ae92ac5ff232a663f8c479b3c200cb65674e1557
[cascardo/linux.git] / drivers / staging / rdma / hfi1 / verbs.c
1 /*
2  * Copyright(c) 2015, 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <rdma/ib_mad.h>
49 #include <rdma/ib_user_verbs.h>
50 #include <linux/io.h>
51 #include <linux/module.h>
52 #include <linux/utsname.h>
53 #include <linux/rculist.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56
57 #include "hfi.h"
58 #include "common.h"
59 #include "device.h"
60 #include "trace.h"
61 #include "qp.h"
62 #include "verbs_txreq.h"
63
64 static unsigned int hfi1_lkey_table_size = 16;
65 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
66                    S_IRUGO);
67 MODULE_PARM_DESC(lkey_table_size,
68                  "LKEY table size in bits (2^n, 1 <= n <= 23)");
69
70 static unsigned int hfi1_max_pds = 0xFFFF;
71 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
72 MODULE_PARM_DESC(max_pds,
73                  "Maximum number of protection domains to support");
74
75 static unsigned int hfi1_max_ahs = 0xFFFF;
76 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
77 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
78
79 unsigned int hfi1_max_cqes = 0x2FFFF;
80 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
81 MODULE_PARM_DESC(max_cqes,
82                  "Maximum number of completion queue entries to support");
83
84 unsigned int hfi1_max_cqs = 0x1FFFF;
85 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
86 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
87
88 unsigned int hfi1_max_qp_wrs = 0x3FFF;
89 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
90 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
91
92 unsigned int hfi1_max_qps = 16384;
93 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
94 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
95
96 unsigned int hfi1_max_sges = 0x60;
97 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
98 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
99
100 unsigned int hfi1_max_mcast_grps = 16384;
101 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
102 MODULE_PARM_DESC(max_mcast_grps,
103                  "Maximum number of multicast groups to support");
104
105 unsigned int hfi1_max_mcast_qp_attached = 16;
106 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
107                    uint, S_IRUGO);
108 MODULE_PARM_DESC(max_mcast_qp_attached,
109                  "Maximum number of attached QPs to support");
110
111 unsigned int hfi1_max_srqs = 1024;
112 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
113 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
114
115 unsigned int hfi1_max_srq_sges = 128;
116 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
117 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
118
119 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
120 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
121 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
122
123 unsigned short piothreshold = 256;
124 module_param(piothreshold, ushort, S_IRUGO);
125 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
126
127 #define COPY_CACHELESS 1
128 #define COPY_ADAPTIVE  2
129 static unsigned int sge_copy_mode;
130 module_param(sge_copy_mode, uint, S_IRUGO);
131 MODULE_PARM_DESC(sge_copy_mode,
132                  "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
133
134 static void verbs_sdma_complete(
135         struct sdma_txreq *cookie,
136         int status);
137
138 static int pio_wait(struct rvt_qp *qp,
139                     struct send_context *sc,
140                     struct hfi1_pkt_state *ps,
141                     u32 flag);
142
143 /* Length of buffer to create verbs txreq cache name */
144 #define TXREQ_NAME_LEN 24
145
146 static uint wss_threshold;
147 module_param(wss_threshold, uint, S_IRUGO);
148 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
149 static uint wss_clean_period = 256;
150 module_param(wss_clean_period, uint, S_IRUGO);
151 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
152
153 /* memory working set size */
154 struct hfi1_wss {
155         unsigned long *entries;
156         atomic_t total_count;
157         atomic_t clean_counter;
158         atomic_t clean_entry;
159
160         int threshold;
161         int num_entries;
162         long pages_mask;
163 };
164
165 static struct hfi1_wss wss;
166
167 int hfi1_wss_init(void)
168 {
169         long llc_size;
170         long llc_bits;
171         long table_size;
172         long table_bits;
173
174         /* check for a valid percent range - default to 80 if none or invalid */
175         if (wss_threshold < 1 || wss_threshold > 100)
176                 wss_threshold = 80;
177         /* reject a wildly large period */
178         if (wss_clean_period > 1000000)
179                 wss_clean_period = 256;
180         /* reject a zero period */
181         if (wss_clean_period == 0)
182                 wss_clean_period = 1;
183
184         /*
185          * Calculate the table size - the next power of 2 larger than the
186          * LLC size.  LLC size is in KiB.
187          */
188         llc_size = wss_llc_size() * 1024;
189         table_size = roundup_pow_of_two(llc_size);
190
191         /* one bit per page in rounded up table */
192         llc_bits = llc_size / PAGE_SIZE;
193         table_bits = table_size / PAGE_SIZE;
194         wss.pages_mask = table_bits - 1;
195         wss.num_entries = table_bits / BITS_PER_LONG;
196
197         wss.threshold = (llc_bits * wss_threshold) / 100;
198         if (wss.threshold == 0)
199                 wss.threshold = 1;
200
201         atomic_set(&wss.clean_counter, wss_clean_period);
202
203         wss.entries = kcalloc(wss.num_entries, sizeof(*wss.entries),
204                               GFP_KERNEL);
205         if (!wss.entries) {
206                 hfi1_wss_exit();
207                 return -ENOMEM;
208         }
209
210         return 0;
211 }
212
213 void hfi1_wss_exit(void)
214 {
215         /* coded to handle partially initialized and repeat callers */
216         kfree(wss.entries);
217         wss.entries = NULL;
218 }
219
220 /*
221  * Advance the clean counter.  When the clean period has expired,
222  * clean an entry.
223  *
224  * This is implemented in atomics to avoid locking.  Because multiple
225  * variables are involved, it can be racy which can lead to slightly
226  * inaccurate information.  Since this is only a heuristic, this is
227  * OK.  Any innaccuracies will clean themselves out as the counter
228  * advances.  That said, it is unlikely the entry clean operation will
229  * race - the next possible racer will not start until the next clean
230  * period.
231  *
232  * The clean counter is implemented as a decrement to zero.  When zero
233  * is reached an entry is cleaned.
234  */
235 static void wss_advance_clean_counter(void)
236 {
237         int entry;
238         int weight;
239         unsigned long bits;
240
241         /* become the cleaner if we decrement the counter to zero */
242         if (atomic_dec_and_test(&wss.clean_counter)) {
243                 /*
244                  * Set, not add, the clean period.  This avoids an issue
245                  * where the counter could decrement below the clean period.
246                  * Doing a set can result in lost decrements, slowing the
247                  * clean advance.  Since this a heuristic, this possible
248                  * slowdown is OK.
249                  *
250                  * An alternative is to loop, advancing the counter by a
251                  * clean period until the result is > 0. However, this could
252                  * lead to several threads keeping another in the clean loop.
253                  * This could be mitigated by limiting the number of times
254                  * we stay in the loop.
255                  */
256                 atomic_set(&wss.clean_counter, wss_clean_period);
257
258                 /*
259                  * Uniquely grab the entry to clean and move to next.
260                  * The current entry is always the lower bits of
261                  * wss.clean_entry.  The table size, wss.num_entries,
262                  * is always a power-of-2.
263                  */
264                 entry = (atomic_inc_return(&wss.clean_entry) - 1)
265                         & (wss.num_entries - 1);
266
267                 /* clear the entry and count the bits */
268                 bits = xchg(&wss.entries[entry], 0);
269                 weight = hweight64((u64)bits);
270                 /* only adjust the contended total count if needed */
271                 if (weight)
272                         atomic_sub(weight, &wss.total_count);
273         }
274 }
275
276 /*
277  * Insert the given address into the working set array.
