ACPI / button: remove pointer to old lid_sysfs on unbind
[cascardo/linux.git] / drivers / staging / lustre / lustre / fld / fld_cache.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2012, 2013, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * lustre/fld/fld_cache.c
37  *
38  * FLD (Fids Location Database)
39  *
40  * Author: Pravin Shelar <pravin.shelar@sun.com>
41  * Author: Yury Umanets <umka@clusterfs.com>
42  */
43
44 #define DEBUG_SUBSYSTEM S_FLD
45
46 #include "../../include/linux/libcfs/libcfs.h"
47 #include <linux/module.h>
48 #include <asm/div64.h>
49
50 #include "../include/obd.h"
51 #include "../include/obd_class.h"
52 #include "../include/lustre_ver.h"
53 #include "../include/obd_support.h"
54 #include "../include/lprocfs_status.h"
55
56 #include "../include/lustre_req_layout.h"
57 #include "../include/lustre_fld.h"
58 #include "fld_internal.h"
59
60 /**
61  * create fld cache.
62  */
63 struct fld_cache *fld_cache_init(const char *name,
64                                  int cache_size, int cache_threshold)
65 {
66         struct fld_cache *cache;
67
68         LASSERT(name);
69         LASSERT(cache_threshold < cache_size);
70
71         cache = kzalloc(sizeof(*cache), GFP_NOFS);
72         if (!cache)
73                 return ERR_PTR(-ENOMEM);
74
75         INIT_LIST_HEAD(&cache->fci_entries_head);
76         INIT_LIST_HEAD(&cache->fci_lru);
77
78         cache->fci_cache_count = 0;
79         rwlock_init(&cache->fci_lock);
80
81         strlcpy(cache->fci_name, name,
82                 sizeof(cache->fci_name));
83
84         cache->fci_cache_size = cache_size;
85         cache->fci_threshold = cache_threshold;
86
87         /* Init fld cache info. */
88         memset(&cache->fci_stat, 0, sizeof(cache->fci_stat));
89
90         CDEBUG(D_INFO, "%s: FLD cache - Size: %d, Threshold: %d\n",
91                cache->fci_name, cache_size, cache_threshold);
92
93         return cache;
94 }
95
96 /**
97  * destroy fld cache.
98  */
99 void fld_cache_fini(struct fld_cache *cache)
100 {
101         __u64 pct;
102
103         LASSERT(cache);
104         fld_cache_flush(cache);
105
106         if (cache->fci_stat.fst_count > 0) {
107                 pct = cache->fci_stat.fst_cache * 100;
108                 do_div(pct, cache->fci_stat.fst_count);
109         } else {
110                 pct = 0;
111         }
112
113         CDEBUG(D_INFO, "FLD cache statistics (%s):\n", cache->fci_name);
114         CDEBUG(D_INFO, "  Total reqs: %llu\n", cache->fci_stat.fst_count);
115         CDEBUG(D_INFO, "  Cache reqs: %llu\n", cache->fci_stat.fst_cache);
116         CDEBUG(D_INFO, "  Cache hits: %llu%%\n", pct);
117
118         kfree(cache);
119 }
120
121 /**
122  * delete given node from list.
123  */
124 static void fld_cache_entry_delete(struct fld_cache *cache,
125                                    struct fld_cache_entry *node)
126 {
127         list_del(&node->fce_list);
128         list_del(&node->fce_lru);
129         cache->fci_cache_count--;
130         kfree(node);
131 }
132
133 /**
134  * fix list by checking new entry with NEXT entry in order.
