bca13a0e03260592a925f2658811eebe1c1c9c34
[cascardo/linux.git] / drivers / usb / core / hcd.c
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/types.h>
44
45 #include <linux/phy/phy.h>
46 #include <linux/usb.h>
47 #include <linux/usb/hcd.h>
48 #include <linux/usb/phy.h>
49
50 #include "usb.h"
51
52
53 /*-------------------------------------------------------------------------*/
54
55 /*
56  * USB Host Controller Driver framework
57  *
58  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
59  * HCD-specific behaviors/bugs.
60  *
61  * This does error checks, tracks devices and urbs, and delegates to a
62  * "hc_driver" only for code (and data) that really needs to know about
63  * hardware differences.  That includes root hub registers, i/o queues,
64  * and so on ... but as little else as possible.
65  *
66  * Shared code includes most of the "root hub" code (these are emulated,
67  * though each HC's hardware works differently) and PCI glue, plus request
68  * tracking overhead.  The HCD code should only block on spinlocks or on
69  * hardware handshaking; blocking on software events (such as other kernel
70  * threads releasing resources, or completing actions) is all generic.
71  *
72  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
73  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
74  * only by the hub driver ... and that neither should be seen or used by
75  * usb client device drivers.
76  *
77  * Contributors of ideas or unattributed patches include: David Brownell,
78  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
79  *
80  * HISTORY:
81  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
82  *              associated cleanup.  "usb_hcd" still != "usb_bus".
83  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
84  */
85
86 /*-------------------------------------------------------------------------*/
87
88 /* Keep track of which host controller drivers are loaded */
89 unsigned long usb_hcds_loaded;
90 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
91
92 /* host controllers we manage */
93 LIST_HEAD (usb_bus_list);
94 EXPORT_SYMBOL_GPL (usb_bus_list);
95
96 /* used when allocating bus numbers */
97 #define USB_MAXBUS              64
98 static DECLARE_BITMAP(busmap, USB_MAXBUS);
99
100 /* used when updating list of hcds */
101 DEFINE_MUTEX(usb_bus_list_lock);        /* exported only for usbfs */
102 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
103
104 /* used for controlling access to virtual root hubs */
105 static DEFINE_SPINLOCK(hcd_root_hub_lock);
106
107 /* used when updating an endpoint's URB list */
108 static DEFINE_SPINLOCK(hcd_urb_list_lock);
109
110 /* used to protect against unlinking URBs after the device is gone */
111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
112
113 /* wait queue for synchronous unlinks */
114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
115
116 static inline int is_root_hub(struct usb_device *udev)
117 {
118         return (udev->parent == NULL);
119 }
120
121 /*-------------------------------------------------------------------------*/
122
123 /*
124  * Sharable chunks of root hub code.
125  */
126
127 /*-------------------------------------------------------------------------*/
128 #define KERNEL_REL      bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
129 #define KERNEL_VER      bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
130
131 /* usb 3.1 root hub device descriptor */
132 static const u8 usb31_rh_dev_descriptor[18] = {
133         0x12,       /*  __u8  bLength; */
134         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
135         0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
136
137         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
138         0x00,       /*  __u8  bDeviceSubClass; */
139         0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
140         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
141
142         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
143         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
144         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
145
146         0x03,       /*  __u8  iManufacturer; */
147         0x02,       /*  __u8  iProduct; */
148         0x01,       /*  __u8  iSerialNumber; */
149         0x01        /*  __u8  bNumConfigurations; */
150 };
151
152 /* usb 3.0 root hub device descriptor */
153 static const u8 usb3_rh_dev_descriptor[18] = {
154         0x12,       /*  __u8  bLength; */
155         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
156         0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
157
158         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
159         0x00,       /*  __u8  bDeviceSubClass; */
160         0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
161         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
162
163         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
164         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
165         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
166
167         0x03,       /*  __u8  iManufacturer; */
168         0x02,       /*  __u8  iProduct; */
169         0x01,       /*  __u8  iSerialNumber; */
170         0x01        /*  __u8  bNumConfigurations; */
171 };
172
173 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
174 static const u8 usb25_rh_dev_descriptor[18] = {
175         0x12,       /*  __u8  bLength; */
176         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
177         0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
178
179         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
180         0x00,       /*  __u8  bDeviceSubClass; */
181         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
182         0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
183
184         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
185         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
186         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
187
188         0x03,       /*  __u8  iManufacturer; */
189         0x02,       /*  __u8  iProduct; */
190         0x01,       /*  __u8  iSerialNumber; */
191         0x01        /*  __u8  bNumConfigurations; */
192 };
193
194 /* usb 2.0 root hub device descriptor */
195 static const u8 usb2_rh_dev_descriptor[18] = {
196         0x12,       /*  __u8  bLength; */
197         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
198         0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
199
200         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
201         0x00,       /*  __u8  bDeviceSubClass; */
202         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
203         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
204
205         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
206         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
207         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
208
209         0x03,       /*  __u8  iManufacturer; */
210         0x02,       /*  __u8  iProduct; */
211         0x01,       /*  __u8  iSerialNumber; */
212         0x01        /*  __u8  bNumConfigurations; */
213 };
214
215 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
216
217 /* usb 1.1 root hub device descriptor */
218 static const u8 usb11_rh_dev_descriptor[18] = {
219         0x12,       /*  __u8  bLength; */
220         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
221         0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
222
223         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
224         0x00,       /*  __u8  bDeviceSubClass; */
225         0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
226         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
227
228         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
229         0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
230         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
231
232         0x03,       /*  __u8  iManufacturer; */
233         0x02,       /*  __u8  iProduct; */
234         0x01,       /*  __u8  iSerialNumber; */
235         0x01        /*  __u8  bNumConfigurations; */
236 };
237
238
239 /*-------------------------------------------------------------------------*/
240
241 /* Configuration descriptors for our root hubs */
242
243 static const u8 fs_rh_config_descriptor[] = {
244
245         /* one configuration */
246         0x09,       /*  __u8  bLength; */
247         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
248         0x19, 0x00, /*  __le16 wTotalLength; */
249         0x01,       /*  __u8  bNumInterfaces; (1) */
250         0x01,       /*  __u8  bConfigurationValue; */
251         0x00,       /*  __u8  iConfiguration; */
252         0xc0,       /*  __u8  bmAttributes;
253                                  Bit 7: must be set,
254                                      6: Self-powered,
255                                      5: Remote wakeup,
256                                      4..0: resvd */
257         0x00,       /*  __u8  MaxPower; */
258
259         /* USB 1.1:
260          * USB 2.0, single TT organization (mandatory):
261          *      one interface, protocol 0
262          *
263          * USB 2.0, multiple TT organization (optional):
264          *      two interfaces, protocols 1 (like single TT)
265          *      and 2 (multiple TT mode) ... config is
266          *      sometimes settable
267          *      NOT IMPLEMENTED
268          */
269
270         /* one interface */
271         0x09,       /*  __u8  if_bLength; */
272         USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
273         0x00,       /*  __u8  if_bInterfaceNumber; */
274         0x00,       /*  __u8  if_bAlternateSetting; */
275         0x01,       /*  __u8  if_bNumEndpoints; */
276         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
277         0x00,       /*  __u8  if_bInterfaceSubClass; */
278         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
279         0x00,       /*  __u8  if_iInterface; */
280
281         /* one endpoint (status change endpoint) */
282         0x07,       /*  __u8  ep_bLength; */
283         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
284         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
285         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
286         0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
287         0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
288 };
289
290 static const u8 hs_rh_config_descriptor[] = {
291
292         /* one configuration */
293         0x09,       /*  __u8  bLength; */
294         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
295         0x19, 0x00, /*  __le16 wTotalLength; */
296         0x01,       /*  __u8  bNumInterfaces; (1) */
297         0x01,       /*  __u8  bConfigurationValue; */
298         0x00,       /*  __u8  iConfiguration; */
299         0xc0,       /*  __u8  bmAttributes;
300                                  Bit 7: must be set,
301                                      6: Self-powered,
302                                      5: Remote wakeup,
303                                      4..0: resvd */
304         0x00,       /*  __u8  MaxPower; */
305
306         /* USB 1.1:
307          * USB 2.0, single TT organization (mandatory):
308          *      one interface, protocol 0
309          *
310          * USB 2.0, multiple TT organization (optional):
311          *      two interfaces, protocols 1 (like single TT)
312          *      and 2 (multiple TT mode) ... config is
313          *      sometimes settable
314          *      NOT IMPLEMENTED
315          */
316
317         /* one interface */
318         0x09,       /*  __u8  if_bLength; */
319         USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
320         0x00,       /*  __u8  if_bInterfaceNumber; */
321         0x00,       /*  __u8  if_bAlternateSetting; */
322         0x01,       /*  __u8  if_bNumEndpoints; */
323         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
324         0x00,       /*  __u8  if_bInterfaceSubClass; */
325         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
326         0x00,       /*  __u8  if_iInterface; */
327
328         /* one endpoint (status change endpoint) */
329         0x07,       /*  __u8  ep_bLength; */
330         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
331         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
332         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
333                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
334                      * see hub.c:hub_configure() for details. */
335         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
336         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
337 };
338
339 static const u8 ss_rh_config_descriptor[] = {
340         /* one configuration */
341         0x09,       /*  __u8  bLength; */
342         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
343         0x1f, 0x00, /*  __le16 wTotalLength; */
344         0x01,       /*  __u8  bNumInterfaces; (1) */
345         0x01,       /*  __u8  bConfigurationValue; */
346         0x00,       /*  __u8  iConfiguration; */
347         0xc0,       /*  __u8  bmAttributes;
348                                  Bit 7: must be set,
349                                      6: Self-powered,
350                                      5: Remote wakeup,
351                                      4..0: resvd */
352         0x00,       /*  __u8  MaxPower; */
353
354         /* one interface */
355         0x09,       /*  __u8  if_bLength; */
356         USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
357         0x00,       /*  __u8  if_bInterfaceNumber; */
358         0x00,       /*  __u8  if_bAlternateSetting; */
359         0x01,       /*  __u8  if_bNumEndpoints; */
360         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
361         0x00,       /*  __u8  if_bInterfaceSubClass; */
362         0x00,       /*  __u8  if_bInterfaceProtocol; */
363         0x00,       /*  __u8  if_iInterface; */
364
365         /* one endpoint (status change endpoint) */
366         0x07,       /*  __u8  ep_bLength; */
367         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
368         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
369         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
370                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
371                      * see hub.c:hub_configure() for details. */
372         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
373         0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
374
375         /* one SuperSpeed endpoint companion descriptor */
376         0x06,        /* __u8 ss_bLength */
377         USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
378                      /* Companion */
379         0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
380         0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
381         0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
382 };
383
384 /* authorized_default behaviour:
385  * -1 is authorized for all devices except wireless (old behaviour)
386  * 0 is unauthorized for all devices
387  * 1 is authorized for all devices
388  */
389 static int authorized_default = -1;
390 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
391 MODULE_PARM_DESC(authorized_default,
392                 "Default USB device authorization: 0 is not authorized, 1 is "
393                 "authorized, -1 is authorized except for wireless USB (default, "
394                 "old behaviour");
395 /*-------------------------------------------------------------------------*/
396
397 /**
398  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
399  * @s: Null-terminated ASCII (actually ISO-8859-1) string
400  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
401  * @len: Length (in bytes; may be odd) of descriptor buffer.
