spi: core: Use %zu for printing 'size_t' type
[cascardo/linux.git] / drivers / spi / spi.c
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
43
44 static void spidev_release(struct device *dev)
45 {
46         struct spi_device       *spi = to_spi_device(dev);
47
48         /* spi masters may cleanup for released devices */
49         if (spi->master->cleanup)
50                 spi->master->cleanup(spi);
51
52         spi_master_put(spi->master);
53         kfree(spi);
54 }
55
56 static ssize_t
57 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58 {
59         const struct spi_device *spi = to_spi_device(dev);
60         int len;
61
62         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63         if (len != -ENODEV)
64                 return len;
65
66         return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67 }
68 static DEVICE_ATTR_RO(modalias);
69
70 #define SPI_STATISTICS_ATTRS(field, file)                               \
71 static ssize_t spi_master_##field##_show(struct device *dev,            \
72                                          struct device_attribute *attr, \
73                                          char *buf)                     \
74 {                                                                       \
75         struct spi_master *master = container_of(dev,                   \
76                                                  struct spi_master, dev); \
77         return spi_statistics_##field##_show(&master->statistics, buf); \
78 }                                                                       \
79 static struct device_attribute dev_attr_spi_master_##field = {          \
80         .attr = { .name = file, .mode = S_IRUGO },                      \
81         .show = spi_master_##field##_show,                              \
82 };                                                                      \
83 static ssize_t spi_device_##field##_show(struct device *dev,            \
84                                          struct device_attribute *attr, \
85                                         char *buf)                      \
86 {                                                                       \
87         struct spi_device *spi = to_spi_device(dev);                    \
88         return spi_statistics_##field##_show(&spi->statistics, buf);    \
89 }                                                                       \
90 static struct device_attribute dev_attr_spi_device_##field = {          \
91         .attr = { .name = file, .mode = S_IRUGO },                      \
92         .show = spi_device_##field##_show,                              \
93 }
94
95 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)      \
96 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
97                                             char *buf)                  \
98 {                                                                       \
99         unsigned long flags;                                            \
100         ssize_t len;                                                    \
101         spin_lock_irqsave(&stat->lock, flags);                          \
102         len = sprintf(buf, format_string, stat->field);                 \
103         spin_unlock_irqrestore(&stat->lock, flags);                     \
104         return len;                                                     \
105 }                                                                       \
106 SPI_STATISTICS_ATTRS(name, file)
107
108 #define SPI_STATISTICS_SHOW(field, format_string)                       \
109         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
110                                  field, format_string)
111
112 SPI_STATISTICS_SHOW(messages, "%lu");
113 SPI_STATISTICS_SHOW(transfers, "%lu");
114 SPI_STATISTICS_SHOW(errors, "%lu");
115 SPI_STATISTICS_SHOW(timedout, "%lu");
116
117 SPI_STATISTICS_SHOW(spi_sync, "%lu");
118 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
119 SPI_STATISTICS_SHOW(spi_async, "%lu");
120
121 SPI_STATISTICS_SHOW(bytes, "%llu");
122 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
123 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
124
125 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
126         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
127                                  "transfer_bytes_histo_" number,        \
128                                  transfer_bytes_histo[index],  "%lu")
129 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
146
147 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
148
149 static struct attribute *spi_dev_attrs[] = {
150         &dev_attr_modalias.attr,
151         NULL,
152 };
153
154 static const struct attribute_group spi_dev_group = {
155         .attrs  = spi_dev_attrs,
156 };
157
158 static struct attribute *spi_device_statistics_attrs[] = {
159         &dev_attr_spi_device_messages.attr,
160         &dev_attr_spi_device_transfers.attr,
161         &dev_attr_spi_device_errors.attr,
162         &dev_attr_spi_device_timedout.attr,
163         &dev_attr_spi_device_spi_sync.attr,
164         &dev_attr_spi_device_spi_sync_immediate.attr,
165         &dev_attr_spi_device_spi_async.attr,
166         &dev_attr_spi_device_bytes.attr,
167         &dev_attr_spi_device_bytes_rx.attr,
168         &dev_attr_spi_device_bytes_tx.attr,
169         &dev_attr_spi_device_transfer_bytes_histo0.attr,
170         &dev_attr_spi_device_transfer_bytes_histo1.attr,
171         &dev_attr_spi_device_transfer_bytes_histo2.attr,
172         &dev_attr_spi_device_transfer_bytes_histo3.attr,
173         &dev_attr_spi_device_transfer_bytes_histo4.attr,
174         &dev_attr_spi_device_transfer_bytes_histo5.attr,
175         &dev_attr_spi_device_transfer_bytes_histo6.attr,
176         &dev_attr_spi_device_transfer_bytes_histo7.attr,
177         &dev_attr_spi_device_transfer_bytes_histo8.attr,
178         &dev_attr_spi_device_transfer_bytes_histo9.attr,
179         &dev_attr_spi_device_transfer_bytes_histo10.attr,
180         &dev_attr_spi_device_transfer_bytes_histo11.attr,
181         &dev_attr_spi_device_transfer_bytes_histo12.attr,
182         &dev_attr_spi_device_transfer_bytes_histo13.attr,
183         &dev_attr_spi_device_transfer_bytes_histo14.attr,
184         &dev_attr_spi_device_transfer_bytes_histo15.attr,
185         &dev_attr_spi_device_transfer_bytes_histo16.attr,
186         &dev_attr_spi_device_transfers_split_maxsize.attr,
187         NULL,
188 };
189
190 static const struct attribute_group spi_device_statistics_group = {
191         .name  = "statistics",
192         .attrs  = spi_device_statistics_attrs,
193 };
194
195 static const struct attribute_group *spi_dev_groups[] = {
196         &spi_dev_group,
197         &spi_device_statistics_group,
198         NULL,
199 };
200
201 static struct attribute *spi_master_statistics_attrs[] = {
202         &dev_attr_spi_master_messages.attr,
203         &dev_attr_spi_master_transfers.attr,
204         &dev_attr_spi_master_errors.attr,
205         &dev_attr_spi_master_timedout.attr,
206         &dev_attr_spi_master_spi_sync.attr,
207         &dev_attr_spi_master_spi_sync_immediate.attr,
208         &dev_attr_spi_master_spi_async.attr,
209         &dev_attr_spi_master_bytes.attr,
210         &dev_attr_spi_master_bytes_rx.attr,
211         &dev_attr_spi_master_bytes_tx.attr,
212         &dev_attr_spi_master_transfer_bytes_histo0.attr,
213         &dev_attr_spi_master_transfer_bytes_histo1.attr,
214         &dev_attr_spi_master_transfer_bytes_histo2.attr,
215         &dev_attr_spi_master_transfer_bytes_histo3.attr,
216         &dev_attr_spi_master_transfer_bytes_histo4.attr,
217         &dev_attr_spi_master_transfer_bytes_histo5.attr,
218         &dev_attr_spi_master_transfer_bytes_histo6.attr,
219         &dev_attr_spi_master_transfer_bytes_histo7.attr,
220         &dev_attr_spi_master_transfer_bytes_histo8.attr,
221         &dev_attr_spi_master_transfer_bytes_histo9.attr,
222         &dev_attr_spi_master_transfer_bytes_histo10.attr,
223         &dev_attr_spi_master_transfer_bytes_histo11.attr,
224         &dev_attr_spi_master_transfer_bytes_histo12.attr,
225         &dev_attr_spi_master_transfer_bytes_histo13.attr,
226         &dev_attr_spi_master_transfer_bytes_histo14.attr,
227         &dev_attr_spi_master_transfer_bytes_histo15.attr,
228         &dev_attr_spi_master_transfer_bytes_histo16.attr,
229         &dev_attr_spi_master_transfers_split_maxsize.attr,
230         NULL,
231 };
232
233 static const struct attribute_group spi_master_statistics_group = {
234         .name  = "statistics",
235         .attrs  = spi_master_statistics_attrs,
236 };
237
238 static const struct attribute_group *spi_master_groups[] = {
239         &spi_master_statistics_group,
240         NULL,
241 };
242
243 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
244                                        struct spi_transfer *xfer,
245                                        struct spi_master *master)
246 {
247         unsigned long flags;
248         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
249
250         if (l2len < 0)
251                 l2len = 0;
252
253         spin_lock_irqsave(&stats->lock, flags);
254
255         stats->transfers++;
256         stats->transfer_bytes_histo[l2len]++;
257
258         stats->bytes += xfer->len;
259         if ((xfer->tx_buf) &&
260             (xfer->tx_buf != master->dummy_tx))
261                 stats->bytes_tx += xfer->len;
262         if ((xfer->rx_buf) &&
263             (xfer->rx_buf != master->dummy_rx))
264                 stats->bytes_rx += xfer->len;
265
266         spin_unlock_irqrestore(&stats->lock, flags);
267 }
268 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
269
270 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
271  * and the sysfs version makes coldplug work too.
272  */
273
274 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
275                                                 const struct spi_device *sdev)
276 {
277         while (id->name[0]) {
278                 if (!strcmp(sdev->modalias, id->name))
279                         return id;
280                 id++;
281         }
282         return NULL;
283 }
284
285 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
286 {
287         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
288
289         return spi_match_id(sdrv->id_table, sdev);
290 }
291 EXPORT_SYMBOL_GPL(spi_get_device_id);
292
293 static int spi_match_device(struct device *dev, struct device_driver *drv)
294 {
295         const struct spi_device *spi = to_spi_device(dev);
296         const struct spi_driver *sdrv = to_spi_driver(drv);
297
298         /* Attempt an OF style match */
299         if (of_driver_match_device(dev, drv))
300                 return 1;
301
302         /* Then try ACPI */
303         if (acpi_driver_match_device(dev, drv))
304                 return 1;
305
306         if (sdrv->id_table)
307                 return !!spi_match_id(sdrv->id_table, spi);
308
309         return strcmp(spi->modalias, drv->name) == 0;
310 }
311
312 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
313 {
314         const struct spi_device         *spi = to_spi_device(dev);
315         int rc;
316
317         rc = acpi_device_uevent_modalias(dev, env);
318         if (rc != -ENODEV)
319                 return rc;
320
321         add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
322         return 0;
323 }
324
325 struct bus_type spi_bus_type = {
326         .name           = "spi",
327         .dev_groups     = spi_dev_groups,
328         .match          = spi_match_device,
329         .uevent         = spi_uevent,
330 };
331 EXPORT_SYMBOL_GPL(spi_bus_type);
332
333
334 static int spi_drv_probe(struct device *dev)
335 {
336         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
337         struct spi_device               *spi = to_spi_device(dev);
338         int ret;
339
340         ret = of_clk_set_defaults(dev->of_node, false);
341         if (ret)
342                 return ret;
343
344         if (dev->of_node) {
345                 spi->irq = of_irq_get(dev->of_node, 0);
346                 if (spi->irq == -EPROBE_DEFER)
347                         return -EPROBE_DEFER;
348                 if (spi->irq < 0)
349                         spi->irq = 0;
350         }
351
352         ret = dev_pm_domain_attach(dev, true);
353         if (ret != -EPROBE_DEFER) {
354                 ret = sdrv->probe(spi);
355                 if (ret)
356                         dev_pm_domain_detach(dev, true);
357         }
358
359         return ret;
360 }
361
362 static int spi_drv_remove(struct device *dev)
363 {
364         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
365         int ret;
366
367         ret = sdrv->remove(to_spi_device(dev));
368         dev_pm_domain_detach(dev, true);
369
370         return ret;
371 }
372
373 static void spi_drv_shutdown(struct device *dev)
374 {
375         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
376
377         sdrv->shutdown(to_spi_device(dev));
378 }
379
380 /**
381  * __spi_register_driver - register a SPI driver
382  * @owner: owner module of the driver to register
383  * @sdrv: the driver to register
384  * Context: can sleep
385  *
386  * Return: zero on success, else a negative error code.
