Merge branch 'next/cleanup-use-static' into next/cleanup-exynos-clock
[cascardo/linux.git] / drivers / scsi / isci / host.c
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  * redistributing this file, you may do so under either license.
4  *
5  * GPL LICENSE SUMMARY
6  *
7  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21  * The full GNU General Public License is included in this distribution
22  * in the file called LICENSE.GPL.
23  *
24  * BSD LICENSE
25  *
26  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27  * All rights reserved.
28  *
29  * Redistribution and use in source and binary forms, with or without
30  * modification, are permitted provided that the following conditions
31  * are met:
32  *
33  *   * Redistributions of source code must retain the above copyright
34  *     notice, this list of conditions and the following disclaimer.
35  *   * Redistributions in binary form must reproduce the above copyright
36  *     notice, this list of conditions and the following disclaimer in
37  *     the documentation and/or other materials provided with the
38  *     distribution.
39  *   * Neither the name of Intel Corporation nor the names of its
40  *     contributors may be used to endorse or promote products derived
41  *     from this software without specific prior written permission.
42  *
43  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54  */
55 #include <linux/circ_buf.h>
56 #include <linux/device.h>
57 #include <scsi/sas.h>
58 #include "host.h"
59 #include "isci.h"
60 #include "port.h"
61 #include "host.h"
62 #include "probe_roms.h"
63 #include "remote_device.h"
64 #include "request.h"
65 #include "scu_completion_codes.h"
66 #include "scu_event_codes.h"
67 #include "registers.h"
68 #include "scu_remote_node_context.h"
69 #include "scu_task_context.h"
70
71 #define SCU_CONTEXT_RAM_INIT_STALL_TIME      200
72
73 #define smu_max_ports(dcc_value) \
74         (\
75                 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
76                  >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
77         )
78
79 #define smu_max_task_contexts(dcc_value)        \
80         (\
81                 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
82                  >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
83         )
84
85 #define smu_max_rncs(dcc_value) \
86         (\
87                 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
88                  >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
89         )
90
91 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT      100
92
93 /**
94  *
95  *
96  * The number of milliseconds to wait while a given phy is consuming power
97  * before allowing another set of phys to consume power. Ultimately, this will
98  * be specified by OEM parameter.
99  */
100 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
101
102 /**
103  * NORMALIZE_PUT_POINTER() -
104  *
105  * This macro will normalize the completion queue put pointer so its value can
106  * be used as an array inde
107  */
108 #define NORMALIZE_PUT_POINTER(x) \
109         ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
110
111
112 /**
113  * NORMALIZE_EVENT_POINTER() -
114  *
115  * This macro will normalize the completion queue event entry so its value can
116  * be used as an index.
117  */
118 #define NORMALIZE_EVENT_POINTER(x) \
119         (\
120                 ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
121                 >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
122         )
123
124 /**
125  * NORMALIZE_GET_POINTER() -
126  *
127  * This macro will normalize the completion queue get pointer so its value can
128  * be used as an index into an array
129  */
130 #define NORMALIZE_GET_POINTER(x) \
131         ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
132
133 /**
134  * NORMALIZE_GET_POINTER_CYCLE_BIT() -
135  *
136  * This macro will normalize the completion queue cycle pointer so it matches
137  * the completion queue cycle bit
138  */
139 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
140         ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
141
142 /**
143  * COMPLETION_QUEUE_CYCLE_BIT() -
144  *
145  * This macro will return the cycle bit of the completion queue entry
146  */
147 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
148
149 /* Init the state machine and call the state entry function (if any) */
150 void sci_init_sm(struct sci_base_state_machine *sm,
151                  const struct sci_base_state *state_table, u32 initial_state)
152 {
153         sci_state_transition_t handler;
154
155         sm->initial_state_id    = initial_state;
156         sm->previous_state_id   = initial_state;
157         sm->current_state_id    = initial_state;
158         sm->state_table         = state_table;
159
160         handler = sm->state_table[initial_state].enter_state;
161         if (handler)
162                 handler(sm);
163 }
164
165 /* Call the state exit fn, update the current state, call the state entry fn */
166 void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
167 {
168         sci_state_transition_t handler;
169
170         handler = sm->state_table[sm->current_state_id].exit_state;
171         if (handler)
172                 handler(sm);
173
174         sm->previous_state_id = sm->current_state_id;
175         sm->current_state_id = next_state;
176
177         handler = sm->state_table[sm->current_state_id].enter_state;
178         if (handler)
179                 handler(sm);
180 }
181
182 static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost)
183 {
184         u32 get_value = ihost->completion_queue_get;
185         u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
186
187         if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
188             COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]))
189                 return true;
190
191         return false;
192 }
193
194 static bool sci_controller_isr(struct isci_host *ihost)
195 {
196         if (sci_controller_completion_queue_has_entries(ihost)) {
197                 return true;
198         } else {
199                 /*
200                  * we have a spurious interrupt it could be that we have already
201                  * emptied the completion queue from a previous interrupt */
202                 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
203
204                 /*
205                  * There is a race in the hardware that could cause us not to be notified
206                  * of an interrupt completion if we do not take this step.  We will mask
207                  * then unmask the interrupts so if there is another interrupt pending
208                  * the clearing of the interrupt source we get the next interrupt message. */
209                 writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
210                 writel(0, &ihost->smu_registers->interrupt_mask);
211         }
212
213         return false;
214 }
215
216 irqreturn_t isci_msix_isr(int vec, void *data)
217 {
218         struct isci_host *ihost = data;
219
220         if (sci_controller_isr(ihost))
221                 tasklet_schedule(&ihost->completion_tasklet);
222
223         return IRQ_HANDLED;
224 }
225
226 static bool sci_controller_error_isr(struct isci_host *ihost)
227 {
228         u32 interrupt_status;
229
230         interrupt_status =
231                 readl(&ihost->smu_registers->interrupt_status);
232         interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
233
234         if (interrupt_status != 0) {
235                 /*
236                  * There is an error interrupt pending so let it through and handle
237                  * in the callback */
238                 return true;
239         }
240
241         /*
242          * There is a race in the hardware that could cause us not to be notified
243          * of an interrupt completion if we do not take this step.  We will mask
244          * then unmask the error interrupts so if there was another interrupt
245          * pending we will be notified.
246          * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
247         writel(0xff, &ihost->smu_registers->interrupt_mask);
248         writel(0, &ihost->smu_registers->interrupt_mask);
249
250         return false;
251 }
252
253 static void sci_controller_task_completion(struct isci_host *ihost, u32 ent)
254 {
255         u32 index = SCU_GET_COMPLETION_INDEX(ent);
256         struct isci_request *ireq = ihost->reqs[index];
257
258         /* Make sure that we really want to process this IO request */
259         if (test_bit(IREQ_ACTIVE, &ireq->flags) &&
260             ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG &&
261             ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index])
262                 /* Yep this is a valid io request pass it along to the
263                  * io request handler
264                  */
265                 sci_io_request_tc_completion(ireq, ent);
266 }
267
268 static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent)
269 {
270         u32 index;
271         struct isci_request *ireq;
272         struct isci_remote_device *idev;
273
274         index = SCU_GET_COMPLETION_INDEX(ent);
275
276         switch (scu_get_command_request_type(ent)) {
277         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
278         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
279                 ireq = ihost->reqs[index];
280                 dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n",
281                          __func__, ent, ireq);
282                 /* @todo For a post TC operation we need to fail the IO
283                  * request
284                  */
285                 break;
286         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
287         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
288         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
289                 idev = ihost->device_table[index];
290                 dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n",
291                          __func__, ent, idev);
292                 /* @todo For a port RNC operation we need to fail the
293                  * device
294                  */
295                 break;
296         default:
297                 dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n",
298                          __func__, ent);
299                 break;
300         }
301 }
302
303 static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent)
304 {
305         u32 index;
306         u32 frame_index;
307
308         struct scu_unsolicited_frame_header *frame_header;
309         struct isci_phy *iphy;
310         struct isci_remote_device *idev;
311
312         enum sci_status result = SCI_FAILURE;
313
314         frame_index = SCU_GET_FRAME_INDEX(ent);
315
316         frame_header = ihost->uf_control.buffers.array[frame_index].header;
317         ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
318
319         if (SCU_GET_FRAME_ERROR(ent)) {
320                 /*
321                  * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
322                  * /       this cause a problem? We expect the phy initialization will
323                  * /       fail if there is an error in the frame. */
324                 sci_controller_release_frame(ihost, frame_index);
325                 return;
326         }
327
328         if (frame_header->is_address_frame) {
329                 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
330                 iphy = &ihost->phys[index];
331                 result = sci_phy_frame_handler(iphy, frame_index);
332         } else {
333
334                 index = SCU_GET_COMPLETION_INDEX(ent);
335
336                 if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
337                         /*
338                          * This is a signature fis or a frame from a direct attached SATA
339                          * device that has not yet been created.  In either case forwared
340                          * the frame to the PE and let it take care of the frame data. */
341                         index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
342                         iphy = &ihost->phys[index];
343                         result = sci_phy_frame_handler(iphy, frame_index);
344                 } else {
345                         if (index < ihost->remote_node_entries)
346                                 idev = ihost->device_table[index];
347                         else
348                                 idev = NULL;
349
350                         if (idev != NULL)
351                                 result = sci_remote_device_frame_handler(idev, frame_index);
352                         else
353                                 sci_controller_release_frame(ihost, frame_index);
354                 }
355         }
356
357         if (result != SCI_SUCCESS) {
358                 /*
359                  * / @todo Is there any reason to report some additional error message
360                  * /       when we get this failure notifiction? */
361         }
362 }
363
364 static void sci_controller_event_completion(struct isci_host *ihost, u32 ent)
365 {
366         struct isci_remote_device *idev;
367         struct isci_request *ireq;
368         struct isci_phy *iphy;
369         u32 index;
370
371         index = SCU_GET_COMPLETION_INDEX(ent);
372
373         switch (scu_get_event_type(ent)) {
374         case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
375                 /* / @todo The driver did something wrong and we need to fix the condtion. */
376                 dev_err(&ihost->pdev->dev,
377                         "%s: SCIC Controller 0x%p received SMU command error "
378                         "0x%x\n",
379                         __func__,
380                         ihost,
381                         ent);
382                 break;
383
384         case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
385         case SCU_EVENT_TYPE_SMU_ERROR:
386         case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
387                 /*
388                  * / @todo This is a hardware failure and its likely that we want to
389                  * /       reset the controller. */
390                 dev_err(&ihost->pdev->dev,
391                         "%s: SCIC Controller 0x%p received fatal controller "
392                         "event  0x%x\n",
393                         __func__,
394                         ihost,
395                         ent);
396                 break;
397
398         case SCU_EVENT_TYPE_TRANSPORT_ERROR:
399                 ireq = ihost->reqs[index];
400                 sci_io_request_event_handler(ireq, ent);
401                 break;
402
403         case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
404                 switch (scu_get_event_specifier(ent)) {
405                 case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
406                 case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
407                         ireq = ihost->reqs[index];
408                         if (ireq != NULL)
409                                 sci_io_request_event_handler(ireq, ent);
410                         else
411                                 dev_warn(&ihost->pdev->dev,
412                                          "%s: SCIC Controller 0x%p received "
413                                          "event 0x%x for io request object "
414                                          "that doesnt exist.\n",
415                                          __func__,
416                                          ihost,
417                                          ent);
418
419                         break;
420
421                 case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
422                         idev = ihost->device_table[index];
423                         if (idev != NULL)
424                                 sci_remote_device_event_handler(idev, ent);
425                         else
426                                 dev_warn(&ihost->pdev->dev,
427                                          "%s: SCIC Controller 0x%p received "
428                                          "event 0x%x for remote device object "
429                                          "that doesnt exist.\n",
430                                          __func__,
431                                          ihost,
432                                          ent);
433
434                         break;
435                 }
436                 break;
437
438         case SCU_EVENT_TYPE_BROADCAST_CHANGE:
439         /*
440          * direct the broadcast change event to the phy first and then let
441          * the phy redirect the broadcast change to the port object */
442         case SCU_EVENT_TYPE_ERR_CNT_EVENT:
443         /*
444          * direct error counter event to the phy object since that is where
445          * we get the event notification.  This is a type 4 event. */
446         case SCU_EVENT_TYPE_OSSP_EVENT:
447                 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
448                 iphy = &ihost->phys[index];
449                 sci_phy_event_handler(iphy, ent);
450                 break;
451
452         case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
453         case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
454         case SCU_EVENT_TYPE_RNC_OPS_MISC:
455                 if (index < ihost->remote_node_entries) {
456                         idev = ihost->device_table[index];
457
458                         if (idev != NULL)
459                                 sci_remote_device_event_handler(idev, ent);
460                 } else
461                         dev_err(&ihost->pdev->dev,
462                                 "%s: SCIC Controller 0x%p received event 0x%x "
463                                 "for remote device object 0x%0x that doesnt "
464                                 "exist.\n",
465                                 __func__,
466                                 ihost,
467                                 ent,
468                                 index);
469
470                 break;
471
472         default:
473                 dev_warn(&ihost->pdev->dev,
474                          "%s: SCIC Controller received unknown event code %x\n",
475                          __func__,
476                          ent);
477                 break;
478         }
479 }
480
481 static void sci_controller_process_completions(struct isci_host *ihost)
482 {
483         u32 completion_count = 0;
484         u32 ent;
485         u32 get_index;
486         u32 get_cycle;
487         u32 event_get;
488         u32 event_cycle;
489
490         dev_dbg(&ihost->pdev->dev,
491                 "%s: completion queue begining get:0x%08x\n",
492                 __func__,
493                 ihost->completion_queue_get);
494
495         /* Get the component parts of the completion queue */
496         get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get);
497         get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get;
498
499         event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get);
500         event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get;
501
502         while (
503                 NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
504                 == COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])
505                 ) {
506                 completion_count++;
507
508                 ent = ihost->completion_queue[get_index];
509
510                 /* increment the get pointer and check for rollover to toggle the cycle bit */
511                 get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) <<
512                              (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT);
513                 get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1);
514
515                 dev_dbg(&ihost->pdev->dev,
516                         "%s: completion queue entry:0x%08x\n",
517                         __func__,
518                         ent);
519
520                 switch (SCU_GET_COMPLETION_TYPE(ent)) {
521                 case SCU_COMPLETION_TYPE_TASK:
522                         sci_controller_task_completion(ihost, ent);
523                         break;
524
525                 case SCU_COMPLETION_TYPE_SDMA:
526                         sci_controller_sdma_completion(ihost, ent);
527                         break;
528
529                 case SCU_COMPLETION_TYPE_UFI:
530                         sci_controller_unsolicited_frame(ihost, ent);
531                         break;
532
533                 case SCU_COMPLETION_TYPE_EVENT:
534                         sci_controller_event_completion(ihost, ent);
535                         break;
536
537                 case SCU_COMPLETION_TYPE_NOTIFY: {
538                         event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) <<
539                                        (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT);
540                         event_get = (event_get+1) & (SCU_MAX_EVENTS-1);
541
542                         sci_controller_event_completion(ihost, ent);
543                         break;
544                 }
545                 default:
546                         dev_warn(&ihost->pdev->dev,
547                                  "%s: SCIC Controller received unknown "
548                                  "completion type %x\n",
549                                  __func__,
550                                  ent);
551                         break;
552                 }
553         }
554
555         /* Update the get register if we completed one or more entries */
556         if (completion_count > 0) {
557                 ihost->completion_queue_get =
558                         SMU_CQGR_GEN_BIT(ENABLE) |
559                         SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
560                         event_cycle |
561                         SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) |
562                         get_cycle |
563                         SMU_CQGR_GEN_VAL(POINTER, get_index);
564
565                 writel(ihost->completion_queue_get,
566                        &ihost->smu_registers->completion_queue_get);
567
568         }
569
570         dev_dbg(&ihost->pdev->dev,
571                 "%s: completion queue ending get:0x%08x\n",
572                 __func__,
573                 ihost->completion_queue_get);
574
575 }
576
577 static void sci_controller_error_handler(struct isci_host *ihost)
578 {
579         u32 interrupt_status;
580
581         interrupt_status =
582                 readl(&ihost->smu_registers->interrupt_status);
583
584         if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
585             sci_controller_completion_queue_has_entries(ihost)) {
586
587                 sci_controller_process_completions(ihost);
588                 writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status);
589         } else {
590                 dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__,
591                         interrupt_status);
592
593                 sci_change_state(&ihost->sm, SCIC_FAILED);
594
595                 return;
596         }
597
598         /* If we dont process any completions I am not sure that we want to do this.
