tcm_fc: set and unset FCP_SPPF_TARG_FCN
[cascardo/linux.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * (c) Copyright 2002-2013 Datera, Inc.
7  *
8  * Nicholas A. Bellinger <nab@kernel.org>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  *
24  ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
43
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
55
56 static struct workqueue_struct *target_completion_wq;
57 static struct kmem_cache *se_sess_cache;
58 struct kmem_cache *se_ua_cache;
59 struct kmem_cache *t10_pr_reg_cache;
60 struct kmem_cache *t10_alua_lu_gp_cache;
61 struct kmem_cache *t10_alua_lu_gp_mem_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 struct kmem_cache *t10_alua_lba_map_cache;
64 struct kmem_cache *t10_alua_lba_map_mem_cache;
65
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static void transport_handle_queue_full(struct se_cmd *cmd,
68                 struct se_device *dev);
69 static int transport_put_cmd(struct se_cmd *cmd);
70 static void target_complete_ok_work(struct work_struct *work);
71
72 int init_se_kmem_caches(void)
73 {
74         se_sess_cache = kmem_cache_create("se_sess_cache",
75                         sizeof(struct se_session), __alignof__(struct se_session),
76                         0, NULL);
77         if (!se_sess_cache) {
78                 pr_err("kmem_cache_create() for struct se_session"
79                                 " failed\n");
80                 goto out;
81         }
82         se_ua_cache = kmem_cache_create("se_ua_cache",
83                         sizeof(struct se_ua), __alignof__(struct se_ua),
84                         0, NULL);
85         if (!se_ua_cache) {
86                 pr_err("kmem_cache_create() for struct se_ua failed\n");
87                 goto out_free_sess_cache;
88         }
89         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
90                         sizeof(struct t10_pr_registration),
91                         __alignof__(struct t10_pr_registration), 0, NULL);
92         if (!t10_pr_reg_cache) {
93                 pr_err("kmem_cache_create() for struct t10_pr_registration"
94                                 " failed\n");
95                 goto out_free_ua_cache;
96         }
97         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
98                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
99                         0, NULL);
100         if (!t10_alua_lu_gp_cache) {
101                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102                                 " failed\n");
103                 goto out_free_pr_reg_cache;
104         }
105         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
106                         sizeof(struct t10_alua_lu_gp_member),
107                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108         if (!t10_alua_lu_gp_mem_cache) {
109                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110                                 "cache failed\n");
111                 goto out_free_lu_gp_cache;
112         }
113         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
114                         sizeof(struct t10_alua_tg_pt_gp),
115                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116         if (!t10_alua_tg_pt_gp_cache) {
117                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118                                 "cache failed\n");
119                 goto out_free_lu_gp_mem_cache;
120         }
121         t10_alua_lba_map_cache = kmem_cache_create(
122                         "t10_alua_lba_map_cache",
123                         sizeof(struct t10_alua_lba_map),
124                         __alignof__(struct t10_alua_lba_map), 0, NULL);
125         if (!t10_alua_lba_map_cache) {
126                 pr_err("kmem_cache_create() for t10_alua_lba_map_"
127                                 "cache failed\n");
128                 goto out_free_tg_pt_gp_cache;
129         }
130         t10_alua_lba_map_mem_cache = kmem_cache_create(
131                         "t10_alua_lba_map_mem_cache",
132                         sizeof(struct t10_alua_lba_map_member),
133                         __alignof__(struct t10_alua_lba_map_member), 0, NULL);
134         if (!t10_alua_lba_map_mem_cache) {
135                 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
136                                 "cache failed\n");
137                 goto out_free_lba_map_cache;
138         }
139
140         target_completion_wq = alloc_workqueue("target_completion",
141                                                WQ_MEM_RECLAIM, 0);
142         if (!target_completion_wq)
143                 goto out_free_lba_map_mem_cache;
144
145         return 0;
146
147 out_free_lba_map_mem_cache:
148         kmem_cache_destroy(t10_alua_lba_map_mem_cache);
149 out_free_lba_map_cache:
150         kmem_cache_destroy(t10_alua_lba_map_cache);
151 out_free_tg_pt_gp_cache:
152         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156         kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158         kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160         kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162         kmem_cache_destroy(se_sess_cache);
163 out:
164         return -ENOMEM;
165 }
166
167 void release_se_kmem_caches(void)
168 {
169         destroy_workqueue(target_completion_wq);
170         kmem_cache_destroy(se_sess_cache);
171         kmem_cache_destroy(se_ua_cache);
172         kmem_cache_destroy(t10_pr_reg_cache);
173         kmem_cache_destroy(t10_alua_lu_gp_cache);
174         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176         kmem_cache_destroy(t10_alua_lba_map_cache);
177         kmem_cache_destroy(t10_alua_lba_map_mem_cache);
178 }
179
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock);
182 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
183
184 /*
185  * Allocate a new row index for the entry type specified
186  */
187 u32 scsi_get_new_index(scsi_index_t type)
188 {
189         u32 new_index;
190
191         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
192
193         spin_lock(&scsi_mib_index_lock);
194         new_index = ++scsi_mib_index[type];
195         spin_unlock(&scsi_mib_index_lock);
196
197         return new_index;
198 }
199
200 void transport_subsystem_check_init(void)
201 {
202         int ret;
203         static int sub_api_initialized;
204
205         if (sub_api_initialized)
206                 return;
207
208         ret = request_module("target_core_iblock");
209         if (ret != 0)
210                 pr_err("Unable to load target_core_iblock\n");
211
212         ret = request_module("target_core_file");
213         if (ret != 0)
214                 pr_err("Unable to load target_core_file\n");
215
216         ret = request_module("target_core_pscsi");
217         if (ret != 0)
218                 pr_err("Unable to load target_core_pscsi\n");
219
220         ret = request_module("target_core_user");
221         if (ret != 0)
222                 pr_err("Unable to load target_core_user\n");
223
224         sub_api_initialized = 1;
225 }
226
227 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
228 {
229         struct se_session *se_sess;
230
231         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
232         if (!se_sess) {
233                 pr_err("Unable to allocate struct se_session from"
234                                 " se_sess_cache\n");
235                 return ERR_PTR(-ENOMEM);
236         }
237         INIT_LIST_HEAD(&se_sess->sess_list);
238         INIT_LIST_HEAD(&se_sess->sess_acl_list);
239         INIT_LIST_HEAD(&se_sess->sess_cmd_list);
240         INIT_LIST_HEAD(&se_sess->sess_wait_list);
241         spin_lock_init(&se_sess->sess_cmd_lock);
242         se_sess->sup_prot_ops = sup_prot_ops;
243
244         return se_sess;
245 }
246 EXPORT_SYMBOL(transport_init_session);
247
248 int transport_alloc_session_tags(struct se_session *se_sess,
249                                  unsigned int tag_num, unsigned int tag_size)
250 {
251         int rc;
252
253         se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
254                                         GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
255         if (!se_sess->sess_cmd_map) {
256                 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
257                 if (!se_sess->sess_cmd_map) {
258                         pr_err("Unable to allocate se_sess->sess_cmd_map\n");
259                         return -ENOMEM;
260                 }
261         }
262
263         rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
264         if (rc < 0) {
265                 pr_err("Unable to init se_sess->sess_tag_pool,"
266                         " tag_num: %u\n", tag_num);
267                 kvfree(se_sess->sess_cmd_map);
268                 se_sess->sess_cmd_map = NULL;
269                 return -ENOMEM;
270         }
271
272         return 0;
273 }
274 EXPORT_SYMBOL(transport_alloc_session_tags);
275
276 struct se_session *transport_init_session_tags(unsigned int tag_num,
277                                                unsigned int tag_size,
278                                                enum target_prot_op sup_prot_ops)
279 {
280         struct se_session *se_sess;
281         int rc;
282
283         if (tag_num != 0 && !tag_size) {
284                 pr_err("init_session_tags called with percpu-ida tag_num:"
285                        " %u, but zero tag_size\n", tag_num);
286                 return ERR_PTR(-EINVAL);
287         }
288         if (!tag_num && tag_size) {
289                 pr_err("init_session_tags called with percpu-ida tag_size:"
290                        " %u, but zero tag_num\n", tag_size);
291                 return ERR_PTR(-EINVAL);
292         }
293
294         se_sess = transport_init_session(sup_prot_ops);
295         if (IS_ERR(se_sess))
296                 return se_sess;
297
298         rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
299         if (rc < 0) {
300                 transport_free_session(se_sess);
301                 return ERR_PTR(-ENOMEM);
302         }
303
304         return se_sess;
305 }
306 EXPORT_SYMBOL(transport_init_session_tags);
307
308 /*
309  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
310  */
311 void __transport_register_session(
312         struct se_portal_group *se_tpg,
313         struct se_node_acl *se_nacl,
314         struct se_session *se_sess,
315         void *fabric_sess_ptr)
316 {
317         const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
318         unsigned char buf[PR_REG_ISID_LEN];
319
320         se_sess->se_tpg = se_tpg;
321         se_sess->fabric_sess_ptr = fabric_sess_ptr;
322         /*
323          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
324          *
325          * Only set for struct se_session's that will actually be moving I/O.
326          * eg: *NOT* discovery sessions.
327          */
328         if (se_nacl) {
329                 /*
330                  *
331                  * Determine if fabric allows for T10-PI feature bits exposed to
332                  * initiators for device backends with !dev->dev_attrib.pi_prot_type.
333                  *
334                  * If so, then always save prot_type on a per se_node_acl node
335                  * basis and re-instate the previous sess_prot_type to avoid
336                  * disabling PI from below any previously initiator side
337                  * registered LUNs.
338                  */
339                 if (se_nacl->saved_prot_type)
340                         se_sess->sess_prot_type = se_nacl->saved_prot_type;
341                 else if (tfo->tpg_check_prot_fabric_only)
342                         se_sess->sess_prot_type = se_nacl->saved_prot_type =
343                                         tfo->tpg_check_prot_fabric_only(se_tpg);
344                 /*
345                  * If the fabric module supports an ISID based TransportID,
346                  * save this value in binary from the fabric I_T Nexus now.
347                  */
348                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
349                         memset(&buf[0], 0, PR_REG_ISID_LEN);
350                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
351                                         &buf[0], PR_REG_ISID_LEN);
352                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
353                 }
354
355                 spin_lock_irq(&se_nacl->nacl_sess_lock);
356                 /*
357                  * The se_nacl->nacl_sess pointer will be set to the
358                  * last active I_T Nexus for each struct se_node_acl.
359                  */
360                 se_nacl->nacl_sess = se_sess;
361
362                 list_add_tail(&se_sess->sess_acl_list,
363                               &se_nacl->acl_sess_list);
364                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
365         }
366         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
367
368         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
369                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
370 }
371 EXPORT_SYMBOL(__transport_register_session);
372
373 void transport_register_session(
374         struct se_portal_group *se_tpg,
375         struct se_node_acl *se_nacl,
376         struct se_session *se_sess,
377         void *fabric_sess_ptr)
378 {
379         unsigned long flags;
380
381         spin_lock_irqsave(&se_tpg->session_lock, flags);
382         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
383         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
384 }
385 EXPORT_SYMBOL(transport_register_session);
386
387 struct se_session *
388 target_alloc_session(struct se_portal_group *tpg,
389                      unsigned int tag_num, unsigned int tag_size,
390                      enum target_prot_op prot_op,
391                      const char *initiatorname, void *private,
392                      int (*callback)(struct se_portal_group *,
393                                      struct se_session *, void *))
394 {
395         struct se_session *sess;
396
397         /*
398          * If the fabric driver is using percpu-ida based pre allocation
399          * of I/O descriptor tags, go ahead and perform that setup now..
400          */
401         if (tag_num != 0)
402                 sess = transport_init_session_tags(tag_num, tag_size, prot_op);
403         else
404                 sess = transport_init_session(prot_op);
405
406         if (IS_ERR(sess))
407                 return sess;
408
409         sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
410                                         (unsigned char *)initiatorname);
411         if (!sess->se_node_acl) {
412                 transport_free_session(sess);
413                 return ERR_PTR(-EACCES);
414         }
415         /*
416          * Go ahead and perform any remaining fabric setup that is
417          * required before transport_register_session().