402  *
403  * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
404  * whichever is less.
405  *
406  * Note:
407  * USB String descriptors can contain at most 126 characters; input
408  * strings longer than that are truncated.
409  */
410 static unsigned
411 ascii2desc(char const *s, u8 *buf, unsigned len)
412 {
413         unsigned n, t = 2 + 2*strlen(s);
414
415         if (t > 254)
416                 t = 254;        /* Longest possible UTF string descriptor */
417         if (len > t)
418                 len = t;
419
420         t += USB_DT_STRING << 8;        /* Now t is first 16 bits to store */
421
422         n = len;
423         while (n--) {
424                 *buf++ = t;
425                 if (!n--)
426                         break;
427                 *buf++ = t >> 8;
428                 t = (unsigned char)*s++;
429         }
430         return len;
431 }
432
433 /**
434  * rh_string() - provides string descriptors for root hub
435  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
436  * @hcd: the host controller for this root hub
437  * @data: buffer for output packet
438  * @len: length of the provided buffer
439  *
440  * Produces either a manufacturer, product or serial number string for the
441  * virtual root hub device.
442  *
443  * Return: The number of bytes filled in: the length of the descriptor or
444  * of the provided buffer, whichever is less.
445  */
446 static unsigned
447 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
448 {
449         char buf[100];
450         char const *s;
451         static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
452
453         /* language ids */
454         switch (id) {
455         case 0:
456                 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
457                 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
458                 if (len > 4)
459                         len = 4;
460                 memcpy(data, langids, len);
461                 return len;
462         case 1:
463                 /* Serial number */
464                 s = hcd->self.bus_name;
465                 break;
466         case 2:
467                 /* Product name */
468                 s = hcd->product_desc;
469                 break;
470         case 3:
471                 /* Manufacturer */
472                 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
473                         init_utsname()->release, hcd->driver->description);
474                 s = buf;
475                 break;
476         default:
477                 /* Can't happen; caller guarantees it */
478                 return 0;
479         }
480
481         return ascii2desc(s, data, len);
482 }
483
484
485 /* Root hub control transfers execute synchronously */
486 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
487 {
488         struct usb_ctrlrequest *cmd;
489         u16             typeReq, wValue, wIndex, wLength;
490         u8              *ubuf = urb->transfer_buffer;
491         unsigned        len = 0;
492         int             status;
493         u8              patch_wakeup = 0;
494         u8              patch_protocol = 0;
495         u16             tbuf_size;
496         u8              *tbuf = NULL;
497         const u8        *bufp;
498
499         might_sleep();
500
501         spin_lock_irq(&hcd_root_hub_lock);
502         status = usb_hcd_link_urb_to_ep(hcd, urb);
503         spin_unlock_irq(&hcd_root_hub_lock);
504         if (status)
505                 return status;
506         urb->hcpriv = hcd;      /* Indicate it's queued */
507
508         cmd = (struct usb_ctrlrequest *) urb->setup_packet;
509         typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
510         wValue   = le16_to_cpu (cmd->wValue);
511         wIndex   = le16_to_cpu (cmd->wIndex);
512         wLength  = le16_to_cpu (cmd->wLength);
513
514         if (wLength > urb->transfer_buffer_length)
515                 goto error;
516
517         /*
518          * tbuf should be at least as big as the
519          * USB hub descriptor.
520          */
521         tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
522         tbuf = kzalloc(tbuf_size, GFP_KERNEL);
523         if (!tbuf)
524                 return -ENOMEM;
525
526         bufp = tbuf;
527
528
529         urb->actual_length = 0;
530         switch (typeReq) {
531
532         /* DEVICE REQUESTS */
533
534         /* The root hub's remote wakeup enable bit is implemented using
535          * driver model wakeup flags.  If this system supports wakeup
536          * through USB, userspace may change the default "allow wakeup"
537          * policy through sysfs or these calls.
538          *
539          * Most root hubs support wakeup from downstream devices, for
540          * runtime power management (disabling USB clocks and reducing
541          * VBUS power usage).  However, not all of them do so; silicon,
542          * board, and BIOS bugs here are not uncommon, so these can't
543          * be treated quite like external hubs.
544          *
545          * Likewise, not all root hubs will pass wakeup events upstream,
546          * to wake up the whole system.  So don't assume root hub and
547          * controller capabilities are identical.
548          */
549
550         case DeviceRequest | USB_REQ_GET_STATUS:
551                 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
552                                         << USB_DEVICE_REMOTE_WAKEUP)
553                                 | (1 << USB_DEVICE_SELF_POWERED);
554                 tbuf[1] = 0;
555                 len = 2;
556                 break;
557         case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
558                 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
559                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
560                 else
561                         goto error;
562                 break;
563         case DeviceOutRequest | USB_REQ_SET_FEATURE:
564                 if (device_can_wakeup(&hcd->self.root_hub->dev)
565                                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
566                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
567                 else
568                         goto error;
569                 break;
570         case DeviceRequest | USB_REQ_GET_CONFIGURATION:
571                 tbuf[0] = 1;
572                 len = 1;
573                         /* FALLTHROUGH */
574         case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
575                 break;
576         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
577                 switch (wValue & 0xff00) {
578                 case USB_DT_DEVICE << 8:
579                         switch (hcd->speed) {
580                         case HCD_USB31:
581                                 bufp = usb31_rh_dev_descriptor;
582                                 break;
583                         case HCD_USB3:
584                                 bufp = usb3_rh_dev_descriptor;
585                                 break;
586                         case HCD_USB25:
587                                 bufp = usb25_rh_dev_descriptor;
588                                 break;
589                         case HCD_USB2:
590                                 bufp = usb2_rh_dev_descriptor;
591                                 break;
592                         case HCD_USB11:
593                                 bufp = usb11_rh_dev_descriptor;
594                                 break;
595                         default:
596                                 goto error;
597                         }
598                         len = 18;
599                         if (hcd->has_tt)
600                                 patch_protocol = 1;
601                         break;
602                 case USB_DT_CONFIG << 8:
603                         switch (hcd->speed) {
604                         case HCD_USB31:
605                         case HCD_USB3:
606                                 bufp = ss_rh_config_descriptor;
607                                 len = sizeof ss_rh_config_descriptor;
608                                 break;
609                         case HCD_USB25:
610                         case HCD_USB2:
611                                 bufp = hs_rh_config_descriptor;
612                                 len = sizeof hs_rh_config_descriptor;
613                                 break;
614                         case HCD_USB11:
615                                 bufp = fs_rh_config_descriptor;
616                                 len = sizeof fs_rh_config_descriptor;
617                                 break;
618                         default:
619                                 goto error;
620                         }
621                         if (device_can_wakeup(&hcd->self.root_hub->dev))
622                                 patch_wakeup = 1;
623                         break;
624                 case USB_DT_STRING << 8:
625                         if ((wValue & 0xff) < 4)
626                                 urb->actual_length = rh_string(wValue & 0xff,
627                                                 hcd, ubuf, wLength);
628                         else /* unsupported IDs --> "protocol stall" */
629                                 goto error;
630                         break;
631                 case USB_DT_BOS << 8:
632                         goto nongeneric;
633                 default:
634                         goto error;
635                 }
636                 break;
637         case DeviceRequest | USB_REQ_GET_INTERFACE:
638                 tbuf[0] = 0;
639                 len = 1;
640                         /* FALLTHROUGH */
641         case DeviceOutRequest | USB_REQ_SET_INTERFACE:
642                 break;
643         case DeviceOutRequest | USB_REQ_SET_ADDRESS:
644                 /* wValue == urb->dev->devaddr */
645                 dev_dbg (hcd->self.controller, "root hub device address %d\n",
646                         wValue);
647                 break;
648
649         /* INTERFACE REQUESTS (no defined feature/status flags) */
650
651         /* ENDPOINT REQUESTS */
652
653         case EndpointRequest | USB_REQ_GET_STATUS:
654                 /* ENDPOINT_HALT flag */
655                 tbuf[0] = 0;
656                 tbuf[1] = 0;
657                 len = 2;
658                         /* FALLTHROUGH */
659         case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
660         case EndpointOutRequest | USB_REQ_SET_FEATURE:
661                 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
662                 break;
663
664         /* CLASS REQUESTS (and errors) */
665
666         default:
667 nongeneric:
668                 /* non-generic request */
669                 switch (typeReq) {
670                 case GetHubStatus:
671                 case GetPortStatus:
672                         len = 4;
673                         break;
674                 case GetHubDescriptor:
675                         len = sizeof (struct usb_hub_descriptor);
676                         break;
677                 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
678                         /* len is returned by hub_control */
679                         break;
680                 }
681                 status = hcd->driver->hub_control (hcd,
682                         typeReq, wValue, wIndex,
683                         tbuf, wLength);
684
685                 if (typeReq == GetHubDescriptor)
686                         usb_hub_adjust_deviceremovable(hcd->self.root_hub,
687                                 (struct usb_hub_descriptor *)tbuf);
688                 break;
689 error:
690                 /* "protocol stall" on error */
691                 status = -EPIPE;
692         }
693
694         if (status < 0) {
695                 len = 0;
696                 if (status != -EPIPE) {
697                         dev_dbg (hcd->self.controller,
698                                 "CTRL: TypeReq=0x%x val=0x%x "
699                                 "idx=0x%x len=%d ==> %d\n",
700                                 typeReq, wValue, wIndex,
701                                 wLength, status);
702                 }
703         } else if (status > 0) {
704                 /* hub_control may return the length of data copied. */
705                 len = status;
706                 status = 0;
707         }
708         if (len) {
709                 if (urb->transfer_buffer_length < len)
710                         len = urb->transfer_buffer_length;
711                 urb->actual_length = len;
712                 /* always USB_DIR_IN, toward host */
713                 memcpy (ubuf, bufp, len);
714
715                 /* report whether RH hardware supports remote wakeup */
716                 if (patch_wakeup &&
717                                 len > offsetof (struct usb_config_descriptor,
718                                                 bmAttributes))
719                         ((struct usb_config_descriptor *)ubuf)->bmAttributes
720                                 |= USB_CONFIG_ATT_WAKEUP;
721
722                 /* report whether RH hardware has an integrated TT */
723                 if (patch_protocol &&
724                                 len > offsetof(struct usb_device_descriptor,
725                                                 bDeviceProtocol))
726                         ((struct usb_device_descriptor *) ubuf)->
727                                 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
728         }
729
730         kfree(tbuf);
731
732         /* any errors get returned through the urb completion */
733         spin_lock_irq(&hcd_root_hub_lock);
734         usb_hcd_unlink_urb_from_ep(hcd, urb);
735         usb_hcd_giveback_urb(hcd, urb, status);
736         spin_unlock_irq(&hcd_root_hub_lock);
737         return 0;
738 }
739
740 /*-------------------------------------------------------------------------*/
741
742 /*
743  * Root Hub interrupt transfers are polled using a timer if the
744  * driver requests it; otherwise the driver is responsible for
745  * calling usb_hcd_poll_rh_status() when an event occurs.