599          * We are in the middle of a hardware fault and should probably be reset.
600          */
601         writel(0, &ihost->smu_registers->interrupt_mask);
602 }
603
604 irqreturn_t isci_intx_isr(int vec, void *data)
605 {
606         irqreturn_t ret = IRQ_NONE;
607         struct isci_host *ihost = data;
608
609         if (sci_controller_isr(ihost)) {
610                 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
611                 tasklet_schedule(&ihost->completion_tasklet);
612                 ret = IRQ_HANDLED;
613         } else if (sci_controller_error_isr(ihost)) {
614                 spin_lock(&ihost->scic_lock);
615                 sci_controller_error_handler(ihost);
616                 spin_unlock(&ihost->scic_lock);
617                 ret = IRQ_HANDLED;
618         }
619
620         return ret;
621 }
622
623 irqreturn_t isci_error_isr(int vec, void *data)
624 {
625         struct isci_host *ihost = data;
626
627         if (sci_controller_error_isr(ihost))
628                 sci_controller_error_handler(ihost);
629
630         return IRQ_HANDLED;
631 }
632
633 /**
634  * isci_host_start_complete() - This function is called by the core library,
635  *    through the ISCI Module, to indicate controller start status.
636  * @isci_host: This parameter specifies the ISCI host object
637  * @completion_status: This parameter specifies the completion status from the
638  *    core library.
639  *
640  */
641 static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
642 {
643         if (completion_status != SCI_SUCCESS)
644                 dev_info(&ihost->pdev->dev,
645                         "controller start timed out, continuing...\n");
646         isci_host_change_state(ihost, isci_ready);
647         clear_bit(IHOST_START_PENDING, &ihost->flags);
648         wake_up(&ihost->eventq);
649 }
650
651 int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
652 {
653         struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
654
655         if (test_bit(IHOST_START_PENDING, &ihost->flags))
656                 return 0;
657
658         /* todo: use sas_flush_discovery once it is upstream */
659         scsi_flush_work(shost);
660
661         scsi_flush_work(shost);
662
663         dev_dbg(&ihost->pdev->dev,
664                 "%s: ihost->status = %d, time = %ld\n",
665                  __func__, isci_host_get_state(ihost), time);
666
667         return 1;
668
669 }
670
671 /**
672  * sci_controller_get_suggested_start_timeout() - This method returns the
673  *    suggested sci_controller_start() timeout amount.  The user is free to
674  *    use any timeout value, but this method provides the suggested minimum
675  *    start timeout value.  The returned value is based upon empirical
676  *    information determined as a result of interoperability testing.
677  * @controller: the handle to the controller object for which to return the
678  *    suggested start timeout.
679  *
680  * This method returns the number of milliseconds for the suggested start
681  * operation timeout.
682  */
683 static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost)
684 {
685         /* Validate the user supplied parameters. */
686         if (!ihost)
687                 return 0;
688
689         /*
690          * The suggested minimum timeout value for a controller start operation:
691          *
692          *     Signature FIS Timeout
693          *   + Phy Start Timeout
694          *   + Number of Phy Spin Up Intervals
695          *   ---------------------------------
696          *   Number of milliseconds for the controller start operation.
697          *
698          * NOTE: The number of phy spin up intervals will be equivalent
699          *       to the number of phys divided by the number phys allowed
700          *       per interval - 1 (once OEM parameters are supported).
701          *       Currently we assume only 1 phy per interval. */
702
703         return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
704                 + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
705                 + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
706 }
707
708 static void sci_controller_enable_interrupts(struct isci_host *ihost)
709 {
710         BUG_ON(ihost->smu_registers == NULL);
711         writel(0, &ihost->smu_registers->interrupt_mask);
712 }
713
714 void sci_controller_disable_interrupts(struct isci_host *ihost)
715 {
716         BUG_ON(ihost->smu_registers == NULL);
717         writel(0xffffffff, &ihost->smu_registers->interrupt_mask);
718 }
719
720 static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost)
721 {
722         u32 port_task_scheduler_value;
723
724         port_task_scheduler_value =
725                 readl(&ihost->scu_registers->peg0.ptsg.control);
726         port_task_scheduler_value |=
727                 (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
728                  SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
729         writel(port_task_scheduler_value,
730                &ihost->scu_registers->peg0.ptsg.control);
731 }
732
733 static void sci_controller_assign_task_entries(struct isci_host *ihost)
734 {
735         u32 task_assignment;
736
737         /*
738          * Assign all the TCs to function 0
739          * TODO: Do we actually need to read this register to write it back?
740          */
741
742         task_assignment =
743                 readl(&ihost->smu_registers->task_context_assignment[0]);
744
745         task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
746                 (SMU_TCA_GEN_VAL(ENDING,  ihost->task_context_entries - 1)) |
747                 (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
748
749         writel(task_assignment,
750                 &ihost->smu_registers->task_context_assignment[0]);
751
752 }
753
754 static void sci_controller_initialize_completion_queue(struct isci_host *ihost)
755 {
756         u32 index;
757         u32 completion_queue_control_value;
758         u32 completion_queue_get_value;
759         u32 completion_queue_put_value;
760
761         ihost->completion_queue_get = 0;
762
763         completion_queue_control_value =
764                 (SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
765                  SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));
766
767         writel(completion_queue_control_value,
768                &ihost->smu_registers->completion_queue_control);
769
770
771         /* Set the completion queue get pointer and enable the queue */
772         completion_queue_get_value = (
773                 (SMU_CQGR_GEN_VAL(POINTER, 0))
774                 | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
775                 | (SMU_CQGR_GEN_BIT(ENABLE))
776                 | (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
777                 );
778
779         writel(completion_queue_get_value,
780                &ihost->smu_registers->completion_queue_get);
781
782         /* Set the completion queue put pointer */
783         completion_queue_put_value = (
784                 (SMU_CQPR_GEN_VAL(POINTER, 0))
785                 | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
786                 );
787
788         writel(completion_queue_put_value,
789                &ihost->smu_registers->completion_queue_put);
790
791         /* Initialize the cycle bit of the completion queue entries */
792         for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
793                 /*
794                  * If get.cycle_bit != completion_queue.cycle_bit
795                  * its not a valid completion queue entry
796                  * so at system start all entries are invalid */
797                 ihost->completion_queue[index] = 0x80000000;
798         }
799 }
800
801 static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost)
802 {
803         u32 frame_queue_control_value;
804         u32 frame_queue_get_value;
805         u32 frame_queue_put_value;
806
807         /* Write the queue size */
808         frame_queue_control_value =
809                 SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);
810
811         writel(frame_queue_control_value,
812                &ihost->scu_registers->sdma.unsolicited_frame_queue_control);
813
814         /* Setup the get pointer for the unsolicited frame queue */
815         frame_queue_get_value = (
816                 SCU_UFQGP_GEN_VAL(POINTER, 0)
817                 |  SCU_UFQGP_GEN_BIT(ENABLE_BIT)
818                 );
819
820         writel(frame_queue_get_value,
821                &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
822         /* Setup the put pointer for the unsolicited frame queue */
823         frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
824         writel(frame_queue_put_value,
825                &ihost->scu_registers->sdma.unsolicited_frame_put_pointer);
826 }
827
828 static void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status)
829 {
830         if (ihost->sm.current_state_id == SCIC_STARTING) {
831                 /*
832                  * We move into the ready state, because some of the phys/ports
833                  * may be up and operational.
834                  */
835                 sci_change_state(&ihost->sm, SCIC_READY);
836
837                 isci_host_start_complete(ihost, status);
838         }
839 }
840
841 static bool is_phy_starting(struct isci_phy *iphy)
842 {
843         enum sci_phy_states state;
844
845         state = iphy->sm.current_state_id;
846         switch (state) {
847         case SCI_PHY_STARTING:
848         case SCI_PHY_SUB_INITIAL:
849         case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
850         case SCI_PHY_SUB_AWAIT_IAF_UF:
851         case SCI_PHY_SUB_AWAIT_SAS_POWER:
852         case SCI_PHY_SUB_AWAIT_SATA_POWER:
853         case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
854         case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
855         case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
856         case SCI_PHY_SUB_FINAL:
857                 return true;
858         default:
859                 return false;
860         }
861 }
862
863 /**
864  * sci_controller_start_next_phy - start phy
865  * @scic: controller
866  *
867  * If all the phys have been started, then attempt to transition the
868  * controller to the READY state and inform the user
869  * (sci_cb_controller_start_complete()).
870  */
871 static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost)
872 {
873         struct sci_oem_params *oem = &ihost->oem_parameters;
874         struct isci_phy *iphy;
875         enum sci_status status;
876
877         status = SCI_SUCCESS;
878
879         if (ihost->phy_startup_timer_pending)
880                 return status;
881
882         if (ihost->next_phy_to_start >= SCI_MAX_PHYS) {
883                 bool is_controller_start_complete = true;
884                 u32 state;
885                 u8 index;
886
887                 for (index = 0; index < SCI_MAX_PHYS; index++) {
888                         iphy = &ihost->phys[index];
889                         state = iphy->sm.current_state_id;
890
891                         if (!phy_get_non_dummy_port(iphy))
892                                 continue;
893
894                         /* The controller start operation is complete iff:
895                          * - all links have been given an opportunity to start
896                          * - have no indication of a connected device
897                          * - have an indication of a connected device and it has
898                          *   finished the link training process.
