_READY command to the specified LUN using the specified
4987  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
4988  */
4989 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
4990                                 struct CommandList *c, unsigned char lunaddr[],
4991                                 int reply_queue)
4992 {
4993         int rc;
4994
4995         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4996         (void) fill_cmd(c, TEST_UNIT_READY, h,
4997                         NULL, 0, 0, lunaddr, TYPE_CMD);
4998         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
4999         if (rc)
5000                 return rc;
5001         /* no unmap needed here because no data xfer. */
5002
5003         /* Check if the unit is already ready. */
5004         if (c->err_info->CommandStatus == CMD_SUCCESS)
5005                 return 0;
5006
5007         /*
5008          * The first command sent after reset will receive "unit attention" to
5009          * indicate that the LUN has been reset...this is actually what we're
5010          * looking for (but, success is good too).
5011          */
5012         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5013                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5014                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5015                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5016                 return 0;
5017
5018         return 1;
5019 }
5020
5021 /*
5022  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5023  * returns zero when the unit is ready, and non-zero when giving up.
5024  */
5025 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5026                                 struct CommandList *c,
5027                                 unsigned char lunaddr[], int reply_queue)
5028 {
5029         int rc;
5030         int count = 0;
5031         int waittime = 1; /* seconds */
5032
5033         /* Send test unit ready until device ready, or give up. */
5034         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5035
5036                 /*
5037                  * Wait for a bit.  do this first, because if we send
5038                  * the TUR right away, the reset will just abort it.
5039                  */
5040                 msleep(1000 * waittime);
5041
5042                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5043                 if (!rc)
5044                         break;
5045
5046                 /* Increase wait time with each try, up to a point. */
5047                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5048                         waittime *= 2;
5049
5050                 dev_warn(&h->pdev->dev,
5051                          "waiting %d secs for device to become ready.\n",
5052                          waittime);
5053         }
5054
5055         return rc;
5056 }
5057
5058 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5059                                            unsigned char lunaddr[],
5060                                            int reply_queue)
5061 {
5062         int first_queue;
5063         int last_queue;
5064         int rq;
5065         int rc = 0;
5066         struct CommandList *c;
5067
5068         c = cmd_alloc(h);
5069
5070         /*
5071          * If no specific reply queue was requested, then send the TUR
5072          * repeatedly, requesting a reply on each reply queue; otherwise execute
5073          * the loop exactly once using only the specified queue.
5074          */
5075         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5076                 first_queue = 0;
5077                 last_queue = h->nreply_queues - 1;
5078         } else {
5079                 first_queue = reply_queue;
5080                 last_queue = reply_queue;
5081         }
5082
5083         for (rq = first_queue; rq <= last_queue; rq++) {
5084                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5085                 if (rc)
5086                         break;
5087         }
5088
5089         if (rc)
5090                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5091         else
5092                 dev_warn(&h->pdev->dev, "device is ready.\n");
5093
5094         cmd_free(h, c);
5095         return rc;
5096 }
5097
5098 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5099  * complaining.  Doing a host- or bus-reset can't do anything good here.
5100  */
5101 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5102 {
5103         int rc;
5104         struct ctlr_info *h;
5105         struct hpsa_scsi_dev_t *dev;
5106         char msg[48];
5107
5108         /* find the controller to which the command to be aborted was sent */
5109         h = sdev_to_hba(scsicmd->device);
5110         if (h == NULL) /* paranoia */
5111                 return FAILED;
5112
5113         if (lockup_detected(h))
5114                 return FAILED;
5115
5116         dev = scsicmd->device->hostdata;
5117         if (!dev) {
5118                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5119                 return FAILED;
5120         }
5121
5122         /* if controller locked up, we can guarantee command won't complete */
5123         if (lockup_detected(h)) {
5124                 snprintf(msg, sizeof(msg),
5125                          "cmd %d RESET FAILED, lockup detected",
5126                          hpsa_get_cmd_index(scsicmd));
5127                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5128                 return FAILED;
5129         }
5130
5131         /* this reset request might be the result of a lockup; check */
5132         if (detect_controller_lockup(h)) {
5133                 snprintf(msg, sizeof(msg),
5134                          "cmd %d RESET FAILED, new lockup detected",
5135                          hpsa_get_cmd_index(scsicmd));
5136                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5137                 return FAILED;
5138         }
5139
5140         /* Do not attempt on controller */
5141         if (is_hba_lunid(dev->scsi3addr))
5142                 return SUCCESS;
5143
5144         hpsa_show_dev_msg(KERN_WARNING, h, dev, "resetting");
5145
5146         /* send a reset to the SCSI LUN which the command was sent to */
5147         rc = hpsa_do_reset(h, dev, dev->scsi3addr, HPSA_RESET_TYPE_LUN,
5148                            DEFAULT_REPLY_QUEUE);
5149         snprintf(msg, sizeof(msg), "reset %s",
5150                  rc == 0 ? "completed successfully" : "failed");
5151         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5152         return rc == 0 ? SUCCESS : FAILED;
5153 }
5154
5155 static void swizzle_abort_tag(u8 *tag)
5156 {
5157         u8 original_tag[8];
5158
5159         memcpy(original_tag, tag, 8);
5160         tag[0] = original_tag[3];
5161         tag[1] = original_tag[2];
5162         tag[2] = original_tag[1];
5163         tag[3] = original_tag[0];
5164         tag[4] = original_tag[7];
5165         tag[5] = original_tag[6];
5166         tag[6] = original_tag[5];
5167         tag[7] = original_tag[4];
5168 }
5169
5170 static void hpsa_get_tag(struct ctlr_info *h,
5171         struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5172 {
5173         u64 tag;
5174         if (c->cmd_type == CMD_IOACCEL1) {
5175                 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5176                         &h->ioaccel_cmd_pool[c->cmdindex];
5177                 tag = le64_to_cpu(cm1->tag);
5178                 *tagupper = cpu_to_le32(tag >> 32);
5179                 *taglower = cpu_to_le32(tag);
5180                 return;
5181         }
5182         if (c->cmd_type == CMD_IOACCEL2) {
5183                 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5184                         &h->ioaccel2_cmd_pool[c->cmdindex];
5185                 /* upper tag not used in ioaccel2 mode */
5186                 memset(tagupper, 0, sizeof(*tagupper));
5187                 *taglower = cm2->Tag;
5188                 return;
5189         }
5190         tag = le64_to_cpu(c->Header.tag);
5191         *tagupper = cpu_to_le32(tag >> 32);
5192         *taglower = cpu_to_le32(tag);
5193 }
5194
5195 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5196         struct CommandList *abort, int reply_queue)
5197 {
5198         int rc = IO_OK;
5199         struct CommandList *c;
5200         struct ErrorInfo *ei;
5201         __le32 tagupper, taglower;
5202
5203         c = cmd_alloc(h);
5204
5205         /* fill_cmd can't fail here, no buffer to map */
5206         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5207                 0, 0, scsi3addr, TYPE_MSG);
5208         if (h->needs_abort_tags_swizzled)
5209                 swizzle_abort_tag(&c->Request.CDB[4]);
5210         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5211         hpsa_get_tag(h, abort, &taglower, &tagupper);
5212         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5213                 __func__, tagupper, taglower);
5214         /* no unmap needed here because no data xfer. */
5215
5216         ei = c->err_info;
5217         switch (ei->CommandStatus) {
5218         case CMD_SUCCESS:
5219                 break;
5220         case CMD_TMF_STATUS:
5221                 rc = hpsa_evaluate_tmf_status(h, c);
5222                 break;
5223         case CMD_UNABORTABLE: /* Very common, don't make noise. */
5224                 rc = -1;
5225                 break;
5226         default:
5227                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5228                         __func__, tagupper, taglower);
5229                 hpsa_scsi_interpret_error(h, c);
5230                 rc = -1;
5231                 break;
5232         }
5233         cmd_free(h, c);
5234         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5235                 __func__, tagupper, taglower);
5236         return rc;
5237 }
5238
5239 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5240         struct CommandList *command_to_abort, int reply_queue)
5241 {
5242         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5243         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5244         struct io_accel2_cmd *c2a =
5245                 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5246         struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5247         struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5248
5249         /*
5250          * We're overlaying struct hpsa_tmf_struct on top of something which
5251          * was allocated as a struct io_accel2_cmd, so we better be sure it
5252          * actually fits, and doesn't overrun the error info space.
5253          */
5254         BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5255                         sizeof(struct io_accel2_cmd));
5256         BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5257                         offsetof(struct hpsa_tmf_struct, error_len) +
5258                                 sizeof(ac->error_len));
5259
5260         c->cmd_type = IOACCEL2_TMF;
5261         c->scsi_cmd = SCSI_CMD_BUSY;
5262
5263         /* Adjust the DMA address to point to the accelerated command buffer */
5264         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5265                                 (c->cmdindex * sizeof(struct io_accel2_cmd));
5266         BUG_ON(c->busaddr & 0x0000007F);
5267
5268         memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5269         ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5270         ac->reply_queue = reply_queue;
5271         ac->tmf = IOACCEL2_TMF_ABORT;
5272         ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5273         memset(ac->lun_id, 0, sizeof(ac->lun_id));
5274         ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5275         ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5276         ac->error_ptr = cpu_to_le64(c->busaddr +
5277                         offsetof(struct io_accel2_cmd, error_data));
5278         ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5279 }
5280
5281 /* ioaccel2 path firmware cannot handle abort task requests.
5282  * Change abort requests to physical target reset, and send to the
5283  * address of the physical disk used for the ioaccel 2 command.
5284  * Return 0 on success (IO_OK)
5285  *       -1 on failure
5286  */
5287
5288 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5289         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5290 {
5291         int rc = IO_OK;
5292         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5293         struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5294         unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5295         unsigned char *psa = &phys_scsi3addr[0];
5296
5297         /* Get a pointer to the hpsa logical device. */
5298         scmd = abort->scsi_cmd;
5299         dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5300         if (dev == NULL) {
5301                 dev_warn(&h->pdev->dev,
5302                         "Cannot abort: no device pointer for command.\n");
5303                         return -1; /* not abortable */
5304         }
5305
5306         if (h->raid_offload_debug > 0)
5307                 dev_info(&h->pdev->dev,
5308                         "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5309                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5310                         "Reset as abort",
5311                         scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5312                         scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5313
5314         if (!dev->offload_enabled) {
5315                 dev_warn(&h->pdev->dev,
5316                         "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5317                 return -1; /* not abortable */
5318         }
5319
5320         /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5321         if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5322                 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5323                 return -1; /* not abortable */
5324         }
5325
5326         /* send the reset */
5327         if (h->raid_offload_debug > 0)
5328                 dev_info(&h->pdev->dev,
5329                         "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5330                         psa[0], psa[1], psa[2], psa[3],
5331                         psa[4], psa[5], psa[6], psa[7]);
5332         rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5333         if (rc != 0) {
5334                 dev_warn(&h->pdev->dev,
5335                         "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5336                         psa[0], psa[1], psa[2], psa[3],
5337                         psa[4], psa[5], psa[6], psa[7]);
5338                 return rc; /* failed to reset */
5339         }
5340
5341         /* wait for device to recover */
5342         if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5343                 dev_warn(&h->pdev->dev,
5344                         "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5345                         psa[0], psa[1], psa[2], psa[3],
5346                         psa[4], psa[5], psa[6], psa[7]);
5347                 return -1;  /* failed to recover */
5348         }
5349
5350         /* device recovered */
5351         dev_info(&h->pdev->dev,
5352                 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5353                 psa[0], psa[1], psa[2], psa[3],
5354                 psa[4], psa[5], psa[6], psa[7]);
5355
5356         return rc; /* success */
5357 }
5358
5359 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5360         struct CommandList *abort, int reply_queue)
5361 {
5362         int rc = IO_OK;
5363         struct CommandList *c;
5364         __le32 taglower, tagupper;
5365         struct hpsa_scsi_dev_t *dev;
5366         struct io_accel2_cmd *c2;
5367
5368         dev = abort->scsi_cmd->device->hostdata;
5369         if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5370                 return -1;
5371
5372         c = cmd_alloc(h);
5373         setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5374         c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5375         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5376         hpsa_get_tag(h, abort, &taglower, &tagupper);
5377         dev_dbg(&h->pdev->dev,
5378                 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5379                 __func__, tagupper, taglower);
5380         /* no unmap needed here because no data xfer. */
5381
5382         dev_dbg(&h->pdev->dev,
5383                 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5384                 __func__, tagupper, taglower, c2->error_data.serv_response);
5385         switch (c2->error_data.serv_response) {
5386         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5387         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5388                 rc = 0;
5389                 break;
5390         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5391         case IOACCEL2_SERV_RESPONSE_FAILURE:
5392         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5393                 rc = -1;
5394                 break;
5395         default:
5396                 dev_warn(&h->pdev->dev,
5397                         "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5398                         __func__, tagupper, taglower,
5399                         c2->error_data.serv_response);
5400                 rc = -1;
5401         }
5402         cmd_free(h, c);
5403         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5404                 tagupper, taglower);
5405         return rc;
5406 }
5407
5408 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5409         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5410 {
5411         /*
5412          * ioccelerator mode 2 commands should be aborted via the
5413          * accelerated path, since RAID path is unaware of these commands,
5414          * but not all underlying firmware can handle abort TMF.
5415          * Change abort to physical device reset when abort TMF is unsupported.
5416          */
5417         if (abort->cmd_type == CMD_IOACCEL2) {
5418                 if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)
5419                         return hpsa_send_abort_ioaccel2(h, abort,
5420                                                 reply_queue);
5421                 else
5422                         return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
5423                                                         abort, reply_queue);
5424         }
5425         return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
5426 }
5427
5428 /* Find out which reply queue a command was meant to return on */
5429 static int hpsa_extract_reply_queue(struct ctlr_info *h,
5430                                         struct CommandList *c)
5431 {
5432         if (c->cmd_type == CMD_IOACCEL2)
5433                 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5434         return c->Header.ReplyQueue;
5435 }
5436
5437 /*
5438  * Limit concurrency of abort commands to prevent
5439  * over-subscription of commands
5440  */
5441 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5442 {
5443 #define ABORT_CMD_WAIT_MSECS 5000
5444         return !wait_event_timeout(h->abort_cmd_wait_queue,
5445                         atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5446                         msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5447 }
5448
5449 /* Send an abort for the specified command.
5450  *      If the device and controller support it,
5451  *              send a task abort request.
5452  */
5453 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5454 {
5455
5456         int rc;
5457         struct ctlr_info *h;
5458         struct hpsa_scsi_dev_t *dev;
5459         struct CommandList *abort; /* pointer to command to be aborted */
5460         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
5461         char msg[256];          /* For debug messaging. */
5462         int ml = 0;
5463         __le32 tagupper, taglower;
5464         int refcount, reply_queue;
5465
5466         if (sc == NULL)
5467                 return FAILED;
5468
5469         if (sc->device == NULL)
5470                 return FAILED;
5471
5472         /* Find the controller of the command to be aborted */
5473         h = sdev_to_hba(sc->device);
5474         if (h == NULL)
5475                 return FAILED;
5476
5477         /* Find the device of the command to be aborted */
5478         dev = sc->device->hostdata;
5479         if (!dev) {
5480                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
5481                                 msg);
5482                 return FAILED;
5483         }
5484
5485         /* If controller locked up, we can guarantee command won't complete */
5486         if (lockup_detected(h)) {
5487                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5488                                         "ABORT FAILED, lockup detected");
5489                 return FAILED;
5490         }
5491
5492         /* This is a good time to check if controller lockup has occurred */
5493         if (detect_controller_lockup(h)) {
5494                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5495                                         "ABORT FAILED, new lockup detected");
5496                 return FAILED;
5497         }
5498
5499         /* Check that controller supports some kind of task abort */
5500         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
5501                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5502                 return FAILED;
5503
5504         memset(msg, 0, sizeof(msg));
5505         ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5506                 h->scsi_host->host_no, sc->device->channel,
5507                 sc->device->id, sc->device->lun,
5508                 "Aborting command", sc);
5509
5510         /* Get SCSI command to be aborted */
5511         abort = (struct CommandList *) sc->host_scribble;
5512         if (abort == NULL) {
5513                 /* This can happen if the command already completed. */
5514                 return SUCCESS;
5515         }
5516         refcount = atomic_inc_return(&abort->refcount);
5517         if (refcount == 1) { /* Command is done already. */
5518                 cmd_free(h, abort);
5519                 return SUCCESS;
5520         }
5521
5522         /* Don't bother trying the abort if we know it won't work. */
5523         if (abort->cmd_type != CMD_IOACCEL2 &&
5524                 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
5525                 cmd_free(h, abort);
5526                 return FAILED;
5527         }
5528
5529         /*
5530          * Check that we're aborting the right command.