418          */
419         if (callback != NULL) {
420                 int rc = callback(tpg, sess, private);
421                 if (rc) {
422                         transport_free_session(sess);
423                         return ERR_PTR(rc);
424                 }
425         }
426
427         transport_register_session(tpg, sess->se_node_acl, sess, private);
428         return sess;
429 }
430 EXPORT_SYMBOL(target_alloc_session);
431
432 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
433 {
434         struct se_session *se_sess;
435         ssize_t len = 0;
436
437         spin_lock_bh(&se_tpg->session_lock);
438         list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
439                 if (!se_sess->se_node_acl)
440                         continue;
441                 if (!se_sess->se_node_acl->dynamic_node_acl)
442                         continue;
443                 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
444                         break;
445
446                 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
447                                 se_sess->se_node_acl->initiatorname);
448                 len += 1; /* Include NULL terminator */
449         }
450         spin_unlock_bh(&se_tpg->session_lock);
451
452         return len;
453 }
454 EXPORT_SYMBOL(target_show_dynamic_sessions);
455
456 static void target_complete_nacl(struct kref *kref)
457 {
458         struct se_node_acl *nacl = container_of(kref,
459                                 struct se_node_acl, acl_kref);
460
461         complete(&nacl->acl_free_comp);
462 }
463
464 void target_put_nacl(struct se_node_acl *nacl)
465 {
466         kref_put(&nacl->acl_kref, target_complete_nacl);
467 }
468 EXPORT_SYMBOL(target_put_nacl);
469
470 void transport_deregister_session_configfs(struct se_session *se_sess)
471 {
472         struct se_node_acl *se_nacl;
473         unsigned long flags;
474         /*
475          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
476          */
477         se_nacl = se_sess->se_node_acl;
478         if (se_nacl) {
479                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
480                 if (!list_empty(&se_sess->sess_acl_list))
481                         list_del_init(&se_sess->sess_acl_list);
482                 /*
483                  * If the session list is empty, then clear the pointer.
484                  * Otherwise, set the struct se_session pointer from the tail
485                  * element of the per struct se_node_acl active session list.
486                  */
487                 if (list_empty(&se_nacl->acl_sess_list))
488                         se_nacl->nacl_sess = NULL;
489                 else {
490                         se_nacl->nacl_sess = container_of(
491                                         se_nacl->acl_sess_list.prev,
492                                         struct se_session, sess_acl_list);
493                 }
494                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
495         }
496 }
497 EXPORT_SYMBOL(transport_deregister_session_configfs);
498
499 void transport_free_session(struct se_session *se_sess)
500 {
501         struct se_node_acl *se_nacl = se_sess->se_node_acl;
502         /*
503          * Drop the se_node_acl->nacl_kref obtained from within
504          * core_tpg_get_initiator_node_acl().
505          */
506         if (se_nacl) {
507                 se_sess->se_node_acl = NULL;
508                 target_put_nacl(se_nacl);
509         }
510         if (se_sess->sess_cmd_map) {
511                 percpu_ida_destroy(&se_sess->sess_tag_pool);
512                 kvfree(se_sess->sess_cmd_map);
513         }
514         kmem_cache_free(se_sess_cache, se_sess);
515 }
516 EXPORT_SYMBOL(transport_free_session);
517
518 void transport_deregister_session(struct se_session *se_sess)
519 {
520         struct se_portal_group *se_tpg = se_sess->se_tpg;
521         const struct target_core_fabric_ops *se_tfo;
522         struct se_node_acl *se_nacl;
523         unsigned long flags;
524         bool drop_nacl = false;
525
526         if (!se_tpg) {
527                 transport_free_session(se_sess);
528                 return;
529         }
530         se_tfo = se_tpg->se_tpg_tfo;
531
532         spin_lock_irqsave(&se_tpg->session_lock, flags);
533         list_del(&se_sess->sess_list);
534         se_sess->se_tpg = NULL;
535         se_sess->fabric_sess_ptr = NULL;
536         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
537
538         /*
539          * Determine if we need to do extra work for this initiator node's
540          * struct se_node_acl if it had been previously dynamically generated.
541          */
542         se_nacl = se_sess->se_node_acl;
543
544         mutex_lock(&se_tpg->acl_node_mutex);
545         if (se_nacl && se_nacl->dynamic_node_acl) {
546                 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
547                         list_del(&se_nacl->acl_list);
548                         drop_nacl = true;
549                 }
550         }
551         mutex_unlock(&se_tpg->acl_node_mutex);
552
553         if (drop_nacl) {
554                 core_tpg_wait_for_nacl_pr_ref(se_nacl);
555                 core_free_device_list_for_node(se_nacl, se_tpg);
556                 se_sess->se_node_acl = NULL;
557                 kfree(se_nacl);
558         }
559         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
560                 se_tpg->se_tpg_tfo->get_fabric_name());
561         /*
562          * If last kref is dropping now for an explicit NodeACL, awake sleeping
563          * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
564          * removal context from within transport_free_session() code.
565          */
566
567         transport_free_session(se_sess);
568 }
569 EXPORT_SYMBOL(transport_deregister_session);
570
571 static void target_remove_from_state_list(struct se_cmd *cmd)
572 {
573         struct se_device *dev = cmd->se_dev;
574         unsigned long flags;
575
576         if (!dev)
577                 return;
578
579         if (cmd->transport_state & CMD_T_BUSY)
580                 return;
581
582         spin_lock_irqsave(&dev->execute_task_lock, flags);
583         if (cmd->state_active) {
584                 list_del(&cmd->state_list);
585                 cmd->state_active = false;
586         }
587         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
588 }
589
590 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
591                                     bool write_pending)
592 {
593         unsigned long flags;
594
595         if (remove_from_lists) {
596                 target_remove_from_state_list(cmd);
597
598                 /*
599                  * Clear struct se_cmd->se_lun before the handoff to FE.
600                  */
601                 cmd->se_lun = NULL;
602         }
603
604         spin_lock_irqsave(&cmd->t_state_lock, flags);
605         if (write_pending)
606                 cmd->t_state = TRANSPORT_WRITE_PENDING;
607
608         /*
609          * Determine if frontend context caller is requesting the stopping of
610          * this command for frontend exceptions.
611          */
612         if (cmd->transport_state & CMD_T_STOP) {
613                 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
614                         __func__, __LINE__, cmd->tag);
615
616                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
617
618                 complete_all(&cmd->t_transport_stop_comp);
619                 return 1;
620         }
621
622         cmd->transport_state &= ~CMD_T_ACTIVE;
623         if (remove_from_lists) {
624                 /*
625                  * Some fabric modules like tcm_loop can release
626                  * their internally allocated I/O reference now and
627                  * struct se_cmd now.
628                  *
629                  * Fabric modules are expected to return '1' here if the
630                  * se_cmd being passed is released at this point,
631                  * or zero if not being released.
632                  */
633                 if (cmd->se_tfo->check_stop_free != NULL) {
634                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
635                         return cmd->se_tfo->check_stop_free(cmd);
636                 }
637         }
638
639         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
640         return 0;
641 }
642
643 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
644 {
645         return transport_cmd_check_stop(cmd, true, false);
646 }
647
648 static void transport_lun_remove_cmd(struct se_cmd *cmd)
649 {
650         struct se_lun *lun = cmd->se_lun;
651
652         if (!lun)
653                 return;
654
655         if (cmpxchg(&cmd->lun_ref_active, true, false))
656                 percpu_ref_put(&lun->lun_ref);
657 }
658
659 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
660 {
661         bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
662
663         if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
664                 transport_lun_remove_cmd(cmd);
665         /*
666          * Allow the fabric driver to unmap any resources before
667          * releasing the descriptor via TFO->release_cmd()
668          */
669         if (remove)
670                 cmd->se_tfo->aborted_task(cmd);
671
672         if (transport_cmd_check_stop_to_fabric(cmd))
673                 return;
674         if (remove && ack_kref)
675                 transport_put_cmd(cmd);
676 }
677
678 static void target_complete_failure_work(struct work_struct *work)
679 {
680         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
681
682         transport_generic_request_failure(cmd,
683                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
684 }
685
686 /*
687  * Used when asking transport to copy Sense Data from the underlying
688  * Linux/SCSI struct scsi_cmnd
689  */
690 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
691 {
692         struct se_device *dev = cmd->se_dev;
693
694         WARN_ON(!cmd->se_lun);
695
696         if (!dev)
697                 return NULL;
698
699         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
700                 return NULL;
701
702         cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
703
704         pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
705                 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
706         return cmd->sense_buffer;
707 }
708
709 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
710 {
711         struct se_device *dev = cmd->se_dev;
712         int success = scsi_status == GOOD;
713         unsigned long flags;
714
715         cmd->scsi_status = scsi_status;
716
717
718         spin_lock_irqsave(&cmd->t_state_lock, flags);
719         cmd->transport_state &= ~CMD_T_BUSY;
720
721         if (dev && dev->transport->transport_complete) {
722                 dev->transport->transport_complete(cmd,
723                                 cmd->t_data_sg,
724                                 transport_get_sense_buffer(cmd));
725                 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
726                         success = 1;
727         }
728
729         /*
730          * Check for case where an explicit ABORT_TASK has been received
731          * and transport_wait_for_tasks() will be waiting for completion..
732          */
733         if (cmd->transport_state & CMD_T_ABORTED ||
734             cmd->transport_state & CMD_T_STOP) {
735                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
736                 complete_all(&cmd->t_transport_stop_comp);
737                 return;
738         } else if (!success) {
739                 INIT_WORK(&cmd->work, target_complete_failure_work);
740         } else {
741                 INIT_WORK(&cmd->work, target_complete_ok_work);
742         }
743
744         cmd->t_state = TRANSPORT_COMPLETE;
745         cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
746         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
747
748         if (cmd->se_cmd_flags & SCF_USE_CPUID)
749                 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
750         else
751                 queue_work(target_completion_wq, &cmd->work);
752 }
753 EXPORT_SYMBOL(target_complete_cmd);
754
755 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
756 {
757         if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
758                 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
759                         cmd->residual_count += cmd->data_length - length;
760                 } else {
761                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
762                         cmd->residual_count = cmd->data_length - length;
763                 }
764
765                 cmd->data_length = length;
766         }
767
768         target_complete_cmd(cmd, scsi_status);
769 }
770 EXPORT_SYMBOL(target_complete_cmd_with_length);
771
772 static void target_add_to_state_list(struct se_cmd *cmd)
773 {
774         struct se_device *dev = cmd->se_dev;
775         unsigned long flags;
776
777         spin_lock_irqsave(&dev->execute_task_lock, flags);
778         if (!cmd->state_active) {
779                 list_add_tail(&cmd->state_list, &dev->state_list);
780                 cmd->state_active = true;
781         }
782         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
783 }
784
785 /*
786  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
787  */
788 static void transport_write_pending_qf(struct se_cmd *cmd);
789 static void transport_complete_qf(struct se_cmd *cmd);
790
791 void target_qf_do_work(struct work_struct *work)
792 {
793         struct se_device *dev = container_of(work, struct se_device,
794                                         qf_work_queue);
795         LIST_HEAD(qf_cmd_list);
796         struct se_cmd *cmd, *cmd_tmp;
797
798         spin_lock_irq(&dev->qf_cmd_lock);
799         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
800         spin_unlock_irq(&dev->qf_cmd_lock);
801
802         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
803                 list_del(&cmd->se_qf_node);
804                 atomic_dec_mb(&dev->dev_qf_count);
805
806                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
807                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
808                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
809                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
810                         : "UNKNOWN");
811
812                 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
813                         transport_write_pending_qf(cmd);
814                 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
815                         transport_complete_qf(cmd);
816         }
817 }
818
819 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
820 {
821         switch (cmd->data_direction) {
822         case DMA_NONE:
823                 return "NONE";
824         case DMA_FROM_DEVICE:
825                 return "READ";
826         case DMA_TO_DEVICE:
827                 return "WRITE";
828         case DMA_BIDIRECTIONAL:
829                 return "BIDI";
830         default:
831                 break;
832         }
833
834         return "UNKNOWN";
835 }
836
837 void transport_dump_dev_state(
838         struct se_device *dev,
839         char *b,
840         int *bl)
841 {
842         *bl += sprintf(b + *bl, "Status: ");
843         if (dev->export_count)
844                 *bl += sprintf(b + *bl, "ACTIVATED");
845         else
846                 *bl += sprintf(b + *bl, "DEACTIVATED");
847
848         *bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
849         *bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
850                 dev->dev_attrib.block_size,
851                 dev->dev_attrib.hw_max_sectors);
852         *bl += sprintf(b + *bl, "        ");
853 }
854
855 void transport_dump_vpd_proto_id(
856         struct t10_vpd *vpd,
857         unsigned char *p_buf,
858         int p_buf_len)
859 {
860         unsigned char buf[VPD_TMP_BUF_SIZE];
861         int len;
862
863         memset(buf, 0, VPD_TMP_BUF_SIZE);
864         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
865
866         switch (vpd->protocol_identifier) {
867         case 0x00:
868                 sprintf(buf+len, "Fibre Channel\n");
869                 break;
870         case 0x10:
871                 sprintf(buf+len, "Parallel SCSI\n");
872                 break;
873         case 0x20:
874                 sprintf(buf+len, "SSA\n");
875                 break;
876         case 0x30:
877                 sprintf(buf+len, "IEEE 1394\n");
878                 break;
879         case 0x40:
880                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
881                                 " Protocol\n");
882                 break;
883         case 0x50:
884                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
885                 break;
886         case 0x60:
887                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
888                 break;
889         case 0x70:
890                 sprintf(buf+len, "Automation/Drive Interface Transport"
891                                 " Protocol\n");
892                 break;
893         case 0x80:
894                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
895                 break;
896         default:
897                 sprintf(buf+len, "Unknown 0x%02x\n",
898                                 vpd->protocol_identifier);
899                 break;
900         }
901
902         if (p_buf)
903                 strncpy(p_buf, buf, p_buf_len);
904         else
905                 pr_debug("%s", buf);
906 }
907
908 void
909 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
910 {
911         /*
912          * Check if the Protocol Identifier Valid (PIV) bit is set..
