Merge tag 'ntb-3.18' of git://github.com/jonmason/ntb
[cascardo/linux.git] / drivers / staging / rtl8712 / rtl871x_security.c
1 /******************************************************************************
2  * rtl871x_security.c
3  *
4  * Copyright(c) 2007 - 2010 Realtek Corporation. All rights reserved.
5  * Linux device driver for RTL8192SU
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of version 2 of the GNU General Public License as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program; if not, write to the Free Software Foundation, Inc.,
18  * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
19  *
20  * Modifications for inclusion into the Linux staging tree are
21  * Copyright(c) 2010 Larry Finger. All rights reserved.
22  *
23  * Contact information:
24  * WLAN FAE <wlanfae@realtek.com>
25  * Larry Finger <Larry.Finger@lwfinger.net>
26  *
27  ******************************************************************************/
28
29 #define  _RTL871X_SECURITY_C_
30
31 #include <linux/compiler.h>
32 #include <linux/kernel.h>
33 #include <linux/errno.h>
34 #include <linux/slab.h>
35 #include <linux/module.h>
36 #include <linux/kref.h>
37 #include <linux/netdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/circ_buf.h>
40 #include <linux/uaccess.h>
41 #include <asm/byteorder.h>
42 #include <linux/atomic.h>
43 #include <linux/semaphore.h>
44
45 #include "osdep_service.h"
46 #include "drv_types.h"
47 #include "wifi.h"
48 #include "osdep_intf.h"
49
50 /* =====WEP related===== */
51
52 #define CRC32_POLY 0x04c11db7
53
54 struct arc4context {
55         u32 x;
56         u32 y;
57         u8 state[256];
58 };
59
60 static void arcfour_init(struct arc4context *parc4ctx, u8 *key, u32 key_len)
61 {
62         u32     t, u;
63         u32     keyindex;
64         u32     stateindex;
65         u8 *state;
66         u32     counter;
67
68         state = parc4ctx->state;
69         parc4ctx->x = 0;
70         parc4ctx->y = 0;
71         for (counter = 0; counter < 256; counter++)
72                 state[counter] = (u8)counter;
73         keyindex = 0;
74         stateindex = 0;
75         for (counter = 0; counter < 256; counter++) {
76                 t = state[counter];
77                 stateindex = (stateindex + key[keyindex] + t) & 0xff;
78                 u = state[stateindex];
79                 state[stateindex] = (u8)t;
80                 state[counter] = (u8)u;
81                 if (++keyindex >= key_len)
82                         keyindex = 0;
83         }
84 }
85
86 static u32 arcfour_byte(struct arc4context *parc4ctx)
87 {
88         u32 x;
89         u32 y;
90         u32 sx, sy;
91         u8 *state;
92
93         state = parc4ctx->state;
94         x = (parc4ctx->x + 1) & 0xff;
95         sx = state[x];
96         y = (sx + parc4ctx->y) & 0xff;
97         sy = state[y];
98         parc4ctx->x = x;
99         parc4ctx->y = y;
100         state[y] = (u8)sx;
101         state[x] = (u8)sy;
102         return state[(sx + sy) & 0xff];
103 }
104
105 static void arcfour_encrypt(struct arc4context  *parc4ctx,
106                      u8 *dest, u8 *src, u32 len)
107 {
108         u32 i;
109
110         for (i = 0; i < len; i++)
111                 dest[i] = src[i] ^ (unsigned char)arcfour_byte(parc4ctx);
112 }
113
114 static sint bcrc32initialized;
115 static u32 crc32_table[256];
116
117 static u8 crc32_reverseBit(u8 data)
118 {
119         return ((u8)(data << 7) & 0x80) | ((data << 5) & 0x40) | ((data << 3)
120                  & 0x20) | ((data << 1) & 0x10) | ((data >> 1) & 0x08) |
121                  ((data >> 3) & 0x04) | ((data >> 5) & 0x02) | ((data >> 7) &
122                  0x01);
123 }
124
125 static void crc32_init(void)
126 {
127         if (bcrc32initialized == 1)
128                 return;
129         else {
130                 sint i, j;
131                 u32 c;
132                 u8 *p = (u8 *)&c, *p1;
133                 u8 k;
134
135                 c = 0x12340000;
136                 for (i = 0; i < 256; ++i) {
137                         k = crc32_reverseBit((u8)i);
138                         for (c = ((u32)k) << 24, j = 8; j > 0; --j)
139                                 c = c & 0x80000000 ? (c << 1) ^ CRC32_POLY :
140                                     (c << 1);
141                         p1 = (u8 *)&crc32_table[i];
142                         p1[0] = crc32_reverseBit(p[3]);
143                         p1[1] = crc32_reverseBit(p[2]);
144                         p1[2] = crc32_reverseBit(p[1]);
145                         p1[3] = crc32_reverseBit(p[0]);
146                 }
147                 bcrc32initialized = 1;
148         }
149 }
150
151 static u32 getcrc32(u8 *buf, u32 len)
152 {
153         u8 *p;
154         u32  crc;
155
156         if (bcrc32initialized == 0)
157                 crc32_init();
158         crc = 0xffffffff; /* preload shift register, per CRC-32 spec */
159         for (p = buf; len > 0; ++p, --len)
160                 crc = crc32_table[(crc ^ *p) & 0xff] ^ (crc >> 8);
161         return ~crc;    /* transmit complement, per CRC-32 spec */
162 }
163
164 /*
165         Need to consider the fragment  situation
166 */
167 void r8712_wep_encrypt(struct _adapter *padapter, u8 *pxmitframe)
168 {       /* exclude ICV */
169         unsigned char   crc[4];
170         struct arc4context  mycontext;
171         u32 curfragnum, length, keylength;
172         u8 *pframe, *payload, *iv;    /*,*wepkey*/
173         u8 wepkey[16];
174         struct  pkt_attrib  *pattrib = &((struct xmit_frame *)
175                                        pxmitframe)->attrib;
176         struct  security_priv *psecuritypriv = &padapter->securitypriv;
177         struct  xmit_priv *pxmitpriv = &padapter->xmitpriv;
178
179         if (((struct xmit_frame *)pxmitframe)->buf_addr == NULL)
180                 return;
181         pframe = ((struct xmit_frame *)pxmitframe)->buf_addr+TXDESC_OFFSET;
182         /*start to encrypt each fragment*/
183         if ((pattrib->encrypt == _WEP40_) || (pattrib->encrypt == _WEP104_)) {
184                 keylength = psecuritypriv->DefKeylen[psecuritypriv->
185                             PrivacyKeyIndex];
186                 for (curfragnum = 0; curfragnum < pattrib->nr_frags;
187                      curfragnum++) {
188                         iv = pframe+pattrib->hdrlen;
189                         memcpy(&wepkey[0], iv, 3);
190                         memcpy(&wepkey[3], &psecuritypriv->DefKey[
191                                 psecuritypriv->PrivacyKeyIndex].skey[0],
192                                 keylength);
193                         payload = pframe+pattrib->iv_len+pattrib->hdrlen;
194                         if ((curfragnum + 1) == pattrib->nr_frags) {
195                                 length = pattrib->last_txcmdsz-pattrib->
196                                          hdrlen-pattrib->iv_len -
197                                          pattrib->icv_len;
198                                 *((u32 *)crc) = cpu_to_le32(getcrc32(
199                                                 payload, length));
200                                 arcfour_init(&mycontext, wepkey, 3 + keylength);
201                                 arcfour_encrypt(&mycontext, payload, payload,
202                                                 length);
203                                 arcfour_encrypt(&mycontext, payload + length,
204                                                 crc, 4);
205                         } else {
206                                 length = pxmitpriv->frag_len-pattrib->hdrlen -
207                                          pattrib->iv_len-pattrib->icv_len;
