Merge remote-tracking branch 'asoc/fix/core' into tmp
[cascardo/linux.git] / drivers / scsi / libsas / sas_expander.c
1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
28
29 #include "sas_internal.h"
30
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_transport.h>
33 #include <scsi/scsi_transport_sas.h>
34 #include "../scsi_sas_internal.h"
35
36 static int sas_discover_expander(struct domain_device *dev);
37 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
38 static int sas_configure_phy(struct domain_device *dev, int phy_id,
39                              u8 *sas_addr, int include);
40 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
41
42 /* ---------- SMP task management ---------- */
43
44 static void smp_task_timedout(unsigned long _task)
45 {
46         struct sas_task *task = (void *) _task;
47         unsigned long flags;
48
49         spin_lock_irqsave(&task->task_state_lock, flags);
50         if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
51                 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
52         spin_unlock_irqrestore(&task->task_state_lock, flags);
53
54         complete(&task->slow_task->completion);
55 }
56
57 static void smp_task_done(struct sas_task *task)
58 {
59         if (!del_timer(&task->slow_task->timer))
60                 return;
61         complete(&task->slow_task->completion);
62 }
63
64 /* Give it some long enough timeout. In seconds. */
65 #define SMP_TIMEOUT 10
66
67 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
68                             void *resp, int resp_size)
69 {
70         int res, retry;
71         struct sas_task *task = NULL;
72         struct sas_internal *i =
73                 to_sas_internal(dev->port->ha->core.shost->transportt);
74
75         mutex_lock(&dev->ex_dev.cmd_mutex);
76         for (retry = 0; retry < 3; retry++) {
77                 if (test_bit(SAS_DEV_GONE, &dev->state)) {
78                         res = -ECOMM;
79                         break;
80                 }
81
82                 task = sas_alloc_slow_task(GFP_KERNEL);
83                 if (!task) {
84                         res = -ENOMEM;
85                         break;
86                 }
87                 task->dev = dev;
88                 task->task_proto = dev->tproto;
89                 sg_init_one(&task->smp_task.smp_req, req, req_size);
90                 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
91
92                 task->task_done = smp_task_done;
93
94                 task->slow_task->timer.data = (unsigned long) task;
95                 task->slow_task->timer.function = smp_task_timedout;
96                 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
97                 add_timer(&task->slow_task->timer);
98
99                 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
100
101                 if (res) {
102                         del_timer(&task->slow_task->timer);
103                         SAS_DPRINTK("executing SMP task failed:%d\n", res);
104                         break;
105                 }
106
107                 wait_for_completion(&task->slow_task->completion);
108                 res = -ECOMM;
109                 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
110                         SAS_DPRINTK("smp task timed out or aborted\n");
111                         i->dft->lldd_abort_task(task);
112                         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
113                                 SAS_DPRINTK("SMP task aborted and not done\n");
114                                 break;
115                         }
116                 }
117                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
118                     task->task_status.stat == SAM_STAT_GOOD) {
119                         res = 0;
120                         break;
121                 }
122                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
123                     task->task_status.stat == SAS_DATA_UNDERRUN) {
124                         /* no error, but return the number of bytes of
125                          * underrun */
126                         res = task->task_status.residual;
127                         break;
128                 }
129                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
130                     task->task_status.stat == SAS_DATA_OVERRUN) {
131                         res = -EMSGSIZE;
132                         break;
133                 }
134                 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
135                     task->task_status.stat == SAS_DEVICE_UNKNOWN)
136                         break;
137                 else {
138                         SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
139                                     "status 0x%x\n", __func__,
140                                     SAS_ADDR(dev->sas_addr),
141                                     task->task_status.resp,
142                                     task->task_status.stat);
143                         sas_free_task(task);
144                         task = NULL;
145                 }
146         }
147         mutex_unlock(&dev->ex_dev.cmd_mutex);
148
149         BUG_ON(retry == 3 && task != NULL);
150         sas_free_task(task);
151         return res;
152 }
153
154 /* ---------- Allocations ---------- */
155
156 static inline void *alloc_smp_req(int size)
157 {
158         u8 *p = kzalloc(size, GFP_KERNEL);
159         if (p)
160                 p[0] = SMP_REQUEST;
161         return p;
162 }
163
164 static inline void *alloc_smp_resp(int size)
165 {
166         return kzalloc(size, GFP_KERNEL);
167 }
168
169 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
170 {
171         switch (phy->routing_attr) {
172         case TABLE_ROUTING:
173                 if (dev->ex_dev.t2t_supp)
174                         return 'U';
175                 else
176                         return 'T';
177         case DIRECT_ROUTING:
178                 return 'D';
179         case SUBTRACTIVE_ROUTING:
180                 return 'S';
181         default:
182                 return '?';
183         }
184 }
185
186 static enum sas_dev_type to_dev_type(struct discover_resp *dr)
187 {
188         /* This is detecting a failure to transmit initial dev to host
189          * FIS as described in section J.5 of sas-2 r16
190          */
191         if (dr->attached_dev_type == NO_DEVICE && dr->attached_sata_dev &&
192             dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
193                 return SATA_PENDING;
194         else
195                 return dr->attached_dev_type;
196 }
197
198 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
199 {
200         enum sas_dev_type dev_type;
201         enum sas_linkrate linkrate;
202         u8 sas_addr[SAS_ADDR_SIZE];
203         struct smp_resp *resp = rsp;
204         struct discover_resp *dr = &resp->disc;
205         struct sas_ha_struct *ha = dev->port->ha;
206         struct expander_device *ex = &dev->ex_dev;
207         struct ex_phy *phy = &ex->ex_phy[phy_id];
208         struct sas_rphy *rphy = dev->rphy;
209         bool new_phy = !phy->phy;
210         char *type;
211
212         if (new_phy) {
213                 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
214                         return;
215                 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
216
217                 /* FIXME: error_handling */
218                 BUG_ON(!phy->phy);
219         }
220
221         switch (resp->result) {
222         case SMP_RESP_PHY_VACANT:
223                 phy->phy_state = PHY_VACANT;
224                 break;
225         default:
226                 phy->phy_state = PHY_NOT_PRESENT;
227                 break;
228         case SMP_RESP_FUNC_ACC:
229                 phy->phy_state = PHY_EMPTY; /* do not know yet */
230                 break;
231         }
232
233         /* check if anything important changed to squelch debug */
234         dev_type = phy->attached_dev_type;
235         linkrate  = phy->linkrate;
236         memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
237
238         phy->attached_dev_type = to_dev_type(dr);
239         if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
240                 goto out;
241         phy->phy_id = phy_id;
242         phy->linkrate = dr->linkrate;
243         phy->attached_sata_host = dr->attached_sata_host;
244         phy->attached_sata_dev  = dr->attached_sata_dev;
245         phy->attached_sata_ps   = dr->attached_sata_ps;
246         phy->attached_iproto = dr->iproto << 1;
247         phy->attached_tproto = dr->tproto << 1;
248         /* help some expanders that fail to zero sas_address in the 'no
249          * device' case
250          */
251         if (phy->attached_dev_type == NO_DEVICE ||
252             phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
253                 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
254         else
255                 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
256         phy->attached_phy_id = dr->attached_phy_id;
257         phy->phy_change_count = dr->change_count;
258         phy->routing_attr = dr->routing_attr;
259         phy->virtual = dr->virtual;
260         phy->last_da_index = -1;
261
262         phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
263         phy->phy->identify.device_type = dr->attached_dev_type;
264         phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
265         phy->phy->identify.target_port_protocols = phy->attached_tproto;
266         if (!phy->attached_tproto && dr->attached_sata_dev)
267                 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
268         phy->phy->identify.phy_identifier = phy_id;
269         phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
270         phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
271         phy->phy->minimum_linkrate = dr->pmin_linkrate;
272         phy->phy->maximum_linkrate = dr->pmax_linkrate;
273         phy->phy->negotiated_linkrate = phy->linkrate;
274
275         if (new_phy)
276                 if (sas_phy_add(phy->phy)) {
277                         sas_phy_free(phy->phy);
278                         return;
279                 }
280
281  out:
282         switch (phy->attached_dev_type) {
283         case SATA_PENDING:
284                 type = "stp pending";
285                 break;
286         case NO_DEVICE:
287                 type = "no device";
288                 break;
289         case SAS_END_DEV:
290                 if (phy->attached_iproto) {
291                         if (phy->attached_tproto)
292                                 type = "host+target";
293                         else
294                                 type = "host";