5531          * It's possible the CommandList already completed and got re-used.
5532          */
5533         if (abort->scsi_cmd != sc) {
5534                 cmd_free(h, abort);
5535                 return SUCCESS;
5536         }
5537
5538         abort->abort_pending = true;
5539         hpsa_get_tag(h, abort, &taglower, &tagupper);
5540         reply_queue = hpsa_extract_reply_queue(h, abort);
5541         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5542         as  = abort->scsi_cmd;
5543         if (as != NULL)
5544                 ml += sprintf(msg+ml,
5545                         "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5546                         as->cmd_len, as->cmnd[0], as->cmnd[1],
5547                         as->serial_number);
5548         dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5549         hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5550
5551         /*
5552          * Command is in flight, or possibly already completed
5553          * by the firmware (but not to the scsi mid layer) but we can't
5554          * distinguish which.  Send the abort down.
5555          */
5556         if (wait_for_available_abort_cmd(h)) {
5557                 dev_warn(&h->pdev->dev,
5558                         "%s FAILED, timeout waiting for an abort command to become available.\n",
5559                         msg);
5560                 cmd_free(h, abort);
5561                 return FAILED;
5562         }
5563         rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
5564         atomic_inc(&h->abort_cmds_available);
5565         wake_up_all(&h->abort_cmd_wait_queue);
5566         if (rc != 0) {
5567                 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
5568                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5569                                 "FAILED to abort command");
5570                 cmd_free(h, abort);
5571                 return FAILED;
5572         }
5573         dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
5574         wait_event(h->event_sync_wait_queue,
5575                    abort->scsi_cmd != sc || lockup_detected(h));
5576         cmd_free(h, abort);
5577         return !lockup_detected(h) ? SUCCESS : FAILED;
5578 }
5579
5580 /*
5581  * For operations with an associated SCSI command, a command block is allocated
5582  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5583  * block request tag as an index into a table of entries.  cmd_tagged_free() is
5584  * the complement, although cmd_free() may be called instead.
5585  */
5586 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
5587                                             struct scsi_cmnd *scmd)
5588 {
5589         int idx = hpsa_get_cmd_index(scmd);
5590         struct CommandList *c = h->cmd_pool + idx;
5591
5592         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
5593                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
5594                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
5595                 /* The index value comes from the block layer, so if it's out of
5596                  * bounds, it's probably not our bug.
5597                  */
5598                 BUG();
5599         }
5600
5601         atomic_inc(&c->refcount);
5602         if (unlikely(!hpsa_is_cmd_idle(c))) {
5603                 /*
5604                  * We expect that the SCSI layer will hand us a unique tag
5605                  * value.  Thus, there should never be a collision here between
5606                  * two requests...because if the selected command isn't idle
5607                  * then someone is going to be very disappointed.
5608                  */
5609                 dev_err(&h->pdev->dev,
5610                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
5611                         idx);
5612                 if (c->scsi_cmd != NULL)
5613                         scsi_print_command(c->scsi_cmd);
5614                 scsi_print_command(scmd);
5615         }
5616
5617         hpsa_cmd_partial_init(h, idx, c);
5618         return c;
5619 }
5620
5621 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
5622 {
5623         /*
5624          * Release our reference to the block.  We don't need to do anything
5625          * else to free it, because it is accessed by index.  (There's no point
5626          * in checking the result of the decrement, since we cannot guarantee
5627          * that there isn't a concurrent abort which is also accessing it.)
5628          */
5629         (void)atomic_dec(&c->refcount);
5630 }
5631
5632 /*
5633  * For operations that cannot sleep, a command block is allocated at init,
5634  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5635  * which ones are free or in use.  Lock must be held when calling this.
5636  * cmd_free() is the complement.
5637  * This function never gives up and returns NULL.  If it hangs,
5638  * another thread must call cmd_free() to free some tags.
5639  */
5640
5641 static struct CommandList *cmd_alloc(struct ctlr_info *h)
5642 {
5643         struct CommandList *c;
5644         int refcount, i;
5645         int offset = 0;
5646
5647         /*
5648          * There is some *extremely* small but non-zero chance that that
5649          * multiple threads could get in here, and one thread could
5650          * be scanning through the list of bits looking for a free
5651          * one, but the free ones are always behind him, and other
5652          * threads sneak in behind him and eat them before he can
5653          * get to them, so that while there is always a free one, a
5654          * very unlucky thread might be starved anyway, never able to
5655          * beat the other threads.  In reality, this happens so
5656          * infrequently as to be indistinguishable from never.
5657          *
5658          * Note that we start allocating commands before the SCSI host structure
5659          * is initialized.  Since the search starts at bit zero, this
5660          * all works, since we have at least one command structure available;
5661          * however, it means that the structures with the low indexes have to be
5662          * reserved for driver-initiated requests, while requests from the block
5663          * layer will use the higher indexes.
5664          */
5665
5666         for (;;) {
5667                 i = find_next_zero_bit(h->cmd_pool_bits,
5668                                         HPSA_NRESERVED_CMDS,
5669                                         offset);
5670                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
5671                         offset = 0;
5672                         continue;
5673                 }
5674                 c = h->cmd_pool + i;
5675                 refcount = atomic_inc_return(&c->refcount);
5676                 if (unlikely(refcount > 1)) {
5677                         cmd_free(h, c); /* already in use */
5678                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
5679                         continue;
5680                 }
5681                 set_bit(i & (BITS_PER_LONG - 1),
5682                         h->cmd_pool_bits + (i / BITS_PER_LONG));
5683                 break; /* it's ours now. */
5684         }
5685         hpsa_cmd_partial_init(h, i, c);
5686         return c;
5687 }
5688
5689 /*
5690  * This is the complementary operation to cmd_alloc().  Note, however, in some
5691  * corner cases it may also be used to free blocks allocated by
5692  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
5693  * the clear-bit is harmless.
5694  */
5695 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
5696 {
5697         if (atomic_dec_and_test(&c->refcount)) {
5698                 int i;
5699
5700                 i = c - h->cmd_pool;
5701                 clear_bit(i & (BITS_PER_LONG - 1),
5702                           h->cmd_pool_bits + (i / BITS_PER_LONG));
5703         }
5704 }
5705
5706 #ifdef CONFIG_COMPAT
5707
5708 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
5709         void __user *arg)
5710 {
5711         IOCTL32_Command_struct __user *arg32 =
5712             (IOCTL32_Command_struct __user *) arg;
5713         IOCTL_Command_struct arg64;
5714         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
5715         int err;
5716         u32 cp;
5717
5718         memset(&arg64, 0, sizeof(arg64));
5719         err = 0;
5720         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5721                            sizeof(arg64.LUN_info));
5722         err |= copy_from_user(&arg64.Request, &arg32->Request,
5723                            sizeof(arg64.Request));
5724         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5725                            sizeof(arg64.error_info));
5726         err |= get_user(arg64.buf_size, &arg32->buf_size);
5727         err |= get_user(cp, &arg32->buf);
5728         arg64.buf = compat_ptr(cp);
5729         err |= copy_to_user(p, &arg64, sizeof(arg64));
5730
5731         if (err)
5732                 return -EFAULT;
5733
5734         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
5735         if (err)
5736                 return err;
5737         err |= copy_in_user(&arg32->error_info, &p->error_info,
5738                          sizeof(arg32->error_info));
5739         if (err)
5740                 return -EFAULT;
5741         return err;
5742 }
5743
5744 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
5745         int cmd, void __user *arg)
5746 {
5747         BIG_IOCTL32_Command_struct __user *arg32 =
5748             (BIG_IOCTL32_Command_struct __user *) arg;
5749         BIG_IOCTL_Command_struct arg64;
5750         BIG_IOCTL_Command_struct __user *p =
5751             compat_alloc_user_space(sizeof(arg64));
5752         int err;
5753         u32 cp;
5754
5755         memset(&arg64, 0, sizeof(arg64));
5756         err = 0;
5757         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5758                            sizeof(arg64.LUN_info));
5759         err |= copy_from_user(&arg64.Request, &arg32->Request,
5760                            sizeof(arg64.Request));
5761         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5762                            sizeof(arg64.error_info));
5763         err |= get_user(arg64.buf_size, &arg32->buf_size);
5764         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
5765         err |= get_user(cp, &arg32->buf);
5766         arg64.buf = compat_ptr(cp);
5767         err |= copy_to_user(p, &arg64, sizeof(arg64));
5768
5769         if (err)
5770                 return -EFAULT;
5771
5772         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
5773         if (err)
5774                 return err;
5775         err |= copy_in_user(&arg32->error_info, &p->error_info,
5776                          sizeof(arg32->error_info));
5777         if (err)
5778                 return -EFAULT;
5779         return err;
5780 }
5781
5782 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5783 {
5784         switch (cmd) {
5785         case CCISS_GETPCIINFO:
5786         case CCISS_GETINTINFO:
5787         case CCISS_SETINTINFO:
5788         case CCISS_GETNODENAME:
5789         case CCISS_SETNODENAME:
5790         case CCISS_GETHEARTBEAT:
5791         case CCISS_GETBUSTYPES:
5792         case CCISS_GETFIRMVER:
5793         case CCISS_GETDRIVVER:
5794         case CCISS_REVALIDVOLS:
5795         case CCISS_DEREGDISK:
5796         case CCISS_REGNEWDISK:
5797         case CCISS_REGNEWD:
5798         case CCISS_RESCANDISK:
5799         case CCISS_GETLUNINFO:
5800                 return hpsa_ioctl(dev, cmd, arg);
5801
5802         case CCISS_PASSTHRU32:
5803                 return hpsa_ioctl32_passthru(dev, cmd, arg);
5804         case CCISS_BIG_PASSTHRU32:
5805                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
5806
5807         default:
5808                 return -ENOIOCTLCMD;
5809         }
5810 }
5811 #endif
5812
5813 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
5814 {
5815         struct hpsa_pci_info pciinfo;
5816
5817         if (!argp)
5818                 return -EINVAL;
5819         pciinfo.domain = pci_domain_nr(h->pdev->bus);
5820         pciinfo.bus = h->pdev->bus->number;
5821         pciinfo.dev_fn = h->pdev->devfn;
5822         pciinfo.board_id = h->board_id;
5823         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
5824                 return -EFAULT;
5825         return 0;
5826 }
5827
5828 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
5829 {
5830         DriverVer_type DriverVer;
5831         unsigned char vmaj, vmin, vsubmin;
5832         int rc;
5833
5834         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
5835                 &vmaj, &vmin, &vsubmin);
5836         if (rc != 3) {
5837                 dev_info(&h->pdev->dev, "driver version string '%s' "
5838                         "unrecognized.", HPSA_DRIVER_VERSION);
5839                 vmaj = 0;
5840                 vmin = 0;
5841                 vsubmin = 0;
5842         }
5843         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
5844         if (!argp)
5845                 return -EINVAL;
5846         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
5847                 return -EFAULT;
5848         return 0;
5849 }
5850
5851 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
5852 {
5853         IOCTL_Command_struct iocommand;
5854         struct CommandList *c;
5855         char *buff = NULL;
5856         u64 temp64;
5857         int rc = 0;
5858
5859         if (!argp)
5860                 return -EINVAL;
5861         if (!capable(CAP_SYS_RAWIO))
5862                 return -EPERM;
5863         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
5864                 return -EFAULT;
5865         if ((iocommand.buf_size < 1) &&
5866             (iocommand.Request.Type.Direction != XFER_NONE)) {
5867                 return -EINVAL;
5868         }
5869         if (iocommand.buf_size > 0) {
5870                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
5871                 if (buff == NULL)
5872                         return -ENOMEM;
5873                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
5874                         /* Copy the data into the buffer we created */
5875                         if (copy_from_user(buff, iocommand.buf,
5876                                 iocommand.buf_size)) {
5877                                 rc = -EFAULT;
5878                                 goto out_kfree;
5879                         }
5880                 } else {
5881                         memset(buff, 0, iocommand.buf_size);
5882                 }
5883         }
5884         c = cmd_alloc(h);
5885
5886         /* Fill in the command type */
5887         c->cmd_type = CMD_IOCTL_PEND;
5888         c->scsi_cmd = SCSI_CMD_BUSY;
5889         /* Fill in Command Header */
5890         c->Header.ReplyQueue = 0; /* unused in simple mode */
5891         if (iocommand.buf_size > 0) {   /* buffer to fill */
5892                 c->Header.SGList = 1;
5893                 c->Header.SGTotal = cpu_to_le16(1);
5894         } else  { /* no buffers to fill */
5895                 c->Header.SGList = 0;
5896                 c->Header.SGTotal = cpu_to_le16(0);
5897         }
5898         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
5899
5900         /* Fill in Request block */
5901         memcpy(&c->Request, &iocommand.Request,
5902                 sizeof(c->Request));
5903
5904         /* Fill in the scatter gather information */
5905         if (iocommand.buf_size > 0) {
5906                 temp64 = pci_map_single(h->pdev, buff,
5907                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
5908                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
5909                         c->SG[0].Addr = cpu_to_le64(0);
5910                         c->SG[0].Len = cpu_to_le32(0);
5911                         rc = -ENOMEM;
5912                         goto out;
5913                 }
5914                 c->SG[0].Addr = cpu_to_le64(temp64);
5915                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
5916                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
5917         }
5918         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
5919         if (iocommand.buf_size > 0)
5920                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
5921         check_ioctl_unit_attention(h, c);
5922         if (rc) {
5923                 rc = -EIO;
5924                 goto out;
5925         }
5926
5927         /* Copy the error information out */
5928         memcpy(&iocommand.error_info, c->err_info,
5929                 sizeof(iocommand.error_info));
5930         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
5931                 rc = -EFAULT;
5932                 goto out;
5933         }
5934         if ((iocommand.Request.Type.Direction & XFER_READ) &&
5935                 iocommand.buf_size > 0) {
5936                 /* Copy the data out of the buffer we created */
5937                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
5938                         rc = -EFAULT;
5939                         goto out;
5940                 }
5941         }
5942 out:
5943         cmd_free(h, c);
5944 out_kfree:
5945         kfree(buff);
5946         return rc;
5947 }
5948
5949 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
5950 {
5951         BIG_IOCTL_Command_struct *ioc;
5952         struct CommandList *c;
5953         unsigned char **buff = NULL;
5954         int *buff_size = NULL;
5955         u64 temp64;
5956         BYTE sg_used = 0;
5957         int status = 0;
5958         u32 left;
5959         u32 sz;
5960         BYTE __user *data_ptr;
5961
5962         if (!argp)
5963                 return -EINVAL;
5964         if (!capable(CAP_SYS_RAWIO))
5965                 return -EPERM;
5966         ioc = (BIG_IOCTL_Command_struct *)
5967             kmalloc(sizeof(*ioc), GFP_KERNEL);
5968         if (!ioc) {
5969                 status = -ENOMEM;
5970                 goto cleanup1;
5971         }
5972         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
5973                 status = -EFAULT;
5974                 goto cleanup1;
5975         }
5976         if ((ioc->buf_size < 1) &&
5977             (ioc->Request.Type.Direction != XFER_NONE)) {
5978                 status = -EINVAL;
5979                 goto cleanup1;
5980         }
5981         /* Check kmalloc limits  using all SGs */
5982         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
5983                 status = -EINVAL;
5984                 goto cleanup1;
5985         }
5986         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
5987                 status = -EINVAL;
5988                 goto cleanup1;
5989         }
5990         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
