Merge tag 'please-pull-ia64-erratum' of git://git.kernel.org/pub/scm/linux/kernel...
[cascardo/linux.git] / drivers / staging / vt6656 / rxtx.c
1 /*
2  * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
3  * All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * File: rxtx.c
20  *
21  * Purpose: handle WMAC/802.3/802.11 rx & tx functions
22  *
23  * Author: Lyndon Chen
24  *
25  * Date: May 20, 2003
26  *
27  * Functions:
28  *      s_vGenerateTxParameter - Generate tx dma required parameter.
29  *      s_vGenerateMACHeader - Translate 802.3 to 802.11 header
30  *      csBeacon_xmit - beacon tx function
31  *      csMgmt_xmit - management tx function
32  *      s_uGetDataDuration - get tx data required duration
33  *      s_uFillDataHead- fulfill tx data duration header
34  *      s_uGetRTSCTSDuration- get rtx/cts required duration
35  *      s_uGetRTSCTSRsvTime- get rts/cts reserved time
36  *      s_uGetTxRsvTime- get frame reserved time
37  *      s_vFillCTSHead- fulfill CTS ctl header
38  *      s_vFillFragParameter- Set fragment ctl parameter.
39  *      s_vFillRTSHead- fulfill RTS ctl header
40  *      s_vFillTxKey- fulfill tx encrypt key
41  *      s_vSWencryption- Software encrypt header
42  *      vDMA0_tx_80211- tx 802.11 frame via dma0
43  *      vGenerateFIFOHeader- Generate tx FIFO ctl header
44  *
45  * Revision History:
46  *
47  */
48
49 #include "device.h"
50 #include "rxtx.h"
51 #include "tether.h"
52 #include "card.h"
53 #include "bssdb.h"
54 #include "mac.h"
55 #include "michael.h"
56 #include "tkip.h"
57 #include "tcrc.h"
58 #include "wctl.h"
59 #include "hostap.h"
60 #include "rf.h"
61 #include "datarate.h"
62 #include "usbpipe.h"
63 #include "iocmd.h"
64
65 static int          msglevel                = MSG_LEVEL_INFO;
66
67 static const u16 wTimeStampOff[2][MAX_RATE] = {
68         {384, 288, 226, 209, 54, 43, 37, 31, 28, 25, 24, 23}, // Long Preamble
69         {384, 192, 130, 113, 54, 43, 37, 31, 28, 25, 24, 23}, // Short Preamble
70     };
71
72 static const u16 wFB_Opt0[2][5] = {
73         {RATE_12M, RATE_18M, RATE_24M, RATE_36M, RATE_48M}, // fallback_rate0
74         {RATE_12M, RATE_12M, RATE_18M, RATE_24M, RATE_36M}, // fallback_rate1
75     };
76 static const u16 wFB_Opt1[2][5] = {
77         {RATE_12M, RATE_18M, RATE_24M, RATE_24M, RATE_36M}, // fallback_rate0
78         {RATE_6M , RATE_6M,  RATE_12M, RATE_12M, RATE_18M}, // fallback_rate1
79     };
80
81 #define RTSDUR_BB       0
82 #define RTSDUR_BA       1
83 #define RTSDUR_AA       2
84 #define CTSDUR_BA       3
85 #define RTSDUR_BA_F0    4
86 #define RTSDUR_AA_F0    5
87 #define RTSDUR_BA_F1    6
88 #define RTSDUR_AA_F1    7
89 #define CTSDUR_BA_F0    8
90 #define CTSDUR_BA_F1    9
91 #define DATADUR_B       10
92 #define DATADUR_A       11
93 #define DATADUR_A_F0    12
94 #define DATADUR_A_F1    13
95
96 static void s_vSaveTxPktInfo(struct vnt_private *pDevice, u8 byPktNum,
97         u8 *pbyDestAddr, u16 wPktLength, u16 wFIFOCtl);
98
99 static struct vnt_usb_send_context *s_vGetFreeContext(struct vnt_private *);
100
101 static u16 s_vGenerateTxParameter(struct vnt_private *pDevice,
102         u8 byPktType, u16 wCurrentRate, struct vnt_tx_buffer *tx_buffer,
103         struct vnt_mic_hdr **mic_hdr, u32 need_mic, u32 cbFrameSize,
104         int bNeedACK, u32 uDMAIdx, struct ethhdr *psEthHeader, bool need_rts);
105
106 static void s_vGenerateMACHeader(struct vnt_private *pDevice,
107         u8 *pbyBufferAddr, u16 wDuration, struct ethhdr *psEthHeader,
108         int bNeedEncrypt, u16 wFragType, u32 uDMAIdx, u32 uFragIdx);
109
110 static void s_vFillTxKey(struct vnt_private *pDevice,
111         struct vnt_tx_fifo_head *fifo_head, u8 *pbyIVHead,
112         PSKeyItem pTransmitKey, u8 *pbyHdrBuf, u16 wPayloadLen,
113         struct vnt_mic_hdr *mic_hdr);
114
115 static void s_vSWencryption(struct vnt_private *pDevice,
116         PSKeyItem pTransmitKey, u8 *pbyPayloadHead, u16 wPayloadSize);
117
118 static unsigned int s_uGetTxRsvTime(struct vnt_private *pDevice, u8 byPktType,
119         u32 cbFrameLength, u16 wRate, int bNeedAck);
120
121 static __le16 s_uGetRTSCTSRsvTime(struct vnt_private *priv,
122         u8 rsv_type, u8 pkt_type, u32 frame_lenght, u16 current_rate);
123
124 static u16 s_vFillCTSHead(struct vnt_private *pDevice, u32 uDMAIdx,
125         u8 byPktType, union vnt_tx_data_head *head, u32 cbFrameLength,
126         int bNeedAck, u16 wCurrentRate, u8 byFBOption);
127
128 static u16 s_vFillRTSHead(struct vnt_private *pDevice, u8 byPktType,
129         union vnt_tx_data_head *head, u32 cbFrameLength, int bNeedAck,
130         struct ethhdr *psEthHeader, u16 wCurrentRate, u8 byFBOption);
131
132 static __le16 s_uGetDataDuration(struct vnt_private *pDevice,
133         u8 byPktType, int bNeedAck);
134
135 static __le16 s_uGetRTSCTSDuration(struct vnt_private *pDevice,
136         u8 byDurType, u32 cbFrameLength, u8 byPktType, u16 wRate,
137         int bNeedAck, u8 byFBOption);
138
139 static struct vnt_usb_send_context
140         *s_vGetFreeContext(struct vnt_private *priv)
141 {
142         struct vnt_usb_send_context *context = NULL;
143         int ii;
144
145         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"GetFreeContext()\n");
146
147         for (ii = 0; ii < priv->cbTD; ii++) {
148                 if (!priv->apTD[ii])
149                         return NULL;
150
151                 context = priv->apTD[ii];
152                 if (context->bBoolInUse == false) {
153                         context->bBoolInUse = true;
154                         memset(context->Data, 0,
155                                         MAX_TOTAL_SIZE_WITH_ALL_HEADERS);
156                         return context;
157                 }
158         }
159
160         if (ii == priv->cbTD)
161                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"No Free Tx Context\n");
162
163         return NULL;
164 }
165
166 static void s_vSaveTxPktInfo(struct vnt_private *pDevice, u8 byPktNum,
167         u8 *pbyDestAddr, u16 wPktLength, u16 wFIFOCtl)
168 {
169         struct net_device_stats *stats = &pDevice->stats;
170         struct vnt_tx_pkt_info *pkt_info = pDevice->pkt_info;
171
172         pkt_info[byPktNum].fifo_ctl = wFIFOCtl;
173         memcpy(pkt_info[byPktNum].dest_addr, pbyDestAddr, ETH_ALEN);
174
175         stats->tx_bytes += wPktLength;
176 }
177
178 static void s_vFillTxKey(struct vnt_private *pDevice,
179         struct vnt_tx_fifo_head *fifo_head, u8 *pbyIVHead,
180         PSKeyItem pTransmitKey, u8 *pbyHdrBuf, u16 wPayloadLen,
181         struct vnt_mic_hdr *mic_hdr)
182 {
183         u8 *pbyBuf = (u8 *)&fifo_head->adwTxKey[0];
184         u32 *pdwIV = (u32 *)pbyIVHead;
185         u32 *pdwExtIV = (u32 *)((u8 *)pbyIVHead + 4);
186         struct ieee80211_hdr *pMACHeader = (struct ieee80211_hdr *)pbyHdrBuf;
187         u32 dwRevIVCounter;
188
189         /* Fill TXKEY */
190         if (pTransmitKey == NULL)
191                 return;
192
193         dwRevIVCounter = cpu_to_le32(pDevice->dwIVCounter);
194         *pdwIV = pDevice->dwIVCounter;
195         pDevice->byKeyIndex = pTransmitKey->dwKeyIndex & 0xf;
196
197         switch (pTransmitKey->byCipherSuite) {
198         case KEY_CTL_WEP:
199                 if (pTransmitKey->uKeyLength == WLAN_WEP232_KEYLEN) {
200                         memcpy(pDevice->abyPRNG, (u8 *)&dwRevIVCounter, 3);
201                         memcpy(pDevice->abyPRNG + 3, pTransmitKey->abyKey,
202                                                 pTransmitKey->uKeyLength);
203                 } else {
204                         memcpy(pbyBuf, (u8 *)&dwRevIVCounter, 3);
205                         memcpy(pbyBuf + 3, pTransmitKey->abyKey,
206                                                 pTransmitKey->uKeyLength);
207                         if (pTransmitKey->uKeyLength == WLAN_WEP40_KEYLEN) {
208                                 memcpy(pbyBuf+8, (u8 *)&dwRevIVCounter, 3);
209                         memcpy(pbyBuf+11, pTransmitKey->abyKey,
210                                                 pTransmitKey->uKeyLength);
211                         }
212
213                         memcpy(pDevice->abyPRNG, pbyBuf, 16);
214                 }
215                 /* Append IV after Mac Header */
216                 *pdwIV &= WEP_IV_MASK;
217                 *pdwIV |= (u32)pDevice->byKeyIndex << 30;
218                 *pdwIV = cpu_to_le32(*pdwIV);
219
220                 pDevice->dwIVCounter++;
221                 if (pDevice->dwIVCounter > WEP_IV_MASK)
222                         pDevice->dwIVCounter = 0;
223
224                 break;
225         case KEY_CTL_TKIP:
226                 pTransmitKey->wTSC15_0++;
227                 if (pTransmitKey->wTSC15_0 == 0)
228                         pTransmitKey->dwTSC47_16++;
229
230                 TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
231                         pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16,
232                                                         pDevice->abyPRNG);
233                 memcpy(pbyBuf, pDevice->abyPRNG, 16);
234
235                 /* Make IV */
236                 memcpy(pdwIV, pDevice->abyPRNG, 3);
237
238                 *(pbyIVHead+3) = (u8)(((pDevice->byKeyIndex << 6) &
239                                                         0xc0) | 0x20);
240                 /*  Append IV&ExtIV after Mac Header */
241                 *pdwExtIV = cpu_to_le32(pTransmitKey->dwTSC47_16);
242
243                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
244                         "vFillTxKey()---- pdwExtIV: %x\n", *pdwExtIV);
245
246                 break;
247         case KEY_CTL_CCMP:
248                 pTransmitKey->wTSC15_0++;
249                 if (pTransmitKey->wTSC15_0 == 0)
250                         pTransmitKey->dwTSC47_16++;
251
252                 memcpy(pbyBuf, pTransmitKey->abyKey, 16);
253
254                 /* Make IV */
255                 *pdwIV = 0;
256                 *(pbyIVHead+3) = (u8)(((pDevice->byKeyIndex << 6) &
257                                                         0xc0) | 0x20);
258
259                 *pdwIV |= cpu_to_le16((u16)(pTransmitKey->wTSC15_0));
260
261                 /* Append IV&ExtIV after Mac Header */
262                 *pdwExtIV = cpu_to_le32(pTransmitKey->dwTSC47_16);
263
264                 if (!mic_hdr)
265                         return;
266
267                 /* MICHDR0 */
268                 mic_hdr->id = 0x59;
269                 mic_hdr->payload_len = cpu_to_be16(wPayloadLen);
270                 memcpy(mic_hdr->mic_addr2, pMACHeader->addr2, ETH_ALEN);
271
272                 mic_hdr->tsc_47_16 = cpu_to_be32(pTransmitKey->dwTSC47_16);
273                 mic_hdr->tsc_15_0 = cpu_to_be16(pTransmitKey->wTSC15_0);
274
275                 /* MICHDR1 */
276                 if (ieee80211_has_a4(pMACHeader->frame_control))
277                         mic_hdr->hlen = cpu_to_be16(28);
278                 else
279                         mic_hdr->hlen = cpu_to_be16(22);
280
281                 memcpy(mic_hdr->addr1, pMACHeader->addr1, ETH_ALEN);
282                 memcpy(mic_hdr->addr2, pMACHeader->addr2, ETH_ALEN);
283
284                 /* MICHDR2 */
285                 memcpy(mic_hdr->addr3, pMACHeader->addr3, ETH_ALEN);
286                 mic_hdr->frame_control = cpu_to_le16(pMACHeader->frame_control
287                                                                 & 0xc78f);
288                 mic_hdr->seq_ctrl = cpu_to_le16(pMACHeader->seq_ctrl & 0xf);
289
290                 if (ieee80211_has_a4(pMACHeader->frame_control))
291                         memcpy(mic_hdr->addr4, pMACHeader->addr4, ETH_ALEN);
292         }
293 }
294
295 static void s_vSWencryption(struct vnt_private *pDevice,
296         PSKeyItem pTransmitKey, u8 *pbyPayloadHead, u16 wPayloadSize)
297 {
298         u32 cbICVlen = 4;
299         u32 dwICV = 0xffffffff;
300         u32 *pdwICV;
301
302     if (pTransmitKey == NULL)
303         return;
304
305     if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) {
306         //=======================================================================
307         // Append ICV after payload
308         dwICV = CRCdwGetCrc32Ex(pbyPayloadHead, wPayloadSize, dwICV);//ICV(Payload)
309         pdwICV = (u32 *)(pbyPayloadHead + wPayloadSize);
310         // finally, we must invert dwCRC to get the correct answer
311         *pdwICV = cpu_to_le32(~dwICV);
312         // RC4 encryption
313         rc4_init(&pDevice->SBox, pDevice->abyPRNG, pTransmitKey->uKeyLength + 3);
314         rc4_encrypt(&pDevice->SBox, pbyPayloadHead, pbyPayloadHead, wPayloadSize+cbICVlen);
315         //=======================================================================
316     } else if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
317         //=======================================================================
318         //Append ICV after payload
319         dwICV = CRCdwGetCrc32Ex(pbyPayloadHead, wPayloadSize, dwICV);//ICV(Payload)
320         pdwICV = (u32 *)(pbyPayloadHead + wPayloadSize);
321         // finally, we must invert dwCRC to get the correct answer
322         *pdwICV = cpu_to_le32(~dwICV);
323         // RC4 encryption
324         rc4_init(&pDevice->SBox, pDevice->abyPRNG, TKIP_KEY_LEN);
325         rc4_encrypt(&pDevice->SBox, pbyPayloadHead, pbyPayloadHead, wPayloadSize+cbICVlen);
326         //=======================================================================
327     }
328 }
329
330 static __le16 vnt_time_stamp_off(struct vnt_private *priv, u16 rate)
331 {
332         return cpu_to_le16(wTimeStampOff[priv->byPreambleType % 2]
333                                                         [rate % MAX_RATE]);
334 }
335
336 /*byPktType : PK_TYPE_11A     0
337              PK_TYPE_11B     1
338              PK_TYPE_11GB    2
339              PK_TYPE_11GA    3
340 */
341 static u32 s_uGetTxRsvTime(struct vnt_private *priv, u8 pkt_type,
342         u32 frame_length, u16 rate, int need_ack)
343 {
344         u32 data_time, ack_time;
345
346         data_time = BBuGetFrameTime(priv->byPreambleType, pkt_type,
347                                                         frame_length, rate);
348
349         if (pkt_type == PK_TYPE_11B)
350                 ack_time = BBuGetFrameTime(priv->byPreambleType, pkt_type, 14,
351                                                 (u16)priv->byTopCCKBasicRate);
352         else
353                 ack_time = BBuGetFrameTime(priv->byPreambleType, pkt_type, 14,
354                                                 (u16)priv->byTopOFDMBasicRate);