387  */
388 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
389 {
390         sdrv->driver.owner = owner;
391         sdrv->driver.bus = &spi_bus_type;
392         if (sdrv->probe)
393                 sdrv->driver.probe = spi_drv_probe;
394         if (sdrv->remove)
395                 sdrv->driver.remove = spi_drv_remove;
396         if (sdrv->shutdown)
397                 sdrv->driver.shutdown = spi_drv_shutdown;
398         return driver_register(&sdrv->driver);
399 }
400 EXPORT_SYMBOL_GPL(__spi_register_driver);
401
402 /*-------------------------------------------------------------------------*/
403
404 /* SPI devices should normally not be created by SPI device drivers; that
405  * would make them board-specific.  Similarly with SPI master drivers.
406  * Device registration normally goes into like arch/.../mach.../board-YYY.c
407  * with other readonly (flashable) information about mainboard devices.
408  */
409
410 struct boardinfo {
411         struct list_head        list;
412         struct spi_board_info   board_info;
413 };
414
415 static LIST_HEAD(board_list);
416 static LIST_HEAD(spi_master_list);
417
418 /*
419  * Used to protect add/del opertion for board_info list and
420  * spi_master list, and their matching process
421  */
422 static DEFINE_MUTEX(board_lock);
423
424 /**
425  * spi_alloc_device - Allocate a new SPI device
426  * @master: Controller to which device is connected
427  * Context: can sleep
428  *
429  * Allows a driver to allocate and initialize a spi_device without
430  * registering it immediately.  This allows a driver to directly
431  * fill the spi_device with device parameters before calling
432  * spi_add_device() on it.
433  *
434  * Caller is responsible to call spi_add_device() on the returned
435  * spi_device structure to add it to the SPI master.  If the caller
436  * needs to discard the spi_device without adding it, then it should
437  * call spi_dev_put() on it.
438  *
439  * Return: a pointer to the new device, or NULL.
440  */
441 struct spi_device *spi_alloc_device(struct spi_master *master)
442 {
443         struct spi_device       *spi;
444
445         if (!spi_master_get(master))
446                 return NULL;
447
448         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
449         if (!spi) {
450                 spi_master_put(master);
451                 return NULL;
452         }
453
454         spi->master = master;
455         spi->dev.parent = &master->dev;
456         spi->dev.bus = &spi_bus_type;
457         spi->dev.release = spidev_release;
458         spi->cs_gpio = -ENOENT;
459
460         spin_lock_init(&spi->statistics.lock);
461
462         device_initialize(&spi->dev);
463         return spi;
464 }
465 EXPORT_SYMBOL_GPL(spi_alloc_device);
466
467 static void spi_dev_set_name(struct spi_device *spi)
468 {
469         struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
470
471         if (adev) {
472                 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
473                 return;
474         }
475
476         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
477                      spi->chip_select);
478 }
479
480 static int spi_dev_check(struct device *dev, void *data)
481 {
482         struct spi_device *spi = to_spi_device(dev);
483         struct spi_device *new_spi = data;
484
485         if (spi->master == new_spi->master &&
486             spi->chip_select == new_spi->chip_select)
487                 return -EBUSY;
488         return 0;
489 }
490
491 /**
492  * spi_add_device - Add spi_device allocated with spi_alloc_device
493  * @spi: spi_device to register
494  *
495  * Companion function to spi_alloc_device.  Devices allocated with
496  * spi_alloc_device can be added onto the spi bus with this function.
497  *
498  * Return: 0 on success; negative errno on failure
499  */
500 int spi_add_device(struct spi_device *spi)
501 {
502         static DEFINE_MUTEX(spi_add_lock);
503         struct spi_master *master = spi->master;
504         struct device *dev = master->dev.parent;
505         int status;
506
507         /* Chipselects are numbered 0..max; validate. */
508         if (spi->chip_select >= master->num_chipselect) {
509                 dev_err(dev, "cs%d >= max %d\n",
510                         spi->chip_select,
511                         master->num_chipselect);
512                 return -EINVAL;
513         }
514
515         /* Set the bus ID string */
516         spi_dev_set_name(spi);
517
518         /* We need to make sure there's no other device with this
519          * chipselect **BEFORE** we call setup(), else we'll trash
520          * its configuration.  Lock against concurrent add() calls.
521          */
522         mutex_lock(&spi_add_lock);
523
524         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
525         if (status) {
526                 dev_err(dev, "chipselect %d already in use\n",
527                                 spi->chip_select);
528                 goto done;
529         }
530
531         if (master->cs_gpios)
532                 spi->cs_gpio = master->cs_gpios[spi->chip_select];
533
534         /* Drivers may modify this initial i/o setup, but will
535          * normally rely on the device being setup.  Devices
536          * using SPI_CS_HIGH can't coexist well otherwise...
537          */
538         status = spi_setup(spi);
539         if (status < 0) {
540                 dev_err(dev, "can't setup %s, status %d\n",
541                                 dev_name(&spi->dev), status);
542                 goto done;
543         }
544
545         /* Device may be bound to an active driver when this returns */
546         status = device_add(&spi->dev);
547         if (status < 0)
548                 dev_err(dev, "can't add %s, status %d\n",
549                                 dev_name(&spi->dev), status);
550         else
551                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
552
553 done:
554         mutex_unlock(&spi_add_lock);
555         return status;
556 }
557 EXPORT_SYMBOL_GPL(spi_add_device);
558
559 /**
560  * spi_new_device - instantiate one new SPI device
561  * @master: Controller to which device is connected
562  * @chip: Describes the SPI device
563  * Context: can sleep
564  *
565  * On typical mainboards, this is purely internal; and it's not needed
566  * after board init creates the hard-wired devices.  Some development
567  * platforms may not be able to use spi_register_board_info though, and
568  * this is exported so that for example a USB or parport based adapter
569  * driver could add devices (which it would learn about out-of-band).
570  *
571  * Return: the new device, or NULL.
572  */
573 struct spi_device *spi_new_device(struct spi_master *master,
574                                   struct spi_board_info *chip)
575 {
576         struct spi_device       *proxy;
577         int                     status;
578
579         /* NOTE:  caller did any chip->bus_num checks necessary.
580          *
581          * Also, unless we change the return value convention to use
582          * error-or-pointer (not NULL-or-pointer), troubleshootability
583          * suggests syslogged diagnostics are best here (ugh).
584          */
585
586         proxy = spi_alloc_device(master);
587         if (!proxy)
588                 return NULL;
589
590         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
591
592         proxy->chip_select = chip->chip_select;
593         proxy->max_speed_hz = chip->max_speed_hz;
594         proxy->mode = chip->mode;
595         proxy->irq = chip->irq;
596         strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
597         proxy->dev.platform_data = (void *) chip->platform_data;
598         proxy->controller_data = chip->controller_data;
599         proxy->controller_state = NULL;
600
601         status = spi_add_device(proxy);
602         if (status < 0) {
603                 spi_dev_put(proxy);
604                 return NULL;
605         }
606
607         return proxy;
608 }
609 EXPORT_SYMBOL_GPL(spi_new_device);
610
611 /**
612  * spi_unregister_device - unregister a single SPI device
613  * @spi: spi_device to unregister
614  *
615  * Start making the passed SPI device vanish. Normally this would be handled
616  * by spi_unregister_master().
617  */
618 void spi_unregister_device(struct spi_device *spi)
619 {
620         if (!spi)
621                 return;
622
623         if (spi->dev.of_node)
624                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
625         device_unregister(&spi->dev);
626 }
627 EXPORT_SYMBOL_GPL(spi_unregister_device);
628
629 static void spi_match_master_to_boardinfo(struct spi_master *master,
630                                 struct spi_board_info *bi)
631 {
632         struct spi_device *dev;
633
634         if (master->bus_num != bi->bus_num)
635                 return;
636
637         dev = spi_new_device(master, bi);
638         if (!dev)
639                 dev_err(master->dev.parent, "can't create new device for %s\n",
640                         bi->modalias);
641 }
642
643 /**
644  * spi_register_board_info - register SPI devices for a given board
645  * @info: array of chip descriptors
646  * @n: how many descriptors are provided
647  * Context: can sleep
648  *
649  * Board-specific early init code calls this (probably during arch_initcall)
650  * with segments of the SPI device table.  Any device nodes are created later,
651  * after the relevant parent SPI controller (bus_num) is defined.  We keep
652  * this table of devices forever, so that reloading a controller driver will
653  * not make Linux forget about these hard-wired devices.
654  *
655  * Other code can also call this, e.g. a particular add-on board might provide
656  * SPI devices through its expansion connector, so code initializing that board
657  * would naturally declare its SPI devices.
658  *
659  * The board info passed can safely be __initdata ... but be careful of
660  * any embedded pointers (platform_data, etc), they're copied as-is.
661  *
662  * Return: zero on success, else a negative error code.
663  */
664 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
665 {
666         struct boardinfo *bi;
667         int i;
668
669         if (!n)
670                 return -EINVAL;
671
672         bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
673         if (!bi)
674                 return -ENOMEM;
675
676         for (i = 0; i < n; i++, bi++, info++) {
677                 struct spi_master *master;
678
679                 memcpy(&bi->board_info, info, sizeof(*info));
680                 mutex_lock(&board_lock);
681                 list_add_tail(&bi->list, &board_list);
682                 list_for_each_entry(master, &spi_master_list, list)
683                         spi_match_master_to_boardinfo(master, &bi->board_info);
684                 mutex_unlock(&board_lock);
685         }
686
687         return 0;
688 }
689
690 /*-------------------------------------------------------------------------*/
691
692 static void spi_set_cs(struct spi_device *spi, bool enable)
693 {
694         if (spi->mode & SPI_CS_HIGH)
695                 enable = !enable;
696
697         if (gpio_is_valid(spi->cs_gpio))
698                 gpio_set_value(spi->cs_gpio, !enable);
699         else if (spi->master->set_cs)
700                 spi->master->set_cs(spi, !enable);
701 }
702
703 #ifdef CONFIG_HAS_DMA
704 static int spi_map_buf(struct spi_master *master, struct device *dev,
705                        struct sg_table *sgt, void *buf, size_t len,
706                        enum dma_data_direction dir)
707 {
708         const bool vmalloced_buf = is_vmalloc_addr(buf);
709         int desc_len;
710         int sgs;
711         struct page *vm_page;
712         void *sg_buf;
713         size_t min;
714         int i, ret;
715
716         if (vmalloced_buf) {
717                 desc_len = PAGE_SIZE;
718                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
719         } else {
720                 desc_len = master->max_dma_len;
721                 sgs = DIV_ROUND_UP(len, desc_len);
722         }
723
724         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
725         if (ret != 0)
726                 return ret;
727
728         for (i = 0; i < sgs; i++) {
729
730                 if (vmalloced_buf) {
731                         min = min_t(size_t,
732                                     len, desc_len - offset_in_page(buf));
733                         vm_page = vmalloc_to_page(buf);
734                         if (!vm_page) {
735                                 sg_free_table(sgt);
736                                 return -ENOMEM;
737                         }
738                         sg_set_page(&sgt->sgl[i], vm_page,
739                                     min, offset_in_page(buf));
740                 } else {
741                         min = min_t(size_t, len, desc_len);
742                         sg_buf = buf;
743                         sg_set_buf(&sgt->sgl[i], sg_buf, min);
744                 }
745
746
747                 buf += min;
748                 len -= min;
749         }
750
751         ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
752         if (!ret)
753                 ret = -ENOMEM;
754         if (ret < 0) {
755                 sg_free_table(sgt);
756                 return ret;
757         }
758
759         sgt->nents = ret;
760
761         return 0;
762 }
763
764 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
765                           struct sg_table *sgt, enum dma_data_direction dir)
766 {
767         if (sgt->orig_nents) {
768                 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
769                 sg_free_table(sgt);
770         }
771 }
772
773 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
774 {
775         struct device *tx_dev, *rx_dev;
776         struct spi_transfer *xfer;
777         int ret;
778
779         if (!master->can_dma)
780                 return 0;
781
782         if (master->dma_tx)
783                 tx_dev = master->dma_tx->device->dev;
784         else
785                 tx_dev = &master->dev;
786
787         if (master->dma_rx)
788                 rx_dev = master->dma_rx->device->dev;
789         else
790                 rx_dev = &master->dev;
791
792         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
793                 if (!master->can_dma(master, msg->spi, xfer))
794                         continue;
795
796                 if (xfer->tx_buf != NULL) {
797                         ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
798                                           (void *)xfer->tx_buf, xfer->len,
799                                           DMA_TO_DEVICE);
800                         if (ret != 0)
801                                 return ret;
802                 }
803
804                 if (xfer->rx_buf != NULL) {
805                         ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
806                                           xfer->rx_buf, xfer->len,
807                                           DMA_FROM_DEVICE);
808                         if (ret != 0) {
809                                 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
810                                               DMA_TO_DEVICE);
811                                 return ret;
812                         }
813                 }
814         }
815
816         master->cur_msg_mapped = true;
817
818         return 0;
819 }
820
821 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
822 {
823         struct spi_transfer *xfer;
824         struct device *tx_dev, *rx_dev;
825
826         if (!master->cur_msg_mapped || !master->can_dma)
827                 return 0;
828
829         if (master->dma_tx)
830                 tx_dev = master->dma_tx->device->dev;
831         else
832                 tx_dev = &master->dev;
833
834         if (master->dma_rx)
835                 rx_dev = master->dma_rx->device->dev;
836         else
837                 rx_dev = &master->dev;
838
839         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
840                 if (!master->can_dma(master, msg->spi, xfer))
841                         continue;
842
843                 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
844                 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
845         }
846
847         return 0;
848 }
849 #else /* !CONFIG_HAS_DMA */
850 static inline int __spi_map_msg(struct spi_master *master,
851                                 struct spi_message *msg)
852 {
853         return 0;
854 }
855
856 static inline int __spi_unmap_msg(struct spi_master *master,
857                                   struct spi_message *msg)
858 {
859         return 0;
860 }
861 #endif /* !CONFIG_HAS_DMA */
862
863 static inline int spi_unmap_msg(struct spi_master *master,
864                                 struct spi_message *msg)
865 {
866         struct spi_transfer *xfer;
867
868         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
869                 /*
870                  * Restore the original value of tx_buf or rx_buf if they are
871                  * NULL.