746  *
747  * Completions are called in_interrupt(), but they may or may not
748  * be in_irq().
749  */
750 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
751 {
752         struct urb      *urb;
753         int             length;
754         unsigned long   flags;
755         char            buffer[6];      /* Any root hubs with > 31 ports? */
756
757         if (unlikely(!hcd->rh_pollable))
758                 return;
759         if (!hcd->uses_new_polling && !hcd->status_urb)
760                 return;
761
762         length = hcd->driver->hub_status_data(hcd, buffer);
763         if (length > 0) {
764
765                 /* try to complete the status urb */
766                 spin_lock_irqsave(&hcd_root_hub_lock, flags);
767                 urb = hcd->status_urb;
768                 if (urb) {
769                         clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
770                         hcd->status_urb = NULL;
771                         urb->actual_length = length;
772                         memcpy(urb->transfer_buffer, buffer, length);
773
774                         usb_hcd_unlink_urb_from_ep(hcd, urb);
775                         usb_hcd_giveback_urb(hcd, urb, 0);
776                 } else {
777                         length = 0;
778                         set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
779                 }
780                 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
781         }
782
783         /* The USB 2.0 spec says 256 ms.  This is close enough and won't
784          * exceed that limit if HZ is 100. The math is more clunky than
785          * maybe expected, this is to make sure that all timers for USB devices
786          * fire at the same time to give the CPU a break in between */
787         if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
788                         (length == 0 && hcd->status_urb != NULL))
789                 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
790 }
791 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
792
793 /* timer callback */
794 static void rh_timer_func (unsigned long _hcd)
795 {
796         usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
797 }
798
799 /*-------------------------------------------------------------------------*/
800
801 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
802 {
803         int             retval;
804         unsigned long   flags;
805         unsigned        len = 1 + (urb->dev->maxchild / 8);
806
807         spin_lock_irqsave (&hcd_root_hub_lock, flags);
808         if (hcd->status_urb || urb->transfer_buffer_length < len) {
809                 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
810                 retval = -EINVAL;
811                 goto done;
812         }
813
814         retval = usb_hcd_link_urb_to_ep(hcd, urb);
815         if (retval)
816                 goto done;
817
818         hcd->status_urb = urb;
819         urb->hcpriv = hcd;      /* indicate it's queued */
820         if (!hcd->uses_new_polling)
821                 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
822
823         /* If a status change has already occurred, report it ASAP */
824         else if (HCD_POLL_PENDING(hcd))
825                 mod_timer(&hcd->rh_timer, jiffies);
826         retval = 0;
827  done:
828         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
829         return retval;
830 }
831
832 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
833 {
834         if (usb_endpoint_xfer_int(&urb->ep->desc))
835                 return rh_queue_status (hcd, urb);
836         if (usb_endpoint_xfer_control(&urb->ep->desc))
837                 return rh_call_control (hcd, urb);
838         return -EINVAL;
839 }
840
841 /*-------------------------------------------------------------------------*/
842
843 /* Unlinks of root-hub control URBs are legal, but they don't do anything
844  * since these URBs always execute synchronously.
845  */
846 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
847 {
848         unsigned long   flags;
849         int             rc;
850
851         spin_lock_irqsave(&hcd_root_hub_lock, flags);
852         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
853         if (rc)
854                 goto done;
855
856         if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
857                 ;       /* Do nothing */
858
859         } else {                                /* Status URB */
860                 if (!hcd->uses_new_polling)
861                         del_timer (&hcd->rh_timer);
862                 if (urb == hcd->status_urb) {
863                         hcd->status_urb = NULL;
864                         usb_hcd_unlink_urb_from_ep(hcd, urb);
865                         usb_hcd_giveback_urb(hcd, urb, status);
866                 }
867         }
868  done:
869         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
870         return rc;
871 }
872
873
874
875 /*
876  * Show & store the current value of authorized_default
877  */
878 static ssize_t authorized_default_show(struct device *dev,
879                                        struct device_attribute *attr, char *buf)
880 {
881         struct usb_device *rh_usb_dev = to_usb_device(dev);
882         struct usb_bus *usb_bus = rh_usb_dev->bus;
883         struct usb_hcd *hcd;
884
885         hcd = bus_to_hcd(usb_bus);
886         return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
887 }
888
889 static ssize_t authorized_default_store(struct device *dev,
890                                         struct device_attribute *attr,
891                                         const char *buf, size_t size)
892 {
893         ssize_t result;
894         unsigned val;
895         struct usb_device *rh_usb_dev = to_usb_device(dev);
896         struct usb_bus *usb_bus = rh_usb_dev->bus;
897         struct usb_hcd *hcd;
898
899         hcd = bus_to_hcd(usb_bus);
900         result = sscanf(buf, "%u\n", &val);
901         if (result == 1) {
902                 if (val)
903                         set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
904                 else
905                         clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
906
907                 result = size;
908         } else {
909                 result = -EINVAL;
910         }
911         return result;
912 }
913 static DEVICE_ATTR_RW(authorized_default);
914
915 /*
916  * interface_authorized_default_show - show default authorization status
917  * for USB interfaces
918  *
919  * note: interface_authorized_default is the default value
920  *       for initializing the authorized attribute of interfaces
921  */
922 static ssize_t interface_authorized_default_show(struct device *dev,
923                 struct device_attribute *attr, char *buf)
924 {
925         struct usb_device *usb_dev = to_usb_device(dev);
926         struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
927
928         return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
929 }
930
931 /*
932  * interface_authorized_default_store - store default authorization status
933  * for USB interfaces
934  *
935  * note: interface_authorized_default is the default value
936  *       for initializing the authorized attribute of interfaces
937  */
938 static ssize_t interface_authorized_default_store(struct device *dev,
939                 struct device_attribute *attr, const char *buf, size_t count)
940 {
941         struct usb_device *usb_dev = to_usb_device(dev);
942         struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
943         int rc = count;
944         bool val;
945
946         if (strtobool(buf, &val) != 0)
947                 return -EINVAL;
948
949         if (val)
950                 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
951         else
952                 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
953
954         return rc;
955 }
956 static DEVICE_ATTR_RW(interface_authorized_default);
957
958 /* Group all the USB bus attributes */
959 static struct attribute *usb_bus_attrs[] = {
960                 &dev_attr_authorized_default.attr,
961                 &dev_attr_interface_authorized_default.attr,
962                 NULL,
963 };
964
965 static struct attribute_group usb_bus_attr_group = {
966         .name = NULL,   /* we want them in the same directory */
967         .attrs = usb_bus_attrs,
968 };
969
970
971
972 /*-------------------------------------------------------------------------*/
973
974 /**
975  * usb_bus_init - shared initialization code
976  * @bus: the bus structure being initialized
977  *
978  * This code is used to initialize a usb_bus structure, memory for which is
979  * separately managed.
980  */
981 static void usb_bus_init (struct usb_bus *bus)
982 {
983         memset (&bus->devmap, 0, sizeof(struct usb_devmap));
984
985         bus->devnum_next = 1;
986
987         bus->root_hub = NULL;
988         bus->busnum = -1;
989         bus->bandwidth_allocated = 0;
990         bus->bandwidth_int_reqs  = 0;
991         bus->bandwidth_isoc_reqs = 0;
992         mutex_init(&bus->usb_address0_mutex);
993
994         INIT_LIST_HEAD (&bus->bus_list);
995 }
996
997 /*-------------------------------------------------------------------------*/
998
999 /**
1000  * usb_register_bus - registers the USB host controller with the usb core
1001  * @bus: pointer to the bus to register
1002  * Context: !in_interrupt()
1003  *
1004  * Assigns a bus number, and links the controller into usbcore data
1005  * structures so that it can be seen by scanning the bus list.
1006  *
1007  * Return: 0 if successful. A negative error code otherwise.
1008  */
1009 static int usb_register_bus(struct usb_bus *bus)
1010 {
1011         int result = -E2BIG;
1012         int busnum;
1013
1014         mutex_lock(&usb_bus_list_lock);
1015         busnum = find_next_zero_bit(busmap, USB_MAXBUS, 1);
1016         if (busnum >= USB_MAXBUS) {
1017                 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
1018                 goto error_find_busnum;
1019         }
1020         set_bit(busnum, busmap);
1021         bus->busnum = busnum;
1022
1023         /* Add it to the local list of buses */
1024         list_add (&bus->bus_list, &usb_bus_list);
1025         mutex_unlock(&usb_bus_list_lock);
1026
1027         usb_notify_add_bus(bus);
1028
1029         dev_info (bus->controller, "new USB bus registered, assigned bus "
1030                   "number %d\n", bus->busnum);
1031         return 0;
1032
1033 error_find_busnum:
1034         mutex_unlock(&usb_bus_list_lock);
1035         return result;
1036 }
1037
1038 /**
1039  * usb_deregister_bus - deregisters the USB host controller
1040  * @bus: pointer to the bus to deregister
1041  * Context: !in_interrupt()
1042  *
1043  * Recycles the bus number, and unlinks the controller from usbcore data
1044  * structures so that it won't be seen by scanning the bus list.