5991         if (!buff) {
5992                 status = -ENOMEM;
5993                 goto cleanup1;
5994         }
5995         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
5996         if (!buff_size) {
5997                 status = -ENOMEM;
5998                 goto cleanup1;
5999         }
6000         left = ioc->buf_size;
6001         data_ptr = ioc->buf;
6002         while (left) {
6003                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6004                 buff_size[sg_used] = sz;
6005                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6006                 if (buff[sg_used] == NULL) {
6007                         status = -ENOMEM;
6008                         goto cleanup1;
6009                 }
6010                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6011                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6012                                 status = -EFAULT;
6013                                 goto cleanup1;
6014                         }
6015                 } else
6016                         memset(buff[sg_used], 0, sz);
6017                 left -= sz;
6018                 data_ptr += sz;
6019                 sg_used++;
6020         }
6021         c = cmd_alloc(h);
6022
6023         c->cmd_type = CMD_IOCTL_PEND;
6024         c->scsi_cmd = SCSI_CMD_BUSY;
6025         c->Header.ReplyQueue = 0;
6026         c->Header.SGList = (u8) sg_used;
6027         c->Header.SGTotal = cpu_to_le16(sg_used);
6028         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6029         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6030         if (ioc->buf_size > 0) {
6031                 int i;
6032                 for (i = 0; i < sg_used; i++) {
6033                         temp64 = pci_map_single(h->pdev, buff[i],
6034                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6035                         if (dma_mapping_error(&h->pdev->dev,
6036                                                         (dma_addr_t) temp64)) {
6037                                 c->SG[i].Addr = cpu_to_le64(0);
6038                                 c->SG[i].Len = cpu_to_le32(0);
6039                                 hpsa_pci_unmap(h->pdev, c, i,
6040                                         PCI_DMA_BIDIRECTIONAL);
6041                                 status = -ENOMEM;
6042                                 goto cleanup0;
6043                         }
6044                         c->SG[i].Addr = cpu_to_le64(temp64);
6045                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6046                         c->SG[i].Ext = cpu_to_le32(0);
6047                 }
6048                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6049         }
6050         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6051         if (sg_used)
6052                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6053         check_ioctl_unit_attention(h, c);
6054         if (status) {
6055                 status = -EIO;
6056                 goto cleanup0;
6057         }
6058
6059         /* Copy the error information out */
6060         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6061         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6062                 status = -EFAULT;
6063                 goto cleanup0;
6064         }
6065         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6066                 int i;
6067
6068                 /* Copy the data out of the buffer we created */
6069                 BYTE __user *ptr = ioc->buf;
6070                 for (i = 0; i < sg_used; i++) {
6071                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6072                                 status = -EFAULT;
6073                                 goto cleanup0;
6074                         }
6075                         ptr += buff_size[i];
6076                 }
6077         }
6078         status = 0;
6079 cleanup0:
6080         cmd_free(h, c);
6081 cleanup1:
6082         if (buff) {
6083                 int i;
6084
6085                 for (i = 0; i < sg_used; i++)
6086                         kfree(buff[i]);
6087                 kfree(buff);
6088         }
6089         kfree(buff_size);
6090         kfree(ioc);
6091         return status;
6092 }
6093
6094 static void check_ioctl_unit_attention(struct ctlr_info *h,
6095         struct CommandList *c)
6096 {
6097         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6098                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6099                 (void) check_for_unit_attention(h, c);
6100 }
6101
6102 /*
6103  * ioctl
6104  */
6105 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6106 {
6107         struct ctlr_info *h;
6108         void __user *argp = (void __user *)arg;
6109         int rc;
6110
6111         h = sdev_to_hba(dev);
6112
6113         switch (cmd) {
6114         case CCISS_DEREGDISK:
6115         case CCISS_REGNEWDISK:
6116         case CCISS_REGNEWD:
6117                 hpsa_scan_start(h->scsi_host);
6118                 return 0;
6119         case CCISS_GETPCIINFO:
6120                 return hpsa_getpciinfo_ioctl(h, argp);
6121         case CCISS_GETDRIVVER:
6122                 return hpsa_getdrivver_ioctl(h, argp);
6123         case CCISS_PASSTHRU:
6124                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6125                         return -EAGAIN;
6126                 rc = hpsa_passthru_ioctl(h, argp);
6127                 atomic_inc(&h->passthru_cmds_avail);
6128                 return rc;
6129         case CCISS_BIG_PASSTHRU:
6130                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6131                         return -EAGAIN;
6132                 rc = hpsa_big_passthru_ioctl(h, argp);
6133                 atomic_inc(&h->passthru_cmds_avail);
6134                 return rc;
6135         default:
6136                 return -ENOTTY;
6137         }
6138 }
6139
6140 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6141                                 u8 reset_type)
6142 {
6143         struct CommandList *c;
6144
6145         c = cmd_alloc(h);
6146
6147         /* fill_cmd can't fail here, no data buffer to map */
6148         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6149                 RAID_CTLR_LUNID, TYPE_MSG);
6150         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6151         c->waiting = NULL;
6152         enqueue_cmd_and_start_io(h, c);
6153         /* Don't wait for completion, the reset won't complete.  Don't free
6154          * the command either.  This is the last command we will send before
6155          * re-initializing everything, so it doesn't matter and won't leak.
6156          */
6157         return;
6158 }
6159
6160 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6161         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6162         int cmd_type)
6163 {
6164         int pci_dir = XFER_NONE;
6165         u64 tag; /* for commands to be aborted */
6166
6167         c->cmd_type = CMD_IOCTL_PEND;
6168         c->scsi_cmd = SCSI_CMD_BUSY;
6169         c->Header.ReplyQueue = 0;
6170         if (buff != NULL && size > 0) {
6171                 c->Header.SGList = 1;
6172                 c->Header.SGTotal = cpu_to_le16(1);
6173         } else {
6174                 c->Header.SGList = 0;
6175                 c->Header.SGTotal = cpu_to_le16(0);
6176         }
6177         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6178
6179         if (cmd_type == TYPE_CMD) {
6180                 switch (cmd) {
6181                 case HPSA_INQUIRY:
6182                         /* are we trying to read a vital product page */
6183                         if (page_code & VPD_PAGE) {
6184                                 c->Request.CDB[1] = 0x01;
6185                                 c->Request.CDB[2] = (page_code & 0xff);
6186                         }
6187                         c->Request.CDBLen = 6;
6188                         c->Request.type_attr_dir =
6189                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6190                         c->Request.Timeout = 0;
6191                         c->Request.CDB[0] = HPSA_INQUIRY;
6192                         c->Request.CDB[4] = size & 0xFF;
6193                         break;
6194                 case HPSA_REPORT_LOG:
6195                 case HPSA_REPORT_PHYS:
6196                         /* Talking to controller so It's a physical command
6197                            mode = 00 target = 0.  Nothing to write.
6198                          */
6199                         c->Request.CDBLen = 12;
6200                         c->Request.type_attr_dir =
6201                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6202                         c->Request.Timeout = 0;
6203                         c->Request.CDB[0] = cmd;
6204                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6205                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6206                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6207                         c->Request.CDB[9] = size & 0xFF;
6208                         break;
6209                 case HPSA_CACHE_FLUSH:
6210                         c->Request.CDBLen = 12;
6211                         c->Request.type_attr_dir =
6212                                         TYPE_ATTR_DIR(cmd_type,
6213                                                 ATTR_SIMPLE, XFER_WRITE);
6214                         c->Request.Timeout = 0;
6215                         c->Request.CDB[0] = BMIC_WRITE;
6216                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6217                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6218                         c->Request.CDB[8] = size & 0xFF;
6219                         break;
6220                 case TEST_UNIT_READY:
6221                         c->Request.CDBLen = 6;
6222                         c->Request.type_attr_dir =
6223                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6224                         c->Request.Timeout = 0;
6225                         break;
6226                 case HPSA_GET_RAID_MAP:
6227                         c->Request.CDBLen = 12;
6228                         c->Request.type_attr_dir =
6229                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6230                         c->Request.Timeout = 0;
6231                         c->Request.CDB[0] = HPSA_CISS_READ;
6232                         c->Request.CDB[1] = cmd;
6233                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6234                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6235                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6236                         c->Request.CDB[9] = size & 0xFF;
6237                         break;
6238                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6239                         c->Request.CDBLen = 10;
6240                         c->Request.type_attr_dir =
6241                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6242                         c->Request.Timeout = 0;
6243                         c->Request.CDB[0] = BMIC_READ;
6244                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6245                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6246                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6247                         break;
6248                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6249                         c->Request.CDBLen = 10;
6250                         c->Request.type_attr_dir =
6251                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6252                         c->Request.Timeout = 0;
6253                         c->Request.CDB[0] = BMIC_READ;
6254                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6255                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6256                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6257                         break;
6258                 default:
6259                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6260                         BUG();
6261                         return -1;
6262                 }
6263         } else if (cmd_type == TYPE_MSG) {
6264                 switch (cmd) {
6265
6266                 case  HPSA_DEVICE_RESET_MSG:
6267                         c->Request.CDBLen = 16;
6268                         c->Request.type_attr_dir =
6269                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6270                         c->Request.Timeout = 0; /* Don't time out */
6271                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6272                         c->Request.CDB[0] =  cmd;
6273                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6274                         /* If bytes 4-7 are zero, it means reset the */
6275                         /* LunID device */
6276                         c->Request.CDB[4] = 0x00;
6277                         c->Request.CDB[5] = 0x00;
6278                         c->Request.CDB[6] = 0x00;
6279                         c->Request.CDB[7] = 0x00;
6280                         break;
6281                 case  HPSA_ABORT_MSG:
6282                         memcpy(&tag, buff, sizeof(tag));
6283                         dev_dbg(&h->pdev->dev,
6284                                 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6285                                 tag, c->Header.tag);
6286                         c->Request.CDBLen = 16;
6287                         c->Request.type_attr_dir =
6288                                         TYPE_ATTR_DIR(cmd_type,
6289                                                 ATTR_SIMPLE, XFER_WRITE);
6290                         c->Request.Timeout = 0; /* Don't time out */
6291                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6292                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6293                         c->Request.CDB[2] = 0x00; /* reserved */
6294                         c->Request.CDB[3] = 0x00; /* reserved */
6295                         /* Tag to abort goes in CDB[4]-CDB[11] */
6296                         memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6297                         c->Request.CDB[12] = 0x00; /* reserved */
6298                         c->Request.CDB[13] = 0x00; /* reserved */
6299                         c->Request.CDB[14] = 0x00; /* reserved */
6300                         c->Request.CDB[15] = 0x00; /* reserved */
6301                 break;
6302                 default:
6303                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6304                                 cmd);
6305                         BUG();
6306                 }
6307         } else {
6308                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6309                 BUG();
6310         }
6311
6312         switch (GET_DIR(c->Request.type_attr_dir)) {
6313         case XFER_READ:
6314                 pci_dir = PCI_DMA_FROMDEVICE;
6315                 break;
6316         case XFER_WRITE:
6317                 pci_dir = PCI_DMA_TODEVICE;
6318                 break;
6319         case XFER_NONE:
6320                 pci_dir = PCI_DMA_NONE;
6321                 break;
6322         default:
6323                 pci_dir = PCI_DMA_BIDIRECTIONAL;
6324         }
6325         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6326                 return -1;
6327         return 0;
6328 }
6329
6330 /*
6331  * Map (physical) PCI mem into (virtual) kernel space
6332  */
6333 static void __iomem *remap_pci_mem(ulong base, ulong size)
6334 {
6335         ulong page_base = ((ulong) base) & PAGE_MASK;
6336         ulong page_offs = ((ulong) base) - page_base;
6337         void __iomem *page_remapped = ioremap_nocache(page_base,
6338                 page_offs + size);
6339
6340         return page_remapped ? (page_remapped + page_offs) : NULL;
6341 }
6342
6343 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6344 {
6345         return h->access.command_completed(h, q);
6346 }
6347
6348 static inline bool interrupt_pending(struct ctlr_info *h)
6349 {
6350         return h->access.intr_pending(h);
6351 }
6352
6353 static inline long interrupt_not_for_us(struct ctlr_info *h)
6354 {
6355         return (h->access.intr_pending(h) == 0) ||
6356                 (h->interrupts_enabled == 0);
6357 }
6358
6359 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6360         u32 raw_tag)
6361 {
6362         if (unlikely(tag_index >= h->nr_cmds)) {
6363                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6364                 return 1;
6365         }
6366         return 0;
6367 }
6368
6369 static inline void finish_cmd(struct CommandList *c)
6370 {
6371         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6372         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6373                         || c->cmd_type == CMD_IOACCEL2))
6374                 complete_scsi_command(c);
6375         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6376                 complete(c->waiting);
6377 }
6378
6379
6380 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
6381 {
6382 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
6383 #define HPSA_SIMPLE_ERROR_BITS 0x03
6384         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
6385                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
6386         return tag & ~HPSA_PERF_ERROR_BITS;
6387 }
6388
6389 /* process completion of an indexed ("direct lookup") command */
6390 static inline void process_indexed_cmd(struct ctlr_info *h,
6391         u32 raw_tag)
6392 {
6393         u32 tag_index;
6394         struct CommandList *c;
6395
6396         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6397         if (!bad_tag(h, tag_index, raw_tag)) {
6398                 c = h->cmd_pool + tag_index;
6399                 finish_cmd(c);
6400         }
6401 }
6402
6403 /* Some controllers, like p400, will give us one interrupt
6404  * after a soft reset, even if we turned interrupts off.
6405  * Only need to check for this in the hpsa_xxx_discard_completions
6406  * functions.
6407  */
6408 static int ignore_bogus_interrupt(struct ctlr_info *h)
6409 {
6410         if (likely(!reset_devices))
6411                 return 0;
6412
6413         if (likely(h->interrupts_enabled))
6414                 return 0;
6415
6416         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6417                 "(known firmware bug.)  Ignoring.\n");
6418
6419         return 1;
6420 }
6421
6422 /*
6423  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6424  * Relies on (h-q[x] == x) being true for x such that
6425  * 0 <= x < MAX_REPLY_QUEUES.