872                  */
873                 if (xfer->tx_buf == master->dummy_tx)
874                         xfer->tx_buf = NULL;
875                 if (xfer->rx_buf == master->dummy_rx)
876                         xfer->rx_buf = NULL;
877         }
878
879         return __spi_unmap_msg(master, msg);
880 }
881
882 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
883 {
884         struct spi_transfer *xfer;
885         void *tmp;
886         unsigned int max_tx, max_rx;
887
888         if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
889                 max_tx = 0;
890                 max_rx = 0;
891
892                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
893                         if ((master->flags & SPI_MASTER_MUST_TX) &&
894                             !xfer->tx_buf)
895                                 max_tx = max(xfer->len, max_tx);
896                         if ((master->flags & SPI_MASTER_MUST_RX) &&
897                             !xfer->rx_buf)
898                                 max_rx = max(xfer->len, max_rx);
899                 }
900
901                 if (max_tx) {
902                         tmp = krealloc(master->dummy_tx, max_tx,
903                                        GFP_KERNEL | GFP_DMA);
904                         if (!tmp)
905                                 return -ENOMEM;
906                         master->dummy_tx = tmp;
907                         memset(tmp, 0, max_tx);
908                 }
909
910                 if (max_rx) {
911                         tmp = krealloc(master->dummy_rx, max_rx,
912                                        GFP_KERNEL | GFP_DMA);
913                         if (!tmp)
914                                 return -ENOMEM;
915                         master->dummy_rx = tmp;
916                 }
917
918                 if (max_tx || max_rx) {
919                         list_for_each_entry(xfer, &msg->transfers,
920                                             transfer_list) {
921                                 if (!xfer->tx_buf)
922                                         xfer->tx_buf = master->dummy_tx;
923                                 if (!xfer->rx_buf)
924                                         xfer->rx_buf = master->dummy_rx;
925                         }
926                 }
927         }
928
929         return __spi_map_msg(master, msg);
930 }
931
932 /*
933  * spi_transfer_one_message - Default implementation of transfer_one_message()
934  *
935  * This is a standard implementation of transfer_one_message() for
936  * drivers which impelment a transfer_one() operation.  It provides
937  * standard handling of delays and chip select management.
938  */
939 static int spi_transfer_one_message(struct spi_master *master,
940                                     struct spi_message *msg)
941 {
942         struct spi_transfer *xfer;
943         bool keep_cs = false;
944         int ret = 0;
945         unsigned long ms = 1;
946         struct spi_statistics *statm = &master->statistics;
947         struct spi_statistics *stats = &msg->spi->statistics;
948
949         spi_set_cs(msg->spi, true);
950
951         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
952         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
953
954         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
955                 trace_spi_transfer_start(msg, xfer);
956
957                 spi_statistics_add_transfer_stats(statm, xfer, master);
958                 spi_statistics_add_transfer_stats(stats, xfer, master);
959
960                 if (xfer->tx_buf || xfer->rx_buf) {
961                         reinit_completion(&master->xfer_completion);
962
963                         ret = master->transfer_one(master, msg->spi, xfer);
964                         if (ret < 0) {
965                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
966                                                                errors);
967                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
968                                                                errors);
969                                 dev_err(&msg->spi->dev,
970                                         "SPI transfer failed: %d\n", ret);
971                                 goto out;
972                         }
973
974                         if (ret > 0) {
975                                 ret = 0;
976                                 ms = xfer->len * 8 * 1000 / xfer->speed_hz;
977                                 ms += ms + 100; /* some tolerance */
978
979                                 ms = wait_for_completion_timeout(&master->xfer_completion,
980                                                                  msecs_to_jiffies(ms));
981                         }
982
983                         if (ms == 0) {
984                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
985                                                                timedout);
986                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
987                                                                timedout);
988                                 dev_err(&msg->spi->dev,
989                                         "SPI transfer timed out\n");
990                                 msg->status = -ETIMEDOUT;
991                         }
992                 } else {
993                         if (xfer->len)
994                                 dev_err(&msg->spi->dev,
995                                         "Bufferless transfer has length %u\n",
996                                         xfer->len);
997                 }
998
999                 trace_spi_transfer_stop(msg, xfer);
1000
1001                 if (msg->status != -EINPROGRESS)
1002                         goto out;
1003
1004                 if (xfer->delay_usecs)
1005                         udelay(xfer->delay_usecs);
1006
1007                 if (xfer->cs_change) {
1008                         if (list_is_last(&xfer->transfer_list,
1009                                          &msg->transfers)) {
1010                                 keep_cs = true;
1011                         } else {
1012                                 spi_set_cs(msg->spi, false);
1013                                 udelay(10);
1014                                 spi_set_cs(msg->spi, true);
1015                         }
1016                 }
1017
1018                 msg->actual_length += xfer->len;
1019         }
1020
1021 out:
1022         if (ret != 0 || !keep_cs)
1023                 spi_set_cs(msg->spi, false);
1024
1025         if (msg->status == -EINPROGRESS)
1026                 msg->status = ret;
1027
1028         if (msg->status && master->handle_err)
1029                 master->handle_err(master, msg);
1030
1031         spi_res_release(master, msg);
1032
1033         spi_finalize_current_message(master);
1034
1035         return ret;
1036 }
1037
1038 /**
1039  * spi_finalize_current_transfer - report completion of a transfer
1040  * @master: the master reporting completion
1041  *
1042  * Called by SPI drivers using the core transfer_one_message()
1043  * implementation to notify it that the current interrupt driven
1044  * transfer has finished and the next one may be scheduled.
1045  */
1046 void spi_finalize_current_transfer(struct spi_master *master)
1047 {
1048         complete(&master->xfer_completion);
1049 }
1050 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1051
1052 /**
1053  * __spi_pump_messages - function which processes spi message queue
1054  * @master: master to process queue for
1055  * @in_kthread: true if we are in the context of the message pump thread
1056  *
1057  * This function checks if there is any spi message in the queue that
1058  * needs processing and if so call out to the driver to initialize hardware
1059  * and transfer each message.
1060  *
1061  * Note that it is called both from the kthread itself and also from
1062  * inside spi_sync(); the queue extraction handling at the top of the
1063  * function should deal with this safely.
1064  */
1065 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1066 {
1067         unsigned long flags;
1068         bool was_busy = false;
1069         int ret;
1070
1071         /* Lock queue */
1072         spin_lock_irqsave(&master->queue_lock, flags);
1073
1074         /* Make sure we are not already running a message */
1075         if (master->cur_msg) {
1076                 spin_unlock_irqrestore(&master->queue_lock, flags);
1077                 return;
1078         }
1079
1080         /* If another context is idling the device then defer */
1081         if (master->idling) {
1082                 queue_kthread_work(&master->kworker, &master->pump_messages);
1083                 spin_unlock_irqrestore(&master->queue_lock, flags);
1084                 return;
1085         }
1086
1087         /* Check if the queue is idle */
1088         if (list_empty(&master->queue) || !master->running) {
1089                 if (!master->busy) {
1090                         spin_unlock_irqrestore(&master->queue_lock, flags);
1091                         return;
1092                 }
1093
1094                 /* Only do teardown in the thread */
1095                 if (!in_kthread) {
1096                         queue_kthread_work(&master->kworker,
1097                                            &master->pump_messages);
1098                         spin_unlock_irqrestore(&master->queue_lock, flags);
1099                         return;
1100                 }
1101
1102                 master->busy = false;
1103                 master->idling = true;
1104                 spin_unlock_irqrestore(&master->queue_lock, flags);
1105
1106                 kfree(master->dummy_rx);
1107                 master->dummy_rx = NULL;
1108                 kfree(master->dummy_tx);
1109                 master->dummy_tx = NULL;
1110                 if (master->unprepare_transfer_hardware &&
1111                     master->unprepare_transfer_hardware(master))
1112                         dev_err(&master->dev,
1113                                 "failed to unprepare transfer hardware\n");
1114                 if (master->auto_runtime_pm) {
1115                         pm_runtime_mark_last_busy(master->dev.parent);
1116                         pm_runtime_put_autosuspend(master->dev.parent);
1117                 }
1118                 trace_spi_master_idle(master);
1119
1120                 spin_lock_irqsave(&master->queue_lock, flags);
1121                 master->idling = false;
1122                 spin_unlock_irqrestore(&master->queue_lock, flags);
1123                 return;
1124         }
1125
1126         /* Extract head of queue */
1127         master->cur_msg =
1128                 list_first_entry(&master->queue, struct spi_message, queue);
1129
1130         list_del_init(&master->cur_msg->queue);
1131         if (master->busy)
1132                 was_busy = true;
1133         else
1134                 master->busy = true;
1135         spin_unlock_irqrestore(&master->queue_lock, flags);
1136
1137         if (!was_busy && master->auto_runtime_pm) {
1138                 ret = pm_runtime_get_sync(master->dev.parent);
1139                 if (ret < 0) {
1140                         dev_err(&master->dev, "Failed to power device: %d\n",
1141                                 ret);
1142                         return;
1143                 }
1144         }
1145
1146         if (!was_busy)
1147                 trace_spi_master_busy(master);
1148
1149         if (!was_busy && master->prepare_transfer_hardware) {
1150                 ret = master->prepare_transfer_hardware(master);
1151                 if (ret) {
1152                         dev_err(&master->dev,
1153                                 "failed to prepare transfer hardware\n");
1154
1155                         if (master->auto_runtime_pm)
1156                                 pm_runtime_put(master->dev.parent);
1157                         return;
1158                 }
1159         }
1160
1161         trace_spi_message_start(master->cur_msg);
1162
1163         if (master->prepare_message) {
1164                 ret = master->prepare_message(master, master->cur_msg);
1165                 if (ret) {
1166                         dev_err(&master->dev,
1167                                 "failed to prepare message: %d\n", ret);
1168                         master->cur_msg->status = ret;
1169                         spi_finalize_current_message(master);
1170                         return;
1171                 }
1172                 master->cur_msg_prepared = true;
1173         }
1174
1175         ret = spi_map_msg(master, master->cur_msg);
1176         if (ret) {
1177                 master->cur_msg->status = ret;
1178                 spi_finalize_current_message(master);
1179                 return;
1180         }
1181
1182         ret = master->transfer_one_message(master, master->cur_msg);
1183         if (ret) {
1184                 dev_err(&master->dev,
1185                         "failed to transfer one message from queue\n");
1186                 return;
1187         }
1188 }
1189
1190 /**
1191  * spi_pump_messages - kthread work function which processes spi message queue
1192  * @work: pointer to kthread work struct contained in the master struct
1193  */
1194 static void spi_pump_messages(struct kthread_work *work)
1195 {
1196         struct spi_master *master =
1197                 container_of(work, struct spi_master, pump_messages);
1198
1199         __spi_pump_messages(master, true);
1200 }
1201
1202 static int spi_init_queue(struct spi_master *master)
1203 {
1204         struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1205
1206         master->running = false;
1207         master->busy = false;
1208
1209         init_kthread_worker(&master->kworker);
1210         master->kworker_task = kthread_run(kthread_worker_fn,
1211                                            &master->kworker, "%s",
1212                                            dev_name(&master->dev));
1213         if (IS_ERR(master->kworker_task)) {
1214                 dev_err(&master->dev, "failed to create message pump task\n");
1215                 return PTR_ERR(master->kworker_task);
1216         }
1217         init_kthread_work(&master->pump_messages, spi_pump_messages);
1218
1219         /*
1220          * Master config will indicate if this controller should run the
1221          * message pump with high (realtime) priority to reduce the transfer
1222          * latency on the bus by minimising the delay between a transfer
1223          * request and the scheduling of the message pump thread. Without this
1224          * setting the message pump thread will remain at default priority.