295                 } else {
296                         if (dr->attached_sata_dev)
297                                 type = "stp";
298                         else
299                                 type = "ssp";
300                 }
301                 break;
302         case EDGE_DEV:
303         case FANOUT_DEV:
304                 type = "smp";
305                 break;
306         default:
307                 type = "unknown";
308         }
309
310         /* this routine is polled by libata error recovery so filter
311          * unimportant messages
312          */
313         if (new_phy || phy->attached_dev_type != dev_type ||
314             phy->linkrate != linkrate ||
315             SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
316                 /* pass */;
317         else
318                 return;
319
320         /* if the attached device type changed and ata_eh is active,
321          * make sure we run revalidation when eh completes (see:
322          * sas_enable_revalidation)
323          */
324         if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
325                 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
326
327         SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
328                     test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
329                     SAS_ADDR(dev->sas_addr), phy->phy_id,
330                     sas_route_char(dev, phy), phy->linkrate,
331                     SAS_ADDR(phy->attached_sas_addr), type);
332 }
333
334 /* check if we have an existing attached ata device on this expander phy */
335 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
336 {
337         struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
338         struct domain_device *dev;
339         struct sas_rphy *rphy;
340
341         if (!ex_phy->port)
342                 return NULL;
343
344         rphy = ex_phy->port->rphy;
345         if (!rphy)
346                 return NULL;
347
348         dev = sas_find_dev_by_rphy(rphy);
349
350         if (dev && dev_is_sata(dev))
351                 return dev;
352
353         return NULL;
354 }
355
356 #define DISCOVER_REQ_SIZE  16
357 #define DISCOVER_RESP_SIZE 56
358
359 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
360                                       u8 *disc_resp, int single)
361 {
362         struct discover_resp *dr;
363         int res;
364
365         disc_req[9] = single;
366
367         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
368                                disc_resp, DISCOVER_RESP_SIZE);
369         if (res)
370                 return res;
371         dr = &((struct smp_resp *)disc_resp)->disc;
372         if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
373                 sas_printk("Found loopback topology, just ignore it!\n");
374                 return 0;
375         }
376         sas_set_ex_phy(dev, single, disc_resp);
377         return 0;
378 }
379
380 int sas_ex_phy_discover(struct domain_device *dev, int single)
381 {
382         struct expander_device *ex = &dev->ex_dev;
383         int  res = 0;
384         u8   *disc_req;
385         u8   *disc_resp;
386
387         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
388         if (!disc_req)
389                 return -ENOMEM;
390
391         disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
392         if (!disc_resp) {
393                 kfree(disc_req);
394                 return -ENOMEM;
395         }
396
397         disc_req[1] = SMP_DISCOVER;
398
399         if (0 <= single && single < ex->num_phys) {
400                 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
401         } else {
402                 int i;
403
404                 for (i = 0; i < ex->num_phys; i++) {
405                         res = sas_ex_phy_discover_helper(dev, disc_req,
406                                                          disc_resp, i);
407                         if (res)
408                                 goto out_err;
409                 }
410         }
411 out_err:
412         kfree(disc_resp);
413         kfree(disc_req);
414         return res;
415 }
416
417 static int sas_expander_discover(struct domain_device *dev)
418 {
419         struct expander_device *ex = &dev->ex_dev;
420         int res = -ENOMEM;
421
422         ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
423         if (!ex->ex_phy)
424                 return -ENOMEM;
425
426         res = sas_ex_phy_discover(dev, -1);
427         if (res)
428                 goto out_err;
429
430         return 0;
431  out_err:
432         kfree(ex->ex_phy);
433         ex->ex_phy = NULL;
434         return res;
435 }
436
437 #define MAX_EXPANDER_PHYS 128
438
439 static void ex_assign_report_general(struct domain_device *dev,
440                                             struct smp_resp *resp)
441 {
442         struct report_general_resp *rg = &resp->rg;
443
444         dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
445         dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
446         dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
447         dev->ex_dev.t2t_supp = rg->t2t_supp;
448         dev->ex_dev.conf_route_table = rg->conf_route_table;
449         dev->ex_dev.configuring = rg->configuring;
450         memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
451 }
452
453 #define RG_REQ_SIZE   8
454 #define RG_RESP_SIZE 32
455
456 static int sas_ex_general(struct domain_device *dev)
457 {
458         u8 *rg_req;
459         struct smp_resp *rg_resp;
460         int res;
461         int i;
462
463         rg_req = alloc_smp_req(RG_REQ_SIZE);
464         if (!rg_req)
465                 return -ENOMEM;
466
467         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
468         if (!rg_resp) {
469                 kfree(rg_req);
470                 return -ENOMEM;
471         }
472
473         rg_req[1] = SMP_REPORT_GENERAL;
474
475         for (i = 0; i < 5; i++) {
476                 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
477                                        RG_RESP_SIZE);
478
479                 if (res) {
480                         SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
481                                     SAS_ADDR(dev->sas_addr), res);
482                         goto out;
483                 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
484                         SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
485                                     SAS_ADDR(dev->sas_addr), rg_resp->result);
486                         res = rg_resp->result;
487                         goto out;
488                 }
489
490                 ex_assign_report_general(dev, rg_resp);
491
492                 if (dev->ex_dev.configuring) {
493                         SAS_DPRINTK("RG: ex %llx self-configuring...\n",
494                                     SAS_ADDR(dev->sas_addr));
495                         schedule_timeout_interruptible(5*HZ);
496                 } else
497                         break;
498         }
499 out:
500         kfree(rg_req);
501         kfree(rg_resp);
502         return res;
503 }
504
505 static void ex_assign_manuf_info(struct domain_device *dev, void
506                                         *_mi_resp)
507 {
508         u8 *mi_resp = _mi_resp;
509         struct sas_rphy *rphy = dev->rphy;
510         struct sas_expander_device *edev = rphy_to_expander_device(rphy);
511
512         memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
513         memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
514         memcpy(edev->product_rev, mi_resp + 36,
515                SAS_EXPANDER_PRODUCT_REV_LEN);
516
517         if (mi_resp[8] & 1) {
518                 memcpy(edev->component_vendor_id, mi_resp + 40,
519                        SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
520                 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
521                 edev->component_revision_id = mi_resp[50];
522         }
523 }
524
525 #define MI_REQ_SIZE   8
526 #define MI_RESP_SIZE 64
527
528 static int sas_ex_manuf_info(struct domain_device *dev)
529 {
530         u8 *mi_req;
531         u8 *mi_resp;
532         int res;
533
534         mi_req = alloc_smp_req(MI_REQ_SIZE);
535         if (!mi_req)
536                 return -ENOMEM;
537
538         mi_resp = alloc_smp_resp(MI_RESP_SIZE);
539         if (!mi_resp) {
540                 kfree(mi_req);
541                 return -ENOMEM;
542         }
543
544         mi_req[1] = SMP_REPORT_MANUF_INFO;
545
546         res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
547         if (res) {
548                 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
549                             SAS_ADDR(dev->sas_addr), res);
550                 goto out;
551         } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
552                 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
553                             SAS_ADDR(dev->sas_addr), mi_resp[2]);
554                 goto out;
555         }
556
557         ex_assign_manuf_info(dev, mi_resp);
558 out:
559         kfree(mi_req);
560         kfree(mi_resp);
561         return res;
562 }
563
564 #define PC_REQ_SIZE  44
565 #define PC_RESP_SIZE 8
566
567 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
568                         enum phy_func phy_func,
569                         struct sas_phy_linkrates *rates)
570 {
571         u8 *pc_req;
572         u8 *pc_resp;
573         int res;
574
575         pc_req = alloc_smp_req(PC_REQ_SIZE);
576         if (!pc_req)
577                 return -ENOMEM;
578
579         pc_resp = alloc_smp_resp(PC_RESP_SIZE);
580         if (!pc_resp) {
581                 kfree(pc_req);
582                 return -ENOMEM;
583         }
584
585         pc_req[1] = SMP_PHY_CONTROL;
586         pc_req[9] = phy_id;
587         pc_req[10]= phy_func;
588         if (rates) {
589                 pc_req[32] = rates->minimum_linkrate << 4;
590                 pc_req[33] = rates->maximum_linkrate << 4;
591         }
592
593         res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
594
595         kfree(pc_resp);
596         kfree(pc_req);
597         return res;
598 }
599
600 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
601 {
602         struct expander_device *ex = &dev->ex_dev;
603         struct ex_phy *phy = &ex->ex_phy[phy_id];
604
605         sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
606         phy->linkrate = SAS_PHY_DISABLED;
607 }
608
609 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
610 {
611         struct expander_device *ex = &dev->ex_dev;
612         int i;
613
614         for (i = 0; i < ex->num_phys; i++) {
615                 struct ex_phy *phy = &ex->ex_phy[i];