1045  */
1046 static void usb_deregister_bus (struct usb_bus *bus)
1047 {
1048         dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1049
1050         /*
1051          * NOTE: make sure that all the devices are removed by the
1052          * controller code, as well as having it call this when cleaning
1053          * itself up
1054          */
1055         mutex_lock(&usb_bus_list_lock);
1056         list_del (&bus->bus_list);
1057         mutex_unlock(&usb_bus_list_lock);
1058
1059         usb_notify_remove_bus(bus);
1060
1061         clear_bit(bus->busnum, busmap);
1062 }
1063
1064 /**
1065  * register_root_hub - called by usb_add_hcd() to register a root hub
1066  * @hcd: host controller for this root hub
1067  *
1068  * This function registers the root hub with the USB subsystem.  It sets up
1069  * the device properly in the device tree and then calls usb_new_device()
1070  * to register the usb device.  It also assigns the root hub's USB address
1071  * (always 1).
1072  *
1073  * Return: 0 if successful. A negative error code otherwise.
1074  */
1075 static int register_root_hub(struct usb_hcd *hcd)
1076 {
1077         struct device *parent_dev = hcd->self.controller;
1078         struct usb_device *usb_dev = hcd->self.root_hub;
1079         const int devnum = 1;
1080         int retval;
1081
1082         usb_dev->devnum = devnum;
1083         usb_dev->bus->devnum_next = devnum + 1;
1084         memset (&usb_dev->bus->devmap.devicemap, 0,
1085                         sizeof usb_dev->bus->devmap.devicemap);
1086         set_bit (devnum, usb_dev->bus->devmap.devicemap);
1087         usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1088
1089         mutex_lock(&usb_bus_list_lock);
1090
1091         usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1092         retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1093         if (retval != sizeof usb_dev->descriptor) {
1094                 mutex_unlock(&usb_bus_list_lock);
1095                 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1096                                 dev_name(&usb_dev->dev), retval);
1097                 return (retval < 0) ? retval : -EMSGSIZE;
1098         }
1099
1100         if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1101                 retval = usb_get_bos_descriptor(usb_dev);
1102                 if (!retval) {
1103                         usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1104                 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1105                         mutex_unlock(&usb_bus_list_lock);
1106                         dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1107                                         dev_name(&usb_dev->dev), retval);
1108                         return retval;
1109                 }
1110         }
1111
1112         retval = usb_new_device (usb_dev);
1113         if (retval) {
1114                 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1115                                 dev_name(&usb_dev->dev), retval);
1116         } else {
1117                 spin_lock_irq (&hcd_root_hub_lock);
1118                 hcd->rh_registered = 1;
1119                 spin_unlock_irq (&hcd_root_hub_lock);
1120
1121                 /* Did the HC die before the root hub was registered? */
1122                 if (HCD_DEAD(hcd))
1123                         usb_hc_died (hcd);      /* This time clean up */
1124         }
1125         mutex_unlock(&usb_bus_list_lock);
1126
1127         return retval;
1128 }
1129
1130 /*
1131  * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1132  * @bus: the bus which the root hub belongs to
1133  * @portnum: the port which is being resumed
1134  *
1135  * HCDs should call this function when they know that a resume signal is
1136  * being sent to a root-hub port.  The root hub will be prevented from
1137  * going into autosuspend until usb_hcd_end_port_resume() is called.
1138  *
1139  * The bus's private lock must be held by the caller.
1140  */
1141 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1142 {
1143         unsigned bit = 1 << portnum;
1144
1145         if (!(bus->resuming_ports & bit)) {
1146                 bus->resuming_ports |= bit;
1147                 pm_runtime_get_noresume(&bus->root_hub->dev);
1148         }
1149 }
1150 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1151
1152 /*
1153  * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1154  * @bus: the bus which the root hub belongs to
1155  * @portnum: the port which is being resumed
1156  *
1157  * HCDs should call this function when they know that a resume signal has
1158  * stopped being sent to a root-hub port.  The root hub will be allowed to
1159  * autosuspend again.
1160  *
1161  * The bus's private lock must be held by the caller.
1162  */
1163 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1164 {
1165         unsigned bit = 1 << portnum;
1166
1167         if (bus->resuming_ports & bit) {
1168                 bus->resuming_ports &= ~bit;
1169                 pm_runtime_put_noidle(&bus->root_hub->dev);
1170         }
1171 }
1172 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1173
1174 /*-------------------------------------------------------------------------*/
1175
1176 /**
1177  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1178  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1179  * @is_input: true iff the transaction sends data to the host
1180  * @isoc: true for isochronous transactions, false for interrupt ones
1181  * @bytecount: how many bytes in the transaction.
1182  *
1183  * Return: Approximate bus time in nanoseconds for a periodic transaction.
1184  *
1185  * Note:
1186  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1187  * scheduled in software, this function is only used for such scheduling.
1188  */
1189 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1190 {
1191         unsigned long   tmp;
1192
1193         switch (speed) {
1194         case USB_SPEED_LOW:     /* INTR only */
1195                 if (is_input) {
1196                         tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1197                         return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1198                 } else {
1199                         tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1200                         return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1201                 }
1202         case USB_SPEED_FULL:    /* ISOC or INTR */
1203                 if (isoc) {
1204                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1205                         return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1206                 } else {
1207                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1208                         return 9107L + BW_HOST_DELAY + tmp;
1209                 }
1210         case USB_SPEED_HIGH:    /* ISOC or INTR */
1211                 /* FIXME adjust for input vs output */
1212                 if (isoc)
1213                         tmp = HS_NSECS_ISO (bytecount);
1214                 else
1215                         tmp = HS_NSECS (bytecount);
1216                 return tmp;
1217         default:
1218                 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1219                 return -1;
1220         }
1221 }
1222 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1223
1224
1225 /*-------------------------------------------------------------------------*/
1226
1227 /*
1228  * Generic HC operations.
1229  */
1230
1231 /*-------------------------------------------------------------------------*/
1232
1233 /**
1234  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1235  * @hcd: host controller to which @urb was submitted
1236  * @urb: URB being submitted
1237  *
1238  * Host controller drivers should call this routine in their enqueue()
1239  * method.  The HCD's private spinlock must be held and interrupts must
1240  * be disabled.  The actions carried out here are required for URB
1241  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1242  *
1243  * Return: 0 for no error, otherwise a negative error code (in which case
1244  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1245  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1246  * the private spinlock and returning.
1247  */
1248 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1249 {
1250         int             rc = 0;
1251
1252         spin_lock(&hcd_urb_list_lock);
1253
1254         /* Check that the URB isn't being killed */
1255         if (unlikely(atomic_read(&urb->reject))) {
1256                 rc = -EPERM;
1257                 goto done;
1258         }
1259
1260         if (unlikely(!urb->ep->enabled)) {
1261                 rc = -ENOENT;
1262                 goto done;
1263         }
1264
1265         if (unlikely(!urb->dev->can_submit)) {
1266                 rc = -EHOSTUNREACH;
1267                 goto done;
1268         }
1269
1270         /*
1271          * Check the host controller's state and add the URB to the
1272          * endpoint's queue.
1273          */
1274         if (HCD_RH_RUNNING(hcd)) {
1275                 urb->unlinked = 0;
1276                 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1277         } else {
1278                 rc = -ESHUTDOWN;
1279                 goto done;
1280         }
1281  done:
1282         spin_unlock(&hcd_urb_list_lock);
1283         return rc;
1284 }
1285 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1286
1287 /**
1288  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1289  * @hcd: host controller to which @urb was submitted
1290  * @urb: URB being checked for unlinkability
1291  * @status: error code to store in @urb if the unlink succeeds
1292  *
1293  * Host controller drivers should call this routine in their dequeue()
1294  * method.  The HCD's private spinlock must be held and interrupts must
1295  * be disabled.  The actions carried out here are required for making
1296  * sure than an unlink is valid.
1297  *
1298  * Return: 0 for no error, otherwise a negative error code (in which case
1299  * the dequeue() method must fail).  The possible error codes are:
1300  *
1301  *      -EIDRM: @urb was not submitted or has already completed.
1302  *              The completion function may not have been called yet.
1303  *
1304  *      -EBUSY: @urb has already been unlinked.
1305  */
1306 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1307                 int status)
1308 {
1309         struct list_head        *tmp;
1310
1311         /* insist the urb is still queued */
1312         list_for_each(tmp, &urb->ep->urb_list) {
1313                 if (tmp == &urb->urb_list)
1314                         break;
1315         }
1316         if (tmp != &urb->urb_list)
1317                 return -EIDRM;
1318
1319         /* Any status except -EINPROGRESS means something already started to
1320          * unlink this URB from the hardware.  So there's no more work to do.
1321          */
1322         if (urb->unlinked)
1323                 return -EBUSY;
1324         urb->unlinked = status;
1325         return 0;
1326 }
1327 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1328
1329 /**
1330  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1331  * @hcd: host controller to which @urb was submitted
1332  * @urb: URB being unlinked
1333  *
1334  * Host controller drivers should call this routine before calling
1335  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1336  * interrupts must be disabled.  The actions carried out here are required
1337  * for URB completion.
1338  */
1339 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1340 {
1341         /* clear all state linking urb to this dev (and hcd) */
1342         spin_lock(&hcd_urb_list_lock);
1343         list_del_init(&urb->urb_list);
1344         spin_unlock(&hcd_urb_list_lock);
1345 }
1346 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1347
1348 /*
1349  * Some usb host controllers can only perform dma using a small SRAM area.
1350  * The usb core itself is however optimized for host controllers that can dma
1351  * using regular system memory - like pci devices doing bus mastering.
1352  *
1353  * To support host controllers with limited dma capabilities we provide dma
1354  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1355  * For this to work properly the host controller code must first use the
1356  * function dma_declare_coherent_memory() to point out which memory area
1357  * that should be used for dma allocations.
