staging: rts5208: Prefer using BIT macro
[cascardo/linux.git] / drivers / staging / rts5208 / rtsx_transport.c
1 /*
2  * Driver for Realtek PCI-Express card reader
3  *
4  * Copyright(c) 2009-2013 Realtek Semiconductor Corp. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the
8  * Free Software Foundation; either version 2, or (at your option) any
9  * later version.
10  *
11  * This program is distributed in the hope that it will be useful, but
12  * WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License along
17  * with this program; if not, see <http://www.gnu.org/licenses/>.
18  *
19  * Author:
20  *   Wei WANG (wei_wang@realsil.com.cn)
21  *   Micky Ching (micky_ching@realsil.com.cn)
22  */
23
24 #include <linux/blkdev.h>
25 #include <linux/kthread.h>
26 #include <linux/sched.h>
27
28 #include "rtsx.h"
29
30 /***********************************************************************
31  * Scatter-gather transfer buffer access routines
32  ***********************************************************************/
33
34 /*
35  * Copy a buffer of length buflen to/from the srb's transfer buffer.
36  * (Note: for scatter-gather transfers (srb->use_sg > 0), srb->request_buffer
37  * points to a list of s-g entries and we ignore srb->request_bufflen.
38  * For non-scatter-gather transfers, srb->request_buffer points to the
39  * transfer buffer itself and srb->request_bufflen is the buffer's length.)
40  * Update the *index and *offset variables so that the next copy will
41  * pick up from where this one left off.
42  */
43
44 unsigned int rtsx_stor_access_xfer_buf(unsigned char *buffer,
45                                        unsigned int buflen,
46                                        struct scsi_cmnd *srb,
47                                        unsigned int *index,
48                                        unsigned int *offset,
49                                        enum xfer_buf_dir dir)
50 {
51         unsigned int cnt;
52
53         /* If not using scatter-gather, just transfer the data directly. */
54         if (scsi_sg_count(srb) == 0) {
55                 unsigned char *sgbuffer;
56
57                 if (*offset >= scsi_bufflen(srb))
58                         return 0;
59                 cnt = min(buflen, scsi_bufflen(srb) - *offset);
60
61                 sgbuffer = (unsigned char *)scsi_sglist(srb) + *offset;
62
63                 if (dir == TO_XFER_BUF)
64                         memcpy(sgbuffer, buffer, cnt);
65                 else
66                         memcpy(buffer, sgbuffer, cnt);
67                 *offset += cnt;
68
69         /*
70          * Using scatter-gather.  We have to go through the list one entry
71          * at a time.  Each s-g entry contains some number of pages, and
72          * each page has to be kmap()'ed separately.
73          */
74         } else {
75                 struct scatterlist *sg =
76                                 (struct scatterlist *)scsi_sglist(srb)
77                                 + *index;
78
79                 /*
80                  * This loop handles a single s-g list entry, which may
81                  * include multiple pages.  Find the initial page structure
82                  * and the starting offset within the page, and update
83                  * the *offset and *index values for the next loop.
84                  */
85                 cnt = 0;
86                 while (cnt < buflen && *index < scsi_sg_count(srb)) {
87                         struct page *page = sg_page(sg) +
88                                         ((sg->offset + *offset) >> PAGE_SHIFT);
89                         unsigned int poff = (sg->offset + *offset) &
90                                             (PAGE_SIZE - 1);
91                         unsigned int sglen = sg->length - *offset;
92
93                         if (sglen > buflen - cnt) {
94                                 /* Transfer ends within this s-g entry */
95                                 sglen = buflen - cnt;
96                                 *offset += sglen;
97                         } else {
98                                 /* Transfer continues to next s-g entry */
99                                 *offset = 0;
100                                 ++*index;
101                                 ++sg;
102                         }
103
104                         while (sglen > 0) {
105                                 unsigned int plen = min(sglen, (unsigned int)
106                                                 PAGE_SIZE - poff);
107                                 unsigned char *ptr = kmap(page);
108
109                                 if (dir == TO_XFER_BUF)
110                                         memcpy(ptr + poff, buffer + cnt, plen);
111                                 else
112                                         memcpy(buffer + cnt, ptr + poff, plen);
113                                 kunmap(page);
114
115                                 /* Start at the beginning of the next page */
116                                 poff = 0;
117                                 ++page;
118                                 cnt += plen;
119                                 sglen -= plen;
120                         }
121                 }
122         }
123
124         /* Return the amount actually transferred */
125         return cnt;
126 }
127
128 /*
129  * Store the contents of buffer into srb's transfer buffer and set the
130  * SCSI residue.