6426  */
6427 static struct ctlr_info *queue_to_hba(u8 *queue)
6428 {
6429         return container_of((queue - *queue), struct ctlr_info, q[0]);
6430 }
6431
6432 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6433 {
6434         struct ctlr_info *h = queue_to_hba(queue);
6435         u8 q = *(u8 *) queue;
6436         u32 raw_tag;
6437
6438         if (ignore_bogus_interrupt(h))
6439                 return IRQ_NONE;
6440
6441         if (interrupt_not_for_us(h))
6442                 return IRQ_NONE;
6443         h->last_intr_timestamp = get_jiffies_64();
6444         while (interrupt_pending(h)) {
6445                 raw_tag = get_next_completion(h, q);
6446                 while (raw_tag != FIFO_EMPTY)
6447                         raw_tag = next_command(h, q);
6448         }
6449         return IRQ_HANDLED;
6450 }
6451
6452 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6453 {
6454         struct ctlr_info *h = queue_to_hba(queue);
6455         u32 raw_tag;
6456         u8 q = *(u8 *) queue;
6457
6458         if (ignore_bogus_interrupt(h))
6459                 return IRQ_NONE;
6460
6461         h->last_intr_timestamp = get_jiffies_64();
6462         raw_tag = get_next_completion(h, q);
6463         while (raw_tag != FIFO_EMPTY)
6464                 raw_tag = next_command(h, q);
6465         return IRQ_HANDLED;
6466 }
6467
6468 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6469 {
6470         struct ctlr_info *h = queue_to_hba((u8 *) queue);
6471         u32 raw_tag;
6472         u8 q = *(u8 *) queue;
6473
6474         if (interrupt_not_for_us(h))
6475                 return IRQ_NONE;
6476         h->last_intr_timestamp = get_jiffies_64();
6477         while (interrupt_pending(h)) {
6478                 raw_tag = get_next_completion(h, q);
6479                 while (raw_tag != FIFO_EMPTY) {
6480                         process_indexed_cmd(h, raw_tag);
6481                         raw_tag = next_command(h, q);
6482                 }
6483         }
6484         return IRQ_HANDLED;
6485 }
6486
6487 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6488 {
6489         struct ctlr_info *h = queue_to_hba(queue);
6490         u32 raw_tag;
6491         u8 q = *(u8 *) queue;
6492
6493         h->last_intr_timestamp = get_jiffies_64();
6494         raw_tag = get_next_completion(h, q);
6495         while (raw_tag != FIFO_EMPTY) {
6496                 process_indexed_cmd(h, raw_tag);
6497                 raw_tag = next_command(h, q);
6498         }
6499         return IRQ_HANDLED;
6500 }
6501
6502 /* Send a message CDB to the firmware. Careful, this only works
6503  * in simple mode, not performant mode due to the tag lookup.
6504  * We only ever use this immediately after a controller reset.
6505  */
6506 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6507                         unsigned char type)
6508 {
6509         struct Command {
6510                 struct CommandListHeader CommandHeader;
6511                 struct RequestBlock Request;
6512                 struct ErrDescriptor ErrorDescriptor;
6513         };
6514         struct Command *cmd;
6515         static const size_t cmd_sz = sizeof(*cmd) +
6516                                         sizeof(cmd->ErrorDescriptor);
6517         dma_addr_t paddr64;
6518         __le32 paddr32;
6519         u32 tag;
6520         void __iomem *vaddr;
6521         int i, err;
6522
6523         vaddr = pci_ioremap_bar(pdev, 0);
6524         if (vaddr == NULL)
6525                 return -ENOMEM;
6526
6527         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6528          * CCISS commands, so they must be allocated from the lower 4GiB of
6529          * memory.
6530          */
6531         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6532         if (err) {
6533                 iounmap(vaddr);
6534                 return err;
6535         }
6536
6537         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
6538         if (cmd == NULL) {
6539                 iounmap(vaddr);
6540                 return -ENOMEM;
6541         }
6542
6543         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
6544          * although there's no guarantee, we assume that the address is at
6545          * least 4-byte aligned (most likely, it's page-aligned).
6546          */
6547         paddr32 = cpu_to_le32(paddr64);
6548
6549         cmd->CommandHeader.ReplyQueue = 0;
6550         cmd->CommandHeader.SGList = 0;
6551         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
6552         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6553         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
6554
6555         cmd->Request.CDBLen = 16;
6556         cmd->Request.type_attr_dir =
6557                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6558         cmd->Request.Timeout = 0; /* Don't time out */
6559         cmd->Request.CDB[0] = opcode;
6560         cmd->Request.CDB[1] = type;
6561         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6562         cmd->ErrorDescriptor.Addr =
6563                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6564         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6565
6566         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6567
6568         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
6569                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
6570                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6571                         break;
6572                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
6573         }
6574
6575         iounmap(vaddr);
6576
6577         /* we leak the DMA buffer here ... no choice since the controller could
6578          *  still complete the command.
6579          */
6580         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
6581                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
6582                         opcode, type);
6583                 return -ETIMEDOUT;
6584         }
6585
6586         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
6587
6588         if (tag & HPSA_ERROR_BIT) {
6589                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
6590                         opcode, type);
6591                 return -EIO;
6592         }
6593
6594         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
6595                 opcode, type);
6596         return 0;
6597 }
6598
6599 #define hpsa_noop(p) hpsa_message(p, 3, 0)
6600
6601 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
6602         void __iomem *vaddr, u32 use_doorbell)
6603 {
6604
6605         if (use_doorbell) {
6606                 /* For everything after the P600, the PCI power state method
6607                  * of resetting the controller doesn't work, so we have this
6608                  * other way using the doorbell register.
6609                  */
6610                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
6611                 writel(use_doorbell, vaddr + SA5_DOORBELL);
6612
6613                 /* PMC hardware guys tell us we need a 10 second delay after
6614                  * doorbell reset and before any attempt to talk to the board
6615                  * at all to ensure that this actually works and doesn't fall
6616                  * over in some weird corner cases.
6617                  */
6618                 msleep(10000);
6619         } else { /* Try to do it the PCI power state way */
6620
6621                 /* Quoting from the Open CISS Specification: "The Power
6622                  * Management Control/Status Register (CSR) controls the power
6623                  * state of the device.  The normal operating state is D0,
6624                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
6625                  * the controller, place the interface device in D3 then to D0,
6626                  * this causes a secondary PCI reset which will reset the
6627                  * controller." */
6628
6629                 int rc = 0;
6630
6631                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
6632
6633                 /* enter the D3hot power management state */
6634                 rc = pci_set_power_state(pdev, PCI_D3hot);
6635                 if (rc)
6636                         return rc;
6637
6638                 msleep(500);
6639
6640                 /* enter the D0 power management state */
6641                 rc = pci_set_power_state(pdev, PCI_D0);
6642                 if (rc)
6643                         return rc;
6644
6645                 /*
6646                  * The P600 requires a small delay when changing states.
6647                  * Otherwise we may think the board did not reset and we bail.
6648                  * This for kdump only and is particular to the P600.
6649                  */
6650                 msleep(500);
6651         }
6652         return 0;
6653 }
6654
6655 static void init_driver_version(char *driver_version, int len)
6656 {
6657         memset(driver_version, 0, len);
6658         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
6659 }
6660
6661 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
6662 {
6663         char *driver_version;
6664         int i, size = sizeof(cfgtable->driver_version);
6665
6666         driver_version = kmalloc(size, GFP_KERNEL);
6667         if (!driver_version)
6668                 return -ENOMEM;
6669
6670         init_driver_version(driver_version, size);
6671         for (i = 0; i < size; i++)
6672                 writeb(driver_version[i], &cfgtable->driver_version[i]);
6673         kfree(driver_version);
6674         return 0;
6675 }
6676
6677 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
6678                                           unsigned char *driver_ver)
6679 {
6680         int i;
6681
6682         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
6683                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
6684 }
6685
6686 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
6687 {
6688
6689         char *driver_ver, *old_driver_ver;
6690         int rc, size = sizeof(cfgtable->driver_version);
6691
6692         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
6693         if (!old_driver_ver)
6694                 return -ENOMEM;
6695         driver_ver = old_driver_ver + size;
6696
6697         /* After a reset, the 32 bytes of "driver version" in the cfgtable
6698          * should have been changed, otherwise we know the reset failed.
6699          */
6700         init_driver_version(old_driver_ver, size);
6701         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
6702         rc = !memcmp(driver_ver, old_driver_ver, size);
6703         kfree(old_driver_ver);
6704         return rc;
6705 }
6706 /* This does a hard reset of the controller using PCI power management
6707  * states or the using the doorbell register.
6708  */
6709 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
6710 {
6711         u64 cfg_offset;
6712         u32 cfg_base_addr;
6713         u64 cfg_base_addr_index;
6714         void __iomem *vaddr;
6715         unsigned long paddr;
6716         u32 misc_fw_support;
6717         int rc;
6718         struct CfgTable __iomem *cfgtable;
6719         u32 use_doorbell;
6720         u16 command_register;
6721
6722         /* For controllers as old as the P600, this is very nearly
6723          * the same thing as
6724          *
6725          * pci_save_state(pci_dev);
6726          * pci_set_power_state(pci_dev, PCI_D3hot);
6727          * pci_set_power_state(pci_dev, PCI_D0);
6728          * pci_restore_state(pci_dev);
6729          *
6730          * For controllers newer than the P600, the pci power state
6731          * method of resetting doesn't work so we have another way
6732          * using the doorbell register.
6733          */
6734
6735         if (!ctlr_is_resettable(board_id)) {
6736                 dev_warn(&pdev->dev, "Controller not resettable\n");
6737                 return -ENODEV;
6738         }
6739
6740         /* if controller is soft- but not hard resettable... */
6741         if (!ctlr_is_hard_resettable(board_id))
6742                 return -ENOTSUPP; /* try soft reset later. */
6743
6744         /* Save the PCI command register */
6745         pci_read_config_word(pdev, 4, &command_register);
6746         pci_save_state(pdev);
6747
6748         /* find the first memory BAR, so we can find the cfg table */
6749         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
6750         if (rc)
6751                 return rc;
6752         vaddr = remap_pci_mem(paddr, 0x250);
6753         if (!vaddr)
6754                 return -ENOMEM;
6755
6756         /* find cfgtable in order to check if reset via doorbell is supported */
6757         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
6758                                         &cfg_base_addr_index, &cfg_offset);
6759         if (rc)
6760                 goto unmap_vaddr;
6761         cfgtable = remap_pci_mem(pci_resource_start(pdev,
6762                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
6763         if (!cfgtable) {
6764                 rc = -ENOMEM;
6765                 goto unmap_vaddr;
6766         }
6767         rc = write_driver_ver_to_cfgtable(cfgtable);
6768         if (rc)
6769                 goto unmap_cfgtable;
6770
6771         /* If reset via doorbell register is supported, use that.
6772          * There are two such methods.  Favor the newest method.
6773          */
6774         misc_fw_support = readl(&cfgtable->misc_fw_support);
6775         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
6776         if (use_doorbell) {
6777                 use_doorbell = DOORBELL_CTLR_RESET2;
6778         } else {
6779                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
6780                 if (use_doorbell) {
6781                         dev_warn(&pdev->dev,
6782                                 "Soft reset not supported. Firmware update is required.\n");
6783                         rc = -ENOTSUPP; /* try soft reset */
6784                         goto unmap_cfgtable;
6785                 }
6786         }
6787
6788         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
6789         if (rc)
6790                 goto unmap_cfgtable;
6791
6792         pci_restore_state(pdev);
6793         pci_write_config_word(pdev, 4, command_register);
6794
6795         /* Some devices (notably the HP Smart Array 5i Controller)
6796            need a little pause here */
6797         msleep(HPSA_POST_RESET_PAUSE_MSECS);
6798
6799         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
6800         if (rc) {
6801                 dev_warn(&pdev->dev,
6802                         "Failed waiting for board to become ready after hard reset\n");
6803                 goto unmap_cfgtable;
6804         }
6805
6806         rc = controller_reset_failed(vaddr);
6807         if (rc < 0)
6808                 goto unmap_cfgtable;
6809         if (rc) {
6810                 dev_warn(&pdev->dev, "Unable to successfully reset "
6811                         "controller. Will try soft reset.\n");
6812                 rc = -ENOTSUPP;
6813         } else {
6814                 dev_info(&pdev->dev, "board ready after hard reset.\n");
6815         }
6816
6817 unmap_cfgtable:
6818         iounmap(cfgtable);
6819
6820 unmap_vaddr:
6821         iounmap(vaddr);
6822         return rc;
6823 }
6824
6825 /*
6826  *  We cannot read the structure directly, for portability we must use
6827  *   the io functions.
6828  *   This is for debug only.
6829  */
6830 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
6831 {
6832 #ifdef HPSA_DEBUG
6833         int i;
6834         char temp_name[17];
6835
6836         dev_info(dev, "Controller Configuration information\n");
6837         dev_info(dev, "------------------------------------\n");
6838         for (i = 0; i < 4; i++)
6839                 temp_name[i] = readb(&(tb->Signature[i]));
6840         temp_name[4] = '\0';
6841         dev_info(dev, "   Signature = %s\n", temp_name);
6842         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
6843         dev_info(dev, "   Transport methods supported = 0x%x\n",
6844                readl(&(tb->TransportSupport)));
6845         dev_info(dev, "   Transport methods active = 0x%x\n",
6846                readl(&(tb->TransportActive)));
6847         dev_info(dev, "   Requested transport Method = 0x%x\n",
6848                readl(&(tb->HostWrite.TransportRequest)));
6849         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
6850                readl(&(tb->HostWrite.CoalIntDelay)));
6851         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
6852                readl(&(tb->HostWrite.CoalIntCount)));
6853         dev_info(dev, "   Max outstanding commands = %d\n",
6854                readl(&(tb->CmdsOutMax)));
6855         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
6856         for (i = 0; i < 16; i++)
6857                 temp_name[i] = readb(&(tb->ServerName[i]));
6858         temp_name[16] = '\0';
6859         dev_info(dev, "   Server Name = %s\n", temp_name);
6860         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
6861                 readl(&(tb->HeartBeat)));
6862 #endif                          /* HPSA_DEBUG */
6863 }
6864
6865 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
6866 {
6867         int i, offset, mem_type, bar_type;
6868
6869         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
6870                 return 0;
6871         offset = 0;
6872         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
6873                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
6874                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
6875                         offset += 4;
6876                 else {
6877                         mem_type = pci_resource_flags(pdev, i) &
6878                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
6879                         switch (mem_type) {
6880                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
6881                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
6882                                 offset += 4;    /* 32 bit */
6883                                 break;
6884                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
6885                                 offset += 8;
6886                                 break;
6887                         default:        /* reserved in PCI 2.2 */
6888                                 dev_warn(&pdev->dev,
6889                                        "base address is invalid\n");
6890                                 return -1;
6891                                 break;
6892                         }
6893                 }
6894                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
6895                         return i + 1;
6896         }
6897         return -1;
6898 }
6899
6900 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
6901 {
6902         if (h->msix_vector) {
6903                 if (h->pdev->msix_enabled)
6904                         pci_disable_msix(h->pdev);
6905                 h->msix_vector = 0;
6906         } else if (h->msi_vector) {
6907                 if (h->pdev->msi_enabled)
6908                         pci_disable_msi(h->pdev);
6909                 h->msi_vector = 0;
6910         }
6911 }
6912
6913 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
6914  * controllers that are capable. If not, we use legacy INTx mode.