1225          */
1226         if (master->rt) {
1227                 dev_info(&master->dev,
1228                         "will run message pump with realtime priority\n");
1229                 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1230         }
1231
1232         return 0;
1233 }
1234
1235 /**
1236  * spi_get_next_queued_message() - called by driver to check for queued
1237  * messages
1238  * @master: the master to check for queued messages
1239  *
1240  * If there are more messages in the queue, the next message is returned from
1241  * this call.
1242  *
1243  * Return: the next message in the queue, else NULL if the queue is empty.
1244  */
1245 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1246 {
1247         struct spi_message *next;
1248         unsigned long flags;
1249
1250         /* get a pointer to the next message, if any */
1251         spin_lock_irqsave(&master->queue_lock, flags);
1252         next = list_first_entry_or_null(&master->queue, struct spi_message,
1253                                         queue);
1254         spin_unlock_irqrestore(&master->queue_lock, flags);
1255
1256         return next;
1257 }
1258 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1259
1260 /**
1261  * spi_finalize_current_message() - the current message is complete
1262  * @master: the master to return the message to
1263  *
1264  * Called by the driver to notify the core that the message in the front of the
1265  * queue is complete and can be removed from the queue.
1266  */
1267 void spi_finalize_current_message(struct spi_master *master)
1268 {
1269         struct spi_message *mesg;
1270         unsigned long flags;
1271         int ret;
1272
1273         spin_lock_irqsave(&master->queue_lock, flags);
1274         mesg = master->cur_msg;
1275         spin_unlock_irqrestore(&master->queue_lock, flags);
1276
1277         spi_unmap_msg(master, mesg);
1278
1279         if (master->cur_msg_prepared && master->unprepare_message) {
1280                 ret = master->unprepare_message(master, mesg);
1281                 if (ret) {
1282                         dev_err(&master->dev,
1283                                 "failed to unprepare message: %d\n", ret);
1284                 }
1285         }
1286
1287         spin_lock_irqsave(&master->queue_lock, flags);
1288         master->cur_msg = NULL;
1289         master->cur_msg_prepared = false;
1290         queue_kthread_work(&master->kworker, &master->pump_messages);
1291         spin_unlock_irqrestore(&master->queue_lock, flags);
1292
1293         trace_spi_message_done(mesg);
1294
1295         mesg->state = NULL;
1296         if (mesg->complete)
1297                 mesg->complete(mesg->context);
1298 }
1299 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1300
1301 static int spi_start_queue(struct spi_master *master)
1302 {
1303         unsigned long flags;
1304
1305         spin_lock_irqsave(&master->queue_lock, flags);
1306
1307         if (master->running || master->busy) {
1308                 spin_unlock_irqrestore(&master->queue_lock, flags);
1309                 return -EBUSY;
1310         }
1311
1312         master->running = true;
1313         master->cur_msg = NULL;
1314         spin_unlock_irqrestore(&master->queue_lock, flags);
1315
1316         queue_kthread_work(&master->kworker, &master->pump_messages);
1317
1318         return 0;
1319 }
1320
1321 static int spi_stop_queue(struct spi_master *master)
1322 {
1323         unsigned long flags;
1324         unsigned limit = 500;
1325         int ret = 0;
1326
1327         spin_lock_irqsave(&master->queue_lock, flags);
1328
1329         /*
1330          * This is a bit lame, but is optimized for the common execution path.
1331          * A wait_queue on the master->busy could be used, but then the common
1332          * execution path (pump_messages) would be required to call wake_up or
1333          * friends on every SPI message. Do this instead.
1334          */
1335         while ((!list_empty(&master->queue) || master->busy) && limit--) {
1336                 spin_unlock_irqrestore(&master->queue_lock, flags);
1337                 usleep_range(10000, 11000);
1338                 spin_lock_irqsave(&master->queue_lock, flags);
1339         }
1340
1341         if (!list_empty(&master->queue) || master->busy)
1342                 ret = -EBUSY;
1343         else
1344                 master->running = false;
1345
1346         spin_unlock_irqrestore(&master->queue_lock, flags);
1347
1348         if (ret) {
1349                 dev_warn(&master->dev,
1350                          "could not stop message queue\n");
1351                 return ret;
1352         }
1353         return ret;
1354 }
1355
1356 static int spi_destroy_queue(struct spi_master *master)
1357 {
1358         int ret;
1359
1360         ret = spi_stop_queue(master);
1361
1362         /*
1363          * flush_kthread_worker will block until all work is done.
1364          * If the reason that stop_queue timed out is that the work will never
1365          * finish, then it does no good to call flush/stop thread, so
1366          * return anyway.
1367          */
1368         if (ret) {
1369                 dev_err(&master->dev, "problem destroying queue\n");
1370                 return ret;
1371         }
1372
1373         flush_kthread_worker(&master->kworker);
1374         kthread_stop(master->kworker_task);
1375
1376         return 0;
1377 }
1378
1379 static int __spi_queued_transfer(struct spi_device *spi,
1380                                  struct spi_message *msg,
1381                                  bool need_pump)
1382 {
1383         struct spi_master *master = spi->master;
1384         unsigned long flags;
1385
1386         spin_lock_irqsave(&master->queue_lock, flags);
1387
1388         if (!master->running) {
1389                 spin_unlock_irqrestore(&master->queue_lock, flags);
1390                 return -ESHUTDOWN;
1391         }
1392         msg->actual_length = 0;
1393         msg->status = -EINPROGRESS;
1394
1395         list_add_tail(&msg->queue, &master->queue);
1396         if (!master->busy && need_pump)
1397                 queue_kthread_work(&master->kworker, &master->pump_messages);
1398
1399         spin_unlock_irqrestore(&master->queue_lock, flags);
1400         return 0;
1401 }
1402
1403 /**
1404  * spi_queued_transfer - transfer function for queued transfers
1405  * @spi: spi device which is requesting transfer
1406  * @msg: spi message which is to handled is queued to driver queue
1407  *
1408  * Return: zero on success, else a negative error code.
1409  */
1410 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1411 {
1412         return __spi_queued_transfer(spi, msg, true);
1413 }
1414
1415 static int spi_master_initialize_queue(struct spi_master *master)
1416 {
1417         int ret;
1418
1419         master->transfer = spi_queued_transfer;
1420         if (!master->transfer_one_message)
1421                 master->transfer_one_message = spi_transfer_one_message;
1422
1423         /* Initialize and start queue */
1424         ret = spi_init_queue(master);
1425         if (ret) {
1426                 dev_err(&master->dev, "problem initializing queue\n");
1427                 goto err_init_queue;
1428         }
1429         master->queued = true;
1430         ret = spi_start_queue(master);
1431         if (ret) {
1432                 dev_err(&master->dev, "problem starting queue\n");
1433                 goto err_start_queue;
1434         }
1435
1436         return 0;
1437
1438 err_start_queue:
1439         spi_destroy_queue(master);
1440 err_init_queue:
1441         return ret;
1442 }
1443
1444 /*-------------------------------------------------------------------------*/
1445
1446 #if defined(CONFIG_OF)
1447 static struct spi_device *
1448 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1449 {
1450         struct spi_device *spi;
1451         int rc;
1452         u32 value;
1453
1454         /* Alloc an spi_device */
1455         spi = spi_alloc_device(master);
1456         if (!spi) {
1457                 dev_err(&master->dev, "spi_device alloc error for %s\n",
1458                         nc->full_name);
1459                 rc = -ENOMEM;
1460                 goto err_out;
1461         }
1462
1463         /* Select device driver */
1464         rc = of_modalias_node(nc, spi->modalias,
1465                                 sizeof(spi->modalias));
1466         if (rc < 0) {
1467                 dev_err(&master->dev, "cannot find modalias for %s\n",
1468                         nc->full_name);
1469                 goto err_out;
1470         }
1471
1472         /* Device address */
1473         rc = of_property_read_u32(nc, "reg", &value);
1474         if (rc) {
1475                 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1476                         nc->full_name, rc);
1477                 goto err_out;
1478         }
1479         spi->chip_select = value;
1480
1481         /* Mode (clock phase/polarity/etc.) */
1482         if (of_find_property(nc, "spi-cpha", NULL))
1483                 spi->mode |= SPI_CPHA;
1484         if (of_find_property(nc, "spi-cpol", NULL))
1485                 spi->mode |= SPI_CPOL;
1486         if (of_find_property(nc, "spi-cs-high", NULL))
1487                 spi->mode |= SPI_CS_HIGH;
1488         if (of_find_property(nc, "spi-3wire", NULL))
1489                 spi->mode |= SPI_3WIRE;
1490         if (of_find_property(nc, "spi-lsb-first", NULL))
1491                 spi->mode |= SPI_LSB_FIRST;
1492
1493         /* Device DUAL/QUAD mode */
1494         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1495                 switch (value) {
1496                 case 1:
1497                         break;
1498                 case 2:
1499                         spi->mode |= SPI_TX_DUAL;
1500                         break;
1501                 case 4:
1502                         spi->mode |= SPI_TX_QUAD;
1503                         break;
1504                 default:
1505                         dev_warn(&master->dev,
1506                                 "spi-tx-bus-width %d not supported\n",
1507                                 value);
1508                         break;
1509                 }
1510         }
1511
1512         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1513                 switch (value) {
1514                 case 1:
1515                         break;
1516                 case 2:
1517                         spi->mode |= SPI_RX_DUAL;
1518                         break;
1519                 case 4:
1520                         spi->mode |= SPI_RX_QUAD;
1521                         break;
1522                 default:
1523                         dev_warn(&master->dev,
1524                                 "spi-rx-bus-width %d not supported\n",
1525                                 value);
1526                         break;
1527                 }
1528         }
1529
1530         /* Device speed */
1531         rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1532         if (rc) {
1533                 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1534                         nc->full_name, rc);
1535                 goto err_out;
1536         }
1537         spi->max_speed_hz = value;
1538
1539         /* Store a pointer to the node in the device structure */
1540         of_node_get(nc);
1541         spi->dev.of_node = nc;
1542
1543         /* Register the new device */
1544         rc = spi_add_device(spi);
1545         if (rc) {
1546                 dev_err(&master->dev, "spi_device register error %s\n",
1547                         nc->full_name);
1548                 goto err_out;
1549         }
1550
1551         return spi;
1552
1553 err_out:
1554         spi_dev_put(spi);
1555         return ERR_PTR(rc);
1556 }
1557
1558 /**
1559  * of_register_spi_devices() - Register child devices onto the SPI bus
1560  * @master:     Pointer to spi_master device
1561  *
1562  * Registers an spi_device for each child node of master node which has a 'reg'
1563  * property.