355
356         if (need_ack)
357                 return data_time + priv->uSIFS + ack_time;
358
359         return data_time;
360 }
361
362 static __le16 vnt_rxtx_rsvtime_le16(struct vnt_private *priv, u8 pkt_type,
363         u32 frame_length, u16 rate, int need_ack)
364 {
365         return cpu_to_le16((u16)s_uGetTxRsvTime(priv, pkt_type,
366                 frame_length, rate, need_ack));
367 }
368
369 //byFreqType: 0=>5GHZ 1=>2.4GHZ
370 static __le16 s_uGetRTSCTSRsvTime(struct vnt_private *priv,
371         u8 rsv_type, u8 pkt_type, u32 frame_lenght, u16 current_rate)
372 {
373         u32 rrv_time, rts_time, cts_time, ack_time, data_time;
374
375         rrv_time = rts_time = cts_time = ack_time = data_time = 0;
376
377         data_time = BBuGetFrameTime(priv->byPreambleType, pkt_type,
378                                                 frame_lenght, current_rate);
379
380         if (rsv_type == 0) {
381                 rts_time = BBuGetFrameTime(priv->byPreambleType,
382                         pkt_type, 20, priv->byTopCCKBasicRate);
383                 cts_time = ack_time = BBuGetFrameTime(priv->byPreambleType,
384                         pkt_type, 14, priv->byTopCCKBasicRate);
385         } else if (rsv_type == 1) {
386                 rts_time = BBuGetFrameTime(priv->byPreambleType,
387                         pkt_type, 20, priv->byTopCCKBasicRate);
388                 cts_time = BBuGetFrameTime(priv->byPreambleType, pkt_type,
389                         14, priv->byTopCCKBasicRate);
390                 ack_time = BBuGetFrameTime(priv->byPreambleType, pkt_type,
391                         14, priv->byTopOFDMBasicRate);
392         } else if (rsv_type == 2) {
393                 rts_time = BBuGetFrameTime(priv->byPreambleType, pkt_type,
394                         20, priv->byTopOFDMBasicRate);
395                 cts_time = ack_time = BBuGetFrameTime(priv->byPreambleType,
396                         pkt_type, 14, priv->byTopOFDMBasicRate);
397         } else if (rsv_type == 3) {
398                 cts_time = BBuGetFrameTime(priv->byPreambleType, pkt_type,
399                         14, priv->byTopCCKBasicRate);
400                 ack_time = BBuGetFrameTime(priv->byPreambleType, pkt_type,
401                         14, priv->byTopOFDMBasicRate);
402
403                 rrv_time = cts_time + ack_time + data_time + 2 * priv->uSIFS;
404
405                 return cpu_to_le16((u16)rrv_time);
406         }
407
408         rrv_time = rts_time + cts_time + ack_time + data_time + 3 * priv->uSIFS;
409
410         return cpu_to_le16((u16)rrv_time);
411 }
412
413 //byFreqType 0: 5GHz, 1:2.4Ghz
414 static __le16 s_uGetDataDuration(struct vnt_private *pDevice,
415                                         u8 byPktType, int bNeedAck)
416 {
417         u32 uAckTime = 0;
418
419         if (bNeedAck) {
420                 if (byPktType == PK_TYPE_11B)
421                         uAckTime = BBuGetFrameTime(pDevice->byPreambleType,
422                                 byPktType, 14, pDevice->byTopCCKBasicRate);
423                 else
424                         uAckTime = BBuGetFrameTime(pDevice->byPreambleType,
425                                 byPktType, 14, pDevice->byTopOFDMBasicRate);
426                 return cpu_to_le16((u16)(pDevice->uSIFS + uAckTime));
427         }
428
429         return 0;
430 }
431
432 //byFreqType: 0=>5GHZ 1=>2.4GHZ
433 static __le16 s_uGetRTSCTSDuration(struct vnt_private *pDevice, u8 byDurType,
434         u32 cbFrameLength, u8 byPktType, u16 wRate, int bNeedAck,
435         u8 byFBOption)
436 {
437         u32 uCTSTime = 0, uDurTime = 0;
438
439         switch (byDurType) {
440         case RTSDUR_BB:
441         case RTSDUR_BA:
442         case RTSDUR_BA_F0:
443         case RTSDUR_BA_F1:
444                 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType,
445                         14, pDevice->byTopCCKBasicRate);
446                 uDurTime = uCTSTime + 2 * pDevice->uSIFS +
447                         s_uGetTxRsvTime(pDevice, byPktType,
448                                                 cbFrameLength, wRate, bNeedAck);
449                 break;
450
451         case RTSDUR_AA:
452         case RTSDUR_AA_F0:
453         case RTSDUR_AA_F1:
454                 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType,
455                         14, pDevice->byTopOFDMBasicRate);
456                 uDurTime = uCTSTime + 2 * pDevice->uSIFS +
457                         s_uGetTxRsvTime(pDevice, byPktType,
458                                                 cbFrameLength, wRate, bNeedAck);
459                 break;
460
461         case CTSDUR_BA:
462         case CTSDUR_BA_F0:
463         case CTSDUR_BA_F1:
464                 uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice,
465                                 byPktType, cbFrameLength, wRate, bNeedAck);
466                 break;
467
468         default:
469                 break;
470         }
471
472         return cpu_to_le16((u16)uDurTime);
473 }
474
475 static u16 vnt_rxtx_datahead_g(struct vnt_private *priv, u8 pkt_type, u16 rate,
476                 struct vnt_tx_datahead_g *buf, u32 frame_len, int need_ack)
477 {
478         /* Get SignalField,ServiceField,Length */
479         BBvCalculateParameter(priv, frame_len, rate, pkt_type, &buf->a);
480         BBvCalculateParameter(priv, frame_len, priv->byTopCCKBasicRate,
481                                                         PK_TYPE_11B, &buf->b);
482
483         /* Get Duration and TimeStamp */
484         buf->duration_a = s_uGetDataDuration(priv, pkt_type, need_ack);
485         buf->duration_b = s_uGetDataDuration(priv, PK_TYPE_11B, need_ack);
486
487         buf->time_stamp_off_a = vnt_time_stamp_off(priv, rate);
488         buf->time_stamp_off_b = vnt_time_stamp_off(priv,
489                                         priv->byTopCCKBasicRate);
490
491         return le16_to_cpu(buf->duration_a);
492 }
493
494 static u16 vnt_rxtx_datahead_g_fb(struct vnt_private *priv, u8 pkt_type,
495                 u16 rate, struct vnt_tx_datahead_g_fb *buf,
496                 u32 frame_len, int need_ack)
497 {
498         /* Get SignalField,ServiceField,Length */
499         BBvCalculateParameter(priv, frame_len, rate, pkt_type, &buf->a);
500
501         BBvCalculateParameter(priv, frame_len, priv->byTopCCKBasicRate,
502                                                 PK_TYPE_11B, &buf->b);
503
504         /* Get Duration and TimeStamp */
505         buf->duration_a = s_uGetDataDuration(priv, pkt_type, need_ack);
506         buf->duration_b = s_uGetDataDuration(priv, PK_TYPE_11B, need_ack);
507
508         buf->duration_a_f0 = s_uGetDataDuration(priv, pkt_type, need_ack);
509         buf->duration_a_f1 = s_uGetDataDuration(priv, pkt_type, need_ack);
510
511         buf->time_stamp_off_a = vnt_time_stamp_off(priv, rate);
512         buf->time_stamp_off_b = vnt_time_stamp_off(priv,
513                                                 priv->byTopCCKBasicRate);
514
515         return le16_to_cpu(buf->duration_a);
516 }
517
518 static u16 vnt_rxtx_datahead_a_fb(struct vnt_private *priv, u8 pkt_type,
519                 u16 rate, struct vnt_tx_datahead_a_fb *buf,
520                 u32 frame_len, int need_ack)
521 {
522         /* Get SignalField,ServiceField,Length */
523         BBvCalculateParameter(priv, frame_len, rate, pkt_type, &buf->a);
524         /* Get Duration and TimeStampOff */
525         buf->duration = s_uGetDataDuration(priv, pkt_type, need_ack);
526
527         buf->duration_f0 = s_uGetDataDuration(priv, pkt_type, need_ack);
528         buf->duration_f1 = s_uGetDataDuration(priv, pkt_type, need_ack);
529
530         buf->time_stamp_off = vnt_time_stamp_off(priv, rate);
531
532         return le16_to_cpu(buf->duration);
533 }
534
535 static u16 vnt_rxtx_datahead_ab(struct vnt_private *priv, u8 pkt_type,
536                 u16 rate, struct vnt_tx_datahead_ab *buf,
537                 u32 frame_len, int need_ack)
538 {
539         /* Get SignalField,ServiceField,Length */
540         BBvCalculateParameter(priv, frame_len, rate, pkt_type, &buf->ab);
541         /* Get Duration and TimeStampOff */
542         buf->duration = s_uGetDataDuration(priv, pkt_type, need_ack);
543
544         buf->time_stamp_off = vnt_time_stamp_off(priv, rate);
545
546         return le16_to_cpu(buf->duration);
547 }
548
549 static int vnt_fill_ieee80211_rts(struct vnt_private *priv,
550         struct ieee80211_rts *rts, struct ethhdr *eth_hdr,
551                 __le16 duration)
552 {
553         rts->duration = duration;
554         rts->frame_control = TYPE_CTL_RTS;
555
556         if (priv->op_mode == NL80211_IFTYPE_ADHOC ||
557                                 priv->op_mode == NL80211_IFTYPE_AP)
558                 memcpy(rts->ra, eth_hdr->h_dest, ETH_ALEN);
559         else
560                 memcpy(rts->ra, priv->abyBSSID, ETH_ALEN);
561
562         if (priv->op_mode == NL80211_IFTYPE_AP)
563                 memcpy(rts->ta, priv->abyBSSID, ETH_ALEN);
564         else
565                 memcpy(rts->ta, eth_hdr->h_source, ETH_ALEN);
566
567         return 0;
568 }
569
570 static u16 vnt_rxtx_rts_g_head(struct vnt_private *priv,
571         struct vnt_rts_g *buf, struct ethhdr *eth_hdr,
572         u8 pkt_type, u32 frame_len, int need_ack,
573         u16 current_rate, u8 fb_option)
574 {
575         u16 rts_frame_len = 20;
576
577         BBvCalculateParameter(priv, rts_frame_len, priv->byTopCCKBasicRate,
578                 PK_TYPE_11B, &buf->b);
579         BBvCalculateParameter(priv, rts_frame_len,
580                 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
581
582         buf->duration_bb = s_uGetRTSCTSDuration(priv, RTSDUR_BB, frame_len,
583                 PK_TYPE_11B, priv->byTopCCKBasicRate, need_ack, fb_option);
584         buf->duration_aa = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
585                 pkt_type, current_rate, need_ack, fb_option);
586         buf->duration_ba = s_uGetRTSCTSDuration(priv, RTSDUR_BA, frame_len,
587                 pkt_type, current_rate, need_ack, fb_option);
588
589         vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->duration_aa);
590
591         return vnt_rxtx_datahead_g(priv, pkt_type, current_rate,
592                         &buf->data_head, frame_len, need_ack);
593 }
594
595 static u16 vnt_rxtx_rts_g_fb_head(struct vnt_private *priv,
596         struct vnt_rts_g_fb *buf, struct ethhdr *eth_hdr,
597         u8 pkt_type, u32 frame_len, int need_ack,
598         u16 current_rate, u8 fb_option)
599 {
600         u16 rts_frame_len = 20;
601
602         BBvCalculateParameter(priv, rts_frame_len, priv->byTopCCKBasicRate,
603                 PK_TYPE_11B, &buf->b);
604         BBvCalculateParameter(priv, rts_frame_len,
605                 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
606
607
608         buf->duration_bb = s_uGetRTSCTSDuration(priv, RTSDUR_BB, frame_len,
609                 PK_TYPE_11B, priv->byTopCCKBasicRate, need_ack, fb_option);
610         buf->duration_aa = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
611                 pkt_type, current_rate, need_ack, fb_option);
612         buf->duration_ba = s_uGetRTSCTSDuration(priv, RTSDUR_BA, frame_len,
613                 pkt_type, current_rate, need_ack, fb_option);
614
615
616         buf->rts_duration_ba_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_BA_F0,
617                 frame_len, pkt_type, priv->tx_rate_fb0, need_ack, fb_option);
618         buf->rts_duration_aa_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F0,
619                 frame_len, pkt_type, priv->tx_rate_fb0, need_ack, fb_option);
620         buf->rts_duration_ba_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_BA_F1,
621                 frame_len, pkt_type, priv->tx_rate_fb1, need_ack, fb_option);
622         buf->rts_duration_aa_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F1,
623                 frame_len, pkt_type, priv->tx_rate_fb1, need_ack, fb_option);
624
625         vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->duration_aa);
626
627         return vnt_rxtx_datahead_g_fb(priv, pkt_type, current_rate,
628                         &buf->data_head, frame_len, need_ack);
629 }
630
631 static u16 vnt_rxtx_rts_ab_head(struct vnt_private *priv,
632         struct vnt_rts_ab *buf, struct ethhdr *eth_hdr,
633         u8 pkt_type, u32 frame_len, int need_ack,
634         u16 current_rate, u8 fb_option)
635 {
636         u16 rts_frame_len = 20;
637
638         BBvCalculateParameter(priv, rts_frame_len,
639                 priv->byTopOFDMBasicRate, pkt_type, &buf->ab);
640
641         buf->duration = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
642                 pkt_type, current_rate, need_ack, fb_option);
643
644         vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->duration);
645
646         return vnt_rxtx_datahead_ab(priv, pkt_type, current_rate,
647                         &buf->data_head, frame_len, need_ack);
648 }
649
650 static u16 vnt_rxtx_rts_a_fb_head(struct vnt_private *priv,
651         struct vnt_rts_a_fb *buf, struct ethhdr *eth_hdr,
652         u8 pkt_type, u32 frame_len, int need_ack,
653         u16 current_rate, u8 fb_option)
654 {
655         u16 rts_frame_len = 20;
656
657         BBvCalculateParameter(priv, rts_frame_len,
658                 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
659
660         buf->duration = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
661                 pkt_type, current_rate, need_ack, fb_option);
662
663         buf->rts_duration_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F0,
664                 frame_len, pkt_type, priv->tx_rate_fb0, need_ack, fb_option);
665
666         buf->rts_duration_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F1,
667                 frame_len, pkt_type, priv->tx_rate_fb1, need_ack, fb_option);
668
669         vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->duration);
670
671         return vnt_rxtx_datahead_a_fb(priv, pkt_type, current_rate,
672                         &buf->data_head, frame_len, need_ack);
673 }
674
675 static u16 s_vFillRTSHead(struct vnt_private *pDevice, u8 byPktType,
676         union vnt_tx_data_head *head, u32 cbFrameLength, int bNeedAck,
677         struct ethhdr *psEthHeader, u16 wCurrentRate, u8 byFBOption)
678 {
679
680         if (!head)
681                 return 0;
682
683         /* Note: So far RTSHead doesn't appear in ATIM
684         *       & Beacom DMA, so we don't need to take them
685         *       into account.