131  */
132 void rtsx_stor_set_xfer_buf(unsigned char *buffer,
133                             unsigned int buflen, struct scsi_cmnd *srb)
134 {
135         unsigned int index = 0, offset = 0;
136
137         rtsx_stor_access_xfer_buf(buffer, buflen, srb, &index, &offset,
138                                   TO_XFER_BUF);
139         if (buflen < scsi_bufflen(srb))
140                 scsi_set_resid(srb, scsi_bufflen(srb) - buflen);
141 }
142
143 void rtsx_stor_get_xfer_buf(unsigned char *buffer,
144                             unsigned int buflen, struct scsi_cmnd *srb)
145 {
146         unsigned int index = 0, offset = 0;
147
148         rtsx_stor_access_xfer_buf(buffer, buflen, srb, &index, &offset,
149                                   FROM_XFER_BUF);
150         if (buflen < scsi_bufflen(srb))
151                 scsi_set_resid(srb, scsi_bufflen(srb) - buflen);
152 }
153
154 /***********************************************************************
155  * Transport routines
156  ***********************************************************************/
157
158 /*
159  * Invoke the transport and basic error-handling/recovery methods
160  *
161  * This is used to send the message to the device and receive the response.
162  */
163 void rtsx_invoke_transport(struct scsi_cmnd *srb, struct rtsx_chip *chip)
164 {
165         int result;
166
167         result = rtsx_scsi_handler(srb, chip);
168
169         /*
170          * if the command gets aborted by the higher layers, we need to
171          * short-circuit all other processing.
172          */
173         if (rtsx_chk_stat(chip, RTSX_STAT_ABORT)) {
174                 dev_dbg(rtsx_dev(chip), "-- command was aborted\n");
175                 srb->result = DID_ABORT << 16;
176                 goto handle_errors;
177         }
178
179         /* if there is a transport error, reset and don't auto-sense */
180         if (result == TRANSPORT_ERROR) {
181                 dev_dbg(rtsx_dev(chip), "-- transport indicates error, resetting\n");
182                 srb->result = DID_ERROR << 16;
183                 goto handle_errors;
184         }
185
186         srb->result = SAM_STAT_GOOD;
187
188         /*
189          * If we have a failure, we're going to do a REQUEST_SENSE
190          * automatically.  Note that we differentiate between a command
191          * "failure" and an "error" in the transport mechanism.
192          */
193         if (result == TRANSPORT_FAILED) {
194                 /* set the result so the higher layers expect this data */
195                 srb->result = SAM_STAT_CHECK_CONDITION;
196                 memcpy(srb->sense_buffer,
197                        (unsigned char *)&chip->sense_buffer[SCSI_LUN(srb)],
198                        sizeof(struct sense_data_t));
199         }
200
201         return;
202
203 handle_errors:
204         return;
205 }
206
207 void rtsx_add_cmd(struct rtsx_chip *chip,
208                   u8 cmd_type, u16 reg_addr, u8 mask, u8 data)
209 {
210         u32 *cb = (u32 *)(chip->host_cmds_ptr);
211         u32 val = 0;
212
213         val |= (u32)(cmd_type & 0x03) << 30;
214         val |= (u32)(reg_addr & 0x3FFF) << 16;
215         val |= (u32)mask << 8;
216         val |= (u32)data;
217
218         spin_lock_irq(&chip->rtsx->reg_lock);
219         if (chip->ci < (HOST_CMDS_BUF_LEN / 4))
220                 cb[(chip->ci)++] = cpu_to_le32(val);
221
222         spin_unlock_irq(&chip->rtsx->reg_lock);
223 }
224
225 void rtsx_send_cmd_no_wait(struct rtsx_chip *chip)
226 {
227         u32 val = BIT(31);
228
229         rtsx_writel(chip, RTSX_HCBAR, chip->host_cmds_addr);
230
231         val |= (u32)(chip->ci * 4) & 0x00FFFFFF;
232         /* Hardware Auto Response */
233         val |= 0x40000000;
234         rtsx_writel(chip, RTSX_HCBCTLR, val);
235 }
236
237 int rtsx_send_cmd(struct rtsx_chip *chip, u8 card, int timeout)
238 {
239         struct rtsx_dev *rtsx = chip->rtsx;
240         struct completion trans_done;
241         u32 val = BIT(31);
242         long timeleft;
243         int err = 0;
244
245         if (card == SD_CARD)
246                 rtsx->check_card_cd = SD_EXIST;
247         else if (card == MS_CARD)
248                 rtsx->check_card_cd = MS_EXIST;
249         else if (card == XD_CARD)
250                 rtsx->check_card_cd = XD_EXIST;
251         else
252                 rtsx->check_card_cd = 0;
253
254         spin_lock_irq(&rtsx->reg_lock);
255