1564  */
1565 static void of_register_spi_devices(struct spi_master *master)
1566 {
1567         struct spi_device *spi;
1568         struct device_node *nc;
1569
1570         if (!master->dev.of_node)
1571                 return;
1572
1573         for_each_available_child_of_node(master->dev.of_node, nc) {
1574                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1575                         continue;
1576                 spi = of_register_spi_device(master, nc);
1577                 if (IS_ERR(spi))
1578                         dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1579                                 nc->full_name);
1580         }
1581 }
1582 #else
1583 static void of_register_spi_devices(struct spi_master *master) { }
1584 #endif
1585
1586 #ifdef CONFIG_ACPI
1587 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1588 {
1589         struct spi_device *spi = data;
1590
1591         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1592                 struct acpi_resource_spi_serialbus *sb;
1593
1594                 sb = &ares->data.spi_serial_bus;
1595                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1596                         spi->chip_select = sb->device_selection;
1597                         spi->max_speed_hz = sb->connection_speed;
1598
1599                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1600                                 spi->mode |= SPI_CPHA;
1601                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1602                                 spi->mode |= SPI_CPOL;
1603                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1604                                 spi->mode |= SPI_CS_HIGH;
1605                 }
1606         } else if (spi->irq < 0) {
1607                 struct resource r;
1608
1609                 if (acpi_dev_resource_interrupt(ares, 0, &r))
1610                         spi->irq = r.start;
1611         }
1612
1613         /* Always tell the ACPI core to skip this resource */
1614         return 1;
1615 }
1616
1617 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1618                                        void *data, void **return_value)
1619 {
1620         struct spi_master *master = data;
1621         struct list_head resource_list;
1622         struct acpi_device *adev;
1623         struct spi_device *spi;
1624         int ret;
1625
1626         if (acpi_bus_get_device(handle, &adev))
1627                 return AE_OK;
1628         if (acpi_bus_get_status(adev) || !adev->status.present)
1629                 return AE_OK;
1630
1631         spi = spi_alloc_device(master);
1632         if (!spi) {
1633                 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1634                         dev_name(&adev->dev));
1635                 return AE_NO_MEMORY;
1636         }
1637
1638         ACPI_COMPANION_SET(&spi->dev, adev);
1639         spi->irq = -1;
1640
1641         INIT_LIST_HEAD(&resource_list);
1642         ret = acpi_dev_get_resources(adev, &resource_list,
1643                                      acpi_spi_add_resource, spi);
1644         acpi_dev_free_resource_list(&resource_list);
1645
1646         if (ret < 0 || !spi->max_speed_hz) {
1647                 spi_dev_put(spi);
1648                 return AE_OK;
1649         }
1650
1651         if (spi->irq < 0)
1652                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1653
1654         adev->power.flags.ignore_parent = true;
1655         strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1656         if (spi_add_device(spi)) {
1657                 adev->power.flags.ignore_parent = false;
1658                 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1659                         dev_name(&adev->dev));
1660                 spi_dev_put(spi);
1661         }
1662
1663         return AE_OK;
1664 }
1665
1666 static void acpi_register_spi_devices(struct spi_master *master)
1667 {
1668         acpi_status status;
1669         acpi_handle handle;
1670
1671         handle = ACPI_HANDLE(master->dev.parent);
1672         if (!handle)
1673                 return;
1674
1675         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1676                                      acpi_spi_add_device, NULL,
1677                                      master, NULL);
1678         if (ACPI_FAILURE(status))
1679                 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1680 }
1681 #else
1682 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1683 #endif /* CONFIG_ACPI */
1684
1685 static void spi_master_release(struct device *dev)
1686 {
1687         struct spi_master *master;
1688
1689         master = container_of(dev, struct spi_master, dev);
1690         kfree(master);
1691 }
1692
1693 static struct class spi_master_class = {
1694         .name           = "spi_master",
1695         .owner          = THIS_MODULE,
1696         .dev_release    = spi_master_release,
1697         .dev_groups     = spi_master_groups,
1698 };
1699
1700
1701 /**
1702  * spi_alloc_master - allocate SPI master controller
1703  * @dev: the controller, possibly using the platform_bus
1704  * @size: how much zeroed driver-private data to allocate; the pointer to this
1705  *      memory is in the driver_data field of the returned device,
1706  *      accessible with spi_master_get_devdata().
1707  * Context: can sleep
1708  *
1709  * This call is used only by SPI master controller drivers, which are the
1710  * only ones directly touching chip registers.  It's how they allocate
1711  * an spi_master structure, prior to calling spi_register_master().
1712  *
1713  * This must be called from context that can sleep.
1714  *
1715  * The caller is responsible for assigning the bus number and initializing
1716  * the master's methods before calling spi_register_master(); and (after errors
1717  * adding the device) calling spi_master_put() to prevent a memory leak.
1718  *
1719  * Return: the SPI master structure on success, else NULL.
1720  */
1721 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1722 {
1723         struct spi_master       *master;
1724
1725         if (!dev)
1726                 return NULL;
1727
1728         master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1729         if (!master)
1730                 return NULL;
1731
1732         device_initialize(&master->dev);
1733         master->bus_num = -1;
1734         master->num_chipselect = 1;
1735         master->dev.class = &spi_master_class;
1736         master->dev.parent = dev;
1737         spi_master_set_devdata(master, &master[1]);
1738
1739         return master;
1740 }
1741 EXPORT_SYMBOL_GPL(spi_alloc_master);
1742
1743 #ifdef CONFIG_OF
1744 static int of_spi_register_master(struct spi_master *master)
1745 {
1746         int nb, i, *cs;
1747         struct device_node *np = master->dev.of_node;
1748
1749         if (!np)
1750                 return 0;
1751
1752         nb = of_gpio_named_count(np, "cs-gpios");
1753         master->num_chipselect = max_t(int, nb, master->num_chipselect);
1754
1755         /* Return error only for an incorrectly formed cs-gpios property */
1756         if (nb == 0 || nb == -ENOENT)
1757                 return 0;
1758         else if (nb < 0)
1759                 return nb;
1760
1761         cs = devm_kzalloc(&master->dev,
1762                           sizeof(int) * master->num_chipselect,
1763                           GFP_KERNEL);
1764         master->cs_gpios = cs;
1765
1766         if (!master->cs_gpios)
1767                 return -ENOMEM;
1768
1769         for (i = 0; i < master->num_chipselect; i++)
1770                 cs[i] = -ENOENT;
1771
1772         for (i = 0; i < nb; i++)
1773                 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1774
1775         return 0;
1776 }
1777 #else
1778 static int of_spi_register_master(struct spi_master *master)
1779 {
1780         return 0;
1781 }
1782 #endif
1783
1784 /**
1785  * spi_register_master - register SPI master controller
1786  * @master: initialized master, originally from spi_alloc_master()
1787  * Context: can sleep
1788  *
1789  * SPI master controllers connect to their drivers using some non-SPI bus,
1790  * such as the platform bus.  The final stage of probe() in that code
1791  * includes calling spi_register_master() to hook up to this SPI bus glue.
1792  *
1793  * SPI controllers use board specific (often SOC specific) bus numbers,
1794  * and board-specific addressing for SPI devices combines those numbers
1795  * with chip select numbers.  Since SPI does not directly support dynamic
1796  * device identification, boards need configuration tables telling which
1797  * chip is at which address.
1798  *
1799  * This must be called from context that can sleep.  It returns zero on
1800  * success, else a negative error code (dropping the master's refcount).
1801  * After a successful return, the caller is responsible for calling
1802  * spi_unregister_master().
1803  *
1804  * Return: zero on success, else a negative error code.
1805  */
1806 int spi_register_master(struct spi_master *master)
1807 {
1808         static atomic_t         dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1809         struct device           *dev = master->dev.parent;
1810         struct boardinfo        *bi;
1811         int                     status = -ENODEV;
1812         int                     dynamic = 0;
1813
1814         if (!dev)
1815                 return -ENODEV;
1816
1817         status = of_spi_register_master(master);
1818         if (status)
1819                 return status;
1820
1821         /* even if it's just one always-selected device, there must
1822          * be at least one chipselect
1823          */
1824         if (master->num_chipselect == 0)
1825                 return -EINVAL;
1826
1827         if ((master->bus_num < 0) && master->dev.of_node)
1828                 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1829
1830         /* convention:  dynamically assigned bus IDs count down from the max */
1831         if (master->bus_num < 0) {
1832                 /* FIXME switch to an IDR based scheme, something like
1833                  * I2C now uses, so we can't run out of "dynamic" IDs
1834                  */
1835                 master->bus_num = atomic_dec_return(&dyn_bus_id);
1836                 dynamic = 1;
1837         }
1838
1839         INIT_LIST_HEAD(&master->queue);
1840         spin_lock_init(&master->queue_lock);
1841         spin_lock_init(&master->bus_lock_spinlock);
1842         mutex_init(&master->bus_lock_mutex);
1843         master->bus_lock_flag = 0;
1844         init_completion(&master->xfer_completion);
1845         if (!master->max_dma_len)
1846                 master->max_dma_len = INT_MAX;
1847
1848         /* register the device, then userspace will see it.
1849          * registration fails if the bus ID is in use.
1850          */
1851         dev_set_name(&master->dev, "spi%u", master->bus_num);
1852         status = device_add(&master->dev);
1853         if (status < 0)
1854                 goto done;
1855         dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1856                         dynamic ? " (dynamic)" : "");
1857
1858         /* If we're using a queued driver, start the queue */
1859         if (master->transfer)
1860                 dev_info(dev, "master is unqueued, this is deprecated\n");
1861         else {
1862                 status = spi_master_initialize_queue(master);
1863                 if (status) {
1864                         device_del(&master->dev);
1865                         goto done;
1866                 }
1867         }
1868         /* add statistics */
1869         spin_lock_init(&master->statistics.lock);
1870
1871         mutex_lock(&board_lock);
1872         list_add_tail(&master->list, &spi_master_list);
1873         list_for_each_entry(bi, &board_list, list)
1874                 spi_match_master_to_boardinfo(master, &bi->board_info);
1875         mutex_unlock(&board_lock);
1876
1877         /* Register devices from the device tree and ACPI */
1878         of_register_spi_devices(master);
1879         acpi_register_spi_devices(master);
1880 done:
1881         return status;
1882 }
1883 EXPORT_SYMBOL_GPL(spi_register_master);
1884
1885 static void devm_spi_unregister(struct device *dev, void *res)
1886 {
1887         spi_unregister_master(*(struct spi_master **)res);
1888 }
1889
1890 /**
1891  * dev_spi_register_master - register managed SPI master controller
1892  * @dev:    device managing SPI master
1893  * @master: initialized master, originally from spi_alloc_master()
1894  * Context: can sleep
1895  *
1896  * Register a SPI device as with spi_register_master() which will
1897  * automatically be unregister
1898  *
1899  * Return: zero on success, else a negative error code.
1900  */
1901 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1902 {
1903         struct spi_master **ptr;
1904         int ret;
1905
1906         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1907         if (!ptr)
1908                 return -ENOMEM;
1909
1910         ret = spi_register_master(master);
1911         if (!ret) {
1912                 *ptr = master;
1913                 devres_add(dev, ptr);
1914         } else {
1915                 devres_free(ptr);
1916         }
1917
1918         return ret;
1919 }
1920 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1921
1922 static int __unregister(struct device *dev, void *null)
1923 {
1924         spi_unregister_device(to_spi_device(dev));
1925         return 0;
1926 }
1927
1928 /**
1929  * spi_unregister_master - unregister SPI master controller
1930  * @master: the master being unregistered
1931  * Context: can sleep
1932  *
1933  * This call is used only by SPI master controller drivers, which are the
1934  * only ones directly touching chip registers.
1935  *
1936  * This must be called from context that can sleep.