686         *       Otherwise, we need to modified codes for them.
687         */
688         switch (byPktType) {
689         case PK_TYPE_11GB:
690         case PK_TYPE_11GA:
691                 if (byFBOption == AUTO_FB_NONE)
692                         return vnt_rxtx_rts_g_head(pDevice, &head->rts_g,
693                                 psEthHeader, byPktType, cbFrameLength,
694                                 bNeedAck, wCurrentRate, byFBOption);
695                 else
696                         return vnt_rxtx_rts_g_fb_head(pDevice, &head->rts_g_fb,
697                                 psEthHeader, byPktType, cbFrameLength,
698                                 bNeedAck, wCurrentRate, byFBOption);
699                 break;
700         case PK_TYPE_11A:
701                 if (byFBOption) {
702                         return vnt_rxtx_rts_a_fb_head(pDevice, &head->rts_a_fb,
703                                 psEthHeader, byPktType, cbFrameLength,
704                                 bNeedAck, wCurrentRate, byFBOption);
705                         break;
706                 }
707         case PK_TYPE_11B:
708                 return vnt_rxtx_rts_ab_head(pDevice, &head->rts_ab,
709                         psEthHeader, byPktType, cbFrameLength,
710                         bNeedAck, wCurrentRate, byFBOption);
711         }
712
713         return 0;
714 }
715
716 static u16 s_vFillCTSHead(struct vnt_private *pDevice, u32 uDMAIdx,
717         u8 byPktType, union vnt_tx_data_head *head, u32 cbFrameLength,
718         int bNeedAck, u16 wCurrentRate, u8 byFBOption)
719 {
720         u32 uCTSFrameLen = 14;
721
722         if (!head)
723                 return 0;
724
725         if (byFBOption != AUTO_FB_NONE) {
726                 /* Auto Fall back */
727                 struct vnt_cts_fb *pBuf = &head->cts_g_fb;
728                 /* Get SignalField,ServiceField,Length */
729                 BBvCalculateParameter(pDevice, uCTSFrameLen,
730                         pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
731                 pBuf->duration_ba = s_uGetRTSCTSDuration(pDevice, CTSDUR_BA,
732                         cbFrameLength, byPktType,
733                         wCurrentRate, bNeedAck, byFBOption);
734                 /* Get CTSDuration_ba_f0 */
735                 pBuf->cts_duration_ba_f0 = s_uGetRTSCTSDuration(pDevice,
736                         CTSDUR_BA_F0, cbFrameLength, byPktType,
737                         pDevice->tx_rate_fb0, bNeedAck, byFBOption);
738                 /* Get CTSDuration_ba_f1 */
739                 pBuf->cts_duration_ba_f1 = s_uGetRTSCTSDuration(pDevice,
740                         CTSDUR_BA_F1, cbFrameLength, byPktType,
741                         pDevice->tx_rate_fb1, bNeedAck, byFBOption);
742                 /* Get CTS Frame body */
743                 pBuf->data.duration = pBuf->duration_ba;
744                 pBuf->data.frame_control = TYPE_CTL_CTS;
745                 memcpy(pBuf->data.ra, pDevice->abyCurrentNetAddr, ETH_ALEN);
746
747                 return vnt_rxtx_datahead_g_fb(pDevice, byPktType, wCurrentRate,
748                                 &pBuf->data_head, cbFrameLength, bNeedAck);
749         } else {
750                 struct vnt_cts *pBuf = &head->cts_g;
751                 /* Get SignalField,ServiceField,Length */
752                 BBvCalculateParameter(pDevice, uCTSFrameLen,
753                         pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
754                 /* Get CTSDuration_ba */
755                 pBuf->duration_ba = s_uGetRTSCTSDuration(pDevice,
756                         CTSDUR_BA, cbFrameLength, byPktType,
757                         wCurrentRate, bNeedAck, byFBOption);
758                 /*Get CTS Frame body*/
759                 pBuf->data.duration = pBuf->duration_ba;
760                 pBuf->data.frame_control = TYPE_CTL_CTS;
761                 memcpy(pBuf->data.ra, pDevice->abyCurrentNetAddr, ETH_ALEN);
762
763                 return vnt_rxtx_datahead_g(pDevice, byPktType, wCurrentRate,
764                                 &pBuf->data_head, cbFrameLength, bNeedAck);
765         }
766
767         return 0;
768 }
769
770 /*+
771  *
772  * Description:
773  *      Generate FIFO control for MAC & Baseband controller
774  *
775  * Parameters:
776  *  In:
777  *      pDevice         - Pointer to adpater
778  *      pTxDataHead     - Transmit Data Buffer
779  *      pTxBufHead      - pTxBufHead
780  *      pvRrvTime        - pvRrvTime
781  *      pvRTS            - RTS Buffer
782  *      pCTS            - CTS Buffer
783  *      cbFrameSize     - Transmit Data Length (Hdr+Payload+FCS)
784  *      bNeedACK        - If need ACK
785  *      uDMAIdx         - DMA Index
786  *  Out:
787  *      none
788  *
789  * Return Value: none
790  *
791 -*/
792
793 static u16 s_vGenerateTxParameter(struct vnt_private *pDevice,
794         u8 byPktType, u16 wCurrentRate, struct vnt_tx_buffer *tx_buffer,
795         struct vnt_mic_hdr **mic_hdr, u32 need_mic, u32 cbFrameSize,
796         int bNeedACK, u32 uDMAIdx, struct ethhdr *psEthHeader, bool need_rts)
797 {
798         struct vnt_tx_fifo_head *pFifoHead = &tx_buffer->fifo_head;
799         union vnt_tx_data_head *head = NULL;
800         u16 wFifoCtl;
801         u8 byFBOption = AUTO_FB_NONE;
802
803         pFifoHead->wReserved = wCurrentRate;
804         wFifoCtl = pFifoHead->wFIFOCtl;
805
806         if (wFifoCtl & FIFOCTL_AUTO_FB_0)
807                 byFBOption = AUTO_FB_0;
808         else if (wFifoCtl & FIFOCTL_AUTO_FB_1)
809                 byFBOption = AUTO_FB_1;
810
811         if (!pFifoHead)
812                 return 0;
813
814         if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
815                 if (need_rts) {
816                         struct vnt_rrv_time_rts *pBuf =
817                                         &tx_buffer->tx_head.tx_rts.rts;
818
819                         pBuf->rts_rrv_time_aa = s_uGetRTSCTSRsvTime(pDevice, 2,
820                                         byPktType, cbFrameSize, wCurrentRate);
821                         pBuf->rts_rrv_time_ba = s_uGetRTSCTSRsvTime(pDevice, 1,
822                                         byPktType, cbFrameSize, wCurrentRate);
823                         pBuf->rts_rrv_time_bb = s_uGetRTSCTSRsvTime(pDevice, 0,
824                                 byPktType, cbFrameSize, wCurrentRate);
825
826                         pBuf->rrv_time_a = vnt_rxtx_rsvtime_le16(pDevice,
827                                 byPktType, cbFrameSize, wCurrentRate, bNeedACK);
828                         pBuf->rrv_time_b = vnt_rxtx_rsvtime_le16(pDevice,
829                                         PK_TYPE_11B, cbFrameSize,
830                                         pDevice->byTopCCKBasicRate, bNeedACK);
831
832                         if (need_mic) {
833                                 *mic_hdr = &tx_buffer->
834                                                 tx_head.tx_rts.tx.mic.hdr;
835                                 head = &tx_buffer->tx_head.tx_rts.tx.mic.head;
836                         } else {
837                                 head = &tx_buffer->tx_head.tx_rts.tx.head;
838                         }
839
840                         /* Fill RTS */
841                         return s_vFillRTSHead(pDevice, byPktType, head,
842                                         cbFrameSize, bNeedACK, psEthHeader,
843                                                 wCurrentRate, byFBOption);
844
845                 } else {
846                         struct vnt_rrv_time_cts *pBuf = &tx_buffer->
847                                                         tx_head.tx_cts.cts;
848
849                         pBuf->rrv_time_a = vnt_rxtx_rsvtime_le16(pDevice,
850                                 byPktType, cbFrameSize, wCurrentRate, bNeedACK);
851                         pBuf->rrv_time_b = vnt_rxtx_rsvtime_le16(pDevice,
852                                 PK_TYPE_11B, cbFrameSize,
853                                         pDevice->byTopCCKBasicRate, bNeedACK);
854
855                         pBuf->cts_rrv_time_ba = s_uGetRTSCTSRsvTime(pDevice, 3,
856                                         byPktType, cbFrameSize, wCurrentRate);
857
858                         if (need_mic) {
859                                 *mic_hdr = &tx_buffer->
860                                                 tx_head.tx_cts.tx.mic.hdr;
861                                 head = &tx_buffer->tx_head.tx_cts.tx.mic.head;
862                         } else {
863                                 head = &tx_buffer->tx_head.tx_cts.tx.head;
864                         }
865
866                         /* Fill CTS */
867                         return s_vFillCTSHead(pDevice, uDMAIdx, byPktType,
868                                 head, cbFrameSize, bNeedACK, wCurrentRate,
869                                         byFBOption);
870                 }
871         } else if (byPktType == PK_TYPE_11A) {
872                 if (need_mic) {
873                         *mic_hdr = &tx_buffer->tx_head.tx_ab.tx.mic.hdr;
874                         head = &tx_buffer->tx_head.tx_ab.tx.mic.head;
875                 } else {
876                         head = &tx_buffer->tx_head.tx_ab.tx.head;
877                 }
878
879                 if (need_rts) {
880                         struct vnt_rrv_time_ab *pBuf = &tx_buffer->
881                                                         tx_head.tx_ab.ab;
882
883                         pBuf->rts_rrv_time = s_uGetRTSCTSRsvTime(pDevice, 2,
884                                 byPktType, cbFrameSize, wCurrentRate);
885
886                         pBuf->rrv_time = vnt_rxtx_rsvtime_le16(pDevice,
887                                 byPktType, cbFrameSize, wCurrentRate, bNeedACK);
888
889                         /* Fill RTS */
890                         return s_vFillRTSHead(pDevice, byPktType, head,
891                                 cbFrameSize, bNeedACK, psEthHeader,
892                                         wCurrentRate, byFBOption);
893                 } else {
894                         struct vnt_rrv_time_ab *pBuf = &tx_buffer->
895                                                         tx_head.tx_ab.ab;
896
897                         pBuf->rrv_time = vnt_rxtx_rsvtime_le16(pDevice,
898                                 PK_TYPE_11A, cbFrameSize,
899                                         wCurrentRate, bNeedACK);
900
901                         return vnt_rxtx_datahead_a_fb(pDevice, byPktType,
902                                 wCurrentRate, &head->data_head_a_fb,
903                                                 cbFrameSize, bNeedACK);
904                 }
905         } else if (byPktType == PK_TYPE_11B) {
906                 if (need_mic) {
907                         *mic_hdr = &tx_buffer->tx_head.tx_ab.tx.mic.hdr;
908                         head = &tx_buffer->tx_head.tx_ab.tx.mic.head;
909                 } else {
910                         head = &tx_buffer->tx_head.tx_ab.tx.head;
911                 }
912
913                 if (need_rts) {
914                         struct vnt_rrv_time_ab *pBuf = &tx_buffer->
915                                                         tx_head.tx_ab.ab;
916
917                         pBuf->rts_rrv_time = s_uGetRTSCTSRsvTime(pDevice, 0,
918                                 byPktType, cbFrameSize, wCurrentRate);
919
920                         pBuf->rrv_time = vnt_rxtx_rsvtime_le16(pDevice,
921                                 PK_TYPE_11B, cbFrameSize, wCurrentRate,
922                                                                 bNeedACK);
923
924                         /* Fill RTS */
925                         return s_vFillRTSHead(pDevice, byPktType, head,
926                                 cbFrameSize,
927                         bNeedACK, psEthHeader, wCurrentRate, byFBOption);
928                 } else {
929                         struct vnt_rrv_time_ab *pBuf = &tx_buffer->
930                                                         tx_head.tx_ab.ab;
931
932                         pBuf->rrv_time = vnt_rxtx_rsvtime_le16(pDevice,
933                                 PK_TYPE_11B, cbFrameSize,
934                                         wCurrentRate, bNeedACK);
935
936                         return vnt_rxtx_datahead_ab(pDevice, byPktType,
937                                 wCurrentRate, &head->data_head_ab,
938                                         cbFrameSize, bNeedACK);
939                 }
940         }
941
942         return 0;
943 }
944 /*
945     u8 * pbyBuffer,//point to pTxBufHead
946     u16  wFragType,//00:Non-Frag, 01:Start, 02:Mid, 03:Last
947     unsigned int  cbFragmentSize,//Hdr+payoad+FCS
948 */
949
950 static int s_bPacketToWirelessUsb(struct vnt_private *pDevice, u8 byPktType,
951         struct vnt_tx_buffer *tx_buffer, int bNeedEncryption,
952         u32 uSkbPacketLen, u32 uDMAIdx, struct ethhdr *psEthHeader,
953         u8 *pPacket, PSKeyItem pTransmitKey, u32 uNodeIndex, u16 wCurrentRate,
954         u32 *pcbHeaderLen, u32 *pcbTotalLen)
955 {
956         struct vnt_tx_fifo_head *pTxBufHead = &tx_buffer->fifo_head;
957         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
958         u32 cbFrameSize, cbFrameBodySize;
959         u32 cb802_1_H_len;
960         u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbMACHdLen = 0;
961         u32 cbFCSlen = 4, cbMICHDR = 0;
962         int bNeedACK;
963         bool bRTS = false;