6915  */
6916 static void hpsa_interrupt_mode(struct ctlr_info *h)
6917 {
6918 #ifdef CONFIG_PCI_MSI
6919         int err, i;
6920         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
6921
6922         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
6923                 hpsa_msix_entries[i].vector = 0;
6924                 hpsa_msix_entries[i].entry = i;
6925         }
6926
6927         /* Some boards advertise MSI but don't really support it */
6928         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
6929             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
6930                 goto default_int_mode;
6931         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
6932                 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
6933                 h->msix_vector = MAX_REPLY_QUEUES;
6934                 if (h->msix_vector > num_online_cpus())
6935                         h->msix_vector = num_online_cpus();
6936                 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
6937                                             1, h->msix_vector);
6938                 if (err < 0) {
6939                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
6940                         h->msix_vector = 0;
6941                         goto single_msi_mode;
6942                 } else if (err < h->msix_vector) {
6943                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
6944                                "available\n", err);
6945                 }
6946                 h->msix_vector = err;
6947                 for (i = 0; i < h->msix_vector; i++)
6948                         h->intr[i] = hpsa_msix_entries[i].vector;
6949                 return;
6950         }
6951 single_msi_mode:
6952         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
6953                 dev_info(&h->pdev->dev, "MSI capable controller\n");
6954                 if (!pci_enable_msi(h->pdev))
6955                         h->msi_vector = 1;
6956                 else
6957                         dev_warn(&h->pdev->dev, "MSI init failed\n");
6958         }
6959 default_int_mode:
6960 #endif                          /* CONFIG_PCI_MSI */
6961         /* if we get here we're going to use the default interrupt mode */
6962         h->intr[h->intr_mode] = h->pdev->irq;
6963 }
6964
6965 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
6966 {
6967         int i;
6968         u32 subsystem_vendor_id, subsystem_device_id;
6969
6970         subsystem_vendor_id = pdev->subsystem_vendor;
6971         subsystem_device_id = pdev->subsystem_device;
6972         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
6973                     subsystem_vendor_id;
6974
6975         for (i = 0; i < ARRAY_SIZE(products); i++)
6976                 if (*board_id == products[i].board_id)
6977                         return i;
6978
6979         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
6980                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
6981                 !hpsa_allow_any) {
6982                 dev_warn(&pdev->dev, "unrecognized board ID: "
6983                         "0x%08x, ignoring.\n", *board_id);
6984                         return -ENODEV;
6985         }
6986         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
6987 }
6988
6989 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
6990                                     unsigned long *memory_bar)
6991 {
6992         int i;
6993
6994         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6995                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6996                         /* addressing mode bits already removed */
6997                         *memory_bar = pci_resource_start(pdev, i);
6998                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6999                                 *memory_bar);
7000                         return 0;
7001                 }
7002         dev_warn(&pdev->dev, "no memory BAR found\n");
7003         return -ENODEV;
7004 }
7005
7006 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7007                                      int wait_for_ready)
7008 {
7009         int i, iterations;
7010         u32 scratchpad;
7011         if (wait_for_ready)
7012                 iterations = HPSA_BOARD_READY_ITERATIONS;
7013         else
7014                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7015
7016         for (i = 0; i < iterations; i++) {
7017                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7018                 if (wait_for_ready) {
7019                         if (scratchpad == HPSA_FIRMWARE_READY)
7020                                 return 0;
7021                 } else {
7022                         if (scratchpad != HPSA_FIRMWARE_READY)
7023                                 return 0;
7024                 }
7025                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7026         }
7027         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7028         return -ENODEV;
7029 }
7030
7031 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7032                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7033                                u64 *cfg_offset)
7034 {
7035         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7036         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7037         *cfg_base_addr &= (u32) 0x0000ffff;
7038         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7039         if (*cfg_base_addr_index == -1) {
7040                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7041                 return -ENODEV;
7042         }
7043         return 0;
7044 }
7045
7046 static void hpsa_free_cfgtables(struct ctlr_info *h)
7047 {
7048         if (h->transtable) {
7049                 iounmap(h->transtable);
7050                 h->transtable = NULL;
7051         }
7052         if (h->cfgtable) {
7053                 iounmap(h->cfgtable);
7054                 h->cfgtable = NULL;
7055         }
7056 }
7057
7058 /* Find and map CISS config table and transfer table
7059 + * several items must be unmapped (freed) later
7060 + * */
7061 static int hpsa_find_cfgtables(struct ctlr_info *h)
7062 {
7063         u64 cfg_offset;
7064         u32 cfg_base_addr;
7065         u64 cfg_base_addr_index;
7066         u32 trans_offset;
7067         int rc;
7068
7069         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7070                 &cfg_base_addr_index, &cfg_offset);
7071         if (rc)
7072                 return rc;
7073         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7074                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7075         if (!h->cfgtable) {
7076                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7077                 return -ENOMEM;
7078         }
7079         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7080         if (rc)
7081                 return rc;
7082         /* Find performant mode table. */
7083         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7084         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7085                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7086                                 sizeof(*h->transtable));
7087         if (!h->transtable) {
7088                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7089                 hpsa_free_cfgtables(h);
7090                 return -ENOMEM;
7091         }
7092         return 0;
7093 }
7094
7095 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7096 {
7097 #define MIN_MAX_COMMANDS 16
7098         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7099
7100         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7101
7102         /* Limit commands in memory limited kdump scenario. */
7103         if (reset_devices && h->max_commands > 32)
7104                 h->max_commands = 32;
7105
7106         if (h->max_commands < MIN_MAX_COMMANDS) {
7107                 dev_warn(&h->pdev->dev,
7108                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7109                         h->max_commands,
7110                         MIN_MAX_COMMANDS);
7111                 h->max_commands = MIN_MAX_COMMANDS;
7112         }
7113 }
7114
7115 /* If the controller reports that the total max sg entries is greater than 512,
7116  * then we know that chained SG blocks work.  (Original smart arrays did not
7117  * support chained SG blocks and would return zero for max sg entries.)
7118  */
7119 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7120 {
7121         return h->maxsgentries > 512;
7122 }
7123
7124 /* Interrogate the hardware for some limits:
7125  * max commands, max SG elements without chaining, and with chaining,
7126  * SG chain block size, etc.
7127  */
7128 static void hpsa_find_board_params(struct ctlr_info *h)
7129 {
7130         hpsa_get_max_perf_mode_cmds(h);
7131         h->nr_cmds = h->max_commands;
7132         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7133         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7134         if (hpsa_supports_chained_sg_blocks(h)) {
7135                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7136                 h->max_cmd_sg_entries = 32;
7137                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7138                 h->maxsgentries--; /* save one for chain pointer */
7139         } else {
7140                 /*
7141                  * Original smart arrays supported at most 31 s/g entries
7142                  * embedded inline in the command (trying to use more
7143                  * would lock up the controller)
7144                  */
7145                 h->max_cmd_sg_entries = 31;
7146                 h->maxsgentries = 31; /* default to traditional values */
7147                 h->chainsize = 0;
7148         }
7149
7150         /* Find out what task management functions are supported and cache */
7151         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7152         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7153                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7154         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7155                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7156         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7157                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7158 }
7159
7160 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7161 {
7162         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7163                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7164                 return false;
7165         }
7166         return true;
7167 }
7168
7169 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7170 {
7171         u32 driver_support;
7172
7173         driver_support = readl(&(h->cfgtable->driver_support));
7174         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7175 #ifdef CONFIG_X86
7176         driver_support |= ENABLE_SCSI_PREFETCH;
7177 #endif
7178         driver_support |= ENABLE_UNIT_ATTN;
7179         writel(driver_support, &(h->cfgtable->driver_support));
7180 }
7181
7182 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7183  * in a prefetch beyond physical memory.
7184  */
7185 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7186 {
7187         u32 dma_prefetch;
7188
7189         if (h->board_id != 0x3225103C)
7190                 return;
7191         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7192         dma_prefetch |= 0x8000;
7193         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7194 }
7195
7196 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7197 {
7198         int i;
7199         u32 doorbell_value;
7200         unsigned long flags;
7201         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7202         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7203                 spin_lock_irqsave(&h->lock, flags);
7204                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7205                 spin_unlock_irqrestore(&h->lock, flags);
7206                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7207                         goto done;
7208                 /* delay and try again */
7209                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7210         }
7211         return -ENODEV;
7212 done:
7213         return 0;
7214 }
7215
7216 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7217 {
7218         int i;
7219         u32 doorbell_value;
7220         unsigned long flags;
7221
7222         /* under certain very rare conditions, this can take awhile.
7223          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7224          * as we enter this code.)
7225          */
7226         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7227                 if (h->remove_in_progress)
7228                         goto done;
7229                 spin_lock_irqsave(&h->lock, flags);
7230                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7231                 spin_unlock_irqrestore(&h->lock, flags);
7232                 if (!(doorbell_value & CFGTBL_ChangeReq))
7233                         goto done;
7234                 /* delay and try again */
7235                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7236         }
7237         return -ENODEV;
7238 done:
7239         return 0;
7240 }
7241
7242 /* return -ENODEV or other reason on error, 0 on success */
7243 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7244 {
7245         u32 trans_support;
7246
7247         trans_support = readl(&(h->cfgtable->TransportSupport));
7248         if (!(trans_support & SIMPLE_MODE))
7249                 return -ENOTSUPP;
7250
7251         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7252
7253         /* Update the field, and then ring the doorbell */
7254         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7255         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7256         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7257         if (hpsa_wait_for_mode_change_ack(h))
7258                 goto error;
7259         print_cfg_table(&h->pdev->dev, h->cfgtable);
7260         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7261                 goto error;
7262         h->transMethod = CFGTBL_Trans_Simple;
7263         return 0;
7264 error:
7265         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7266         return -ENODEV;
7267 }
7268
7269 /* free items allocated or mapped by hpsa_pci_init */
7270 static void hpsa_free_pci_init(struct ctlr_info *h)
7271 {
7272         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7273         iounmap(h->vaddr);                      /* pci_init 3 */
7274         h->vaddr = NULL;
7275         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7276         /*
7277          * call pci_disable_device before pci_release_regions per
7278          * Documentation/PCI/pci.txt
7279          */
7280         pci_disable_device(h->pdev);            /* pci_init 1 */
7281         pci_release_regions(h->pdev);           /* pci_init 2 */
7282 }
7283
7284 /* several items must be freed later */
7285 static int hpsa_pci_init(struct ctlr_info *h)
7286 {
7287         int prod_index, err;
7288
7289         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7290         if (prod_index < 0)
7291                 return prod_index;
7292         h->product_name = products[prod_index].product_name;
7293         h->access = *(products[prod_index].access);
7294
7295         h->needs_abort_tags_swizzled =
7296                 ctlr_needs_abort_tags_swizzled(h->board_id);
7297
7298         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7299                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7300
7301         err = pci_enable_device(h->pdev);
7302         if (err) {
7303                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7304                 pci_disable_device(h->pdev);
7305                 return err;
7306         }
7307
7308         err = pci_request_regions(h->pdev, HPSA);
7309         if (err) {
7310                 dev_err(&h->pdev->dev,
7311                         "failed to obtain PCI resources\n");
7312                 pci_disable_device(h->pdev);
7313                 return err;
7314         }
7315
7316         pci_set_master(h->pdev);
7317
7318         hpsa_interrupt_mode(h);
7319         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7320         if (err)
7321                 goto clean2;    /* intmode+region, pci */
7322         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7323         if (!h->vaddr) {
7324                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7325                 err = -ENOMEM;
7326                 goto clean2;    /* intmode+region, pci */
7327         }
7328         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7329         if (err)
7330                 goto clean3;    /* vaddr, intmode+region, pci */
7331         err = hpsa_find_cfgtables(h);
7332         if (err)
7333                 goto clean3;    /* vaddr, intmode+region, pci */
7334         hpsa_find_board_params(h);
7335
7336         if (!hpsa_CISS_signature_present(h)) {
7337                 err = -ENODEV;
7338                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7339         }
7340         hpsa_set_driver_support_bits(h);
7341         hpsa_p600_dma_prefetch_quirk(h);
7342         err = hpsa_enter_simple_mode(h);
7343         if (err)
7344                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7345         return 0;
7346
7347 clean4: /* cfgtables, vaddr, intmode+region, pci */
7348         hpsa_free_cfgtables(h);
7349 clean3: /* vaddr, intmode+region, pci */
7350         iounmap(h->vaddr);
7351         h->vaddr = NULL;
7352 clean2: /* intmode+region, pci */
7353         hpsa_disable_interrupt_mode(h);
7354         /*
7355          * call pci_disable_device before pci_release_regions per
7356          * Documentation/PCI/pci.txt
7357          */
7358         pci_disable_device(h->pdev);
7359         pci_release_regions(h->pdev);
7360         return err;
7361 }
7362
7363 static void hpsa_hba_inquiry(struct ctlr_info *h)
7364 {
7365         int rc;
7366
7367 #define HBA_INQUIRY_BYTE_COUNT 64
7368         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7369         if (!h->hba_inquiry_data)
7370                 return;
7371         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7372                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7373         if (rc != 0) {
7374                 kfree(h->hba_inquiry_data);
7375                 h->hba_inquiry_data = NULL;
7376         }
7377 }
7378
7379 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7380 {
7381         int rc, i;
7382         void __iomem *vaddr;
7383
7384         if (!reset_devices)
7385                 return 0;
7386
7387         /* kdump kernel is loading, we don't know in which state is
7388          * the pci interface. The dev->enable_cnt is equal zero
7389          * so we call enable+disable, wait a while and switch it on.
7390          */
7391         rc = pci_enable_device(pdev);
7392         if (rc) {
7393                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7394                 return -ENODEV;
7395         }
7396         pci_disable_device(pdev);
7397         msleep(260);                    /* a randomly chosen number */
7398         rc = pci_enable_device(pdev);
7399         if (rc) {
7400                 dev_warn(&pdev->dev, "failed to enable device.\n");
7401                 return -ENODEV;
7402         }
7403
7404         pci_set_master(pdev);
7405
7406         vaddr = pci_ioremap_bar(pdev, 0);
7407         if (vaddr == NULL) {
7408                 rc = -ENOMEM;
7409                 goto out_disable;
7410         }
7411         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7412         iounmap(vaddr);
7413
7414         /* Reset the controller with a PCI power-cycle or via doorbell */
7415         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7416
7417         /* -ENOTSUPP here means we cannot reset the controller
7418          * but it's already (and still) up and running in
7419          * "performant mode".  Or, it might be 640x, which can't reset
7420          * due to concerns about shared bbwc between 6402/6404 pair.
7421          */
7422         if (rc)
7423                 goto out_disable;
7424
7425         /* Now try to get the controller to respond to a no-op */
7426         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7427         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7428                 if (hpsa_noop(pdev) == 0)
7429                         break;
7430                 else
7431                         dev_warn(&pdev->dev, "no-op failed%s\n",
7432                                         (i < 11 ? "; re-trying" : ""));
7433         }
7434
7435 out_disable:
7436
7437         pci_disable_device(pdev);
7438         return rc;
7439 }
7440
7441 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7442 {
7443         kfree(h->cmd_pool_bits);
7444         h->cmd_pool_bits = NULL;
7445         if (h->cmd_pool) {
7446                 pci_free_consistent(h->pdev,
7447                                 h->nr_cmds * sizeof(struct CommandList),
7448                                 h->cmd_pool,
7449                                 h->cmd_pool_dhandle);
7450                 h->cmd_pool = NULL;
7451                 h->cmd_pool_dhandle = 0;
7452         }
7453         if (h->errinfo_pool) {
7454                 pci_free_consistent(h->pdev,
7455                                 h->nr_cmds * sizeof(struct ErrorInfo),
7456                                 h->errinfo_pool,
7457                                 h->errinfo_pool_dhandle);
7458                 h->errinfo_pool = NULL;
7459                 h->errinfo_pool_dhandle = 0;
7460         }
7461 }
7462
7463 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7464 {
7465         h->cmd_pool_bits = kzalloc(
7466                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7467                 sizeof(unsigned long), GFP_KERNEL);
7468         h->cmd_pool = pci_alloc_consistent(h->pdev,
7469                     h->nr_cmds * sizeof(*h->cmd_pool),
7470                     &(h->cmd_pool_dhandle));
7471         h->errinfo_pool = pci_alloc_consistent(h->pdev,
7472                     h->nr_cmds * sizeof(*h->errinfo_pool),
7473                     &(h->errinfo_pool_dhandle));
7474         if ((h->cmd_pool_bits == NULL)
7475             || (h->cmd_pool == NULL)
7476             || (h->errinfo_pool == NULL)) {
7477                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7478                 goto clean_up;
7479         }
7480         hpsa_preinitialize_commands(h);
7481         return 0;
7482 clean_up:
7483         hpsa_free_cmd_pool(h);
7484         return -ENOMEM;
7485 }
7486
7487 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
7488 {
7489         int i, cpu;
7490
7491         cpu = cpumask_first(cpu_online_mask);
7492         for (i = 0; i < h->msix_vector; i++) {
7493                 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7494                 cpu = cpumask_next(cpu, cpu_online_mask);
7495         }
7496 }
7497
7498 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7499 static void hpsa_free_irqs(struct ctlr_info *h)
7500 {
7501         int i;
7502
7503         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
7504                 /* Single reply queue, only one irq to free */
7505                 i = h->intr_mode;
7506                 irq_set_affinity_hint(h->intr[i], NULL);
7507                 free_irq(h->intr[i], &h->q[i]);
7508                 h->q[i] = 0;
7509                 return;
7510         }
7511
7512         for (i = 0; i < h->msix_vector; i++) {
7513                 irq_set_affinity_hint(h->intr[i], NULL);
7514                 free_irq(h->intr[i], &h->q[i]);
7515                 h->q[i] = 0;
7516         }
7517         for (; i < MAX_REPLY_QUEUES; i++)
7518                 h->q[i] = 0;
7519 }
7520
7521 /* returns 0 on success; cleans up and returns -Enn on error */
7522 static int hpsa_request_irqs(struct ctlr_info *h,
7523         irqreturn_t (*msixhandler)(int, void *),
7524         irqreturn_t (*intxhandler)(int, void *))
7525 {
7526         int rc, i;
7527
7528         /*
7529          * initialize h->q[x] = x so that interrupt handlers know which
7530          * queue to process.