208                                 *((u32 *)crc) = cpu_to_le32(getcrc32(
209                                                 payload, length));
210                                 arcfour_init(&mycontext, wepkey, 3 + keylength);
211                                 arcfour_encrypt(&mycontext, payload, payload,
212                                                 length);
213                                 arcfour_encrypt(&mycontext, payload+length,
214                                                 crc, 4);
215                                 pframe += pxmitpriv->frag_len;
216                                 pframe = (u8 *)RND4((addr_t)(pframe));
217                         }
218                 }
219         }
220 }
221
222 void r8712_wep_decrypt(struct _adapter  *padapter, u8 *precvframe)
223 {
224         /* exclude ICV */
225         u8 crc[4];
226         struct arc4context  mycontext;
227         u32 length, keylength;
228         u8 *pframe, *payload, *iv, wepkey[16];
229         u8  keyindex;
230         struct rx_pkt_attrib  *prxattrib = &(((union recv_frame *)
231                                           precvframe)->u.hdr.attrib);
232         struct security_priv *psecuritypriv = &padapter->securitypriv;
233
234         pframe = (unsigned char *)((union recv_frame *)precvframe)->
235                   u.hdr.rx_data;
236         /* start to decrypt recvframe */
237         if ((prxattrib->encrypt == _WEP40_) || (prxattrib->encrypt ==
238              _WEP104_)) {
239                 iv = pframe + prxattrib->hdrlen;
240                 keyindex = (iv[3] & 0x3);
241                 keylength = psecuritypriv->DefKeylen[keyindex];
242                 memcpy(&wepkey[0], iv, 3);
243                 memcpy(&wepkey[3], &psecuritypriv->DefKey[
244                         psecuritypriv->PrivacyKeyIndex].skey[0],
245                         keylength);
246                 length = ((union recv_frame *)precvframe)->
247                            u.hdr.len-prxattrib->hdrlen-prxattrib->iv_len;
248                 payload = pframe+prxattrib->iv_len+prxattrib->hdrlen;
249                 /* decrypt payload include icv */
250                 arcfour_init(&mycontext, wepkey, 3 + keylength);
251                 arcfour_encrypt(&mycontext, payload, payload,  length);
252                 /* calculate icv and compare the icv */
253                 *((u32 *)crc) = cpu_to_le32(getcrc32(payload, length - 4));
254         }
255 }
256
257 /* 3 =====TKIP related===== */
258
259 static u32 secmicgetuint32(u8 *p)
260 /* Convert from Byte[] to Us4Byte32 in a portable way */
261 {
262         s32 i;
263         u32 res = 0;
264
265         for (i = 0; i < 4; i++)
266                 res |= ((u32)(*p++)) << (8 * i);
267         return res;
268 }
269
270 static void secmicputuint32(u8 *p, u32 val)
271 /* Convert from Us4Byte32 to Byte[] in a portable way */
272 {
273         long i;
274
275         for (i = 0; i < 4; i++) {
276                 *p++ = (u8) (val & 0xff);
277                 val >>= 8;
278         }
279 }
280
281 static void secmicclear(struct mic_data *pmicdata)
282 {
283 /* Reset the state to the empty message. */
284         pmicdata->L = pmicdata->K0;
285         pmicdata->R = pmicdata->K1;
286         pmicdata->nBytesInM = 0;
287         pmicdata->M = 0;
288 }
289
290 void r8712_secmicsetkey(struct mic_data *pmicdata, u8 *key)
291 {
292         /* Set the key */
293         pmicdata->K0 = secmicgetuint32(key);
294         pmicdata->K1 = secmicgetuint32(key + 4);
295         /* and reset the message */
296         secmicclear(pmicdata);
297 }
298
299 static void secmicappendbyte(struct mic_data *pmicdata, u8 b)
300 {
301         /* Append the byte to our word-sized buffer */
302         pmicdata->M |= ((u32)b) << (8 * pmicdata->nBytesInM);
303         pmicdata->nBytesInM++;
304         /* Process the word if it is full. */
305         if (pmicdata->nBytesInM >= 4) {
306                 pmicdata->L ^= pmicdata->M;
307                 pmicdata->R ^= ROL32(pmicdata->L, 17);
308                 pmicdata->L += pmicdata->R;
309                 pmicdata->R ^= ((pmicdata->L & 0xff00ff00) >> 8) |
310                                ((pmicdata->L & 0x00ff00ff) << 8);
311                 pmicdata->L += pmicdata->R;
312                 pmicdata->R ^= ROL32(pmicdata->L, 3);
313                 pmicdata->L += pmicdata->R;
314                 pmicdata->R ^= ROR32(pmicdata->L, 2);
315                 pmicdata->L += pmicdata->R;
316                 /* Clear the buffer */
317                 pmicdata->M = 0;
318                 pmicdata->nBytesInM = 0;
319         }
320 }
321
322 void r8712_secmicappend(struct mic_data *pmicdata, u8 *src, u32 nbytes)
323 {
324         /* This is simple */
325         while (nbytes > 0) {
326                 secmicappendbyte(pmicdata, *src++);
327                 nbytes--;
328         }
329 }
330
331 void r8712_secgetmic(struct mic_data *pmicdata, u8 *dst)
332 {
333         /* Append the minimum padding */
334         secmicappendbyte(pmicdata, 0x5a);
335         secmicappendbyte(pmicdata, 0);
336         secmicappendbyte(pmicdata, 0);
337         secmicappendbyte(pmicdata, 0);
338         secmicappendbyte(pmicdata, 0);
339         /* and then zeroes until the length is a multiple of 4 */
340         while (pmicdata->nBytesInM != 0)
341                 secmicappendbyte(pmicdata, 0);
342         /* The appendByte function has already computed the result. */
343         secmicputuint32(dst, pmicdata->L);
344         secmicputuint32(dst + 4, pmicdata->R);
345         /* Reset to the empty message. */
346         secmicclear(pmicdata);
347 }
348
349 void seccalctkipmic(u8 *key, u8 *header, u8 *data, u32 data_len, u8 *mic_code,
350                     u8 pri)
351 {
352
353         struct mic_data micdata;
354         u8 priority[4] = {0x0, 0x0, 0x0, 0x0};
355
356         r8712_secmicsetkey(&micdata, key);
357         priority[0] = pri;
358         /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
359         if (header[1] & 1) {   /* ToDS==1 */
360                 r8712_secmicappend(&micdata, &header[16], 6);  /* DA */
361                 if (header[1] & 2)  /* From Ds==1 */
362                         r8712_secmicappend(&micdata, &header[24], 6);
363                 else
364                         r8712_secmicappend(&micdata, &header[10], 6);
365         } else {        /* ToDS==0 */
366                 r8712_secmicappend(&micdata, &header[4], 6);   /* DA */
367                 if (header[1] & 2)  /* From Ds==1 */
368                         r8712_secmicappend(&micdata, &header[16], 6);
369                 else
370                         r8712_secmicappend(&micdata, &header[10], 6);
371         }
372         r8712_secmicappend(&micdata, &priority[0], 4);
373         r8712_secmicappend(&micdata, data, data_len);
374         r8712_secgetmic(&micdata, mic_code);
375 }
376
377 /* macros for extraction/creation of unsigned char/unsigned short values  */
378 #define RotR1(v16)   ((((v16) >> 1) & 0x7FFF) ^ (((v16) & 1) << 15))
379 #define   Lo8(v16)   ((u8)((v16) & 0x00FF))
380 #define   Hi8(v16)   ((u8)(((v16) >> 8) & 0x00FF))
381 #define  Lo16(v32)   ((u16)((v32) & 0xFFFF))
382 #define  Hi16(v32)   ((u16)(((v32) >> 16) & 0xFFFF))
383 #define  Mk16(hi, lo) ((lo) ^ (((u16)(hi)) << 8))
384
385 /* select the Nth 16-bit word of the temporal key unsigned char array TK[]   */
386 #define  TK16(N)  Mk16(tk[2 * (N) + 1], tk[2 * (N)])
387
388 /* S-box lookup: 16 bits --> 16 bits */
389 #define _S_(v16)  (Sbox1[0][Lo8(v16)] ^ Sbox1[1][Hi8(v16)])
390
391 /* fixed algorithm "parameters" */
392 #define PHASE1_LOOP_CNT   8    /* this needs to be "big enough"     */