964         u8 *pbyType, *pbyMacHdr, *pbyIVHead, *pbyPayloadHead, *pbyTxBufferAddr;
965         u8 abySNAP_RFC1042[ETH_ALEN] = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0x00};
966         u8 abySNAP_Bridgetunnel[ETH_ALEN]
967                 = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0xF8};
968         u32 uDuration;
969         u32 cbHeaderLength = 0, uPadding = 0;
970         struct vnt_mic_hdr *pMICHDR;
971         u8 byFBOption = AUTO_FB_NONE, byFragType;
972         u16 wTxBufSize;
973         u32 dwMICKey0, dwMICKey1, dwMIC_Priority;
974         u32 *pdwMIC_L, *pdwMIC_R;
975         int bSoftWEP = false;
976
977         pMICHDR = NULL;
978
979         if (bNeedEncryption && pTransmitKey->pvKeyTable) {
980                 if (((PSKeyTable)pTransmitKey->pvKeyTable)->bSoftWEP == true)
981                         bSoftWEP = true; /* WEP 256 */
982         }
983
984         /* Get pkt type */
985         if (ntohs(psEthHeader->h_proto) > ETH_DATA_LEN)
986                 cb802_1_H_len = 8;
987         else
988                 cb802_1_H_len = 0;
989
990     cbFrameBodySize = uSkbPacketLen - ETH_HLEN + cb802_1_H_len;
991
992     //Set packet type
993     pTxBufHead->wFIFOCtl |= (u16)(byPktType<<8);
994
995         if (pDevice->op_mode == NL80211_IFTYPE_ADHOC ||
996                         pDevice->op_mode == NL80211_IFTYPE_AP) {
997                 if (is_multicast_ether_addr(psEthHeader->h_dest)) {
998                         bNeedACK = false;
999                         pTxBufHead->wFIFOCtl =
1000                                 pTxBufHead->wFIFOCtl & (~FIFOCTL_NEEDACK);
1001                 } else {
1002                         bNeedACK = true;
1003                         pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1004                 }
1005         } else {
1006                 /* MSDUs in Infra mode always need ACK */
1007                 bNeedACK = true;
1008                 pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1009         }
1010
1011     pTxBufHead->wTimeStamp = DEFAULT_MSDU_LIFETIME_RES_64us;
1012
1013     //Set FRAGCTL_MACHDCNT
1014         cbMACHdLen = WLAN_HDR_ADDR3_LEN;
1015
1016     pTxBufHead->wFragCtl |= (u16)(cbMACHdLen << 10);
1017
1018     //Set FIFOCTL_GrpAckPolicy
1019     if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
1020         pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
1021     }
1022
1023         /* Set Auto Fallback Ctl */
1024         if (wCurrentRate >= RATE_18M) {
1025                 if (pDevice->byAutoFBCtrl == AUTO_FB_0) {
1026                         pTxBufHead->wFIFOCtl |= FIFOCTL_AUTO_FB_0;
1027
1028                         pDevice->tx_rate_fb0 =
1029                                 wFB_Opt0[FB_RATE0][wCurrentRate - RATE_18M];
1030                         pDevice->tx_rate_fb1 =
1031                                 wFB_Opt0[FB_RATE1][wCurrentRate - RATE_18M];
1032
1033                         byFBOption = AUTO_FB_0;
1034                 } else if (pDevice->byAutoFBCtrl == AUTO_FB_1) {
1035                         pTxBufHead->wFIFOCtl |= FIFOCTL_AUTO_FB_1;
1036                         pDevice->tx_rate_fb0 =
1037                                 wFB_Opt1[FB_RATE0][wCurrentRate - RATE_18M];
1038                         pDevice->tx_rate_fb1 =
1039                                 wFB_Opt1[FB_RATE1][wCurrentRate - RATE_18M];
1040
1041                         byFBOption = AUTO_FB_1;
1042                 }
1043         }
1044
1045     if (bSoftWEP != true) {
1046         if ((bNeedEncryption) && (pTransmitKey != NULL))  { //WEP enabled
1047             if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) { //WEP40 or WEP104
1048                 pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1049             }
1050             if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
1051                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Tx Set wFragCtl == FRAGCTL_TKIP\n");
1052                 pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1053             }
1054             else if (pTransmitKey->byCipherSuite == KEY_CTL_CCMP) { //CCMP
1055                 pTxBufHead->wFragCtl |= FRAGCTL_AES;
1056             }
1057         }
1058     }
1059
1060     if ((bNeedEncryption) && (pTransmitKey != NULL))  {
1061         if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) {
1062             cbIVlen = 4;
1063             cbICVlen = 4;
1064         }
1065         else if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
1066             cbIVlen = 8;//IV+ExtIV
1067             cbMIClen = 8;
1068             cbICVlen = 4;
1069         }
1070         if (pTransmitKey->byCipherSuite == KEY_CTL_CCMP) {
1071             cbIVlen = 8;//RSN Header
1072             cbICVlen = 8;//MIC
1073             cbMICHDR = sizeof(struct vnt_mic_hdr);
1074         }
1075         if (bSoftWEP == false) {
1076             //MAC Header should be padding 0 to DW alignment.
1077             uPadding = 4 - (cbMACHdLen%4);
1078             uPadding %= 4;
1079         }
1080     }
1081
1082     cbFrameSize = cbMACHdLen + cbIVlen + (cbFrameBodySize + cbMIClen) + cbICVlen + cbFCSlen;
1083
1084     if ( (bNeedACK == false) ||(cbFrameSize < pDevice->wRTSThreshold) ) {
1085         bRTS = false;
1086     } else {
1087         bRTS = true;
1088         pTxBufHead->wFIFOCtl |= (FIFOCTL_RTS | FIFOCTL_LRETRY);
1089     }
1090
1091     pbyTxBufferAddr = (u8 *) &(pTxBufHead->adwTxKey[0]);
1092         wTxBufSize = sizeof(struct vnt_tx_fifo_head);
1093
1094     if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
1095         if (byFBOption == AUTO_FB_NONE) {
1096             if (bRTS == true) {//RTS_need
1097                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1098                         cbMICHDR + sizeof(struct vnt_rts_g);
1099             }
1100             else { //RTS_needless
1101                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1102                         cbMICHDR + sizeof(struct vnt_cts);
1103             }
1104         } else {
1105             // Auto Fall Back
1106             if (bRTS == true) {//RTS_need
1107                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1108                         cbMICHDR + sizeof(struct vnt_rts_g_fb);
1109             }
1110             else if (bRTS == false) { //RTS_needless
1111                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1112                                 cbMICHDR + sizeof(struct vnt_cts_fb);
1113             }
1114         } // Auto Fall Back
1115     }
1116     else {//802.11a/b packet
1117         if (byFBOption == AUTO_FB_NONE) {
1118             if (bRTS == true) {//RTS_need
1119                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1120                         cbMICHDR + sizeof(struct vnt_rts_ab);
1121             }
1122             else if (bRTS == false) { //RTS_needless, no MICHDR
1123                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1124                                 cbMICHDR + sizeof(struct vnt_tx_datahead_ab);
1125             }
1126         } else {
1127             // Auto Fall Back
1128             if (bRTS == true) {//RTS_need
1129                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1130                         cbMICHDR + sizeof(struct vnt_rts_a_fb);
1131             }
1132             else if (bRTS == false) { //RTS_needless
1133                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1134                         cbMICHDR + sizeof(struct vnt_tx_datahead_a_fb);
1135             }
1136         } // Auto Fall Back
1137     }
1138
1139     pbyMacHdr = (u8 *)(pbyTxBufferAddr + cbHeaderLength);
1140     pbyIVHead = (u8 *)(pbyMacHdr + cbMACHdLen + uPadding);
1141     pbyPayloadHead = (u8 *)(pbyMacHdr + cbMACHdLen + uPadding + cbIVlen);
1142
1143     //=========================
1144     //    No Fragmentation
1145     //=========================
1146     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"No Fragmentation...\n");
1147     byFragType = FRAGCTL_NONFRAG;
1148     //uDMAIdx = TYPE_AC0DMA;
1149     //pTxBufHead = (PSTxBufHead) &(pTxBufHead->adwTxKey[0]);
1150
1151         /* Fill FIFO, RrvTime, RTS and CTS */
1152         uDuration = s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
1153                         tx_buffer, &pMICHDR, cbMICHDR,
1154                         cbFrameSize, bNeedACK, uDMAIdx, psEthHeader, bRTS);
1155
1156     // Generate TX MAC Header
1157     s_vGenerateMACHeader(pDevice, pbyMacHdr, (u16)uDuration, psEthHeader, bNeedEncryption,
1158                            byFragType, uDMAIdx, 0);
1159
1160     if (bNeedEncryption == true) {
1161         //Fill TXKEY
1162         s_vFillTxKey(pDevice, pTxBufHead, pbyIVHead, pTransmitKey,
1163                 pbyMacHdr, (u16)cbFrameBodySize, pMICHDR);
1164
1165         if (pDevice->bEnableHostWEP) {
1166             pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16 = pTransmitKey->dwTSC47_16;
1167             pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0 = pTransmitKey->wTSC15_0;
1168         }
1169     }
1170
1171         /* 802.1H */
1172         if (ntohs(psEthHeader->h_proto) > ETH_DATA_LEN) {
1173                 if ((psEthHeader->h_proto == cpu_to_be16(ETH_P_IPX)) ||
1174                         (psEthHeader->h_proto == cpu_to_le16(0xF380)))
1175                         memcpy((u8 *) (pbyPayloadHead),
1176                                         abySNAP_Bridgetunnel, 6);
1177                 else
1178                         memcpy((u8 *) (pbyPayloadHead), &abySNAP_RFC1042[0], 6);
1179
1180                 pbyType = (u8 *) (pbyPayloadHead + 6);
1181
1182                 memcpy(pbyType, &(psEthHeader->h_proto), sizeof(u16));
1183         }
1184
1185     if (pPacket != NULL) {
1186         // Copy the Packet into a tx Buffer
1187         memcpy((pbyPayloadHead + cb802_1_H_len),
1188                  (pPacket + ETH_HLEN),
1189                  uSkbPacketLen - ETH_HLEN
1190                  );
1191
1192     } else {
1193         // while bRelayPacketSend psEthHeader is point to header+payload
1194         memcpy((pbyPayloadHead + cb802_1_H_len), ((u8 *)psEthHeader) + ETH_HLEN, uSkbPacketLen - ETH_HLEN);
1195     }
1196
1197     if ((bNeedEncryption == true) && (pTransmitKey != NULL) && (pTransmitKey->byCipherSuite == KEY_CTL_TKIP)) {
1198
1199         ///////////////////////////////////////////////////////////////////
1200
1201         if (pDevice->vnt_mgmt.eAuthenMode == WMAC_AUTH_WPANONE) {
1202                 dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
1203                 dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
1204         }
1205         else if ((pTransmitKey->dwKeyIndex & AUTHENTICATOR_KEY) != 0) {
1206             dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
1207             dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
1208         }
1209         else {
1210             dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[24]);
1211             dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[28]);
1212         }
1213         // DO Software Michael
1214         MIC_vInit(dwMICKey0, dwMICKey1);
1215         MIC_vAppend((u8 *)&(psEthHeader->h_dest[0]), 12);
1216         dwMIC_Priority = 0;
1217         MIC_vAppend((u8 *)&dwMIC_Priority, 4);
1218         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC KEY: %X, %X\n",
1219                 dwMICKey0, dwMICKey1);
1220
1221         ///////////////////////////////////////////////////////////////////
1222
1223         //DBG_PRN_GRP12(("Length:%d, %d\n", cbFrameBodySize, uFromHDtoPLDLength));
1224         //for (ii = 0; ii < cbFrameBodySize; ii++) {
1225         //    DBG_PRN_GRP12(("%02x ", *((u8 *)((pbyPayloadHead + cb802_1_H_len) + ii))));
1226         //}
1227         //DBG_PRN_GRP12(("\n\n\n"));
1228
1229         MIC_vAppend(pbyPayloadHead, cbFrameBodySize);
1230
1231         pdwMIC_L = (u32 *)(pbyPayloadHead + cbFrameBodySize);
1232         pdwMIC_R = (u32 *)(pbyPayloadHead + cbFrameBodySize + 4);
1233
1234         MIC_vGetMIC(pdwMIC_L, pdwMIC_R);
1235         MIC_vUnInit();
1236
1237         if (pDevice->bTxMICFail == true) {
1238             *pdwMIC_L = 0;
1239             *pdwMIC_R = 0;
1240             pDevice->bTxMICFail = false;
1241         }
1242         //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"uLength: %d, %d\n", uLength, cbFrameBodySize);
1243         //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"cbReqCount:%d, %d, %d, %d\n", cbReqCount, cbHeaderLength, uPadding, cbIVlen);
1244         //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC:%lX, %lX\n", *pdwMIC_L, *pdwMIC_R);
1245     }
1246
1247     if (bSoftWEP == true) {
1248
1249         s_vSWencryption(pDevice, pTransmitKey, (pbyPayloadHead), (u16)(cbFrameBodySize + cbMIClen));
1250
1251     } else if (  ((pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) && (bNeedEncryption == true))  ||
1252           ((pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) && (bNeedEncryption == true))   ||
1253           ((pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) && (bNeedEncryption == true))      ) {
1254         cbFrameSize -= cbICVlen;
1255     }
1256
1257         cbFrameSize -= cbFCSlen;
1258
1259     *pcbHeaderLen = cbHeaderLength;
1260     *pcbTotalLen = cbHeaderLength + cbFrameSize ;
1261
1262     //Set FragCtl in TxBufferHead
1263     pTxBufHead->wFragCtl |= (u16)byFragType;
1264
1265     return true;
1266