899                          */
900                         if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
901                             (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
902                             (iphy->is_in_link_training == true && is_phy_starting(iphy)) ||
903                             (ihost->port_agent.phy_ready_mask != ihost->port_agent.phy_configured_mask)) {
904                                 is_controller_start_complete = false;
905                                 break;
906                         }
907                 }
908
909                 /*
910                  * The controller has successfully finished the start process.
911                  * Inform the SCI Core user and transition to the READY state. */
912                 if (is_controller_start_complete == true) {
913                         sci_controller_transition_to_ready(ihost, SCI_SUCCESS);
914                         sci_del_timer(&ihost->phy_timer);
915                         ihost->phy_startup_timer_pending = false;
916                 }
917         } else {
918                 iphy = &ihost->phys[ihost->next_phy_to_start];
919
920                 if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
921                         if (phy_get_non_dummy_port(iphy) == NULL) {
922                                 ihost->next_phy_to_start++;
923
924                                 /* Caution recursion ahead be forwarned
925                                  *
926                                  * The PHY was never added to a PORT in MPC mode
927                                  * so start the next phy in sequence This phy
928                                  * will never go link up and will not draw power
929                                  * the OEM parameters either configured the phy
930                                  * incorrectly for the PORT or it was never
931                                  * assigned to a PORT
932                                  */
933                                 return sci_controller_start_next_phy(ihost);
934                         }
935                 }
936
937                 status = sci_phy_start(iphy);
938
939                 if (status == SCI_SUCCESS) {
940                         sci_mod_timer(&ihost->phy_timer,
941                                       SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
942                         ihost->phy_startup_timer_pending = true;
943                 } else {
944                         dev_warn(&ihost->pdev->dev,
945                                  "%s: Controller stop operation failed "
946                                  "to stop phy %d because of status "
947                                  "%d.\n",
948                                  __func__,
949                                  ihost->phys[ihost->next_phy_to_start].phy_index,
950                                  status);
951                 }
952
953                 ihost->next_phy_to_start++;
954         }
955
956         return status;
957 }
958
959 static void phy_startup_timeout(unsigned long data)
960 {
961         struct sci_timer *tmr = (struct sci_timer *)data;
962         struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer);
963         unsigned long flags;
964         enum sci_status status;
965
966         spin_lock_irqsave(&ihost->scic_lock, flags);
967
968         if (tmr->cancel)
969                 goto done;
970
971         ihost->phy_startup_timer_pending = false;
972
973         do {
974                 status = sci_controller_start_next_phy(ihost);
975         } while (status != SCI_SUCCESS);
976
977 done:
978         spin_unlock_irqrestore(&ihost->scic_lock, flags);
979 }
980
981 static u16 isci_tci_active(struct isci_host *ihost)
982 {
983         return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
984 }
985
986 static enum sci_status sci_controller_start(struct isci_host *ihost,
987                                              u32 timeout)
988 {
989         enum sci_status result;
990         u16 index;
991
992         if (ihost->sm.current_state_id != SCIC_INITIALIZED) {
993                 dev_warn(&ihost->pdev->dev,
994                          "SCIC Controller start operation requested in "
995                          "invalid state\n");
996                 return SCI_FAILURE_INVALID_STATE;
997         }
998
999         /* Build the TCi free pool */
1000         BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
1001         ihost->tci_head = 0;
1002         ihost->tci_tail = 0;
1003         for (index = 0; index < ihost->task_context_entries; index++)
1004                 isci_tci_free(ihost, index);
1005
1006         /* Build the RNi free pool */
1007         sci_remote_node_table_initialize(&ihost->available_remote_nodes,
1008                                          ihost->remote_node_entries);
1009
1010         /*
1011          * Before anything else lets make sure we will not be
1012          * interrupted by the hardware.
1013          */
1014         sci_controller_disable_interrupts(ihost);
1015
1016         /* Enable the port task scheduler */
1017         sci_controller_enable_port_task_scheduler(ihost);
1018
1019         /* Assign all the task entries to ihost physical function */
1020         sci_controller_assign_task_entries(ihost);
1021
1022         /* Now initialize the completion queue */
1023         sci_controller_initialize_completion_queue(ihost);
1024
1025         /* Initialize the unsolicited frame queue for use */
1026         sci_controller_initialize_unsolicited_frame_queue(ihost);
1027
1028         /* Start all of the ports on this controller */
1029         for (index = 0; index < ihost->logical_port_entries; index++) {
1030                 struct isci_port *iport = &ihost->ports[index];
1031
1032                 result = sci_port_start(iport);
1033                 if (result)
1034                         return result;
1035         }
1036
1037         sci_controller_start_next_phy(ihost);
1038
1039         sci_mod_timer(&ihost->timer, timeout);
1040
1041         sci_change_state(&ihost->sm, SCIC_STARTING);
1042
1043         return SCI_SUCCESS;
1044 }
1045
1046 void isci_host_scan_start(struct Scsi_Host *shost)
1047 {
1048         struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
1049         unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost);
1050
1051         set_bit(IHOST_START_PENDING, &ihost->flags);
1052
1053         spin_lock_irq(&ihost->scic_lock);
1054         sci_controller_start(ihost, tmo);
1055         sci_controller_enable_interrupts(ihost);
1056         spin_unlock_irq(&ihost->scic_lock);
1057 }
1058
1059 static void isci_host_stop_complete(struct isci_host *ihost, enum sci_status completion_status)
1060 {
1061         isci_host_change_state(ihost, isci_stopped);
1062         sci_controller_disable_interrupts(ihost);
1063         clear_bit(IHOST_STOP_PENDING, &ihost->flags);
1064         wake_up(&ihost->eventq);
1065 }
1066
1067 static void sci_controller_completion_handler(struct isci_host *ihost)
1068 {
1069         /* Empty out the completion queue */
1070         if (sci_controller_completion_queue_has_entries(ihost))
1071                 sci_controller_process_completions(ihost);
1072
1073         /* Clear the interrupt and enable all interrupts again */
1074         writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
1075         /* Could we write the value of SMU_ISR_COMPLETION? */
1076         writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
1077         writel(0, &ihost->smu_registers->interrupt_mask);
1078 }
1079
1080 /**
1081  * isci_host_completion_routine() - This function is the delayed service
1082  *    routine that calls the sci core library's completion handler. It's
1083  *    scheduled as a tasklet from the interrupt service routine when interrupts
1084  *    in use, or set as the timeout function in polled mode.
1085  * @data: This parameter specifies the ISCI host object
1086  *
1087  */
1088 static void isci_host_completion_routine(unsigned long data)
1089 {
1090         struct isci_host *ihost = (struct isci_host *)data;
1091         struct list_head    completed_request_list;
1092         struct list_head    errored_request_list;
1093         struct list_head    *current_position;
1094         struct list_head    *next_position;
1095         struct isci_request *request;
1096         struct isci_request *next_request;
1097         struct sas_task     *task;
1098         u16 active;
1099
1100         INIT_LIST_HEAD(&completed_request_list);
1101         INIT_LIST_HEAD(&errored_request_list);
1102
1103         spin_lock_irq(&ihost->scic_lock);
1104
1105         sci_controller_completion_handler(ihost);
1106
1107         /* Take the lists of completed I/Os from the host. */
1108
1109         list_splice_init(&ihost->requests_to_complete,
1110                          &completed_request_list);
1111
1112         /* Take the list of errored I/Os from the host. */
1113         list_splice_init(&ihost->requests_to_errorback,
1114                          &errored_request_list);
1115
1116         spin_unlock_irq(&ihost->scic_lock);
1117
1118         /* Process any completions in the lists. */
1119         list_for_each_safe(current_position, next_position,
1120                            &completed_request_list) {
1121
1122                 request = list_entry(current_position, struct isci_request,
1123                                      completed_node);
1124                 task = isci_request_access_task(request);
1125
1126                 /* Normal notification (task_done) */
1127                 dev_dbg(&ihost->pdev->dev,
1128                         "%s: Normal - request/task = %p/%p\n",
1129                         __func__,
1130                         request,
1131                         task);
1132
1133                 /* Return the task to libsas */
1134                 if (task != NULL) {
1135
1136                         task->lldd_task = NULL;
1137                         if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1138
1139                                 /* If the task is already in the abort path,
1140                                 * the task_done callback cannot be called.
1141                                 */
1142                                 task->task_done(task);
1143                         }
1144                 }
1145
1146                 spin_lock_irq(&ihost->scic_lock);
1147                 isci_free_tag(ihost, request->io_tag);
1148                 spin_unlock_irq(&ihost->scic_lock);
1149         }
1150         list_for_each_entry_safe(request, next_request, &errored_request_list,
1151                                  completed_node) {
1152
1153                 task = isci_request_access_task(request);
1154
1155                 /* Use sas_task_abort */
1156                 dev_warn(&ihost->pdev->dev,
1157                          "%s: Error - request/task = %p/%p\n",
1158                          __func__,
1159                          request,
1160                          task);
1161
1162                 if (task != NULL) {
1163
1164                         /* Put the task into the abort path if it's not there
1165                          * already.
1166                          */
1167                         if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED))
1168                                 sas_task_abort(task);
1169
1170                 } else {
1171                         /* This is a case where the request has completed with a
1172                          * status such that it needed further target servicing,
1173                          * but the sas_task reference has already been removed
1174                          * from the request.  Since it was errored, it was not
1175                          * being aborted, so there is nothing to do except free
1176                          * it.
1177                          */
1178
1179                         spin_lock_irq(&ihost->scic_lock);
1180                         /* Remove the request from the remote device's list
1181                         * of pending requests.
1182                         */
1183                         list_del_init(&request->dev_node);
1184                         isci_free_tag(ihost, request->io_tag);
1185                         spin_unlock_irq(&ihost->scic_lock);
1186                 }
1187         }
1188
1189         /* the coalesence timeout doubles at each encoding step, so
1190          * update it based on the ilog2 value of the outstanding requests
1191          */
1192         active = isci_tci_active(ihost);
1193         writel(SMU_ICC_GEN_VAL(NUMBER, active) |
1194                SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)),
1195                &ihost->smu_registers->interrupt_coalesce_control);
1196 }
1197
1198 /**
1199  * sci_controller_stop() - This method will stop an individual controller
1200  *    object.This method will invoke the associated user callback upon
1201  *    completion.  The completion callback is called when the following
1202  *    conditions are met: -# the method return status is SCI_SUCCESS. -# the
1203  *    controller has been quiesced. This method will ensure that all IO
1204  *    requests are quiesced, phys are stopped, and all additional operation by
1205  *    the hardware is halted.
1206  * @controller: the handle to the controller object to stop.
1207  * @timeout: This parameter specifies the number of milliseconds in which the
1208  *    stop operation should complete.
1209  *
1210  * The controller must be in the STARTED or STOPPED state. Indicate if the
1211  * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1212  * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1213  * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1214  * controller is not either in the STARTED or STOPPED states.
1215  */
1216 static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout)
1217 {
1218         if (ihost->sm.current_state_id != SCIC_READY) {
1219                 dev_warn(&ihost->pdev->dev,
1220                          "SCIC Controller stop operation requested in "
1221                          "invalid state\n");
1222                 return SCI_FAILURE_INVALID_STATE;
1223         }
1224
1225         sci_mod_timer(&ihost->timer, timeout);
1226         sci_change_state(&ihost->sm, SCIC_STOPPING);
1227         return SCI_SUCCESS;
1228 }
1229
1230 /**
1231  * sci_controller_reset() - This method will reset the supplied core
1232  *    controller regardless of the state of said controller.  This operation is
1233  *    considered destructive.  In other words, all current operations are wiped
1234  *    out.  No IO completions for outstanding devices occur.  Outstanding IO
1235  *    requests are not aborted or completed at the actual remote device.
1236  * @controller: the handle to the controller object to reset.
1237  *
1238  * Indicate if the controller reset method succeeded or failed in some way.
1239  * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1240  * the controller reset operation is unable to complete.
1241  */
1242 static enum sci_status sci_controller_reset(struct isci_host *ihost)
1243 {
1244         switch (ihost->sm.current_state_id) {
1245         case SCIC_RESET:
1246         case SCIC_READY:
1247         case SCIC_STOPPED:
1248         case SCIC_FAILED:
1249                 /*
1250                  * The reset operation is not a graceful cleanup, just
1251                  * perform the state transition.