393 #define TA_SIZE           6    /*  48-bit transmitter address       */
394 #define TK_SIZE          16    /* 128-bit temporal key              */
395 #define P1K_SIZE         10    /*  80-bit Phase1 key                */
396 #define RC4_KEY_SIZE     16    /* 128-bit RC4KEY (104 bits unknown) */
397
398
399 /* 2-unsigned char by 2-unsigned char subset of the full AES S-box table */
400 static const unsigned short Sbox1[2][256] = {/* Sbox for hash (can be in ROM) */
401         {
402         0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
403         0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
404         0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
405         0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
406         0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
407         0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
408         0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
409         0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
410         0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
411         0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
412         0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
413         0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
414         0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
415         0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
416         0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
417         0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
418         0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
419         0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
420         0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
421         0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
422         0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
423         0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
424         0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
425         0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
426         0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
427         0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
428         0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
429         0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
430         0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
431         0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
432         0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
433         0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
434         },
435         {  /* second half is unsigned char-reversed version of first! */
436         0xA5C6, 0x84F8, 0x99EE, 0x8DF6, 0x0DFF, 0xBDD6, 0xB1DE, 0x5491,
437         0x5060, 0x0302, 0xA9CE, 0x7D56, 0x19E7, 0x62B5, 0xE64D, 0x9AEC,
438         0x458F, 0x9D1F, 0x4089, 0x87FA, 0x15EF, 0xEBB2, 0xC98E, 0x0BFB,
439         0xEC41, 0x67B3, 0xFD5F, 0xEA45, 0xBF23, 0xF753, 0x96E4, 0x5B9B,
440         0xC275, 0x1CE1, 0xAE3D, 0x6A4C, 0x5A6C, 0x417E, 0x02F5, 0x4F83,
441         0x5C68, 0xF451, 0x34D1, 0x08F9, 0x93E2, 0x73AB, 0x5362, 0x3F2A,
442         0x0C08, 0x5295, 0x6546, 0x5E9D, 0x2830, 0xA137, 0x0F0A, 0xB52F,
443         0x090E, 0x3624, 0x9B1B, 0x3DDF, 0x26CD, 0x694E, 0xCD7F, 0x9FEA,
444         0x1B12, 0x9E1D, 0x7458, 0x2E34, 0x2D36, 0xB2DC, 0xEEB4, 0xFB5B,
445         0xF6A4, 0x4D76, 0x61B7, 0xCE7D, 0x7B52, 0x3EDD, 0x715E, 0x9713,
446         0xF5A6, 0x68B9, 0x0000, 0x2CC1, 0x6040, 0x1FE3, 0xC879, 0xEDB6,
447         0xBED4, 0x468D, 0xD967, 0x4B72, 0xDE94, 0xD498, 0xE8B0, 0x4A85,
448         0x6BBB, 0x2AC5, 0xE54F, 0x16ED, 0xC586, 0xD79A, 0x5566, 0x9411,
449         0xCF8A, 0x10E9, 0x0604, 0x81FE, 0xF0A0, 0x4478, 0xBA25, 0xE34B,
450         0xF3A2, 0xFE5D, 0xC080, 0x8A05, 0xAD3F, 0xBC21, 0x4870, 0x04F1,
451         0xDF63, 0xC177, 0x75AF, 0x6342, 0x3020, 0x1AE5, 0x0EFD, 0x6DBF,
452         0x4C81, 0x1418, 0x3526, 0x2FC3, 0xE1BE, 0xA235, 0xCC88, 0x392E,
453         0x5793, 0xF255, 0x82FC, 0x477A, 0xACC8, 0xE7BA, 0x2B32, 0x95E6,
454         0xA0C0, 0x9819, 0xD19E, 0x7FA3, 0x6644, 0x7E54, 0xAB3B, 0x830B,
455         0xCA8C, 0x29C7, 0xD36B, 0x3C28, 0x79A7, 0xE2BC, 0x1D16, 0x76AD,
456         0x3BDB, 0x5664, 0x4E74, 0x1E14, 0xDB92, 0x0A0C, 0x6C48, 0xE4B8,
457         0x5D9F, 0x6EBD, 0xEF43, 0xA6C4, 0xA839, 0xA431, 0x37D3, 0x8BF2,
458         0x32D5, 0x438B, 0x596E, 0xB7DA, 0x8C01, 0x64B1, 0xD29C, 0xE049,
459         0xB4D8, 0xFAAC, 0x07F3, 0x25CF, 0xAFCA, 0x8EF4, 0xE947, 0x1810,
460         0xD56F, 0x88F0, 0x6F4A, 0x725C, 0x2438, 0xF157, 0xC773, 0x5197,
461         0x23CB, 0x7CA1, 0x9CE8, 0x213E, 0xDD96, 0xDC61, 0x860D, 0x850F,
462         0x90E0, 0x427C, 0xC471, 0xAACC, 0xD890, 0x0506, 0x01F7, 0x121C,
463         0xA3C2, 0x5F6A, 0xF9AE, 0xD069, 0x9117, 0x5899, 0x273A, 0xB927,
464         0x38D9, 0x13EB, 0xB32B, 0x3322, 0xBBD2, 0x70A9, 0x8907, 0xA733,
465         0xB62D, 0x223C, 0x9215, 0x20C9, 0x4987, 0xFFAA, 0x7850, 0x7AA5,
466         0x8F03, 0xF859, 0x8009, 0x171A, 0xDA65, 0x31D7, 0xC684, 0xB8D0,
467         0xC382, 0xB029, 0x775A, 0x111E, 0xCB7B, 0xFCA8, 0xD66D, 0x3A2C,
468         }
469 };
470
471 /*
472 **********************************************************************
473 * Routine: Phase 1 -- generate P1K, given TA, TK, IV32
474 *
475 * Inputs:
476 *     tk[]      = temporal key                         [128 bits]
477 *     ta[]      = transmitter's MAC address            [ 48 bits]
478 *     iv32      = upper 32 bits of IV                  [ 32 bits]
479 * Output:
480 *     p1k[]     = Phase 1 key                          [ 80 bits]
481 *
482 * Note:
483 *     This function only needs to be called every 2**16 packets,
484 *     although in theory it could be called every packet.
485 *
486 **********************************************************************
487 */
488 static void phase1(u16 *p1k, const u8 *tk, const u8 *ta, u32 iv32)
489 {
490         sint  i;
491
492         /* Initialize the 80 bits of P1K[] from IV32 and TA[0..5]     */
493         p1k[0] = Lo16(iv32);
494         p1k[1] = Hi16(iv32);
495         p1k[2] = Mk16(ta[1], ta[0]); /* use TA[] as little-endian */
496         p1k[3] = Mk16(ta[3], ta[2]);
497         p1k[4] = Mk16(ta[5], ta[4]);
498         /* Now compute an unbalanced Feistel cipher with 80-bit block */
499         /* size on the 80-bit block P1K[], using the 128-bit key TK[] */
500         for (i = 0; i < PHASE1_LOOP_CNT; i++) {  /* Each add is mod 2**16 */
501                 p1k[0] += _S_(p1k[4] ^ TK16((i&1) + 0));
502                 p1k[1] += _S_(p1k[0] ^ TK16((i&1) + 2));
503                 p1k[2] += _S_(p1k[1] ^ TK16((i&1) + 4));
504                 p1k[3] += _S_(p1k[2] ^ TK16((i&1) + 6));
505                 p1k[4] += _S_(p1k[3] ^ TK16((i&1) + 0));
506                 p1k[4] +=  (unsigned short)i;   /* avoid "slide attacks" */
507         }
508 }
509
510 /*
511 **********************************************************************
512 * Routine: Phase 2 -- generate RC4KEY, given TK, P1K, IV16
513 *
514 * Inputs:
515 *     tk[]      = Temporal key                         [128 bits]
516 *     p1k[]     = Phase 1 output key                   [ 80 bits]
517 *     iv16      = low 16 bits of IV counter            [ 16 bits]
518 * Output:
519 *     rc4key[]  = the key used to encrypt the packet   [128 bits]
520 *
521 * Note:
522 *     The value {TA,IV32,IV16} for Phase1/Phase2 must be unique
523 *     across all packets using the same key TK value. Then, for a
524 *     given value of TK[], this TKIP48 construction guarantees that
525 *     the final RC4KEY value is unique across all packets.