256         /* set up data structures for the wakeup system */
257         rtsx->done = &trans_done;
258         rtsx->trans_result = TRANS_NOT_READY;
259         init_completion(&trans_done);
260         rtsx->trans_state = STATE_TRANS_CMD;
261
262         rtsx_writel(chip, RTSX_HCBAR, chip->host_cmds_addr);
263
264         val |= (u32)(chip->ci * 4) & 0x00FFFFFF;
265         /* Hardware Auto Response */
266         val |= 0x40000000;
267         rtsx_writel(chip, RTSX_HCBCTLR, val);
268
269         spin_unlock_irq(&rtsx->reg_lock);
270
271         /* Wait for TRANS_OK_INT */
272         timeleft = wait_for_completion_interruptible_timeout(
273                 &trans_done, msecs_to_jiffies(timeout));
274         if (timeleft <= 0) {
275                 dev_dbg(rtsx_dev(chip), "chip->int_reg = 0x%x\n",
276                         chip->int_reg);
277                 err = -ETIMEDOUT;
278                 rtsx_trace(chip);
279                 goto finish_send_cmd;
280         }
281
282         spin_lock_irq(&rtsx->reg_lock);
283         if (rtsx->trans_result == TRANS_RESULT_FAIL)
284                 err = -EIO;
285         else if (rtsx->trans_result == TRANS_RESULT_OK)
286                 err = 0;
287
288         spin_unlock_irq(&rtsx->reg_lock);
289
290 finish_send_cmd:
291         rtsx->done = NULL;
292         rtsx->trans_state = STATE_TRANS_NONE;
293
294         if (err < 0)
295                 rtsx_stop_cmd(chip, card);
296
297         return err;
298 }
299
300 static inline void rtsx_add_sg_tbl(
301         struct rtsx_chip *chip, u32 addr, u32 len, u8 option)
302 {
303         u64 *sgb = (u64 *)(chip->host_sg_tbl_ptr);
304         u64 val = 0;
305         u32 temp_len = 0;
306         u8  temp_opt = 0;
307
308         do {
309                 if (len > 0x80000) {
310                         temp_len = 0x80000;
311                         temp_opt = option & (~SG_END);
312                 } else {
313                         temp_len = len;
314                         temp_opt = option;
315                 }
316                 val = ((u64)addr << 32) | ((u64)temp_len << 12) | temp_opt;
317
318                 if (chip->sgi < (HOST_SG_TBL_BUF_LEN / 8))
319                         sgb[(chip->sgi)++] = cpu_to_le64(val);
320
321                 len -= temp_len;
322                 addr += temp_len;
323         } while (len);
324 }
325
326 static int rtsx_transfer_sglist_adma_partial(struct rtsx_chip *chip, u8 card,
327                                              struct scatterlist *sg, int num_sg,
328                                              unsigned int *index,
329                                              unsigned int *offset, int size,
330                                              enum dma_data_direction dma_dir,
331                                              int timeout)
332 {
333         struct rtsx_dev *rtsx = chip->rtsx;
334         struct completion trans_done;
335         u8 dir;
336         int sg_cnt, i, resid;
337         int err = 0;
338         long timeleft;
339         struct scatterlist *sg_ptr;
340         u32 val = TRIG_DMA;
341
342         if (!sg || (num_sg <= 0) || !offset || !index)
343                 return -EIO;
344
345         if (dma_dir == DMA_TO_DEVICE)
346                 dir = HOST_TO_DEVICE;
347         else if (dma_dir == DMA_FROM_DEVICE)
348                 dir = DEVICE_TO_HOST;
349         else
350                 return -ENXIO;
351
352         if (card == SD_CARD)
353                 rtsx->check_card_cd = SD_EXIST;
354         else if (card == MS_CARD)
355                 rtsx->check_card_cd = MS_EXIST;
356         else if (card == XD_CARD)
357                 rtsx->check_card_cd = XD_EXIST;
358         else
359                 rtsx->check_card_cd = 0;
360
361         spin_lock_irq(&rtsx->reg_lock);
362
363         /* set up data structures for the wakeup system */
364         rtsx->done = &trans_done;
365
366         rtsx->trans_state = STATE_TRANS_SG;
367         rtsx->trans_result = TRANS_NOT_READY;
368
369         spin_unlock_irq(&rtsx->reg_lock);
370
371         sg_cnt = dma_map_sg(&rtsx->pci->dev, sg, num_sg, dma_dir);
372
373         resid = size;
374         sg_ptr = sg;
375         chip->sgi = 0;
376         /*
377          * Usually the next entry will be @sg@ + 1, but if this sg element
378          * is part of a chained scatterlist, it could jump to the start of
379          * a new scatterlist array. So here we use sg_next to move to
380          * the proper sg.