1252                  */
1253                 sci_change_state(&ihost->sm, SCIC_RESETTING);
1254                 return SCI_SUCCESS;
1255         default:
1256                 dev_warn(&ihost->pdev->dev,
1257                          "SCIC Controller reset operation requested in "
1258                          "invalid state\n");
1259                 return SCI_FAILURE_INVALID_STATE;
1260         }
1261 }
1262
1263 void isci_host_deinit(struct isci_host *ihost)
1264 {
1265         int i;
1266
1267         /* disable output data selects */
1268         for (i = 0; i < isci_gpio_count(ihost); i++)
1269                 writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
1270
1271         isci_host_change_state(ihost, isci_stopping);
1272         for (i = 0; i < SCI_MAX_PORTS; i++) {
1273                 struct isci_port *iport = &ihost->ports[i];
1274                 struct isci_remote_device *idev, *d;
1275
1276                 list_for_each_entry_safe(idev, d, &iport->remote_dev_list, node) {
1277                         if (test_bit(IDEV_ALLOCATED, &idev->flags))
1278                                 isci_remote_device_stop(ihost, idev);
1279                 }
1280         }
1281
1282         set_bit(IHOST_STOP_PENDING, &ihost->flags);
1283
1284         spin_lock_irq(&ihost->scic_lock);
1285         sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT);
1286         spin_unlock_irq(&ihost->scic_lock);
1287
1288         wait_for_stop(ihost);
1289
1290         /* disable sgpio: where the above wait should give time for the
1291          * enclosure to sample the gpios going inactive
1292          */
1293         writel(0, &ihost->scu_registers->peg0.sgpio.interface_control);
1294
1295         sci_controller_reset(ihost);
1296
1297         /* Cancel any/all outstanding port timers */
1298         for (i = 0; i < ihost->logical_port_entries; i++) {
1299                 struct isci_port *iport = &ihost->ports[i];
1300                 del_timer_sync(&iport->timer.timer);
1301         }
1302
1303         /* Cancel any/all outstanding phy timers */
1304         for (i = 0; i < SCI_MAX_PHYS; i++) {
1305                 struct isci_phy *iphy = &ihost->phys[i];
1306                 del_timer_sync(&iphy->sata_timer.timer);
1307         }
1308
1309         del_timer_sync(&ihost->port_agent.timer.timer);
1310
1311         del_timer_sync(&ihost->power_control.timer.timer);
1312
1313         del_timer_sync(&ihost->timer.timer);
1314
1315         del_timer_sync(&ihost->phy_timer.timer);
1316 }
1317
1318 static void __iomem *scu_base(struct isci_host *isci_host)
1319 {
1320         struct pci_dev *pdev = isci_host->pdev;
1321         int id = isci_host->id;
1322
1323         return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
1324 }
1325
1326 static void __iomem *smu_base(struct isci_host *isci_host)
1327 {
1328         struct pci_dev *pdev = isci_host->pdev;
1329         int id = isci_host->id;
1330
1331         return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
1332 }
1333
1334 static void isci_user_parameters_get(struct sci_user_parameters *u)
1335 {
1336         int i;
1337
1338         for (i = 0; i < SCI_MAX_PHYS; i++) {
1339                 struct sci_phy_user_params *u_phy = &u->phys[i];
1340
1341                 u_phy->max_speed_generation = phy_gen;
1342
1343                 /* we are not exporting these for now */
1344                 u_phy->align_insertion_frequency = 0x7f;
1345                 u_phy->in_connection_align_insertion_frequency = 0xff;
1346                 u_phy->notify_enable_spin_up_insertion_frequency = 0x33;
1347         }
1348
1349         u->stp_inactivity_timeout = stp_inactive_to;
1350         u->ssp_inactivity_timeout = ssp_inactive_to;
1351         u->stp_max_occupancy_timeout = stp_max_occ_to;
1352         u->ssp_max_occupancy_timeout = ssp_max_occ_to;
1353         u->no_outbound_task_timeout = no_outbound_task_to;
1354         u->max_concurr_spinup = max_concurr_spinup;
1355 }
1356
1357 static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm)
1358 {
1359         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1360
1361         sci_change_state(&ihost->sm, SCIC_RESET);
1362 }
1363
1364 static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm)
1365 {
1366         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1367
1368         sci_del_timer(&ihost->timer);
1369 }
1370
1371 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1372 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1373 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US                    2700000
1374 #define INTERRUPT_COALESCE_NUMBER_MAX                        256
1375 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN                7
1376 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX                28
1377
1378 /**
1379  * sci_controller_set_interrupt_coalescence() - This method allows the user to
1380  *    configure the interrupt coalescence.
1381  * @controller: This parameter represents the handle to the controller object
1382  *    for which its interrupt coalesce register is overridden.
1383  * @coalesce_number: Used to control the number of entries in the Completion
1384  *    Queue before an interrupt is generated. If the number of entries exceed
1385  *    this number, an interrupt will be generated. The valid range of the input
1386  *    is [0, 256]. A setting of 0 results in coalescing being disabled.
1387  * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1388  *    input is [0, 2700000] . A setting of 0 is allowed and results in no
1389  *    interrupt coalescing timeout.
1390  *
1391  * Indicate if the user successfully set the interrupt coalesce parameters.
1392  * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1393  * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1394  */
1395 static enum sci_status
1396 sci_controller_set_interrupt_coalescence(struct isci_host *ihost,
1397                                          u32 coalesce_number,
1398                                          u32 coalesce_timeout)
1399 {
1400         u8 timeout_encode = 0;
1401         u32 min = 0;
1402         u32 max = 0;
1403
1404         /* Check if the input parameters fall in the range. */
1405         if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
1406                 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1407
1408         /*
1409          *  Defined encoding for interrupt coalescing timeout:
1410          *              Value   Min      Max     Units
1411          *              -----   ---      ---     -----
1412          *              0       -        -       Disabled
1413          *              1       13.3     20.0    ns
1414          *              2       26.7     40.0
1415          *              3       53.3     80.0
1416          *              4       106.7    160.0
1417          *              5       213.3    320.0
1418          *              6       426.7    640.0
1419          *              7       853.3    1280.0
1420          *              8       1.7      2.6     us
1421          *              9       3.4      5.1
1422          *              10      6.8      10.2
1423          *              11      13.7     20.5
1424          *              12      27.3     41.0
1425          *              13      54.6     81.9
1426          *              14      109.2    163.8
1427          *              15      218.5    327.7
1428          *              16      436.9    655.4
1429          *              17      873.8    1310.7
1430          *              18      1.7      2.6     ms
1431          *              19      3.5      5.2
1432          *              20      7.0      10.5
1433          *              21      14.0     21.0
1434          *              22      28.0     41.9
1435          *              23      55.9     83.9
1436          *              24      111.8    167.8
1437          *              25      223.7    335.5
1438          *              26      447.4    671.1
1439          *              27      894.8    1342.2
1440          *              28      1.8      2.7     s
1441          *              Others Undefined */
1442
1443         /*
1444          * Use the table above to decide the encode of interrupt coalescing timeout
1445          * value for register writing. */
1446         if (coalesce_timeout == 0)
1447                 timeout_encode = 0;
1448         else{
1449                 /* make the timeout value in unit of (10 ns). */
1450                 coalesce_timeout = coalesce_timeout * 100;
1451                 min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
1452                 max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
1453
1454                 /* get the encode of timeout for register writing. */
1455                 for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
1456                       timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
1457                       timeout_encode++) {
1458                         if (min <= coalesce_timeout &&  max > coalesce_timeout)
1459                                 break;
1460                         else if (coalesce_timeout >= max && coalesce_timeout < min * 2
1461                                  && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
1462                                 if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
1463                                         break;
1464                                 else{
1465                                         timeout_encode++;
1466                                         break;
1467                                 }
1468                         } else {
1469                                 max = max * 2;
1470                                 min = min * 2;
1471                         }
1472                 }
1473
1474                 if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
1475                         /* the value is out of range. */
1476                         return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1477         }
1478
1479         writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
1480                SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1481                &ihost->smu_registers->interrupt_coalesce_control);
1482
1483
1484         ihost->interrupt_coalesce_number = (u16)coalesce_number;
1485         ihost->interrupt_coalesce_timeout = coalesce_timeout / 100;
1486
1487         return SCI_SUCCESS;
1488 }
1489
1490
1491 static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm)
1492 {
1493         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1494
1495         /* set the default interrupt coalescence number and timeout value. */
1496         sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1497 }
1498
1499 static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm)
1500 {
1501         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1502
1503         /* disable interrupt coalescence. */
1504         sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1505 }
1506
1507 static enum sci_status sci_controller_stop_phys(struct isci_host *ihost)
1508 {
1509         u32 index;
1510         enum sci_status status;
1511         enum sci_status phy_status;
1512
1513         status = SCI_SUCCESS;
1514
1515         for (index = 0; index < SCI_MAX_PHYS; index++) {
1516                 phy_status = sci_phy_stop(&ihost->phys[index]);
1517
1518                 if (phy_status != SCI_SUCCESS &&
1519                     phy_status != SCI_FAILURE_INVALID_STATE) {
1520                         status = SCI_FAILURE;
1521
1522                         dev_warn(&ihost->pdev->dev,
1523                                  "%s: Controller stop operation failed to stop "
1524                                  "phy %d because of status %d.\n",
1525                                  __func__,
1526                                  ihost->phys[index].phy_index, phy_status);
1527                 }
1528         }
1529
1530         return status;
1531 }
1532
1533 static enum sci_status sci_controller_stop_ports(struct isci_host *ihost)
1534 {
1535         u32 index;
1536         enum sci_status port_status;
1537         enum sci_status status = SCI_SUCCESS;
1538
1539         for (index = 0; index < ihost->logical_port_entries; index++) {
1540                 struct isci_port *iport = &ihost->ports[index];
1541
1542                 port_status = sci_port_stop(iport);
1543
1544                 if ((port_status != SCI_SUCCESS) &&
1545                     (port_status != SCI_FAILURE_INVALID_STATE)) {
1546                         status = SCI_FAILURE;
1547
1548                         dev_warn(&ihost->pdev->dev,
1549                                  "%s: Controller stop operation failed to "
1550                                  "stop port %d because of status %d.\n",
1551                                  __func__,
1552                                  iport->logical_port_index,
1553                                  port_status);
1554                 }
1555         }
1556
1557         return status;
1558 }
1559
1560 static enum sci_status sci_controller_stop_devices(struct isci_host *ihost)
1561 {
1562         u32 index;
1563         enum sci_status status;
1564         enum sci_status device_status;
1565
1566         status = SCI_SUCCESS;
1567
1568         for (index = 0; index < ihost->remote_node_entries; index++) {
1569                 if (ihost->device_table[index] != NULL) {
1570                         /* / @todo What timeout value do we want to provide to this request? */
1571                         device_status = sci_remote_device_stop(ihost->device_table[index], 0);
1572
1573                         if ((device_status != SCI_SUCCESS) &&
1574                             (device_status != SCI_FAILURE_INVALID_STATE)) {
1575                                 dev_warn(&ihost->pdev->dev,
1576                                          "%s: Controller stop operation failed "
1577                                          "to stop device 0x%p because of "
1578                                          "status %d.\n",
1579                                          __func__,
1580                                          ihost->device_table[index], device_status);
1581                         }
1582                 }
1583         }
1584
1585         return status;
1586 }
1587
1588 static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm)
1589 {
1590         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1591
1592         /* Stop all of the components for this controller */
1593         sci_controller_stop_phys(ihost);
1594         sci_controller_stop_ports(ihost);
1595         sci_controller_stop_devices(ihost);
1596 }
1597
1598 static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm)
1599 {
1600         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1601
1602         sci_del_timer(&ihost->timer);
1603 }
1604
1605 static void sci_controller_reset_hardware(struct isci_host *ihost)
1606 {
1607         /* Disable interrupts so we dont take any spurious interrupts */
1608         sci_controller_disable_interrupts(ihost);
1609
1610         /* Reset the SCU */
1611         writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control);
1612
1613         /* Delay for 1ms to before clearing the CQP and UFQPR. */
1614         udelay(1000);
1615
1616         /* The write to the CQGR clears the CQP */
1617         writel(0x00000000, &ihost->smu_registers->completion_queue_get);
1618
1619         /* The write to the UFQGP clears the UFQPR */
1620         writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
1621 }
1622
1623 static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm)
1624 {
1625         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1626
1627         sci_controller_reset_hardware(ihost);
1628         sci_change_state(&ihost->sm, SCIC_RESET);
1629 }
1630
1631 static const struct sci_base_state sci_controller_state_table[] = {
1632         [SCIC_INITIAL] = {
1633                 .enter_state = sci_controller_initial_state_enter,
1634         },
1635         [SCIC_RESET] = {},
1636         [SCIC_INITIALIZING] = {},
1637         [SCIC_INITIALIZED] = {},
1638         [SCIC_STARTING] = {
1639                 .exit_state  = sci_controller_starting_state_exit,
1640         },
1641         [SCIC_READY] = {
1642                 .enter_state = sci_controller_ready_state_enter,
1643                 .exit_state  = sci_controller_ready_state_exit,
1644         },
1645         [SCIC_RESETTING] = {
1646                 .enter_state = sci_controller_resetting_state_enter,
1647         },
1648         [SCIC_STOPPING] = {
1649                 .enter_state = sci_controller_stopping_state_enter,
1650                 .exit_state = sci_controller_stopping_state_exit,
1651         },
1652         [SCIC_STOPPED] = {},
1653         [SCIC_FAILED] = {}
1654 };
1655
1656 static void sci_controller_set_default_config_parameters(struct isci_host *ihost)
1657 {
1658         /* these defaults are overridden by the platform / firmware */
1659         u16 index;
1660
1661         /* Default to APC mode. */
1662         ihost->oem_parameters.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE;
1663
1664         /* Default to APC mode. */
1665         ihost->oem_parameters.controller.max_concurr_spin_up = 1;
1666
1667         /* Default to no SSC operation. */
1668         ihost->oem_parameters.controller.do_enable_ssc = false;
1669
1670         /* Default to short cables on all phys. */
1671         ihost->oem_parameters.controller.cable_selection_mask = 0;
1672
1673         /* Initialize all of the port parameter information to narrow ports. */
1674         for (index = 0; index < SCI_MAX_PORTS; index++) {
1675                 ihost->oem_parameters.ports[index].phy_mask = 0;
1676         }
1677
1678         /* Initialize all of the phy parameter information. */
1679         for (index = 0; index < SCI_MAX_PHYS; index++) {
1680                 /* Default to 3G (i.e. Gen 2). */
1681                 ihost->user_parameters.phys[index].max_speed_generation =
1682                         SCIC_SDS_PARM_GEN2_SPEED;
1683
1684                 /* the frequencies cannot be 0 */
1685                 ihost->user_parameters.phys[index].align_insertion_frequency = 0x7f;
1686                 ihost->user_parameters.phys[index].in_connection_align_insertion_frequency = 0xff;
1687                 ihost->user_parameters.phys[index].notify_enable_spin_up_insertion_frequency = 0x33;
1688
1689                 /*
1690                  * Previous Vitesse based expanders had a arbitration issue that
1691                  * is worked around by having the upper 32-bits of SAS address
1692                  * with a value greater then the Vitesse company identifier.