616
617                 if (phy->phy_state == PHY_VACANT ||
618                     phy->phy_state == PHY_NOT_PRESENT)
619                         continue;
620
621                 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
622                         sas_ex_disable_phy(dev, i);
623         }
624 }
625
626 static int sas_dev_present_in_domain(struct asd_sas_port *port,
627                                             u8 *sas_addr)
628 {
629         struct domain_device *dev;
630
631         if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
632                 return 1;
633         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
634                 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
635                         return 1;
636         }
637         return 0;
638 }
639
640 #define RPEL_REQ_SIZE   16
641 #define RPEL_RESP_SIZE  32
642 int sas_smp_get_phy_events(struct sas_phy *phy)
643 {
644         int res;
645         u8 *req;
646         u8 *resp;
647         struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
648         struct domain_device *dev = sas_find_dev_by_rphy(rphy);
649
650         req = alloc_smp_req(RPEL_REQ_SIZE);
651         if (!req)
652                 return -ENOMEM;
653
654         resp = alloc_smp_resp(RPEL_RESP_SIZE);
655         if (!resp) {
656                 kfree(req);
657                 return -ENOMEM;
658         }
659
660         req[1] = SMP_REPORT_PHY_ERR_LOG;
661         req[9] = phy->number;
662
663         res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
664                                     resp, RPEL_RESP_SIZE);
665
666         if (!res)
667                 goto out;
668
669         phy->invalid_dword_count = scsi_to_u32(&resp[12]);
670         phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
671         phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
672         phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
673
674  out:
675         kfree(resp);
676         return res;
677
678 }
679
680 #ifdef CONFIG_SCSI_SAS_ATA
681
682 #define RPS_REQ_SIZE  16
683 #define RPS_RESP_SIZE 60
684
685 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
686                             struct smp_resp *rps_resp)
687 {
688         int res;
689         u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
690         u8 *resp = (u8 *)rps_resp;
691
692         if (!rps_req)
693                 return -ENOMEM;
694
695         rps_req[1] = SMP_REPORT_PHY_SATA;
696         rps_req[9] = phy_id;
697
698         res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
699                                     rps_resp, RPS_RESP_SIZE);
700
701         /* 0x34 is the FIS type for the D2H fis.  There's a potential
702          * standards cockup here.  sas-2 explicitly specifies the FIS
703          * should be encoded so that FIS type is in resp[24].
704          * However, some expanders endian reverse this.  Undo the
705          * reversal here */
706         if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
707                 int i;
708
709                 for (i = 0; i < 5; i++) {
710                         int j = 24 + (i*4);
711                         u8 a, b;
712                         a = resp[j + 0];
713                         b = resp[j + 1];
714                         resp[j + 0] = resp[j + 3];
715                         resp[j + 1] = resp[j + 2];
716                         resp[j + 2] = b;
717                         resp[j + 3] = a;
718                 }
719         }
720
721         kfree(rps_req);
722         return res;
723 }
724 #endif
725
726 static void sas_ex_get_linkrate(struct domain_device *parent,
727                                        struct domain_device *child,
728                                        struct ex_phy *parent_phy)
729 {
730         struct expander_device *parent_ex = &parent->ex_dev;
731         struct sas_port *port;
732         int i;
733
734         child->pathways = 0;
735
736         port = parent_phy->port;
737
738         for (i = 0; i < parent_ex->num_phys; i++) {
739                 struct ex_phy *phy = &parent_ex->ex_phy[i];
740
741                 if (phy->phy_state == PHY_VACANT ||
742                     phy->phy_state == PHY_NOT_PRESENT)
743                         continue;
744
745                 if (SAS_ADDR(phy->attached_sas_addr) ==
746                     SAS_ADDR(child->sas_addr)) {
747
748                         child->min_linkrate = min(parent->min_linkrate,
749                                                   phy->linkrate);
750                         child->max_linkrate = max(parent->max_linkrate,
751                                                   phy->linkrate);
752                         child->pathways++;
753                         sas_port_add_phy(port, phy->phy);
754                 }
755         }
756         child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
757         child->pathways = min(child->pathways, parent->pathways);
758 }
759
760 static struct domain_device *sas_ex_discover_end_dev(
761         struct domain_device *parent, int phy_id)
762 {
763         struct expander_device *parent_ex = &parent->ex_dev;
764         struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
765         struct domain_device *child = NULL;
766         struct sas_rphy *rphy;
767         int res;
768
769         if (phy->attached_sata_host || phy->attached_sata_ps)
770                 return NULL;
771
772         child = sas_alloc_device();
773         if (!child)
774                 return NULL;
775
776         kref_get(&parent->kref);
777         child->parent = parent;
778         child->port   = parent->port;
779         child->iproto = phy->attached_iproto;
780         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
781         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
782         if (!phy->port) {
783                 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
784                 if (unlikely(!phy->port))
785                         goto out_err;
786                 if (unlikely(sas_port_add(phy->port) != 0)) {
787                         sas_port_free(phy->port);
788                         goto out_err;
789                 }
790         }
791         sas_ex_get_linkrate(parent, child, phy);
792         sas_device_set_phy(child, phy->port);
793
794 #ifdef CONFIG_SCSI_SAS_ATA
795         if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
796                 res = sas_get_ata_info(child, phy);
797                 if (res)
798                         goto out_free;
799
800                 sas_init_dev(child);
801                 res = sas_ata_init(child);
802                 if (res)
803                         goto out_free;
804                 rphy = sas_end_device_alloc(phy->port);
805                 if (!rphy)
806                         goto out_free;
807
808                 child->rphy = rphy;
809                 get_device(&rphy->dev);
810
811                 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
812
813                 res = sas_discover_sata(child);
814                 if (res) {
815                         SAS_DPRINTK("sas_discover_sata() for device %16llx at "
816                                     "%016llx:0x%x returned 0x%x\n",
817                                     SAS_ADDR(child->sas_addr),
818                                     SAS_ADDR(parent->sas_addr), phy_id, res);
819                         goto out_list_del;
820                 }
821         } else
822 #endif
823           if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
824                 child->dev_type = SAS_END_DEV;
825                 rphy = sas_end_device_alloc(phy->port);
826                 /* FIXME: error handling */
827                 if (unlikely(!rphy))
828                         goto out_free;
829                 child->tproto = phy->attached_tproto;
830                 sas_init_dev(child);
831
832                 child->rphy = rphy;
833                 get_device(&rphy->dev);
834                 sas_fill_in_rphy(child, rphy);
835
836                 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
837
838                 res = sas_discover_end_dev(child);
839                 if (res) {
840                         SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
841                                     "at %016llx:0x%x returned 0x%x\n",
842                                     SAS_ADDR(child->sas_addr),
843                                     SAS_ADDR(parent->sas_addr), phy_id, res);
844                         goto out_list_del;
845                 }
846         } else {
847                 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
848                             phy->attached_tproto, SAS_ADDR(parent->sas_addr),
849                             phy_id);
850                 goto out_free;
851         }
852
853         list_add_tail(&child->siblings, &parent_ex->children);
854         return child;
855
856  out_list_del:
857         sas_rphy_free(child->rphy);
858         list_del(&child->disco_list_node);
859         spin_lock_irq(&parent->port->dev_list_lock);
860         list_del(&child->dev_list_node);
861         spin_unlock_irq(&parent->port->dev_list_lock);
862  out_free:
863         sas_port_delete(phy->port);
864  out_err:
865         phy->port = NULL;
866         sas_put_device(child);
867         return NULL;
868 }
869
870 /* See if this phy is part of a wide port */
871 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
872 {
873         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
874         int i;
875
876         for (i = 0; i < parent->ex_dev.num_phys; i++) {
877                 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
878
879                 if (ephy == phy)
880                         continue;
881
882                 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
883                             SAS_ADDR_SIZE) && ephy->port) {
884                         sas_port_add_phy(ephy->port, phy->phy);
885                         phy->port = ephy->port;
886                         phy->phy_state = PHY_DEVICE_DISCOVERED;
887                         return true;
888                 }
889         }
890
891         return false;
892 }
893
894 static struct domain_device *sas_ex_discover_expander(
895         struct domain_device *parent, int phy_id)
896 {
897         struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
898         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
899         struct domain_device *child = NULL;
900         struct sas_rphy *rphy;
901         struct sas_expander_device *edev;
902         struct asd_sas_port *port;
903         int res;
904
905         if (phy->routing_attr == DIRECT_ROUTING) {
906                 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