381          */
382         for (i = 0; i < *index; i++)
383                 sg_ptr = sg_next(sg_ptr);
384         for (i = *index; i < sg_cnt; i++) {
385                 dma_addr_t addr;
386                 unsigned int len;
387                 u8 option;
388
389                 addr = sg_dma_address(sg_ptr);
390                 len = sg_dma_len(sg_ptr);
391
392                 dev_dbg(rtsx_dev(chip), "DMA addr: 0x%x, Len: 0x%x\n",
393                         (unsigned int)addr, len);
394                 dev_dbg(rtsx_dev(chip), "*index = %d, *offset = %d\n",
395                         *index, *offset);
396
397                 addr += *offset;
398
399                 if ((len - *offset) > resid) {
400                         *offset += resid;
401                         len = resid;
402                         resid = 0;
403                 } else {
404                         resid -= (len - *offset);
405                         len -= *offset;
406                         *offset = 0;
407                         *index = *index + 1;
408                 }
409                 if ((i == (sg_cnt - 1)) || !resid)
410                         option = SG_VALID | SG_END | SG_TRANS_DATA;
411                 else
412                         option = SG_VALID | SG_TRANS_DATA;
413
414                 rtsx_add_sg_tbl(chip, (u32)addr, (u32)len, option);
415
416                 if (!resid)
417                         break;
418
419                 sg_ptr = sg_next(sg_ptr);
420         }
421
422         dev_dbg(rtsx_dev(chip), "SG table count = %d\n", chip->sgi);
423
424         val |= (u32)(dir & 0x01) << 29;
425         val |= ADMA_MODE;
426
427         spin_lock_irq(&rtsx->reg_lock);
428
429         init_completion(&trans_done);
430
431         rtsx_writel(chip, RTSX_HDBAR, chip->host_sg_tbl_addr);
432         rtsx_writel(chip, RTSX_HDBCTLR, val);
433
434         spin_unlock_irq(&rtsx->reg_lock);
435
436         timeleft = wait_for_completion_interruptible_timeout(
437                 &trans_done, msecs_to_jiffies(timeout));
438         if (timeleft <= 0) {
439                 dev_dbg(rtsx_dev(chip), "Timeout (%s %d)\n",
440                         __func__, __LINE__);
441                 dev_dbg(rtsx_dev(chip), "chip->int_reg = 0x%x\n",
442                         chip->int_reg);
443                 err = -ETIMEDOUT;
444                 goto out;
445         }
446
447         spin_lock_irq(&rtsx->reg_lock);
448         if (rtsx->trans_result == TRANS_RESULT_FAIL) {
449                 err = -EIO;
450                 spin_unlock_irq(&rtsx->reg_lock);
451                 goto out;
452         }
453         spin_unlock_irq(&rtsx->reg_lock);
454
455         /* Wait for TRANS_OK_INT */
456         spin_lock_irq(&rtsx->reg_lock);
457         if (rtsx->trans_result == TRANS_NOT_READY) {
458                 init_completion(&trans_done);
459                 spin_unlock_irq(&rtsx->reg_lock);
460                 timeleft = wait_for_completion_interruptible_timeout(
461                         &trans_done, msecs_to_jiffies(timeout));
462                 if (timeleft <= 0) {
463                         dev_dbg(rtsx_dev(chip), "Timeout (%s %d)\n",
464                                 __func__, __LINE__);
465                         dev_dbg(rtsx_dev(chip), "chip->int_reg = 0x%x\n",
466                                 chip->int_reg);
467                         err = -ETIMEDOUT;
468                         goto out;
469                 }
470         } else {
471                 spin_unlock_irq(&rtsx->reg_lock);
472         }
473
474         spin_lock_irq(&rtsx->reg_lock);
475         if (rtsx->trans_result == TRANS_RESULT_FAIL)
476                 err = -EIO;
477         else if (rtsx->trans_result == TRANS_RESULT_OK)