913          *
914          * from spc3r23.pdf section 7.5.1
915          */
916          if (page_83[1] & 0x80) {
917                 vpd->protocol_identifier = (page_83[0] & 0xf0);
918                 vpd->protocol_identifier_set = 1;
919                 transport_dump_vpd_proto_id(vpd, NULL, 0);
920         }
921 }
922 EXPORT_SYMBOL(transport_set_vpd_proto_id);
923
924 int transport_dump_vpd_assoc(
925         struct t10_vpd *vpd,
926         unsigned char *p_buf,
927         int p_buf_len)
928 {
929         unsigned char buf[VPD_TMP_BUF_SIZE];
930         int ret = 0;
931         int len;
932
933         memset(buf, 0, VPD_TMP_BUF_SIZE);
934         len = sprintf(buf, "T10 VPD Identifier Association: ");
935
936         switch (vpd->association) {
937         case 0x00:
938                 sprintf(buf+len, "addressed logical unit\n");
939                 break;
940         case 0x10:
941                 sprintf(buf+len, "target port\n");
942                 break;
943         case 0x20:
944                 sprintf(buf+len, "SCSI target device\n");
945                 break;
946         default:
947                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
948                 ret = -EINVAL;
949                 break;
950         }
951
952         if (p_buf)
953                 strncpy(p_buf, buf, p_buf_len);
954         else
955                 pr_debug("%s", buf);
956
957         return ret;
958 }
959
960 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
961 {
962         /*
963          * The VPD identification association..
964          *
965          * from spc3r23.pdf Section 7.6.3.1 Table 297
966          */
967         vpd->association = (page_83[1] & 0x30);
968         return transport_dump_vpd_assoc(vpd, NULL, 0);
969 }
970 EXPORT_SYMBOL(transport_set_vpd_assoc);
971
972 int transport_dump_vpd_ident_type(
973         struct t10_vpd *vpd,
974         unsigned char *p_buf,
975         int p_buf_len)
976 {
977         unsigned char buf[VPD_TMP_BUF_SIZE];
978         int ret = 0;
979         int len;
980
981         memset(buf, 0, VPD_TMP_BUF_SIZE);
982         len = sprintf(buf, "T10 VPD Identifier Type: ");
983
984         switch (vpd->device_identifier_type) {
985         case 0x00:
986                 sprintf(buf+len, "Vendor specific\n");
987                 break;
988         case 0x01:
989                 sprintf(buf+len, "T10 Vendor ID based\n");
990                 break;
991         case 0x02:
992                 sprintf(buf+len, "EUI-64 based\n");
993                 break;
994         case 0x03:
995                 sprintf(buf+len, "NAA\n");
996                 break;
997         case 0x04:
998                 sprintf(buf+len, "Relative target port identifier\n");
999                 break;
1000         case 0x08:
1001                 sprintf(buf+len, "SCSI name string\n");
1002                 break;
1003         default:
1004                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1005                                 vpd->device_identifier_type);
1006                 ret = -EINVAL;
1007                 break;
1008         }
1009
1010         if (p_buf) {
1011                 if (p_buf_len < strlen(buf)+1)
1012                         return -EINVAL;
1013                 strncpy(p_buf, buf, p_buf_len);
1014         } else {
1015                 pr_debug("%s", buf);
1016         }
1017
1018         return ret;
1019 }
1020
1021 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1022 {
1023         /*
1024          * The VPD identifier type..
1025          *
1026          * from spc3r23.pdf Section 7.6.3.1 Table 298
1027          */
1028         vpd->device_identifier_type = (page_83[1] & 0x0f);
1029         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1030 }
1031 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1032
1033 int transport_dump_vpd_ident(
1034         struct t10_vpd *vpd,
1035         unsigned char *p_buf,
1036         int p_buf_len)
1037 {
1038         unsigned char buf[VPD_TMP_BUF_SIZE];
1039         int ret = 0;
1040
1041         memset(buf, 0, VPD_TMP_BUF_SIZE);
1042
1043         switch (vpd->device_identifier_code_set) {
1044         case 0x01: /* Binary */
1045                 snprintf(buf, sizeof(buf),
1046                         "T10 VPD Binary Device Identifier: %s\n",
1047                         &vpd->device_identifier[0]);
1048                 break;
1049         case 0x02: /* ASCII */
1050                 snprintf(buf, sizeof(buf),
1051                         "T10 VPD ASCII Device Identifier: %s\n",
1052                         &vpd->device_identifier[0]);
1053                 break;
1054         case 0x03: /* UTF-8 */
1055                 snprintf(buf, sizeof(buf),
1056                         "T10 VPD UTF-8 Device Identifier: %s\n",
1057                         &vpd->device_identifier[0]);
1058                 break;
1059         default:
1060                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1061                         " 0x%02x", vpd->device_identifier_code_set);
1062                 ret = -EINVAL;
1063                 break;
1064         }
1065
1066         if (p_buf)
1067                 strncpy(p_buf, buf, p_buf_len);
1068         else
1069                 pr_debug("%s", buf);
1070
1071         return ret;
1072 }
1073
1074 int
1075 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1076 {
1077         static const char hex_str[] = "0123456789abcdef";
1078         int j = 0, i = 4; /* offset to start of the identifier */
1079
1080         /*
1081          * The VPD Code Set (encoding)
1082          *
1083          * from spc3r23.pdf Section 7.6.3.1 Table 296
1084          */
1085         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1086         switch (vpd->device_identifier_code_set) {
1087         case 0x01: /* Binary */
1088                 vpd->device_identifier[j++] =
1089                                 hex_str[vpd->device_identifier_type];
1090                 while (i < (4 + page_83[3])) {
1091                         vpd->device_identifier[j++] =
1092                                 hex_str[(page_83[i] & 0xf0) >> 4];
1093                         vpd->device_identifier[j++] =
1094                                 hex_str[page_83[i] & 0x0f];
1095                         i++;
1096                 }
1097                 break;
1098         case 0x02: /* ASCII */
1099         case 0x03: /* UTF-8 */
1100                 while (i < (4 + page_83[3]))
1101                         vpd->device_identifier[j++] = page_83[i++];
1102                 break;
1103         default:
1104                 break;
1105         }
1106
1107         return transport_dump_vpd_ident(vpd, NULL, 0);
1108 }
1109 EXPORT_SYMBOL(transport_set_vpd_ident);
1110
1111 static sense_reason_t
1112 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1113                                unsigned int size)
1114 {
1115         u32 mtl;
1116
1117         if (!cmd->se_tfo->max_data_sg_nents)
1118                 return TCM_NO_SENSE;
1119         /*
1120          * Check if fabric enforced maximum SGL entries per I/O descriptor
1121          * exceeds se_cmd->data_length.  If true, set SCF_UNDERFLOW_BIT +
1122          * residual_count and reduce original cmd->data_length to maximum
1123          * length based on single PAGE_SIZE entry scatter-lists.
1124          */
1125         mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1126         if (cmd->data_length > mtl) {
1127                 /*
1128                  * If an existing CDB overflow is present, calculate new residual
1129                  * based on CDB size minus fabric maximum transfer length.
1130                  *
1131                  * If an existing CDB underflow is present, calculate new residual
1132                  * based on original cmd->data_length minus fabric maximum transfer
1133                  * length.
1134                  *
1135                  * Otherwise, set the underflow residual based on cmd->data_length
1136                  * minus fabric maximum transfer length.
1137                  */
1138                 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1139                         cmd->residual_count = (size - mtl);
1140                 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1141                         u32 orig_dl = size + cmd->residual_count;
1142                         cmd->residual_count = (orig_dl - mtl);
1143                 } else {
1144                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1145                         cmd->residual_count = (cmd->data_length - mtl);
1146                 }
1147                 cmd->data_length = mtl;
1148                 /*
1149                  * Reset sbc_check_prot() calculated protection payload
1150                  * length based upon the new smaller MTL.
1151                  */
1152                 if (cmd->prot_length) {
1153                         u32 sectors = (mtl / dev->dev_attrib.block_size);
1154                         cmd->prot_length = dev->prot_length * sectors;
1155                 }
1156         }
1157         return TCM_NO_SENSE;
1158 }
1159
1160 sense_reason_t
1161 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1162 {
1163         struct se_device *dev = cmd->se_dev;
1164
1165         if (cmd->unknown_data_length) {
1166                 cmd->data_length = size;
1167         } else if (size != cmd->data_length) {
1168                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1169                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1170                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1171                                 cmd->data_length, size, cmd->t_task_cdb[0]);
1172
1173                 if (cmd->data_direction == DMA_TO_DEVICE &&
1174                     cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1175                         pr_err("Rejecting underflow/overflow WRITE data\n");
1176                         return TCM_INVALID_CDB_FIELD;
1177                 }
1178                 /*
1179                  * Reject READ_* or WRITE_* with overflow/underflow for
1180                  * type SCF_SCSI_DATA_CDB.
1181                  */
1182                 if (dev->dev_attrib.block_size != 512)  {
1183                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1184                                 " CDB on non 512-byte sector setup subsystem"
1185                                 " plugin: %s\n", dev->transport->name);
1186                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1187                         return TCM_INVALID_CDB_FIELD;
1188                 }
1189                 /*
1190                  * For the overflow case keep the existing fabric provided
1191                  * ->data_length.  Otherwise for the underflow case, reset
1192                  * ->data_length to the smaller SCSI expected data transfer
1193                  * length.
1194                  */
1195                 if (size > cmd->data_length) {
1196                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1197                         cmd->residual_count = (size - cmd->data_length);
1198                 } else {
1199                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1200                         cmd->residual_count = (cmd->data_length - size);
1201                         cmd->data_length = size;
1202                 }
1203         }
1204
1205         return target_check_max_data_sg_nents(cmd, dev, size);
1206
1207 }
1208
1209 /*
1210  * Used by fabric modules containing a local struct se_cmd within their
1211  * fabric dependent per I/O descriptor.