1358  *
1359  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1360  * dma using dma_alloc_coherent() which in turn allocates from the memory
1361  * area pointed out with dma_declare_coherent_memory().
1362  *
1363  * So, to summarize...
1364  *
1365  * - We need "local" memory, canonical example being
1366  *   a small SRAM on a discrete controller being the
1367  *   only memory that the controller can read ...
1368  *   (a) "normal" kernel memory is no good, and
1369  *   (b) there's not enough to share
1370  *
1371  * - The only *portable* hook for such stuff in the
1372  *   DMA framework is dma_declare_coherent_memory()
1373  *
1374  * - So we use that, even though the primary requirement
1375  *   is that the memory be "local" (hence addressable
1376  *   by that device), not "coherent".
1377  *
1378  */
1379
1380 static int hcd_alloc_coherent(struct usb_bus *bus,
1381                               gfp_t mem_flags, dma_addr_t *dma_handle,
1382                               void **vaddr_handle, size_t size,
1383                               enum dma_data_direction dir)
1384 {
1385         unsigned char *vaddr;
1386
1387         if (*vaddr_handle == NULL) {
1388                 WARN_ON_ONCE(1);
1389                 return -EFAULT;
1390         }
1391
1392         vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1393                                  mem_flags, dma_handle);
1394         if (!vaddr)
1395                 return -ENOMEM;
1396
1397         /*
1398          * Store the virtual address of the buffer at the end
1399          * of the allocated dma buffer. The size of the buffer
1400          * may be uneven so use unaligned functions instead
1401          * of just rounding up. It makes sense to optimize for
1402          * memory footprint over access speed since the amount
1403          * of memory available for dma may be limited.
1404          */
1405         put_unaligned((unsigned long)*vaddr_handle,
1406                       (unsigned long *)(vaddr + size));
1407
1408         if (dir == DMA_TO_DEVICE)
1409                 memcpy(vaddr, *vaddr_handle, size);
1410
1411         *vaddr_handle = vaddr;
1412         return 0;
1413 }
1414
1415 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1416                               void **vaddr_handle, size_t size,
1417                               enum dma_data_direction dir)
1418 {
1419         unsigned char *vaddr = *vaddr_handle;
1420
1421         vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1422
1423         if (dir == DMA_FROM_DEVICE)
1424                 memcpy(vaddr, *vaddr_handle, size);
1425
1426         hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1427
1428         *vaddr_handle = vaddr;
1429         *dma_handle = 0;
1430 }
1431
1432 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1433 {
1434         if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1435                 dma_unmap_single(hcd->self.controller,
1436                                 urb->setup_dma,
1437                                 sizeof(struct usb_ctrlrequest),
1438                                 DMA_TO_DEVICE);
1439         else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1440                 hcd_free_coherent(urb->dev->bus,
1441                                 &urb->setup_dma,
1442                                 (void **) &urb->setup_packet,
1443                                 sizeof(struct usb_ctrlrequest),
1444                                 DMA_TO_DEVICE);
1445
1446         /* Make it safe to call this routine more than once */
1447         urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1448 }
1449 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1450
1451 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1452 {
1453         if (hcd->driver->unmap_urb_for_dma)
1454                 hcd->driver->unmap_urb_for_dma(hcd, urb);
1455         else
1456                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1457 }
1458
1459 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1460 {
1461         enum dma_data_direction dir;
1462
1463         usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1464
1465         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1466         if (urb->transfer_flags & URB_DMA_MAP_SG)
1467                 dma_unmap_sg(hcd->self.controller,
1468                                 urb->sg,
1469                                 urb->num_sgs,
1470                                 dir);
1471         else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1472                 dma_unmap_page(hcd->self.controller,
1473                                 urb->transfer_dma,
1474                                 urb->transfer_buffer_length,
1475                                 dir);
1476         else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1477                 dma_unmap_single(hcd->self.controller,
1478                                 urb->transfer_dma,
1479                                 urb->transfer_buffer_length,
1480                                 dir);
1481         else if (urb->transfer_flags & URB_MAP_LOCAL)
1482                 hcd_free_coherent(urb->dev->bus,
1483                                 &urb->transfer_dma,
1484                                 &urb->transfer_buffer,
1485                                 urb->transfer_buffer_length,
1486                                 dir);
1487
1488         /* Make it safe to call this routine more than once */
1489         urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1490                         URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1491 }
1492 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1493
1494 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1495                            gfp_t mem_flags)
1496 {
1497         if (hcd->driver->map_urb_for_dma)
1498                 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1499         else
1500                 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1501 }
1502
1503 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1504                             gfp_t mem_flags)
1505 {
1506         enum dma_data_direction dir;
1507         int ret = 0;
1508
1509         /* Map the URB's buffers for DMA access.
1510          * Lower level HCD code should use *_dma exclusively,
1511          * unless it uses pio or talks to another transport,
1512          * or uses the provided scatter gather list for bulk.
1513          */
1514
1515         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1516                 if (hcd->self.uses_pio_for_control)
1517                         return ret;
1518                 if (hcd->self.uses_dma) {
1519                         urb->setup_dma = dma_map_single(
1520                                         hcd->self.controller,
1521                                         urb->setup_packet,
1522                                         sizeof(struct usb_ctrlrequest),
1523                                         DMA_TO_DEVICE);
1524                         if (dma_mapping_error(hcd->self.controller,
1525                                                 urb->setup_dma))
1526                                 return -EAGAIN;
1527                         urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1528                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1529                         ret = hcd_alloc_coherent(
1530                                         urb->dev->bus, mem_flags,
1531                                         &urb->setup_dma,
1532                                         (void **)&urb->setup_packet,
1533                                         sizeof(struct usb_ctrlrequest),
1534                                         DMA_TO_DEVICE);
1535                         if (ret)
1536                                 return ret;
1537                         urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1538                 }
1539         }
1540
1541         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1542         if (urb->transfer_buffer_length != 0
1543             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1544                 if (hcd->self.uses_dma) {
1545                         if (urb->num_sgs) {
1546                                 int n;
1547
1548                                 /* We don't support sg for isoc transfers ! */
1549                                 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1550                                         WARN_ON(1);
1551                                         return -EINVAL;
1552                                 }
1553
1554                                 n = dma_map_sg(
1555                                                 hcd->self.controller,
1556                                                 urb->sg,
1557                                                 urb->num_sgs,
1558                                                 dir);
1559                                 if (n <= 0)
1560                                         ret = -EAGAIN;
1561                                 else
1562                                         urb->transfer_flags |= URB_DMA_MAP_SG;
1563                                 urb->num_mapped_sgs = n;
1564                                 if (n != urb->num_sgs)
1565                                         urb->transfer_flags |=
1566                                                         URB_DMA_SG_COMBINED;
1567                         } else if (urb->sg) {
1568                                 struct scatterlist *sg = urb->sg;
1569                                 urb->transfer_dma = dma_map_page(
1570                                                 hcd->self.controller,
1571                                                 sg_page(sg),
1572                                                 sg->offset,
1573                                                 urb->transfer_buffer_length,
1574                                                 dir);
1575                                 if (dma_mapping_error(hcd->self.controller,
1576                                                 urb->transfer_dma))
1577                                         ret = -EAGAIN;
1578                                 else
1579                                         urb->transfer_flags |= URB_DMA_MAP_PAGE;
1580                         } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1581                                 WARN_ONCE(1, "transfer buffer not dma capable\n");
1582                                 ret = -EAGAIN;
1583                         } else {
1584                                 urb->transfer_dma = dma_map_single(
1585                                                 hcd->self.controller,
1586                                                 urb->transfer_buffer,
1587                                                 urb->transfer_buffer_length,
1588                                                 dir);
1589                                 if (dma_mapping_error(hcd->self.controller,
1590                                                 urb->transfer_dma))
1591                                         ret = -EAGAIN;
1592                                 else
1593                                         urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1594                         }
1595                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1596                         ret = hcd_alloc_coherent(
1597                                         urb->dev->bus, mem_flags,
1598                                         &urb->transfer_dma,
1599                                         &urb->transfer_buffer,
1600                                         urb->transfer_buffer_length,
1601                                         dir);
1602                         if (ret == 0)
1603                                 urb->transfer_flags |= URB_MAP_LOCAL;
1604                 }
1605                 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1606                                 URB_SETUP_MAP_LOCAL)))
1607                         usb_hcd_unmap_urb_for_dma(hcd, urb);
1608         }
1609         return ret;
1610 }
1611 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1612
1613 /*-------------------------------------------------------------------------*/
1614
1615 /* may be called in any context with a valid urb->dev usecount
1616  * caller surrenders "ownership" of urb
1617  * expects usb_submit_urb() to have sanity checked and conditioned all
1618  * inputs in the urb
1619  */
1620 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1621 {
1622         int                     status;
1623         struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1624
1625         /* increment urb's reference count as part of giving it to the HCD
1626          * (which will control it).  HCD guarantees that it either returns
1627          * an error or calls giveback(), but not both.
1628          */
1629         usb_get_urb(urb);
1630         atomic_inc(&urb->use_count);
1631         atomic_inc(&urb->dev->urbnum);
1632         usbmon_urb_submit(&hcd->self, urb);
1633
1634         /* NOTE requirements on root-hub callers (usbfs and the hub
1635          * driver, for now):  URBs' urb->transfer_buffer must be
1636          * valid and usb_buffer_{sync,unmap}() not be needed, since
1637          * they could clobber root hub response data.  Also, control
1638          * URBs must be submitted in process context with interrupts
1639          * enabled.
1640          */
1641
1642         if (is_root_hub(urb->dev)) {
1643                 status = rh_urb_enqueue(hcd, urb);
1644         } else {
1645                 status = map_urb_for_dma(hcd, urb, mem_flags);
1646                 if (likely(status == 0)) {
1647                         status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1648                         if (unlikely(status))
1649                                 unmap_urb_for_dma(hcd, urb);
1650                 }
1651         }
1652
1653         if (unlikely(status)) {
1654                 usbmon_urb_submit_error(&hcd->self, urb, status);
1655                 urb->hcpriv = NULL;
1656                 INIT_LIST_HEAD(&urb->urb_list);
1657                 atomic_dec(&urb->use_count);
1658                 atomic_dec(&urb->dev->urbnum);
1659                 if (atomic_read(&urb->reject))
1660                         wake_up(&usb_kill_urb_queue);
1661                 usb_put_urb(urb);
1662         }
1663         return status;
1664 }
1665
1666 /*-------------------------------------------------------------------------*/
1667
1668 /* this makes the hcd giveback() the urb more quickly, by kicking it
1669  * off hardware queues (which may take a while) and returning it as
1670  * soon as practical.  we've already set up the urb's return status,
1671  * but we can't know if the callback completed already.