135  */
136 static void fld_fix_new_list(struct fld_cache *cache)
137 {
138         struct fld_cache_entry *f_curr;
139         struct fld_cache_entry *f_next;
140         struct lu_seq_range *c_range;
141         struct lu_seq_range *n_range;
142         struct list_head *head = &cache->fci_entries_head;
143
144 restart_fixup:
145
146         list_for_each_entry_safe(f_curr, f_next, head, fce_list) {
147                 c_range = &f_curr->fce_range;
148                 n_range = &f_next->fce_range;
149
150                 LASSERT(range_is_sane(c_range));
151                 if (&f_next->fce_list == head)
152                         break;
153
154                 if (c_range->lsr_flags != n_range->lsr_flags)
155                         continue;
156
157                 LASSERTF(c_range->lsr_start <= n_range->lsr_start,
158                          "cur lsr_start "DRANGE" next lsr_start "DRANGE"\n",
159                          PRANGE(c_range), PRANGE(n_range));
160
161                 /* check merge possibility with next range */
162                 if (c_range->lsr_end == n_range->lsr_start) {
163                         if (c_range->lsr_index != n_range->lsr_index)
164                                 continue;
165                         n_range->lsr_start = c_range->lsr_start;
166                         fld_cache_entry_delete(cache, f_curr);
167                         continue;
168                 }
169
170                 /* check if current range overlaps with next range. */
171                 if (n_range->lsr_start < c_range->lsr_end) {
172                         if (c_range->lsr_index == n_range->lsr_index) {
173                                 n_range->lsr_start = c_range->lsr_start;
174                                 n_range->lsr_end = max(c_range->lsr_end,
175                                                        n_range->lsr_end);
176                                 fld_cache_entry_delete(cache, f_curr);
177                         } else {
178                                 if (n_range->lsr_end <= c_range->lsr_end) {
179                                         *n_range = *c_range;
180                                         fld_cache_entry_delete(cache, f_curr);
181                                 } else {
182                                         n_range->lsr_start = c_range->lsr_end;
183                                 }
184                         }
185
186                         /* we could have overlap over next
187                          * range too. better restart.
188                          */
189                         goto restart_fixup;
190                 }
191
192                 /* kill duplicates */
193                 if (c_range->lsr_start == n_range->lsr_start &&
194                     c_range->lsr_end == n_range->lsr_end)
195                         fld_cache_entry_delete(cache, f_curr);
196         }
197 }
198
199 /**
200  * add node to fld cache
201  */
202 static inline void fld_cache_entry_add(struct fld_cache *cache,
203                                        struct fld_cache_entry *f_new,
204                                        struct list_head *pos)
205 {
206         list_add(&f_new->fce_list, pos);
207         list_add(&f_new->fce_lru, &cache->fci_lru);
208
209         cache->fci_cache_count++;
210         fld_fix_new_list(cache);
211 }
212
213 /**
214  * Check if cache needs to be shrunk. If so - do it.
215  * Remove one entry in list and so on until cache is shrunk enough.
216  */
217 static int fld_cache_shrink(struct fld_cache *cache)
218 {
219         struct fld_cache_entry *flde;
220         struct list_head *curr;
221         int num = 0;
222
223         if (cache->fci_cache_count < cache->fci_cache_size)
224                 return 0;
225
226         curr = cache->fci_lru.prev;
227
228         while (cache->fci_cache_count + cache->fci_threshold >
229                cache->fci_cache_size && curr != &cache->fci_lru) {
230                 flde = list_entry(curr, struct fld_cache_entry, fce_lru);
231                 curr = curr->prev;
232                 fld_cache_entry_delete(cache, flde);
233                 num++;
234         }
235
236         CDEBUG(D_INFO, "%s: FLD cache - Shrunk by %d entries\n",
237                cache->fci_name, num);
238
239         return 0;
240 }
241
242 /**
243  * kill all fld cache entries.
244  */
245 void fld_cache_flush(struct fld_cache *cache)
246 {
247         write_lock(&cache->fci_lock);
248         cache->fci_cache_size = 0;
249         fld_cache_shrink(cache);
250         write_unlock(&cache->fci_lock);
251 }
252
253 /**
254  * punch hole in existing range. divide this range and add new
255  * entry accordingly.
256  */
257
258 static void fld_cache_punch_hole(struct fld_cache *cache,
259                                  struct fld_cache_entry *f_curr,
260                                  struct fld_cache_entry *f_new)
261 {
262         const struct lu_seq_range *range = &f_new->fce_range;
263         const u64 new_start  = range->lsr_start;
264         const u64 new_end  = range->lsr_end;
265         struct fld_cache_entry *fldt;
266
267         fldt = kzalloc(sizeof(*fldt), GFP_ATOMIC);
268         if (!fldt) {
269                 kfree(f_new);
270                 /* overlap is not allowed, so dont mess up list. */
271                 return;
272         }
273         /*  break f_curr RANGE into three RANGES:
274          *      f_curr, f_new , fldt
275          */
276
277         /* f_new = *range */
278
279         /* fldt */
280         fldt->fce_range.lsr_start = new_end;
281         fldt->fce_range.lsr_end = f_curr->fce_range.lsr_end;
282         fldt->fce_range.lsr_index = f_curr->fce_range.lsr_index;
283
284         /* f_curr */
285         f_curr->fce_range.lsr_end = new_start;
286
287         /* add these two entries to list */
288         fld_cache_entry_add(cache, f_new, &f_curr->fce_list);
289         fld_cache_entry_add(cache, fldt, &f_new->fce_list);
290
291         /* no need to fixup */
292 }
293
294 /**
295  * handle range overlap in fld cache.