1212  *
1213  * Preserves the value of @cmd->tag.
1214  */
1215 void transport_init_se_cmd(
1216         struct se_cmd *cmd,
1217         const struct target_core_fabric_ops *tfo,
1218         struct se_session *se_sess,
1219         u32 data_length,
1220         int data_direction,
1221         int task_attr,
1222         unsigned char *sense_buffer)
1223 {
1224         INIT_LIST_HEAD(&cmd->se_delayed_node);
1225         INIT_LIST_HEAD(&cmd->se_qf_node);
1226         INIT_LIST_HEAD(&cmd->se_cmd_list);
1227         INIT_LIST_HEAD(&cmd->state_list);
1228         init_completion(&cmd->t_transport_stop_comp);
1229         init_completion(&cmd->cmd_wait_comp);
1230         spin_lock_init(&cmd->t_state_lock);
1231         kref_init(&cmd->cmd_kref);
1232         cmd->transport_state = CMD_T_DEV_ACTIVE;
1233
1234         cmd->se_tfo = tfo;
1235         cmd->se_sess = se_sess;
1236         cmd->data_length = data_length;
1237         cmd->data_direction = data_direction;
1238         cmd->sam_task_attr = task_attr;
1239         cmd->sense_buffer = sense_buffer;
1240
1241         cmd->state_active = false;
1242 }
1243 EXPORT_SYMBOL(transport_init_se_cmd);
1244
1245 static sense_reason_t
1246 transport_check_alloc_task_attr(struct se_cmd *cmd)
1247 {
1248         struct se_device *dev = cmd->se_dev;
1249
1250         /*
1251          * Check if SAM Task Attribute emulation is enabled for this
1252          * struct se_device storage object
1253          */
1254         if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1255                 return 0;
1256
1257         if (cmd->sam_task_attr == TCM_ACA_TAG) {
1258                 pr_debug("SAM Task Attribute ACA"
1259                         " emulation is not supported\n");
1260                 return TCM_INVALID_CDB_FIELD;
1261         }
1262
1263         return 0;
1264 }
1265
1266 sense_reason_t
1267 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1268 {
1269         struct se_device *dev = cmd->se_dev;
1270         sense_reason_t ret;
1271
1272         /*
1273          * Ensure that the received CDB is less than the max (252 + 8) bytes
1274          * for VARIABLE_LENGTH_CMD
1275          */
1276         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1277                 pr_err("Received SCSI CDB with command_size: %d that"
1278                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1279                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1280                 return TCM_INVALID_CDB_FIELD;
1281         }
1282         /*
1283          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1284          * allocate the additional extended CDB buffer now..  Otherwise
1285          * setup the pointer from __t_task_cdb to t_task_cdb.
1286          */
1287         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1288                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1289                                                 GFP_KERNEL);
1290                 if (!cmd->t_task_cdb) {
1291                         pr_err("Unable to allocate cmd->t_task_cdb"
1292                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1293                                 scsi_command_size(cdb),
1294                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1295                         return TCM_OUT_OF_RESOURCES;
1296                 }
1297         } else
1298                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1299         /*
1300          * Copy the original CDB into cmd->
1301          */
1302         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1303
1304         trace_target_sequencer_start(cmd);
1305
1306         ret = dev->transport->parse_cdb(cmd);
1307         if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1308                 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1309                                     cmd->se_tfo->get_fabric_name(),
1310                                     cmd->se_sess->se_node_acl->initiatorname,
1311                                     cmd->t_task_cdb[0]);
1312         if (ret)
1313                 return ret;
1314
1315         ret = transport_check_alloc_task_attr(cmd);
1316         if (ret)
1317                 return ret;
1318
1319         cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1320         atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1321         return 0;
1322 }
1323 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1324
1325 /*
1326  * Used by fabric module frontends to queue tasks directly.
1327  * May only be used from process context.
1328  */
1329 int transport_handle_cdb_direct(
1330         struct se_cmd *cmd)
1331 {
1332         sense_reason_t ret;
1333
1334         if (!cmd->se_lun) {
1335                 dump_stack();
1336                 pr_err("cmd->se_lun is NULL\n");
1337                 return -EINVAL;
1338         }
1339         if (in_interrupt()) {
1340                 dump_stack();
1341                 pr_err("transport_generic_handle_cdb cannot be called"
1342                                 " from interrupt context\n");
1343                 return -EINVAL;
1344         }
1345         /*
1346          * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1347          * outstanding descriptors are handled correctly during shutdown via
1348          * transport_wait_for_tasks()
1349          *
1350          * Also, we don't take cmd->t_state_lock here as we only expect
1351          * this to be called for initial descriptor submission.
1352          */
1353         cmd->t_state = TRANSPORT_NEW_CMD;
1354         cmd->transport_state |= CMD_T_ACTIVE;
1355
1356         /*
1357          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1358          * so follow TRANSPORT_NEW_CMD processing thread context usage
1359          * and call transport_generic_request_failure() if necessary..
1360          */
1361         ret = transport_generic_new_cmd(cmd);
1362         if (ret)
1363                 transport_generic_request_failure(cmd, ret);
1364         return 0;
1365 }
1366 EXPORT_SYMBOL(transport_handle_cdb_direct);
1367
1368 sense_reason_t
1369 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1370                 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1371 {
1372         if (!sgl || !sgl_count)
1373                 return 0;
1374
1375         /*
1376          * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1377          * scatterlists already have been set to follow what the fabric
1378          * passes for the original expected data transfer length.
1379          */
1380         if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1381                 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1382                         " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1383                 return TCM_INVALID_CDB_FIELD;
1384         }
1385
1386         cmd->t_data_sg = sgl;
1387         cmd->t_data_nents = sgl_count;
1388         cmd->t_bidi_data_sg = sgl_bidi;
1389         cmd->t_bidi_data_nents = sgl_bidi_count;
1390
1391         cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1392         return 0;
1393 }
1394
1395 /*
1396  * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1397  *                       se_cmd + use pre-allocated SGL memory.
1398  *
1399  * @se_cmd: command descriptor to submit
1400  * @se_sess: associated se_sess for endpoint
1401  * @cdb: pointer to SCSI CDB
1402  * @sense: pointer to SCSI sense buffer
1403  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1404  * @data_length: fabric expected data transfer length
1405  * @task_addr: SAM task attribute
1406  * @data_dir: DMA data direction
1407  * @flags: flags for command submission from target_sc_flags_tables
1408  * @sgl: struct scatterlist memory for unidirectional mapping
1409  * @sgl_count: scatterlist count for unidirectional mapping
1410  * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1411  * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1412  * @sgl_prot: struct scatterlist memory protection information
1413  * @sgl_prot_count: scatterlist count for protection information
1414  *
1415  * Task tags are supported if the caller has set @se_cmd->tag.
1416  *
1417  * Returns non zero to signal active I/O shutdown failure.  All other
1418  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1419  * but still return zero here.
1420  *
1421  * This may only be called from process context, and also currently
1422  * assumes internal allocation of fabric payload buffer by target-core.
1423  */
1424 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1425                 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1426                 u32 data_length, int task_attr, int data_dir, int flags,
1427                 struct scatterlist *sgl, u32 sgl_count,
1428                 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1429                 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1430 {
1431         struct se_portal_group *se_tpg;
1432         sense_reason_t rc;
1433         int ret;
1434
1435         se_tpg = se_sess->se_tpg;
1436         BUG_ON(!se_tpg);
1437         BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1438         BUG_ON(in_interrupt());
1439         /*
1440          * Initialize se_cmd for target operation.  From this point
1441          * exceptions are handled by sending exception status via
1442          * target_core_fabric_ops->queue_status() callback
1443          */
1444         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1445                                 data_length, data_dir, task_attr, sense);
1446
1447         if (flags & TARGET_SCF_USE_CPUID)
1448                 se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1449         else
1450                 se_cmd->cpuid = WORK_CPU_UNBOUND;
1451
1452         if (flags & TARGET_SCF_UNKNOWN_SIZE)
1453                 se_cmd->unknown_data_length = 1;
1454         /*
1455          * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1456          * se_sess->sess_cmd_list.  A second kref_get here is necessary
1457          * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1458          * kref_put() to happen during fabric packet acknowledgement.
1459          */
1460         ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1461         if (ret)
1462                 return ret;
1463         /*
1464          * Signal bidirectional data payloads to target-core
1465          */
1466         if (flags & TARGET_SCF_BIDI_OP)
1467                 se_cmd->se_cmd_flags |= SCF_BIDI;
1468         /*
1469          * Locate se_lun pointer and attach it to struct se_cmd
1470          */
1471         rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1472         if (rc) {
1473                 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1474                 target_put_sess_cmd(se_cmd);
1475                 return 0;
1476         }
1477
1478         rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1479         if (rc != 0) {
1480                 transport_generic_request_failure(se_cmd, rc);
1481                 return 0;
1482         }
1483
1484         /*
1485          * Save pointers for SGLs containing protection information,
1486          * if present.
1487          */
1488         if (sgl_prot_count) {
1489                 se_cmd->t_prot_sg = sgl_prot;
1490                 se_cmd->t_prot_nents = sgl_prot_count;
1491                 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1492         }
1493
1494         /*
1495          * When a non zero sgl_count has been passed perform SGL passthrough
1496          * mapping for pre-allocated fabric memory instead of having target
1497          * core perform an internal SGL allocation..
1498          */
1499         if (sgl_count != 0) {
1500                 BUG_ON(!sgl);
1501
1502                 /*
1503                  * A work-around for tcm_loop as some userspace code via
1504                  * scsi-generic do not memset their associated read buffers,
1505                  * so go ahead and do that here for type non-data CDBs.  Also
1506                  * note that this is currently guaranteed to be a single SGL
1507                  * for this case by target core in target_setup_cmd_from_cdb()
1508                  * -> transport_generic_cmd_sequencer().
1509                  */
1510                 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1511                      se_cmd->data_direction == DMA_FROM_DEVICE) {
1512                         unsigned char *buf = NULL;
1513
1514                         if (sgl)
1515                                 buf = kmap(sg_page(sgl)) + sgl->offset;
1516
1517                         if (buf) {
1518                                 memset(buf, 0, sgl->length);
1519                                 kunmap(sg_page(sgl));
1520                         }
1521                 }
1522
1523                 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1524                                 sgl_bidi, sgl_bidi_count);
1525                 if (rc != 0) {
1526                         transport_generic_request_failure(se_cmd, rc);
1527                         return 0;
1528                 }
1529         }
1530
1531         /*
1532          * Check if we need to delay processing because of ALUA
1533          * Active/NonOptimized primary access state..
1534          */
1535         core_alua_check_nonop_delay(se_cmd);
1536
1537         transport_handle_cdb_direct(se_cmd);
1538         return 0;
1539 }
1540 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1541
1542 /*
1543  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1544  *
1545  * @se_cmd: command descriptor to submit
1546  * @se_sess: associated se_sess for endpoint
1547  * @cdb: pointer to SCSI CDB
1548  * @sense: pointer to SCSI sense buffer
1549  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1550  * @data_length: fabric expected data transfer length
1551  * @task_addr: SAM task attribute
1552  * @data_dir: DMA data direction
1553  * @flags: flags for command submission from target_sc_flags_tables
1554  *
1555  * Task tags are supported if the caller has set @se_cmd->tag.
1556  *
1557  * Returns non zero to signal active I/O shutdown failure.  All other
1558  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1559  * but still return zero here.
1560  *
1561  * This may only be called from process context, and also currently
1562  * assumes internal allocation of fabric payload buffer by target-core.
1563  *
1564  * It also assumes interal target core SGL memory allocation.