278  */
279 static void wss_insert(void *address)
280 {
281         u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss.pages_mask;
282         u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
283         u32 nr = page & (BITS_PER_LONG - 1);
284
285         if (!test_and_set_bit(nr, &wss.entries[entry]))
286                 atomic_inc(&wss.total_count);
287
288         wss_advance_clean_counter();
289 }
290
291 /*
292  * Is the working set larger than the threshold?
293  */
294 static inline int wss_exceeds_threshold(void)
295 {
296         return atomic_read(&wss.total_count) >= wss.threshold;
297 }
298
299 /*
300  * Translate ib_wr_opcode into ib_wc_opcode.
301  */
302 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
303         [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
304         [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
305         [IB_WR_SEND] = IB_WC_SEND,
306         [IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
307         [IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
308         [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
309         [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD
310 };
311
312 /*
313  * Length of header by opcode, 0 --> not supported
314  */
315 const u8 hdr_len_by_opcode[256] = {
316         /* RC */
317         [IB_OPCODE_RC_SEND_FIRST]                     = 12 + 8,
318         [IB_OPCODE_RC_SEND_MIDDLE]                    = 12 + 8,
319         [IB_OPCODE_RC_SEND_LAST]                      = 12 + 8,
320         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
321         [IB_OPCODE_RC_SEND_ONLY]                      = 12 + 8,
322         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
323         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
324         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = 12 + 8,
325         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = 12 + 8,
326         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
327         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
328         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
329         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = 12 + 8 + 16,
330         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = 12 + 8 + 4,
331         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = 12 + 8,
332         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = 12 + 8 + 4,
333         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = 12 + 8 + 4,
334         [IB_OPCODE_RC_ACKNOWLEDGE]                    = 12 + 8 + 4,
335         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = 12 + 8 + 4,
336         [IB_OPCODE_RC_COMPARE_SWAP]                   = 12 + 8 + 28,
337         [IB_OPCODE_RC_FETCH_ADD]                      = 12 + 8 + 28,
338         /* UC */
339         [IB_OPCODE_UC_SEND_FIRST]                     = 12 + 8,
340         [IB_OPCODE_UC_SEND_MIDDLE]                    = 12 + 8,
341         [IB_OPCODE_UC_SEND_LAST]                      = 12 + 8,
342         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
343         [IB_OPCODE_UC_SEND_ONLY]                      = 12 + 8,
344         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
345         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
346         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = 12 + 8,
347         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = 12 + 8,
348         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
349         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
350         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
351         /* UD */
352         [IB_OPCODE_UD_SEND_ONLY]                      = 12 + 8 + 8,
353         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 12
354 };
355
356 static const opcode_handler opcode_handler_tbl[256] = {
357         /* RC */
358         [IB_OPCODE_RC_SEND_FIRST]                     = &hfi1_rc_rcv,
359         [IB_OPCODE_RC_SEND_MIDDLE]                    = &hfi1_rc_rcv,
360         [IB_OPCODE_RC_SEND_LAST]                      = &hfi1_rc_rcv,
361         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
362         [IB_OPCODE_RC_SEND_ONLY]                      = &hfi1_rc_rcv,
363         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
364         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = &hfi1_rc_rcv,
365         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = &hfi1_rc_rcv,
366         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = &hfi1_rc_rcv,
367         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
368         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = &hfi1_rc_rcv,
369         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
370         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = &hfi1_rc_rcv,
371         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = &hfi1_rc_rcv,
372         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = &hfi1_rc_rcv,
373         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = &hfi1_rc_rcv,
374         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = &hfi1_rc_rcv,
375         [IB_OPCODE_RC_ACKNOWLEDGE]                    = &hfi1_rc_rcv,
376         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = &hfi1_rc_rcv,
377         [IB_OPCODE_RC_COMPARE_SWAP]                   = &hfi1_rc_rcv,
378         [IB_OPCODE_RC_FETCH_ADD]                      = &hfi1_rc_rcv,
379         /* UC */
380         [IB_OPCODE_UC_SEND_FIRST]                     = &hfi1_uc_rcv,
381         [IB_OPCODE_UC_SEND_MIDDLE]                    = &hfi1_uc_rcv,
382         [IB_OPCODE_UC_SEND_LAST]                      = &hfi1_uc_rcv,
383         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
384         [IB_OPCODE_UC_SEND_ONLY]                      = &hfi1_uc_rcv,
385         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
386         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = &hfi1_uc_rcv,
387         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = &hfi1_uc_rcv,
388         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = &hfi1_uc_rcv,
389         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
390         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = &hfi1_uc_rcv,
391         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
392         /* UD */
393         [IB_OPCODE_UD_SEND_ONLY]                      = &hfi1_ud_rcv,
394         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_ud_rcv,
395         /* CNP */
396         [IB_OPCODE_CNP]                               = &hfi1_cnp_rcv
397 };
398
399 /*
400  * System image GUID.
401  */
402 __be64 ib_hfi1_sys_image_guid;
403
404 /**
405  * hfi1_copy_sge - copy data to SGE memory
406  * @ss: the SGE state
407  * @data: the data to copy
408  * @length: the length of the data
409  * @copy_last: do a separate copy of the last 8 bytes
410  */
411 void hfi1_copy_sge(
412         struct rvt_sge_state *ss,
413         void *data, u32 length,
414         int release,
415         int copy_last)
416 {
417         struct rvt_sge *sge = &ss->sge;
418         int in_last = 0;
419         int i;
420         int cacheless_copy = 0;
421
422         if (sge_copy_mode == COPY_CACHELESS) {
423                 cacheless_copy = length >= PAGE_SIZE;
424         } else if (sge_copy_mode == COPY_ADAPTIVE) {
425                 if (length >= PAGE_SIZE) {
426                         /*
427                          * NOTE: this *assumes*:
428                          * o The first vaddr is the dest.
429                          * o If multiple pages, then vaddr is sequential.