907                             "allowed\n",
908                             SAS_ADDR(parent->sas_addr), phy_id,
909                             SAS_ADDR(phy->attached_sas_addr),
910                             phy->attached_phy_id);
911                 return NULL;
912         }
913         child = sas_alloc_device();
914         if (!child)
915                 return NULL;
916
917         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
918         /* FIXME: better error handling */
919         BUG_ON(sas_port_add(phy->port) != 0);
920
921
922         switch (phy->attached_dev_type) {
923         case EDGE_DEV:
924                 rphy = sas_expander_alloc(phy->port,
925                                           SAS_EDGE_EXPANDER_DEVICE);
926                 break;
927         case FANOUT_DEV:
928                 rphy = sas_expander_alloc(phy->port,
929                                           SAS_FANOUT_EXPANDER_DEVICE);
930                 break;
931         default:
932                 rphy = NULL;    /* shut gcc up */
933                 BUG();
934         }
935         port = parent->port;
936         child->rphy = rphy;
937         get_device(&rphy->dev);
938         edev = rphy_to_expander_device(rphy);
939         child->dev_type = phy->attached_dev_type;
940         kref_get(&parent->kref);
941         child->parent = parent;
942         child->port = port;
943         child->iproto = phy->attached_iproto;
944         child->tproto = phy->attached_tproto;
945         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
946         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
947         sas_ex_get_linkrate(parent, child, phy);
948         edev->level = parent_ex->level + 1;
949         parent->port->disc.max_level = max(parent->port->disc.max_level,
950                                            edev->level);
951         sas_init_dev(child);
952         sas_fill_in_rphy(child, rphy);
953         sas_rphy_add(rphy);
954
955         spin_lock_irq(&parent->port->dev_list_lock);
956         list_add_tail(&child->dev_list_node, &parent->port->dev_list);
957         spin_unlock_irq(&parent->port->dev_list_lock);
958
959         res = sas_discover_expander(child);
960         if (res) {
961                 sas_rphy_delete(rphy);
962                 spin_lock_irq(&parent->port->dev_list_lock);
963                 list_del(&child->dev_list_node);
964                 spin_unlock_irq(&parent->port->dev_list_lock);
965                 sas_put_device(child);
966                 return NULL;
967         }
968         list_add_tail(&child->siblings, &parent->ex_dev.children);
969         return child;
970 }
971
972 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
973 {
974         struct expander_device *ex = &dev->ex_dev;
975         struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
976         struct domain_device *child = NULL;
977         int res = 0;
978
979         /* Phy state */
980         if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
981                 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
982                         res = sas_ex_phy_discover(dev, phy_id);
983                 if (res)
984                         return res;
985         }
986
987         /* Parent and domain coherency */
988         if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
989                              SAS_ADDR(dev->port->sas_addr))) {
990                 sas_add_parent_port(dev, phy_id);
991                 return 0;
992         }
993         if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
994                             SAS_ADDR(dev->parent->sas_addr))) {
995                 sas_add_parent_port(dev, phy_id);
996                 if (ex_phy->routing_attr == TABLE_ROUTING)
997                         sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
998                 return 0;
999         }
1000
1001         if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1002                 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1003
1004         if (ex_phy->attached_dev_type == NO_DEVICE) {
1005                 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1006                         memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1007                         sas_configure_routing(dev, ex_phy->attached_sas_addr);
1008                 }
1009                 return 0;
1010         } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1011                 return 0;
1012
1013         if (ex_phy->attached_dev_type != SAS_END_DEV &&
1014             ex_phy->attached_dev_type != FANOUT_DEV &&
1015             ex_phy->attached_dev_type != EDGE_DEV &&
1016             ex_phy->attached_dev_type != SATA_PENDING) {
1017                 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1018                             "phy 0x%x\n", ex_phy->attached_dev_type,
1019                             SAS_ADDR(dev->sas_addr),
1020                             phy_id);
1021                 return 0;
1022         }
1023
1024         res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1025         if (res) {
1026                 SAS_DPRINTK("configure routing for dev %016llx "
1027                             "reported 0x%x. Forgotten\n",
1028                             SAS_ADDR(ex_phy->attached_sas_addr), res);
1029                 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1030                 return res;
1031         }
1032
1033         if (sas_ex_join_wide_port(dev, phy_id)) {
1034                 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1035                             phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1036                 return res;
1037         }
1038
1039         switch (ex_phy->attached_dev_type) {
1040         case SAS_END_DEV:
1041         case SATA_PENDING:
1042                 child = sas_ex_discover_end_dev(dev, phy_id);
1043                 break;
1044         case FANOUT_DEV:
1045                 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1046                         SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1047                                     "attached to ex %016llx phy 0x%x\n",
1048                                     SAS_ADDR(ex_phy->attached_sas_addr),
1049                                     ex_phy->attached_phy_id,
1050                                     SAS_ADDR(dev->sas_addr),
1051                                     phy_id);
1052                         sas_ex_disable_phy(dev, phy_id);
1053                         break;
1054                 } else
1055                         memcpy(dev->port->disc.fanout_sas_addr,
1056                                ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1057                 /* fallthrough */
1058         case EDGE_DEV:
1059                 child = sas_ex_discover_expander(dev, phy_id);
1060                 break;
1061         default:
1062                 break;
1063         }
1064
1065         if (child) {
1066                 int i;
1067
1068                 for (i = 0; i < ex->num_phys; i++) {
1069                         if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1070                             ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1071                                 continue;
1072                         /*
1073                          * Due to races, the phy might not get added to the
1074                          * wide port, so we add the phy to the wide port here.
1075                          */
1076                         if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1077                             SAS_ADDR(child->sas_addr)) {
1078                                 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1079                                 if (sas_ex_join_wide_port(dev, i))
1080                                         SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1081                                                     i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1082
1083                         }
1084                 }
1085         }
1086
1087         return res;
1088 }
1089
1090 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1091 {
1092         struct expander_device *ex = &dev->ex_dev;
1093         int i;
1094
1095         for (i = 0; i < ex->num_phys; i++) {
1096                 struct ex_phy *phy = &ex->ex_phy[i];
1097
1098                 if (phy->phy_state == PHY_VACANT ||
1099                     phy->phy_state == PHY_NOT_PRESENT)
1100                         continue;
1101
1102                 if ((phy->attached_dev_type == EDGE_DEV ||
1103                      phy->attached_dev_type == FANOUT_DEV) &&
1104                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1105
1106                         memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1107
1108                         return 1;
1109                 }
1110         }
1111         return 0;
1112 }
1113
1114 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1115 {
1116         struct expander_device *ex = &dev->ex_dev;
1117         struct domain_device *child;
1118         u8 sub_addr[8] = {0, };
1119
1120         list_for_each_entry(child, &ex->children, siblings) {
1121                 if (child->dev_type != EDGE_DEV &&
1122                     child->dev_type != FANOUT_DEV)
1123                         continue;
1124                 if (sub_addr[0] == 0) {
1125                         sas_find_sub_addr(child, sub_addr);
1126                         continue;
1127                 } else {
1128                         u8 s2[8];
1129
1130                         if (sas_find_sub_addr(child, s2) &&
1131                             (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1132
1133                                 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1134                                             "diverges from subtractive "
1135                                             "boundary %016llx\n",
1136                                             SAS_ADDR(dev->sas_addr),
1137                                             SAS_ADDR(child->sas_addr),
1138                                             SAS_ADDR(s2),
1139                                             SAS_ADDR(sub_addr));
1140
1141                                 sas_ex_disable_port(child, s2);
1142                         }
1143                 }
1144         }
1145         return 0;
1146 }
1147 /**
1148  * sas_ex_discover_devices -- discover devices attached to this expander
1149  * dev: pointer to the expander domain device
1150  * single: if you want to do a single phy, else set to -1;
1151  *
1152  * Configure this expander for use with its devices and register the
1153  * devices of this expander.