478                 err = 0;
479
480         spin_unlock_irq(&rtsx->reg_lock);
481
482 out:
483         rtsx->done = NULL;
484         rtsx->trans_state = STATE_TRANS_NONE;
485         dma_unmap_sg(&rtsx->pci->dev, sg, num_sg, dma_dir);
486
487         if (err < 0)
488                 rtsx_stop_cmd(chip, card);
489
490         return err;
491 }
492
493 static int rtsx_transfer_sglist_adma(struct rtsx_chip *chip, u8 card,
494                                      struct scatterlist *sg, int num_sg,
495                                      enum dma_data_direction dma_dir,
496                                      int timeout)
497 {
498         struct rtsx_dev *rtsx = chip->rtsx;
499         struct completion trans_done;
500         u8 dir;
501         int buf_cnt, i;
502         int err = 0;
503         long timeleft;
504         struct scatterlist *sg_ptr;
505
506         if (!sg || (num_sg <= 0))
507                 return -EIO;
508
509         if (dma_dir == DMA_TO_DEVICE)
510                 dir = HOST_TO_DEVICE;
511         else if (dma_dir == DMA_FROM_DEVICE)
512                 dir = DEVICE_TO_HOST;
513         else
514                 return -ENXIO;
515
516         if (card == SD_CARD)
517                 rtsx->check_card_cd = SD_EXIST;
518         else if (card == MS_CARD)
519                 rtsx->check_card_cd = MS_EXIST;
520         else if (card == XD_CARD)
521                 rtsx->check_card_cd = XD_EXIST;
522         else
523                 rtsx->check_card_cd = 0;
524
525         spin_lock_irq(&rtsx->reg_lock);
526
527         /* set up data structures for the wakeup system */
528         rtsx->done = &trans_done;
529
530         rtsx->trans_state = STATE_TRANS_SG;
531         rtsx->trans_result = TRANS_NOT_READY;
532
533         spin_unlock_irq(&rtsx->reg_lock);
534
535         buf_cnt = dma_map_sg(&rtsx->pci->dev, sg, num_sg, dma_dir);
536
537         sg_ptr = sg;
538
539         for (i = 0; i <= buf_cnt / (HOST_SG_TBL_BUF_LEN / 8); i++) {
540                 u32 val = TRIG_DMA;
541                 int sg_cnt, j;
542
543                 if (i == buf_cnt / (HOST_SG_TBL_BUF_LEN / 8))
544                         sg_cnt = buf_cnt % (HOST_SG_TBL_BUF_LEN / 8);
545                 else
546                         sg_cnt = HOST_SG_TBL_BUF_LEN / 8;
547
548                 chip->sgi = 0;
549                 for (j = 0; j < sg_cnt; j++) {
550                         dma_addr_t addr = sg_dma_address(sg_ptr);
551                         unsigned int len = sg_dma_len(sg_ptr);
552                         u8 option;
553
554                         dev_dbg(rtsx_dev(chip), "DMA addr: 0x%x, Len: 0x%x\n",
555                                 (unsigned int)addr, len);
556
557                         if (j == (sg_cnt - 1))
558                                 option = SG_VALID | SG_END | SG_TRANS_DATA;
559                         else
560                                 option = SG_VALID | SG_TRANS_DATA;
561
562                         rtsx_add_sg_tbl(chip, (u32)addr, (u32)len, option);
563
564                         sg_ptr = sg_next(sg_ptr);
565                 }
566
567                 dev_dbg(rtsx_dev(chip), "SG table count = %d\n", chip->sgi);
568
569                 val |= (u32)(dir & 0x01) << 29;
570                 val |= ADMA_MODE;
571
572                 spin_lock_irq(&rtsx->reg_lock);
573
574                 init_completion(&trans_done);
575
576                 rtsx_writel(chip, RTSX_HDBAR, chip->host_sg_tbl_addr);
577                 rtsx_writel(chip, RTSX_HDBCTLR, val);
578
579                 spin_unlock_irq(&rtsx->reg_lock);
580
581                 timeleft = wait_for_completion_interruptible_timeout(
582                         &trans_done, msecs_to_jiffies(timeout));