430                          */
431                         wss_insert(sge->vaddr);
432                         if (length >= (2 * PAGE_SIZE))
433                                 wss_insert(sge->vaddr + PAGE_SIZE);
434
435                         cacheless_copy = wss_exceeds_threshold();
436                 } else {
437                         wss_advance_clean_counter();
438                 }
439         }
440         if (copy_last) {
441                 if (length > 8) {
442                         length -= 8;
443                 } else {
444                         copy_last = 0;
445                         in_last = 1;
446                 }
447         }
448
449 again:
450         while (length) {
451                 u32 len = sge->length;
452
453                 if (len > length)
454                         len = length;
455                 if (len > sge->sge_length)
456                         len = sge->sge_length;
457                 WARN_ON_ONCE(len == 0);
458                 if (unlikely(in_last)) {
459                         /* enforce byte transfer ordering */
460                         for (i = 0; i < len; i++)
461                                 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
462                 } else if (cacheless_copy) {
463                         cacheless_memcpy(sge->vaddr, data, len);
464                 } else {
465                         memcpy(sge->vaddr, data, len);
466                 }
467                 sge->vaddr += len;
468                 sge->length -= len;
469                 sge->sge_length -= len;
470                 if (sge->sge_length == 0) {
471                         if (release)
472                                 rvt_put_mr(sge->mr);
473                         if (--ss->num_sge)
474                                 *sge = *ss->sg_list++;
475                 } else if (sge->length == 0 && sge->mr->lkey) {
476                         if (++sge->n >= RVT_SEGSZ) {
477                                 if (++sge->m >= sge->mr->mapsz)
478                                         break;
479                                 sge->n = 0;
480                         }
481                         sge->vaddr =
482                                 sge->mr->map[sge->m]->segs[sge->n].vaddr;
483                         sge->length =
484                                 sge->mr->map[sge->m]->segs[sge->n].length;
485                 }
486                 data += len;
487                 length -= len;
488         }
489
490         if (copy_last) {
491                 copy_last = 0;
492                 in_last = 1;
493                 length = 8;
494                 goto again;
495         }
496 }
497
498 /**
499  * hfi1_skip_sge - skip over SGE memory
500  * @ss: the SGE state
501  * @length: the number of bytes to skip
502  */
503 void hfi1_skip_sge(struct rvt_sge_state *ss, u32 length, int release)
504 {
505         struct rvt_sge *sge = &ss->sge;
506
507         while (length) {
508                 u32 len = sge->length;
509
510                 if (len > length)
511                         len = length;
512                 if (len > sge->sge_length)
513                         len = sge->sge_length;
514                 WARN_ON_ONCE(len == 0);
515                 sge->vaddr += len;
516                 sge->length -= len;
517                 sge->sge_length -= len;
518                 if (sge->sge_length == 0) {
519                         if (release)
520                                 rvt_put_mr(sge->mr);
521                         if (--ss->num_sge)
522                                 *sge = *ss->sg_list++;
523                 } else if (sge->length == 0 && sge->mr->lkey) {
524                         if (++sge->n >= RVT_SEGSZ) {
525                                 if (++sge->m >= sge->mr->mapsz)
526                                         break;
527                                 sge->n = 0;
528                         }
529                         sge->vaddr =
530                                 sge->mr->map[sge->m]->segs[sge->n].vaddr;
531                         sge->length =
532                                 sge->mr->map[sge->m]->segs[sge->n].length;
533                 }
534                 length -= len;
535         }
536 }
537
538 /*
539  * Make sure the QP is ready and able to accept the given opcode.
540  */
541 static inline int qp_ok(int opcode, struct hfi1_packet *packet)
542 {
543         struct hfi1_ibport *ibp;
544
545         if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
546                 goto dropit;
547         if (((opcode & RVT_OPCODE_QP_MASK) == packet->qp->allowed_ops) ||
548             (opcode == IB_OPCODE_CNP))
549                 return 1;
550 dropit:
551         ibp = &packet->rcd->ppd->ibport_data;
552         ibp->rvp.n_pkt_drops++;
553         return 0;
554 }
555
556 /**
557  * hfi1_ib_rcv - process an incoming packet
558  * @packet: data packet information
559  *
560  * This is called to process an incoming packet at interrupt level.
561  *
562  * Tlen is the length of the header + data + CRC in bytes.
563  */
564 void hfi1_ib_rcv(struct hfi1_packet *packet)
565 {
566         struct hfi1_ctxtdata *rcd = packet->rcd;
567         struct hfi1_ib_header *hdr = packet->hdr;
568         u32 tlen = packet->tlen;
569         struct hfi1_pportdata *ppd = rcd->ppd;
570         struct hfi1_ibport *ibp = &ppd->ibport_data;
571         struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
572         unsigned long flags;
573         u32 qp_num;
574         int lnh;
575         u8 opcode;
576         u16 lid;
577
578         /* Check for GRH */
579         lnh = be16_to_cpu(hdr->lrh[0]) & 3;
580         if (lnh == HFI1_LRH_BTH) {
581                 packet->ohdr = &hdr->u.oth;
582         } else if (lnh == HFI1_LRH_GRH) {
583                 u32 vtf;
584
585                 packet->ohdr = &hdr->u.l.oth;
586                 if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
587                         goto drop;
588                 vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
589                 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
590                         goto drop;
591                 packet->rcv_flags |= HFI1_HAS_GRH;
592         } else {
593                 goto drop;
594         }
595
596         trace_input_ibhdr(rcd->dd, hdr);
597
598         opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
599         inc_opstats(tlen, &rcd->opstats->stats[opcode]);
600
601         /* Get the destination QP number. */
602         qp_num = be32_to_cpu(packet->ohdr->bth[1]) & RVT_QPN_MASK;
603         lid = be16_to_cpu(hdr->lrh[1]);
604         if (unlikely((lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
605                      (lid != be16_to_cpu(IB_LID_PERMISSIVE)))) {
606                 struct rvt_mcast *mcast;
607                 struct rvt_mcast_qp *p;
608
609                 if (lnh != HFI1_LRH_GRH)
610                         goto drop;
611                 mcast = rvt_mcast_find(&ibp->rvp, &hdr->u.l.grh.dgid);
612                 if (!mcast)
613                         goto drop;
614                 list_for_each_entry_rcu(p, &mcast->qp_list, list) {
615                         packet->qp = p->qp;
616                         spin_lock_irqsave(&packet->qp->r_lock, flags);
617                         if (likely((qp_ok(opcode, packet))))
618                                 opcode_handler_tbl[opcode](packet);
619                         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
620                 }
621                 /*
622                  * Notify rvt_multicast_detach() if it is waiting for us
623                  * to finish.
624                  */
625                 if (atomic_dec_return(&mcast->refcount) <= 1)
626                         wake_up(&mcast->wait);
627         } else {
628                 rcu_read_lock();
629                 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
630                 if (!packet->qp) {
631                         rcu_read_unlock();
632                         goto drop;
633                 }
634                 spin_lock_irqsave(&packet->qp->r_lock, flags);
635                 if (likely((qp_ok(opcode, packet))))
636                         opcode_handler_tbl[opcode](packet);
637                 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
638                 rcu_read_unlock();
639         }
640         return;
641
642 drop:
643         ibp->rvp.n_pkt_drops++;
644 }
645
646 /*
647  * This is called from a timer to check for QPs
648  * which need kernel memory in order to send a packet.
649  */
650 static void mem_timer(unsigned long data)
651 {
652         struct hfi1_ibdev *dev = (struct hfi1_ibdev *)data;
653         struct list_head *list = &dev->memwait;
654         struct rvt_qp *qp = NULL;
655         struct iowait *wait;
656         unsigned long flags;
657         struct hfi1_qp_priv *priv;
658
659         write_seqlock_irqsave(&dev->iowait_lock, flags);
660         if (!list_empty(list)) {
661                 wait = list_first_entry(list, struct iowait, list);
662                 qp = iowait_to_qp(wait);
663                 priv = qp->priv;
664                 list_del_init(&priv->s_iowait.list);
665                 /* refcount held until actual wake up */
666                 if (!list_empty(list))
667                         mod_timer(&dev->mem_timer, jiffies + 1);
668         }
669         write_sequnlock_irqrestore(&dev->iowait_lock, flags);
670
671         if (qp)
672                 hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
673 }
674
675 void update_sge(struct rvt_sge_state *ss, u32 length)
676 {
677         struct rvt_sge *sge = &ss->sge;
678
679         sge->vaddr += length;
680         sge->length -= length;
681         sge->sge_length -= length;
682         if (sge->sge_length == 0) {
683                 if (--ss->num_sge)
684                         *sge = *ss->sg_list++;
685         } else if (sge->length == 0 && sge->mr->lkey) {
686                 if (++sge->n >= RVT_SEGSZ) {
687                         if (++sge->m >= sge->mr->mapsz)
688                                 return;
689                         sge->n = 0;
690                 }
691                 sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
692                 sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
693         }
694 }
695
696 /*
697  * This is called with progress side lock held.