1154  */
1155 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1156 {
1157         struct expander_device *ex = &dev->ex_dev;
1158         int i = 0, end = ex->num_phys;
1159         int res = 0;
1160
1161         if (0 <= single && single < end) {
1162                 i = single;
1163                 end = i+1;
1164         }
1165
1166         for ( ; i < end; i++) {
1167                 struct ex_phy *ex_phy = &ex->ex_phy[i];
1168
1169                 if (ex_phy->phy_state == PHY_VACANT ||
1170                     ex_phy->phy_state == PHY_NOT_PRESENT ||
1171                     ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1172                         continue;
1173
1174                 switch (ex_phy->linkrate) {
1175                 case SAS_PHY_DISABLED:
1176                 case SAS_PHY_RESET_PROBLEM:
1177                 case SAS_SATA_PORT_SELECTOR:
1178                         continue;
1179                 default:
1180                         res = sas_ex_discover_dev(dev, i);
1181                         if (res)
1182                                 break;
1183                         continue;
1184                 }
1185         }
1186
1187         if (!res)
1188                 sas_check_level_subtractive_boundary(dev);
1189
1190         return res;
1191 }
1192
1193 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1194 {
1195         struct expander_device *ex = &dev->ex_dev;
1196         int i;
1197         u8  *sub_sas_addr = NULL;
1198
1199         if (dev->dev_type != EDGE_DEV)
1200                 return 0;
1201
1202         for (i = 0; i < ex->num_phys; i++) {
1203                 struct ex_phy *phy = &ex->ex_phy[i];
1204
1205                 if (phy->phy_state == PHY_VACANT ||
1206                     phy->phy_state == PHY_NOT_PRESENT)
1207                         continue;
1208
1209                 if ((phy->attached_dev_type == FANOUT_DEV ||
1210                      phy->attached_dev_type == EDGE_DEV) &&
1211                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1212
1213                         if (!sub_sas_addr)
1214                                 sub_sas_addr = &phy->attached_sas_addr[0];
1215                         else if (SAS_ADDR(sub_sas_addr) !=
1216                                  SAS_ADDR(phy->attached_sas_addr)) {
1217
1218                                 SAS_DPRINTK("ex %016llx phy 0x%x "
1219                                             "diverges(%016llx) on subtractive "
1220                                             "boundary(%016llx). Disabled\n",
1221                                             SAS_ADDR(dev->sas_addr), i,
1222                                             SAS_ADDR(phy->attached_sas_addr),
1223                                             SAS_ADDR(sub_sas_addr));
1224                                 sas_ex_disable_phy(dev, i);
1225                         }
1226                 }
1227         }
1228         return 0;
1229 }
1230
1231 static void sas_print_parent_topology_bug(struct domain_device *child,
1232                                                  struct ex_phy *parent_phy,
1233                                                  struct ex_phy *child_phy)
1234 {
1235         static const char *ex_type[] = {
1236                 [EDGE_DEV] = "edge",
1237                 [FANOUT_DEV] = "fanout",
1238         };
1239         struct domain_device *parent = child->parent;
1240
1241         sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1242                    "phy 0x%x has %c:%c routing link!\n",
1243
1244                    ex_type[parent->dev_type],
1245                    SAS_ADDR(parent->sas_addr),
1246                    parent_phy->phy_id,
1247
1248                    ex_type[child->dev_type],
1249                    SAS_ADDR(child->sas_addr),
1250                    child_phy->phy_id,
1251
1252                    sas_route_char(parent, parent_phy),
1253                    sas_route_char(child, child_phy));
1254 }
1255
1256 static int sas_check_eeds(struct domain_device *child,
1257                                  struct ex_phy *parent_phy,
1258                                  struct ex_phy *child_phy)
1259 {
1260         int res = 0;
1261         struct domain_device *parent = child->parent;
1262
1263         if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1264                 res = -ENODEV;
1265                 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1266                             "phy S:0x%x, while there is a fanout ex %016llx\n",
1267                             SAS_ADDR(parent->sas_addr),
1268                             parent_phy->phy_id,
1269                             SAS_ADDR(child->sas_addr),
1270                             child_phy->phy_id,
1271                             SAS_ADDR(parent->port->disc.fanout_sas_addr));
1272         } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1273                 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1274                        SAS_ADDR_SIZE);
1275                 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1276                        SAS_ADDR_SIZE);
1277         } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1278                     SAS_ADDR(parent->sas_addr)) ||
1279                    (SAS_ADDR(parent->port->disc.eeds_a) ==
1280                     SAS_ADDR(child->sas_addr)))
1281                    &&
1282                    ((SAS_ADDR(parent->port->disc.eeds_b) ==
1283                      SAS_ADDR(parent->sas_addr)) ||
1284                     (SAS_ADDR(parent->port->disc.eeds_b) ==
1285                      SAS_ADDR(child->sas_addr))))
1286                 ;
1287         else {
1288                 res = -ENODEV;
1289                 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1290                             "phy 0x%x link forms a third EEDS!\n",
1291                             SAS_ADDR(parent->sas_addr),
1292                             parent_phy->phy_id,
1293                             SAS_ADDR(child->sas_addr),
1294                             child_phy->phy_id);
1295         }
1296
1297         return res;
1298 }
1299
1300 /* Here we spill over 80 columns.  It is intentional.