1672  */
1673 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1674 {
1675         int             value;
1676
1677         if (is_root_hub(urb->dev))
1678                 value = usb_rh_urb_dequeue(hcd, urb, status);
1679         else {
1680
1681                 /* The only reason an HCD might fail this call is if
1682                  * it has not yet fully queued the urb to begin with.
1683                  * Such failures should be harmless. */
1684                 value = hcd->driver->urb_dequeue(hcd, urb, status);
1685         }
1686         return value;
1687 }
1688
1689 /*
1690  * called in any context
1691  *
1692  * caller guarantees urb won't be recycled till both unlink()
1693  * and the urb's completion function return
1694  */
1695 int usb_hcd_unlink_urb (struct urb *urb, int status)
1696 {
1697         struct usb_hcd          *hcd;
1698         struct usb_device       *udev = urb->dev;
1699         int                     retval = -EIDRM;
1700         unsigned long           flags;
1701
1702         /* Prevent the device and bus from going away while
1703          * the unlink is carried out.  If they are already gone
1704          * then urb->use_count must be 0, since disconnected
1705          * devices can't have any active URBs.
1706          */
1707         spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1708         if (atomic_read(&urb->use_count) > 0) {
1709                 retval = 0;
1710                 usb_get_dev(udev);
1711         }
1712         spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1713         if (retval == 0) {
1714                 hcd = bus_to_hcd(urb->dev->bus);
1715                 retval = unlink1(hcd, urb, status);
1716                 if (retval == 0)
1717                         retval = -EINPROGRESS;
1718                 else if (retval != -EIDRM && retval != -EBUSY)
1719                         dev_dbg(&udev->dev, "hcd_unlink_urb %p fail %d\n",
1720                                         urb, retval);
1721                 usb_put_dev(udev);
1722         }
1723         return retval;
1724 }
1725
1726 /*-------------------------------------------------------------------------*/
1727
1728 static void __usb_hcd_giveback_urb(struct urb *urb)
1729 {
1730         struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1731         struct usb_anchor *anchor = urb->anchor;
1732         int status = urb->unlinked;
1733         unsigned long flags;
1734
1735         urb->hcpriv = NULL;
1736         if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1737             urb->actual_length < urb->transfer_buffer_length &&
1738             !status))
1739                 status = -EREMOTEIO;
1740
1741         unmap_urb_for_dma(hcd, urb);
1742         usbmon_urb_complete(&hcd->self, urb, status);
1743         usb_anchor_suspend_wakeups(anchor);
1744         usb_unanchor_urb(urb);
1745         if (likely(status == 0))
1746                 usb_led_activity(USB_LED_EVENT_HOST);
1747
1748         /* pass ownership to the completion handler */
1749         urb->status = status;
1750
1751         /*
1752          * We disable local IRQs here avoid possible deadlock because
1753          * drivers may call spin_lock() to hold lock which might be
1754          * acquired in one hard interrupt handler.
1755          *
1756          * The local_irq_save()/local_irq_restore() around complete()
1757          * will be removed if current USB drivers have been cleaned up
1758          * and no one may trigger the above deadlock situation when
1759          * running complete() in tasklet.
1760          */
1761         local_irq_save(flags);
1762         urb->complete(urb);
1763         local_irq_restore(flags);
1764
1765         usb_anchor_resume_wakeups(anchor);
1766         atomic_dec(&urb->use_count);
1767         if (unlikely(atomic_read(&urb->reject)))
1768                 wake_up(&usb_kill_urb_queue);
1769         usb_put_urb(urb);
1770 }
1771
1772 static void usb_giveback_urb_bh(unsigned long param)
1773 {
1774         struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1775         struct list_head local_list;
1776
1777         spin_lock_irq(&bh->lock);
1778         bh->running = true;
1779  restart:
1780         list_replace_init(&bh->head, &local_list);
1781         spin_unlock_irq(&bh->lock);
1782
1783         while (!list_empty(&local_list)) {
1784                 struct urb *urb;
1785
1786                 urb = list_entry(local_list.next, struct urb, urb_list);
1787                 list_del_init(&urb->urb_list);
1788                 bh->completing_ep = urb->ep;
1789                 __usb_hcd_giveback_urb(urb);
1790                 bh->completing_ep = NULL;
1791         }
1792
1793         /* check if there are new URBs to giveback */
1794         spin_lock_irq(&bh->lock);
1795         if (!list_empty(&bh->head))
1796                 goto restart;
1797         bh->running = false;
1798         spin_unlock_irq(&bh->lock);
1799 }
1800
1801 /**
1802  * usb_hcd_giveback_urb - return URB from HCD to device driver
1803  * @hcd: host controller returning the URB
1804  * @urb: urb being returned to the USB device driver.
1805  * @status: completion status code for the URB.
1806  * Context: in_interrupt()
1807  *
1808  * This hands the URB from HCD to its USB device driver, using its
1809  * completion function.  The HCD has freed all per-urb resources
1810  * (and is done using urb->hcpriv).  It also released all HCD locks;
1811  * the device driver won't cause problems if it frees, modifies,
1812  * or resubmits this URB.
1813  *
1814  * If @urb was unlinked, the value of @status will be overridden by
1815  * @urb->unlinked.  Erroneous short transfers are detected in case
1816  * the HCD hasn't checked for them.
1817  */
1818 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1819 {
1820         struct giveback_urb_bh *bh;
1821         bool running, high_prio_bh;
1822
1823         /* pass status to tasklet via unlinked */
1824         if (likely(!urb->unlinked))
1825                 urb->unlinked = status;
1826
1827         if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1828                 __usb_hcd_giveback_urb(urb);
1829                 return;
1830         }
1831
1832         if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1833                 bh = &hcd->high_prio_bh;
1834                 high_prio_bh = true;
1835         } else {
1836                 bh = &hcd->low_prio_bh;
1837                 high_prio_bh = false;
1838         }
1839
1840         spin_lock(&bh->lock);
1841         list_add_tail(&urb->urb_list, &bh->head);
1842         running = bh->running;
1843         spin_unlock(&bh->lock);
1844
1845         if (running)
1846                 ;
1847         else if (high_prio_bh)
1848                 tasklet_hi_schedule(&bh->bh);
1849         else
1850                 tasklet_schedule(&bh->bh);
1851 }
1852 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1853
1854 /*-------------------------------------------------------------------------*/
1855
1856 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1857  * queue to drain completely.  The caller must first insure that no more
1858  * URBs can be submitted for this endpoint.
1859  */
1860 void usb_hcd_flush_endpoint(struct usb_device *udev,
1861                 struct usb_host_endpoint *ep)
1862 {
1863         struct usb_hcd          *hcd;
1864         struct urb              *urb;
1865
1866         if (!ep)
1867                 return;
1868         might_sleep();
1869         hcd = bus_to_hcd(udev->bus);
1870
1871         /* No more submits can occur */
1872         spin_lock_irq(&hcd_urb_list_lock);
1873 rescan:
1874         list_for_each_entry (urb, &ep->urb_list, urb_list) {
1875                 int     is_in;
1876
1877                 if (urb->unlinked)
1878                         continue;
1879                 usb_get_urb (urb);
1880                 is_in = usb_urb_dir_in(urb);
1881                 spin_unlock(&hcd_urb_list_lock);
1882
1883                 /* kick hcd */
1884                 unlink1(hcd, urb, -ESHUTDOWN);
1885                 dev_dbg (hcd->self.controller,
1886                         "shutdown urb %p ep%d%s%s\n",
1887                         urb, usb_endpoint_num(&ep->desc),
1888                         is_in ? "in" : "out",
1889                         ({      char *s;
1890
1891                                  switch (usb_endpoint_type(&ep->desc)) {
1892                                  case USB_ENDPOINT_XFER_CONTROL:
1893                                         s = ""; break;
1894                                  case USB_ENDPOINT_XFER_BULK:
1895                                         s = "-bulk"; break;
1896                                  case USB_ENDPOINT_XFER_INT:
1897                                         s = "-intr"; break;
1898                                  default:
1899                                         s = "-iso"; break;
1900                                 };
1901                                 s;
1902                         }));
1903                 usb_put_urb (urb);
1904
1905                 /* list contents may have changed */
1906                 spin_lock(&hcd_urb_list_lock);
1907                 goto rescan;
1908         }
1909         spin_unlock_irq(&hcd_urb_list_lock);
1910
1911         /* Wait until the endpoint queue is completely empty */
1912         while (!list_empty (&ep->urb_list)) {
1913                 spin_lock_irq(&hcd_urb_list_lock);
1914
1915                 /* The list may have changed while we acquired the spinlock */
1916                 urb = NULL;
1917                 if (!list_empty (&ep->urb_list)) {
1918                         urb = list_entry (ep->urb_list.prev, struct urb,
1919                                         urb_list);
1920                         usb_get_urb (urb);
1921                 }
1922                 spin_unlock_irq(&hcd_urb_list_lock);
1923
1924                 if (urb) {
1925                         usb_kill_urb (urb);
1926                         usb_put_urb (urb);
1927                 }
1928         }
1929 }
1930
1931 /**
1932  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1933  *                              the bus bandwidth
1934  * @udev: target &usb_device
1935  * @new_config: new configuration to install
1936  * @cur_alt: the current alternate interface setting
1937  * @new_alt: alternate interface setting that is being installed
1938  *
1939  * To change configurations, pass in the new configuration in new_config,
1940  * and pass NULL for cur_alt and new_alt.
1941  *
1942  * To reset a device's configuration (put the device in the ADDRESSED state),
1943  * pass in NULL for new_config, cur_alt, and new_alt.
1944  *
1945  * To change alternate interface settings, pass in NULL for new_config,
1946  * pass in the current alternate interface setting in cur_alt,
1947  * and pass in the new alternate interface setting in new_alt.
1948  *
1949  * Return: An error if the requested bandwidth change exceeds the
1950  * bus bandwidth or host controller internal resources.