1693                  * Hence, usage of 0x5FCFFFFF. */
1694                 ihost->oem_parameters.phys[index].sas_address.low = 0x1 + ihost->id;
1695                 ihost->oem_parameters.phys[index].sas_address.high = 0x5FCFFFFF;
1696         }
1697
1698         ihost->user_parameters.stp_inactivity_timeout = 5;
1699         ihost->user_parameters.ssp_inactivity_timeout = 5;
1700         ihost->user_parameters.stp_max_occupancy_timeout = 5;
1701         ihost->user_parameters.ssp_max_occupancy_timeout = 20;
1702         ihost->user_parameters.no_outbound_task_timeout = 2;
1703 }
1704
1705 static void controller_timeout(unsigned long data)
1706 {
1707         struct sci_timer *tmr = (struct sci_timer *)data;
1708         struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer);
1709         struct sci_base_state_machine *sm = &ihost->sm;
1710         unsigned long flags;
1711
1712         spin_lock_irqsave(&ihost->scic_lock, flags);
1713
1714         if (tmr->cancel)
1715                 goto done;
1716
1717         if (sm->current_state_id == SCIC_STARTING)
1718                 sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT);
1719         else if (sm->current_state_id == SCIC_STOPPING) {
1720                 sci_change_state(sm, SCIC_FAILED);
1721                 isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT);
1722         } else  /* / @todo Now what do we want to do in this case? */
1723                 dev_err(&ihost->pdev->dev,
1724                         "%s: Controller timer fired when controller was not "
1725                         "in a state being timed.\n",
1726                         __func__);
1727
1728 done:
1729         spin_unlock_irqrestore(&ihost->scic_lock, flags);
1730 }
1731
1732 static enum sci_status sci_controller_construct(struct isci_host *ihost,
1733                                                 void __iomem *scu_base,
1734                                                 void __iomem *smu_base)
1735 {
1736         u8 i;
1737
1738         sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL);
1739
1740         ihost->scu_registers = scu_base;
1741         ihost->smu_registers = smu_base;
1742
1743         sci_port_configuration_agent_construct(&ihost->port_agent);
1744
1745         /* Construct the ports for this controller */
1746         for (i = 0; i < SCI_MAX_PORTS; i++)
1747                 sci_port_construct(&ihost->ports[i], i, ihost);
1748         sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost);
1749
1750         /* Construct the phys for this controller */
1751         for (i = 0; i < SCI_MAX_PHYS; i++) {
1752                 /* Add all the PHYs to the dummy port */
1753                 sci_phy_construct(&ihost->phys[i],
1754                                   &ihost->ports[SCI_MAX_PORTS], i);
1755         }
1756
1757         ihost->invalid_phy_mask = 0;
1758
1759         sci_init_timer(&ihost->timer, controller_timeout);
1760
1761         /* Initialize the User and OEM parameters to default values. */
1762         sci_controller_set_default_config_parameters(ihost);
1763
1764         return sci_controller_reset(ihost);
1765 }
1766
1767 int sci_oem_parameters_validate(struct sci_oem_params *oem, u8 version)
1768 {
1769         int i;
1770
1771         for (i = 0; i < SCI_MAX_PORTS; i++)
1772                 if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
1773                         return -EINVAL;
1774
1775         for (i = 0; i < SCI_MAX_PHYS; i++)
1776                 if (oem->phys[i].sas_address.high == 0 &&
1777                     oem->phys[i].sas_address.low == 0)
1778                         return -EINVAL;
1779
1780         if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
1781                 for (i = 0; i < SCI_MAX_PHYS; i++)
1782                         if (oem->ports[i].phy_mask != 0)
1783                                 return -EINVAL;
1784         } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1785                 u8 phy_mask = 0;
1786
1787                 for (i = 0; i < SCI_MAX_PHYS; i++)
1788                         phy_mask |= oem->ports[i].phy_mask;
1789
1790                 if (phy_mask == 0)
1791                         return -EINVAL;
1792         } else
1793                 return -EINVAL;
1794
1795         if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT ||
1796             oem->controller.max_concurr_spin_up < 1)
1797                 return -EINVAL;
1798
1799         if (oem->controller.do_enable_ssc) {
1800                 if (version < ISCI_ROM_VER_1_1 && oem->controller.do_enable_ssc != 1)
1801                         return -EINVAL;
1802
1803                 if (version >= ISCI_ROM_VER_1_1) {
1804                         u8 test = oem->controller.ssc_sata_tx_spread_level;
1805
1806                         switch (test) {
1807                         case 0:
1808                         case 2:
1809                         case 3:
1810                         case 6:
1811                         case 7:
1812                                 break;
1813                         default:
1814                                 return -EINVAL;
1815                         }
1816
1817                         test = oem->controller.ssc_sas_tx_spread_level;
1818                         if (oem->controller.ssc_sas_tx_type == 0) {
1819                                 switch (test) {
1820                                 case 0:
1821                                 case 2:
1822                                 case 3:
1823                                         break;
1824                                 default:
1825                                         return -EINVAL;
1826                                 }
1827                         } else if (oem->controller.ssc_sas_tx_type == 1) {
1828                                 switch (test) {
1829                                 case 0:
1830                                 case 3:
1831                                 case 6:
1832                                         break;
1833                                 default:
1834                                         return -EINVAL;
1835                                 }
1836                         }
1837                 }
1838         }
1839
1840         return 0;
1841 }
1842
1843 static enum sci_status sci_oem_parameters_set(struct isci_host *ihost)
1844 {
1845         u32 state = ihost->sm.current_state_id;
1846         struct isci_pci_info *pci_info = to_pci_info(ihost->pdev);
1847
1848         if (state == SCIC_RESET ||
1849             state == SCIC_INITIALIZING ||
1850             state == SCIC_INITIALIZED) {
1851                 u8 oem_version = pci_info->orom ? pci_info->orom->hdr.version :
1852                         ISCI_ROM_VER_1_0;
1853
1854                 if (sci_oem_parameters_validate(&ihost->oem_parameters,
1855                                                 oem_version))
1856                         return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1857
1858                 return SCI_SUCCESS;
1859         }
1860
1861         return SCI_FAILURE_INVALID_STATE;
1862 }
1863
1864 static u8 max_spin_up(struct isci_host *ihost)
1865 {
1866         if (ihost->user_parameters.max_concurr_spinup)
1867                 return min_t(u8, ihost->user_parameters.max_concurr_spinup,
1868                              MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1869         else
1870                 return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up,
1871                              MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1872 }
1873
1874 static void power_control_timeout(unsigned long data)
1875 {
1876         struct sci_timer *tmr = (struct sci_timer *)data;
1877         struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer);
1878         struct isci_phy *iphy;
1879         unsigned long flags;
1880         u8 i;
1881
1882         spin_lock_irqsave(&ihost->scic_lock, flags);
1883
1884         if (tmr->cancel)
1885                 goto done;
1886
1887         ihost->power_control.phys_granted_power = 0;
1888
1889         if (ihost->power_control.phys_waiting == 0) {
1890                 ihost->power_control.timer_started = false;
1891                 goto done;
1892         }
1893
1894         for (i = 0; i < SCI_MAX_PHYS; i++) {
1895
1896                 if (ihost->power_control.phys_waiting == 0)
1897                         break;
1898
1899                 iphy = ihost->power_control.requesters[i];
1900                 if (iphy == NULL)
1901                         continue;
1902
1903                 if (ihost->power_control.phys_granted_power >= max_spin_up(ihost))
1904                         break;
1905
1906                 ihost->power_control.requesters[i] = NULL;
1907                 ihost->power_control.phys_waiting--;
1908                 ihost->power_control.phys_granted_power++;
1909                 sci_phy_consume_power_handler(iphy);
1910
1911                 if (iphy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS) {
1912                         u8 j;
1913
1914                         for (j = 0; j < SCI_MAX_PHYS; j++) {
1915                                 struct isci_phy *requester = ihost->power_control.requesters[j];
1916
1917                                 /*
1918                                  * Search the power_control queue to see if there are other phys
1919                                  * attached to the same remote device. If found, take all of
1920                                  * them out of await_sas_power state.
1921                                  */
1922                                 if (requester != NULL && requester != iphy) {
1923                                         u8 other = memcmp(requester->frame_rcvd.iaf.sas_addr,
1924                                                           iphy->frame_rcvd.iaf.sas_addr,
1925                                                           sizeof(requester->frame_rcvd.iaf.sas_addr));
1926
1927                                         if (other == 0) {
1928                                                 ihost->power_control.requesters[j] = NULL;
1929                                                 ihost->power_control.phys_waiting--;
1930                                                 sci_phy_consume_power_handler(requester);
1931                                         }
1932                                 }
1933                         }
1934                 }
1935         }
1936
1937         /*
1938          * It doesn't matter if the power list is empty, we need to start the
1939          * timer in case another phy becomes ready.
1940          */
1941         sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1942         ihost->power_control.timer_started = true;
1943
1944 done:
1945         spin_unlock_irqrestore(&ihost->scic_lock, flags);
1946 }
1947
1948 void sci_controller_power_control_queue_insert(struct isci_host *ihost,
1949                                                struct isci_phy *iphy)
1950 {
1951         BUG_ON(iphy == NULL);
1952
1953         if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) {
1954                 ihost->power_control.phys_granted_power++;
1955                 sci_phy_consume_power_handler(iphy);
1956
1957                 /*
1958                  * stop and start the power_control timer. When the timer fires, the
1959                  * no_of_phys_granted_power will be set to 0
1960                  */
1961                 if (ihost->power_control.timer_started)
1962                         sci_del_timer(&ihost->power_control.timer);
1963
1964                 sci_mod_timer(&ihost->power_control.timer,
1965                                  SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1966                 ihost->power_control.timer_started = true;
1967
1968         } else {
1969                 /*
1970                  * There are phys, attached to the same sas address as this phy, are
1971                  * already in READY state, this phy don't need wait.