698  */
699 /* New API */
700 static void verbs_sdma_complete(
701         struct sdma_txreq *cookie,
702         int status)
703 {
704         struct verbs_txreq *tx =
705                 container_of(cookie, struct verbs_txreq, txreq);
706         struct rvt_qp *qp = tx->qp;
707
708         spin_lock(&qp->s_lock);
709         if (tx->wqe) {
710                 hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
711         } else if (qp->ibqp.qp_type == IB_QPT_RC) {
712                 struct hfi1_ib_header *hdr;
713
714                 hdr = &tx->phdr.hdr;
715                 hfi1_rc_send_complete(qp, hdr);
716         }
717         spin_unlock(&qp->s_lock);
718
719         hfi1_put_txreq(tx);
720 }
721
722 static int wait_kmem(struct hfi1_ibdev *dev,
723                      struct rvt_qp *qp,
724                      struct hfi1_pkt_state *ps)
725 {
726         struct hfi1_qp_priv *priv = qp->priv;
727         unsigned long flags;
728         int ret = 0;
729
730         spin_lock_irqsave(&qp->s_lock, flags);
731         if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
732                 write_seqlock(&dev->iowait_lock);
733                 list_add_tail(&ps->s_txreq->txreq.list,
734                               &priv->s_iowait.tx_head);
735                 if (list_empty(&priv->s_iowait.list)) {
736                         if (list_empty(&dev->memwait))
737                                 mod_timer(&dev->mem_timer, jiffies + 1);
738                         qp->s_flags |= RVT_S_WAIT_KMEM;
739                         list_add_tail(&priv->s_iowait.list, &dev->memwait);
740                         trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
741                         atomic_inc(&qp->refcount);
742                 }
743                 write_sequnlock(&dev->iowait_lock);
744                 qp->s_flags &= ~RVT_S_BUSY;
745                 ret = -EBUSY;
746         }
747         spin_unlock_irqrestore(&qp->s_lock, flags);
748
749         return ret;
750 }
751
752 /*
753  * This routine calls txadds for each sg entry.
754  *
755  * Add failures will revert the sge cursor
756  */
757 static noinline int build_verbs_ulp_payload(
758         struct sdma_engine *sde,
759         struct rvt_sge_state *ss,
760         u32 length,
761         struct verbs_txreq *tx)
762 {
763         struct rvt_sge *sg_list = ss->sg_list;
764         struct rvt_sge sge = ss->sge;
765         u8 num_sge = ss->num_sge;
766         u32 len;
767         int ret = 0;
768
769         while (length) {
770                 len = ss->sge.length;
771                 if (len > length)
772                         len = length;
773                 if (len > ss->sge.sge_length)
774                         len = ss->sge.sge_length;
775                 WARN_ON_ONCE(len == 0);
776                 ret = sdma_txadd_kvaddr(
777                         sde->dd,
778                         &tx->txreq,
779                         ss->sge.vaddr,
780                         len);
781                 if (ret)
782                         goto bail_txadd;
783                 update_sge(ss, len);
784                 length -= len;
785         }
786         return ret;
787 bail_txadd:
788         /* unwind cursor */
789         ss->sge = sge;
790         ss->num_sge = num_sge;
791         ss->sg_list = sg_list;
792         return ret;
793 }
794
795 /*
796  * Build the number of DMA descriptors needed to send length bytes of data.
797  *
798  * NOTE: DMA mapping is held in the tx until completed in the ring or
799  *       the tx desc is freed without having been submitted to the ring
800  *
801  * This routine ensures all the helper routine calls succeed.
802  */
803 /* New API */
804 static int build_verbs_tx_desc(
805         struct sdma_engine *sde,
806         struct rvt_sge_state *ss,
807         u32 length,
808         struct verbs_txreq *tx,
809         struct ahg_ib_header *ahdr,
810         u64 pbc)
811 {
812         int ret = 0;
813         struct hfi1_pio_header *phdr = &tx->phdr;
814         u16 hdrbytes = tx->hdr_dwords << 2;
815
816         if (!ahdr->ahgcount) {
817                 ret = sdma_txinit_ahg(
818                         &tx->txreq,
819                         ahdr->tx_flags,
820                         hdrbytes + length,
821                         ahdr->ahgidx,
822                         0,
823                         NULL,
824                         0,
825                         verbs_sdma_complete);
826                 if (ret)
827                         goto bail_txadd;
828                 phdr->pbc = cpu_to_le64(pbc);
829                 ret = sdma_txadd_kvaddr(
830                         sde->dd,
831                         &tx->txreq,
832                         phdr,
833                         hdrbytes);
834                 if (ret)
835                         goto bail_txadd;
836         } else {
837                 ret = sdma_txinit_ahg(
838                         &tx->txreq,
839                         ahdr->tx_flags,
840                         length,
841                         ahdr->ahgidx,
842                         ahdr->ahgcount,
843                         ahdr->ahgdesc,
844                         hdrbytes,
845                         verbs_sdma_complete);
846                 if (ret)
847                         goto bail_txadd;
848         }
849
850         /* add the ulp payload - if any.  ss can be NULL for acks */
851         if (ss)
852                 ret = build_verbs_ulp_payload(sde, ss, length, tx);
853 bail_txadd:
854         return ret;
855 }
856
857 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
858                         u64 pbc)
859 {
860         struct hfi1_qp_priv *priv = qp->priv;
861         struct ahg_ib_header *ahdr = priv->s_hdr;
862         u32 hdrwords = qp->s_hdrwords;
863         struct rvt_sge_state *ss = qp->s_cur_sge;
864         u32 len = qp->s_cur_size;
865         u32 plen = hdrwords + ((len + 3) >> 2) + 2; /* includes pbc */
866         struct hfi1_ibdev *dev = ps->dev;
867         struct hfi1_pportdata *ppd = ps->ppd;
868         struct verbs_txreq *tx;
869         u64 pbc_flags = 0;
870         u8 sc5 = priv->s_sc;
871
872         int ret;
873
874         tx = ps->s_txreq;
875         if (!sdma_txreq_built(&tx->txreq)) {
876                 if (likely(pbc == 0)) {
877                         u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
878                         /* No vl15 here */
879                         /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
880                         pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
881
882                         pbc = create_pbc(ppd,
883                                          pbc_flags,
884                                          qp->srate_mbps,
885                                          vl,
886                                          plen);
887                 }
888                 tx->wqe = qp->s_wqe;
889                 ret = build_verbs_tx_desc(tx->sde, ss, len, tx, ahdr, pbc);
890                 if (unlikely(ret))
891                         goto bail_build;
892         }
893         ret =  sdma_send_txreq(tx->sde, &priv->s_iowait, &tx->txreq);
894         if (unlikely(ret < 0)) {
895                 if (ret == -ECOMM)
896                         goto bail_ecomm;
897                 return ret;
898         }
899         trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
900                                 &ps->s_txreq->phdr.hdr);
901         return ret;
902
903 bail_ecomm:
904         /* The current one got "sent" */
905         return 0;
906 bail_build:
907         ret = wait_kmem(dev, qp, ps);
908         if (!ret) {
909                 /* free txreq - bad state */
910                 hfi1_put_txreq(ps->s_txreq);
911                 ps->s_txreq = NULL;
912         }
913         return ret;
914 }
915
916 /*
917  * If we are now in the error state, return zero to flush the
918  * send work request.