1565  */
1566 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1567                 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1568                 u32 data_length, int task_attr, int data_dir, int flags)
1569 {
1570         return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1571                         unpacked_lun, data_length, task_attr, data_dir,
1572                         flags, NULL, 0, NULL, 0, NULL, 0);
1573 }
1574 EXPORT_SYMBOL(target_submit_cmd);
1575
1576 static void target_complete_tmr_failure(struct work_struct *work)
1577 {
1578         struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1579
1580         se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1581         se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1582
1583         transport_cmd_check_stop_to_fabric(se_cmd);
1584 }
1585
1586 /**
1587  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1588  *                     for TMR CDBs
1589  *
1590  * @se_cmd: command descriptor to submit
1591  * @se_sess: associated se_sess for endpoint
1592  * @sense: pointer to SCSI sense buffer
1593  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1594  * @fabric_context: fabric context for TMR req
1595  * @tm_type: Type of TM request
1596  * @gfp: gfp type for caller
1597  * @tag: referenced task tag for TMR_ABORT_TASK
1598  * @flags: submit cmd flags
1599  *
1600  * Callable from all contexts.
1601  **/
1602
1603 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1604                 unsigned char *sense, u64 unpacked_lun,
1605                 void *fabric_tmr_ptr, unsigned char tm_type,
1606                 gfp_t gfp, u64 tag, int flags)
1607 {
1608         struct se_portal_group *se_tpg;
1609         int ret;
1610
1611         se_tpg = se_sess->se_tpg;
1612         BUG_ON(!se_tpg);
1613
1614         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1615                               0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1616         /*
1617          * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1618          * allocation failure.
1619          */
1620         ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1621         if (ret < 0)
1622                 return -ENOMEM;
1623
1624         if (tm_type == TMR_ABORT_TASK)
1625                 se_cmd->se_tmr_req->ref_task_tag = tag;
1626
1627         /* See target_submit_cmd for commentary */
1628         ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1629         if (ret) {
1630                 core_tmr_release_req(se_cmd->se_tmr_req);
1631                 return ret;
1632         }
1633
1634         ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1635         if (ret) {
1636                 /*
1637                  * For callback during failure handling, push this work off
1638                  * to process context with TMR_LUN_DOES_NOT_EXIST status.
1639                  */
1640                 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1641                 schedule_work(&se_cmd->work);
1642                 return 0;
1643         }
1644         transport_generic_handle_tmr(se_cmd);
1645         return 0;
1646 }
1647 EXPORT_SYMBOL(target_submit_tmr);
1648
1649 /*
1650  * Handle SAM-esque emulation for generic transport request failures.
1651  */
1652 void transport_generic_request_failure(struct se_cmd *cmd,
1653                 sense_reason_t sense_reason)
1654 {
1655         int ret = 0, post_ret = 0;
1656
1657         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx"
1658                 " CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]);
1659         pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1660                 cmd->se_tfo->get_cmd_state(cmd),
1661                 cmd->t_state, sense_reason);
1662         pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1663                 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1664                 (cmd->transport_state & CMD_T_STOP) != 0,
1665                 (cmd->transport_state & CMD_T_SENT) != 0);
1666
1667         /*
1668          * For SAM Task Attribute emulation for failed struct se_cmd
1669          */
1670         transport_complete_task_attr(cmd);
1671         /*
1672          * Handle special case for COMPARE_AND_WRITE failure, where the
1673          * callback is expected to drop the per device ->caw_sem.
1674          */
1675         if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1676              cmd->transport_complete_callback)
1677                 cmd->transport_complete_callback(cmd, false, &post_ret);
1678
1679         switch (sense_reason) {
1680         case TCM_NON_EXISTENT_LUN:
1681         case TCM_UNSUPPORTED_SCSI_OPCODE:
1682         case TCM_INVALID_CDB_FIELD:
1683         case TCM_INVALID_PARAMETER_LIST:
1684         case TCM_PARAMETER_LIST_LENGTH_ERROR:
1685         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1686         case TCM_UNKNOWN_MODE_PAGE:
1687         case TCM_WRITE_PROTECTED:
1688         case TCM_ADDRESS_OUT_OF_RANGE:
1689         case TCM_CHECK_CONDITION_ABORT_CMD:
1690         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1691         case TCM_CHECK_CONDITION_NOT_READY:
1692         case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1693         case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1694         case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1695                 break;
1696         case TCM_OUT_OF_RESOURCES:
1697                 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1698                 break;
1699         case TCM_RESERVATION_CONFLICT:
1700                 /*
1701                  * No SENSE Data payload for this case, set SCSI Status
1702                  * and queue the response to $FABRIC_MOD.
1703                  *
1704                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1705                  */
1706                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1707                 /*
1708                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1709                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1710                  * CONFLICT STATUS.
1711                  *
1712                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1713                  */
1714                 if (cmd->se_sess &&
1715                     cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1716                         target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1717                                                cmd->orig_fe_lun, 0x2C,
1718                                         ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1719                 }
1720                 trace_target_cmd_complete(cmd);
1721                 ret = cmd->se_tfo->queue_status(cmd);
1722                 if (ret == -EAGAIN || ret == -ENOMEM)
1723                         goto queue_full;
1724                 goto check_stop;
1725         default:
1726                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1727                         cmd->t_task_cdb[0], sense_reason);
1728                 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1729                 break;
1730         }
1731
1732         ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1733         if (ret == -EAGAIN || ret == -ENOMEM)
1734                 goto queue_full;
1735
1736 check_stop:
1737         transport_lun_remove_cmd(cmd);
1738         transport_cmd_check_stop_to_fabric(cmd);
1739         return;
1740
1741 queue_full:
1742         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1743         transport_handle_queue_full(cmd, cmd->se_dev);
1744 }
1745 EXPORT_SYMBOL(transport_generic_request_failure);
1746
1747 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1748 {
1749         sense_reason_t ret;
1750
1751         if (!cmd->execute_cmd) {
1752                 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1753                 goto err;
1754         }
1755         if (do_checks) {
1756                 /*
1757                  * Check for an existing UNIT ATTENTION condition after
1758                  * target_handle_task_attr() has done SAM task attr
1759                  * checking, and possibly have already defered execution
1760                  * out to target_restart_delayed_cmds() context.
1761                  */
1762                 ret = target_scsi3_ua_check(cmd);
1763                 if (ret)
1764                         goto err;
1765
1766                 ret = target_alua_state_check(cmd);
1767                 if (ret)
1768                         goto err;
1769
1770                 ret = target_check_reservation(cmd);
1771                 if (ret) {
1772                         cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1773                         goto err;
1774                 }
1775         }
1776
1777         ret = cmd->execute_cmd(cmd);
1778         if (!ret)
1779                 return;
1780 err:
1781         spin_lock_irq(&cmd->t_state_lock);
1782         cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1783         spin_unlock_irq(&cmd->t_state_lock);
1784
1785         transport_generic_request_failure(cmd, ret);
1786 }
1787
1788 static int target_write_prot_action(struct se_cmd *cmd)
1789 {
1790         u32 sectors;
1791         /*
1792          * Perform WRITE_INSERT of PI using software emulation when backend
1793          * device has PI enabled, if the transport has not already generated
1794          * PI using hardware WRITE_INSERT offload.
1795          */
1796         switch (cmd->prot_op) {
1797         case TARGET_PROT_DOUT_INSERT:
1798                 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1799                         sbc_dif_generate(cmd);
1800                 break;
1801         case TARGET_PROT_DOUT_STRIP:
1802                 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1803                         break;
1804
1805                 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1806                 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1807                                              sectors, 0, cmd->t_prot_sg, 0);
1808                 if (unlikely(cmd->pi_err)) {
1809                         spin_lock_irq(&cmd->t_state_lock);
1810                         cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1811                         spin_unlock_irq(&cmd->t_state_lock);
1812                         transport_generic_request_failure(cmd, cmd->pi_err);
1813                         return -1;
1814                 }
1815                 break;
1816         default:
1817                 break;
1818         }
1819
1820         return 0;
1821 }
1822
1823 static bool target_handle_task_attr(struct se_cmd *cmd)
1824 {
1825         struct se_device *dev = cmd->se_dev;
1826
1827         if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1828                 return false;
1829
1830         cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
1831
1832         /*
1833          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1834          * to allow the passed struct se_cmd list of tasks to the front of the list.
1835          */
1836         switch (cmd->sam_task_attr) {
1837         case TCM_HEAD_TAG:
1838                 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1839                          cmd->t_task_cdb[0]);
1840                 return false;
1841         case TCM_ORDERED_TAG:
1842                 atomic_inc_mb(&dev->dev_ordered_sync);
1843
1844                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1845                          cmd->t_task_cdb[0]);
1846
1847                 /*
1848                  * Execute an ORDERED command if no other older commands
1849                  * exist that need to be completed first.
1850                  */
1851                 if (!atomic_read(&dev->simple_cmds))
1852                         return false;
1853                 break;
1854         default:
1855                 /*
1856                  * For SIMPLE and UNTAGGED Task Attribute commands
1857                  */
1858                 atomic_inc_mb(&dev->simple_cmds);
1859                 break;
1860         }
1861
1862         if (atomic_read(&dev->dev_ordered_sync) == 0)
1863                 return false;
1864
1865         spin_lock(&dev->delayed_cmd_lock);
1866         list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1867         spin_unlock(&dev->delayed_cmd_lock);
1868
1869         pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1870                 cmd->t_task_cdb[0], cmd->sam_task_attr);
1871         return true;
1872 }
1873
1874 static int __transport_check_aborted_status(struct se_cmd *, int);
1875
1876 void target_execute_cmd(struct se_cmd *cmd)
1877 {
1878         /*
1879          * Determine if frontend context caller is requesting the stopping of
1880          * this command for frontend exceptions.
1881          *
1882          * If the received CDB has aleady been aborted stop processing it here.
1883          */
1884         spin_lock_irq(&cmd->t_state_lock);
1885         if (__transport_check_aborted_status(cmd, 1)) {
1886                 spin_unlock_irq(&cmd->t_state_lock);
1887                 return;
1888         }
1889         if (cmd->transport_state & CMD_T_STOP) {
1890                 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1891                         __func__, __LINE__, cmd->tag);
1892
1893                 spin_unlock_irq(&cmd->t_state_lock);
1894                 complete_all(&cmd->t_transport_stop_comp);
1895                 return;
1896         }
1897
1898         cmd->t_state = TRANSPORT_PROCESSING;
1899         cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1900         spin_unlock_irq(&cmd->t_state_lock);
1901
1902         if (target_write_prot_action(cmd))
1903                 return;
1904
1905         if (target_handle_task_attr(cmd)) {
1906                 spin_lock_irq(&cmd->t_state_lock);
1907                 cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT);
1908                 spin_unlock_irq(&cmd->t_state_lock);
1909                 return;
1910         }
1911
1912         __target_execute_cmd(cmd, true);
1913 }
1914 EXPORT_SYMBOL(target_execute_cmd);
1915
1916 /*
1917  * Process all commands up to the last received ORDERED task attribute which
1918  * requires another blocking boundary
1919  */
1920 static void target_restart_delayed_cmds(struct se_device *dev)
1921 {
1922         for (;;) {
1923                 struct se_cmd *cmd;
1924
1925                 spin_lock(&dev->delayed_cmd_lock);
1926                 if (list_empty(&dev->delayed_cmd_list)) {
1927                         spin_unlock(&dev->delayed_cmd_lock);
1928                         break;
1929                 }
1930
1931                 cmd = list_entry(dev->delayed_cmd_list.next,
1932                                  struct se_cmd, se_delayed_node);
1933                 list_del(&cmd->se_delayed_node);
1934                 spin_unlock(&dev->delayed_cmd_lock);
1935
1936                 __target_execute_cmd(cmd, true);
1937
1938                 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
1939                         break;
1940         }
1941 }
1942
1943 /*
1944  * Called from I/O completion to determine which dormant/delayed
1945  * and ordered cmds need to have their tasks added to the execution queue.