526 *
527 * Suggested implementation optimization: if PPK[] is "overlaid"
528 *     appropriately on RC4KEY[], there is no need for the final
529 *     for loop below that copies the PPK[] result into RC4KEY[].
530 *
531 **********************************************************************
532 */
533 static void phase2(u8 *rc4key, const u8 *tk, const u16 *p1k, u16 iv16)
534 {
535         sint  i;
536         u16 PPK[6];                     /* temporary key for mixing    */
537
538         /* Note: all adds in the PPK[] equations below are mod 2**16 */
539         for (i = 0; i < 5; i++)
540                 PPK[i] = p1k[i]; /* first, copy P1K to PPK */
541         PPK[5]  =  p1k[4] + iv16; /* next,  add in IV16 */
542         /* Bijective non-linear mixing of the 96 bits of PPK[0..5] */
543         PPK[0] += _S_(PPK[5] ^ TK16(0));   /* Mix key in each "round" */
544         PPK[1] += _S_(PPK[0] ^ TK16(1));
545         PPK[2] += _S_(PPK[1] ^ TK16(2));
546         PPK[3] += _S_(PPK[2] ^ TK16(3));
547         PPK[4] += _S_(PPK[3] ^ TK16(4));
548         PPK[5] += _S_(PPK[4] ^ TK16(5));   /* Total # S-box lookups == 6  */
549         /* Final sweep: bijective, "linear". Rotates kill LSB correlations   */
550         PPK[0] +=  RotR1(PPK[5] ^ TK16(6));
551         PPK[1] +=  RotR1(PPK[0] ^ TK16(7));   /* Use all of TK[] in Phase2   */
552         PPK[2] +=  RotR1(PPK[1]);
553         PPK[3] +=  RotR1(PPK[2]);
554         PPK[4] +=  RotR1(PPK[3]);
555         PPK[5] +=  RotR1(PPK[4]);
556         /* Note: At this point, for a given key TK[0..15], the 96-bit output */
557         /* value PPK[0..5] is guaranteed to be unique, as a function   */
558         /* of the 96-bit "input" value   {TA,IV32,IV16}. That is, P1K  */
559         /* is now a keyed permutation of {TA,IV32,IV16}. */
560         /* Set RC4KEY[0..3], which includes "cleartext" portion of RC4 key   */
561         rc4key[0] = Hi8(iv16); /* RC4KEY[0..2] is the WEP IV  */
562         rc4key[1] = (Hi8(iv16) | 0x20) & 0x7F; /* Help avoid weak (FMS) keys  */
563         rc4key[2] = Lo8(iv16);
564         rc4key[3] = Lo8((PPK[5] ^ TK16(0)) >> 1);
565         /* Copy 96 bits of PPK[0..5] to RC4KEY[4..15]  (little-endian) */
566         for (i = 0; i < 6; i++) {
567                 rc4key[4 + 2 * i] = Lo8(PPK[i]);
568                 rc4key[5 + 2 * i] = Hi8(PPK[i]);
569         }
570 }
571
572 /*The hlen isn't include the IV*/
573 u32 r8712_tkip_encrypt(struct _adapter *padapter, u8 *pxmitframe)
574 {       /*  exclude ICV */
575         u16 pnl;
576         u32 pnh;
577         u8 rc4key[16];
578         u8 ttkey[16];
579         u8 crc[4];
580         struct arc4context mycontext;
581         u32 curfragnum, length, prwskeylen;
582
583         u8 *pframe, *payload, *iv, *prwskey;
584         union pn48 txpn;
585         struct sta_info *stainfo;
586         struct pkt_attrib *pattrib = &((struct xmit_frame *)pxmitframe)->attrib;
587         struct xmit_priv *pxmitpriv = &padapter->xmitpriv;
588         u32 res = _SUCCESS;
589
590         if (((struct xmit_frame *)pxmitframe)->buf_addr == NULL)
591                 return _FAIL;
592
593         pframe = ((struct xmit_frame *)pxmitframe)->buf_addr+TXDESC_OFFSET;
594         /* 4 start to encrypt each fragment */
595         if (pattrib->encrypt == _TKIP_) {
596                 if (pattrib->psta)
597                         stainfo = pattrib->psta;
598                 else
599                         stainfo = r8712_get_stainfo(&padapter->stapriv,
600                                   &pattrib->ra[0]);
601                 if (stainfo != NULL) {
602                         prwskey = &stainfo->x_UncstKey.skey[0];
603                         prwskeylen = 16;
604                         for (curfragnum = 0; curfragnum < pattrib->nr_frags;
605                              curfragnum++) {
606                                 iv = pframe + pattrib->hdrlen;
607                                 payload = pframe+pattrib->iv_len +
608                                           pattrib->hdrlen;
609                                 GET_TKIP_PN(iv, txpn);
610                                 pnl = (u16)(txpn.val);
611                                 pnh = (u32)(txpn.val >> 16);
612                                 phase1((u16 *)&ttkey[0], prwskey, &pattrib->
613                                        ta[0], pnh);
614                                 phase2(&rc4key[0], prwskey, (u16 *)&ttkey[0],
615                                        pnl);
616                                 if ((curfragnum + 1) == pattrib->nr_frags) {
617                                         /* 4 the last fragment */
618                                         length = pattrib->last_txcmdsz -
619                                              pattrib->hdrlen-pattrib->iv_len -
620                                              pattrib->icv_len;
621                                         *((u32 *)crc) = cpu_to_le32(
622                                                 getcrc32(payload, length));
623                                         arcfour_init(&mycontext, rc4key, 16);
624                                         arcfour_encrypt(&mycontext, payload,
625                                                         payload, length);
626                                         arcfour_encrypt(&mycontext, payload +
627                                                         length, crc, 4);
628                                 } else {
629                                         length = pxmitpriv->frag_len-pattrib->
630                                                  hdrlen-pattrib->
631                                                  iv_len-pattrib->icv_len;
632                                         *((u32 *)crc) = cpu_to_le32(getcrc32(
633                                                         payload, length));
634                                         arcfour_init(&mycontext, rc4key, 16);
635                                         arcfour_encrypt(&mycontext, payload,
636                                                          payload, length);
637                                         arcfour_encrypt(&mycontext,
638                                                         payload+length, crc, 4);
639                                         pframe += pxmitpriv->frag_len;
640                                         pframe = (u8 *)RND4((addr_t)(pframe));
641                                 }
642                         }
643                 } else
644                         res = _FAIL;
645         }
646         return res;
647 }
648
649 /* The hlen doesn't include the IV */
650 u32 r8712_tkip_decrypt(struct _adapter *padapter, u8 *precvframe)
651 {       /* exclude ICV */
652         u16 pnl;
653         u32 pnh;
654         u8 rc4key[16];
655         u8 ttkey[16];
656         u8 crc[4];
657         struct arc4context mycontext;
658         u32 length, prwskeylen;
659         u8 *pframe, *payload, *iv, *prwskey, idx = 0;
660         union pn48 txpn;
661         struct  sta_info *stainfo;
662         struct  rx_pkt_attrib *prxattrib = &((union recv_frame *)
663                                            precvframe)->u.hdr.attrib;
664         struct  security_priv   *psecuritypriv = &padapter->securitypriv;
665
666         pframe = (unsigned char *)((union recv_frame *)
667                                    precvframe)->u.hdr.rx_data;
668         /* 4 start to decrypt recvframe */
669         if (prxattrib->encrypt == _TKIP_) {
670                 stainfo = r8712_get_stainfo(&padapter->stapriv,
671                                             &prxattrib->ta[0]);
672                 if (stainfo != NULL) {
673                         iv = pframe+prxattrib->hdrlen;
674                         payload = pframe+prxattrib->iv_len + prxattrib->hdrlen;
675                         length = ((union recv_frame *)precvframe)->
676                                  u.hdr.len - prxattrib->hdrlen -
677                                  prxattrib->iv_len;
678                         if (IS_MCAST(prxattrib->ra)) {
679                                 idx = iv[3];
680                                 prwskey = &psecuritypriv->XGrpKey[