919  */
920 static int pio_wait(struct rvt_qp *qp,
921                     struct send_context *sc,
922                     struct hfi1_pkt_state *ps,
923                     u32 flag)
924 {
925         struct hfi1_qp_priv *priv = qp->priv;
926         struct hfi1_devdata *dd = sc->dd;
927         struct hfi1_ibdev *dev = &dd->verbs_dev;
928         unsigned long flags;
929         int ret = 0;
930
931         /*
932          * Note that as soon as want_buffer() is called and
933          * possibly before it returns, sc_piobufavail()
934          * could be called. Therefore, put QP on the I/O wait list before
935          * enabling the PIO avail interrupt.
936          */
937         spin_lock_irqsave(&qp->s_lock, flags);
938         if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
939                 write_seqlock(&dev->iowait_lock);
940                 list_add_tail(&ps->s_txreq->txreq.list,
941                               &priv->s_iowait.tx_head);
942                 if (list_empty(&priv->s_iowait.list)) {
943                         struct hfi1_ibdev *dev = &dd->verbs_dev;
944                         int was_empty;
945
946                         dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
947                         dev->n_piodrain += !!(flag & RVT_S_WAIT_PIO_DRAIN);
948                         qp->s_flags |= flag;
949                         was_empty = list_empty(&sc->piowait);
950                         list_add_tail(&priv->s_iowait.list, &sc->piowait);
951                         trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
952                         atomic_inc(&qp->refcount);
953                         /* counting: only call wantpiobuf_intr if first user */
954                         if (was_empty)
955                                 hfi1_sc_wantpiobuf_intr(sc, 1);
956                 }
957                 write_sequnlock(&dev->iowait_lock);
958                 qp->s_flags &= ~RVT_S_BUSY;
959                 ret = -EBUSY;
960         }
961         spin_unlock_irqrestore(&qp->s_lock, flags);
962         return ret;
963 }
964
965 static void verbs_pio_complete(void *arg, int code)
966 {
967         struct rvt_qp *qp = (struct rvt_qp *)arg;
968         struct hfi1_qp_priv *priv = qp->priv;
969
970         if (iowait_pio_dec(&priv->s_iowait))
971                 iowait_drain_wakeup(&priv->s_iowait);
972 }
973
974 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
975                         u64 pbc)
976 {
977         struct hfi1_qp_priv *priv = qp->priv;
978         u32 hdrwords = qp->s_hdrwords;
979         struct rvt_sge_state *ss = qp->s_cur_sge;
980         u32 len = qp->s_cur_size;
981         u32 dwords = (len + 3) >> 2;
982         u32 plen = hdrwords + dwords + 2; /* includes pbc */
983         struct hfi1_pportdata *ppd = ps->ppd;
984         u32 *hdr = (u32 *)&ps->s_txreq->phdr.hdr;
985         u64 pbc_flags = 0;
986         u8 sc5;
987         unsigned long flags = 0;
988         struct send_context *sc;
989         struct pio_buf *pbuf;
990         int wc_status = IB_WC_SUCCESS;
991         int ret = 0;
992         pio_release_cb cb = NULL;
993
994         /* only RC/UC use complete */
995         switch (qp->ibqp.qp_type) {
996         case IB_QPT_RC:
997         case IB_QPT_UC:
998                 cb = verbs_pio_complete;
999                 break;
1000         default:
1001                 break;
1002         }
1003
1004         /* vl15 special case taken care of in ud.c */
1005         sc5 = priv->s_sc;
1006         sc = ps->s_txreq->psc;
1007
1008         if (likely(pbc == 0)) {
1009                 u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1010                 /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
1011                 pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
1012                 pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen);
1013         }
1014         if (cb)
1015                 iowait_pio_inc(&priv->s_iowait);
1016         pbuf = sc_buffer_alloc(sc, plen, cb, qp);
1017         if (unlikely(!pbuf)) {
1018                 if (cb)
1019                         verbs_pio_complete(qp, 0);
1020                 if (ppd->host_link_state != HLS_UP_ACTIVE) {
1021                         /*
1022                          * If we have filled the PIO buffers to capacity and are
1023                          * not in an active state this request is not going to
1024                          * go out to so just complete it with an error or else a
1025                          * ULP or the core may be stuck waiting.
1026                          */
1027                         hfi1_cdbg(
1028                                 PIO,
1029                                 "alloc failed. state not active, completing");
1030                         wc_status = IB_WC_GENERAL_ERR;
1031                         goto pio_bail;
1032                 } else {
1033                         /*
1034                          * This is a normal occurrence. The PIO buffs are full
1035                          * up but we are still happily sending, well we could be
1036                          * so lets continue to queue the request.
1037                          */
1038                         hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1039                         ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
1040                         if (!ret)
1041                                 /* txreq not queued - free */
1042                                 goto bail;
1043                         /* tx consumed in wait */
1044                         return ret;
1045                 }
1046         }
1047
1048         if (len == 0) {
1049                 pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1050         } else {
1051                 if (ss) {
1052                         seg_pio_copy_start(pbuf, pbc, hdr, hdrwords * 4);
1053                         while (len) {
1054                                 void *addr = ss->sge.vaddr;
1055                                 u32 slen = ss->sge.length;
1056
1057                                 if (slen > len)
1058                                         slen = len;
1059                                 update_sge(ss, slen);
1060                                 seg_pio_copy_mid(pbuf, addr, slen);
1061                                 len -= slen;
1062                         }
1063                         seg_pio_copy_end(pbuf);
1064                 }
1065         }
1066
1067         trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1068                                &ps->s_txreq->phdr.hdr);
1069
1070 pio_bail:
1071         if (qp->s_wqe) {
1072                 spin_lock_irqsave(&qp->s_lock, flags);
1073                 hfi1_send_complete(qp, qp->s_wqe, wc_status);
1074                 spin_unlock_irqrestore(&qp->s_lock, flags);
1075         } else if (qp->ibqp.qp_type == IB_QPT_RC) {
1076                 spin_lock_irqsave(&qp->s_lock, flags);
1077                 hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1078                 spin_unlock_irqrestore(&qp->s_lock, flags);
1079         }
1080
1081         ret = 0;
1082
1083 bail:
1084         hfi1_put_txreq(ps->s_txreq);
1085         return ret;
1086 }
1087
1088 /*
1089  * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1090  * being an entry from the partition key table), return 0
1091  * otherwise. Use the matching criteria for egress partition keys
1092  * specified in the OPAv1 spec., section 9.1l.7.
1093  */
1094 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1095 {
1096         u16 mkey = pkey & PKEY_LOW_15_MASK;
1097         u16 mentry = ent & PKEY_LOW_15_MASK;
1098
1099         if (mkey == mentry) {
1100                 /*
1101                  * If pkey[15] is set (full partition member),
1102                  * is bit 15 in the corresponding table element
1103                  * clear (limited member)?
1104                  */
1105                 if (pkey & PKEY_MEMBER_MASK)
1106                         return !!(ent & PKEY_MEMBER_MASK);
1107                 return 1;
1108         }
1109         return 0;
1110 }
1111
1112 /**
1113  * egress_pkey_check - check P_KEY of a packet
1114  * @ppd:    Physical IB port data
1115  * @lrh: Local route header
1116  * @bth: Base transport header
1117  * @sc5:    SC for packet
1118  * @s_pkey_index: It will be used for look up optimization for kernel contexts
1119  * only. If it is negative value, then it means user contexts is calling this
1120  * function.