1301  */
1302 static int sas_check_parent_topology(struct domain_device *child)
1303 {
1304         struct expander_device *child_ex = &child->ex_dev;
1305         struct expander_device *parent_ex;
1306         int i;
1307         int res = 0;
1308
1309         if (!child->parent)
1310                 return 0;
1311
1312         if (child->parent->dev_type != EDGE_DEV &&
1313             child->parent->dev_type != FANOUT_DEV)
1314                 return 0;
1315
1316         parent_ex = &child->parent->ex_dev;
1317
1318         for (i = 0; i < parent_ex->num_phys; i++) {
1319                 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1320                 struct ex_phy *child_phy;
1321
1322                 if (parent_phy->phy_state == PHY_VACANT ||
1323                     parent_phy->phy_state == PHY_NOT_PRESENT)
1324                         continue;
1325
1326                 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1327                         continue;
1328
1329                 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1330
1331                 switch (child->parent->dev_type) {
1332                 case EDGE_DEV:
1333                         if (child->dev_type == FANOUT_DEV) {
1334                                 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1335                                     child_phy->routing_attr != TABLE_ROUTING) {
1336                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1337                                         res = -ENODEV;
1338                                 }
1339                         } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1340                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1341                                         res = sas_check_eeds(child, parent_phy, child_phy);
1342                                 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1343                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1344                                         res = -ENODEV;
1345                                 }
1346                         } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1347                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1348                                     (child_phy->routing_attr == TABLE_ROUTING &&
1349                                      child_ex->t2t_supp && parent_ex->t2t_supp)) {
1350                                         /* All good */;
1351                                 } else {
1352                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1353                                         res = -ENODEV;
1354                                 }
1355                         }
1356                         break;
1357                 case FANOUT_DEV:
1358                         if (parent_phy->routing_attr != TABLE_ROUTING ||
1359                             child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1360                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1361                                 res = -ENODEV;
1362                         }
1363                         break;
1364                 default:
1365                         break;
1366                 }
1367         }
1368
1369         return res;
1370 }
1371
1372 #define RRI_REQ_SIZE  16
1373 #define RRI_RESP_SIZE 44
1374
1375 static int sas_configure_present(struct domain_device *dev, int phy_id,
1376                                  u8 *sas_addr, int *index, int *present)
1377 {
1378         int i, res = 0;
1379         struct expander_device *ex = &dev->ex_dev;
1380         struct ex_phy *phy = &ex->ex_phy[phy_id];
1381         u8 *rri_req;
1382         u8 *rri_resp;
1383
1384         *present = 0;
1385         *index = 0;
1386
1387         rri_req = alloc_smp_req(RRI_REQ_SIZE);
1388         if (!rri_req)
1389                 return -ENOMEM;
1390
1391         rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1392         if (!rri_resp) {
1393                 kfree(rri_req);
1394                 return -ENOMEM;
1395         }
1396
1397         rri_req[1] = SMP_REPORT_ROUTE_INFO;
1398         rri_req[9] = phy_id;
1399
1400         for (i = 0; i < ex->max_route_indexes ; i++) {
1401                 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1402                 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1403                                        RRI_RESP_SIZE);
1404                 if (res)
1405                         goto out;
1406                 res = rri_resp[2];
1407                 if (res == SMP_RESP_NO_INDEX) {
1408                         SAS_DPRINTK("overflow of indexes: dev %016llx "
1409                                     "phy 0x%x index 0x%x\n",
1410                                     SAS_ADDR(dev->sas_addr), phy_id, i);
1411                         goto out;
1412                 } else if (res != SMP_RESP_FUNC_ACC) {
1413                         SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1414                                     "result 0x%x\n", __func__,
1415                                     SAS_ADDR(dev->sas_addr), phy_id, i, res);
1416                         goto out;
1417                 }
1418                 if (SAS_ADDR(sas_addr) != 0) {
1419                         if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1420                                 *index = i;
1421                                 if ((rri_resp[12] & 0x80) == 0x80)
1422                                         *present = 0;
1423                                 else
1424                                         *present = 1;
1425                                 goto out;
1426                         } else if (SAS_ADDR(rri_resp+16) == 0) {
1427                                 *index = i;
1428                                 *present = 0;
1429                                 goto out;
1430                         }
1431                 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1432                            phy->last_da_index < i) {
1433                         phy->last_da_index = i;
1434                         *index = i;
1435                         *present = 0;
1436                         goto out;
1437                 }
1438         }
1439         res = -1;
1440 out:
1441         kfree(rri_req);
1442         kfree(rri_resp);
1443         return res;
1444 }
1445
1446 #define CRI_REQ_SIZE  44
1447 #define CRI_RESP_SIZE  8
1448
1449 static int sas_configure_set(struct domain_device *dev, int phy_id,
1450                              u8 *sas_addr, int index, int include)
1451 {
1452         int res;
1453         u8 *cri_req;
1454         u8 *cri_resp;
1455
1456         cri_req = alloc_smp_req(CRI_REQ_SIZE);
1457         if (!cri_req)
1458                 return -ENOMEM;
1459
1460         cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1461         if (!cri_resp) {
1462                 kfree(cri_req);
1463                 return -ENOMEM;
1464         }
1465
1466         cri_req[1] = SMP_CONF_ROUTE_INFO;
1467         *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1468         cri_req[9] = phy_id;
1469         if (SAS_ADDR(sas_addr) == 0 || !include)
1470                 cri_req[12] |= 0x80;
1471         memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1472
1473         res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1474                                CRI_RESP_SIZE);
1475         if (res)
1476                 goto out;
1477         res = cri_resp[2];
1478         if (res == SMP_RESP_NO_INDEX) {
1479                 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1480                             "index 0x%x\n",
1481                             SAS_ADDR(dev->sas_addr), phy_id, index);
1482         }
1483 out:
1484         kfree(cri_req);
1485         kfree(cri_resp);
1486         return res;
1487 }
1488
1489 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1490                                     u8 *sas_addr, int include)
1491 {
1492         int index;
1493         int present;
1494         int res;
1495
1496         res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1497         if (res)
1498                 return res;
1499         if (include ^ present)
1500                 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1501
1502         return res;
1503 }
1504
1505 /**
1506  * sas_configure_parent -- configure routing table of parent
1507  * parent: parent expander
1508  * child: child expander
1509  * sas_addr: SAS port identifier of device directly attached to child
1510  */
1511 static int sas_configure_parent(struct domain_device *parent,
1512                                 struct domain_device *child,
1513                                 u8 *sas_addr, int include)
1514 {
1515         struct expander_device *ex_parent = &parent->ex_dev;
1516         int res = 0;
1517         int i;
1518
1519         if (parent->parent) {
1520                 res = sas_configure_parent(parent->parent, parent, sas_addr,
1521                                            include);
1522                 if (res)
1523                         return res;
1524         }
1525
1526         if (ex_parent->conf_route_table == 0) {
1527                 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1528                             SAS_ADDR(parent->sas_addr));
1529                 return 0;
1530         }
1531
1532         for (i = 0; i < ex_parent->num_phys; i++) {
1533                 struct ex_phy *phy = &ex_parent->ex_phy[i];
1534
1535                 if ((phy->routing_attr == TABLE_ROUTING) &&
1536                     (SAS_ADDR(phy->attached_sas_addr) ==
1537                      SAS_ADDR(child->sas_addr))) {
1538                         res = sas_configure_phy(parent, i, sas_addr, include);
1539                         if (res)
1540                                 return res;
1541                 }
1542         }
1543
1544         return res;
1545 }
1546
1547 /**
1548  * sas_configure_routing -- configure routing
1549  * dev: expander device
1550  * sas_addr: port identifier of device directly attached to the expander device
1551  */
1552 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1553 {
1554         if (dev->parent)
1555                 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1556         return 0;
1557 }
1558
1559 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1560 {
1561         if (dev->parent)
1562                 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1563         return 0;
1564 }
1565
1566 /**
1567  * sas_discover_expander -- expander discovery
1568  * @ex: pointer to expander domain device
1569  *
1570  * See comment in sas_discover_sata().