681                                          ((idx >> 6) & 0x3) - 1].skey[0];
682                                 if (psecuritypriv->binstallGrpkey == false)
683                                         return _FAIL;
684                         } else
685                                 prwskey = &stainfo->x_UncstKey.skey[0];
686                         prwskeylen = 16;
687                         GET_TKIP_PN(iv, txpn);
688                         pnl = (u16)(txpn.val);
689                         pnh = (u32)(txpn.val >> 16);
690                         phase1((u16 *)&ttkey[0], prwskey, &prxattrib->ta[0],
691                                 pnh);
692                         phase2(&rc4key[0], prwskey, (unsigned short *)
693                                &ttkey[0], pnl);
694                         /* 4 decrypt payload include icv */
695                         arcfour_init(&mycontext, rc4key, 16);
696                         arcfour_encrypt(&mycontext, payload, payload, length);
697                         *((u32 *)crc) = cpu_to_le32(getcrc32(payload,
698                                         length - 4));
699                         if (crc[3] != payload[length - 1] ||
700                             crc[2] != payload[length - 2] ||
701                             crc[1] != payload[length - 3] ||
702                             crc[0] != payload[length - 4])
703                                 return _FAIL;
704                 } else
705                         return _FAIL;
706         }
707         return _SUCCESS;
708 }
709
710 /* 3 =====AES related===== */
711
712 #define MAX_MSG_SIZE    2048
713 /*****************************/
714 /******** SBOX Table *********/
715 /*****************************/
716
717 static const u8 sbox_table[256] = {
718         0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,
719         0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
720         0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
721         0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
722         0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,
723         0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
724         0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,
725         0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
726         0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
727         0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
728         0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
729         0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
730         0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,
731         0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
732         0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
733         0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
734         0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,
735         0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
736         0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,
737         0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
738         0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
739         0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
740         0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9,
741         0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
742         0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,
743         0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
744         0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
745         0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
746         0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,
747         0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
748         0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,
749         0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
750 };
751
752 /****************************************/
753 /* aes128k128d()                        */
754 /* Performs a 128 bit AES encrypt with  */
755 /* 128 bit data.                        */
756 /****************************************/
757 static void xor_128(u8 *a, u8 *b, u8 *out)
758 {
759         sint i;
760
761         for (i = 0; i < 16; i++)
762                 out[i] = a[i] ^ b[i];
763 }
764
765 static void xor_32(u8 *a, u8 *b, u8 *out)
766 {
767         sint i;
768
769         for (i = 0; i < 4; i++)
770                 out[i] = a[i] ^ b[i];
771 }
772
773 static u8 sbox(u8 a)
774 {
775         return sbox_table[(sint)a];
776 }
777
778 static void next_key(u8 *key, sint round)
779 {
780         u8 rcon;
781         u8 sbox_key[4];
782         u8 rcon_table[12] = {
783                 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
784                 0x1b, 0x36, 0x36, 0x36
785         };
786
787         sbox_key[0] = sbox(key[13]);
788         sbox_key[1] = sbox(key[14]);
789         sbox_key[2] = sbox(key[15]);
790         sbox_key[3] = sbox(key[12]);
791         rcon = rcon_table[round];
792         xor_32(&key[0], sbox_key, &key[0]);
793         key[0] = key[0] ^ rcon;
794         xor_32(&key[4], &key[0], &key[4]);
795         xor_32(&key[8], &key[4], &key[8]);
796         xor_32(&key[12], &key[8], &key[12]);
797 }
798
799 static void byte_sub(u8 *in, u8 *out)
800 {
801         sint i;
802
803         for (i = 0; i < 16; i++)
804                 out[i] = sbox(in[i]);
805 }
806
807 static void shift_row(u8 *in, u8 *out)
808 {
809         out[0] =  in[0];
810         out[1] =  in[5];
811         out[2] =  in[10];
812         out[3] =  in[15];
813         out[4] =  in[4];
814         out[5] =  in[9];
815         out[6] =  in[14];
816         out[7] =  in[3];
817         out[8] =  in[8];
818         out[9] =  in[13];
819         out[10] = in[2];
820         out[11] = in[7];
821         out[12] = in[12];
822         out[13] = in[1];
823         out[14] = in[6];
824         out[15] = in[11];
825 }
826
827 static void mix_column(u8 *in, u8 *out)
828 {
829         sint i;
830         u8 add1b[4];
831         u8 add1bf7[4];
832         u8 rotl[4];
833         u8 swap_halfs[4];
834         u8 andf7[4];
835         u8 rotr[4];
836         u8 temp[4];
837         u8 tempb[4];
838
839         for (i = 0; i < 4; i++) {
840                 if ((in[i] & 0x80) == 0x80)
841                         add1b[i] = 0x1b;
842                 else
843                         add1b[i] = 0x00;
844         }
845         swap_halfs[0] = in[2];    /* Swap halves */
846         swap_halfs[1] = in[3];
847         swap_halfs[2] = in[0];
848         swap_halfs[3] = in[1];
849         rotl[0] = in[3];        /* Rotate left 8 bits */
850         rotl[1] = in[0];
851         rotl[2] = in[1];
852         rotl[3] = in[2];
853         andf7[0] = in[0] & 0x7f;
854         andf7[1] = in[1] & 0x7f;
855         andf7[2] = in[2] & 0x7f;
856         andf7[3] = in[3] & 0x7f;
857         for (i = 3; i > 0; i--) {   /* logical shift left 1 bit */
858                 andf7[i] = andf7[i] << 1;
859                 if ((andf7[i-1] & 0x80) == 0x80)
860                         andf7[i] = (andf7[i] | 0x01);
861         }
862         andf7[0] = andf7[0] << 1;
863         andf7[0] = andf7[0] & 0xfe;
864         xor_32(add1b, andf7, add1bf7);
865         xor_32(in, add1bf7, rotr);
866         temp[0] = rotr[0];         /* Rotate right 8 bits */
867         rotr[0] = rotr[1];
868         rotr[1] = rotr[2];
869         rotr[2] = rotr[3];
870         rotr[3] = temp[0];
871         xor_32(add1bf7, rotr, temp);
872         xor_32(swap_halfs, rotl, tempb);
873         xor_32(temp, tempb, out);
874 }
875
876 static void aes128k128d(u8 *key, u8 *data, u8 *ciphertext)
877 {
878         sint round;
879         sint i;
880         u8 intermediatea[16];
881         u8 intermediateb[16];
882         u8 round_key[16];
883
884         for (i = 0; i < 16; i++)
885                 round_key[i] = key[i];
886         for (round = 0; round < 11; round++) {
887                 if (round == 0) {
888                         xor_128(round_key, data, ciphertext);
889                         next_key(round_key, round);
890                 } else if (round == 10) {
891                         byte_sub(ciphertext, intermediatea);