1121  *
1122  * It checks if hdr's pkey is valid.
1123  *
1124  * Return: 0 on success, otherwise, 1
1125  */
1126 int egress_pkey_check(struct hfi1_pportdata *ppd, __be16 *lrh, __be32 *bth,
1127                       u8 sc5, int8_t s_pkey_index)
1128 {
1129         struct hfi1_devdata *dd;
1130         int i;
1131         u16 pkey;
1132         int is_user_ctxt_mechanism = (s_pkey_index < 0);
1133
1134         if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1135                 return 0;
1136
1137         pkey = (u16)be32_to_cpu(bth[0]);
1138
1139         /* If SC15, pkey[0:14] must be 0x7fff */
1140         if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1141                 goto bad;
1142
1143         /* Is the pkey = 0x0, or 0x8000? */
1144         if ((pkey & PKEY_LOW_15_MASK) == 0)
1145                 goto bad;
1146
1147         /*
1148          * For the kernel contexts only, if a qp is passed into the function,
1149          * the most likely matching pkey has index qp->s_pkey_index
1150          */
1151         if (!is_user_ctxt_mechanism &&
1152             egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1153                 return 0;
1154         }
1155
1156         for (i = 0; i < MAX_PKEY_VALUES; i++) {
1157                 if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1158                         return 0;
1159         }
1160 bad:
1161         /*
1162          * For the user-context mechanism, the P_KEY check would only happen
1163          * once per SDMA request, not once per packet.  Therefore, there's no
1164          * need to increment the counter for the user-context mechanism.
1165          */
1166         if (!is_user_ctxt_mechanism) {
1167                 incr_cntr64(&ppd->port_xmit_constraint_errors);
1168                 dd = ppd->dd;
1169                 if (!(dd->err_info_xmit_constraint.status &
1170                       OPA_EI_STATUS_SMASK)) {
1171                         u16 slid = be16_to_cpu(lrh[3]);
1172
1173                         dd->err_info_xmit_constraint.status |=
1174                                 OPA_EI_STATUS_SMASK;
1175                         dd->err_info_xmit_constraint.slid = slid;
1176                         dd->err_info_xmit_constraint.pkey = pkey;
1177                 }
1178         }
1179         return 1;
1180 }
1181
1182 /**
1183  * get_send_routine - choose an egress routine
1184  *
1185  * Choose an egress routine based on QP type
1186  * and size
1187  */
1188 static inline send_routine get_send_routine(struct rvt_qp *qp,
1189                                             struct verbs_txreq *tx)
1190 {
1191         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1192         struct hfi1_qp_priv *priv = qp->priv;
1193         struct hfi1_ib_header *h = &tx->phdr.hdr;
1194
1195         if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1196                 return dd->process_pio_send;
1197         switch (qp->ibqp.qp_type) {
1198         case IB_QPT_SMI:
1199                 return dd->process_pio_send;
1200         case IB_QPT_GSI:
1201         case IB_QPT_UD:
1202                 break;
1203         case IB_QPT_RC:
1204                 if (piothreshold &&
1205                     qp->s_cur_size <= min(piothreshold, qp->pmtu) &&
1206                     (BIT(get_opcode(h) & 0x1f) & rc_only_opcode) &&
1207                     iowait_sdma_pending(&priv->s_iowait) == 0 &&
1208                     !sdma_txreq_built(&tx->txreq))
1209                         return dd->process_pio_send;
1210                 break;
1211         case IB_QPT_UC:
1212                 if (piothreshold &&
1213                     qp->s_cur_size <= min(piothreshold, qp->pmtu) &&
1214                     (BIT(get_opcode(h) & 0x1f) & uc_only_opcode) &&
1215                     iowait_sdma_pending(&priv->s_iowait) == 0 &&
1216                     !sdma_txreq_built(&tx->txreq))
1217                         return dd->process_pio_send;
1218                 break;
1219         default:
1220                 break;
1221         }
1222         return dd->process_dma_send;
1223 }
1224
1225 /**
1226  * hfi1_verbs_send - send a packet
1227  * @qp: the QP to send on
1228  * @ps: the state of the packet to send
1229  *
1230  * Return zero if packet is sent or queued OK.
1231  * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1232  */
1233 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1234 {
1235         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1236         struct hfi1_qp_priv *priv = qp->priv;
1237         struct hfi1_other_headers *ohdr;
1238         struct hfi1_ib_header *hdr;
1239         send_routine sr;
1240         int ret;
1241         u8 lnh;
1242
1243         hdr = &ps->s_txreq->phdr.hdr;
1244         /* locate the pkey within the headers */
1245         lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1246         if (lnh == HFI1_LRH_GRH)
1247                 ohdr = &hdr->u.l.oth;
1248         else
1249                 ohdr = &hdr->u.oth;
1250
1251         sr = get_send_routine(qp, ps->s_txreq);
1252         ret = egress_pkey_check(dd->pport,
1253                                 hdr->lrh,
1254                                 ohdr->bth,
1255                                 priv->s_sc,
1256                                 qp->s_pkey_index);
1257         if (unlikely(ret)) {
1258                 /*
1259                  * The value we are returning here does not get propagated to
1260                  * the verbs caller. Thus we need to complete the request with
1261                  * error otherwise the caller could be sitting waiting on the
1262                  * completion event. Only do this for PIO. SDMA has its own
1263                  * mechanism for handling the errors. So for SDMA we can just
1264                  * return.
1265                  */
1266                 if (sr == dd->process_pio_send) {
1267                         unsigned long flags;
1268
1269                         hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1270                                   __func__);
1271                         spin_lock_irqsave(&qp->s_lock, flags);
1272                         hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1273                         spin_unlock_irqrestore(&qp->s_lock, flags);
1274                 }
1275                 return -EINVAL;
1276         }
1277         if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1278                 return pio_wait(qp,
1279                                 ps->s_txreq->psc,
1280                                 ps,
1281                                 RVT_S_WAIT_PIO_DRAIN);
1282         return sr(qp, ps, 0);
1283 }
1284
1285 /**
1286  * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1287  * @dd: the device data structure
1288  */
1289 static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1290 {
1291         struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1292
1293         memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1294
1295         rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1296                         IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1297                         IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1298                         IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE;
1299         rdi->dparms.props.page_size_cap = PAGE_SIZE;
1300         rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1301         rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1302         rdi->dparms.props.hw_ver = dd->minrev;
1303         rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1304         rdi->dparms.props.max_mr_size = ~0ULL;
1305         rdi->dparms.props.max_qp = hfi1_max_qps;
1306         rdi->dparms.props.max_qp_wr = hfi1_max_qp_wrs;
1307         rdi->dparms.props.max_sge = hfi1_max_sges;
1308         rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1309         rdi->dparms.props.max_cq = hfi1_max_cqs;
1310         rdi->dparms.props.max_ah = hfi1_max_ahs;
1311         rdi->dparms.props.max_cqe = hfi1_max_cqes;
1312         rdi->dparms.props.max_mr = rdi->lkey_table.max;
1313         rdi->dparms.props.max_fmr = rdi->lkey_table.max;
1314         rdi->dparms.props.max_map_per_fmr = 32767;
1315         rdi->dparms.props.max_pd = hfi1_max_pds;
1316         rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1317         rdi->dparms.props.max_qp_init_rd_atom = 255;
1318         rdi->dparms.props.max_srq = hfi1_max_srqs;
1319         rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1320         rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1321         rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1322         rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1323         rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1324         rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1325         rdi->dparms.props.max_total_mcast_qp_attach =
1326                                         rdi->dparms.props.max_mcast_qp_attach *
1327                                         rdi->dparms.props.max_mcast_grp;
1328 }
1329
1330 static inline u16 opa_speed_to_ib(u16 in)
1331 {
1332         u16 out = 0;
1333
1334         if (in & OPA_LINK_SPEED_25G)
1335                 out |= IB_SPEED_EDR;
1336         if (in & OPA_LINK_SPEED_12_5G)
1337                 out |= IB_SPEED_FDR;
1338
1339         return out;
1340 }
1341
1342 /*
1343  * Convert a single OPA link width (no multiple flags) to an IB value.