1267 }
1268
1269 /*+
1270  *
1271  * Description:
1272  *      Translate 802.3 to 802.11 header
1273  *
1274  * Parameters:
1275  *  In:
1276  *      pDevice         - Pointer to adapter
1277  *      dwTxBufferAddr  - Transmit Buffer
1278  *      pPacket         - Packet from upper layer
1279  *      cbPacketSize    - Transmit Data Length
1280  *  Out:
1281  *      pcbHeadSize         - Header size of MAC&Baseband control and 802.11 Header
1282  *      pcbAppendPayload    - size of append payload for 802.1H translation
1283  *
1284  * Return Value: none
1285  *
1286 -*/
1287
1288 static void s_vGenerateMACHeader(struct vnt_private *pDevice,
1289         u8 *pbyBufferAddr, u16 wDuration, struct ethhdr *psEthHeader,
1290         int bNeedEncrypt, u16 wFragType, u32 uDMAIdx, u32 uFragIdx)
1291 {
1292         struct ieee80211_hdr *pMACHeader = (struct ieee80211_hdr *)pbyBufferAddr;
1293
1294         pMACHeader->frame_control = TYPE_802_11_DATA;
1295
1296     if (pDevice->op_mode == NL80211_IFTYPE_AP) {
1297         memcpy(&(pMACHeader->addr1[0]),
1298                &(psEthHeader->h_dest[0]),
1299                ETH_ALEN);
1300         memcpy(&(pMACHeader->addr2[0]), &(pDevice->abyBSSID[0]), ETH_ALEN);
1301         memcpy(&(pMACHeader->addr3[0]),
1302                &(psEthHeader->h_source[0]),
1303                ETH_ALEN);
1304         pMACHeader->frame_control |= FC_FROMDS;
1305     } else {
1306         if (pDevice->op_mode == NL80211_IFTYPE_ADHOC) {
1307                 memcpy(&(pMACHeader->addr1[0]),
1308                        &(psEthHeader->h_dest[0]),
1309                        ETH_ALEN);
1310                 memcpy(&(pMACHeader->addr2[0]),
1311                        &(psEthHeader->h_source[0]),
1312                        ETH_ALEN);
1313                 memcpy(&(pMACHeader->addr3[0]),
1314                        &(pDevice->abyBSSID[0]),
1315                        ETH_ALEN);
1316         } else {
1317                 memcpy(&(pMACHeader->addr3[0]),
1318                        &(psEthHeader->h_dest[0]),
1319                        ETH_ALEN);
1320                 memcpy(&(pMACHeader->addr2[0]),
1321                        &(psEthHeader->h_source[0]),
1322                        ETH_ALEN);
1323                 memcpy(&(pMACHeader->addr1[0]),
1324                        &(pDevice->abyBSSID[0]),
1325                        ETH_ALEN);
1326             pMACHeader->frame_control |= FC_TODS;
1327         }
1328     }
1329
1330     if (bNeedEncrypt)
1331         pMACHeader->frame_control |= cpu_to_le16((u16)WLAN_SET_FC_ISWEP(1));
1332
1333     pMACHeader->duration_id = cpu_to_le16(wDuration);
1334
1335     pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1336
1337     //Set FragNumber in Sequence Control
1338     pMACHeader->seq_ctrl |= cpu_to_le16((u16)uFragIdx);
1339
1340     if ((wFragType == FRAGCTL_ENDFRAG) || (wFragType == FRAGCTL_NONFRAG)) {
1341         pDevice->wSeqCounter++;
1342         if (pDevice->wSeqCounter > 0x0fff)
1343             pDevice->wSeqCounter = 0;
1344     }
1345
1346     if ((wFragType == FRAGCTL_STAFRAG) || (wFragType == FRAGCTL_MIDFRAG)) { //StartFrag or MidFrag
1347         pMACHeader->frame_control |= FC_MOREFRAG;
1348     }
1349 }
1350
1351 /*+
1352  *
1353  * Description:
1354  *      Request instructs a MAC to transmit a 802.11 management packet through
1355  *      the adapter onto the medium.
1356  *
1357  * Parameters:
1358  *  In:
1359  *      hDeviceContext  - Pointer to the adapter
1360  *      pPacket         - A pointer to a descriptor for the packet to transmit
1361  *  Out:
1362  *      none
1363  *
1364  * Return Value: CMD_STATUS_PENDING if MAC Tx resource available; otherwise false
1365  *
1366 -*/
1367
1368 CMD_STATUS csMgmt_xmit(struct vnt_private *pDevice,
1369         struct vnt_tx_mgmt *pPacket)
1370 {
1371         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1372         struct vnt_tx_buffer *pTX_Buffer;
1373         struct vnt_usb_send_context *pContext;
1374         struct vnt_tx_fifo_head *pTxBufHead;
1375         struct ieee80211_hdr *pMACHeader;
1376         struct ethhdr sEthHeader;
1377         u8 byPktType, *pbyTxBufferAddr;
1378         struct vnt_mic_hdr *pMICHDR = NULL;
1379         u32 uDuration, cbReqCount, cbHeaderSize, cbFrameBodySize, cbFrameSize;
1380         int bNeedACK, bIsPSPOLL = false;
1381         u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbFCSlen = 4;
1382         u32 uPadding = 0;
1383         u16 wTxBufSize;
1384         u32 cbMacHdLen;
1385         u16 wCurrentRate = RATE_1M;
1386
1387         pContext = s_vGetFreeContext(pDevice);
1388
1389     if (NULL == pContext) {
1390         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ManagementSend TX...NO CONTEXT!\n");
1391         return CMD_STATUS_RESOURCES;
1392     }
1393
1394         pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
1395     cbFrameBodySize = pPacket->cbPayloadLen;
1396         pTxBufHead = &pTX_Buffer->fifo_head;
1397         pbyTxBufferAddr = (u8 *)&pTxBufHead->adwTxKey[0];
1398         wTxBufSize = sizeof(struct vnt_tx_fifo_head);
1399
1400     if (pDevice->byBBType == BB_TYPE_11A) {
1401         wCurrentRate = RATE_6M;
1402         byPktType = PK_TYPE_11A;
1403     } else {
1404         wCurrentRate = RATE_1M;
1405         byPktType = PK_TYPE_11B;
1406     }
1407
1408     // SetPower will cause error power TX state for OFDM Date packet in TX buffer.
1409     // 2004.11.11 Kyle -- Using OFDM power to tx MngPkt will decrease the connection capability.
1410     //                    And cmd timer will wait data pkt TX finish before scanning so it's OK
1411     //                    to set power here.
1412     if (pMgmt->eScanState != WMAC_NO_SCANNING) {
1413         RFbSetPower(pDevice, wCurrentRate, pDevice->byCurrentCh);
1414     } else {
1415         RFbSetPower(pDevice, wCurrentRate, pMgmt->uCurrChannel);
1416     }
1417     pDevice->wCurrentRate = wCurrentRate;
1418
1419     //Set packet type
1420     if (byPktType == PK_TYPE_11A) {//0000 0000 0000 0000
1421         pTxBufHead->wFIFOCtl = 0;
1422     }
1423     else if (byPktType == PK_TYPE_11B) {//0000 0001 0000 0000
1424         pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1425     }
1426     else if (byPktType == PK_TYPE_11GB) {//0000 0010 0000 0000
1427         pTxBufHead->wFIFOCtl |= FIFOCTL_11GB;
1428     }
1429     else if (byPktType == PK_TYPE_11GA) {//0000 0011 0000 0000
1430         pTxBufHead->wFIFOCtl |= FIFOCTL_11GA;
1431     }
1432
1433     pTxBufHead->wFIFOCtl |= FIFOCTL_TMOEN;
1434     pTxBufHead->wTimeStamp = cpu_to_le16(DEFAULT_MGN_LIFETIME_RES_64us);
1435
1436     if (is_multicast_ether_addr(pPacket->p80211Header->sA3.abyAddr1)) {
1437         bNeedACK = false;
1438     }
1439     else {
1440         bNeedACK = true;
1441         pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1442     };
1443
1444     if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) ||
1445         (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ) {
1446
1447         pTxBufHead->wFIFOCtl |= FIFOCTL_LRETRY;
1448         //Set Preamble type always long
1449         //pDevice->byPreambleType = PREAMBLE_LONG;
1450         // probe-response don't retry
1451         //if ((pPacket->p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_MGMT_PROBE_RSP) {
1452         //     bNeedACK = false;
1453         //     pTxBufHead->wFIFOCtl  &= (~FIFOCTL_NEEDACK);
1454         //}
1455     }
1456
1457     pTxBufHead->wFIFOCtl |= (FIFOCTL_GENINT | FIFOCTL_ISDMA0);
1458
1459     if ((pPacket->p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_CTL_PSPOLL) {
1460         bIsPSPOLL = true;
1461         cbMacHdLen = WLAN_HDR_ADDR2_LEN;
1462     } else {
1463         cbMacHdLen = WLAN_HDR_ADDR3_LEN;
1464     }
1465
1466     //Set FRAGCTL_MACHDCNT
1467     pTxBufHead->wFragCtl |= cpu_to_le16((u16)(cbMacHdLen << 10));
1468
1469     // Notes:
1470     // Although spec says MMPDU can be fragmented; In most case,
1471     // no one will send a MMPDU under fragmentation. With RTS may occur.
1472
1473     if (WLAN_GET_FC_ISWEP(pPacket->p80211Header->sA4.wFrameCtl) != 0) {
1474         if (pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) {
1475             cbIVlen = 4;
1476             cbICVlen = 4;
1477             pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1478         }
1479         else if (pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) {
1480             cbIVlen = 8;//IV+ExtIV
1481             cbMIClen = 8;
1482             cbICVlen = 4;
1483             pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1484             //We need to get seed here for filling TxKey entry.
1485             //TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
1486             //            pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16, pDevice->abyPRNG);
1487         }
1488         else if (pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) {
1489             cbIVlen = 8;//RSN Header
1490             cbICVlen = 8;//MIC
1491             pTxBufHead->wFragCtl |= FRAGCTL_AES;
1492         }
1493         //MAC Header should be padding 0 to DW alignment.
1494         uPadding = 4 - (cbMacHdLen%4);
1495         uPadding %= 4;
1496     }
1497
1498     cbFrameSize = cbMacHdLen + cbFrameBodySize + cbIVlen + cbMIClen + cbICVlen + cbFCSlen;
1499
1500     //Set FIFOCTL_GrpAckPolicy
1501     if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
1502         pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
1503     }
1504     //the rest of pTxBufHead->wFragCtl:FragTyp will be set later in s_vFillFragParameter()
1505
1506     //Set RrvTime/RTS/CTS Buffer
1507     if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
1508         cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1509                 sizeof(struct vnt_cts);
1510     }
1511     else { // 802.11a/b packet
1512         cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1513                 sizeof(struct vnt_tx_datahead_ab);
1514     }
1515
1516     memcpy(&(sEthHeader.h_dest[0]),
1517            &(pPacket->p80211Header->sA3.abyAddr1[0]),
1518            ETH_ALEN);
1519     memcpy(&(sEthHeader.h_source[0]),
1520            &(pPacket->p80211Header->sA3.abyAddr2[0]),
1521            ETH_ALEN);
1522     //=========================
1523     //    No Fragmentation
1524     //=========================
1525     pTxBufHead->wFragCtl |= (u16)FRAGCTL_NONFRAG;
1526
1527         /* Fill FIFO,RrvTime,RTS,and CTS */
1528         uDuration = s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
1529                 pTX_Buffer, &pMICHDR, 0,
1530                 cbFrameSize, bNeedACK, TYPE_TXDMA0, &sEthHeader, false);
1531
1532     pMACHeader = (struct ieee80211_hdr *) (pbyTxBufferAddr + cbHeaderSize);
1533
1534     cbReqCount = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen + cbFrameBodySize;
1535
1536     if (WLAN_GET_FC_ISWEP(pPacket->p80211Header->sA4.wFrameCtl) != 0) {
1537         u8 *           pbyIVHead;
1538         u8 *           pbyPayloadHead;
1539         u8 *           pbyBSSID;
1540         PSKeyItem       pTransmitKey = NULL;
1541
1542         pbyIVHead = (u8 *)(pbyTxBufferAddr + cbHeaderSize + cbMacHdLen + uPadding);
1543         pbyPayloadHead = (u8 *)(pbyTxBufferAddr + cbHeaderSize + cbMacHdLen + uPadding + cbIVlen);
1544         do {
1545             if (pDevice->op_mode == NL80211_IFTYPE_STATION &&
1546                                         pDevice->bLinkPass == true) {
1547                 pbyBSSID = pDevice->abyBSSID;
1548                 // get pairwise key
1549                 if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == false) {
1550                     // get group key
1551                     if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == true) {
1552                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get GTK.\n");
1553                         break;
1554                     }
1555                 } else {
1556                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get PTK.\n");
1557                     break;
1558                 }
1559             }
1560             // get group key
1561             pbyBSSID = pDevice->abyBroadcastAddr;
1562             if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
1563                 pTransmitKey = NULL;
1564                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"KEY is NULL. OP Mode[%d]\n", pDevice->op_mode);
1565             } else {
1566                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get GTK.\n");
1567             }
1568         } while(false);
1569         //Fill TXKEY
1570         s_vFillTxKey(pDevice, pTxBufHead, pbyIVHead, pTransmitKey,
1571                      (u8 *)pMACHeader, (u16)cbFrameBodySize, NULL);
1572
1573         memcpy(pMACHeader, pPacket->p80211Header, cbMacHdLen);
1574         memcpy(pbyPayloadHead, ((u8 *)(pPacket->p80211Header) + cbMacHdLen),
1575                  cbFrameBodySize);
1576     }
1577     else {
1578         // Copy the Packet into a tx Buffer
1579         memcpy(pMACHeader, pPacket->p80211Header, pPacket->cbMPDULen);
1580     }
1581
1582     pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1583     pDevice->wSeqCounter++ ;
1584     if (pDevice->wSeqCounter > 0x0fff)
1585         pDevice->wSeqCounter = 0;
1586
1587     if (bIsPSPOLL) {
1588         // The MAC will automatically replace the Duration-field of MAC header by Duration-field
1589         // of FIFO control header.