296  */
297 static void fld_cache_overlap_handle(struct fld_cache *cache,
298                                      struct fld_cache_entry *f_curr,
299                                      struct fld_cache_entry *f_new)
300 {
301         const struct lu_seq_range *range = &f_new->fce_range;
302         const u64 new_start  = range->lsr_start;
303         const u64 new_end  = range->lsr_end;
304         const u32 mdt = range->lsr_index;
305
306         /* this is overlap case, these case are checking overlapping with
307          * prev range only. fixup will handle overlapping with next range.
308          */
309
310         if (f_curr->fce_range.lsr_index == mdt) {
311                 f_curr->fce_range.lsr_start = min(f_curr->fce_range.lsr_start,
312                                                   new_start);
313
314                 f_curr->fce_range.lsr_end = max(f_curr->fce_range.lsr_end,
315                                                 new_end);
316
317                 kfree(f_new);
318                 fld_fix_new_list(cache);
319
320         } else if (new_start <= f_curr->fce_range.lsr_start &&
321                         f_curr->fce_range.lsr_end <= new_end) {
322                 /* case 1: new range completely overshadowed existing range.
323                  *       e.g. whole range migrated. update fld cache entry
324                  */
325
326                 f_curr->fce_range = *range;
327                 kfree(f_new);
328                 fld_fix_new_list(cache);
329
330         } else if (f_curr->fce_range.lsr_start < new_start &&
331                         new_end < f_curr->fce_range.lsr_end) {
332                 /* case 2: new range fit within existing range. */
333
334                 fld_cache_punch_hole(cache, f_curr, f_new);
335
336         } else  if (new_end <= f_curr->fce_range.lsr_end) {
337                 /* case 3: overlap:
338                  *       [new_start [c_start  new_end)  c_end)
339                  */
340
341                 LASSERT(new_start <= f_curr->fce_range.lsr_start);
342
343                 f_curr->fce_range.lsr_start = new_end;
344                 fld_cache_entry_add(cache, f_new, f_curr->fce_list.prev);
345
346         } else if (f_curr->fce_range.lsr_start <= new_start) {
347                 /* case 4: overlap:
348                  *       [c_start [new_start c_end) new_end)
349                  */
350
351                 LASSERT(f_curr->fce_range.lsr_end <= new_end);
352
353                 f_curr->fce_range.lsr_end = new_start;
354                 fld_cache_entry_add(cache, f_new, &f_curr->fce_list);
355         } else
356                 CERROR("NEW range ="DRANGE" curr = "DRANGE"\n",
357                        PRANGE(range), PRANGE(&f_curr->fce_range));
358 }
359
360 struct fld_cache_entry
361 *fld_cache_entry_create(const struct lu_seq_range *range)
362 {
363         struct fld_cache_entry *f_new;
364
365         LASSERT(range_is_sane(range));
366
367         f_new = kzalloc(sizeof(*f_new), GFP_NOFS);
368         if (!f_new)
369                 return ERR_PTR(-ENOMEM);
370
371         f_new->fce_range = *range;
372         return f_new;
373 }
374
375 /**
376  * Insert FLD entry in FLD cache.
377  *
378  * This function handles all cases of merging and breaking up of
379  * ranges.
380  */
381 static int fld_cache_insert_nolock(struct fld_cache *cache,
382                                    struct fld_cache_entry *f_new)
383 {
384         struct fld_cache_entry *f_curr;
385         struct fld_cache_entry *n;
386         struct list_head *head;
387         struct list_head *prev = NULL;
388         const u64 new_start  = f_new->fce_range.lsr_start;
389         const u64 new_end  = f_new->fce_range.lsr_end;
390         __u32 new_flags  = f_new->fce_range.lsr_flags;
391
392         /*
393          * Duplicate entries are eliminated in insert op.