1937  */
1938 void spi_unregister_master(struct spi_master *master)
1939 {
1940         int dummy;
1941
1942         if (master->queued) {
1943                 if (spi_destroy_queue(master))
1944                         dev_err(&master->dev, "queue remove failed\n");
1945         }
1946
1947         mutex_lock(&board_lock);
1948         list_del(&master->list);
1949         mutex_unlock(&board_lock);
1950
1951         dummy = device_for_each_child(&master->dev, NULL, __unregister);
1952         device_unregister(&master->dev);
1953 }
1954 EXPORT_SYMBOL_GPL(spi_unregister_master);
1955
1956 int spi_master_suspend(struct spi_master *master)
1957 {
1958         int ret;
1959
1960         /* Basically no-ops for non-queued masters */
1961         if (!master->queued)
1962                 return 0;
1963
1964         ret = spi_stop_queue(master);
1965         if (ret)
1966                 dev_err(&master->dev, "queue stop failed\n");
1967
1968         return ret;
1969 }
1970 EXPORT_SYMBOL_GPL(spi_master_suspend);
1971
1972 int spi_master_resume(struct spi_master *master)
1973 {
1974         int ret;
1975
1976         if (!master->queued)
1977                 return 0;
1978
1979         ret = spi_start_queue(master);
1980         if (ret)
1981                 dev_err(&master->dev, "queue restart failed\n");
1982
1983         return ret;
1984 }
1985 EXPORT_SYMBOL_GPL(spi_master_resume);
1986
1987 static int __spi_master_match(struct device *dev, const void *data)
1988 {
1989         struct spi_master *m;
1990         const u16 *bus_num = data;
1991
1992         m = container_of(dev, struct spi_master, dev);
1993         return m->bus_num == *bus_num;
1994 }
1995
1996 /**
1997  * spi_busnum_to_master - look up master associated with bus_num
1998  * @bus_num: the master's bus number
1999  * Context: can sleep
2000  *
2001  * This call may be used with devices that are registered after
2002  * arch init time.  It returns a refcounted pointer to the relevant
2003  * spi_master (which the caller must release), or NULL if there is
2004  * no such master registered.
2005  *
2006  * Return: the SPI master structure on success, else NULL.
2007  */
2008 struct spi_master *spi_busnum_to_master(u16 bus_num)
2009 {
2010         struct device           *dev;
2011         struct spi_master       *master = NULL;
2012
2013         dev = class_find_device(&spi_master_class, NULL, &bus_num,
2014                                 __spi_master_match);
2015         if (dev)
2016                 master = container_of(dev, struct spi_master, dev);
2017         /* reference got in class_find_device */
2018         return master;
2019 }
2020 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2021
2022 /*-------------------------------------------------------------------------*/
2023
2024 /* Core methods for SPI resource management */
2025
2026 /**
2027  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2028  *                 during the processing of a spi_message while using
2029  *                 spi_transfer_one
2030  * @spi:     the spi device for which we allocate memory
2031  * @release: the release code to execute for this resource
2032  * @size:    size to alloc and return
2033  * @gfp:     GFP allocation flags
2034  *
2035  * Return: the pointer to the allocated data
2036  *
2037  * This may get enhanced in the future to allocate from a memory pool
2038  * of the @spi_device or @spi_master to avoid repeated allocations.
2039  */
2040 void *spi_res_alloc(struct spi_device *spi,
2041                     spi_res_release_t release,
2042                     size_t size, gfp_t gfp)
2043 {
2044         struct spi_res *sres;
2045
2046         sres = kzalloc(sizeof(*sres) + size, gfp);
2047         if (!sres)
2048                 return NULL;
2049
2050         INIT_LIST_HEAD(&sres->entry);
2051         sres->release = release;
2052
2053         return sres->data;
2054 }
2055 EXPORT_SYMBOL_GPL(spi_res_alloc);
2056
2057 /**
2058  * spi_res_free - free an spi resource
2059  * @res: pointer to the custom data of a resource
2060  *
2061  */
2062 void spi_res_free(void *res)
2063 {
2064         struct spi_res *sres = container_of(res, struct spi_res, data);
2065
2066         if (!res)
2067                 return;
2068
2069         WARN_ON(!list_empty(&sres->entry));
2070         kfree(sres);
2071 }
2072 EXPORT_SYMBOL_GPL(spi_res_free);
2073
2074 /**
2075  * spi_res_add - add a spi_res to the spi_message
2076  * @message: the spi message
2077  * @res:     the spi_resource
2078  */
2079 void spi_res_add(struct spi_message *message, void *res)
2080 {
2081         struct spi_res *sres = container_of(res, struct spi_res, data);
2082
2083         WARN_ON(!list_empty(&sres->entry));
2084         list_add_tail(&sres->entry, &message->resources);
2085 }
2086 EXPORT_SYMBOL_GPL(spi_res_add);
2087
2088 /**
2089  * spi_res_release - release all spi resources for this message
2090  * @master:  the @spi_master
2091  * @message: the @spi_message
2092  */
2093 void spi_res_release(struct spi_master *master,
2094                      struct spi_message *message)
2095 {
2096         struct spi_res *res;
2097
2098         while (!list_empty(&message->resources)) {
2099                 res = list_last_entry(&message->resources,
2100                                       struct spi_res, entry);
2101
2102                 if (res->release)
2103                         res->release(master, message, res->data);
2104
2105                 list_del(&res->entry);
2106
2107                 kfree(res);
2108         }
2109 }
2110 EXPORT_SYMBOL_GPL(spi_res_release);
2111
2112 /*-------------------------------------------------------------------------*/
2113
2114 /* Core methods for spi_message alterations */
2115
2116 static void __spi_replace_transfers_release(struct spi_master *master,
2117                                             struct spi_message *msg,
2118                                             void *res)
2119 {
2120         struct spi_replaced_transfers *rxfer = res;
2121         size_t i;
2122
2123         /* call extra callback if requested */
2124         if (rxfer->release)
2125                 rxfer->release(master, msg, res);
2126
2127         /* insert replaced transfers back into the message */
2128         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2129
2130         /* remove the formerly inserted entries */
2131         for (i = 0; i < rxfer->inserted; i++)
2132                 list_del(&rxfer->inserted_transfers[i].transfer_list);
2133 }
2134
2135 /**
2136  * spi_replace_transfers - replace transfers with several transfers
2137  *                         and register change with spi_message.resources
2138  * @msg:           the spi_message we work upon
2139  * @xfer_first:    the first spi_transfer we want to replace
2140  * @remove:        number of transfers to remove
2141  * @insert:        the number of transfers we want to insert instead
2142  * @release:       extra release code necessary in some circumstances
2143  * @extradatasize: extra data to allocate (with alignment guarantees
2144  *                 of struct @spi_transfer)
2145  *
2146  * Returns: pointer to @spi_replaced_transfers,
2147  *          PTR_ERR(...) in case of errors.
2148  */
2149 struct spi_replaced_transfers *spi_replace_transfers(
2150         struct spi_message *msg,
2151         struct spi_transfer *xfer_first,
2152         size_t remove,
2153         size_t insert,
2154         spi_replaced_release_t release,
2155         size_t extradatasize,
2156         gfp_t gfp)
2157 {
2158         struct spi_replaced_transfers *rxfer;
2159         struct spi_transfer *xfer;
2160         size_t i;
2161
2162         /* allocate the structure using spi_res */
2163         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2164                               insert * sizeof(struct spi_transfer)
2165                               + sizeof(struct spi_replaced_transfers)
2166                               + extradatasize,
2167                               gfp);
2168         if (!rxfer)
2169                 return ERR_PTR(-ENOMEM);
2170
2171         /* the release code to invoke before running the generic release */
2172         rxfer->release = release;
2173
2174         /* assign extradata */
2175         if (extradatasize)
2176                 rxfer->extradata =
2177                         &rxfer->inserted_transfers[insert];
2178
2179         /* init the replaced_transfers list */
2180         INIT_LIST_HEAD(&rxfer->replaced_transfers);
2181
2182         /* assign the list_entry after which we should reinsert
2183          * the @replaced_transfers - it may be spi_message.messages!
2184          */
2185         rxfer->replaced_after = xfer_first->transfer_list.prev;
2186
2187         /* remove the requested number of transfers */
2188         for (i = 0; i < remove; i++) {
2189                 /* if the entry after replaced_after it is msg->transfers
2190                  * then we have been requested to remove more transfers
2191                  * than are in the list
2192                  */
2193                 if (rxfer->replaced_after->next == &msg->transfers) {
2194                         dev_err(&msg->spi->dev,
2195                                 "requested to remove more spi_transfers than are available\n");
2196                         /* insert replaced transfers back into the message */
2197                         list_splice(&rxfer->replaced_transfers,
2198                                     rxfer->replaced_after);
2199
2200                         /* free the spi_replace_transfer structure */
2201                         spi_res_free(rxfer);
2202
2203                         /* and return with an error */
2204                         return ERR_PTR(-EINVAL);
2205                 }
2206
2207                 /* remove the entry after replaced_after from list of
2208                  * transfers and add it to list of replaced_transfers
2209                  */
2210                 list_move_tail(rxfer->replaced_after->next,
2211                                &rxfer->replaced_transfers);
2212         }
2213
2214         /* create copy of the given xfer with identical settings
2215          * based on the first transfer to get removed
2216          */
2217         for (i = 0; i < insert; i++) {
2218                 /* we need to run in reverse order */
2219                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2220
2221                 /* copy all spi_transfer data */
2222                 memcpy(xfer, xfer_first, sizeof(*xfer));
2223
2224                 /* add to list */
2225                 list_add(&xfer->transfer_list, rxfer->replaced_after);
2226
2227                 /* clear cs_change and delay_usecs for all but the last */
2228                 if (i) {
2229                         xfer->cs_change = false;
2230                         xfer->delay_usecs = 0;
2231                 }
2232         }
2233
2234         /* set up inserted */
2235         rxfer->inserted = insert;
2236
2237         /* and register it with spi_res/spi_message */
2238         spi_res_add(msg, rxfer);
2239
2240         return rxfer;
2241 }
2242 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2243
2244 static int __spi_split_transfer_maxsize(struct spi_master *master,
2245                                         struct spi_message *msg,
2246                                         struct spi_transfer **xferp,
2247                                         size_t maxsize,
2248                                         gfp_t gfp)
2249 {
2250         struct spi_transfer *xfer = *xferp, *xfers;
2251         struct spi_replaced_transfers *srt;
2252         size_t offset;
2253         size_t count, i;
2254
2255         /* warn once about this fact that we are splitting a transfer */
2256         dev_warn_once(&msg->spi->dev,
2257                       "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2258                       xfer->len, maxsize);
2259
2260         /* calculate how many we have to replace */
2261         count = DIV_ROUND_UP(xfer->len, maxsize);
2262
2263         /* create replacement */
2264         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2265         if (IS_ERR(srt))
2266                 return PTR_ERR(srt);
2267         xfers = srt->inserted_transfers;
2268
2269         /* now handle each of those newly inserted spi_transfers
2270          * note that the replacements spi_transfers all are preset
2271          * to the same values as *xferp, so tx_buf, rx_buf and len
2272          * are all identical (as well as most others)
2273          * so we just have to fix up len and the pointers.
2274          *
2275          * this also includes support for the depreciated
2276          * spi_message.is_dma_mapped interface
2277          */
2278
2279         /* the first transfer just needs the length modified, so we
2280          * run it outside the loop
2281          */
2282         xfers[0].len = min(maxsize, xfer[0].len);
2283
2284         /* all the others need rx_buf/tx_buf also set */
2285         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2286                 /* update rx_buf, tx_buf and dma */
2287                 if (xfers[i].rx_buf)
2288                         xfers[i].rx_buf += offset;
2289                 if (xfers[i].rx_dma)
2290                         xfers[i].rx_dma += offset;
2291                 if (xfers[i].tx_buf)
2292                         xfers[i].tx_buf += offset;
2293                 if (xfers[i].tx_dma)
2294                         xfers[i].tx_dma += offset;
2295
2296                 /* update length */
2297                 xfers[i].len = min(maxsize, xfers[i].len - offset);
2298         }
2299
2300         /* we set up xferp to the last entry we have inserted,
2301          * so that we skip those already split transfers
2302          */
2303         *xferp = &xfers[count - 1];
2304
2305         /* increment statistics counters */
2306         SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2307                                        transfers_split_maxsize);
2308         SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2309                                        transfers_split_maxsize);
2310
2311         return 0;
2312 }
2313
2314 /**
2315  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2316  *                              when an individual transfer exceeds a
2317  *                              certain size
2318  * @master:    the @spi_master for this transfer
2319  * @message:   the @spi_message to transform
2320  * @max_size:  the maximum when to apply this
2321  *
2322  * Return: status of transformation
2323  */
2324 int spi_split_transfers_maxsize(struct spi_master *master,
2325                                 struct spi_message *msg,
2326                                 size_t maxsize,
2327                                 gfp_t gfp)
2328 {
2329         struct spi_transfer *xfer;
2330         int ret;
2331
2332         /* iterate over the transfer_list,
2333          * but note that xfer is advanced to the last transfer inserted
2334          * to avoid checking sizes again unnecessarily (also xfer does
2335          * potentiall belong to a different list by the time the
2336          * replacement has happened
2337          */
2338         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2339                 if (xfer->len > maxsize) {
2340                         ret = __spi_split_transfer_maxsize(
2341                                 master, msg, &xfer, maxsize, gfp);
2342                         if (ret)
2343                                 return ret;
2344                 }
2345         }
2346
2347         return 0;
2348 }
2349 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2350
2351 /*-------------------------------------------------------------------------*/
2352
2353 /* Core methods for SPI master protocol drivers.  Some of the
2354  * other core methods are currently defined as inline functions.