1590         // This will cause AID-field of PS-POLL packet be incorrect (Because PS-POLL's AID field is
1591         // in the same place of other packet's Duration-field).
1592         // And it will cause Cisco-AP to issue Disassociation-packet
1593         if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
1594                 struct vnt_tx_datahead_g *data_head = &pTX_Buffer->tx_head.
1595                                                 tx_cts.tx.head.cts_g.data_head;
1596                 data_head->duration_a =
1597                         cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1598                 data_head->duration_b =
1599                         cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1600         } else {
1601                 struct vnt_tx_datahead_ab *data_head = &pTX_Buffer->tx_head.
1602                                         tx_ab.tx.head.data_head_ab;
1603                 data_head->duration =
1604                         cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1605         }
1606     }
1607
1608     pTX_Buffer->wTxByteCount = cpu_to_le16((u16)(cbReqCount));
1609     pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
1610     pTX_Buffer->byType = 0x00;
1611
1612     pContext->pPacket = NULL;
1613     pContext->type = CONTEXT_MGMT_PACKET;
1614     pContext->uBufLen = (u16)cbReqCount + 4;  //USB header
1615
1616     if (WLAN_GET_FC_TODS(pMACHeader->frame_control) == 0) {
1617         s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
1618                         &pMACHeader->addr1[0], (u16)cbFrameSize,
1619                         pTxBufHead->wFIFOCtl);
1620     }
1621     else {
1622         s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
1623                         &pMACHeader->addr3[0], (u16)cbFrameSize,
1624                         pTxBufHead->wFIFOCtl);
1625     }
1626
1627     PIPEnsSendBulkOut(pDevice,pContext);
1628     return CMD_STATUS_PENDING;
1629 }
1630
1631 CMD_STATUS csBeacon_xmit(struct vnt_private *pDevice,
1632         struct vnt_tx_mgmt *pPacket)
1633 {
1634         struct vnt_beacon_buffer *pTX_Buffer;
1635         struct vnt_tx_short_buf_head *short_head;
1636         u32 cbFrameSize = pPacket->cbMPDULen + WLAN_FCS_LEN;
1637         u32 cbHeaderSize = 0;
1638         struct ieee80211_hdr *pMACHeader;
1639         u16 wCurrentRate;
1640         u32 cbFrameBodySize;
1641         u32 cbReqCount;
1642         struct vnt_usb_send_context *pContext;
1643         CMD_STATUS status;
1644
1645         pContext = s_vGetFreeContext(pDevice);
1646     if (NULL == pContext) {
1647         status = CMD_STATUS_RESOURCES;
1648         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ManagementSend TX...NO CONTEXT!\n");
1649         return status ;
1650     }
1651
1652         pTX_Buffer = (struct vnt_beacon_buffer *)&pContext->Data[0];
1653         short_head = &pTX_Buffer->short_head;
1654
1655     cbFrameBodySize = pPacket->cbPayloadLen;
1656
1657         cbHeaderSize = sizeof(struct vnt_tx_short_buf_head);
1658
1659         if (pDevice->byBBType == BB_TYPE_11A) {
1660                 wCurrentRate = RATE_6M;
1661
1662                 /* Get SignalField,ServiceField,Length */
1663                 BBvCalculateParameter(pDevice, cbFrameSize, wCurrentRate,
1664                         PK_TYPE_11A, &short_head->ab);
1665
1666                 /* Get Duration and TimeStampOff */
1667                 short_head->duration = s_uGetDataDuration(pDevice,
1668                                                         PK_TYPE_11A, false);
1669                 short_head->time_stamp_off =
1670                                 vnt_time_stamp_off(pDevice, wCurrentRate);
1671         } else {
1672                 wCurrentRate = RATE_1M;
1673                 short_head->fifo_ctl |= FIFOCTL_11B;
1674
1675                 /* Get SignalField,ServiceField,Length */
1676                 BBvCalculateParameter(pDevice, cbFrameSize, wCurrentRate,
1677                                         PK_TYPE_11B, &short_head->ab);
1678
1679                 /* Get Duration and TimeStampOff */
1680                 short_head->duration = s_uGetDataDuration(pDevice,
1681                                                 PK_TYPE_11B, false);
1682                 short_head->time_stamp_off =
1683                         vnt_time_stamp_off(pDevice, wCurrentRate);
1684         }
1685
1686
1687         /* Generate Beacon Header */
1688         pMACHeader = &pTX_Buffer->hdr;
1689
1690         memcpy(pMACHeader, pPacket->p80211Header, pPacket->cbMPDULen);
1691
1692         pMACHeader->duration_id = 0;
1693         pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1694         pDevice->wSeqCounter++;
1695         if (pDevice->wSeqCounter > 0x0fff)
1696                 pDevice->wSeqCounter = 0;
1697
1698     cbReqCount = cbHeaderSize + WLAN_HDR_ADDR3_LEN + cbFrameBodySize;
1699
1700     pTX_Buffer->wTxByteCount = (u16)cbReqCount;
1701     pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
1702     pTX_Buffer->byType = 0x01;
1703
1704     pContext->pPacket = NULL;
1705     pContext->type = CONTEXT_MGMT_PACKET;
1706     pContext->uBufLen = (u16)cbReqCount + 4;  //USB header
1707
1708     PIPEnsSendBulkOut(pDevice,pContext);
1709     return CMD_STATUS_PENDING;
1710
1711 }
1712
1713 void vDMA0_tx_80211(struct vnt_private *pDevice, struct sk_buff *skb)
1714 {
1715         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1716         struct vnt_tx_buffer *pTX_Buffer;
1717         struct vnt_tx_fifo_head *pTxBufHead;
1718         u8 byPktType;
1719         u8 *pbyTxBufferAddr;
1720         u32 uDuration, cbReqCount;
1721         struct ieee80211_hdr *pMACHeader;
1722         u32 cbHeaderSize, cbFrameBodySize;
1723         int bNeedACK, bIsPSPOLL = false;
1724         u32 cbFrameSize;
1725         u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbFCSlen = 4;
1726         u32 uPadding = 0;
1727         u32 cbMICHDR = 0, uLength = 0;
1728         u32 dwMICKey0, dwMICKey1;
1729         u32 dwMIC_Priority;
1730         u32 *pdwMIC_L, *pdwMIC_R;
1731         u16 wTxBufSize;
1732         u32 cbMacHdLen;
1733         struct ethhdr sEthHeader;
1734         struct vnt_mic_hdr *pMICHDR;
1735         u32 wCurrentRate = RATE_1M;
1736         PUWLAN_80211HDR  p80211Header;
1737         u32 uNodeIndex = 0;
1738         int bNodeExist = false;
1739         SKeyItem STempKey;
1740         PSKeyItem pTransmitKey = NULL;
1741         u8 *pbyIVHead, *pbyPayloadHead, *pbyMacHdr;
1742         u32 cbExtSuppRate = 0;
1743         struct vnt_usb_send_context *pContext;
1744
1745         pMICHDR = NULL;
1746
1747     if(skb->len <= WLAN_HDR_ADDR3_LEN) {
1748        cbFrameBodySize = 0;
1749     }
1750     else {
1751        cbFrameBodySize = skb->len - WLAN_HDR_ADDR3_LEN;
1752     }
1753     p80211Header = (PUWLAN_80211HDR)skb->data;
1754
1755         pContext = s_vGetFreeContext(pDevice);
1756
1757     if (NULL == pContext) {
1758         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"DMA0 TX...NO CONTEXT!\n");
1759         dev_kfree_skb_irq(skb);
1760         return ;
1761     }
1762
1763         pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
1764         pTxBufHead = &pTX_Buffer->fifo_head;
1765         pbyTxBufferAddr = (u8 *)&pTxBufHead->adwTxKey[0];
1766         wTxBufSize = sizeof(struct vnt_tx_fifo_head);
1767
1768     if (pDevice->byBBType == BB_TYPE_11A) {
1769         wCurrentRate = RATE_6M;
1770         byPktType = PK_TYPE_11A;
1771     } else {
1772         wCurrentRate = RATE_1M;
1773         byPktType = PK_TYPE_11B;
1774     }
1775
1776     // SetPower will cause error power TX state for OFDM Date packet in TX buffer.
1777     // 2004.11.11 Kyle -- Using OFDM power to tx MngPkt will decrease the connection capability.
1778     //                    And cmd timer will wait data pkt TX finish before scanning so it's OK
1779     //                    to set power here.
1780     if (pMgmt->eScanState != WMAC_NO_SCANNING) {
1781         RFbSetPower(pDevice, wCurrentRate, pDevice->byCurrentCh);
1782     } else {
1783         RFbSetPower(pDevice, wCurrentRate, pMgmt->uCurrChannel);
1784     }
1785
1786     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"vDMA0_tx_80211: p80211Header->sA3.wFrameCtl = %x \n", p80211Header->sA3.wFrameCtl);
1787
1788     //Set packet type
1789     if (byPktType == PK_TYPE_11A) {//0000 0000 0000 0000
1790         pTxBufHead->wFIFOCtl = 0;
1791     }
1792     else if (byPktType == PK_TYPE_11B) {//0000 0001 0000 0000
1793         pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1794     }
1795     else if (byPktType == PK_TYPE_11GB) {//0000 0010 0000 0000
1796         pTxBufHead->wFIFOCtl |= FIFOCTL_11GB;
1797     }
1798     else if (byPktType == PK_TYPE_11GA) {//0000 0011 0000 0000
1799         pTxBufHead->wFIFOCtl |= FIFOCTL_11GA;
1800     }
1801
1802     pTxBufHead->wFIFOCtl |= FIFOCTL_TMOEN;
1803     pTxBufHead->wTimeStamp = cpu_to_le16(DEFAULT_MGN_LIFETIME_RES_64us);
1804
1805     if (is_multicast_ether_addr(p80211Header->sA3.abyAddr1)) {
1806         bNeedACK = false;
1807         if (pDevice->bEnableHostWEP) {
1808             uNodeIndex = 0;
1809             bNodeExist = true;
1810         }
1811     }
1812     else {
1813         if (pDevice->bEnableHostWEP) {
1814             if (BSSbIsSTAInNodeDB(pDevice, (u8 *)(p80211Header->sA3.abyAddr1), &uNodeIndex))
1815                 bNodeExist = true;
1816         }
1817         bNeedACK = true;
1818         pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1819     };
1820
1821     if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) ||
1822         (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ) {
1823
1824         pTxBufHead->wFIFOCtl |= FIFOCTL_LRETRY;
1825         //Set Preamble type always long
1826         //pDevice->byPreambleType = PREAMBLE_LONG;
1827
1828         // probe-response don't retry
1829         //if ((p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_MGMT_PROBE_RSP) {
1830         //     bNeedACK = false;
1831         //     pTxBufHead->wFIFOCtl  &= (~FIFOCTL_NEEDACK);
1832         //}
1833     }
1834
1835     pTxBufHead->wFIFOCtl |= (FIFOCTL_GENINT | FIFOCTL_ISDMA0);
1836
1837     if ((p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_CTL_PSPOLL) {
1838         bIsPSPOLL = true;
1839         cbMacHdLen = WLAN_HDR_ADDR2_LEN;
1840     } else {
1841         cbMacHdLen = WLAN_HDR_ADDR3_LEN;
1842     }
1843
1844     // hostapd daemon ext support rate patch
1845     if (WLAN_GET_FC_FSTYPE(p80211Header->sA4.wFrameCtl) == WLAN_FSTYPE_ASSOCRESP) {
1846
1847         if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len != 0) {
1848             cbExtSuppRate += ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN;
1849          }
1850
1851         if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len != 0) {
1852             cbExtSuppRate += ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len + WLAN_IEHDR_LEN;
1853          }
1854
1855          if (cbExtSuppRate >0) {
1856             cbFrameBodySize = WLAN_ASSOCRESP_OFF_SUPP_RATES;
1857          }
1858     }
1859
1860     //Set FRAGCTL_MACHDCNT
1861     pTxBufHead->wFragCtl |= cpu_to_le16((u16)cbMacHdLen << 10);
1862
1863     // Notes:
1864     // Although spec says MMPDU can be fragmented; In most case,
1865     // no one will send a MMPDU under fragmentation. With RTS may occur.
1866
1867     if (WLAN_GET_FC_ISWEP(p80211Header->sA4.wFrameCtl) != 0) {
1868         if (pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) {
1869             cbIVlen = 4;
1870             cbICVlen = 4;
1871             pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1872         }
1873         else if (pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) {
1874             cbIVlen = 8;//IV+ExtIV
1875             cbMIClen = 8;
1876             cbICVlen = 4;
1877             pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1878             //We need to get seed here for filling TxKey entry.
1879             //TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
1880             //            pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16, pDevice->abyPRNG);
1881         }
1882         else if (pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) {
1883             cbIVlen = 8;//RSN Header
1884             cbICVlen = 8;//MIC
1885             cbMICHDR = sizeof(struct vnt_mic_hdr);
1886             pTxBufHead->wFragCtl |= FRAGCTL_AES;
1887         }
1888         //MAC Header should be padding 0 to DW alignment.