1344  * A zero OPA link width means link down, which means the IB width value
1345  * is a don't care.
1346  */
1347 static inline u16 opa_width_to_ib(u16 in)
1348 {
1349         switch (in) {
1350         case OPA_LINK_WIDTH_1X:
1351         /* map 2x and 3x to 1x as they don't exist in IB */
1352         case OPA_LINK_WIDTH_2X:
1353         case OPA_LINK_WIDTH_3X:
1354                 return IB_WIDTH_1X;
1355         default: /* link down or unknown, return our largest width */
1356         case OPA_LINK_WIDTH_4X:
1357                 return IB_WIDTH_4X;
1358         }
1359 }
1360
1361 static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1362                       struct ib_port_attr *props)
1363 {
1364         struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1365         struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1366         struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1367         u16 lid = ppd->lid;
1368
1369         props->lid = lid ? lid : 0;
1370         props->lmc = ppd->lmc;
1371         /* OPA logical states match IB logical states */
1372         props->state = driver_lstate(ppd);
1373         props->phys_state = hfi1_ibphys_portstate(ppd);
1374         props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1375         props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1376         /* see rate_show() in ib core/sysfs.c */
1377         props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1378         props->max_vl_num = ppd->vls_supported;
1379
1380         /* Once we are a "first class" citizen and have added the OPA MTUs to
1381          * the core we can advertise the larger MTU enum to the ULPs, for now
1382          * advertise only 4K.
1383          *
1384          * Those applications which are either OPA aware or pass the MTU enum
1385          * from the Path Records to us will get the new 8k MTU.  Those that
1386          * attempt to process the MTU enum may fail in various ways.
1387          */
1388         props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1389                                       4096 : hfi1_max_mtu), IB_MTU_4096);
1390         props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1391                 mtu_to_enum(ppd->ibmtu, IB_MTU_2048);
1392
1393         return 0;
1394 }
1395
1396 static int modify_device(struct ib_device *device,
1397                          int device_modify_mask,
1398                          struct ib_device_modify *device_modify)
1399 {
1400         struct hfi1_devdata *dd = dd_from_ibdev(device);
1401         unsigned i;
1402         int ret;
1403
1404         if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1405                                    IB_DEVICE_MODIFY_NODE_DESC)) {
1406                 ret = -EOPNOTSUPP;
1407                 goto bail;
1408         }
1409
1410         if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1411                 memcpy(device->node_desc, device_modify->node_desc, 64);
1412                 for (i = 0; i < dd->num_pports; i++) {
1413                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1414
1415                         hfi1_node_desc_chg(ibp);
1416                 }
1417         }
1418
1419         if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1420                 ib_hfi1_sys_image_guid =
1421                         cpu_to_be64(device_modify->sys_image_guid);
1422                 for (i = 0; i < dd->num_pports; i++) {
1423                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1424
1425                         hfi1_sys_guid_chg(ibp);
1426                 }
1427         }
1428
1429         ret = 0;
1430
1431 bail:
1432         return ret;
1433 }
1434
1435 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1436 {
1437         struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1438         struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1439         struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1440         int ret;
1441
1442         set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1443                              OPA_LINKDOWN_REASON_UNKNOWN);
1444         ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1445         return ret;
1446 }
1447
1448 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1449                             int guid_index, __be64 *guid)
1450 {
1451         struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1452         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1453
1454         if (guid_index == 0)
1455                 *guid = cpu_to_be64(ppd->guid);
1456         else if (guid_index < HFI1_GUIDS_PER_PORT)
1457                 *guid = ibp->guids[guid_index - 1];
1458         else
1459                 return -EINVAL;
1460
1461         return 0;
1462 }
1463
1464 /*
1465  * convert ah port,sl to sc
1466  */
1467 u8 ah_to_sc(struct ib_device *ibdev, struct ib_ah_attr *ah)
1468 {
1469         struct hfi1_ibport *ibp = to_iport(ibdev, ah->port_num);
1470
1471         return ibp->sl_to_sc[ah->sl];
1472 }
1473
1474 static int hfi1_check_ah(struct ib_device *ibdev, struct ib_ah_attr *ah_attr)
1475 {
1476         struct hfi1_ibport *ibp;
1477         struct hfi1_pportdata *ppd;
1478         struct hfi1_devdata *dd;
1479         u8 sc5;
1480
1481         /* test the mapping for validity */
1482         ibp = to_iport(ibdev, ah_attr->port_num);
1483         ppd = ppd_from_ibp(ibp);
1484         sc5 = ibp->sl_to_sc[ah_attr->sl];
1485         dd = dd_from_ppd(ppd);
1486         if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1487                 return -EINVAL;
1488         return 0;
1489 }
1490
1491 static void hfi1_notify_new_ah(struct ib_device *ibdev,
1492                                struct ib_ah_attr *ah_attr,
1493                                struct rvt_ah *ah)
1494 {
1495         struct hfi1_ibport *ibp;
1496         struct hfi1_pportdata *ppd;
1497         struct hfi1_devdata *dd;
1498         u8 sc5;
1499
1500         /*
1501          * Do not trust reading anything from rvt_ah at this point as it is not
1502          * done being setup. We can however modify things which we need to set.
1503          */
1504
1505         ibp = to_iport(ibdev, ah_attr->port_num);
1506         ppd = ppd_from_ibp(ibp);
1507         sc5 = ibp->sl_to_sc[ah->attr.sl];
1508         dd = dd_from_ppd(ppd);
1509         ah->vl = sc_to_vlt(dd, sc5);
1510         if (ah->vl < num_vls || ah->vl == 15)
1511                 ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1512 }
1513
1514 struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u16 dlid)
1515 {
1516         struct ib_ah_attr attr;
1517         struct ib_ah *ah = ERR_PTR(-EINVAL);
1518         struct rvt_qp *qp0;
1519
1520         memset(&attr, 0, sizeof(attr));
1521         attr.dlid = dlid;
1522         attr.port_num = ppd_from_ibp(ibp)->port;
1523         rcu_read_lock();
1524         qp0 = rcu_dereference(ibp->rvp.qp[0]);
1525         if (qp0)
1526                 ah = ib_create_ah(qp0->ibqp.pd, &attr);
1527         rcu_read_unlock();
1528         return ah;
1529 }
1530
1531 /**
1532  * hfi1_get_npkeys - return the size of the PKEY table for context 0
1533  * @dd: the hfi1_ib device
1534  */
1535 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1536 {
1537         return ARRAY_SIZE(dd->pport[0].pkeys);
1538 }
1539
1540 static void init_ibport(struct hfi1_pportdata *ppd)
1541 {
1542         struct hfi1_ibport *ibp = &ppd->ibport_data;
1543         size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1544         int i;
1545
1546         for (i = 0; i < sz; i++) {
1547                 ibp->sl_to_sc[i] = i;
1548                 ibp->sc_to_sl[i] = i;
1549         }
1550
1551         spin_lock_init(&ibp->rvp.lock);
1552         /* Set the prefix to the default value (see ch. 4.1.1) */
1553         ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1554         ibp->rvp.sm_lid = 0;
1555         /* Below should only set bits defined in OPA PortInfo.CapabilityMask */
1556         ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1557                 IB_PORT_CAP_MASK_NOTICE_SUP;
1558         ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1559         ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1560         ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1561         ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1562         ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1563
1564         RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1565         RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1566 }
1567
1568 /**
1569  * hfi1_register_ib_device - register our device with the infiniband core
1570  * @dd: the device data structure
1571  * Return 0 if successful, errno if unsuccessful.