2355  */
2356
2357 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2358 {
2359         if (master->bits_per_word_mask) {
2360                 /* Only 32 bits fit in the mask */
2361                 if (bits_per_word > 32)
2362                         return -EINVAL;
2363                 if (!(master->bits_per_word_mask &
2364                                 SPI_BPW_MASK(bits_per_word)))
2365                         return -EINVAL;
2366         }
2367
2368         return 0;
2369 }
2370
2371 /**
2372  * spi_setup - setup SPI mode and clock rate
2373  * @spi: the device whose settings are being modified
2374  * Context: can sleep, and no requests are queued to the device
2375  *
2376  * SPI protocol drivers may need to update the transfer mode if the
2377  * device doesn't work with its default.  They may likewise need
2378  * to update clock rates or word sizes from initial values.  This function
2379  * changes those settings, and must be called from a context that can sleep.
2380  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2381  * effect the next time the device is selected and data is transferred to
2382  * or from it.  When this function returns, the spi device is deselected.
2383  *
2384  * Note that this call will fail if the protocol driver specifies an option
2385  * that the underlying controller or its driver does not support.  For
2386  * example, not all hardware supports wire transfers using nine bit words,
2387  * LSB-first wire encoding, or active-high chipselects.
2388  *
2389  * Return: zero on success, else a negative error code.
2390  */
2391 int spi_setup(struct spi_device *spi)
2392 {
2393         unsigned        bad_bits, ugly_bits;
2394         int             status;
2395
2396         /* check mode to prevent that DUAL and QUAD set at the same time
2397          */
2398         if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2399                 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2400                 dev_err(&spi->dev,
2401                 "setup: can not select dual and quad at the same time\n");
2402                 return -EINVAL;
2403         }
2404         /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2405          */
2406         if ((spi->mode & SPI_3WIRE) && (spi->mode &
2407                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2408                 return -EINVAL;
2409         /* help drivers fail *cleanly* when they need options
2410          * that aren't supported with their current master
2411          */
2412         bad_bits = spi->mode & ~spi->master->mode_bits;
2413         ugly_bits = bad_bits &
2414                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2415         if (ugly_bits) {
2416                 dev_warn(&spi->dev,
2417                          "setup: ignoring unsupported mode bits %x\n",
2418                          ugly_bits);
2419                 spi->mode &= ~ugly_bits;
2420                 bad_bits &= ~ugly_bits;
2421         }
2422         if (bad_bits) {
2423                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2424                         bad_bits);
2425                 return -EINVAL;
2426         }
2427
2428         if (!spi->bits_per_word)
2429                 spi->bits_per_word = 8;
2430
2431         status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2432         if (status)
2433                 return status;
2434
2435         if (!spi->max_speed_hz)
2436                 spi->max_speed_hz = spi->master->max_speed_hz;
2437
2438         if (spi->master->setup)
2439                 status = spi->master->setup(spi);
2440
2441         spi_set_cs(spi, false);
2442
2443         dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2444                         (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2445                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2446                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2447                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2448                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
2449                         spi->bits_per_word, spi->max_speed_hz,
2450                         status);
2451
2452         return status;
2453 }
2454 EXPORT_SYMBOL_GPL(spi_setup);
2455
2456 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2457 {
2458         struct spi_master *master = spi->master;
2459         struct spi_transfer *xfer;
2460         int w_size;
2461
2462         if (list_empty(&message->transfers))
2463                 return -EINVAL;
2464
2465         /* Half-duplex links include original MicroWire, and ones with
2466          * only one data pin like SPI_3WIRE (switches direction) or where
2467          * either MOSI or MISO is missing.  They can also be caused by
2468          * software limitations.
2469          */
2470         if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2471                         || (spi->mode & SPI_3WIRE)) {
2472                 unsigned flags = master->flags;
2473
2474                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2475                         if (xfer->rx_buf && xfer->tx_buf)
2476                                 return -EINVAL;
2477                         if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2478                                 return -EINVAL;
2479                         if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2480                                 return -EINVAL;
2481                 }
2482         }
2483
2484         /**
2485          * Set transfer bits_per_word and max speed as spi device default if
2486          * it is not set for this transfer.
2487          * Set transfer tx_nbits and rx_nbits as single transfer default
2488          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2489          */
2490         message->frame_length = 0;
2491         list_for_each_entry(xfer, &message->transfers, transfer_list) {
2492                 message->frame_length += xfer->len;
2493                 if (!xfer->bits_per_word)
2494                         xfer->bits_per_word = spi->bits_per_word;
2495
2496                 if (!xfer->speed_hz)
2497                         xfer->speed_hz = spi->max_speed_hz;
2498                 if (!xfer->speed_hz)
2499                         xfer->speed_hz = master->max_speed_hz;
2500
2501                 if (master->max_speed_hz &&
2502                     xfer->speed_hz > master->max_speed_hz)
2503                         xfer->speed_hz = master->max_speed_hz;
2504
2505                 if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2506                         return -EINVAL;
2507
2508                 /*
2509                  * SPI transfer length should be multiple of SPI word size
2510                  * where SPI word size should be power-of-two multiple
2511                  */
2512                 if (xfer->bits_per_word <= 8)
2513                         w_size = 1;
2514                 else if (xfer->bits_per_word <= 16)
2515                         w_size = 2;
2516                 else
2517                         w_size = 4;
2518
2519                 /* No partial transfers accepted */
2520                 if (xfer->len % w_size)
2521                         return -EINVAL;
2522
2523                 if (xfer->speed_hz && master->min_speed_hz &&
2524                     xfer->speed_hz < master->min_speed_hz)
2525                         return -EINVAL;
2526
2527                 if (xfer->tx_buf && !xfer->tx_nbits)
2528                         xfer->tx_nbits = SPI_NBITS_SINGLE;
2529                 if (xfer->rx_buf && !xfer->rx_nbits)
2530                         xfer->rx_nbits = SPI_NBITS_SINGLE;
2531                 /* check transfer tx/rx_nbits:
2532                  * 1. check the value matches one of single, dual and quad
2533                  * 2. check tx/rx_nbits match the mode in spi_device
2534                  */
2535                 if (xfer->tx_buf) {
2536                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2537                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
2538                                 xfer->tx_nbits != SPI_NBITS_QUAD)
2539                                 return -EINVAL;
2540                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2541                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2542                                 return -EINVAL;
2543                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2544                                 !(spi->mode & SPI_TX_QUAD))
2545                                 return -EINVAL;
2546                 }
2547                 /* check transfer rx_nbits */
2548                 if (xfer->rx_buf) {
2549                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2550                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
2551                                 xfer->rx_nbits != SPI_NBITS_QUAD)
2552                                 return -EINVAL;
2553                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2554                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2555                                 return -EINVAL;
2556                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2557                                 !(spi->mode & SPI_RX_QUAD))
2558                                 return -EINVAL;
2559                 }
2560         }
2561
2562         message->status = -EINPROGRESS;
2563
2564         return 0;
2565 }
2566
2567 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2568 {
2569         struct spi_master *master = spi->master;
2570
2571         message->spi = spi;
2572
2573         SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2574         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2575
2576         trace_spi_message_submit(message);
2577
2578         return master->transfer(spi, message);
2579 }
2580
2581 /**
2582  * spi_async - asynchronous SPI transfer
2583  * @spi: device with which data will be exchanged
2584  * @message: describes the data transfers, including completion callback
2585  * Context: any (irqs may be blocked, etc)
2586  *
2587  * This call may be used in_irq and other contexts which can't sleep,
2588  * as well as from task contexts which can sleep.
2589  *
2590  * The completion callback is invoked in a context which can't sleep.
2591  * Before that invocation, the value of message->status is undefined.
2592  * When the callback is issued, message->status holds either zero (to
2593  * indicate complete success) or a negative error code.  After that
2594  * callback returns, the driver which issued the transfer request may
2595  * deallocate the associated memory; it's no longer in use by any SPI
2596  * core or controller driver code.
2597  *
2598  * Note that although all messages to a spi_device are handled in
2599  * FIFO order, messages may go to different devices in other orders.
2600  * Some device might be higher priority, or have various "hard" access
2601  * time requirements, for example.
2602  *
2603  * On detection of any fault during the transfer, processing of
2604  * the entire message is aborted, and the device is deselected.
2605  * Until returning from the associated message completion callback,
2606  * no other spi_message queued to that device will be processed.
2607  * (This rule applies equally to all the synchronous transfer calls,
2608  * which are wrappers around this core asynchronous primitive.)
2609  *
2610  * Return: zero on success, else a negative error code.
2611  */
2612 int spi_async(struct spi_device *spi, struct spi_message *message)
2613 {
2614         struct spi_master *master = spi->master;
2615         int ret;
2616         unsigned long flags;
2617
2618         ret = __spi_validate(spi, message);
2619         if (ret != 0)
2620                 return ret;
2621
2622         spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2623
2624         if (master->bus_lock_flag)
2625                 ret = -EBUSY;
2626         else
2627                 ret = __spi_async(spi, message);
2628
2629         spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2630
2631         return ret;
2632 }
2633 EXPORT_SYMBOL_GPL(spi_async);
2634
2635 /**
2636  * spi_async_locked - version of spi_async with exclusive bus usage
2637  * @spi: device with which data will be exchanged
2638  * @message: describes the data transfers, including completion callback
2639  * Context: any (irqs may be blocked, etc)
2640  *
2641  * This call may be used in_irq and other contexts which can't sleep,
2642  * as well as from task contexts which can sleep.
2643  *
2644  * The completion callback is invoked in a context which can't sleep.
2645  * Before that invocation, the value of message->status is undefined.
2646  * When the callback is issued, message->status holds either zero (to
2647  * indicate complete success) or a negative error code.  After that
2648  * callback returns, the driver which issued the transfer request may
2649  * deallocate the associated memory; it's no longer in use by any SPI
2650  * core or controller driver code.
2651  *
2652  * Note that although all messages to a spi_device are handled in
2653  * FIFO order, messages may go to different devices in other orders.
2654  * Some device might be higher priority, or have various "hard" access
2655  * time requirements, for example.
2656  *
2657  * On detection of any fault during the transfer, processing of
2658  * the entire message is aborted, and the device is deselected.
2659  * Until returning from the associated message completion callback,
2660  * no other spi_message queued to that device will be processed.
2661  * (This rule applies equally to all the synchronous transfer calls,
2662  * which are wrappers around this core asynchronous primitive.)
2663  *
2664  * Return: zero on success, else a negative error code.
2665  */
2666 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2667 {
2668         struct spi_master *master = spi->master;
2669         int ret;
2670         unsigned long flags;
2671
2672         ret = __spi_validate(spi, message);
2673         if (ret != 0)
2674                 return ret;
2675
2676         spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2677
2678         ret = __spi_async(spi, message);
2679
2680         spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2681
2682         return ret;
2683
2684 }
2685 EXPORT_SYMBOL_GPL(spi_async_locked);
2686
2687
2688 /*-------------------------------------------------------------------------*/
2689
2690 /* Utility methods for SPI master protocol drivers, layered on
2691  * top of the core.  Some other utility methods are defined as
2692  * inline functions.