1889         uPadding = 4 - (cbMacHdLen%4);
1890         uPadding %= 4;
1891     }
1892
1893     cbFrameSize = cbMacHdLen + cbFrameBodySize + cbIVlen + cbMIClen + cbICVlen + cbFCSlen + cbExtSuppRate;
1894
1895     //Set FIFOCTL_GrpAckPolicy
1896     if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
1897         pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
1898     }
1899     //the rest of pTxBufHead->wFragCtl:FragTyp will be set later in s_vFillFragParameter()
1900
1901     if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
1902         cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_cts) + cbMICHDR +
1903                 sizeof(struct vnt_cts);
1904
1905     }
1906     else {//802.11a/b packet
1907         cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
1908                                         sizeof(struct vnt_tx_datahead_ab);
1909     }
1910     memcpy(&(sEthHeader.h_dest[0]),
1911            &(p80211Header->sA3.abyAddr1[0]),
1912            ETH_ALEN);
1913     memcpy(&(sEthHeader.h_source[0]),
1914            &(p80211Header->sA3.abyAddr2[0]),
1915            ETH_ALEN);
1916     //=========================
1917     //    No Fragmentation
1918     //=========================
1919     pTxBufHead->wFragCtl |= (u16)FRAGCTL_NONFRAG;
1920
1921         /* Fill FIFO,RrvTime,RTS,and CTS */
1922         uDuration = s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
1923                 pTX_Buffer, &pMICHDR, cbMICHDR,
1924                 cbFrameSize, bNeedACK, TYPE_TXDMA0, &sEthHeader, false);
1925
1926         pMACHeader = (struct ieee80211_hdr *) (pbyTxBufferAddr + cbHeaderSize);
1927
1928     cbReqCount = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen + (cbFrameBodySize + cbMIClen) + cbExtSuppRate;
1929
1930     pbyMacHdr = (u8 *)(pbyTxBufferAddr + cbHeaderSize);
1931     pbyPayloadHead = (u8 *)(pbyMacHdr + cbMacHdLen + uPadding + cbIVlen);
1932     pbyIVHead = (u8 *)(pbyMacHdr + cbMacHdLen + uPadding);
1933
1934     // Copy the Packet into a tx Buffer
1935     memcpy(pbyMacHdr, skb->data, cbMacHdLen);
1936
1937     // version set to 0, patch for hostapd deamon
1938     pMACHeader->frame_control &= cpu_to_le16(0xfffc);
1939     memcpy(pbyPayloadHead, (skb->data + cbMacHdLen), cbFrameBodySize);
1940
1941     // replace support rate, patch for hostapd daemon( only support 11M)
1942     if (WLAN_GET_FC_FSTYPE(p80211Header->sA4.wFrameCtl) == WLAN_FSTYPE_ASSOCRESP) {
1943         if (cbExtSuppRate != 0) {
1944             if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len != 0)
1945                 memcpy((pbyPayloadHead + cbFrameBodySize),
1946                         pMgmt->abyCurrSuppRates,
1947                         ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN
1948                        );
1949              if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len != 0)
1950                 memcpy((pbyPayloadHead + cbFrameBodySize) + ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN,
1951                         pMgmt->abyCurrExtSuppRates,
1952                         ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len + WLAN_IEHDR_LEN
1953                        );
1954          }
1955     }
1956
1957     // Set wep
1958     if (WLAN_GET_FC_ISWEP(p80211Header->sA4.wFrameCtl) != 0) {
1959
1960         if (pDevice->bEnableHostWEP) {
1961             pTransmitKey = &STempKey;
1962             pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
1963             pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
1964             pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
1965             pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
1966             pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
1967             memcpy(pTransmitKey->abyKey,
1968                 &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
1969                 pTransmitKey->uKeyLength
1970                 );
1971         }
1972
1973         if ((pTransmitKey != NULL) && (pTransmitKey->byCipherSuite == KEY_CTL_TKIP)) {
1974
1975             dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
1976             dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
1977
1978             // DO Software Michael
1979             MIC_vInit(dwMICKey0, dwMICKey1);
1980             MIC_vAppend((u8 *)&(sEthHeader.h_dest[0]), 12);
1981             dwMIC_Priority = 0;
1982             MIC_vAppend((u8 *)&dwMIC_Priority, 4);
1983                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"DMA0_tx_8021:MIC KEY:"\
1984                         " %X, %X\n", dwMICKey0, dwMICKey1);
1985
1986             uLength = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen;
1987
1988             MIC_vAppend((pbyTxBufferAddr + uLength), cbFrameBodySize);
1989
1990             pdwMIC_L = (u32 *)(pbyTxBufferAddr + uLength + cbFrameBodySize);
1991             pdwMIC_R = (u32 *)(pbyTxBufferAddr + uLength + cbFrameBodySize + 4);
1992
1993             MIC_vGetMIC(pdwMIC_L, pdwMIC_R);
1994             MIC_vUnInit();
1995
1996             if (pDevice->bTxMICFail == true) {
1997                 *pdwMIC_L = 0;
1998                 *pdwMIC_R = 0;
1999                 pDevice->bTxMICFail = false;
2000             }
2001
2002             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"uLength: %d, %d\n", uLength, cbFrameBodySize);
2003             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"cbReqCount:%d, %d, %d, %d\n", cbReqCount, cbHeaderSize, uPadding, cbIVlen);
2004                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC:%x, %x\n",
2005                         *pdwMIC_L, *pdwMIC_R);
2006
2007         }
2008
2009         s_vFillTxKey(pDevice, pTxBufHead, pbyIVHead, pTransmitKey,
2010                 pbyMacHdr, (u16)cbFrameBodySize, pMICHDR);
2011
2012         if (pDevice->bEnableHostWEP) {
2013             pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16 = pTransmitKey->dwTSC47_16;
2014             pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0 = pTransmitKey->wTSC15_0;
2015         }
2016
2017         if ((pDevice->byLocalID <= REV_ID_VT3253_A1)) {
2018             s_vSWencryption(pDevice, pTransmitKey, pbyPayloadHead, (u16)(cbFrameBodySize + cbMIClen));
2019         }
2020     }
2021
2022     pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
2023     pDevice->wSeqCounter++ ;
2024     if (pDevice->wSeqCounter > 0x0fff)
2025         pDevice->wSeqCounter = 0;
2026
2027     if (bIsPSPOLL) {
2028         // The MAC will automatically replace the Duration-field of MAC header by Duration-field
2029         // of  FIFO control header.
2030         // This will cause AID-field of PS-POLL packet be incorrect (Because PS-POLL's AID field is
2031         // in the same place of other packet's Duration-field).
2032         // And it will cause Cisco-AP to issue Disassociation-packet
2033         if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
2034                 struct vnt_tx_datahead_g *data_head = &pTX_Buffer->tx_head.
2035                                                 tx_cts.tx.head.cts_g.data_head;
2036                 data_head->duration_a =
2037                         cpu_to_le16(p80211Header->sA2.wDurationID);
2038                 data_head->duration_b =
2039                         cpu_to_le16(p80211Header->sA2.wDurationID);
2040         } else {
2041                 struct vnt_tx_datahead_ab *data_head = &pTX_Buffer->tx_head.
2042                                         tx_ab.tx.head.data_head_ab;
2043                 data_head->duration =
2044                         cpu_to_le16(p80211Header->sA2.wDurationID);
2045         }
2046     }
2047
2048     pTX_Buffer->wTxByteCount = cpu_to_le16((u16)(cbReqCount));
2049     pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2050     pTX_Buffer->byType = 0x00;
2051
2052     pContext->pPacket = skb;
2053     pContext->type = CONTEXT_MGMT_PACKET;
2054     pContext->uBufLen = (u16)cbReqCount + 4;  //USB header
2055
2056     if (WLAN_GET_FC_TODS(pMACHeader->frame_control) == 0) {
2057         s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
2058                         &pMACHeader->addr1[0], (u16)cbFrameSize,
2059                         pTxBufHead->wFIFOCtl);
2060     }
2061     else {
2062         s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
2063                         &pMACHeader->addr3[0], (u16)cbFrameSize,
2064                         pTxBufHead->wFIFOCtl);
2065     }
2066     PIPEnsSendBulkOut(pDevice,pContext);
2067     return ;
2068
2069 }
2070
2071 //TYPE_AC0DMA data tx
2072 /*
2073  * Description:
2074  *      Tx packet via AC0DMA(DMA1)
2075  *
2076  * Parameters:
2077  *  In:
2078  *      pDevice         - Pointer to the adapter
2079  *      skb             - Pointer to tx skb packet
2080  *  Out:
2081  *      void
2082  *
2083  * Return Value: NULL
2084  */
2085
2086 int nsDMA_tx_packet(struct vnt_private *pDevice,
2087         u32 uDMAIdx, struct sk_buff *skb)
2088 {
2089         struct net_device_stats *pStats = &pDevice->stats;
2090         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
2091         struct vnt_tx_buffer *pTX_Buffer;
2092         u32 BytesToWrite = 0, uHeaderLen = 0;
2093         u32 uNodeIndex = 0;
2094         u8 byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80};
2095         u16 wAID;
2096         u8 byPktType;
2097         int bNeedEncryption = false;
2098         PSKeyItem pTransmitKey = NULL;
2099         SKeyItem STempKey;
2100         int ii;
2101         int bTKIP_UseGTK = false;
2102         int bNeedDeAuth = false;
2103         u8 *pbyBSSID;
2104         int bNodeExist = false;
2105         struct vnt_usb_send_context *pContext;
2106         bool fConvertedPacket;
2107         u32 status;
2108         u16 wKeepRate = pDevice->wCurrentRate;
2109         int bTxeapol_key = false;
2110
2111     if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
2112
2113         if (pDevice->uAssocCount == 0) {
2114             dev_kfree_skb_irq(skb);
2115             return 0;
2116         }
2117
2118         if (is_multicast_ether_addr((u8 *)(skb->data))) {
2119             uNodeIndex = 0;
2120             bNodeExist = true;
2121             if (pMgmt->sNodeDBTable[0].bPSEnable) {
2122
2123                 skb_queue_tail(&(pMgmt->sNodeDBTable[0].sTxPSQueue), skb);
2124                 pMgmt->sNodeDBTable[0].wEnQueueCnt++;
2125                 // set tx map
2126                 pMgmt->abyPSTxMap[0] |= byMask[0];
2127                 return 0;
2128             }
2129             // multicast/broadcast data rate
2130
2131             if (pDevice->byBBType != BB_TYPE_11A)
2132                 pDevice->wCurrentRate = RATE_2M;
2133             else
2134                 pDevice->wCurrentRate = RATE_24M;
2135             // long preamble type
2136             pDevice->byPreambleType = PREAMBLE_SHORT;
2137
2138         }else {
2139
2140             if (BSSbIsSTAInNodeDB(pDevice, (u8 *)(skb->data), &uNodeIndex)) {
2141
2142                 if (pMgmt->sNodeDBTable[uNodeIndex].bPSEnable) {
2143
2144                     skb_queue_tail(&pMgmt->sNodeDBTable[uNodeIndex].sTxPSQueue, skb);
2145
2146                     pMgmt->sNodeDBTable[uNodeIndex].wEnQueueCnt++;
2147                     // set tx map
2148                     wAID = pMgmt->sNodeDBTable[uNodeIndex].wAID;
2149                     pMgmt->abyPSTxMap[wAID >> 3] |=  byMask[wAID & 7];
2150                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Set:pMgmt->abyPSTxMap[%d]= %d\n",
2151                              (wAID >> 3), pMgmt->abyPSTxMap[wAID >> 3]);
2152
2153                     return 0;
2154                 }
2155                 // AP rate decided from node
2156                 pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2157                 // tx preamble decided from node
2158
2159                 if (pMgmt->sNodeDBTable[uNodeIndex].bShortPreamble) {
2160                     pDevice->byPreambleType = pDevice->byShortPreamble;
2161
2162                 }else {
2163                     pDevice->byPreambleType = PREAMBLE_LONG;
2164                 }
2165                 bNodeExist = true;
2166             }
2167         }
2168
2169         if (bNodeExist == false) {
2170             DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Unknown STA not found in node DB \n");
2171             dev_kfree_skb_irq(skb);
2172             return 0;
2173         }
2174     }
2175
2176         pContext = s_vGetFreeContext(pDevice);
2177
2178     if (pContext == NULL) {
2179         DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG" pContext == NULL\n");
2180         dev_kfree_skb_irq(skb);
2181         return STATUS_RESOURCES;
2182     }
2183
2184     memcpy(pDevice->sTxEthHeader.h_dest, (u8 *)(skb->data), ETH_HLEN);
2185
2186 //mike add:station mode check eapol-key challenge--->
2187 {
2188     u8  Protocol_Version;    //802.1x Authentication
2189     u8  Packet_Type;           //802.1x Authentication
2190     u8  Descriptor_type;
2191     u16 Key_info;
2192
2193     Protocol_Version = skb->data[ETH_HLEN];
2194     Packet_Type = skb->data[ETH_HLEN+1];
2195     Descriptor_type = skb->data[ETH_HLEN+1+1+2];
2196     Key_info = (skb->data[ETH_HLEN+1+1+2+1] << 8)|(skb->data[ETH_HLEN+1+1+2+2]);
2197         if (pDevice->sTxEthHeader.h_proto == cpu_to_be16(ETH_P_PAE)) {
2198                 /* 802.1x OR eapol-key challenge frame transfer */
2199                 if (((Protocol_Version == 1) || (Protocol_Version == 2)) &&
2200                         (Packet_Type == 3)) {
2201                         bTxeapol_key = true;
2202                        if(!(Key_info & BIT3) &&  //WPA or RSN group-key challenge
2203                            (Key_info & BIT8) && (Key_info & BIT9)) {    //send 2/2 key
2204                           if(Descriptor_type==254) {
2205                                pDevice->fWPA_Authened = true;
2206                              PRINT_K("WPA ");
2207                           }
2208                           else {
2209                                pDevice->fWPA_Authened = true;
2210                              PRINT_K("WPA2(re-keying) ");
2211                           }
2212                           PRINT_K("Authentication completed!!\n");
2213                         }
2214                     else if((Key_info & BIT3) && (Descriptor_type==2) &&  //RSN pairwise-key challenge
2215                                (Key_info & BIT8) && (Key_info & BIT9)) {
2216                           pDevice->fWPA_Authened = true;
2217                             PRINT_K("WPA2 Authentication completed!!\n");
2218                      }
2219              }
2220    }
2221 }
2222 //mike add:station mode check eapol-key challenge<---
2223
2224     if (pDevice->bEncryptionEnable == true) {
2225         bNeedEncryption = true;
2226         // get Transmit key
2227         do {
2228             if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
2229                 (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
2230                 pbyBSSID = pDevice->abyBSSID;
2231                 // get pairwise key
2232                 if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == false) {
2233                     // get group key
2234                     if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == true) {
2235                         bTKIP_UseGTK = true;
2236                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2237                         break;
2238                     }
2239                 } else {
2240                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get PTK.\n");
2241                     break;
2242                 }