1572  */
1573 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1574 {
1575         struct hfi1_ibdev *dev = &dd->verbs_dev;
1576         struct ib_device *ibdev = &dev->rdi.ibdev;
1577         struct hfi1_pportdata *ppd = dd->pport;
1578         unsigned i;
1579         int ret;
1580         size_t lcpysz = IB_DEVICE_NAME_MAX;
1581
1582         for (i = 0; i < dd->num_pports; i++)
1583                 init_ibport(ppd + i);
1584
1585         /* Only need to initialize non-zero fields. */
1586
1587         setup_timer(&dev->mem_timer, mem_timer, (unsigned long)dev);
1588
1589         seqlock_init(&dev->iowait_lock);
1590         INIT_LIST_HEAD(&dev->txwait);
1591         INIT_LIST_HEAD(&dev->memwait);
1592
1593         ret = verbs_txreq_init(dev);
1594         if (ret)
1595                 goto err_verbs_txreq;
1596
1597         /*
1598          * The system image GUID is supposed to be the same for all
1599          * HFIs in a single system but since there can be other
1600          * device types in the system, we can't be sure this is unique.
1601          */
1602         if (!ib_hfi1_sys_image_guid)
1603                 ib_hfi1_sys_image_guid = cpu_to_be64(ppd->guid);
1604         lcpysz = strlcpy(ibdev->name, class_name(), lcpysz);
1605         strlcpy(ibdev->name + lcpysz, "_%d", IB_DEVICE_NAME_MAX - lcpysz);
1606         ibdev->owner = THIS_MODULE;
1607         ibdev->node_guid = cpu_to_be64(ppd->guid);
1608         ibdev->phys_port_cnt = dd->num_pports;
1609         ibdev->dma_device = &dd->pcidev->dev;
1610         ibdev->modify_device = modify_device;
1611
1612         /* keep process mad in the driver */
1613         ibdev->process_mad = hfi1_process_mad;
1614
1615         strncpy(ibdev->node_desc, init_utsname()->nodename,
1616                 sizeof(ibdev->node_desc));
1617
1618         /*
1619          * Fill in rvt info object.
1620          */
1621         dd->verbs_dev.rdi.driver_f.port_callback = hfi1_create_port_files;
1622         dd->verbs_dev.rdi.driver_f.get_card_name = get_card_name;
1623         dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1624         dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1625         dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1626         dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1627         dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1628         dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1629         dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1630         /*
1631          * Fill in rvt info device attributes.
1632          */
1633         hfi1_fill_device_attr(dd);
1634
1635         /* queue pair */
1636         dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1637         dd->verbs_dev.rdi.dparms.qpn_start = 0;
1638         dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1639         dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1640         dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
1641         dd->verbs_dev.rdi.dparms.qpn_res_end =
1642         dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
1643         dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1644         dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1645         dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1646         dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1647         dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA;
1648         dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1649
1650         dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1651         dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1652         dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1653         dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1654         dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send;
1655         dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1656         dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1657         dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1658         dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1659         dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1660         dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1661         dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1662         dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1663         dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1664         dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1665         dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1666         dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1667         dd->verbs_dev.rdi.driver_f.check_send_wqe = hfi1_check_send_wqe;
1668
1669         /* completeion queue */
1670         snprintf(dd->verbs_dev.rdi.dparms.cq_name,
1671                  sizeof(dd->verbs_dev.rdi.dparms.cq_name),
1672                  "hfi1_cq%d", dd->unit);
1673         dd->verbs_dev.rdi.dparms.node = dd->node;
1674
1675         /* misc settings */
1676         dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1677         dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1678         dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1679         dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1680
1681         ppd = dd->pport;
1682         for (i = 0; i < dd->num_pports; i++, ppd++)
1683                 rvt_init_port(&dd->verbs_dev.rdi,
1684                               &ppd->ibport_data.rvp,
1685                               i,
1686                               ppd->pkeys);
1687
1688         ret = rvt_register_device(&dd->verbs_dev.rdi);
1689         if (ret)
1690                 goto err_verbs_txreq;
1691
1692         ret = hfi1_verbs_register_sysfs(dd);
1693         if (ret)
1694                 goto err_class;
1695
1696         return ret;
1697
1698 err_class:
1699         rvt_unregister_device(&dd->verbs_dev.rdi);
1700 err_verbs_txreq:
1701         verbs_txreq_exit(dev);
1702         dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1703         return ret;
1704 }
1705
1706 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1707 {
1708         struct hfi1_ibdev *dev = &dd->verbs_dev;
1709
1710         hfi1_verbs_unregister_sysfs(dd);
1711
1712         rvt_unregister_device(&dd->verbs_dev.rdi);
1713
1714         if (!list_empty(&dev->txwait))
1715                 dd_dev_err(dd, "txwait list not empty!\n");
1716         if (!list_empty(&dev->memwait))
1717                 dd_dev_err(dd, "memwait list not empty!\n");
1718
1719         del_timer_sync(&dev->mem_timer);
1720         verbs_txreq_exit(dev);
1721 }
1722
1723 void hfi1_cnp_rcv(struct hfi1_packet *packet)
1724 {
1725         struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data;
1726         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1727         struct hfi1_ib_header *hdr = packet->hdr;
1728         struct rvt_qp *qp = packet->qp;
1729         u32 lqpn, rqpn = 0;
1730         u16 rlid = 0;
1731         u8 sl, sc5, sc4_bit, svc_type;
1732         bool sc4_set = has_sc4_bit(packet);
1733
1734         switch (packet->qp->ibqp.qp_type) {
1735         case IB_QPT_UC:
1736                 rlid = qp->remote_ah_attr.dlid;
1737                 rqpn = qp->remote_qpn;
1738                 svc_type = IB_CC_SVCTYPE_UC;
1739                 break;
1740         case IB_QPT_RC:
1741                 rlid = qp->remote_ah_attr.dlid;
1742                 rqpn = qp->remote_qpn;
1743                 svc_type = IB_CC_SVCTYPE_RC;
1744                 break;
1745         case IB_QPT_SMI:
1746         case IB_QPT_GSI:
1747         case IB_QPT_UD:
1748                 svc_type = IB_CC_SVCTYPE_UD;
1749                 break;
1750         default:
1751                 ibp->rvp.n_pkt_drops++;
1752                 return;
1753         }
1754
1755         sc4_bit = sc4_set << 4;
1756         sc5 = (be16_to_cpu(hdr->lrh[0]) >> 12) & 0xf;
1757         sc5 |= sc4_bit;
1758         sl = ibp->sc_to_sl[sc5];
1759         lqpn = qp->ibqp.qp_num;
1760
1761         process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
1762 }