1571  */
1572 static int sas_discover_expander(struct domain_device *dev)
1573 {
1574         int res;
1575
1576         res = sas_notify_lldd_dev_found(dev);
1577         if (res)
1578                 return res;
1579
1580         res = sas_ex_general(dev);
1581         if (res)
1582                 goto out_err;
1583         res = sas_ex_manuf_info(dev);
1584         if (res)
1585                 goto out_err;
1586
1587         res = sas_expander_discover(dev);
1588         if (res) {
1589                 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1590                             SAS_ADDR(dev->sas_addr), res);
1591                 goto out_err;
1592         }
1593
1594         sas_check_ex_subtractive_boundary(dev);
1595         res = sas_check_parent_topology(dev);
1596         if (res)
1597                 goto out_err;
1598         return 0;
1599 out_err:
1600         sas_notify_lldd_dev_gone(dev);
1601         return res;
1602 }
1603
1604 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1605 {
1606         int res = 0;
1607         struct domain_device *dev;
1608
1609         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1610                 if (dev->dev_type == EDGE_DEV ||
1611                     dev->dev_type == FANOUT_DEV) {
1612                         struct sas_expander_device *ex =
1613                                 rphy_to_expander_device(dev->rphy);
1614
1615                         if (level == ex->level)
1616                                 res = sas_ex_discover_devices(dev, -1);
1617                         else if (level > 0)
1618                                 res = sas_ex_discover_devices(port->port_dev, -1);
1619
1620                 }
1621         }
1622
1623         return res;
1624 }
1625
1626 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1627 {
1628         int res;
1629         int level;
1630
1631         do {
1632                 level = port->disc.max_level;
1633                 res = sas_ex_level_discovery(port, level);
1634                 mb();
1635         } while (level < port->disc.max_level);
1636
1637         return res;
1638 }
1639
1640 int sas_discover_root_expander(struct domain_device *dev)
1641 {
1642         int res;
1643         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1644
1645         res = sas_rphy_add(dev->rphy);
1646         if (res)
1647                 goto out_err;
1648
1649         ex->level = dev->port->disc.max_level; /* 0 */
1650         res = sas_discover_expander(dev);
1651         if (res)
1652                 goto out_err2;
1653
1654         sas_ex_bfs_disc(dev->port);
1655
1656         return res;
1657
1658 out_err2:
1659         sas_rphy_remove(dev->rphy);
1660 out_err:
1661         return res;
1662 }
1663
1664 /* ---------- Domain revalidation ---------- */
1665
1666 static int sas_get_phy_discover(struct domain_device *dev,
1667                                 int phy_id, struct smp_resp *disc_resp)
1668 {
1669         int res;
1670         u8 *disc_req;
1671
1672         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1673         if (!disc_req)
1674                 return -ENOMEM;
1675
1676         disc_req[1] = SMP_DISCOVER;
1677         disc_req[9] = phy_id;
1678
1679         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1680                                disc_resp, DISCOVER_RESP_SIZE);
1681         if (res)
1682                 goto out;
1683         else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1684                 res = disc_resp->result;
1685                 goto out;
1686         }
1687 out:
1688         kfree(disc_req);
1689         return res;
1690 }
1691
1692 static int sas_get_phy_change_count(struct domain_device *dev,
1693                                     int phy_id, int *pcc)
1694 {
1695         int res;
1696         struct smp_resp *disc_resp;
1697
1698         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1699         if (!disc_resp)
1700                 return -ENOMEM;
1701
1702         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1703         if (!res)
1704                 *pcc = disc_resp->disc.change_count;
1705
1706         kfree(disc_resp);
1707         return res;
1708 }
1709
1710 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1711                                     u8 *sas_addr, enum sas_dev_type *type)
1712 {
1713         int res;
1714         struct smp_resp *disc_resp;
1715         struct discover_resp *dr;
1716
1717         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1718         if (!disc_resp)
1719                 return -ENOMEM;
1720         dr = &disc_resp->disc;
1721
1722         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1723         if (res == 0) {
1724                 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1725                 *type = to_dev_type(dr);
1726                 if (*type == 0)
1727                         memset(sas_addr, 0, 8);
1728         }
1729         kfree(disc_resp);
1730         return res;
1731 }
1732
1733 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1734                               int from_phy, bool update)
1735 {
1736         struct expander_device *ex = &dev->ex_dev;
1737         int res = 0;
1738         int i;
1739
1740         for (i = from_phy; i < ex->num_phys; i++) {
1741                 int phy_change_count = 0;
1742
1743                 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1744                 switch (res) {
1745                 case SMP_RESP_PHY_VACANT:
1746                 case SMP_RESP_NO_PHY:
1747                         continue;
1748                 case SMP_RESP_FUNC_ACC:
1749                         break;
1750                 default:
1751                         return res;
1752                 }
1753
1754                 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1755                         if (update)
1756                                 ex->ex_phy[i].phy_change_count =
1757                                         phy_change_count;
1758                         *phy_id = i;
1759                         return 0;
1760                 }
1761         }
1762         return 0;
1763 }
1764
1765 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1766 {
1767         int res;
1768         u8  *rg_req;
1769         struct smp_resp  *rg_resp;
1770
1771         rg_req = alloc_smp_req(RG_REQ_SIZE);
1772         if (!rg_req)
1773                 return -ENOMEM;
1774
1775         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1776         if (!rg_resp) {
1777                 kfree(rg_req);
1778                 return -ENOMEM;
1779         }
1780
1781         rg_req[1] = SMP_REPORT_GENERAL;
1782
1783         res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1784                                RG_RESP_SIZE);
1785         if (res)
1786                 goto out;
1787         if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1788                 res = rg_resp->result;
1789                 goto out;
1790         }
1791
1792         *ecc = be16_to_cpu(rg_resp->rg.change_count);
1793 out:
1794         kfree(rg_resp);
1795         kfree(rg_req);
1796         return res;
1797 }
1798 /**
1799  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1800  * @dev:domain device to be detect.
1801  * @src_dev: the device which originated BROADCAST(CHANGE).
1802  *
1803  * Add self-configuration expander support. Suppose two expander cascading,
1804  * when the first level expander is self-configuring, hotplug the disks in
1805  * second level expander, BROADCAST(CHANGE) will not only be originated
1806  * in the second level expander, but also be originated in the first level
1807  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1808  * expander changed count in two level expanders will all increment at least
1809  * once, but the phy which chang count has changed is the source device which
1810  * we concerned.
1811  */
1812
1813 static int sas_find_bcast_dev(struct domain_device *dev,
1814                               struct domain_device **src_dev)
1815 {
1816         struct expander_device *ex = &dev->ex_dev;
1817         int ex_change_count = -1;
1818         int phy_id = -1;
1819         int res;
1820         struct domain_device *ch;
1821
1822         res = sas_get_ex_change_count(dev, &ex_change_count);
1823         if (res)
1824                 goto out;
1825         if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1826                 /* Just detect if this expander phys phy change count changed,
1827                 * in order to determine if this expander originate BROADCAST,
1828                 * and do not update phy change count field in our structure.
1829                 */
1830                 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1831                 if (phy_id != -1) {
1832                         *src_dev = dev;
1833                         ex->ex_change_count = ex_change_count;
1834                         SAS_DPRINTK("Expander phy change count has changed\n");
1835                         return res;
1836                 } else
1837                         SAS_DPRINTK("Expander phys DID NOT change\n");
1838         }
1839         list_for_each_entry(ch, &ex->children, siblings) {
1840                 if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1841                         res = sas_find_bcast_dev(ch, src_dev);
1842                         if (*src_dev)
1843                                 return res;
1844                 }
1845         }
1846 out:
1847         return res;
1848 }
1849
1850 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1851 {
1852         struct expander_device *ex = &dev->ex_dev;
1853         struct domain_device *child, *n;
1854
1855         list_for_each_entry_safe(child, n, &ex->children, siblings) {
1856                 set_bit(SAS_DEV_GONE, &child->state);
1857                 if (child->dev_type == EDGE_DEV ||
1858                     child->dev_type == FANOUT_DEV)
1859                         sas_unregister_ex_tree(port, child);
1860                 else
1861                         sas_unregister_dev(port, child);
1862         }
1863         sas_unregister_dev(port, dev);
1864 }
1865
1866 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1867                                          int phy_id, bool last)
1868 {
1869         struct expander_device *ex_dev = &parent->ex_dev;
1870         struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1871         struct domain_device *child, *n, *found = NULL;
1872         if (last) {
1873                 list_for_each_entry_safe(child, n,
1874                         &ex_dev->children, siblings) {
1875                         if (SAS_ADDR(child->sas_addr) ==
1876                             SAS_ADDR(phy->attached_sas_addr)) {
1877                                 set_bit(SAS_DEV_GONE, &child->state);
1878                                 if (child->dev_type == EDGE_DEV ||
1879                                     child->dev_type == FANOUT_DEV)
1880                                         sas_unregister_ex_tree(parent->port, child);
1881                                 else
1882                                         sas_unregister_dev(parent->port, child);
1883                                 found = child;
1884                                 break;
1885                         }
1886                 }
1887                 sas_disable_routing(parent, phy->attached_sas_addr);