892                         shift_row(intermediatea, intermediateb);
893                         xor_128(intermediateb, round_key, ciphertext);
894                 } else {   /* 1 - 9 */
895                         byte_sub(ciphertext, intermediatea);
896                         shift_row(intermediatea, intermediateb);
897                         mix_column(&intermediateb[0], &intermediatea[0]);
898                         mix_column(&intermediateb[4], &intermediatea[4]);
899                         mix_column(&intermediateb[8], &intermediatea[8]);
900                         mix_column(&intermediateb[12], &intermediatea[12]);
901                         xor_128(intermediatea, round_key, ciphertext);
902                         next_key(round_key, round);
903                 }
904         }
905 }
906
907 /************************************************/
908 /* construct_mic_iv()                           */
909 /* Builds the MIC IV from header fields and PN  */
910 /************************************************/
911 static void construct_mic_iv(u8 *mic_iv, sint qc_exists, sint a4_exists,
912                              u8 *mpdu, uint payload_length, u8 *pn_vector)
913 {
914         sint i;
915
916         mic_iv[0] = 0x59;
917         if (qc_exists && a4_exists)
918                 mic_iv[1] = mpdu[30] & 0x0f;    /* QoS_TC           */
919         if (qc_exists && !a4_exists)
920                 mic_iv[1] = mpdu[24] & 0x0f;   /* mute bits 7-4    */
921         if (!qc_exists)
922                 mic_iv[1] = 0x00;
923         for (i = 2; i < 8; i++)
924                 mic_iv[i] = mpdu[i + 8];
925         for (i = 8; i < 14; i++)
926                 mic_iv[i] = pn_vector[13 - i]; /* mic_iv[8:13] = PN[5:0] */
927         mic_iv[14] = (unsigned char) (payload_length / 256);
928         mic_iv[15] = (unsigned char) (payload_length % 256);
929 }
930
931 /************************************************/
932 /* construct_mic_header1()                      */
933 /* Builds the first MIC header block from       */
934 /* header fields.                               */
935 /************************************************/
936 static void construct_mic_header1(u8 *mic_header1, sint header_length, u8 *mpdu)
937 {
938         mic_header1[0] = (u8)((header_length - 2) / 256);
939         mic_header1[1] = (u8)((header_length - 2) % 256);
940         mic_header1[2] = mpdu[0] & 0xcf;    /* Mute CF poll & CF ack bits */
941         /* Mute retry, more data and pwr mgt bits */
942         mic_header1[3] = mpdu[1] & 0xc7;
943         mic_header1[4] = mpdu[4];       /* A1 */
944         mic_header1[5] = mpdu[5];
945         mic_header1[6] = mpdu[6];
946         mic_header1[7] = mpdu[7];
947         mic_header1[8] = mpdu[8];
948         mic_header1[9] = mpdu[9];
949         mic_header1[10] = mpdu[10];     /* A2 */
950         mic_header1[11] = mpdu[11];
951         mic_header1[12] = mpdu[12];
952         mic_header1[13] = mpdu[13];
953         mic_header1[14] = mpdu[14];
954         mic_header1[15] = mpdu[15];
955 }
956
957 /************************************************/
958 /* construct_mic_header2()                      */
959 /* Builds the last MIC header block from        */
960 /* header fields.                               */
961 /************************************************/
962 static void construct_mic_header2(u8 *mic_header2, u8 *mpdu, sint a4_exists,
963                            sint qc_exists)
964 {
965         sint i;
966
967         for (i = 0; i < 16; i++)
968                 mic_header2[i] = 0x00;
969         mic_header2[0] = mpdu[16];    /* A3 */
970         mic_header2[1] = mpdu[17];
971         mic_header2[2] = mpdu[18];
972         mic_header2[3] = mpdu[19];
973         mic_header2[4] = mpdu[20];
974         mic_header2[5] = mpdu[21];
975         mic_header2[6] = 0x00;
976         mic_header2[7] = 0x00; /* mpdu[23]; */
977         if (!qc_exists && a4_exists)
978                 for (i = 0; i < 6; i++)
979                         mic_header2[8 + i] = mpdu[24 + i];   /* A4 */
980         if (qc_exists && !a4_exists) {
981                 mic_header2[8] = mpdu[24] & 0x0f; /* mute bits 15 - 4 */
982                 mic_header2[9] = mpdu[25] & 0x00;
983         }
984         if (qc_exists && a4_exists) {
985                 for (i = 0; i < 6; i++)
986                         mic_header2[8 + i] = mpdu[24 + i];   /* A4 */
987                 mic_header2[14] = mpdu[30] & 0x0f;
988                 mic_header2[15] = mpdu[31] & 0x00;
989         }
990 }
991
992 /************************************************/
993 /* construct_mic_header2()                      */
994 /* Builds the last MIC header block from        */
995 /* header fields.                               */
996 /************************************************/
997 static void construct_ctr_preload(u8 *ctr_preload, sint a4_exists, sint qc_exists,
998                            u8 *mpdu, u8 *pn_vector, sint c)
999 {
1000         sint i;
1001
1002         for (i = 0; i < 16; i++)
1003                 ctr_preload[i] = 0x00;
1004         i = 0;
1005         ctr_preload[0] = 0x01;    /* flag */
1006         if (qc_exists && a4_exists)
1007                 ctr_preload[1] = mpdu[30] & 0x0f;
1008         if (qc_exists && !a4_exists)
1009                 ctr_preload[1] = mpdu[24] & 0x0f;
1010         for (i = 2; i < 8; i++)
1011                 ctr_preload[i] = mpdu[i + 8];
1012         for (i = 8; i < 14; i++)
1013                 ctr_preload[i] = pn_vector[13 - i];
1014         ctr_preload[14] = (unsigned char) (c / 256); /* Ctr */
1015         ctr_preload[15] = (unsigned char) (c % 256);
1016 }
1017
1018 /************************************/
1019 /* bitwise_xor()                    */
1020 /* A 128 bit, bitwise exclusive or  */
1021 /************************************/
1022 static void bitwise_xor(u8 *ina, u8 *inb, u8 *out)
1023 {
1024         sint i;
1025
1026         for (i = 0; i < 16; i++)
1027                 out[i] = ina[i] ^ inb[i];
1028 }
1029
1030 static sint aes_cipher(u8 *key, uint    hdrlen,
1031                         u8 *pframe, uint plen)
1032 {
1033         uint qc_exists, a4_exists, i, j, payload_remainder;
1034         uint num_blocks, payload_index;
1035
1036         u8 pn_vector[6];
1037         u8 mic_iv[16];
1038         u8 mic_header1[16];
1039         u8 mic_header2[16];
1040         u8 ctr_preload[16];
1041
1042         /* Intermediate Buffers */
1043         u8 chain_buffer[16];
1044         u8 aes_out[16];
1045         u8 padded_buffer[16];
1046         u8 mic[8];
1047         uint    frtype  = GetFrameType(pframe);
1048         uint    frsubtype  = GetFrameSubType(pframe);
1049
1050         frsubtype = frsubtype >> 4;
1051         memset((void *)mic_iv, 0, 16);
1052         memset((void *)mic_header1, 0, 16);
1053         memset((void *)mic_header2, 0, 16);
1054         memset((void *)ctr_preload, 0, 16);
1055         memset((void *)chain_buffer, 0, 16);
1056         memset((void *)aes_out, 0, 16);
1057         memset((void *)padded_buffer, 0, 16);
1058
1059         if ((hdrlen == WLAN_HDR_A3_LEN) || (hdrlen ==  WLAN_HDR_A3_QOS_LEN))
1060                 a4_exists = 0;
1061         else
1062                 a4_exists = 1;
1063
1064         if ((frtype == WIFI_DATA_CFACK) ||
1065              (frtype == WIFI_DATA_CFPOLL) ||
1066              (frtype == WIFI_DATA_CFACKPOLL)) {
1067                         qc_exists = 1;
1068                         if (hdrlen !=  WLAN_HDR_A3_QOS_LEN)
1069                                 hdrlen += 2;
1070         } else if ((frsubtype == 0x08) ||
1071                    (frsubtype == 0x09) ||
1072                    (frsubtype == 0x0a) ||
1073                    (frsubtype == 0x0b)) {
1074                         if (hdrlen !=  WLAN_HDR_A3_QOS_LEN)
1075                                 hdrlen += 2;
1076                         qc_exists = 1;
1077         } else
1078                 qc_exists = 0;
1079         pn_vector[0] = pframe[hdrlen];
1080         pn_vector[1] = pframe[hdrlen+1];
1081         pn_vector[2] = pframe[hdrlen+4];
1082         pn_vector[3] = pframe[hdrlen+5];
1083         pn_vector[4] = pframe[hdrlen+6];
1084         pn_vector[5] = pframe[hdrlen+7];