2243             }else if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
2244               /* TO_DS = 0 and FROM_DS = 0 --> 802.11 MAC Address1 */
2245                 pbyBSSID = pDevice->sTxEthHeader.h_dest;
2246                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"IBSS Serach Key: \n");
2247                 for (ii = 0; ii< 6; ii++)
2248                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"%x \n", *(pbyBSSID+ii));
2249                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"\n");
2250
2251                 // get pairwise key
2252                 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == true)
2253                     break;
2254             }
2255             // get group key
2256             pbyBSSID = pDevice->abyBroadcastAddr;
2257             if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
2258                 pTransmitKey = NULL;
2259                 if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
2260                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"IBSS and KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2261                 }
2262                 else
2263                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"NOT IBSS and KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2264             } else {
2265                 bTKIP_UseGTK = true;
2266                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2267             }
2268         } while(false);
2269     }
2270
2271     if (pDevice->bEnableHostWEP) {
2272         DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"acdma0: STA index %d\n", uNodeIndex);
2273         if (pDevice->bEncryptionEnable == true) {
2274             pTransmitKey = &STempKey;
2275             pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2276             pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2277             pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2278             pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2279             pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2280             memcpy(pTransmitKey->abyKey,
2281                 &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2282                 pTransmitKey->uKeyLength
2283                 );
2284          }
2285     }
2286
2287     byPktType = (u8)pDevice->byPacketType;
2288
2289     if (pDevice->bFixRate) {
2290         if (pDevice->byBBType == BB_TYPE_11B) {
2291             if (pDevice->uConnectionRate >= RATE_11M) {
2292                 pDevice->wCurrentRate = RATE_11M;
2293             } else {
2294                 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2295             }
2296         } else {
2297             if ((pDevice->byBBType == BB_TYPE_11A) &&
2298                 (pDevice->uConnectionRate <= RATE_6M)) {
2299                 pDevice->wCurrentRate = RATE_6M;
2300             } else {
2301                 if (pDevice->uConnectionRate >= RATE_54M)
2302                     pDevice->wCurrentRate = RATE_54M;
2303                 else
2304                     pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2305             }
2306         }
2307     }
2308     else {
2309         if (pDevice->op_mode == NL80211_IFTYPE_ADHOC) {
2310             // Adhoc Tx rate decided from node DB
2311             if (is_multicast_ether_addr(pDevice->sTxEthHeader.h_dest)) {
2312                 // Multicast use highest data rate
2313                 pDevice->wCurrentRate = pMgmt->sNodeDBTable[0].wTxDataRate;
2314                 // preamble type
2315                 pDevice->byPreambleType = pDevice->byShortPreamble;
2316             }
2317             else {
2318                 if (BSSbIsSTAInNodeDB(pDevice, &(pDevice->sTxEthHeader.h_dest[0]), &uNodeIndex)) {
2319                     pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2320                     if (pMgmt->sNodeDBTable[uNodeIndex].bShortPreamble) {
2321                         pDevice->byPreambleType = pDevice->byShortPreamble;
2322
2323                     }
2324                     else {
2325                         pDevice->byPreambleType = PREAMBLE_LONG;
2326                     }
2327                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Found Node Index is [%d]  Tx Data Rate:[%d]\n",uNodeIndex, pDevice->wCurrentRate);
2328                 }
2329                 else {
2330                     if (pDevice->byBBType != BB_TYPE_11A)
2331                        pDevice->wCurrentRate = RATE_2M;
2332                     else
2333                        pDevice->wCurrentRate = RATE_24M; // refer to vMgrCreateOwnIBSS()'s
2334                                                          // abyCurrExtSuppRates[]
2335                     pDevice->byPreambleType = PREAMBLE_SHORT;
2336                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Not Found Node use highest basic Rate.....\n");
2337                 }
2338             }
2339         }
2340         if (pDevice->op_mode == NL80211_IFTYPE_STATION) {
2341             // Infra STA rate decided from AP Node, index = 0
2342             pDevice->wCurrentRate = pMgmt->sNodeDBTable[0].wTxDataRate;
2343         }
2344     }
2345
2346         if (pDevice->sTxEthHeader.h_proto == cpu_to_be16(ETH_P_PAE)) {
2347                 if (pDevice->byBBType != BB_TYPE_11A) {
2348                         pDevice->wCurrentRate = RATE_1M;
2349                         pDevice->byACKRate = RATE_1M;
2350                         pDevice->byTopCCKBasicRate = RATE_1M;
2351                         pDevice->byTopOFDMBasicRate = RATE_6M;
2352                 } else {
2353                         pDevice->wCurrentRate = RATE_6M;
2354                         pDevice->byACKRate = RATE_6M;
2355                         pDevice->byTopCCKBasicRate = RATE_1M;
2356                         pDevice->byTopOFDMBasicRate = RATE_6M;
2357                 }
2358         }
2359
2360     DBG_PRT(MSG_LEVEL_DEBUG,
2361             KERN_INFO "dma_tx: pDevice->wCurrentRate = %d\n",
2362             pDevice->wCurrentRate);
2363
2364     if (wKeepRate != pDevice->wCurrentRate) {
2365         bScheduleCommand((void *) pDevice, WLAN_CMD_SETPOWER, NULL);
2366     }
2367
2368     if (pDevice->wCurrentRate <= RATE_11M) {
2369         byPktType = PK_TYPE_11B;
2370     }
2371
2372     if (bNeedEncryption == true) {
2373         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ntohs Pkt Type=%04x\n", ntohs(pDevice->sTxEthHeader.h_proto));
2374         if ((pDevice->sTxEthHeader.h_proto) == cpu_to_be16(ETH_P_PAE)) {
2375                 bNeedEncryption = false;
2376             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Pkt Type=%04x\n", (pDevice->sTxEthHeader.h_proto));
2377             if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) && (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
2378                 if (pTransmitKey == NULL) {
2379                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Don't Find TX KEY\n");
2380                 }
2381                 else {
2382                     if (bTKIP_UseGTK == true) {
2383                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"error: KEY is GTK!!~~\n");
2384                     }
2385                     else {
2386                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Find PTK [%X]\n",
2387                                 pTransmitKey->dwKeyIndex);
2388                         bNeedEncryption = true;
2389                     }
2390                 }
2391             }
2392
2393             if (pDevice->bEnableHostWEP) {
2394                 if ((uNodeIndex != 0) &&
2395                     (pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex & PAIRWISE_KEY)) {
2396                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Find PTK [%X]\n",
2397                                 pTransmitKey->dwKeyIndex);
2398                     bNeedEncryption = true;
2399                  }
2400              }
2401         }
2402         else {
2403
2404             if (pTransmitKey == NULL) {
2405                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"return no tx key\n");
2406                 pContext->bBoolInUse = false;
2407                 dev_kfree_skb_irq(skb);
2408                 pStats->tx_dropped++;
2409                 return STATUS_FAILURE;
2410             }
2411         }
2412     }
2413
2414         pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
2415
2416     fConvertedPacket = s_bPacketToWirelessUsb(pDevice, byPktType,
2417                         pTX_Buffer, bNeedEncryption,
2418                         skb->len, uDMAIdx, &pDevice->sTxEthHeader,
2419                         (u8 *)skb->data, pTransmitKey, uNodeIndex,
2420                         pDevice->wCurrentRate,
2421                         &uHeaderLen, &BytesToWrite
2422                        );
2423
2424     if (fConvertedPacket == false) {
2425         pContext->bBoolInUse = false;
2426         dev_kfree_skb_irq(skb);
2427         return STATUS_FAILURE;
2428     }
2429
2430     if ( pDevice->bEnablePSMode == true ) {
2431         if ( !pDevice->bPSModeTxBurst ) {
2432                 bScheduleCommand((void *) pDevice,
2433                                  WLAN_CMD_MAC_DISPOWERSAVING,
2434                                  NULL);
2435             pDevice->bPSModeTxBurst = true;
2436         }
2437     }
2438
2439     pTX_Buffer->byPKTNO = (u8) (((pDevice->wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2440     pTX_Buffer->wTxByteCount = (u16)BytesToWrite;
2441
2442     pContext->pPacket = skb;
2443     pContext->type = CONTEXT_DATA_PACKET;
2444     pContext->uBufLen = (u16)BytesToWrite + 4 ; //USB header
2445
2446     s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
2447                         &pDevice->sTxEthHeader.h_dest[0],
2448                         (u16)(BytesToWrite-uHeaderLen),
2449                         pTX_Buffer->fifo_head.wFIFOCtl);
2450
2451     status = PIPEnsSendBulkOut(pDevice,pContext);
2452
2453     if (bNeedDeAuth == true) {
2454         u16 wReason = WLAN_MGMT_REASON_MIC_FAILURE;
2455
2456         bScheduleCommand((void *) pDevice, WLAN_CMD_DEAUTH, (u8 *) &wReason);
2457     }
2458
2459   if(status!=STATUS_PENDING) {
2460      pContext->bBoolInUse = false;
2461     dev_kfree_skb_irq(skb);
2462     return STATUS_FAILURE;
2463   }
2464   else
2465     return 0;
2466
2467 }
2468
2469 /*
2470  * Description:
2471  *      Relay packet send (AC1DMA) from rx dpc.
2472  *
2473  * Parameters:
2474  *  In:
2475  *      pDevice         - Pointer to the adapter
2476  *      pPacket         - Pointer to rx packet
2477  *      cbPacketSize    - rx ethernet frame size
2478  *  Out:
2479  *      TURE, false
2480  *
2481  * Return Value: Return true if packet is copy to dma1; otherwise false
2482  */
2483
2484 int bRelayPacketSend(struct vnt_private *pDevice, u8 *pbySkbData, u32 uDataLen,
2485         u32 uNodeIndex)
2486 {
2487         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
2488         struct vnt_tx_buffer *pTX_Buffer;
2489         u32 BytesToWrite = 0, uHeaderLen = 0;
2490         u8 byPktType = PK_TYPE_11B;
2491         int bNeedEncryption = false;
2492         SKeyItem STempKey;
2493         PSKeyItem pTransmitKey = NULL;
2494         u8 *pbyBSSID;
2495         struct vnt_usb_send_context *pContext;
2496         u8 byPktTyp;
2497         int fConvertedPacket;
2498         u32 status;
2499         u16 wKeepRate = pDevice->wCurrentRate;
2500
2501         pContext = s_vGetFreeContext(pDevice);
2502
2503     if (NULL == pContext) {
2504         return false;
2505     }
2506
2507     memcpy(pDevice->sTxEthHeader.h_dest, (u8 *)pbySkbData, ETH_HLEN);
2508
2509     if (pDevice->bEncryptionEnable == true) {
2510         bNeedEncryption = true;
2511         // get group key
2512         pbyBSSID = pDevice->abyBroadcastAddr;
2513         if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
2514             pTransmitKey = NULL;
2515             DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2516         } else {
2517             DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2518         }
2519     }
2520
2521     if (pDevice->bEnableHostWEP) {
2522         if (uNodeIndex < MAX_NODE_NUM + 1) {
2523             pTransmitKey = &STempKey;
2524             pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2525             pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2526             pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2527             pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2528             pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2529             memcpy(pTransmitKey->abyKey,
2530                     &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2531                     pTransmitKey->uKeyLength
2532                   );
2533         }
2534     }
2535
2536     if ( bNeedEncryption && (pTransmitKey == NULL) ) {
2537         pContext->bBoolInUse = false;
2538         return false;
2539     }
2540
2541     byPktTyp = (u8)pDevice->byPacketType;
2542
2543     if (pDevice->bFixRate) {
2544         if (pDevice->byBBType == BB_TYPE_11B) {
2545             if (pDevice->uConnectionRate >= RATE_11M) {
2546                 pDevice->wCurrentRate = RATE_11M;
2547             } else {
2548                 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2549             }
2550         } else {
2551             if ((pDevice->byBBType == BB_TYPE_11A) &&
2552                 (pDevice->uConnectionRate <= RATE_6M)) {
2553                 pDevice->wCurrentRate = RATE_6M;
2554             } else {
2555                 if (pDevice->uConnectionRate >= RATE_54M)
2556                     pDevice->wCurrentRate = RATE_54M;
2557                 else
2558                     pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2559             }
2560         }
2561     }
2562     else {
2563         pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2564     }
2565
2566     if (wKeepRate != pDevice->wCurrentRate) {
2567         bScheduleCommand((void *) pDevice, WLAN_CMD_SETPOWER, NULL);
2568     }
2569
2570     if (pDevice->wCurrentRate <= RATE_11M)
2571         byPktType = PK_TYPE_11B;
2572
2573     BytesToWrite = uDataLen + ETH_FCS_LEN;
2574
2575     // Convert the packet to an usb frame and copy into our buffer
2576     // and send the irp.
2577
2578         pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
2579
2580     fConvertedPacket = s_bPacketToWirelessUsb(pDevice, byPktType,
2581                         pTX_Buffer, bNeedEncryption,
2582                          uDataLen, TYPE_AC0DMA, &pDevice->sTxEthHeader,
2583                          pbySkbData, pTransmitKey, uNodeIndex,
2584                          pDevice->wCurrentRate,
2585                          &uHeaderLen, &BytesToWrite
2586                         );
2587
2588     if (fConvertedPacket == false) {
2589         pContext->bBoolInUse = false;
2590         return false;
2591     }
2592
2593     pTX_Buffer->byPKTNO = (u8) (((pDevice->wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2594     pTX_Buffer->wTxByteCount = (u16)BytesToWrite;
2595
2596     pContext->pPacket = NULL;
2597     pContext->type = CONTEXT_DATA_PACKET;
2598     pContext->uBufLen = (u16)BytesToWrite + 4 ; //USB header
2599
2600     s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
2601                 &pDevice->sTxEthHeader.h_dest[0],
2602                 (u16)(BytesToWrite - uHeaderLen),
2603                 pTX_Buffer->fifo_head.wFIFOCtl);
2604
2605     status = PIPEnsSendBulkOut(pDevice,pContext);
2606
2607     return true;
2608 }
2609