1946  */
1947 static void transport_complete_task_attr(struct se_cmd *cmd)
1948 {
1949         struct se_device *dev = cmd->se_dev;
1950
1951         if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1952                 return;
1953
1954         if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
1955                 goto restart;
1956
1957         if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
1958                 atomic_dec_mb(&dev->simple_cmds);
1959                 dev->dev_cur_ordered_id++;
1960                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for SIMPLE\n",
1961                          dev->dev_cur_ordered_id);
1962         } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
1963                 dev->dev_cur_ordered_id++;
1964                 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
1965                          dev->dev_cur_ordered_id);
1966         } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
1967                 atomic_dec_mb(&dev->dev_ordered_sync);
1968
1969                 dev->dev_cur_ordered_id++;
1970                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
1971                          dev->dev_cur_ordered_id);
1972         }
1973 restart:
1974         target_restart_delayed_cmds(dev);
1975 }
1976
1977 static void transport_complete_qf(struct se_cmd *cmd)
1978 {
1979         int ret = 0;
1980
1981         transport_complete_task_attr(cmd);
1982
1983         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1984                 trace_target_cmd_complete(cmd);
1985                 ret = cmd->se_tfo->queue_status(cmd);
1986                 goto out;
1987         }
1988
1989         switch (cmd->data_direction) {
1990         case DMA_FROM_DEVICE:
1991                 if (cmd->scsi_status)
1992                         goto queue_status;
1993
1994                 trace_target_cmd_complete(cmd);
1995                 ret = cmd->se_tfo->queue_data_in(cmd);
1996                 break;
1997         case DMA_TO_DEVICE:
1998                 if (cmd->se_cmd_flags & SCF_BIDI) {
1999                         ret = cmd->se_tfo->queue_data_in(cmd);
2000                         break;
2001                 }
2002                 /* Fall through for DMA_TO_DEVICE */
2003         case DMA_NONE:
2004 queue_status:
2005                 trace_target_cmd_complete(cmd);
2006                 ret = cmd->se_tfo->queue_status(cmd);
2007                 break;
2008         default:
2009                 break;
2010         }
2011
2012 out:
2013         if (ret < 0) {
2014                 transport_handle_queue_full(cmd, cmd->se_dev);
2015                 return;
2016         }
2017         transport_lun_remove_cmd(cmd);
2018         transport_cmd_check_stop_to_fabric(cmd);
2019 }
2020
2021 static void transport_handle_queue_full(
2022         struct se_cmd *cmd,
2023         struct se_device *dev)
2024 {
2025         spin_lock_irq(&dev->qf_cmd_lock);
2026         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2027         atomic_inc_mb(&dev->dev_qf_count);
2028         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2029
2030         schedule_work(&cmd->se_dev->qf_work_queue);
2031 }
2032
2033 static bool target_read_prot_action(struct se_cmd *cmd)
2034 {
2035         switch (cmd->prot_op) {
2036         case TARGET_PROT_DIN_STRIP:
2037                 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2038                         u32 sectors = cmd->data_length >>
2039                                   ilog2(cmd->se_dev->dev_attrib.block_size);
2040
2041                         cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2042                                                      sectors, 0, cmd->t_prot_sg,
2043                                                      0);
2044                         if (cmd->pi_err)
2045                                 return true;
2046                 }
2047                 break;
2048         case TARGET_PROT_DIN_INSERT:
2049                 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2050                         break;
2051
2052                 sbc_dif_generate(cmd);
2053                 break;
2054         default:
2055                 break;
2056         }
2057
2058         return false;
2059 }
2060
2061 static void target_complete_ok_work(struct work_struct *work)
2062 {
2063         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2064         int ret;
2065
2066         /*
2067          * Check if we need to move delayed/dormant tasks from cmds on the
2068          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2069          * Attribute.
2070          */
2071         transport_complete_task_attr(cmd);
2072
2073         /*
2074          * Check to schedule QUEUE_FULL work, or execute an existing
2075          * cmd->transport_qf_callback()
2076          */
2077         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2078                 schedule_work(&cmd->se_dev->qf_work_queue);
2079
2080         /*
2081          * Check if we need to send a sense buffer from
2082          * the struct se_cmd in question.
2083          */
2084         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2085                 WARN_ON(!cmd->scsi_status);
2086                 ret = transport_send_check_condition_and_sense(
2087                                         cmd, 0, 1);
2088                 if (ret == -EAGAIN || ret == -ENOMEM)
2089                         goto queue_full;
2090
2091                 transport_lun_remove_cmd(cmd);
2092                 transport_cmd_check_stop_to_fabric(cmd);
2093                 return;
2094         }
2095         /*
2096          * Check for a callback, used by amongst other things
2097          * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2098          */
2099         if (cmd->transport_complete_callback) {
2100                 sense_reason_t rc;
2101                 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2102                 bool zero_dl = !(cmd->data_length);
2103                 int post_ret = 0;
2104
2105                 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2106                 if (!rc && !post_ret) {
2107                         if (caw && zero_dl)
2108                                 goto queue_rsp;
2109
2110                         return;
2111                 } else if (rc) {
2112                         ret = transport_send_check_condition_and_sense(cmd,
2113                                                 rc, 0);
2114                         if (ret == -EAGAIN || ret == -ENOMEM)
2115                                 goto queue_full;
2116
2117                         transport_lun_remove_cmd(cmd);
2118                         transport_cmd_check_stop_to_fabric(cmd);
2119                         return;
2120                 }
2121         }
2122
2123 queue_rsp:
2124         switch (cmd->data_direction) {
2125         case DMA_FROM_DEVICE:
2126                 if (cmd->scsi_status)
2127                         goto queue_status;
2128
2129                 atomic_long_add(cmd->data_length,
2130                                 &cmd->se_lun->lun_stats.tx_data_octets);
2131                 /*
2132                  * Perform READ_STRIP of PI using software emulation when
2133                  * backend had PI enabled, if the transport will not be
2134                  * performing hardware READ_STRIP offload.
2135                  */
2136                 if (target_read_prot_action(cmd)) {
2137                         ret = transport_send_check_condition_and_sense(cmd,
2138                                                 cmd->pi_err, 0);
2139                         if (ret == -EAGAIN || ret == -ENOMEM)
2140                                 goto queue_full;
2141
2142                         transport_lun_remove_cmd(cmd);
2143                         transport_cmd_check_stop_to_fabric(cmd);
2144                         return;
2145                 }
2146
2147                 trace_target_cmd_complete(cmd);
2148                 ret = cmd->se_tfo->queue_data_in(cmd);
2149                 if (ret == -EAGAIN || ret == -ENOMEM)
2150                         goto queue_full;
2151                 break;
2152         case DMA_TO_DEVICE:
2153                 atomic_long_add(cmd->data_length,
2154                                 &cmd->se_lun->lun_stats.rx_data_octets);
2155                 /*
2156                  * Check if we need to send READ payload for BIDI-COMMAND
2157                  */
2158                 if (cmd->se_cmd_flags & SCF_BIDI) {
2159                         atomic_long_add(cmd->data_length,
2160                                         &cmd->se_lun->lun_stats.tx_data_octets);
2161                         ret = cmd->se_tfo->queue_data_in(cmd);
2162                         if (ret == -EAGAIN || ret == -ENOMEM)
2163                                 goto queue_full;
2164                         break;
2165                 }
2166                 /* Fall through for DMA_TO_DEVICE */
2167         case DMA_NONE:
2168 queue_status:
2169                 trace_target_cmd_complete(cmd);
2170                 ret = cmd->se_tfo->queue_status(cmd);
2171                 if (ret == -EAGAIN || ret == -ENOMEM)
2172                         goto queue_full;
2173                 break;
2174         default:
2175                 break;
2176         }
2177
2178         transport_lun_remove_cmd(cmd);
2179         transport_cmd_check_stop_to_fabric(cmd);
2180         return;
2181
2182 queue_full:
2183         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2184                 " data_direction: %d\n", cmd, cmd->data_direction);
2185         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2186         transport_handle_queue_full(cmd, cmd->se_dev);
2187 }
2188
2189 void target_free_sgl(struct scatterlist *sgl, int nents)
2190 {
2191         struct scatterlist *sg;
2192         int count;
2193
2194         for_each_sg(sgl, sg, nents, count)
2195                 __free_page(sg_page(sg));
2196
2197         kfree(sgl);
2198 }
2199 EXPORT_SYMBOL(target_free_sgl);
2200
2201 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2202 {
2203         /*
2204          * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2205          * emulation, and free + reset pointers if necessary..
2206          */
2207         if (!cmd->t_data_sg_orig)
2208                 return;
2209
2210         kfree(cmd->t_data_sg);
2211         cmd->t_data_sg = cmd->t_data_sg_orig;
2212         cmd->t_data_sg_orig = NULL;
2213         cmd->t_data_nents = cmd->t_data_nents_orig;
2214         cmd->t_data_nents_orig = 0;
2215 }
2216
2217 static inline void transport_free_pages(struct se_cmd *cmd)
2218 {
2219         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2220                 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2221                 cmd->t_prot_sg = NULL;
2222                 cmd->t_prot_nents = 0;
2223         }
2224
2225         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2226                 /*
2227                  * Release special case READ buffer payload required for
2228                  * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2229                  */
2230                 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2231                         target_free_sgl(cmd->t_bidi_data_sg,
2232                                            cmd->t_bidi_data_nents);
2233                         cmd->t_bidi_data_sg = NULL;
2234                         cmd->t_bidi_data_nents = 0;
2235                 }
2236                 transport_reset_sgl_orig(cmd);
2237                 return;
2238         }
2239         transport_reset_sgl_orig(cmd);
2240
2241         target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2242         cmd->t_data_sg = NULL;
2243         cmd->t_data_nents = 0;
2244
2245         target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2246         cmd->t_bidi_data_sg = NULL;
2247         cmd->t_bidi_data_nents = 0;
2248 }
2249
2250 /**
2251  * transport_put_cmd - release a reference to a command
2252  * @cmd:       command to release
2253  *
2254  * This routine releases our reference to the command and frees it if possible.
2255  */
2256 static int transport_put_cmd(struct se_cmd *cmd)
2257 {
2258         BUG_ON(!cmd->se_tfo);
2259         /*
2260          * If this cmd has been setup with target_get_sess_cmd(), drop
2261          * the kref and call ->release_cmd() in kref callback.
2262          */
2263         return target_put_sess_cmd(cmd);
2264 }
2265
2266 void *transport_kmap_data_sg(struct se_cmd *cmd)
2267 {
2268         struct scatterlist *sg = cmd->t_data_sg;
2269         struct page **pages;
2270         int i;
2271
2272         /*
2273          * We need to take into account a possible offset here for fabrics like
2274          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2275          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2276          */
2277         if (!cmd->t_data_nents)
2278                 return NULL;
2279
2280         BUG_ON(!sg);
2281         if (cmd->t_data_nents == 1)
2282                 return kmap(sg_page(sg)) + sg->offset;
2283
2284         /* >1 page. use vmap */
2285         pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2286         if (!pages)
2287                 return NULL;
2288
2289         /* convert sg[] to pages[] */
2290         for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2291                 pages[i] = sg_page(sg);
2292         }
2293
2294         cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2295         kfree(pages);
2296         if (!cmd->t_data_vmap)
2297                 return NULL;
2298
2299         return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2300 }
2301 EXPORT_SYMBOL(transport_kmap_data_sg);
2302
2303 void transport_kunmap_data_sg(struct se_cmd *cmd)
2304 {
2305         if (!cmd->t_data_nents) {
2306                 return;
2307         } else if (cmd->t_data_nents == 1) {
2308                 kunmap(sg_page(cmd->t_data_sg));
2309                 return;
2310         }
2311
2312         vunmap(cmd->t_data_vmap);
2313         cmd->t_data_vmap = NULL;
2314 }
2315 EXPORT_SYMBOL(transport_kunmap_data_sg);
2316
2317 int
2318 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2319                  bool zero_page, bool chainable)
2320 {
2321         struct scatterlist *sg;
2322         struct page *page;
2323         gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2324         unsigned int nalloc, nent;
2325         int i = 0;
2326
2327         nalloc = nent = DIV_ROUND_UP(length, PAGE_SIZE);
2328         if (chainable)
2329                 nalloc++;
2330         sg = kmalloc_array(nalloc, sizeof(struct scatterlist), GFP_KERNEL);
2331         if (!sg)
2332                 return -ENOMEM;
2333
2334         sg_init_table(sg, nalloc);
2335
2336         while (length) {
2337                 u32 page_len = min_t(u32, length, PAGE_SIZE);
2338                 page = alloc_page(GFP_KERNEL | zero_flag);
2339                 if (!page)
2340                         goto out;
2341
2342                 sg_set_page(&sg[i], page, page_len, 0);
2343                 length -= page_len;
2344                 i++;
2345         }
2346         *sgl = sg;
2347         *nents = nent;
2348         return 0;
2349
2350 out:
2351         while (i > 0) {
2352                 i--;
2353                 __free_page(sg_page(&sg[i]));
2354         }
2355         kfree(sg);
2356         return -ENOMEM;
2357 }
2358 EXPORT_SYMBOL(target_alloc_sgl);
2359
2360 /*
2361  * Allocate any required resources to execute the command.  For writes we
2362  * might not have the payload yet, so notify the fabric via a call to
2363  * ->write_pending instead. Otherwise place it on the execution queue.