1085         construct_mic_iv(mic_iv, qc_exists, a4_exists, pframe, plen, pn_vector);
1086         construct_mic_header1(mic_header1, hdrlen, pframe);
1087         construct_mic_header2(mic_header2, pframe, a4_exists, qc_exists);
1088         payload_remainder = plen % 16;
1089         num_blocks = plen / 16;
1090         /* Find start of payload */
1091         payload_index = (hdrlen + 8);
1092         /* Calculate MIC */
1093         aes128k128d(key, mic_iv, aes_out);
1094         bitwise_xor(aes_out, mic_header1, chain_buffer);
1095         aes128k128d(key, chain_buffer, aes_out);
1096         bitwise_xor(aes_out, mic_header2, chain_buffer);
1097         aes128k128d(key, chain_buffer, aes_out);
1098         for (i = 0; i < num_blocks; i++) {
1099                 bitwise_xor(aes_out, &pframe[payload_index], chain_buffer);
1100                 payload_index += 16;
1101                 aes128k128d(key, chain_buffer, aes_out);
1102         }
1103         /* Add on the final payload block if it needs padding */
1104         if (payload_remainder > 0) {
1105                 for (j = 0; j < 16; j++)
1106                         padded_buffer[j] = 0x00;
1107                 for (j = 0; j < payload_remainder; j++)
1108                         padded_buffer[j] = pframe[payload_index++];
1109                 bitwise_xor(aes_out, padded_buffer, chain_buffer);
1110                 aes128k128d(key, chain_buffer, aes_out);
1111         }
1112         for (j = 0; j < 8; j++)
1113                 mic[j] = aes_out[j];
1114         /* Insert MIC into payload */
1115         for (j = 0; j < 8; j++)
1116                 pframe[payload_index+j] = mic[j];
1117         payload_index = hdrlen + 8;
1118         for (i = 0; i < num_blocks; i++) {
1119                 construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1120                                       pframe, pn_vector, i + 1);
1121                 aes128k128d(key, ctr_preload, aes_out);
1122                 bitwise_xor(aes_out, &pframe[payload_index], chain_buffer);
1123                 for (j = 0; j < 16; j++)
1124                         pframe[payload_index++] = chain_buffer[j];
1125         }
1126         if (payload_remainder > 0) {  /* If short final block, then pad it,*/
1127                                       /* encrypt and copy unpadded part back */
1128                 construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1129                                       pframe, pn_vector, num_blocks+1);
1130                 for (j = 0; j < 16; j++)
1131                         padded_buffer[j] = 0x00;
1132                 for (j = 0; j < payload_remainder; j++)
1133                         padded_buffer[j] = pframe[payload_index+j];
1134                 aes128k128d(key, ctr_preload, aes_out);
1135                 bitwise_xor(aes_out, padded_buffer, chain_buffer);
1136                 for (j = 0; j < payload_remainder; j++)
1137                         pframe[payload_index++] = chain_buffer[j];
1138         }
1139         /* Encrypt the MIC */
1140         construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1141                               pframe, pn_vector, 0);
1142         for (j = 0; j < 16; j++)
1143                 padded_buffer[j] = 0x00;
1144         for (j = 0; j < 8; j++)
1145                 padded_buffer[j] = pframe[j+hdrlen+8+plen];
1146         aes128k128d(key, ctr_preload, aes_out);
1147         bitwise_xor(aes_out, padded_buffer, chain_buffer);
1148         for (j = 0; j < 8; j++)
1149                 pframe[payload_index++] = chain_buffer[j];
1150         return _SUCCESS;
1151 }
1152
1153 u32 r8712_aes_encrypt(struct _adapter *padapter, u8 *pxmitframe)
1154 {       /* exclude ICV */
1155         /* Intermediate Buffers */
1156         sint    curfragnum, length;
1157         u32     prwskeylen;
1158         u8      *pframe, *prwskey;
1159         struct  sta_info *stainfo;
1160         struct  pkt_attrib  *pattrib = &((struct xmit_frame *)
1161                                        pxmitframe)->attrib;
1162         struct  xmit_priv *pxmitpriv = &padapter->xmitpriv;
1163         u32 res = _SUCCESS;
1164
1165         if (((struct xmit_frame *)pxmitframe)->buf_addr == NULL)
1166                 return _FAIL;
1167         pframe = ((struct xmit_frame *)pxmitframe)->buf_addr + TXDESC_OFFSET;
1168         /* 4 start to encrypt each fragment */
1169         if (pattrib->encrypt == _AES_) {
1170                 if (pattrib->psta)
1171                         stainfo = pattrib->psta;
1172                 else
1173                         stainfo = r8712_get_stainfo(&padapter->stapriv,
1174                                   &pattrib->ra[0]);
1175                 if (stainfo != NULL) {
1176                         prwskey = &stainfo->x_UncstKey.skey[0];
1177                         prwskeylen = 16;
1178                         for (curfragnum = 0; curfragnum < pattrib->nr_frags;
1179                              curfragnum++) {
1180                                 if ((curfragnum + 1) == pattrib->nr_frags) {
1181                                         length = pattrib->last_txcmdsz -
1182                                                  pattrib->hdrlen -
1183                                                  pattrib->iv_len -
1184                                                  pattrib->icv_len;
1185                                         aes_cipher(prwskey, pattrib->
1186                                                   hdrlen, pframe, length);
1187                                 } else {
1188                                         length = pxmitpriv->frag_len -
1189                                                  pattrib->hdrlen -
1190                                                  pattrib->iv_len -
1191                                                  pattrib->icv_len;
1192                                         aes_cipher(prwskey, pattrib->
1193                                                    hdrlen, pframe, length);
1194                                         pframe += pxmitpriv->frag_len;
1195                                         pframe = (u8 *)RND4((addr_t)(pframe));
1196                                 }
1197                         }
1198                 } else
1199                         res = _FAIL;
1200         }
1201         return res;
1202 }
1203
1204 static sint aes_decipher(u8 *key, uint  hdrlen,
1205                         u8 *pframe, uint plen)
1206 {
1207         static u8 message[MAX_MSG_SIZE];
1208         uint qc_exists, a4_exists, i, j, payload_remainder;
1209         uint num_blocks, payload_index;
1210         u8 pn_vector[6];
1211         u8 mic_iv[16];
1212         u8 mic_header1[16];
1213         u8 mic_header2[16];
1214         u8 ctr_preload[16];
1215         /* Intermediate Buffers */
1216         u8 chain_buffer[16];
1217         u8 aes_out[16];
1218         u8 padded_buffer[16];
1219         u8 mic[8];
1220         uint frtype  = GetFrameType(pframe);
1221         uint frsubtype  = GetFrameSubType(pframe);
1222
1223         frsubtype = frsubtype >> 4;
1224         memset((void *)mic_iv, 0, 16);
1225         memset((void *)mic_header1, 0, 16);
1226         memset((void *)mic_header2, 0, 16);
1227         memset((void *)ctr_preload, 0, 16);
1228         memset((void *)chain_buffer, 0, 16);
1229         memset((void *)aes_out, 0, 16);
1230         memset((void *)padded_buffer, 0, 16);
1231         /* start to decrypt the payload */
1232         /*(plen including llc, payload and mic) */
1233         num_blocks = (plen - 8) / 16;
1234         payload_remainder = (plen-8) % 16;
1235         pn_vector[0] = pframe[hdrlen];
1236         pn_vector[1] = pframe[hdrlen+1];
1237         pn_vector[2] = pframe[hdrlen+4];
1238         pn_vector[3] = pframe[hdrlen+5];
1239         pn_vector[4] = pframe[hdrlen+6];
1240         pn_vector[5] = pframe[hdrlen+7];
1241         if ((hdrlen == WLAN_HDR_A3_LEN) || (hdrlen ==  WLAN_HDR_A3_QOS_LEN))
1242                 a4_exists = 0;
1243         else
1244                 a4_exists = 1;
1245         if ((frtype == WIFI_DATA_CFACK) ||
1246             (frtype == WIFI_DATA_CFPOLL) ||
1247             (frtype == WIFI_DATA_CFACKPOLL)) {