583                 if (timeleft <= 0) {
584                         dev_dbg(rtsx_dev(chip), "Timeout (%s %d)\n",
585                                 __func__, __LINE__);
586                         dev_dbg(rtsx_dev(chip), "chip->int_reg = 0x%x\n",
587                                 chip->int_reg);
588                         err = -ETIMEDOUT;
589                         goto out;
590                 }
591
592                 spin_lock_irq(&rtsx->reg_lock);
593                 if (rtsx->trans_result == TRANS_RESULT_FAIL) {
594                         err = -EIO;
595                         spin_unlock_irq(&rtsx->reg_lock);
596                         goto out;
597                 }
598                 spin_unlock_irq(&rtsx->reg_lock);
599
600                 sg_ptr += sg_cnt;
601         }
602
603         /* Wait for TRANS_OK_INT */
604         spin_lock_irq(&rtsx->reg_lock);
605         if (rtsx->trans_result == TRANS_NOT_READY) {
606                 init_completion(&trans_done);
607                 spin_unlock_irq(&rtsx->reg_lock);
608                 timeleft = wait_for_completion_interruptible_timeout(
609                         &trans_done, msecs_to_jiffies(timeout));
610                 if (timeleft <= 0) {
611                         dev_dbg(rtsx_dev(chip), "Timeout (%s %d)\n",
612                                 __func__, __LINE__);
613                         dev_dbg(rtsx_dev(chip), "chip->int_reg = 0x%x\n",
614                                 chip->int_reg);
615                         err = -ETIMEDOUT;
616                         goto out;
617                 }
618         } else {
619                 spin_unlock_irq(&rtsx->reg_lock);
620         }
621
622         spin_lock_irq(&rtsx->reg_lock);
623         if (rtsx->trans_result == TRANS_RESULT_FAIL)
624                 err = -EIO;
625         else if (rtsx->trans_result == TRANS_RESULT_OK)
626                 err = 0;
627
628         spin_unlock_irq(&rtsx->reg_lock);
629
630 out:
631         rtsx->done = NULL;
632         rtsx->trans_state = STATE_TRANS_NONE;
633         dma_unmap_sg(&rtsx->pci->dev, sg, num_sg, dma_dir);
634
635         if (err < 0)
636                 rtsx_stop_cmd(chip, card);
637
638         return err;
639 }
640
641 static int rtsx_transfer_buf(struct rtsx_chip *chip, u8 card, void *buf,
642                              size_t len, enum dma_data_direction dma_dir,
643                              int timeout)
644 {
645         struct rtsx_dev *rtsx = chip->rtsx;
646         struct completion trans_done;
647         dma_addr_t addr;
648         u8 dir;
649         int err = 0;
650         u32 val = BIT(31);
651         long timeleft;
652
653         if (!buf || (len <= 0))
654                 return -EIO;
655
656         if (dma_dir == DMA_TO_DEVICE)
657                 dir = HOST_TO_DEVICE;
658         else if (dma_dir == DMA_FROM_DEVICE)
659                 dir = DEVICE_TO_HOST;
660         else
661                 return -ENXIO;
662
663         addr = dma_map_single(&rtsx->pci->dev, buf, len, dma_dir);
664         if (dma_mapping_error(&rtsx->pci->dev, addr))
665                 return -ENOMEM;
666
667         if (card == SD_CARD)
668                 rtsx->check_card_cd = SD_EXIST;
669         else if (card == MS_CARD)
670                 rtsx->check_card_cd = MS_EXIST;
671         else if (card == XD_CARD)
672                 rtsx->check_card_cd = XD_EXIST;
673         else
674                 rtsx->check_card_cd = 0;
675
676         val |= (u32)(dir & 0x01) << 29;
677         val |= (u32)(len & 0x00FFFFFF);
678
679         spin_lock_irq(&rtsx->reg_lock);
680
681         /* set up data structures for the wakeup system */
682         rtsx->done = &trans_done;
683
684         init_completion(&trans_done);
685