394          * So we don't need to search new entry before starting
395          * insertion loop.
396          */
397
398         if (!cache->fci_no_shrink)
399                 fld_cache_shrink(cache);
400
401         head = &cache->fci_entries_head;
402
403         list_for_each_entry_safe(f_curr, n, head, fce_list) {
404                 /* add list if next is end of list */
405                 if (new_end < f_curr->fce_range.lsr_start ||
406                     (new_end == f_curr->fce_range.lsr_start &&
407                      new_flags != f_curr->fce_range.lsr_flags))
408                         break;
409
410                 prev = &f_curr->fce_list;
411                 /* check if this range is to left of new range. */
412                 if (new_start < f_curr->fce_range.lsr_end &&
413                     new_flags == f_curr->fce_range.lsr_flags) {
414                         fld_cache_overlap_handle(cache, f_curr, f_new);
415                         goto out;
416                 }
417         }
418
419         if (!prev)
420                 prev = head;
421
422         CDEBUG(D_INFO, "insert range "DRANGE"\n", PRANGE(&f_new->fce_range));
423         /* Add new entry to cache and lru list. */
424         fld_cache_entry_add(cache, f_new, prev);
425 out:
426         return 0;
427 }
428
429 int fld_cache_insert(struct fld_cache *cache,
430                      const struct lu_seq_range *range)
431 {
432         struct fld_cache_entry  *flde;
433         int rc;
434
435         flde = fld_cache_entry_create(range);
436         if (IS_ERR(flde))
437                 return PTR_ERR(flde);
438
439         write_lock(&cache->fci_lock);
440         rc = fld_cache_insert_nolock(cache, flde);
441         write_unlock(&cache->fci_lock);
442         if (rc)
443                 kfree(flde);
444
445         return rc;
446 }
447
448 /**
449  * Delete FLD entry in FLD cache.
450  *
451  */
452
453 struct fld_cache_entry
454 *fld_cache_entry_lookup_nolock(struct fld_cache *cache,
455                               struct lu_seq_range *range)
456 {
457         struct fld_cache_entry *flde;
458         struct fld_cache_entry *got = NULL;
459         struct list_head *head;
460
461         head = &cache->fci_entries_head;
462         list_for_each_entry(flde, head, fce_list) {
463                 if (range->lsr_start == flde->fce_range.lsr_start ||
464                     (range->lsr_end == flde->fce_range.lsr_end &&
465                      range->lsr_flags == flde->fce_range.lsr_flags)) {
466                         got = flde;
467                         break;
468                 }
469         }
470
471         return got;
472 }
473
474 /**
475  * lookup \a seq sequence for range in fld cache.
476  */
477 struct fld_cache_entry
478 *fld_cache_entry_lookup(struct fld_cache *cache, struct lu_seq_range *range)
479 {
480         struct fld_cache_entry *got = NULL;
481
482         read_lock(&cache->fci_lock);
483         got = fld_cache_entry_lookup_nolock(cache, range);
484         read_unlock(&cache->fci_lock);
485         return got;
486 }
487
488 /**
489  * lookup \a seq sequence for range in fld cache.
490  */
491 int fld_cache_lookup(struct fld_cache *cache,
492                      const u64 seq, struct lu_seq_range *range)
493 {
494         struct fld_cache_entry *flde;
495         struct fld_cache_entry *prev = NULL;
496         struct list_head *head;
497
498         read_lock(&cache->fci_lock);
499         head = &cache->fci_entries_head;
500
501         cache->fci_stat.fst_count++;
502         list_for_each_entry(flde, head, fce_list) {
503                 if (flde->fce_range.lsr_start > seq) {
504                         if (prev)
505                                 *range = prev->fce_range;
506                         break;
507                 }
508
509                 prev = flde;
510                 if (range_within(&flde->fce_range, seq)) {
511                         *range = flde->fce_range;
512
513                         cache->fci_stat.fst_cache++;
514                         read_unlock(&cache->fci_lock);
515                         return 0;
516                 }
517         }
518         read_unlock(&cache->fci_lock);
519         return -ENOENT;
520 }