2364  */
2365 sense_reason_t
2366 transport_generic_new_cmd(struct se_cmd *cmd)
2367 {
2368         int ret = 0;
2369         bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2370
2371         if (cmd->prot_op != TARGET_PROT_NORMAL &&
2372             !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2373                 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2374                                        cmd->prot_length, true, false);
2375                 if (ret < 0)
2376                         return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2377         }
2378
2379         /*
2380          * Determine is the TCM fabric module has already allocated physical
2381          * memory, and is directly calling transport_generic_map_mem_to_cmd()
2382          * beforehand.
2383          */
2384         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2385             cmd->data_length) {
2386
2387                 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2388                     (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2389                         u32 bidi_length;
2390
2391                         if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2392                                 bidi_length = cmd->t_task_nolb *
2393                                               cmd->se_dev->dev_attrib.block_size;
2394                         else
2395                                 bidi_length = cmd->data_length;
2396
2397                         ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2398                                                &cmd->t_bidi_data_nents,
2399                                                bidi_length, zero_flag, false);
2400                         if (ret < 0)
2401                                 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2402                 }
2403
2404                 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2405                                        cmd->data_length, zero_flag, false);
2406                 if (ret < 0)
2407                         return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2408         } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2409                     cmd->data_length) {
2410                 /*
2411                  * Special case for COMPARE_AND_WRITE with fabrics
2412                  * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2413                  */
2414                 u32 caw_length = cmd->t_task_nolb *
2415                                  cmd->se_dev->dev_attrib.block_size;
2416
2417                 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2418                                        &cmd->t_bidi_data_nents,
2419                                        caw_length, zero_flag, false);
2420                 if (ret < 0)
2421                         return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2422         }
2423         /*
2424          * If this command is not a write we can execute it right here,
2425          * for write buffers we need to notify the fabric driver first
2426          * and let it call back once the write buffers are ready.
2427          */
2428         target_add_to_state_list(cmd);
2429         if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2430                 target_execute_cmd(cmd);
2431                 return 0;
2432         }
2433         transport_cmd_check_stop(cmd, false, true);
2434
2435         ret = cmd->se_tfo->write_pending(cmd);
2436         if (ret == -EAGAIN || ret == -ENOMEM)
2437                 goto queue_full;
2438
2439         /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2440         WARN_ON(ret);
2441
2442         return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2443
2444 queue_full:
2445         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2446         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2447         transport_handle_queue_full(cmd, cmd->se_dev);
2448         return 0;
2449 }
2450 EXPORT_SYMBOL(transport_generic_new_cmd);
2451
2452 static void transport_write_pending_qf(struct se_cmd *cmd)
2453 {
2454         int ret;
2455
2456         ret = cmd->se_tfo->write_pending(cmd);
2457         if (ret == -EAGAIN || ret == -ENOMEM) {
2458                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2459                          cmd);
2460                 transport_handle_queue_full(cmd, cmd->se_dev);
2461         }
2462 }
2463
2464 static bool
2465 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2466                            unsigned long *flags);
2467
2468 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2469 {
2470         unsigned long flags;
2471
2472         spin_lock_irqsave(&cmd->t_state_lock, flags);
2473         __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2474         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2475 }
2476
2477 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2478 {
2479         int ret = 0;
2480         bool aborted = false, tas = false;
2481
2482         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2483                 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2484                         target_wait_free_cmd(cmd, &aborted, &tas);
2485
2486                 if (!aborted || tas)
2487                         ret = transport_put_cmd(cmd);
2488         } else {
2489                 if (wait_for_tasks)
2490                         target_wait_free_cmd(cmd, &aborted, &tas);
2491                 /*
2492                  * Handle WRITE failure case where transport_generic_new_cmd()
2493                  * has already added se_cmd to state_list, but fabric has
2494                  * failed command before I/O submission.
2495                  */
2496                 if (cmd->state_active)
2497                         target_remove_from_state_list(cmd);
2498
2499                 if (cmd->se_lun)
2500                         transport_lun_remove_cmd(cmd);
2501
2502                 if (!aborted || tas)
2503                         ret = transport_put_cmd(cmd);
2504         }
2505         /*
2506          * If the task has been internally aborted due to TMR ABORT_TASK
2507          * or LUN_RESET, target_core_tmr.c is responsible for performing
2508          * the remaining calls to target_put_sess_cmd(), and not the
2509          * callers of this function.
2510          */
2511         if (aborted) {
2512                 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2513                 wait_for_completion(&cmd->cmd_wait_comp);
2514                 cmd->se_tfo->release_cmd(cmd);
2515                 ret = 1;
2516         }
2517         return ret;
2518 }
2519 EXPORT_SYMBOL(transport_generic_free_cmd);
2520
2521 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2522  * @se_cmd:     command descriptor to add
2523  * @ack_kref:   Signal that fabric will perform an ack target_put_sess_cmd()
2524  */
2525 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2526 {
2527         struct se_session *se_sess = se_cmd->se_sess;
2528         unsigned long flags;
2529         int ret = 0;
2530
2531         /*
2532          * Add a second kref if the fabric caller is expecting to handle
2533          * fabric acknowledgement that requires two target_put_sess_cmd()
2534          * invocations before se_cmd descriptor release.
2535          */
2536         if (ack_kref)
2537                 kref_get(&se_cmd->cmd_kref);
2538
2539         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2540         if (se_sess->sess_tearing_down) {
2541                 ret = -ESHUTDOWN;
2542                 goto out;
2543         }
2544         list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2545 out:
2546         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2547
2548         if (ret && ack_kref)
2549                 target_put_sess_cmd(se_cmd);
2550
2551         return ret;
2552 }
2553 EXPORT_SYMBOL(target_get_sess_cmd);
2554
2555 static void target_free_cmd_mem(struct se_cmd *cmd)
2556 {
2557         transport_free_pages(cmd);
2558
2559         if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2560                 core_tmr_release_req(cmd->se_tmr_req);
2561         if (cmd->t_task_cdb != cmd->__t_task_cdb)
2562                 kfree(cmd->t_task_cdb);
2563 }
2564
2565 static void target_release_cmd_kref(struct kref *kref)
2566 {
2567         struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2568         struct se_session *se_sess = se_cmd->se_sess;
2569         unsigned long flags;
2570         bool fabric_stop;
2571
2572         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2573
2574         spin_lock(&se_cmd->t_state_lock);
2575         fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) &&
2576                       (se_cmd->transport_state & CMD_T_ABORTED);
2577         spin_unlock(&se_cmd->t_state_lock);
2578
2579         if (se_cmd->cmd_wait_set || fabric_stop) {
2580                 list_del_init(&se_cmd->se_cmd_list);
2581                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2582                 target_free_cmd_mem(se_cmd);
2583                 complete(&se_cmd->cmd_wait_comp);
2584                 return;
2585         }
2586         list_del_init(&se_cmd->se_cmd_list);
2587         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2588
2589         target_free_cmd_mem(se_cmd);
2590         se_cmd->se_tfo->release_cmd(se_cmd);
2591 }
2592
2593 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2594  * @se_cmd:     command descriptor to drop
2595  */
2596 int target_put_sess_cmd(struct se_cmd *se_cmd)
2597 {
2598         struct se_session *se_sess = se_cmd->se_sess;
2599
2600         if (!se_sess) {
2601                 target_free_cmd_mem(se_cmd);
2602                 se_cmd->se_tfo->release_cmd(se_cmd);
2603                 return 1;
2604         }
2605         return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2606 }
2607 EXPORT_SYMBOL(target_put_sess_cmd);
2608
2609 /* target_sess_cmd_list_set_waiting - Flag all commands in
2610  *         sess_cmd_list to complete cmd_wait_comp.  Set
2611  *         sess_tearing_down so no more commands are queued.
2612  * @se_sess:    session to flag
2613  */
2614 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2615 {
2616         struct se_cmd *se_cmd;
2617         unsigned long flags;
2618         int rc;
2619
2620         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2621         if (se_sess->sess_tearing_down) {
2622                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2623                 return;
2624         }
2625         se_sess->sess_tearing_down = 1;
2626         list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2627
2628         list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list) {
2629                 rc = kref_get_unless_zero(&se_cmd->cmd_kref);
2630                 if (rc) {
2631                         se_cmd->cmd_wait_set = 1;
2632                         spin_lock(&se_cmd->t_state_lock);
2633                         se_cmd->transport_state |= CMD_T_FABRIC_STOP;
2634                         spin_unlock(&se_cmd->t_state_lock);
2635                 }
2636         }
2637
2638         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2639 }
2640 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2641
2642 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2643  * @se_sess:    session to wait for active I/O
2644  */
2645 void target_wait_for_sess_cmds(struct se_session *se_sess)
2646 {
2647         struct se_cmd *se_cmd, *tmp_cmd;
2648         unsigned long flags;
2649         bool tas;
2650
2651         list_for_each_entry_safe(se_cmd, tmp_cmd,
2652                                 &se_sess->sess_wait_list, se_cmd_list) {
2653                 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2654                         " %d\n", se_cmd, se_cmd->t_state,
2655                         se_cmd->se_tfo->get_cmd_state(se_cmd));
2656
2657                 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2658                 tas = (se_cmd->transport_state & CMD_T_TAS);
2659                 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2660
2661                 if (!target_put_sess_cmd(se_cmd)) {
2662                         if (tas)
2663                                 target_put_sess_cmd(se_cmd);
2664                 }
2665
2666                 wait_for_completion(&se_cmd->cmd_wait_comp);
2667                 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2668                         " fabric state: %d\n", se_cmd, se_cmd->t_state,
2669                         se_cmd->se_tfo->get_cmd_state(se_cmd));
2670
2671                 se_cmd->se_tfo->release_cmd(se_cmd);
2672         }
2673
2674         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2675         WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2676         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2677
2678 }
2679 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2680
2681 void transport_clear_lun_ref(struct se_lun *lun)
2682 {
2683         percpu_ref_kill(&lun->lun_ref);
2684         wait_for_completion(&lun->lun_ref_comp);
2685 }
2686
2687 static bool
2688 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2689                            bool *aborted, bool *tas, unsigned long *flags)
2690         __releases(&cmd->t_state_lock)
2691         __acquires(&cmd->t_state_lock)
2692 {
2693
2694         assert_spin_locked(&cmd->t_state_lock);
2695         WARN_ON_ONCE(!irqs_disabled());
2696
2697         if (fabric_stop)
2698                 cmd->transport_state |= CMD_T_FABRIC_STOP;
2699
2700         if (cmd->transport_state & CMD_T_ABORTED)
2701                 *aborted = true;
2702
2703         if (cmd->transport_state & CMD_T_TAS)
2704                 *tas = true;
2705
2706         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2707             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2708                 return false;
2709
2710         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2711             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2712                 return false;
2713
2714         if (!(cmd->transport_state & CMD_T_ACTIVE))
2715                 return false;
2716
2717         if (fabric_stop && *aborted)
2718                 return false;
2719
2720         cmd->transport_state |= CMD_T_STOP;
2721
2722         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d,"
2723                  " t_state: %d, CMD_T_STOP\n", cmd, cmd->tag,
2724                  cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2725
2726         spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2727
2728         wait_for_completion(&cmd->t_transport_stop_comp);
2729
2730         spin_lock_irqsave(&cmd->t_state_lock, *flags);
2731         cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2732
2733         pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2734                  "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
2735
2736         return true;
2737 }
2738
2739 /**
2740  * transport_wait_for_tasks - wait for completion to occur
2741  * @cmd:        command to wait
2742  *
2743  * Called from frontend fabric context to wait for storage engine
2744  * to pause and/or release frontend generated struct se_cmd.