1972                  */
1973                 u8 i;
1974                 struct isci_phy *current_phy;
1975
1976                 for (i = 0; i < SCI_MAX_PHYS; i++) {
1977                         u8 other;
1978                         current_phy = &ihost->phys[i];
1979
1980                         other = memcmp(current_phy->frame_rcvd.iaf.sas_addr,
1981                                        iphy->frame_rcvd.iaf.sas_addr,
1982                                        sizeof(current_phy->frame_rcvd.iaf.sas_addr));
1983
1984                         if (current_phy->sm.current_state_id == SCI_PHY_READY &&
1985                             current_phy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS &&
1986                             other == 0) {
1987                                 sci_phy_consume_power_handler(iphy);
1988                                 break;
1989                         }
1990                 }
1991
1992                 if (i == SCI_MAX_PHYS) {
1993                         /* Add the phy in the waiting list */
1994                         ihost->power_control.requesters[iphy->phy_index] = iphy;
1995                         ihost->power_control.phys_waiting++;
1996                 }
1997         }
1998 }
1999
2000 void sci_controller_power_control_queue_remove(struct isci_host *ihost,
2001                                                struct isci_phy *iphy)
2002 {
2003         BUG_ON(iphy == NULL);
2004
2005         if (ihost->power_control.requesters[iphy->phy_index])
2006                 ihost->power_control.phys_waiting--;
2007
2008         ihost->power_control.requesters[iphy->phy_index] = NULL;
2009 }
2010
2011 static int is_long_cable(int phy, unsigned char selection_byte)
2012 {
2013         return !!(selection_byte & (1 << phy));
2014 }
2015
2016 static int is_medium_cable(int phy, unsigned char selection_byte)
2017 {
2018         return !!(selection_byte & (1 << (phy + 4)));
2019 }
2020
2021 static enum cable_selections decode_selection_byte(
2022         int phy,
2023         unsigned char selection_byte)
2024 {
2025         return ((selection_byte & (1 << phy)) ? 1 : 0)
2026                 + (selection_byte & (1 << (phy + 4)) ? 2 : 0);
2027 }
2028
2029 static unsigned char *to_cable_select(struct isci_host *ihost)
2030 {
2031         if (is_cable_select_overridden())
2032                 return ((unsigned char *)&cable_selection_override)
2033                         + ihost->id;
2034         else
2035                 return &ihost->oem_parameters.controller.cable_selection_mask;
2036 }
2037
2038 enum cable_selections decode_cable_selection(struct isci_host *ihost, int phy)
2039 {
2040         return decode_selection_byte(phy, *to_cable_select(ihost));
2041 }
2042
2043 char *lookup_cable_names(enum cable_selections selection)
2044 {
2045         static char *cable_names[] = {
2046                 [short_cable]     = "short",
2047                 [long_cable]      = "long",
2048                 [medium_cable]    = "medium",
2049                 [undefined_cable] = "<undefined, assumed long>" /* bit 0==1 */
2050         };
2051         return (selection <= undefined_cable) ? cable_names[selection]
2052                                               : cable_names[undefined_cable];
2053 }
2054
2055 #define AFE_REGISTER_WRITE_DELAY 10
2056
2057 static void sci_controller_afe_initialization(struct isci_host *ihost)
2058 {
2059         struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
2060         const struct sci_oem_params *oem = &ihost->oem_parameters;
2061         struct pci_dev *pdev = ihost->pdev;
2062         u32 afe_status;
2063         u32 phy_id;
2064         unsigned char cable_selection_mask = *to_cable_select(ihost);
2065
2066         /* Clear DFX Status registers */
2067         writel(0x0081000f, &afe->afe_dfx_master_control0);
2068         udelay(AFE_REGISTER_WRITE_DELAY);
2069
2070         if (is_b0(pdev) || is_c0(pdev) || is_c1(pdev)) {
2071                 /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
2072                  * Timer, PM Stagger Timer
2073                  */
2074                 writel(0x0007FFFF, &afe->afe_pmsn_master_control2);
2075                 udelay(AFE_REGISTER_WRITE_DELAY);
2076         }
2077
2078         /* Configure bias currents to normal */
2079         if (is_a2(pdev))
2080                 writel(0x00005A00, &afe->afe_bias_control);
2081         else if (is_b0(pdev) || is_c0(pdev))
2082                 writel(0x00005F00, &afe->afe_bias_control);
2083         else if (is_c1(pdev))
2084                 writel(0x00005500, &afe->afe_bias_control);
2085
2086         udelay(AFE_REGISTER_WRITE_DELAY);
2087
2088         /* Enable PLL */
2089         if (is_a2(pdev))
2090                 writel(0x80040908, &afe->afe_pll_control0);
2091         else if (is_b0(pdev) || is_c0(pdev))
2092                 writel(0x80040A08, &afe->afe_pll_control0);
2093         else if (is_c1(pdev)) {
2094                 writel(0x80000B08, &afe->afe_pll_control0);
2095                 udelay(AFE_REGISTER_WRITE_DELAY);
2096                 writel(0x00000B08, &afe->afe_pll_control0);
2097                 udelay(AFE_REGISTER_WRITE_DELAY);
2098                 writel(0x80000B08, &afe->afe_pll_control0);
2099         }
2100
2101         udelay(AFE_REGISTER_WRITE_DELAY);
2102
2103         /* Wait for the PLL to lock */
2104         do {
2105                 afe_status = readl(&afe->afe_common_block_status);
2106                 udelay(AFE_REGISTER_WRITE_DELAY);
2107         } while ((afe_status & 0x00001000) == 0);
2108
2109         if (is_a2(pdev)) {
2110                 /* Shorten SAS SNW lock time (RxLock timer value from 76
2111                  * us to 50 us)
2112                  */
2113                 writel(0x7bcc96ad, &afe->afe_pmsn_master_control0);
2114                 udelay(AFE_REGISTER_WRITE_DELAY);
2115         }
2116
2117         for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
2118                 struct scu_afe_transceiver *xcvr = &afe->scu_afe_xcvr[phy_id];
2119                 const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
2120                 int cable_length_long =
2121                         is_long_cable(phy_id, cable_selection_mask);
2122                 int cable_length_medium =
2123                         is_medium_cable(phy_id, cable_selection_mask);
2124
2125                 if (is_a2(pdev)) {
2126                         /* All defaults, except the Receive Word
2127                          * Alignament/Comma Detect Enable....(0xe800)
2128                          */
2129                         writel(0x00004512, &xcvr->afe_xcvr_control0);
2130                         udelay(AFE_REGISTER_WRITE_DELAY);
2131
2132                         writel(0x0050100F, &xcvr->afe_xcvr_control1);
2133                         udelay(AFE_REGISTER_WRITE_DELAY);
2134                 } else if (is_b0(pdev)) {
2135                         /* Configure transmitter SSC parameters */
2136                         writel(0x00030000, &xcvr->afe_tx_ssc_control);
2137                         udelay(AFE_REGISTER_WRITE_DELAY);
2138                 } else if (is_c0(pdev)) {
2139                         /* Configure transmitter SSC parameters */
2140                         writel(0x00010202, &xcvr->afe_tx_ssc_control);
2141                         udelay(AFE_REGISTER_WRITE_DELAY);
2142
2143                         /* All defaults, except the Receive Word
2144                          * Alignament/Comma Detect Enable....(0xe800)
2145                          */
2146                         writel(0x00014500, &xcvr->afe_xcvr_control0);
2147                         udelay(AFE_REGISTER_WRITE_DELAY);
2148                 } else if (is_c1(pdev)) {
2149                         /* Configure transmitter SSC parameters */
2150                         writel(0x00010202, &xcvr->afe_tx_ssc_control);
2151                         udelay(AFE_REGISTER_WRITE_DELAY);
2152
2153                         /* All defaults, except the Receive Word
2154                          * Alignament/Comma Detect Enable....(0xe800)
2155                          */
2156                         writel(0x0001C500, &xcvr->afe_xcvr_control0);
2157                         udelay(AFE_REGISTER_WRITE_DELAY);
2158                 }
2159
2160                 /* Power up TX and RX out from power down (PWRDNTX and
2161                  * PWRDNRX) & increase TX int & ext bias 20%....(0xe85c)
2162                  */
2163                 if (is_a2(pdev))
2164                         writel(0x000003F0, &xcvr->afe_channel_control);
2165                 else if (is_b0(pdev)) {
2166                         writel(0x000003D7, &xcvr->afe_channel_control);
2167                         udelay(AFE_REGISTER_WRITE_DELAY);
2168
2169                         writel(0x000003D4, &xcvr->afe_channel_control);
2170                 } else if (is_c0(pdev)) {
2171                         writel(0x000001E7, &xcvr->afe_channel_control);
2172                         udelay(AFE_REGISTER_WRITE_DELAY);
2173
2174                         writel(0x000001E4, &xcvr->afe_channel_control);
2175                 } else if (is_c1(pdev)) {
2176                         writel(cable_length_long ? 0x000002F7 : 0x000001F7,
2177                                &xcvr->afe_channel_control);
2178                         udelay(AFE_REGISTER_WRITE_DELAY);
2179
2180                         writel(cable_length_long ? 0x000002F4 : 0x000001F4,
2181                                &xcvr->afe_channel_control);
2182                 }
2183                 udelay(AFE_REGISTER_WRITE_DELAY);
2184
2185                 if (is_a2(pdev)) {
2186                         /* Enable TX equalization (0xe824) */
2187                         writel(0x00040000, &xcvr->afe_tx_control);
2188                         udelay(AFE_REGISTER_WRITE_DELAY);
2189                 }
2190
2191                 if (is_a2(pdev) || is_b0(pdev))
2192                         /* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0,
2193                          * TPD=0x0(TX Power On), RDD=0x0(RX Detect
2194                          * Enabled) ....(0xe800)
2195                          */
2196                         writel(0x00004100, &xcvr->afe_xcvr_control0);
2197                 else if (is_c0(pdev))
2198                         writel(0x00014100, &xcvr->afe_xcvr_control0);
2199                 else if (is_c1(pdev))
2200                         writel(0x0001C100, &xcvr->afe_xcvr_control0);
2201                 udelay(AFE_REGISTER_WRITE_DELAY);
2202
2203                 /* Leave DFE/FFE on */
2204                 if (is_a2(pdev))
2205                         writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2206                 else if (is_b0(pdev)) {
2207                         writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2208                         udelay(AFE_REGISTER_WRITE_DELAY);
2209                         /* Enable TX equalization (0xe824) */
2210                         writel(0x00040000, &xcvr->afe_tx_control);
2211                 } else if (is_c0(pdev)) {
2212                         writel(0x01400C0F, &xcvr->afe_rx_ssc_control1);
2213                         udelay(AFE_REGISTER_WRITE_DELAY);
2214
2215                         writel(0x3F6F103F, &xcvr->afe_rx_ssc_control0);
2216                         udelay(AFE_REGISTER_WRITE_DELAY);
2217
2218                         /* Enable TX equalization (0xe824) */
2219                         writel(0x00040000, &xcvr->afe_tx_control);
2220                 } else if (is_c1(pdev)) {
2221                         writel(cable_length_long ? 0x01500C0C :
2222                                cable_length_medium ? 0x01400C0D : 0x02400C0D,
2223                                &xcvr->afe_xcvr_control1);
2224                         udelay(AFE_REGISTER_WRITE_DELAY);
2225
2226                         writel(0x000003E0, &xcvr->afe_dfx_rx_control1);
2227                         udelay(AFE_REGISTER_WRITE_DELAY);
2228
2229                         writel(cable_length_long ? 0x33091C1F :
2230                                cable_length_medium ? 0x3315181F : 0x2B17161F,
2231                                &xcvr->afe_rx_ssc_control0);
2232                         udelay(AFE_REGISTER_WRITE_DELAY);
2233
2234                         /* Enable TX equalization (0xe824) */
2235                         writel(0x00040000, &xcvr->afe_tx_control);
2236                 }
2237
2238                 udelay(AFE_REGISTER_WRITE_DELAY);
2239
2240                 writel(oem_phy->afe_tx_amp_control0, &xcvr->afe_tx_amp_control0);
2241                 udelay(AFE_REGISTER_WRITE_DELAY);
2242
2243                 writel(oem_phy->afe_tx_amp_control1, &xcvr->afe_tx_amp_control1);
2244                 udelay(AFE_REGISTER_WRITE_DELAY);
2245
2246                 writel(oem_phy->afe_tx_amp_control2, &xcvr->afe_tx_amp_control2);
2247                 udelay(AFE_REGISTER_WRITE_DELAY);
2248
2249                 writel(oem_phy->afe_tx_amp_control3, &xcvr->afe_tx_amp_control3);
2250                 udelay(AFE_REGISTER_WRITE_DELAY);
2251         }
2252
2253         /* Transfer control to the PEs */
2254         writel(0x00010f00, &afe->afe_dfx_master_control0);
2255         udelay(AFE_REGISTER_WRITE_DELAY);
2256 }
2257
2258 static void sci_controller_initialize_power_control(struct isci_host *ihost)
2259 {
2260         sci_init_timer(&ihost->power_control.timer, power_control_timeout);
2261
2262         memset(ihost->power_control.requesters, 0,
2263                sizeof(ihost->power_control.requesters));
2264
2265         ihost->power_control.phys_waiting = 0;
2266         ihost->power_control.phys_granted_power = 0;
2267 }
2268
2269 static enum sci_status sci_controller_initialize(struct isci_host *ihost)
2270 {
2271         struct sci_base_state_machine *sm = &ihost->sm;
2272         enum sci_status result = SCI_FAILURE;
2273         unsigned long i, state, val;
2274
2275         if (ihost->sm.current_state_id != SCIC_RESET) {
2276                 dev_warn(&ihost->pdev->dev,
2277                          "SCIC Controller initialize operation requested "
2278                          "in invalid state\n");
2279                 return SCI_FAILURE_INVALID_STATE;
2280         }
2281
2282         sci_change_state(sm, SCIC_INITIALIZING);
2283
2284         sci_init_timer(&ihost->phy_timer, phy_startup_timeout);
2285
2286         ihost->next_phy_to_start = 0;
2287         ihost->phy_startup_timer_pending = false;
2288
2289         sci_controller_initialize_power_control(ihost);
2290
2291         /*
2292          * There is nothing to do here for B0 since we do not have to
2293          * program the AFE registers.