1951  */
1952 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1953                 struct usb_host_config *new_config,
1954                 struct usb_host_interface *cur_alt,
1955                 struct usb_host_interface *new_alt)
1956 {
1957         int num_intfs, i, j;
1958         struct usb_host_interface *alt = NULL;
1959         int ret = 0;
1960         struct usb_hcd *hcd;
1961         struct usb_host_endpoint *ep;
1962
1963         hcd = bus_to_hcd(udev->bus);
1964         if (!hcd->driver->check_bandwidth)
1965                 return 0;
1966
1967         /* Configuration is being removed - set configuration 0 */
1968         if (!new_config && !cur_alt) {
1969                 for (i = 1; i < 16; ++i) {
1970                         ep = udev->ep_out[i];
1971                         if (ep)
1972                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1973                         ep = udev->ep_in[i];
1974                         if (ep)
1975                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1976                 }
1977                 hcd->driver->check_bandwidth(hcd, udev);
1978                 return 0;
1979         }
1980         /* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1981          * each interface's alt setting 0 and ask the HCD to check the bandwidth
1982          * of the bus.  There will always be bandwidth for endpoint 0, so it's
1983          * ok to exclude it.
1984          */
1985         if (new_config) {
1986                 num_intfs = new_config->desc.bNumInterfaces;
1987                 /* Remove endpoints (except endpoint 0, which is always on the
1988                  * schedule) from the old config from the schedule
1989                  */
1990                 for (i = 1; i < 16; ++i) {
1991                         ep = udev->ep_out[i];
1992                         if (ep) {
1993                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1994                                 if (ret < 0)
1995                                         goto reset;
1996                         }
1997                         ep = udev->ep_in[i];
1998                         if (ep) {
1999                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2000                                 if (ret < 0)
2001                                         goto reset;
2002                         }
2003                 }
2004                 for (i = 0; i < num_intfs; ++i) {
2005                         struct usb_host_interface *first_alt;
2006                         int iface_num;
2007
2008                         first_alt = &new_config->intf_cache[i]->altsetting[0];
2009                         iface_num = first_alt->desc.bInterfaceNumber;
2010                         /* Set up endpoints for alternate interface setting 0 */
2011                         alt = usb_find_alt_setting(new_config, iface_num, 0);
2012                         if (!alt)
2013                                 /* No alt setting 0? Pick the first setting. */
2014                                 alt = first_alt;
2015
2016                         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2017                                 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2018                                 if (ret < 0)
2019                                         goto reset;
2020                         }
2021                 }
2022         }
2023         if (cur_alt && new_alt) {
2024                 struct usb_interface *iface = usb_ifnum_to_if(udev,
2025                                 cur_alt->desc.bInterfaceNumber);
2026
2027                 if (!iface)
2028                         return -EINVAL;
2029                 if (iface->resetting_device) {
2030                         /*
2031                          * The USB core just reset the device, so the xHCI host
2032                          * and the device will think alt setting 0 is installed.
2033                          * However, the USB core will pass in the alternate
2034                          * setting installed before the reset as cur_alt.  Dig
2035                          * out the alternate setting 0 structure, or the first
2036                          * alternate setting if a broken device doesn't have alt
2037                          * setting 0.
2038                          */
2039                         cur_alt = usb_altnum_to_altsetting(iface, 0);
2040                         if (!cur_alt)
2041                                 cur_alt = &iface->altsetting[0];
2042                 }
2043
2044                 /* Drop all the endpoints in the current alt setting */
2045                 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2046                         ret = hcd->driver->drop_endpoint(hcd, udev,
2047                                         &cur_alt->endpoint[i]);
2048                         if (ret < 0)
2049                                 goto reset;
2050                 }
2051                 /* Add all the endpoints in the new alt setting */
2052                 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2053                         ret = hcd->driver->add_endpoint(hcd, udev,
2054                                         &new_alt->endpoint[i]);
2055                         if (ret < 0)
2056                                 goto reset;
2057                 }
2058         }
2059         ret = hcd->driver->check_bandwidth(hcd, udev);
2060 reset:
2061         if (ret < 0)
2062                 hcd->driver->reset_bandwidth(hcd, udev);
2063         return ret;
2064 }
2065
2066 /* Disables the endpoint: synchronizes with the hcd to make sure all
2067  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
2068  * have been called previously.  Use for set_configuration, set_interface,
2069  * driver removal, physical disconnect.
2070  *
2071  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
2072  * type, maxpacket size, toggle, halt status, and scheduling.
2073  */
2074 void usb_hcd_disable_endpoint(struct usb_device *udev,
2075                 struct usb_host_endpoint *ep)
2076 {
2077         struct usb_hcd          *hcd;
2078
2079         might_sleep();
2080         hcd = bus_to_hcd(udev->bus);
2081         if (hcd->driver->endpoint_disable)
2082                 hcd->driver->endpoint_disable(hcd, ep);
2083 }
2084
2085 /**
2086  * usb_hcd_reset_endpoint - reset host endpoint state
2087  * @udev: USB device.
2088  * @ep:   the endpoint to reset.
2089  *
2090  * Resets any host endpoint state such as the toggle bit, sequence
2091  * number and current window.
2092  */
2093 void usb_hcd_reset_endpoint(struct usb_device *udev,
2094                             struct usb_host_endpoint *ep)
2095 {
2096         struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2097
2098         if (hcd->driver->endpoint_reset)
2099                 hcd->driver->endpoint_reset(hcd, ep);
2100         else {
2101                 int epnum = usb_endpoint_num(&ep->desc);
2102                 int is_out = usb_endpoint_dir_out(&ep->desc);
2103                 int is_control = usb_endpoint_xfer_control(&ep->desc);
2104
2105                 usb_settoggle(udev, epnum, is_out, 0);
2106                 if (is_control)
2107                         usb_settoggle(udev, epnum, !is_out, 0);
2108         }
2109 }
2110
2111 /**
2112  * usb_alloc_streams - allocate bulk endpoint stream IDs.
2113  * @interface:          alternate setting that includes all endpoints.
2114  * @eps:                array of endpoints that need streams.
2115  * @num_eps:            number of endpoints in the array.
2116  * @num_streams:        number of streams to allocate.
2117  * @mem_flags:          flags hcd should use to allocate memory.
2118  *
2119  * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2120  * Drivers may queue multiple transfers to different stream IDs, which may
2121  * complete in a different order than they were queued.
2122  *
2123  * Return: On success, the number of allocated streams. On failure, a negative
2124  * error code.
2125  */
2126 int usb_alloc_streams(struct usb_interface *interface,
2127                 struct usb_host_endpoint **eps, unsigned int num_eps,
2128                 unsigned int num_streams, gfp_t mem_flags)
2129 {
2130         struct usb_hcd *hcd;
2131         struct usb_device *dev;
2132         int i, ret;
2133
2134         dev = interface_to_usbdev(interface);
2135         hcd = bus_to_hcd(dev->bus);
2136         if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2137                 return -EINVAL;
2138         if (dev->speed < USB_SPEED_SUPER)
2139                 return -EINVAL;
2140         if (dev->state < USB_STATE_CONFIGURED)
2141                 return -ENODEV;
2142
2143         for (i = 0; i < num_eps; i++) {
2144                 /* Streams only apply to bulk endpoints. */
2145                 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2146                         return -EINVAL;
2147                 /* Re-alloc is not allowed */
2148                 if (eps[i]->streams)
2149                         return -EINVAL;
2150         }
2151
2152         ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2153                         num_streams, mem_flags);
2154         if (ret < 0)
2155                 return ret;
2156
2157         for (i = 0; i < num_eps; i++)
2158                 eps[i]->streams = ret;
2159
2160         return ret;
2161 }
2162 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2163
2164 /**
2165  * usb_free_streams - free bulk endpoint stream IDs.
2166  * @interface:  alternate setting that includes all endpoints.
2167  * @eps:        array of endpoints to remove streams from.
2168  * @num_eps:    number of endpoints in the array.
2169  * @mem_flags:  flags hcd should use to allocate memory.
2170  *
2171  * Reverts a group of bulk endpoints back to not using stream IDs.
2172  * Can fail if we are given bad arguments, or HCD is broken.
2173  *
2174  * Return: 0 on success. On failure, a negative error code.
2175  */
2176 int usb_free_streams(struct usb_interface *interface,
2177                 struct usb_host_endpoint **eps, unsigned int num_eps,
2178                 gfp_t mem_flags)
2179 {
2180         struct usb_hcd *hcd;
2181         struct usb_device *dev;
2182         int i, ret;
2183
2184         dev = interface_to_usbdev(interface);
2185         hcd = bus_to_hcd(dev->bus);
2186         if (dev->speed < USB_SPEED_SUPER)
2187                 return -EINVAL;
2188
2189         /* Double-free is not allowed */
2190         for (i = 0; i < num_eps; i++)
2191                 if (!eps[i] || !eps[i]->streams)
2192                         return -EINVAL;
2193
2194         ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2195         if (ret < 0)
2196                 return ret;
2197
2198         for (i = 0; i < num_eps; i++)
2199                 eps[i]->streams = 0;
2200
2201         return ret;
2202 }
2203 EXPORT_SYMBOL_GPL(usb_free_streams);
2204
2205 /* Protect against drivers that try to unlink URBs after the device
2206  * is gone, by waiting until all unlinks for @udev are finished.
2207  * Since we don't currently track URBs by device, simply wait until
2208  * nothing is running in the locked region of usb_hcd_unlink_urb().