7531          */
7532         for (i = 0; i < MAX_REPLY_QUEUES; i++)
7533                 h->q[i] = (u8) i;
7534
7535         if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
7536                 /* If performant mode and MSI-X, use multiple reply queues */
7537                 for (i = 0; i < h->msix_vector; i++) {
7538                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7539                         rc = request_irq(h->intr[i], msixhandler,
7540                                         0, h->intrname[i],
7541                                         &h->q[i]);
7542                         if (rc) {
7543                                 int j;
7544
7545                                 dev_err(&h->pdev->dev,
7546                                         "failed to get irq %d for %s\n",
7547                                        h->intr[i], h->devname);
7548                                 for (j = 0; j < i; j++) {
7549                                         free_irq(h->intr[j], &h->q[j]);
7550                                         h->q[j] = 0;
7551                                 }
7552                                 for (; j < MAX_REPLY_QUEUES; j++)
7553                                         h->q[j] = 0;
7554                                 return rc;
7555                         }
7556                 }
7557                 hpsa_irq_affinity_hints(h);
7558         } else {
7559                 /* Use single reply pool */
7560                 if (h->msix_vector > 0 || h->msi_vector) {
7561                         if (h->msix_vector)
7562                                 sprintf(h->intrname[h->intr_mode],
7563                                         "%s-msix", h->devname);
7564                         else
7565                                 sprintf(h->intrname[h->intr_mode],
7566                                         "%s-msi", h->devname);
7567                         rc = request_irq(h->intr[h->intr_mode],
7568                                 msixhandler, 0,
7569                                 h->intrname[h->intr_mode],
7570                                 &h->q[h->intr_mode]);
7571                 } else {
7572                         sprintf(h->intrname[h->intr_mode],
7573                                 "%s-intx", h->devname);
7574                         rc = request_irq(h->intr[h->intr_mode],
7575                                 intxhandler, IRQF_SHARED,
7576                                 h->intrname[h->intr_mode],
7577                                 &h->q[h->intr_mode]);
7578                 }
7579                 irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
7580         }
7581         if (rc) {
7582                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
7583                        h->intr[h->intr_mode], h->devname);
7584                 hpsa_free_irqs(h);
7585                 return -ENODEV;
7586         }
7587         return 0;
7588 }
7589
7590 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
7591 {
7592         int rc;
7593         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
7594
7595         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
7596         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
7597         if (rc) {
7598                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
7599                 return rc;
7600         }
7601
7602         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
7603         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7604         if (rc) {
7605                 dev_warn(&h->pdev->dev, "Board failed to become ready "
7606                         "after soft reset.\n");
7607                 return rc;
7608         }
7609
7610         return 0;
7611 }
7612
7613 static void hpsa_free_reply_queues(struct ctlr_info *h)
7614 {
7615         int i;
7616
7617         for (i = 0; i < h->nreply_queues; i++) {
7618                 if (!h->reply_queue[i].head)
7619                         continue;
7620                 pci_free_consistent(h->pdev,
7621                                         h->reply_queue_size,
7622                                         h->reply_queue[i].head,
7623                                         h->reply_queue[i].busaddr);
7624                 h->reply_queue[i].head = NULL;
7625                 h->reply_queue[i].busaddr = 0;
7626         }
7627         h->reply_queue_size = 0;
7628 }
7629
7630 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
7631 {
7632         hpsa_free_performant_mode(h);           /* init_one 7 */
7633         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
7634         hpsa_free_cmd_pool(h);                  /* init_one 5 */
7635         hpsa_free_irqs(h);                      /* init_one 4 */
7636         scsi_host_put(h->scsi_host);            /* init_one 3 */
7637         h->scsi_host = NULL;                    /* init_one 3 */
7638         hpsa_free_pci_init(h);                  /* init_one 2_5 */
7639         free_percpu(h->lockup_detected);        /* init_one 2 */
7640         h->lockup_detected = NULL;              /* init_one 2 */
7641         if (h->resubmit_wq) {
7642                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
7643                 h->resubmit_wq = NULL;
7644         }
7645         if (h->rescan_ctlr_wq) {
7646                 destroy_workqueue(h->rescan_ctlr_wq);
7647                 h->rescan_ctlr_wq = NULL;
7648         }
7649         kfree(h);                               /* init_one 1 */
7650 }
7651
7652 /* Called when controller lockup detected. */
7653 static void fail_all_outstanding_cmds(struct ctlr_info *h)
7654 {
7655         int i, refcount;
7656         struct CommandList *c;
7657         int failcount = 0;
7658
7659         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
7660         for (i = 0; i < h->nr_cmds; i++) {
7661                 c = h->cmd_pool + i;
7662                 refcount = atomic_inc_return(&c->refcount);
7663                 if (refcount > 1) {
7664                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
7665                         finish_cmd(c);
7666                         atomic_dec(&h->commands_outstanding);
7667                         failcount++;
7668                 }
7669                 cmd_free(h, c);
7670         }
7671         dev_warn(&h->pdev->dev,
7672                 "failed %d commands in fail_all\n", failcount);
7673 }
7674
7675 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
7676 {
7677         int cpu;
7678
7679         for_each_online_cpu(cpu) {
7680                 u32 *lockup_detected;
7681                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
7682                 *lockup_detected = value;
7683         }
7684         wmb(); /* be sure the per-cpu variables are out to memory */
7685 }
7686
7687 static void controller_lockup_detected(struct ctlr_info *h)
7688 {
7689         unsigned long flags;
7690         u32 lockup_detected;
7691
7692         h->access.set_intr_mask(h, HPSA_INTR_OFF);
7693         spin_lock_irqsave(&h->lock, flags);
7694         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
7695         if (!lockup_detected) {
7696                 /* no heartbeat, but controller gave us a zero. */
7697                 dev_warn(&h->pdev->dev,
7698                         "lockup detected after %d but scratchpad register is zero\n",
7699                         h->heartbeat_sample_interval / HZ);
7700                 lockup_detected = 0xffffffff;
7701         }
7702         set_lockup_detected_for_all_cpus(h, lockup_detected);
7703         spin_unlock_irqrestore(&h->lock, flags);
7704         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
7705                         lockup_detected, h->heartbeat_sample_interval / HZ);
7706         pci_disable_device(h->pdev);
7707         fail_all_outstanding_cmds(h);
7708 }
7709
7710 static int detect_controller_lockup(struct ctlr_info *h)
7711 {
7712         u64 now;
7713         u32 heartbeat;
7714         unsigned long flags;
7715
7716         now = get_jiffies_64();
7717         /* If we've received an interrupt recently, we're ok. */
7718         if (time_after64(h->last_intr_timestamp +
7719                                 (h->heartbeat_sample_interval), now))
7720                 return false;
7721
7722         /*
7723          * If we've already checked the heartbeat recently, we're ok.
7724          * This could happen if someone sends us a signal. We
7725          * otherwise don't care about signals in this thread.
7726          */
7727         if (time_after64(h->last_heartbeat_timestamp +
7728                                 (h->heartbeat_sample_interval), now))
7729                 return false;
7730
7731         /* If heartbeat has not changed since we last looked, we're not ok. */
7732         spin_lock_irqsave(&h->lock, flags);
7733         heartbeat = readl(&h->cfgtable->HeartBeat);
7734         spin_unlock_irqrestore(&h->lock, flags);
7735         if (h->last_heartbeat == heartbeat) {
7736                 controller_lockup_detected(h);
7737                 return true;
7738         }
7739
7740         /* We're ok. */
7741         h->last_heartbeat = heartbeat;
7742         h->last_heartbeat_timestamp = now;
7743         return false;
7744 }
7745
7746 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
7747 {
7748         int i;
7749         char *event_type;
7750
7751         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7752                 return;
7753
7754         /* Ask the controller to clear the events we're handling. */
7755         if ((h->transMethod & (CFGTBL_Trans_io_accel1
7756                         | CFGTBL_Trans_io_accel2)) &&
7757                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
7758                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
7759
7760                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
7761                         event_type = "state change";
7762                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
7763                         event_type = "configuration change";
7764                 /* Stop sending new RAID offload reqs via the IO accelerator */
7765                 scsi_block_requests(h->scsi_host);
7766                 for (i = 0; i < h->ndevices; i++)
7767                         h->dev[i]->offload_enabled = 0;
7768                 hpsa_drain_accel_commands(h);
7769                 /* Set 'accelerator path config change' bit */
7770                 dev_warn(&h->pdev->dev,
7771                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
7772                         h->events, event_type);
7773                 writel(h->events, &(h->cfgtable->clear_event_notify));
7774                 /* Set the "clear event notify field update" bit 6 */
7775                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
7776                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
7777                 hpsa_wait_for_clear_event_notify_ack(h);
7778                 scsi_unblock_requests(h->scsi_host);
7779         } else {
7780                 /* Acknowledge controller notification events. */
7781                 writel(h->events, &(h->cfgtable->clear_event_notify));
7782                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
7783                 hpsa_wait_for_clear_event_notify_ack(h);
7784 #if 0
7785                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7786                 hpsa_wait_for_mode_change_ack(h);
7787 #endif
7788         }
7789         return;
7790 }
7791
7792 /* Check a register on the controller to see if there are configuration
7793  * changes (added/changed/removed logical drives, etc.) which mean that
7794  * we should rescan the controller for devices.
7795  * Also check flag for driver-initiated rescan.
7796  */
7797 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
7798 {
7799         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7800                 return 0;
7801
7802         h->events = readl(&(h->cfgtable->event_notify));
7803         return h->events & RESCAN_REQUIRED_EVENT_BITS;
7804 }
7805
7806 /*
7807  * Check if any of the offline devices have become ready
7808  */
7809 static int hpsa_offline_devices_ready(struct ctlr_info *h)
7810 {
7811         unsigned long flags;
7812         struct offline_device_entry *d;
7813         struct list_head *this, *tmp;
7814
7815         spin_lock_irqsave(&h->offline_device_lock, flags);
7816         list_for_each_safe(this, tmp, &h->offline_device_list) {
7817                 d = list_entry(this, struct offline_device_entry,
7818                                 offline_list);
7819                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
7820                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
7821                         spin_lock_irqsave(&h->offline_device_lock, flags);
7822                         list_del(&d->offline_list);
7823                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
7824                         return 1;
7825                 }
7826                 spin_lock_irqsave(&h->offline_device_lock, flags);
7827         }
7828         spin_unlock_irqrestore(&h->offline_device_lock, flags);
7829         return 0;
7830 }
7831
7832 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
7833 {
7834         unsigned long flags;
7835         struct ctlr_info *h = container_of(to_delayed_work(work),
7836                                         struct ctlr_info, rescan_ctlr_work);
7837
7838
7839         if (h->remove_in_progress)
7840                 return;
7841
7842         if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
7843                 scsi_host_get(h->scsi_host);
7844                 hpsa_ack_ctlr_events(h);
7845                 hpsa_scan_start(h->scsi_host);
7846                 scsi_host_put(h->scsi_host);
7847         }
7848         spin_lock_irqsave(&h->lock, flags);
7849         if (!h->remove_in_progress)
7850                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
7851                                 h->heartbeat_sample_interval);
7852         spin_unlock_irqrestore(&h->lock, flags);
7853 }
7854
7855 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
7856 {
7857         unsigned long flags;
7858         struct ctlr_info *h = container_of(to_delayed_work(work),
7859                                         struct ctlr_info, monitor_ctlr_work);
7860
7861         detect_controller_lockup(h);
7862         if (lockup_detected(h))
7863                 return;
7864
7865         spin_lock_irqsave(&h->lock, flags);
7866         if (!h->remove_in_progress)
7867                 schedule_delayed_work(&h->monitor_ctlr_work,
7868                                 h->heartbeat_sample_interval);
7869         spin_unlock_irqrestore(&h->lock, flags);
7870 }
7871
7872 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
7873                                                 char *name)
7874 {
7875         struct workqueue_struct *wq = NULL;
7876
7877         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
7878         if (!wq)
7879                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
7880
7881         return wq;
7882 }
7883
7884 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
7885 {
7886         int dac, rc;
7887         struct ctlr_info *h;
7888         int try_soft_reset = 0;
7889         unsigned long flags;
7890         u32 board_id;
7891
7892         if (number_of_controllers == 0)
7893                 printk(KERN_INFO DRIVER_NAME "\n");
7894
7895         rc = hpsa_lookup_board_id(pdev, &board_id);
7896         if (rc < 0) {
7897                 dev_warn(&pdev->dev, "Board ID not found\n");
7898                 return rc;
7899         }
7900
7901         rc = hpsa_init_reset_devices(pdev, board_id);
7902         if (rc) {
7903                 if (rc != -ENOTSUPP)
7904                         return rc;
7905                 /* If the reset fails in a particular way (it has no way to do
7906                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
7907                  * a soft reset once we get the controller configured up to the
7908                  * point that it can accept a command.
7909                  */
7910                 try_soft_reset = 1;
7911                 rc = 0;
7912         }
7913
7914 reinit_after_soft_reset:
7915
7916         /* Command structures must be aligned on a 32-byte boundary because
7917          * the 5 lower bits of the address are used by the hardware. and by
7918          * the driver.  See comments in hpsa.h for more info.