686         rtsx->trans_state = STATE_TRANS_BUF;
687         rtsx->trans_result = TRANS_NOT_READY;
688
689         rtsx_writel(chip, RTSX_HDBAR, addr);
690         rtsx_writel(chip, RTSX_HDBCTLR, val);
691
692         spin_unlock_irq(&rtsx->reg_lock);
693
694         /* Wait for TRANS_OK_INT */
695         timeleft = wait_for_completion_interruptible_timeout(
696                 &trans_done, msecs_to_jiffies(timeout));
697         if (timeleft <= 0) {
698                 dev_dbg(rtsx_dev(chip), "Timeout (%s %d)\n",
699                         __func__, __LINE__);
700                 dev_dbg(rtsx_dev(chip), "chip->int_reg = 0x%x\n",
701                         chip->int_reg);
702                 err = -ETIMEDOUT;
703                 goto out;
704         }
705
706         spin_lock_irq(&rtsx->reg_lock);
707         if (rtsx->trans_result == TRANS_RESULT_FAIL)
708                 err = -EIO;
709         else if (rtsx->trans_result == TRANS_RESULT_OK)
710                 err = 0;
711
712         spin_unlock_irq(&rtsx->reg_lock);
713
714 out:
715         rtsx->done = NULL;
716         rtsx->trans_state = STATE_TRANS_NONE;
717         dma_unmap_single(&rtsx->pci->dev, addr, len, dma_dir);
718
719         if (err < 0)
720                 rtsx_stop_cmd(chip, card);
721
722         return err;
723 }
724
725 int rtsx_transfer_data_partial(struct rtsx_chip *chip, u8 card,
726                                void *buf, size_t len, int use_sg,
727                                unsigned int *index, unsigned int *offset,
728                                enum dma_data_direction dma_dir, int timeout)
729 {
730         int err = 0;
731
732         /* don't transfer data during abort processing */
733         if (rtsx_chk_stat(chip, RTSX_STAT_ABORT))
734                 return -EIO;
735
736         if (use_sg) {
737                 struct scatterlist *sg = (struct scatterlist *)buf;
738
739                 err = rtsx_transfer_sglist_adma_partial(chip, card, sg, use_sg,
740                                                         index, offset, (int)len,
741                                                         dma_dir, timeout);
742         } else {
743                 err = rtsx_transfer_buf(chip, card,
744                                         buf, len, dma_dir, timeout);
745         }
746         if (err < 0) {
747                 if (RTSX_TST_DELINK(chip)) {
748                         RTSX_CLR_DELINK(chip);
749                         chip->need_reinit = SD_CARD | MS_CARD | XD_CARD;
750                         rtsx_reinit_cards(chip, 1);
751                 }
752         }
753
754         return err;
755 }
756
757 int rtsx_transfer_data(struct rtsx_chip *chip, u8 card, void *buf, size_t len,
758                        int use_sg, enum dma_data_direction dma_dir, int timeout)
759 {
760         int err = 0;
761
762         dev_dbg(rtsx_dev(chip), "use_sg = %d\n", use_sg);
763
764         /* don't transfer data during abort processing */
765         if (rtsx_chk_stat(chip, RTSX_STAT_ABORT))
766                 return -EIO;
767
768         if (use_sg) {
769                 err = rtsx_transfer_sglist_adma(chip, card,
770                                                 (struct scatterlist *)buf,
771                                                 use_sg, dma_dir, timeout);
772         } else {
773                 err = rtsx_transfer_buf(chip, card, buf, len, dma_dir, timeout);
774         }
775
776         if (err < 0) {
777                 if (RTSX_TST_DELINK(chip)) {
778                         RTSX_CLR_DELINK(chip);
779                         chip->need_reinit = SD_CARD | MS_CARD | XD_CARD;
780                         rtsx_reinit_cards(chip, 1);
781                 }
782         }
783
784         return err;
785 }
786