1888         }
1889         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1890         if (phy->port) {
1891                 sas_port_delete_phy(phy->port, phy->phy);
1892                 sas_device_set_phy(found, phy->port);
1893                 if (phy->port->num_phys == 0)
1894                         sas_port_delete(phy->port);
1895                 phy->port = NULL;
1896         }
1897 }
1898
1899 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1900                                           const int level)
1901 {
1902         struct expander_device *ex_root = &root->ex_dev;
1903         struct domain_device *child;
1904         int res = 0;
1905
1906         list_for_each_entry(child, &ex_root->children, siblings) {
1907                 if (child->dev_type == EDGE_DEV ||
1908                     child->dev_type == FANOUT_DEV) {
1909                         struct sas_expander_device *ex =
1910                                 rphy_to_expander_device(child->rphy);
1911
1912                         if (level > ex->level)
1913                                 res = sas_discover_bfs_by_root_level(child,
1914                                                                      level);
1915                         else if (level == ex->level)
1916                                 res = sas_ex_discover_devices(child, -1);
1917                 }
1918         }
1919         return res;
1920 }
1921
1922 static int sas_discover_bfs_by_root(struct domain_device *dev)
1923 {
1924         int res;
1925         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1926         int level = ex->level+1;
1927
1928         res = sas_ex_discover_devices(dev, -1);
1929         if (res)
1930                 goto out;
1931         do {
1932                 res = sas_discover_bfs_by_root_level(dev, level);
1933                 mb();
1934                 level += 1;
1935         } while (level <= dev->port->disc.max_level);
1936 out:
1937         return res;
1938 }
1939
1940 static int sas_discover_new(struct domain_device *dev, int phy_id)
1941 {
1942         struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1943         struct domain_device *child;
1944         int res;
1945
1946         SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1947                     SAS_ADDR(dev->sas_addr), phy_id);
1948         res = sas_ex_phy_discover(dev, phy_id);
1949         if (res)
1950                 return res;
1951
1952         if (sas_ex_join_wide_port(dev, phy_id))
1953                 return 0;
1954
1955         res = sas_ex_discover_devices(dev, phy_id);
1956         if (res)
1957                 return res;
1958         list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1959                 if (SAS_ADDR(child->sas_addr) ==
1960                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1961                         if (child->dev_type == EDGE_DEV ||
1962                             child->dev_type == FANOUT_DEV)
1963                                 res = sas_discover_bfs_by_root(child);
1964                         break;
1965                 }
1966         }
1967         return res;
1968 }
1969
1970 static bool dev_type_flutter(enum sas_dev_type new, enum sas_dev_type old)
1971 {
1972         if (old == new)
1973                 return true;
1974
1975         /* treat device directed resets as flutter, if we went
1976          * SAS_END_DEV to SATA_PENDING the link needs recovery
1977          */
1978         if ((old == SATA_PENDING && new == SAS_END_DEV) ||
1979             (old == SAS_END_DEV && new == SATA_PENDING))
1980                 return true;
1981
1982         return false;
1983 }
1984
1985 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1986 {
1987         struct expander_device *ex = &dev->ex_dev;
1988         struct ex_phy *phy = &ex->ex_phy[phy_id];
1989         enum sas_dev_type type = NO_DEVICE;
1990         u8 sas_addr[8];
1991         int res;
1992
1993         memset(sas_addr, 0, 8);
1994         res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
1995         switch (res) {
1996         case SMP_RESP_NO_PHY:
1997                 phy->phy_state = PHY_NOT_PRESENT;
1998                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1999                 return res;
2000         case SMP_RESP_PHY_VACANT:
2001                 phy->phy_state = PHY_VACANT;
2002                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2003                 return res;
2004         case SMP_RESP_FUNC_ACC:
2005                 break;
2006         case -ECOMM:
2007                 break;
2008         default:
2009                 return res;
2010         }
2011
2012         if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2013                 phy->phy_state = PHY_EMPTY;
2014                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2015                 return res;
2016         } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2017                    dev_type_flutter(type, phy->attached_dev_type)) {
2018                 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2019                 char *action = "";
2020
2021                 sas_ex_phy_discover(dev, phy_id);
2022
2023                 if (ata_dev && phy->attached_dev_type == SATA_PENDING)
2024                         action = ", needs recovery";
2025                 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2026                             SAS_ADDR(dev->sas_addr), phy_id, action);
2027                 return res;
2028         }
2029
2030         /* delete the old link */
2031         if (SAS_ADDR(phy->attached_sas_addr) &&
2032             SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2033                 SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2034                             SAS_ADDR(dev->sas_addr), phy_id,
2035                             SAS_ADDR(phy->attached_sas_addr));
2036                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2037         }
2038
2039         return sas_discover_new(dev, phy_id);
2040 }
2041
2042 /**
2043  * sas_rediscover - revalidate the domain.
2044  * @dev:domain device to be detect.
2045  * @phy_id: the phy id will be detected.
2046  *
2047  * NOTE: this process _must_ quit (return) as soon as any connection
2048  * errors are encountered.  Connection recovery is done elsewhere.
2049  * Discover process only interrogates devices in order to discover the
2050  * domain.For plugging out, we un-register the device only when it is
2051  * the last phy in the port, for other phys in this port, we just delete it
2052  * from the port.For inserting, we do discovery when it is the
2053  * first phy,for other phys in this port, we add it to the port to
2054  * forming the wide-port.
2055  */
2056 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2057 {
2058         struct expander_device *ex = &dev->ex_dev;
2059         struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2060         int res = 0;
2061         int i;
2062         bool last = true;       /* is this the last phy of the port */
2063
2064         SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2065                     SAS_ADDR(dev->sas_addr), phy_id);
2066
2067         if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2068                 for (i = 0; i < ex->num_phys; i++) {
2069                         struct ex_phy *phy = &ex->ex_phy[i];
2070
2071                         if (i == phy_id)
2072                                 continue;
2073                         if (SAS_ADDR(phy->attached_sas_addr) ==
2074                             SAS_ADDR(changed_phy->attached_sas_addr)) {
2075                                 SAS_DPRINTK("phy%d part of wide port with "
2076                                             "phy%d\n", phy_id, i);
2077                                 last = false;
2078                                 break;
2079                         }
2080                 }
2081                 res = sas_rediscover_dev(dev, phy_id, last);
2082         } else
2083                 res = sas_discover_new(dev, phy_id);
2084         return res;
2085 }
2086
2087 /**
2088  * sas_revalidate_domain -- revalidate the domain
2089  * @port: port to the domain of interest
2090  *
2091  * NOTE: this process _must_ quit (return) as soon as any connection
2092  * errors are encountered.  Connection recovery is done elsewhere.
2093  * Discover process only interrogates devices in order to discover the
2094  * domain.
2095  */
2096 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2097 {
2098         int res;
2099         struct domain_device *dev = NULL;
2100
2101         res = sas_find_bcast_dev(port_dev, &dev);
2102         while (res == 0 && dev) {
2103                 struct expander_device *ex = &dev->ex_dev;
2104                 int i = 0, phy_id;
2105
2106                 do {
2107                         phy_id = -1;
2108                         res = sas_find_bcast_phy(dev, &phy_id, i, true);
2109                         if (phy_id == -1)
2110                                 break;
2111                         res = sas_rediscover(dev, phy_id);
2112                         i = phy_id + 1;
2113                 } while (i < ex->num_phys);
2114
2115                 dev = NULL;
2116                 res = sas_find_bcast_dev(port_dev, &dev);
2117         }
2118         return res;
2119 }
2120
2121 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
2122                     struct request *req)
2123 {
2124         struct domain_device *dev;
2125         int ret, type;
2126         struct request *rsp = req->next_rq;
2127
2128         if (!rsp) {
2129                 printk("%s: space for a smp response is missing\n",
2130                        __func__);
2131                 return -EINVAL;
2132         }
2133
2134         /* no rphy means no smp target support (ie aic94xx host) */
2135         if (!rphy)
2136                 return sas_smp_host_handler(shost, req, rsp);
2137
2138         type = rphy->identify.device_type;
2139
2140         if (type != SAS_EDGE_EXPANDER_DEVICE &&
2141             type != SAS_FANOUT_EXPANDER_DEVICE) {
2142                 printk("%s: can we send a smp request to a device?\n",
2143                        __func__);
2144                 return -EINVAL;
2145         }
2146
2147         dev = sas_find_dev_by_rphy(rphy);
2148         if (!dev) {
2149                 printk("%s: fail to find a domain_device?\n", __func__);
2150                 return -EINVAL;
2151         }
2152
2153         /* do we need to support multiple segments? */
2154         if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
2155                 printk("%s: multiple segments req %u %u, rsp %u %u\n",
2156                        __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
2157                        rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
2158                 return -EINVAL;
2159         }
2160
2161         ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2162                                bio_data(rsp->bio), blk_rq_bytes(rsp));
2163         if (ret > 0) {
2164                 /* positive number is the untransferred residual */
2165                 rsp->resid_len = ret;
2166                 req->resid_len = 0;
2167                 ret = 0;
2168         } else if (ret == 0) {
2169                 rsp->resid_len = 0;
2170                 req->resid_len = 0;
2171         }
2172
2173         return ret;
2174 }