7919          */
7920         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
7921         h = kzalloc(sizeof(*h), GFP_KERNEL);
7922         if (!h) {
7923                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
7924                 return -ENOMEM;
7925         }
7926
7927         h->pdev = pdev;
7928
7929         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
7930         INIT_LIST_HEAD(&h->offline_device_list);
7931         spin_lock_init(&h->lock);
7932         spin_lock_init(&h->offline_device_lock);
7933         spin_lock_init(&h->scan_lock);
7934         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
7935         atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
7936
7937         /* Allocate and clear per-cpu variable lockup_detected */
7938         h->lockup_detected = alloc_percpu(u32);
7939         if (!h->lockup_detected) {
7940                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
7941                 rc = -ENOMEM;
7942                 goto clean1;    /* aer/h */
7943         }
7944         set_lockup_detected_for_all_cpus(h, 0);
7945
7946         rc = hpsa_pci_init(h);
7947         if (rc)
7948                 goto clean2;    /* lu, aer/h */
7949
7950         /* relies on h-> settings made by hpsa_pci_init, including
7951          * interrupt_mode h->intr */
7952         rc = hpsa_scsi_host_alloc(h);
7953         if (rc)
7954                 goto clean2_5;  /* pci, lu, aer/h */
7955
7956         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
7957         h->ctlr = number_of_controllers;
7958         number_of_controllers++;
7959
7960         /* configure PCI DMA stuff */
7961         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
7962         if (rc == 0) {
7963                 dac = 1;
7964         } else {
7965                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
7966                 if (rc == 0) {
7967                         dac = 0;
7968                 } else {
7969                         dev_err(&pdev->dev, "no suitable DMA available\n");
7970                         goto clean3;    /* shost, pci, lu, aer/h */
7971                 }
7972         }
7973
7974         /* make sure the board interrupts are off */
7975         h->access.set_intr_mask(h, HPSA_INTR_OFF);
7976
7977         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
7978         if (rc)
7979                 goto clean3;    /* shost, pci, lu, aer/h */
7980         rc = hpsa_alloc_cmd_pool(h);
7981         if (rc)
7982                 goto clean4;    /* irq, shost, pci, lu, aer/h */
7983         rc = hpsa_alloc_sg_chain_blocks(h);
7984         if (rc)
7985                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
7986         init_waitqueue_head(&h->scan_wait_queue);
7987         init_waitqueue_head(&h->abort_cmd_wait_queue);
7988         init_waitqueue_head(&h->event_sync_wait_queue);
7989         mutex_init(&h->reset_mutex);
7990         h->scan_finished = 1; /* no scan currently in progress */
7991
7992         pci_set_drvdata(pdev, h);
7993         h->ndevices = 0;
7994         h->hba_mode_enabled = 0;
7995
7996         spin_lock_init(&h->devlock);
7997         rc = hpsa_put_ctlr_into_performant_mode(h);
7998         if (rc)
7999                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8000
8001         /* hook into SCSI subsystem */
8002         rc = hpsa_scsi_add_host(h);
8003         if (rc)
8004                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8005
8006         /* create the resubmit workqueue */
8007         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8008         if (!h->rescan_ctlr_wq) {
8009                 rc = -ENOMEM;
8010                 goto clean7;
8011         }
8012
8013         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8014         if (!h->resubmit_wq) {
8015                 rc = -ENOMEM;
8016                 goto clean7;    /* aer/h */
8017         }
8018
8019         /*
8020          * At this point, the controller is ready to take commands.
8021          * Now, if reset_devices and the hard reset didn't work, try
8022          * the soft reset and see if that works.
8023          */
8024         if (try_soft_reset) {
8025
8026                 /* This is kind of gross.  We may or may not get a completion
8027                  * from the soft reset command, and if we do, then the value
8028                  * from the fifo may or may not be valid.  So, we wait 10 secs
8029                  * after the reset throwing away any completions we get during
8030                  * that time.  Unregister the interrupt handler and register
8031                  * fake ones to scoop up any residual completions.
8032                  */
8033                 spin_lock_irqsave(&h->lock, flags);
8034                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8035                 spin_unlock_irqrestore(&h->lock, flags);
8036                 hpsa_free_irqs(h);
8037                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8038                                         hpsa_intx_discard_completions);
8039                 if (rc) {
8040                         dev_warn(&h->pdev->dev,
8041                                 "Failed to request_irq after soft reset.\n");
8042                         /*
8043                          * cannot goto clean7 or free_irqs will be called
8044                          * again. Instead, do its work
8045                          */
8046                         hpsa_free_performant_mode(h);   /* clean7 */
8047                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8048                         hpsa_free_cmd_pool(h);          /* clean5 */
8049                         /*
8050                          * skip hpsa_free_irqs(h) clean4 since that
8051                          * was just called before request_irqs failed
8052                          */
8053                         goto clean3;
8054                 }
8055
8056                 rc = hpsa_kdump_soft_reset(h);
8057                 if (rc)
8058                         /* Neither hard nor soft reset worked, we're hosed. */
8059                         goto clean9;
8060
8061                 dev_info(&h->pdev->dev, "Board READY.\n");
8062                 dev_info(&h->pdev->dev,
8063                         "Waiting for stale completions to drain.\n");
8064                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8065                 msleep(10000);
8066                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8067
8068                 rc = controller_reset_failed(h->cfgtable);
8069                 if (rc)
8070                         dev_info(&h->pdev->dev,
8071                                 "Soft reset appears to have failed.\n");
8072
8073                 /* since the controller's reset, we have to go back and re-init
8074                  * everything.  Easiest to just forget what we've done and do it
8075                  * all over again.
8076                  */
8077                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8078                 try_soft_reset = 0;
8079                 if (rc)
8080                         /* don't goto clean, we already unallocated */
8081                         return -ENODEV;
8082
8083                 goto reinit_after_soft_reset;
8084         }
8085
8086         /* Enable Accelerated IO path at driver layer */
8087         h->acciopath_status = 1;
8088
8089
8090         /* Turn the interrupts on so we can service requests */
8091         h->access.set_intr_mask(h, HPSA_INTR_ON);
8092
8093         hpsa_hba_inquiry(h);
8094
8095         /* Monitor the controller for firmware lockups */
8096         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8097         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8098         schedule_delayed_work(&h->monitor_ctlr_work,
8099                                 h->heartbeat_sample_interval);
8100         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8101         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8102                                 h->heartbeat_sample_interval);
8103         return 0;
8104
8105 clean9: /* wq, sh, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8106         kfree(h->hba_inquiry_data);
8107 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8108         hpsa_free_performant_mode(h);
8109         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8110 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8111         hpsa_free_sg_chain_blocks(h);
8112 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8113         hpsa_free_cmd_pool(h);
8114 clean4: /* irq, shost, pci, lu, aer/h */
8115         hpsa_free_irqs(h);
8116 clean3: /* shost, pci, lu, aer/h */
8117         scsi_host_put(h->scsi_host);
8118         h->scsi_host = NULL;
8119 clean2_5: /* pci, lu, aer/h */
8120         hpsa_free_pci_init(h);
8121 clean2: /* lu, aer/h */
8122         if (h->lockup_detected) {
8123                 free_percpu(h->lockup_detected);
8124                 h->lockup_detected = NULL;
8125         }
8126 clean1: /* wq/aer/h */
8127         if (h->resubmit_wq) {
8128                 destroy_workqueue(h->resubmit_wq);
8129                 h->resubmit_wq = NULL;
8130         }
8131         if (h->rescan_ctlr_wq) {
8132                 destroy_workqueue(h->rescan_ctlr_wq);
8133                 h->rescan_ctlr_wq = NULL;
8134         }
8135         kfree(h);
8136         return rc;
8137 }
8138
8139 static void hpsa_flush_cache(struct ctlr_info *h)
8140 {
8141         char *flush_buf;
8142         struct CommandList *c;
8143         int rc;
8144
8145         if (unlikely(lockup_detected(h)))
8146                 return;
8147         flush_buf = kzalloc(4, GFP_KERNEL);
8148         if (!flush_buf)
8149                 return;
8150
8151         c = cmd_alloc(h);
8152
8153         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8154                 RAID_CTLR_LUNID, TYPE_CMD)) {
8155                 goto out;
8156         }
8157         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8158                                         PCI_DMA_TODEVICE, NO_TIMEOUT);
8159         if (rc)
8160                 goto out;
8161         if (c->err_info->CommandStatus != 0)
8162 out:
8163                 dev_warn(&h->pdev->dev,
8164                         "error flushing cache on controller\n");
8165         cmd_free(h, c);
8166         kfree(flush_buf);
8167 }
8168
8169 static void hpsa_shutdown(struct pci_dev *pdev)
8170 {
8171         struct ctlr_info *h;
8172
8173         h = pci_get_drvdata(pdev);
8174         /* Turn board interrupts off  and send the flush cache command
8175          * sendcmd will turn off interrupt, and send the flush...
8176          * To write all data in the battery backed cache to disks
8177          */
8178         hpsa_flush_cache(h);
8179         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8180         hpsa_free_irqs(h);                      /* init_one 4 */
8181         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8182 }
8183
8184 static void hpsa_free_device_info(struct ctlr_info *h)
8185 {
8186         int i;
8187
8188         for (i = 0; i < h->ndevices; i++) {
8189                 kfree(h->dev[i]);
8190                 h->dev[i] = NULL;
8191         }
8192 }
8193
8194 static void hpsa_remove_one(struct pci_dev *pdev)
8195 {
8196         struct ctlr_info *h;
8197         unsigned long flags;
8198
8199         if (pci_get_drvdata(pdev) == NULL) {
8200                 dev_err(&pdev->dev, "unable to remove device\n");
8201                 return;
8202         }
8203         h = pci_get_drvdata(pdev);
8204
8205         /* Get rid of any controller monitoring work items */
8206         spin_lock_irqsave(&h->lock, flags);
8207         h->remove_in_progress = 1;
8208         spin_unlock_irqrestore(&h->lock, flags);
8209         cancel_delayed_work_sync(&h->monitor_ctlr_work);
8210         cancel_delayed_work_sync(&h->rescan_ctlr_work);
8211         destroy_workqueue(h->rescan_ctlr_wq);
8212         destroy_workqueue(h->resubmit_wq);
8213
8214         /* includes hpsa_free_irqs - init_one 4 */
8215         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8216         hpsa_shutdown(pdev);
8217
8218         hpsa_free_device_info(h);               /* scan */
8219
8220         kfree(h->hba_inquiry_data);                     /* init_one 10 */
8221         h->hba_inquiry_data = NULL;                     /* init_one 10 */
8222         if (h->scsi_host)
8223                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
8224         hpsa_free_ioaccel2_sg_chain_blocks(h);
8225         hpsa_free_performant_mode(h);                   /* init_one 7 */
8226         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
8227         hpsa_free_cmd_pool(h);                          /* init_one 5 */
8228
8229         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8230
8231         scsi_host_put(h->scsi_host);                    /* init_one 3 */
8232         h->scsi_host = NULL;                            /* init_one 3 */
8233
8234         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8235         hpsa_free_pci_init(h);                          /* init_one 2.5 */
8236
8237         free_percpu(h->lockup_detected);                /* init_one 2 */
8238         h->lockup_detected = NULL;                      /* init_one 2 */
8239         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
8240         kfree(h);                                       /* init_one 1 */
8241 }
8242
8243 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8244         __attribute__((unused)) pm_message_t state)
8245 {
8246         return -ENOSYS;
8247 }
8248
8249 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8250 {
8251         return -ENOSYS;
8252 }
8253
8254 static struct pci_driver hpsa_pci_driver = {
8255         .name = HPSA,
8256         .probe = hpsa_init_one,
8257         .remove = hpsa_remove_one,
8258         .id_table = hpsa_pci_device_id, /* id_table */
8259         .shutdown = hpsa_shutdown,
8260         .suspend = hpsa_suspend,
8261         .resume = hpsa_resume,
8262 };
8263
8264 /* Fill in bucket_map[], given nsgs (the max number of
8265  * scatter gather elements supported) and bucket[],
8266  * which is an array of 8 integers.  The bucket[] array
8267  * contains 8 different DMA transfer sizes (in 16
8268  * byte increments) which the controller uses to fetch
8269  * commands.  This function fills in bucket_map[], which
8270  * maps a given number of scatter gather elements to one of
8271  * the 8 DMA transfer sizes.  The point of it is to allow the
8272  * controller to only do as much DMA as needed to fetch the
8273  * command, with the DMA transfer size encoded in the lower
8274  * bits of the command address.
8275  */
8276 static void  calc_bucket_map(int bucket[], int num_buckets,
8277         int nsgs, int min_blocks, u32 *bucket_map)
8278 {
8279         int i, j, b, size;
8280
8281         /* Note, bucket_map must have nsgs+1 entries. */
8282         for (i = 0; i <= nsgs; i++) {
8283                 /* Compute size of a command with i SG entries */
8284                 size = i + min_blocks;
8285                 b = num_buckets; /* Assume the biggest bucket */
8286                 /* Find the bucket that is just big enough */
8287                 for (j = 0; j < num_buckets; j++) {
8288                         if (bucket[j] >= size) {
8289                                 b = j;
8290                                 break;
8291                         }
8292                 }
8293                 /* for a command with i SG entries, use bucket b. */
8294                 bucket_map[i] = b;
8295         }
8296 }
8297
8298 /*
8299  * return -ENODEV on err, 0 on success (or no action)
8300  * allocates numerous items that must be freed later
8301  */
8302 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8303 {
8304         int i;
8305         unsigned long register_value;
8306         unsigned long transMethod = CFGTBL_Trans_Performant |
8307                         (trans_support & CFGTBL_Trans_use_short_tags) |
8308                                 CFGTBL_Trans_enable_directed_msix |
8309                         (trans_support & (CFGTBL_Trans_io_accel1 |
8310                                 CFGTBL_Trans_io_accel2));
8311         struct access_method access = SA5_performant_access;
8312
8313         /* This is a bit complicated.  There are 8 registers on
8314          * the controller which we write to to tell it 8 different
8315          * sizes of commands which there may be.  It's a way of
8316          * reducing the DMA done to fetch each command.  Encoded into
8317          * each command's tag are 3 bits which communicate to the controller
8318          * which of the eight sizes that command fits within.  The size of
8319          * each command depends on how many scatter gather entries there are.
8320          * Each SG entry requires 16 bytes.  The eight registers are programmed
8321          * with the number of 16-byte blocks a command of that size requires.
8322          * The smallest command possible requires 5 such 16 byte blocks.
8323          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8324          * blocks.  Note, this only extends to the SG entries contained
8325          * within the command block, and does not extend to chained blocks
8326          * of SG elements.   bft[] contains the eight values we write to
8327          * the registers.  They are not evenly distributed, but have more
8328          * sizes for small commands, and fewer sizes for larger commands.
8329          */
8330         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8331 #define MIN_IOACCEL2_BFT_ENTRY 5
8332 #define HPSA_IOACCEL2_HEADER_SZ 4
8333         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8334                         13, 14, 15, 16, 17, 18, 19,
8335                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8336         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8337         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8338         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8339                                  16 * MIN_IOACCEL2_BFT_ENTRY);
8340         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8341         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8342         /*  5 = 1 s/g entry or 4k
8343          *  6 = 2 s/g entry or 8k
8344          *  8 = 4 s/g entry or 16k
8345          * 10 = 6 s/g entry or 24k
8346          */
8347
8348         /* If the controller supports either ioaccel method then
8349          * we can also use the RAID stack submit path that does not
8350          * perform the superfluous readl() after each command submission.
8351          */
8352         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8353                 access = SA5_performant_access_no_read;
8354
8355         /* Controller spec: zero out this buffer. */
8356         for (i = 0; i < h->nreply_queues; i++)
8357                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8358
8359         bft[7] = SG_ENTRIES_IN_CMD + 4;
8360         calc_bucket_map(bft, ARRAY_SIZE(bft),
8361                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8362         for (i = 0; i < 8; i++)
8363                 writel(bft[i], &h->transtable->BlockFetch[i]);
8364
8365         /* size of controller ring buffer */
8366         writel(h->max_commands, &h->transtable->RepQSize);
8367         writel(h->nreply_queues, &h->transtable->RepQCount);
8368         writel(0, &h->transtable->RepQCtrAddrLow32);
8369         writel(0, &h->transtable->RepQCtrAddrHigh32);
8370
8371         for (i = 0; i < h->nreply_queues; i++) {
8372                 writel(0, &h->transtable->RepQAddr[i].upper);
8373                 writel(h->reply_queue[i].busaddr,
8374                         &h->transtable->RepQAddr[i].lower);
8375         }
8376
8377         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8378         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
8379         /*
8380          * enable outbound interrupt coalescing in accelerator mode;
8381          */
8382         if (trans_support & CFGTBL_Trans_io_accel1) {
8383                 access = SA5_ioaccel_mode1_access;
8384                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8385                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8386         } else {
8387                 if (trans_support & CFGTBL_Trans_io_accel2) {
8388                         access = SA5_ioaccel_mode2_access;
8389                         writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8390                         writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8391                 }
8392         }
8393         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8394         if (hpsa_wait_for_mode_change_ack(h)) {
8395                 dev_err(&h->pdev->dev,
8396                         "performant mode problem - doorbell timeout\n");
8397                 return -ENODEV;
8398         }
8399         register_value = readl(&(h->cfgtable->TransportActive));
8400         if (!(register_value & CFGTBL_Trans_Performant)) {
8401                 dev_err(&h->pdev->dev,
8402                         "performant mode problem - transport not active\n");
8403                 return -ENODEV;
8404         }
8405         /* Change the access methods to the performant access methods */
8406         h->access = access;
8407         h->transMethod = transMethod;
8408
8409         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
8410                 (trans_support & CFGTBL_Trans_io_accel2)))
8411                 return 0;
8412
8413         if (trans_support & CFGTBL_Trans_io_accel1) {
8414                 /* Set up I/O accelerator mode */
8415                 for (i = 0; i < h->nreply_queues; i++) {
8416                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
8417                         h->reply_queue[i].current_entry =
8418                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
8419                 }
8420                 bft[7] = h->ioaccel_maxsg + 8;
8421                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
8422                                 h->ioaccel1_blockFetchTable);
8423
8424                 /* initialize all reply queue entries to unused */
8425                 for (i = 0; i < h->nreply_queues; i++)
8426                         memset(h->reply_queue[i].head,
8427                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
8428                                 h->reply_queue_size);
8429
8430                 /* set all the constant fields in the accelerator command
8431                  * frames once at init time to save CPU cycles later.