2693  */
2694
2695 static void spi_complete(void *arg)
2696 {
2697         complete(arg);
2698 }
2699
2700 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2701                       int bus_locked)
2702 {
2703         DECLARE_COMPLETION_ONSTACK(done);
2704         int status;
2705         struct spi_master *master = spi->master;
2706         unsigned long flags;
2707
2708         status = __spi_validate(spi, message);
2709         if (status != 0)
2710                 return status;
2711
2712         message->complete = spi_complete;
2713         message->context = &done;
2714         message->spi = spi;
2715
2716         SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2717         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2718
2719         if (!bus_locked)
2720                 mutex_lock(&master->bus_lock_mutex);
2721
2722         /* If we're not using the legacy transfer method then we will
2723          * try to transfer in the calling context so special case.
2724          * This code would be less tricky if we could remove the
2725          * support for driver implemented message queues.
2726          */
2727         if (master->transfer == spi_queued_transfer) {
2728                 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2729
2730                 trace_spi_message_submit(message);
2731
2732                 status = __spi_queued_transfer(spi, message, false);
2733
2734                 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2735         } else {
2736                 status = spi_async_locked(spi, message);
2737         }
2738
2739         if (!bus_locked)
2740                 mutex_unlock(&master->bus_lock_mutex);
2741
2742         if (status == 0) {
2743                 /* Push out the messages in the calling context if we
2744                  * can.
2745                  */
2746                 if (master->transfer == spi_queued_transfer) {
2747                         SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2748                                                        spi_sync_immediate);
2749                         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2750                                                        spi_sync_immediate);
2751                         __spi_pump_messages(master, false);
2752                 }
2753
2754                 wait_for_completion(&done);
2755                 status = message->status;
2756         }
2757         message->context = NULL;
2758         return status;
2759 }
2760
2761 /**
2762  * spi_sync - blocking/synchronous SPI data transfers
2763  * @spi: device with which data will be exchanged
2764  * @message: describes the data transfers
2765  * Context: can sleep
2766  *
2767  * This call may only be used from a context that may sleep.  The sleep
2768  * is non-interruptible, and has no timeout.  Low-overhead controller
2769  * drivers may DMA directly into and out of the message buffers.
2770  *
2771  * Note that the SPI device's chip select is active during the message,
2772  * and then is normally disabled between messages.  Drivers for some
2773  * frequently-used devices may want to minimize costs of selecting a chip,
2774  * by leaving it selected in anticipation that the next message will go
2775  * to the same chip.  (That may increase power usage.)
2776  *
2777  * Also, the caller is guaranteeing that the memory associated with the
2778  * message will not be freed before this call returns.
2779  *
2780  * Return: zero on success, else a negative error code.
2781  */
2782 int spi_sync(struct spi_device *spi, struct spi_message *message)
2783 {
2784         return __spi_sync(spi, message, 0);
2785 }
2786 EXPORT_SYMBOL_GPL(spi_sync);
2787
2788 /**
2789  * spi_sync_locked - version of spi_sync with exclusive bus usage
2790  * @spi: device with which data will be exchanged
2791  * @message: describes the data transfers
2792  * Context: can sleep
2793  *
2794  * This call may only be used from a context that may sleep.  The sleep
2795  * is non-interruptible, and has no timeout.  Low-overhead controller
2796  * drivers may DMA directly into and out of the message buffers.
2797  *
2798  * This call should be used by drivers that require exclusive access to the
2799  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2800  * be released by a spi_bus_unlock call when the exclusive access is over.
2801  *
2802  * Return: zero on success, else a negative error code.
2803  */
2804 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2805 {
2806         return __spi_sync(spi, message, 1);
2807 }
2808 EXPORT_SYMBOL_GPL(spi_sync_locked);
2809
2810 /**
2811  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2812  * @master: SPI bus master that should be locked for exclusive bus access
2813  * Context: can sleep
2814  *
2815  * This call may only be used from a context that may sleep.  The sleep
2816  * is non-interruptible, and has no timeout.
2817  *
2818  * This call should be used by drivers that require exclusive access to the
2819  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2820  * exclusive access is over. Data transfer must be done by spi_sync_locked
2821  * and spi_async_locked calls when the SPI bus lock is held.
2822  *
2823  * Return: always zero.
2824  */
2825 int spi_bus_lock(struct spi_master *master)
2826 {
2827         unsigned long flags;
2828
2829         mutex_lock(&master->bus_lock_mutex);
2830
2831         spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2832         master->bus_lock_flag = 1;
2833         spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2834
2835         /* mutex remains locked until spi_bus_unlock is called */
2836
2837         return 0;
2838 }
2839 EXPORT_SYMBOL_GPL(spi_bus_lock);
2840
2841 /**
2842  * spi_bus_unlock - release the lock for exclusive SPI bus usage
2843  * @master: SPI bus master that was locked for exclusive bus access
2844  * Context: can sleep
2845  *
2846  * This call may only be used from a context that may sleep.  The sleep
2847  * is non-interruptible, and has no timeout.
2848  *
2849  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2850  * call.
2851  *
2852  * Return: always zero.
2853  */
2854 int spi_bus_unlock(struct spi_master *master)
2855 {
2856         master->bus_lock_flag = 0;
2857
2858         mutex_unlock(&master->bus_lock_mutex);
2859
2860         return 0;
2861 }
2862 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2863
2864 /* portable code must never pass more than 32 bytes */
2865 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
2866
2867 static u8       *buf;
2868
2869 /**
2870  * spi_write_then_read - SPI synchronous write followed by read
2871  * @spi: device with which data will be exchanged
2872  * @txbuf: data to be written (need not be dma-safe)
2873  * @n_tx: size of txbuf, in bytes
2874  * @rxbuf: buffer into which data will be read (need not be dma-safe)
2875  * @n_rx: size of rxbuf, in bytes
2876  * Context: can sleep
2877  *
2878  * This performs a half duplex MicroWire style transaction with the
2879  * device, sending txbuf and then reading rxbuf.  The return value
2880  * is zero for success, else a negative errno status code.
2881  * This call may only be used from a context that may sleep.
2882  *
2883  * Parameters to this routine are always copied using a small buffer;
2884  * portable code should never use this for more than 32 bytes.
2885  * Performance-sensitive or bulk transfer code should instead use
2886  * spi_{async,sync}() calls with dma-safe buffers.
2887  *
2888  * Return: zero on success, else a negative error code.
2889  */
2890 int spi_write_then_read(struct spi_device *spi,
2891                 const void *txbuf, unsigned n_tx,
2892                 void *rxbuf, unsigned n_rx)
2893 {
2894         static DEFINE_MUTEX(lock);
2895
2896         int                     status;
2897         struct spi_message      message;
2898         struct spi_transfer     x[2];
2899         u8                      *local_buf;
2900
2901         /* Use preallocated DMA-safe buffer if we can.  We can't avoid
2902          * copying here, (as a pure convenience thing), but we can
2903          * keep heap costs out of the hot path unless someone else is
2904          * using the pre-allocated buffer or the transfer is too large.
2905          */
2906         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2907                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2908                                     GFP_KERNEL | GFP_DMA);
2909                 if (!local_buf)
2910                         return -ENOMEM;
2911         } else {
2912                 local_buf = buf;
2913         }
2914
2915         spi_message_init(&message);
2916         memset(x, 0, sizeof(x));
2917         if (n_tx) {
2918                 x[0].len = n_tx;
2919                 spi_message_add_tail(&x[0], &message);
2920         }
2921         if (n_rx) {
2922                 x[1].len = n_rx;
2923                 spi_message_add_tail(&x[1], &message);
2924         }
2925
2926         memcpy(local_buf, txbuf, n_tx);
2927         x[0].tx_buf = local_buf;
2928         x[1].rx_buf = local_buf + n_tx;
2929
2930         /* do the i/o */
2931         status = spi_sync(spi, &message);
2932         if (status == 0)
2933                 memcpy(rxbuf, x[1].rx_buf, n_rx);
2934
2935         if (x[0].tx_buf == buf)
2936                 mutex_unlock(&lock);
2937         else
2938                 kfree(local_buf);
2939
2940         return status;
2941 }
2942 EXPORT_SYMBOL_GPL(spi_write_then_read);
2943
2944 /*-------------------------------------------------------------------------*/
2945
2946 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
2947 static int __spi_of_device_match(struct device *dev, void *data)
2948 {
2949         return dev->of_node == data;
2950 }
2951
2952 /* must call put_device() when done with returned spi_device device */
2953 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
2954 {
2955         struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
2956                                                 __spi_of_device_match);
2957         return dev ? to_spi_device(dev) : NULL;
2958 }
2959
2960 static int __spi_of_master_match(struct device *dev, const void *data)
2961 {
2962         return dev->of_node == data;
2963 }
2964
2965 /* the spi masters are not using spi_bus, so we find it with another way */
2966 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
2967 {
2968         struct device *dev;
2969
2970         dev = class_find_device(&spi_master_class, NULL, node,
2971                                 __spi_of_master_match);
2972         if (!dev)
2973                 return NULL;
2974
2975         /* reference got in class_find_device */
2976         return container_of(dev, struct spi_master, dev);
2977 }
2978
2979 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
2980                          void *arg)
2981 {
2982         struct of_reconfig_data *rd = arg;
2983         struct spi_master *master;
2984         struct spi_device *spi;
2985
2986         switch (of_reconfig_get_state_change(action, arg)) {
2987         case OF_RECONFIG_CHANGE_ADD:
2988                 master = of_find_spi_master_by_node(rd->dn->parent);
2989                 if (master == NULL)
2990                         return NOTIFY_OK;       /* not for us */
2991
2992                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
2993                         put_device(&master->dev);
2994                         return NOTIFY_OK;
2995                 }
2996
2997                 spi = of_register_spi_device(master, rd->dn);
2998                 put_device(&master->dev);
2999
3000                 if (IS_ERR(spi)) {
3001                         pr_err("%s: failed to create for '%s'\n",
3002                                         __func__, rd->dn->full_name);
3003                         return notifier_from_errno(PTR_ERR(spi));
3004                 }
3005                 break;
3006
3007         case OF_RECONFIG_CHANGE_REMOVE:
3008                 /* already depopulated? */
3009                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3010                         return NOTIFY_OK;
3011
3012                 /* find our device by node */
3013                 spi = of_find_spi_device_by_node(rd->dn);
3014                 if (spi == NULL)
3015                         return NOTIFY_OK;       /* no? not meant for us */
3016
3017                 /* unregister takes one ref away */
3018                 spi_unregister_device(spi);
3019
3020                 /* and put the reference of the find */
3021                 put_device(&spi->dev);
3022                 break;
3023         }
3024
3025         return NOTIFY_OK;
3026 }
3027
3028 static struct notifier_block spi_of_notifier = {
3029         .notifier_call = of_spi_notify,
3030 };
3031 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3032 extern struct notifier_block spi_of_notifier;
3033 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3034
3035 static int __init spi_init(void)
3036 {
3037         int     status;
3038
3039         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3040         if (!buf) {
3041                 status = -ENOMEM;
3042                 goto err0;
3043         }
3044
3045         status = bus_register(&spi_bus_type);
3046         if (status < 0)
3047                 goto err1;
3048
3049         status = class_register(&spi_master_class);
3050         if (status < 0)
3051                 goto err2;
3052
3053         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3054                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3055
3056         return 0;
3057
3058 err2:
3059         bus_unregister(&spi_bus_type);
3060 err1:
3061         kfree(buf);
3062         buf = NULL;
3063 err0:
3064         return status;
3065 }
3066
3067 /* board_info is normally registered in arch_initcall(),
3068  * but even essential drivers wait till later
3069  *
3070  * REVISIT only boardinfo really needs static linking. the rest (device and
3071  * driver registration) _could_ be dynamically linked (modular) ... costs
3072  * include needing to have boardinfo data structures be much more public.
3073  */
3074 postcore_initcall(spi_init);
3075