1248                 qc_exists = 1;
1249                 if (hdrlen != WLAN_HDR_A3_QOS_LEN)
1250                         hdrlen += 2;
1251         } else if ((frsubtype == 0x08) ||
1252                    (frsubtype == 0x09) ||
1253                    (frsubtype == 0x0a) ||
1254                    (frsubtype == 0x0b)) {
1255                 if (hdrlen != WLAN_HDR_A3_QOS_LEN)
1256                         hdrlen += 2;
1257                 qc_exists = 1;
1258         } else {
1259                 qc_exists = 0;
1260         }
1261         /* now, decrypt pframe with hdrlen offset and plen long */
1262         payload_index = hdrlen + 8; /* 8 is for extiv */
1263         for (i = 0; i < num_blocks; i++) {
1264                 construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1265                                       pframe, pn_vector, i + 1);
1266                 aes128k128d(key, ctr_preload, aes_out);
1267                 bitwise_xor(aes_out, &pframe[payload_index], chain_buffer);
1268                 for (j = 0; j < 16; j++)
1269                         pframe[payload_index++] = chain_buffer[j];
1270         }
1271         if (payload_remainder > 0) {  /* If short final block, pad it,*/
1272                 /* encrypt it and copy the unpadded part back   */
1273                 construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1274                                       pframe, pn_vector, num_blocks+1);
1275                 for (j = 0; j < 16; j++)
1276                         padded_buffer[j] = 0x00;
1277                 for (j = 0; j < payload_remainder; j++)
1278                         padded_buffer[j] = pframe[payload_index + j];
1279                 aes128k128d(key, ctr_preload, aes_out);
1280                 bitwise_xor(aes_out, padded_buffer, chain_buffer);
1281                 for (j = 0; j < payload_remainder; j++)
1282                         pframe[payload_index++] = chain_buffer[j];
1283         }
1284         /* start to calculate the mic */
1285         memcpy((void *)message, pframe, (hdrlen + plen + 8));
1286         pn_vector[0] = pframe[hdrlen];
1287         pn_vector[1] = pframe[hdrlen+1];
1288         pn_vector[2] = pframe[hdrlen+4];
1289         pn_vector[3] = pframe[hdrlen+5];
1290         pn_vector[4] = pframe[hdrlen+6];
1291         pn_vector[5] = pframe[hdrlen+7];
1292         construct_mic_iv(mic_iv, qc_exists, a4_exists, message, plen-8,
1293                          pn_vector);
1294         construct_mic_header1(mic_header1, hdrlen, message);
1295         construct_mic_header2(mic_header2, message, a4_exists, qc_exists);
1296         payload_remainder = (plen - 8) % 16;
1297         num_blocks = (plen - 8) / 16;
1298         /* Find start of payload */
1299         payload_index = (hdrlen + 8);
1300         /* Calculate MIC */
1301         aes128k128d(key, mic_iv, aes_out);
1302         bitwise_xor(aes_out, mic_header1, chain_buffer);
1303         aes128k128d(key, chain_buffer, aes_out);
1304         bitwise_xor(aes_out, mic_header2, chain_buffer);
1305         aes128k128d(key, chain_buffer, aes_out);
1306         for (i = 0; i < num_blocks; i++) {
1307                 bitwise_xor(aes_out, &message[payload_index], chain_buffer);
1308                 payload_index += 16;
1309                 aes128k128d(key, chain_buffer, aes_out);
1310         }
1311         /* Add on the final payload block if it needs padding */
1312         if (payload_remainder > 0) {
1313                 for (j = 0; j < 16; j++)
1314                         padded_buffer[j] = 0x00;
1315                 for (j = 0; j < payload_remainder; j++)
1316                         padded_buffer[j] = message[payload_index++];
1317                 bitwise_xor(aes_out, padded_buffer, chain_buffer);
1318                 aes128k128d(key, chain_buffer, aes_out);
1319         }
1320         for (j = 0; j < 8; j++)
1321                 mic[j] = aes_out[j];
1322         /* Insert MIC into payload */
1323         for (j = 0; j < 8; j++)
1324                 message[payload_index+j] = mic[j];
1325         payload_index = hdrlen + 8;
1326         for (i = 0; i < num_blocks; i++) {
1327                 construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1328                                       message, pn_vector, i + 1);
1329                 aes128k128d(key, ctr_preload, aes_out);
1330                 bitwise_xor(aes_out, &message[payload_index], chain_buffer);
1331                 for (j = 0; j < 16; j++)
1332                         message[payload_index++] = chain_buffer[j];
1333         }
1334         if (payload_remainder > 0) { /* If short final block, pad it,*/
1335                                      /* encrypt and copy unpadded part back */
1336                 construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1337                                       message, pn_vector, num_blocks+1);
1338                 for (j = 0; j < 16; j++)
1339                         padded_buffer[j] = 0x00;
1340                 for (j = 0; j < payload_remainder; j++)
1341                         padded_buffer[j] = message[payload_index + j];
1342                 aes128k128d(key, ctr_preload, aes_out);
1343                 bitwise_xor(aes_out, padded_buffer, chain_buffer);
1344                 for (j = 0; j < payload_remainder; j++)
1345                         message[payload_index++] = chain_buffer[j];
1346         }
1347         /* Encrypt the MIC */
1348         construct_ctr_preload(ctr_preload, a4_exists, qc_exists, message,
1349                               pn_vector, 0);
1350         for (j = 0; j < 16; j++)
1351                 padded_buffer[j] = 0x00;
1352         for (j = 0; j < 8; j++)
1353                 padded_buffer[j] = message[j + hdrlen + plen];
1354         aes128k128d(key, ctr_preload, aes_out);
1355         bitwise_xor(aes_out, padded_buffer, chain_buffer);
1356         for (j = 0; j < 8; j++)
1357                 message[payload_index++] = chain_buffer[j];
1358         /* compare the mic */
1359         return _SUCCESS;
1360 }
1361
1362 u32 r8712_aes_decrypt(struct _adapter *padapter, u8 *precvframe)
1363 {       /* exclude ICV */
1364         /* Intermediate Buffers */
1365         sint            length;
1366         u32     prwskeylen;
1367         u8      *pframe, *prwskey, *iv, idx;
1368         struct  sta_info *stainfo;
1369         struct  rx_pkt_attrib *prxattrib = &((union recv_frame *)
1370                                            precvframe)->u.hdr.attrib;
1371         struct  security_priv *psecuritypriv = &padapter->securitypriv;
1372
1373         pframe = (unsigned char *)((union recv_frame *)precvframe)->
1374                  u.hdr.rx_data;
1375         /* 4 start to encrypt each fragment */
1376         if (prxattrib->encrypt == _AES_) {
1377                 stainfo = r8712_get_stainfo(&padapter->stapriv,
1378                                             &prxattrib->ta[0]);
1379                 if (stainfo != NULL) {
1380                         if (IS_MCAST(prxattrib->ra)) {
1381                                 iv = pframe+prxattrib->hdrlen;
1382                                 idx = iv[3];
1383                                 prwskey = &psecuritypriv->XGrpKey[
1384                                           ((idx >> 6) & 0x3) - 1].skey[0];
1385                                 if (psecuritypriv->binstallGrpkey == false)
1386                                         return _FAIL;
1387
1388                         } else
1389                                 prwskey = &stainfo->x_UncstKey.skey[0];
1390                         prwskeylen = 16;
1391                         length = ((union recv_frame *)precvframe)->
1392                                  u.hdr.len-prxattrib->hdrlen-prxattrib->iv_len;
1393                         aes_decipher(prwskey, prxattrib->hdrlen, pframe,
1394                                      length);
1395                 } else
1396                         return _FAIL;
1397         }
1398         return _SUCCESS;
1399 }
1400
1401 void r8712_use_tkipkey_handler(void *FunctionContext)
1402 {
1403         struct _adapter *padapter = (struct _adapter *)FunctionContext;
1404
1405         padapter->securitypriv.busetkipkey = true;
1406 }