2294          * / @todo The AFE settings are supposed to be correct for the B0 but
2295          * /       presently they seem to be wrong. */
2296         sci_controller_afe_initialization(ihost);
2297
2298
2299         /* Take the hardware out of reset */
2300         writel(0, &ihost->smu_registers->soft_reset_control);
2301
2302         /*
2303          * / @todo Provide meaningfull error code for hardware failure
2304          * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2305         for (i = 100; i >= 1; i--) {
2306                 u32 status;
2307
2308                 /* Loop until the hardware reports success */
2309                 udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2310                 status = readl(&ihost->smu_registers->control_status);
2311
2312                 if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
2313                         break;
2314         }
2315         if (i == 0)
2316                 goto out;
2317
2318         /*
2319          * Determine what are the actaul device capacities that the
2320          * hardware will support */
2321         val = readl(&ihost->smu_registers->device_context_capacity);
2322
2323         /* Record the smaller of the two capacity values */
2324         ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
2325         ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
2326         ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);
2327
2328         /*
2329          * Make all PEs that are unassigned match up with the
2330          * logical ports
2331          */
2332         for (i = 0; i < ihost->logical_port_entries; i++) {
2333                 struct scu_port_task_scheduler_group_registers __iomem
2334                         *ptsg = &ihost->scu_registers->peg0.ptsg;
2335
2336                 writel(i, &ptsg->protocol_engine[i]);
2337         }
2338
2339         /* Initialize hardware PCI Relaxed ordering in DMA engines */
2340         val = readl(&ihost->scu_registers->sdma.pdma_configuration);
2341         val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2342         writel(val, &ihost->scu_registers->sdma.pdma_configuration);
2343
2344         val = readl(&ihost->scu_registers->sdma.cdma_configuration);
2345         val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2346         writel(val, &ihost->scu_registers->sdma.cdma_configuration);
2347
2348         /*
2349          * Initialize the PHYs before the PORTs because the PHY registers
2350          * are accessed during the port initialization.
2351          */
2352         for (i = 0; i < SCI_MAX_PHYS; i++) {
2353                 result = sci_phy_initialize(&ihost->phys[i],
2354                                             &ihost->scu_registers->peg0.pe[i].tl,
2355                                             &ihost->scu_registers->peg0.pe[i].ll);
2356                 if (result != SCI_SUCCESS)
2357                         goto out;
2358         }
2359
2360         for (i = 0; i < ihost->logical_port_entries; i++) {
2361                 struct isci_port *iport = &ihost->ports[i];
2362
2363                 iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i];
2364                 iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0];
2365                 iport->viit_registers = &ihost->scu_registers->peg0.viit[i];
2366         }
2367
2368         result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent);
2369
2370  out:
2371         /* Advance the controller state machine */
2372         if (result == SCI_SUCCESS)
2373                 state = SCIC_INITIALIZED;
2374         else
2375                 state = SCIC_FAILED;
2376         sci_change_state(sm, state);
2377
2378         return result;
2379 }
2380
2381 static enum sci_status sci_user_parameters_set(struct isci_host *ihost,
2382                                                struct sci_user_parameters *sci_parms)
2383 {
2384         u32 state = ihost->sm.current_state_id;
2385
2386         if (state == SCIC_RESET ||
2387             state == SCIC_INITIALIZING ||
2388             state == SCIC_INITIALIZED) {
2389                 u16 index;
2390
2391                 /*
2392                  * Validate the user parameters.  If they are not legal, then
2393                  * return a failure.
2394                  */
2395                 for (index = 0; index < SCI_MAX_PHYS; index++) {
2396                         struct sci_phy_user_params *user_phy;
2397
2398                         user_phy = &sci_parms->phys[index];
2399
2400                         if (!((user_phy->max_speed_generation <=
2401                                                 SCIC_SDS_PARM_MAX_SPEED) &&
2402                               (user_phy->max_speed_generation >
2403                                                 SCIC_SDS_PARM_NO_SPEED)))
2404                                 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2405
2406                         if (user_phy->in_connection_align_insertion_frequency <
2407                                         3)
2408                                 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2409
2410                         if ((user_phy->in_connection_align_insertion_frequency <
2411                                                 3) ||
2412                             (user_phy->align_insertion_frequency == 0) ||
2413                             (user_phy->
2414                                 notify_enable_spin_up_insertion_frequency ==
2415                                                 0))
2416                                 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2417                 }
2418
2419                 if ((sci_parms->stp_inactivity_timeout == 0) ||
2420                     (sci_parms->ssp_inactivity_timeout == 0) ||
2421                     (sci_parms->stp_max_occupancy_timeout == 0) ||
2422                     (sci_parms->ssp_max_occupancy_timeout == 0) ||
2423                     (sci_parms->no_outbound_task_timeout == 0))
2424                         return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2425
2426                 memcpy(&ihost->user_parameters, sci_parms, sizeof(*sci_parms));
2427
2428                 return SCI_SUCCESS;
2429         }
2430
2431         return SCI_FAILURE_INVALID_STATE;
2432 }
2433
2434 static int sci_controller_mem_init(struct isci_host *ihost)
2435 {
2436         struct device *dev = &ihost->pdev->dev;
2437         dma_addr_t dma;
2438         size_t size;
2439         int err;
2440
2441         size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
2442         ihost->completion_queue = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
2443         if (!ihost->completion_queue)
2444                 return -ENOMEM;
2445
2446         writel(lower_32_bits(dma), &ihost->smu_registers->completion_queue_lower);
2447         writel(upper_32_bits(dma), &ihost->smu_registers->completion_queue_upper);
2448
2449         size = ihost->remote_node_entries * sizeof(union scu_remote_node_context);
2450         ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &dma,
2451                                                                GFP_KERNEL);
2452         if (!ihost->remote_node_context_table)
2453                 return -ENOMEM;
2454
2455         writel(lower_32_bits(dma), &ihost->smu_registers->remote_node_context_lower);
2456         writel(upper_32_bits(dma), &ihost->smu_registers->remote_node_context_upper);
2457
2458         size = ihost->task_context_entries * sizeof(struct scu_task_context),
2459         ihost->task_context_table = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
2460         if (!ihost->task_context_table)
2461                 return -ENOMEM;
2462
2463         ihost->task_context_dma = dma;
2464         writel(lower_32_bits(dma), &ihost->smu_registers->host_task_table_lower);
2465         writel(upper_32_bits(dma), &ihost->smu_registers->host_task_table_upper);
2466
2467         err = sci_unsolicited_frame_control_construct(ihost);
2468         if (err)
2469                 return err;
2470
2471         /*
2472          * Inform the silicon as to the location of the UF headers and
2473          * address table.
2474          */
2475         writel(lower_32_bits(ihost->uf_control.headers.physical_address),
2476                 &ihost->scu_registers->sdma.uf_header_base_address_lower);
2477         writel(upper_32_bits(ihost->uf_control.headers.physical_address),
2478                 &ihost->scu_registers->sdma.uf_header_base_address_upper);
2479
2480         writel(lower_32_bits(ihost->uf_control.address_table.physical_address),
2481                 &ihost->scu_registers->sdma.uf_address_table_lower);
2482         writel(upper_32_bits(ihost->uf_control.address_table.physical_address),
2483                 &ihost->scu_registers->sdma.uf_address_table_upper);
2484
2485         return 0;
2486 }
2487
2488 int isci_host_init(struct isci_host *ihost)
2489 {
2490         int err = 0, i;
2491         enum sci_status status;
2492         struct sci_user_parameters sci_user_params;
2493         struct isci_pci_info *pci_info = to_pci_info(ihost->pdev);
2494
2495         spin_lock_init(&ihost->state_lock);
2496         spin_lock_init(&ihost->scic_lock);
2497         init_waitqueue_head(&ihost->eventq);
2498
2499         isci_host_change_state(ihost, isci_starting);
2500
2501         status = sci_controller_construct(ihost, scu_base(ihost),
2502                                           smu_base(ihost));
2503
2504         if (status != SCI_SUCCESS) {
2505                 dev_err(&ihost->pdev->dev,
2506                         "%s: sci_controller_construct failed - status = %x\n",
2507                         __func__,
2508                         status);
2509                 return -ENODEV;
2510         }
2511
2512         ihost->sas_ha.dev = &ihost->pdev->dev;
2513         ihost->sas_ha.lldd_ha = ihost;
2514
2515         /*
2516          * grab initial values stored in the controller object for OEM and USER
2517          * parameters
2518          */
2519         isci_user_parameters_get(&sci_user_params);
2520         status = sci_user_parameters_set(ihost, &sci_user_params);
2521         if (status != SCI_SUCCESS) {
2522                 dev_warn(&ihost->pdev->dev,
2523                          "%s: sci_user_parameters_set failed\n",
2524                          __func__);
2525                 return -ENODEV;
2526         }
2527
2528         /* grab any OEM parameters specified in orom */
2529         if (pci_info->orom) {
2530                 status = isci_parse_oem_parameters(&ihost->oem_parameters,
2531                                                    pci_info->orom,
2532                                                    ihost->id);
2533                 if (status != SCI_SUCCESS) {
2534                         dev_warn(&ihost->pdev->dev,
2535                                  "parsing firmware oem parameters failed\n");
2536                         return -EINVAL;
2537                 }
2538         }
2539
2540         status = sci_oem_parameters_set(ihost);
2541         if (status != SCI_SUCCESS) {
2542                 dev_warn(&ihost->pdev->dev,
2543                                 "%s: sci_oem_parameters_set failed\n",
2544                                 __func__);
2545                 return -ENODEV;
2546         }
2547
2548         tasklet_init(&ihost->completion_tasklet,
2549                      isci_host_completion_routine, (unsigned long)ihost);
2550
2551         INIT_LIST_HEAD(&ihost->requests_to_complete);
2552         INIT_LIST_HEAD(&ihost->requests_to_errorback);
2553
2554         spin_lock_irq(&ihost->scic_lock);
2555         status = sci_controller_initialize(ihost);
2556         spin_unlock_irq(&ihost->scic_lock);
2557         if (status != SCI_SUCCESS) {
2558                 dev_warn(&ihost->pdev->dev,
2559                          "%s: sci_controller_initialize failed -"
2560                          " status = 0x%x\n",
2561                          __func__, status);
2562                 return -ENODEV;
2563         }
2564
2565         err = sci_controller_mem_init(ihost);
2566         if (err)
2567                 return err;
2568
2569         for (i = 0; i < SCI_MAX_PORTS; i++)
2570                 isci_port_init(&ihost->ports[i], ihost, i);
2571
2572         for (i = 0; i < SCI_MAX_PHYS; i++)
2573                 isci_phy_init(&ihost->phys[i], ihost, i);
2574
2575         /* enable sgpio */
2576         writel(1, &ihost->scu_registers->peg0.sgpio.interface_control);
2577         for (i = 0; i < isci_gpio_count(ihost); i++)
2578                 writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
2579         writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code);
2580
2581         for (i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
2582                 struct isci_remote_device *idev = &ihost->devices[i];
2583
2584                 INIT_LIST_HEAD(&idev->reqs_in_process);
2585                 INIT_LIST_HEAD(&idev->node);
2586         }
2587
2588         for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) {
2589                 struct isci_request *ireq;
2590                 dma_addr_t dma;
2591
2592                 ireq = dmam_alloc_coherent(&ihost->pdev->dev,
2593                                            sizeof(struct isci_request), &dma,
2594                                            GFP_KERNEL);
2595                 if (!ireq)
2596                         return -ENOMEM;
2597
2598                 ireq->tc = &ihost->task_context_table[i];
2599                 ireq->owning_controller = ihost;
2600                 spin_lock_init(&ireq->state_lock);
2601                 ireq->request_daddr = dma;
2602                 ireq->isci_host = ihost;
2603                 ihost->reqs[i] = ireq;
2604         }
2605
2606         return 0;
2607 }
2608
2609 void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport,
2610                             struct isci_phy *iphy)
2611 {
2612         switch (ihost->sm.current_state_id) {
2613         case SCIC_STARTING:
2614                 sci_del_timer(&ihost->phy_timer);
2615                 ihost->phy_startup_timer_pending = false;
2616                 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2617                                                   iport, iphy);
2618                 sci_controller_start_next_phy(ihost);
2619                 break;
2620         case SCIC_READY:
2621                 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2622                                                   iport, iphy);
2623                 break;
2624         default:
2625                 dev_dbg(&ihost->pdev->dev,
2626                         "%s: SCIC Controller linkup event from phy %d in "
2627                         "unexpected state %d\n", __func__, iphy->phy_index,
2628                         ihost->sm.current_state_id);
2629         }
2630 }
2631
2632 void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport,
2633                               struct isci_phy *iphy)
2634 {
2635         switch (ihost->sm.current_state_id) {
2636         case SCIC_STARTING:
2637         case SCIC_READY:
2638                 ihost->port_agent.link_down_handler(ihost, &ihost->port_agent,
2639                                                    iport, iphy);
2640                 break;
2641         default:
2642                 dev_dbg(&ihost->pdev->dev,
2643                         "%s: SCIC Controller linkdown event from phy %d in "
2644                         "unexpected state %d\n",
2645                         __func__,
2646                         iphy->phy_index,
2647                         ihost->sm.current_state_id);
2648         }
2649 }
2650
2651 static bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost)
2652 {
2653         u32 index;
2654
2655         for (index = 0; index < ihost->remote_node_entries; index++) {
2656                 if ((ihost->device_table[index] != NULL) &&
2657                    (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
2658                         return true;
2659         }
2660
2661         return false;
2662 }
2663
2664 void sci_controller_remote_device_stopped(struct isci_host *ihost,
2665                                           struct isci_remote_device *idev)
2666 {
2667         if (ihost->sm.current_state_id != SCIC_STOPPING) {
2668                 dev_dbg(&ihost->pdev->dev,
2669                         "SCIC Controller 0x%p remote device stopped event "
2670                         "from device 0x%p in unexpected state %d\n",
2671                         ihost, idev,
2672                         ihost->sm.current_state_id);
2673                 return;
2674         }
2675
2676         if (!sci_controller_has_remote_devices_stopping(ihost))
2677                 sci_change_state(&ihost->sm, SCIC_STOPPED);
2678 }
2679
2680 void sci_controller_post_request(struct isci_host *ihost, u32 request)
2681 {
2682         dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n",
2683                 __func__, ihost->id, request);
2684
2685         writel(request, &ihost->smu_registers->post_context_port);
2686 }
2687
2688 struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag)
2689 {
2690         u16 task_index;
2691         u16 task_sequence;
2692
2693         task_index = ISCI_TAG_TCI(io_tag);
2694
2695         if (task_index < ihost->task_context_entries) {
2696                 struct isci_request *ireq = ihost->reqs[task_index];
2697
2698                 if (test_bit(IREQ_ACTIVE, &ireq->flags)) {
2699                         task_sequence = ISCI_TAG_SEQ(io_tag);
2700
2701                         if (task_sequence == ihost->io_request_sequence[task_index])
2702                                 return ireq;
2703                 }
2704         }
2705
2706         return NULL;
2707 }
2708
2709 /**
2710  * This method allocates remote node index and the reserves the remote node
2711  *    context space for use. This method can fail if there are no more remote
2712  *    node index available.