2745  */
2746 bool transport_wait_for_tasks(struct se_cmd *cmd)
2747 {
2748         unsigned long flags;
2749         bool ret, aborted = false, tas = false;
2750
2751         spin_lock_irqsave(&cmd->t_state_lock, flags);
2752         ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
2753         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2754
2755         return ret;
2756 }
2757 EXPORT_SYMBOL(transport_wait_for_tasks);
2758
2759 struct sense_info {
2760         u8 key;
2761         u8 asc;
2762         u8 ascq;
2763         bool add_sector_info;
2764 };
2765
2766 static const struct sense_info sense_info_table[] = {
2767         [TCM_NO_SENSE] = {
2768                 .key = NOT_READY
2769         },
2770         [TCM_NON_EXISTENT_LUN] = {
2771                 .key = ILLEGAL_REQUEST,
2772                 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
2773         },
2774         [TCM_UNSUPPORTED_SCSI_OPCODE] = {
2775                 .key = ILLEGAL_REQUEST,
2776                 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2777         },
2778         [TCM_SECTOR_COUNT_TOO_MANY] = {
2779                 .key = ILLEGAL_REQUEST,
2780                 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2781         },
2782         [TCM_UNKNOWN_MODE_PAGE] = {
2783                 .key = ILLEGAL_REQUEST,
2784                 .asc = 0x24, /* INVALID FIELD IN CDB */
2785         },
2786         [TCM_CHECK_CONDITION_ABORT_CMD] = {
2787                 .key = ABORTED_COMMAND,
2788                 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
2789                 .ascq = 0x03,
2790         },
2791         [TCM_INCORRECT_AMOUNT_OF_DATA] = {
2792                 .key = ABORTED_COMMAND,
2793                 .asc = 0x0c, /* WRITE ERROR */
2794                 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
2795         },
2796         [TCM_INVALID_CDB_FIELD] = {
2797                 .key = ILLEGAL_REQUEST,
2798                 .asc = 0x24, /* INVALID FIELD IN CDB */
2799         },
2800         [TCM_INVALID_PARAMETER_LIST] = {
2801                 .key = ILLEGAL_REQUEST,
2802                 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
2803         },
2804         [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
2805                 .key = ILLEGAL_REQUEST,
2806                 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
2807         },
2808         [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
2809                 .key = ILLEGAL_REQUEST,
2810                 .asc = 0x0c, /* WRITE ERROR */
2811                 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
2812         },
2813         [TCM_SERVICE_CRC_ERROR] = {
2814                 .key = ABORTED_COMMAND,
2815                 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
2816                 .ascq = 0x05, /* N/A */
2817         },
2818         [TCM_SNACK_REJECTED] = {
2819                 .key = ABORTED_COMMAND,
2820                 .asc = 0x11, /* READ ERROR */
2821                 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
2822         },
2823         [TCM_WRITE_PROTECTED] = {
2824                 .key = DATA_PROTECT,
2825                 .asc = 0x27, /* WRITE PROTECTED */
2826         },
2827         [TCM_ADDRESS_OUT_OF_RANGE] = {
2828                 .key = ILLEGAL_REQUEST,
2829                 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2830         },
2831         [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
2832                 .key = UNIT_ATTENTION,
2833         },
2834         [TCM_CHECK_CONDITION_NOT_READY] = {
2835                 .key = NOT_READY,
2836         },
2837         [TCM_MISCOMPARE_VERIFY] = {
2838                 .key = MISCOMPARE,
2839                 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
2840                 .ascq = 0x00,
2841         },
2842         [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
2843                 .key = ABORTED_COMMAND,
2844                 .asc = 0x10,
2845                 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
2846                 .add_sector_info = true,
2847         },
2848         [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
2849                 .key = ABORTED_COMMAND,
2850                 .asc = 0x10,
2851                 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2852                 .add_sector_info = true,
2853         },
2854         [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
2855                 .key = ABORTED_COMMAND,
2856                 .asc = 0x10,
2857                 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2858                 .add_sector_info = true,
2859         },
2860         [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
2861                 /*
2862                  * Returning ILLEGAL REQUEST would cause immediate IO errors on
2863                  * Solaris initiators.  Returning NOT READY instead means the
2864                  * operations will be retried a finite number of times and we
2865                  * can survive intermittent errors.
2866                  */
2867                 .key = NOT_READY,
2868                 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
2869         },
2870 };
2871
2872 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
2873 {
2874         const struct sense_info *si;
2875         u8 *buffer = cmd->sense_buffer;
2876         int r = (__force int)reason;
2877         u8 asc, ascq;
2878         bool desc_format = target_sense_desc_format(cmd->se_dev);
2879
2880         if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
2881                 si = &sense_info_table[r];
2882         else
2883                 si = &sense_info_table[(__force int)
2884                                        TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
2885
2886         if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
2887                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2888                 WARN_ON_ONCE(asc == 0);
2889         } else if (si->asc == 0) {
2890                 WARN_ON_ONCE(cmd->scsi_asc == 0);
2891                 asc = cmd->scsi_asc;
2892                 ascq = cmd->scsi_ascq;
2893         } else {
2894                 asc = si->asc;
2895                 ascq = si->ascq;
2896         }
2897
2898         scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq);
2899         if (si->add_sector_info)
2900                 return scsi_set_sense_information(buffer,
2901                                                   cmd->scsi_sense_length,
2902                                                   cmd->bad_sector);
2903
2904         return 0;
2905 }
2906
2907 int
2908 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2909                 sense_reason_t reason, int from_transport)
2910 {
2911         unsigned long flags;
2912
2913         spin_lock_irqsave(&cmd->t_state_lock, flags);
2914         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2915                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2916                 return 0;
2917         }
2918         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2919         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2920
2921         if (!from_transport) {
2922                 int rc;
2923
2924                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2925                 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2926                 cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
2927                 rc = translate_sense_reason(cmd, reason);
2928                 if (rc)
2929                         return rc;
2930         }
2931
2932         trace_target_cmd_complete(cmd);
2933         return cmd->se_tfo->queue_status(cmd);
2934 }
2935 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2936
2937 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2938         __releases(&cmd->t_state_lock)
2939         __acquires(&cmd->t_state_lock)
2940 {
2941         assert_spin_locked(&cmd->t_state_lock);
2942         WARN_ON_ONCE(!irqs_disabled());
2943
2944         if (!(cmd->transport_state & CMD_T_ABORTED))
2945                 return 0;
2946         /*
2947          * If cmd has been aborted but either no status is to be sent or it has
2948          * already been sent, just return
2949          */
2950         if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
2951                 if (send_status)
2952                         cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
2953                 return 1;
2954         }
2955
2956         pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
2957                 " 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
2958
2959         cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
2960         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2961         trace_target_cmd_complete(cmd);
2962
2963         spin_unlock_irq(&cmd->t_state_lock);
2964         cmd->se_tfo->queue_status(cmd);
2965         spin_lock_irq(&cmd->t_state_lock);
2966
2967         return 1;
2968 }
2969
2970 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2971 {
2972         int ret;
2973
2974         spin_lock_irq(&cmd->t_state_lock);
2975         ret = __transport_check_aborted_status(cmd, send_status);
2976         spin_unlock_irq(&cmd->t_state_lock);
2977
2978         return ret;
2979 }
2980 EXPORT_SYMBOL(transport_check_aborted_status);
2981
2982 void transport_send_task_abort(struct se_cmd *cmd)
2983 {
2984         unsigned long flags;
2985
2986         spin_lock_irqsave(&cmd->t_state_lock, flags);
2987         if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
2988                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2989                 return;
2990         }
2991         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2992
2993         /*
2994          * If there are still expected incoming fabric WRITEs, we wait
2995          * until until they have completed before sending a TASK_ABORTED
2996          * response.  This response with TASK_ABORTED status will be
2997          * queued back to fabric module by transport_check_aborted_status().
2998          */
2999         if (cmd->data_direction == DMA_TO_DEVICE) {
3000                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3001                         spin_lock_irqsave(&cmd->t_state_lock, flags);
3002                         if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
3003                                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3004                                 goto send_abort;
3005                         }
3006                         cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3007                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3008                         return;
3009                 }
3010         }
3011 send_abort:
3012         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3013
3014         transport_lun_remove_cmd(cmd);
3015
3016         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3017                  cmd->t_task_cdb[0], cmd->tag);
3018
3019         trace_target_cmd_complete(cmd);
3020         cmd->se_tfo->queue_status(cmd);
3021 }
3022
3023 static void target_tmr_work(struct work_struct *work)
3024 {
3025         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3026         struct se_device *dev = cmd->se_dev;
3027         struct se_tmr_req *tmr = cmd->se_tmr_req;
3028         unsigned long flags;
3029         int ret;
3030
3031         spin_lock_irqsave(&cmd->t_state_lock, flags);
3032         if (cmd->transport_state & CMD_T_ABORTED) {
3033                 tmr->response = TMR_FUNCTION_REJECTED;
3034                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3035                 goto check_stop;
3036         }
3037         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3038
3039         switch (tmr->function) {
3040         case TMR_ABORT_TASK:
3041                 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3042                 break;
3043         case TMR_ABORT_TASK_SET:
3044         case TMR_CLEAR_ACA:
3045         case TMR_CLEAR_TASK_SET:
3046                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3047                 break;
3048         case TMR_LUN_RESET:
3049                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3050                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3051                                          TMR_FUNCTION_REJECTED;
3052                 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3053                         target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3054                                                cmd->orig_fe_lun, 0x29,
3055                                                ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3056                 }
3057                 break;
3058         case TMR_TARGET_WARM_RESET:
3059                 tmr->response = TMR_FUNCTION_REJECTED;
3060                 break;
3061         case TMR_TARGET_COLD_RESET:
3062                 tmr->response = TMR_FUNCTION_REJECTED;
3063                 break;
3064         default:
3065                 pr_err("Uknown TMR function: 0x%02x.\n",
3066                                 tmr->function);
3067                 tmr->response = TMR_FUNCTION_REJECTED;
3068                 break;
3069         }
3070
3071         spin_lock_irqsave(&cmd->t_state_lock, flags);
3072         if (cmd->transport_state & CMD_T_ABORTED) {
3073                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3074                 goto check_stop;
3075         }
3076         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3077         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3078
3079         cmd->se_tfo->queue_tm_rsp(cmd);
3080
3081 check_stop:
3082         transport_cmd_check_stop_to_fabric(cmd);
3083 }
3084
3085 int transport_generic_handle_tmr(
3086         struct se_cmd *cmd)
3087 {
3088         unsigned long flags;
3089
3090         spin_lock_irqsave(&cmd->t_state_lock, flags);
3091         cmd->transport_state |= CMD_T_ACTIVE;
3092         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3093
3094         INIT_WORK(&cmd->work, target_tmr_work);
3095         queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3096         return 0;
3097 }
3098 EXPORT_SYMBOL(transport_generic_handle_tmr);
3099
3100 bool
3101 target_check_wce(struct se_device *dev)
3102 {
3103         bool wce = false;
3104
3105         if (dev->transport->get_write_cache)
3106                 wce = dev->transport->get_write_cache(dev);
3107         else if (dev->dev_attrib.emulate_write_cache > 0)
3108                 wce = true;
3109
3110         return wce;
3111 }
3112
3113 bool
3114 target_check_fua(struct se_device *dev)
3115 {
3116         return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3117 }