8432                  */
8433                 for (i = 0; i < h->nr_cmds; i++) {
8434                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
8435
8436                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
8437                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
8438                                         (i * sizeof(struct ErrorInfo)));
8439                         cp->err_info_len = sizeof(struct ErrorInfo);
8440                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
8441                         cp->host_context_flags =
8442                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
8443                         cp->timeout_sec = 0;
8444                         cp->ReplyQueue = 0;
8445                         cp->tag =
8446                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
8447                         cp->host_addr =
8448                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
8449                                         (i * sizeof(struct io_accel1_cmd)));
8450                 }
8451         } else if (trans_support & CFGTBL_Trans_io_accel2) {
8452                 u64 cfg_offset, cfg_base_addr_index;
8453                 u32 bft2_offset, cfg_base_addr;
8454                 int rc;
8455
8456                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
8457                         &cfg_base_addr_index, &cfg_offset);
8458                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
8459                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
8460                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
8461                                 4, h->ioaccel2_blockFetchTable);
8462                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
8463                 BUILD_BUG_ON(offsetof(struct CfgTable,
8464                                 io_accel_request_size_offset) != 0xb8);
8465                 h->ioaccel2_bft2_regs =
8466                         remap_pci_mem(pci_resource_start(h->pdev,
8467                                         cfg_base_addr_index) +
8468                                         cfg_offset + bft2_offset,
8469                                         ARRAY_SIZE(bft2) *
8470                                         sizeof(*h->ioaccel2_bft2_regs));
8471                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
8472                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
8473         }
8474         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8475         if (hpsa_wait_for_mode_change_ack(h)) {
8476                 dev_err(&h->pdev->dev,
8477                         "performant mode problem - enabling ioaccel mode\n");
8478                 return -ENODEV;
8479         }
8480         return 0;
8481 }
8482
8483 /* Free ioaccel1 mode command blocks and block fetch table */
8484 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8485 {
8486         if (h->ioaccel_cmd_pool) {
8487                 pci_free_consistent(h->pdev,
8488                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8489                         h->ioaccel_cmd_pool,
8490                         h->ioaccel_cmd_pool_dhandle);
8491                 h->ioaccel_cmd_pool = NULL;
8492                 h->ioaccel_cmd_pool_dhandle = 0;
8493         }
8494         kfree(h->ioaccel1_blockFetchTable);
8495         h->ioaccel1_blockFetchTable = NULL;
8496 }
8497
8498 /* Allocate ioaccel1 mode command blocks and block fetch table */
8499 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8500 {
8501         h->ioaccel_maxsg =
8502                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8503         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
8504                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
8505
8506         /* Command structures must be aligned on a 128-byte boundary
8507          * because the 7 lower bits of the address are used by the
8508          * hardware.
8509          */
8510         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
8511                         IOACCEL1_COMMANDLIST_ALIGNMENT);
8512         h->ioaccel_cmd_pool =
8513                 pci_alloc_consistent(h->pdev,
8514                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8515                         &(h->ioaccel_cmd_pool_dhandle));
8516
8517         h->ioaccel1_blockFetchTable =
8518                 kmalloc(((h->ioaccel_maxsg + 1) *
8519                                 sizeof(u32)), GFP_KERNEL);
8520
8521         if ((h->ioaccel_cmd_pool == NULL) ||
8522                 (h->ioaccel1_blockFetchTable == NULL))
8523                 goto clean_up;
8524
8525         memset(h->ioaccel_cmd_pool, 0,
8526                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
8527         return 0;
8528
8529 clean_up:
8530         hpsa_free_ioaccel1_cmd_and_bft(h);
8531         return -ENOMEM;
8532 }
8533
8534 /* Free ioaccel2 mode command blocks and block fetch table */
8535 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8536 {
8537         hpsa_free_ioaccel2_sg_chain_blocks(h);
8538
8539         if (h->ioaccel2_cmd_pool) {
8540                 pci_free_consistent(h->pdev,
8541                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8542                         h->ioaccel2_cmd_pool,
8543                         h->ioaccel2_cmd_pool_dhandle);
8544                 h->ioaccel2_cmd_pool = NULL;
8545                 h->ioaccel2_cmd_pool_dhandle = 0;
8546         }
8547         kfree(h->ioaccel2_blockFetchTable);
8548         h->ioaccel2_blockFetchTable = NULL;
8549 }
8550
8551 /* Allocate ioaccel2 mode command blocks and block fetch table */
8552 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8553 {
8554         int rc;
8555
8556         /* Allocate ioaccel2 mode command blocks and block fetch table */
8557
8558         h->ioaccel_maxsg =
8559                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8560         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
8561                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
8562
8563         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
8564                         IOACCEL2_COMMANDLIST_ALIGNMENT);
8565         h->ioaccel2_cmd_pool =
8566                 pci_alloc_consistent(h->pdev,
8567                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8568                         &(h->ioaccel2_cmd_pool_dhandle));
8569
8570         h->ioaccel2_blockFetchTable =
8571                 kmalloc(((h->ioaccel_maxsg + 1) *
8572                                 sizeof(u32)), GFP_KERNEL);
8573
8574         if ((h->ioaccel2_cmd_pool == NULL) ||
8575                 (h->ioaccel2_blockFetchTable == NULL)) {
8576                 rc = -ENOMEM;
8577                 goto clean_up;
8578         }
8579
8580         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
8581         if (rc)
8582                 goto clean_up;
8583
8584         memset(h->ioaccel2_cmd_pool, 0,
8585                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
8586         return 0;
8587
8588 clean_up:
8589         hpsa_free_ioaccel2_cmd_and_bft(h);
8590         return rc;
8591 }
8592
8593 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
8594 static void hpsa_free_performant_mode(struct ctlr_info *h)
8595 {
8596         kfree(h->blockFetchTable);
8597         h->blockFetchTable = NULL;
8598         hpsa_free_reply_queues(h);
8599         hpsa_free_ioaccel1_cmd_and_bft(h);
8600         hpsa_free_ioaccel2_cmd_and_bft(h);
8601 }
8602
8603 /* return -ENODEV on error, 0 on success (or no action)
8604  * allocates numerous items that must be freed later
8605  */
8606 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
8607 {
8608         u32 trans_support;
8609         unsigned long transMethod = CFGTBL_Trans_Performant |
8610                                         CFGTBL_Trans_use_short_tags;
8611         int i, rc;
8612
8613         if (hpsa_simple_mode)
8614                 return 0;
8615
8616         trans_support = readl(&(h->cfgtable->TransportSupport));
8617         if (!(trans_support & PERFORMANT_MODE))
8618                 return 0;
8619
8620         /* Check for I/O accelerator mode support */
8621         if (trans_support & CFGTBL_Trans_io_accel1) {
8622                 transMethod |= CFGTBL_Trans_io_accel1 |
8623                                 CFGTBL_Trans_enable_directed_msix;
8624                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
8625                 if (rc)
8626                         return rc;
8627         } else if (trans_support & CFGTBL_Trans_io_accel2) {
8628                 transMethod |= CFGTBL_Trans_io_accel2 |
8629                                 CFGTBL_Trans_enable_directed_msix;
8630                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
8631                 if (rc)
8632                         return rc;
8633         }
8634
8635         h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
8636         hpsa_get_max_perf_mode_cmds(h);
8637         /* Performant mode ring buffer and supporting data structures */
8638         h->reply_queue_size = h->max_commands * sizeof(u64);
8639
8640         for (i = 0; i < h->nreply_queues; i++) {
8641                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
8642                                                 h->reply_queue_size,
8643                                                 &(h->reply_queue[i].busaddr));
8644                 if (!h->reply_queue[i].head) {
8645                         rc = -ENOMEM;
8646                         goto clean1;    /* rq, ioaccel */
8647                 }
8648                 h->reply_queue[i].size = h->max_commands;
8649                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
8650                 h->reply_queue[i].current_entry = 0;
8651         }
8652
8653         /* Need a block fetch table for performant mode */
8654         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
8655                                 sizeof(u32)), GFP_KERNEL);
8656         if (!h->blockFetchTable) {
8657                 rc = -ENOMEM;
8658                 goto clean1;    /* rq, ioaccel */
8659         }
8660
8661         rc = hpsa_enter_performant_mode(h, trans_support);
8662         if (rc)
8663                 goto clean2;    /* bft, rq, ioaccel */
8664         return 0;
8665
8666 clean2: /* bft, rq, ioaccel */
8667         kfree(h->blockFetchTable);
8668         h->blockFetchTable = NULL;
8669 clean1: /* rq, ioaccel */
8670         hpsa_free_reply_queues(h);
8671         hpsa_free_ioaccel1_cmd_and_bft(h);
8672         hpsa_free_ioaccel2_cmd_and_bft(h);
8673         return rc;
8674 }
8675
8676 static int is_accelerated_cmd(struct CommandList *c)
8677 {
8678         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
8679 }
8680
8681 static void hpsa_drain_accel_commands(struct ctlr_info *h)
8682 {
8683         struct CommandList *c = NULL;
8684         int i, accel_cmds_out;
8685         int refcount;
8686
8687         do { /* wait for all outstanding ioaccel commands to drain out */
8688                 accel_cmds_out = 0;
8689                 for (i = 0; i < h->nr_cmds; i++) {
8690                         c = h->cmd_pool + i;
8691                         refcount = atomic_inc_return(&c->refcount);
8692                         if (refcount > 1) /* Command is allocated */
8693                                 accel_cmds_out += is_accelerated_cmd(c);
8694                         cmd_free(h, c);
8695                 }
8696                 if (accel_cmds_out <= 0)
8697                         break;
8698                 msleep(100);
8699         } while (1);
8700 }
8701
8702 /*
8703  *  This is it.  Register the PCI driver information for the cards we control
8704  *  the OS will call our registered routines when it finds one of our cards.
8705  */
8706 static int __init hpsa_init(void)
8707 {
8708         return pci_register_driver(&hpsa_pci_driver);
8709 }
8710
8711 static void __exit hpsa_cleanup(void)
8712 {
8713         pci_unregister_driver(&hpsa_pci_driver);
8714 }
8715
8716 static void __attribute__((unused)) verify_offsets(void)
8717 {
8718 #define VERIFY_OFFSET(member, offset) \
8719         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
8720
8721         VERIFY_OFFSET(structure_size, 0);
8722         VERIFY_OFFSET(volume_blk_size, 4);
8723         VERIFY_OFFSET(volume_blk_cnt, 8);
8724         VERIFY_OFFSET(phys_blk_shift, 16);
8725         VERIFY_OFFSET(parity_rotation_shift, 17);
8726         VERIFY_OFFSET(strip_size, 18);
8727         VERIFY_OFFSET(disk_starting_blk, 20);
8728         VERIFY_OFFSET(disk_blk_cnt, 28);
8729         VERIFY_OFFSET(data_disks_per_row, 36);
8730         VERIFY_OFFSET(metadata_disks_per_row, 38);
8731         VERIFY_OFFSET(row_cnt, 40);
8732         VERIFY_OFFSET(layout_map_count, 42);
8733         VERIFY_OFFSET(flags, 44);
8734         VERIFY_OFFSET(dekindex, 46);
8735         /* VERIFY_OFFSET(reserved, 48 */
8736         VERIFY_OFFSET(data, 64);
8737
8738 #undef VERIFY_OFFSET
8739
8740 #define VERIFY_OFFSET(member, offset) \
8741         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
8742
8743         VERIFY_OFFSET(IU_type, 0);
8744         VERIFY_OFFSET(direction, 1);
8745         VERIFY_OFFSET(reply_queue, 2);
8746         /* VERIFY_OFFSET(reserved1, 3);  */
8747         VERIFY_OFFSET(scsi_nexus, 4);
8748         VERIFY_OFFSET(Tag, 8);
8749         VERIFY_OFFSET(cdb, 16);
8750         VERIFY_OFFSET(cciss_lun, 32);
8751         VERIFY_OFFSET(data_len, 40);
8752         VERIFY_OFFSET(cmd_priority_task_attr, 44);
8753         VERIFY_OFFSET(sg_count, 45);
8754         /* VERIFY_OFFSET(reserved3 */
8755         VERIFY_OFFSET(err_ptr, 48);
8756         VERIFY_OFFSET(err_len, 56);
8757         /* VERIFY_OFFSET(reserved4  */
8758         VERIFY_OFFSET(sg, 64);
8759
8760 #undef VERIFY_OFFSET
8761
8762 #define VERIFY_OFFSET(member, offset) \
8763         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
8764
8765         VERIFY_OFFSET(dev_handle, 0x00);
8766         VERIFY_OFFSET(reserved1, 0x02);
8767         VERIFY_OFFSET(function, 0x03);
8768         VERIFY_OFFSET(reserved2, 0x04);
8769         VERIFY_OFFSET(err_info, 0x0C);
8770         VERIFY_OFFSET(reserved3, 0x10);
8771         VERIFY_OFFSET(err_info_len, 0x12);
8772         VERIFY_OFFSET(reserved4, 0x13);
8773         VERIFY_OFFSET(sgl_offset, 0x14);
8774         VERIFY_OFFSET(reserved5, 0x15);
8775         VERIFY_OFFSET(transfer_len, 0x1C);
8776         VERIFY_OFFSET(reserved6, 0x20);
8777         VERIFY_OFFSET(io_flags, 0x24);
8778         VERIFY_OFFSET(reserved7, 0x26);
8779         VERIFY_OFFSET(LUN, 0x34);
8780         VERIFY_OFFSET(control, 0x3C);
8781         VERIFY_OFFSET(CDB, 0x40);
8782         VERIFY_OFFSET(reserved8, 0x50);
8783         VERIFY_OFFSET(host_context_flags, 0x60);
8784         VERIFY_OFFSET(timeout_sec, 0x62);
8785         VERIFY_OFFSET(ReplyQueue, 0x64);
8786         VERIFY_OFFSET(reserved9, 0x65);
8787         VERIFY_OFFSET(tag, 0x68);
8788         VERIFY_OFFSET(host_addr, 0x70);
8789         VERIFY_OFFSET(CISS_LUN, 0x78);
8790         VERIFY_OFFSET(SG, 0x78 + 8);
8791 #undef VERIFY_OFFSET
8792 }
8793
8794 module_init(hpsa_init);
8795 module_exit(hpsa_cleanup);