2713  * @scic: This is the controller object which contains the set of
2714  *    free remote node ids
2715  * @sci_dev: This is the device object which is requesting the a remote node
2716  *    id
2717  * @node_id: This is the remote node id that is assinged to the device if one
2718  *    is available
2719  *
2720  * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2721  * node index available.
2722  */
2723 enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost,
2724                                                             struct isci_remote_device *idev,
2725                                                             u16 *node_id)
2726 {
2727         u16 node_index;
2728         u32 remote_node_count = sci_remote_device_node_count(idev);
2729
2730         node_index = sci_remote_node_table_allocate_remote_node(
2731                 &ihost->available_remote_nodes, remote_node_count
2732                 );
2733
2734         if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2735                 ihost->device_table[node_index] = idev;
2736
2737                 *node_id = node_index;
2738
2739                 return SCI_SUCCESS;
2740         }
2741
2742         return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2743 }
2744
2745 void sci_controller_free_remote_node_context(struct isci_host *ihost,
2746                                              struct isci_remote_device *idev,
2747                                              u16 node_id)
2748 {
2749         u32 remote_node_count = sci_remote_device_node_count(idev);
2750
2751         if (ihost->device_table[node_id] == idev) {
2752                 ihost->device_table[node_id] = NULL;
2753
2754                 sci_remote_node_table_release_remote_node_index(
2755                         &ihost->available_remote_nodes, remote_node_count, node_id
2756                         );
2757         }
2758 }
2759
2760 void sci_controller_copy_sata_response(void *response_buffer,
2761                                        void *frame_header,
2762                                        void *frame_buffer)
2763 {
2764         /* XXX type safety? */
2765         memcpy(response_buffer, frame_header, sizeof(u32));
2766
2767         memcpy(response_buffer + sizeof(u32),
2768                frame_buffer,
2769                sizeof(struct dev_to_host_fis) - sizeof(u32));
2770 }
2771
2772 void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index)
2773 {
2774         if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index))
2775                 writel(ihost->uf_control.get,
2776                         &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
2777 }
2778
2779 void isci_tci_free(struct isci_host *ihost, u16 tci)
2780 {
2781         u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);
2782
2783         ihost->tci_pool[tail] = tci;
2784         ihost->tci_tail = tail + 1;
2785 }
2786
2787 static u16 isci_tci_alloc(struct isci_host *ihost)
2788 {
2789         u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
2790         u16 tci = ihost->tci_pool[head];
2791
2792         ihost->tci_head = head + 1;
2793         return tci;
2794 }
2795
2796 static u16 isci_tci_space(struct isci_host *ihost)
2797 {
2798         return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
2799 }
2800
2801 u16 isci_alloc_tag(struct isci_host *ihost)
2802 {
2803         if (isci_tci_space(ihost)) {
2804                 u16 tci = isci_tci_alloc(ihost);
2805                 u8 seq = ihost->io_request_sequence[tci];
2806
2807                 return ISCI_TAG(seq, tci);
2808         }
2809
2810         return SCI_CONTROLLER_INVALID_IO_TAG;
2811 }
2812
2813 enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag)
2814 {
2815         u16 tci = ISCI_TAG_TCI(io_tag);
2816         u16 seq = ISCI_TAG_SEQ(io_tag);
2817
2818         /* prevent tail from passing head */
2819         if (isci_tci_active(ihost) == 0)
2820                 return SCI_FAILURE_INVALID_IO_TAG;
2821
2822         if (seq == ihost->io_request_sequence[tci]) {
2823                 ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1);
2824
2825                 isci_tci_free(ihost, tci);
2826
2827                 return SCI_SUCCESS;
2828         }
2829         return SCI_FAILURE_INVALID_IO_TAG;
2830 }
2831
2832 enum sci_status sci_controller_start_io(struct isci_host *ihost,
2833                                         struct isci_remote_device *idev,
2834                                         struct isci_request *ireq)
2835 {
2836         enum sci_status status;
2837
2838         if (ihost->sm.current_state_id != SCIC_READY) {
2839                 dev_warn(&ihost->pdev->dev, "invalid state to start I/O");
2840                 return SCI_FAILURE_INVALID_STATE;
2841         }
2842
2843         status = sci_remote_device_start_io(ihost, idev, ireq);
2844         if (status != SCI_SUCCESS)
2845                 return status;
2846
2847         set_bit(IREQ_ACTIVE, &ireq->flags);
2848         sci_controller_post_request(ihost, ireq->post_context);
2849         return SCI_SUCCESS;
2850 }
2851
2852 enum sci_status sci_controller_terminate_request(struct isci_host *ihost,
2853                                                  struct isci_remote_device *idev,
2854                                                  struct isci_request *ireq)
2855 {
2856         /* terminate an ongoing (i.e. started) core IO request.  This does not
2857          * abort the IO request at the target, but rather removes the IO
2858          * request from the host controller.
2859          */
2860         enum sci_status status;
2861
2862         if (ihost->sm.current_state_id != SCIC_READY) {
2863                 dev_warn(&ihost->pdev->dev,
2864                          "invalid state to terminate request\n");
2865                 return SCI_FAILURE_INVALID_STATE;
2866         }
2867
2868         status = sci_io_request_terminate(ireq);
2869         if (status != SCI_SUCCESS)
2870                 return status;
2871
2872         /*
2873          * Utilize the original post context command and or in the POST_TC_ABORT
2874          * request sub-type.
2875          */
2876         sci_controller_post_request(ihost,
2877                                     ireq->post_context | SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
2878         return SCI_SUCCESS;
2879 }
2880
2881 /**
2882  * sci_controller_complete_io() - This method will perform core specific
2883  *    completion operations for an IO request.  After this method is invoked,
2884  *    the user should consider the IO request as invalid until it is properly
2885  *    reused (i.e. re-constructed).
2886  * @ihost: The handle to the controller object for which to complete the
2887  *    IO request.
2888  * @idev: The handle to the remote device object for which to complete
2889  *    the IO request.
2890  * @ireq: the handle to the io request object to complete.
2891  */
2892 enum sci_status sci_controller_complete_io(struct isci_host *ihost,
2893                                            struct isci_remote_device *idev,
2894                                            struct isci_request *ireq)
2895 {
2896         enum sci_status status;
2897         u16 index;
2898
2899         switch (ihost->sm.current_state_id) {
2900         case SCIC_STOPPING:
2901                 /* XXX: Implement this function */
2902                 return SCI_FAILURE;
2903         case SCIC_READY:
2904                 status = sci_remote_device_complete_io(ihost, idev, ireq);
2905                 if (status != SCI_SUCCESS)
2906                         return status;
2907
2908                 index = ISCI_TAG_TCI(ireq->io_tag);
2909                 clear_bit(IREQ_ACTIVE, &ireq->flags);
2910                 return SCI_SUCCESS;
2911         default:
2912                 dev_warn(&ihost->pdev->dev, "invalid state to complete I/O");
2913                 return SCI_FAILURE_INVALID_STATE;
2914         }
2915
2916 }
2917
2918 enum sci_status sci_controller_continue_io(struct isci_request *ireq)
2919 {
2920         struct isci_host *ihost = ireq->owning_controller;
2921
2922         if (ihost->sm.current_state_id != SCIC_READY) {
2923                 dev_warn(&ihost->pdev->dev, "invalid state to continue I/O");
2924                 return SCI_FAILURE_INVALID_STATE;
2925         }
2926
2927         set_bit(IREQ_ACTIVE, &ireq->flags);
2928         sci_controller_post_request(ihost, ireq->post_context);
2929         return SCI_SUCCESS;
2930 }
2931
2932 /**
2933  * sci_controller_start_task() - This method is called by the SCIC user to
2934  *    send/start a framework task management request.
2935  * @controller: the handle to the controller object for which to start the task
2936  *    management request.
2937  * @remote_device: the handle to the remote device object for which to start
2938  *    the task management request.
2939  * @task_request: the handle to the task request object to start.
2940  */
2941 enum sci_task_status sci_controller_start_task(struct isci_host *ihost,
2942                                                struct isci_remote_device *idev,
2943                                                struct isci_request *ireq)
2944 {
2945         enum sci_status status;
2946
2947         if (ihost->sm.current_state_id != SCIC_READY) {
2948                 dev_warn(&ihost->pdev->dev,
2949                          "%s: SCIC Controller starting task from invalid "
2950                          "state\n",
2951                          __func__);
2952                 return SCI_TASK_FAILURE_INVALID_STATE;
2953         }
2954
2955         status = sci_remote_device_start_task(ihost, idev, ireq);
2956         switch (status) {
2957         case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
2958                 set_bit(IREQ_ACTIVE, &ireq->flags);
2959
2960                 /*
2961                  * We will let framework know this task request started successfully,
2962                  * although core is still woring on starting the request (to post tc when
2963                  * RNC is resumed.)
2964                  */
2965                 return SCI_SUCCESS;
2966         case SCI_SUCCESS:
2967                 set_bit(IREQ_ACTIVE, &ireq->flags);
2968                 sci_controller_post_request(ihost, ireq->post_context);
2969                 break;
2970         default:
2971                 break;
2972         }
2973
2974         return status;
2975 }
2976
2977 static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data)
2978 {
2979         int d;
2980
2981         /* no support for TX_GP_CFG */
2982         if (reg_index == 0)
2983                 return -EINVAL;
2984
2985         for (d = 0; d < isci_gpio_count(ihost); d++) {
2986                 u32 val = 0x444; /* all ODx.n clear */
2987                 int i;
2988
2989                 for (i = 0; i < 3; i++) {
2990                         int bit = (i << 2) + 2;
2991
2992                         bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i),
2993                                                        write_data, reg_index,
2994                                                        reg_count);
2995                         if (bit < 0)
2996                                 break;
2997
2998                         /* if od is set, clear the 'invert' bit */
2999                         val &= ~(bit << ((i << 2) + 2));
3000                 }
3001
3002                 if (i < 3)
3003                         break;
3004                 writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]);
3005         }
3006
3007         /* unless reg_index is > 1, we should always be able to write at
3008          * least one register
3009          */
3010         return d > 0;
3011 }
3012
3013 int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index,
3014                     u8 reg_count, u8 *write_data)
3015 {
3016         struct isci_host *ihost = sas_ha->lldd_ha;
3017         int written;
3018
3019         switch (reg_type) {
3020         case SAS_GPIO_REG_TX_GP:
3021                 written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data);
3022                 break;
3023         default:
3024                 written = -EINVAL;
3025         }
3026
3027         return written;
3028 }