2209  */
2210 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2211 {
2212         spin_lock_irq(&hcd_urb_unlink_lock);
2213         spin_unlock_irq(&hcd_urb_unlink_lock);
2214 }
2215
2216 /*-------------------------------------------------------------------------*/
2217
2218 /* called in any context */
2219 int usb_hcd_get_frame_number (struct usb_device *udev)
2220 {
2221         struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
2222
2223         if (!HCD_RH_RUNNING(hcd))
2224                 return -ESHUTDOWN;
2225         return hcd->driver->get_frame_number (hcd);
2226 }
2227
2228 /*-------------------------------------------------------------------------*/
2229
2230 #ifdef  CONFIG_PM
2231
2232 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2233 {
2234         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2235         int             status;
2236         int             old_state = hcd->state;
2237
2238         dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2239                         (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2240                         rhdev->do_remote_wakeup);
2241         if (HCD_DEAD(hcd)) {
2242                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2243                 return 0;
2244         }
2245
2246         if (!hcd->driver->bus_suspend) {
2247                 status = -ENOENT;
2248         } else {
2249                 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2250                 hcd->state = HC_STATE_QUIESCING;
2251                 status = hcd->driver->bus_suspend(hcd);
2252         }
2253         if (status == 0) {
2254                 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2255                 hcd->state = HC_STATE_SUSPENDED;
2256
2257                 /* Did we race with a root-hub wakeup event? */
2258                 if (rhdev->do_remote_wakeup) {
2259                         char    buffer[6];
2260
2261                         status = hcd->driver->hub_status_data(hcd, buffer);
2262                         if (status != 0) {
2263                                 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2264                                 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2265                                 status = -EBUSY;
2266                         }
2267                 }
2268         } else {
2269                 spin_lock_irq(&hcd_root_hub_lock);
2270                 if (!HCD_DEAD(hcd)) {
2271                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2272                         hcd->state = old_state;
2273                 }
2274                 spin_unlock_irq(&hcd_root_hub_lock);
2275                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2276                                 "suspend", status);
2277         }
2278         return status;
2279 }
2280
2281 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2282 {
2283         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2284         int             status;
2285         int             old_state = hcd->state;
2286
2287         dev_dbg(&rhdev->dev, "usb %sresume\n",
2288                         (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2289         if (HCD_DEAD(hcd)) {
2290                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2291                 return 0;
2292         }
2293         if (!hcd->driver->bus_resume)
2294                 return -ENOENT;
2295         if (HCD_RH_RUNNING(hcd))
2296                 return 0;
2297
2298         hcd->state = HC_STATE_RESUMING;
2299         status = hcd->driver->bus_resume(hcd);
2300         clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2301         if (status == 0) {
2302                 struct usb_device *udev;
2303                 int port1;
2304
2305                 spin_lock_irq(&hcd_root_hub_lock);
2306                 if (!HCD_DEAD(hcd)) {
2307                         usb_set_device_state(rhdev, rhdev->actconfig
2308                                         ? USB_STATE_CONFIGURED
2309                                         : USB_STATE_ADDRESS);
2310                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2311                         hcd->state = HC_STATE_RUNNING;
2312                 }
2313                 spin_unlock_irq(&hcd_root_hub_lock);
2314
2315                 /*
2316                  * Check whether any of the enabled ports on the root hub are
2317                  * unsuspended.  If they are then a TRSMRCY delay is needed
2318                  * (this is what the USB-2 spec calls a "global resume").
2319                  * Otherwise we can skip the delay.
2320                  */
2321                 usb_hub_for_each_child(rhdev, port1, udev) {
2322                         if (udev->state != USB_STATE_NOTATTACHED &&
2323                                         !udev->port_is_suspended) {
2324                                 usleep_range(10000, 11000);     /* TRSMRCY */
2325                                 break;
2326                         }
2327                 }
2328         } else {
2329                 hcd->state = old_state;
2330                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2331                                 "resume", status);
2332                 if (status != -ESHUTDOWN)
2333                         usb_hc_died(hcd);
2334         }
2335         return status;
2336 }
2337
2338 /* Workqueue routine for root-hub remote wakeup */
2339 static void hcd_resume_work(struct work_struct *work)
2340 {
2341         struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2342         struct usb_device *udev = hcd->self.root_hub;
2343
2344         usb_remote_wakeup(udev);
2345 }
2346
2347 /**
2348  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2349  * @hcd: host controller for this root hub
2350  *
2351  * The USB host controller calls this function when its root hub is
2352  * suspended (with the remote wakeup feature enabled) and a remote
2353  * wakeup request is received.  The routine submits a workqueue request
2354  * to resume the root hub (that is, manage its downstream ports again).
2355  */
2356 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2357 {
2358         unsigned long flags;
2359
2360         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2361         if (hcd->rh_registered) {
2362                 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2363                 queue_work(pm_wq, &hcd->wakeup_work);
2364         }
2365         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2366 }
2367 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2368
2369 #endif  /* CONFIG_PM */
2370
2371 /*-------------------------------------------------------------------------*/
2372
2373 #ifdef  CONFIG_USB_OTG
2374
2375 /**
2376  * usb_bus_start_enum - start immediate enumeration (for OTG)
2377  * @bus: the bus (must use hcd framework)
2378  * @port_num: 1-based number of port; usually bus->otg_port
2379  * Context: in_interrupt()
2380  *
2381  * Starts enumeration, with an immediate reset followed later by
2382  * hub_wq identifying and possibly configuring the device.
2383  * This is needed by OTG controller drivers, where it helps meet
2384  * HNP protocol timing requirements for starting a port reset.
2385  *
2386  * Return: 0 if successful.
2387  */
2388 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2389 {
2390         struct usb_hcd          *hcd;
2391         int                     status = -EOPNOTSUPP;
2392
2393         /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2394          * boards with root hubs hooked up to internal devices (instead of
2395          * just the OTG port) may need more attention to resetting...
2396          */
2397         hcd = container_of (bus, struct usb_hcd, self);
2398         if (port_num && hcd->driver->start_port_reset)
2399                 status = hcd->driver->start_port_reset(hcd, port_num);
2400
2401         /* allocate hub_wq shortly after (first) root port reset finishes;
2402          * it may issue others, until at least 50 msecs have passed.
2403          */
2404         if (status == 0)
2405                 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2406         return status;
2407 }
2408 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2409
2410 #endif
2411
2412 /*-------------------------------------------------------------------------*/
2413
2414 /**
2415  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2416  * @irq: the IRQ being raised
2417  * @__hcd: pointer to the HCD whose IRQ is being signaled
2418  *
2419  * If the controller isn't HALTed, calls the driver's irq handler.
2420  * Checks whether the controller is now dead.
2421  *
2422  * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2423  */
2424 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2425 {
2426         struct usb_hcd          *hcd = __hcd;
2427         irqreturn_t             rc;
2428
2429         if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2430                 rc = IRQ_NONE;
2431         else if (hcd->driver->irq(hcd) == IRQ_NONE)
2432                 rc = IRQ_NONE;
2433         else
2434                 rc = IRQ_HANDLED;
2435
2436         return rc;
2437 }
2438 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2439
2440 /*-------------------------------------------------------------------------*/
2441
2442 /**
2443  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2444  * @hcd: pointer to the HCD representing the controller
2445  *
2446  * This is called by bus glue to report a USB host controller that died
2447  * while operations may still have been pending.  It's called automatically
2448  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2449  *
2450  * Only call this function with the primary HCD.
2451  */
2452 void usb_hc_died (struct usb_hcd *hcd)
2453 {
2454         unsigned long flags;
2455
2456         dev_err (hcd->self.controller, "HC died; cleaning up\n");
2457
2458         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2459         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2460         set_bit(HCD_FLAG_DEAD, &hcd->flags);
2461         if (hcd->rh_registered) {
2462                 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2463
2464                 /* make hub_wq clean up old urbs and devices */
2465                 usb_set_device_state (hcd->self.root_hub,
2466                                 USB_STATE_NOTATTACHED);
2467                 usb_kick_hub_wq(hcd->self.root_hub);
2468         }
2469         if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2470                 hcd = hcd->shared_hcd;
2471                 if (hcd->rh_registered) {
2472                         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2473
2474                         /* make hub_wq clean up old urbs and devices */
2475                         usb_set_device_state(hcd->self.root_hub,
2476                                         USB_STATE_NOTATTACHED);
2477                         usb_kick_hub_wq(hcd->self.root_hub);
2478                 }
2479         }
2480         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2481         /* Make sure that the other roothub is also deallocated. */
2482 }
2483 EXPORT_SYMBOL_GPL (usb_hc_died);
2484
2485 /*-------------------------------------------------------------------------*/
2486
2487 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2488 {
2489
2490         spin_lock_init(&bh->lock);
2491         INIT_LIST_HEAD(&bh->head);
2492         tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2493 }
2494
2495 /**
2496  * usb_create_shared_hcd - create and initialize an HCD structure
2497  * @driver: HC driver that will use this hcd
2498  * @dev: device for this HC, stored in hcd->self.controller
2499  * @bus_name: value to store in hcd->self.bus_name
2500  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2501  *              PCI device.  Only allocate certain resources for the primary HCD
2502  * Context: !in_interrupt()
2503  *
2504  * Allocate a struct usb_hcd, with extra space at the end for the
2505  * HC driver's private data.  Initialize the generic members of the
2506  * hcd structure.
2507  *
2508  * Return: On success, a pointer to the created and initialized HCD structure.
2509  * On failure (e.g. if memory is unavailable), %NULL.
2510  */
2511 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2512                 struct device *dev, const char *bus_name,
2513                 struct usb_hcd *primary_hcd)
2514 {
2515         struct usb_hcd *hcd;
2516
2517         hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2518         if (!hcd) {
2519                 dev_dbg (dev, "hcd alloc failed\n");
2520                 return NULL;
2521         }
2522         if (primary_hcd == NULL) {
2523                 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2524                                 GFP_KERNEL);
2525                 if (!hcd->bandwidth_mutex) {
2526                         kfree(hcd);
2527                         dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2528                         return NULL;
2529                 }
2530                 mutex_init(hcd->bandwidth_mutex);
2531                 dev_set_drvdata(dev, hcd);
2532         } else {
2533                 mutex_lock(&usb_port_peer_mutex);
2534                 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2535                 hcd->primary_hcd = primary_hcd;
2536                 primary_hcd->primary_hcd = primary_hcd;
2537                 hcd->shared_hcd = primary_hcd;
2538                 primary_hcd->shared_hcd = hcd;
2539                 mutex_unlock(&usb_port_peer_mutex);
2540         }
2541
2542         kref_init(&hcd->kref);
2543
2544         usb_bus_init(&hcd->self);
2545         hcd->self.controller = dev;
2546         hcd->self.bus_name = bus_name;
2547         hcd->self.uses_dma = (dev->dma_mask != NULL);
2548
2549         init_timer(&hcd->rh_timer);
2550         hcd->rh_timer.function = rh_timer_func;
2551         hcd->rh_timer.data = (unsigned long) hcd;
2552 #ifdef CONFIG_PM
2553         INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2554 #endif
2555
2556         hcd->driver = driver;
2557         hcd->speed = driver->flags & HCD_MASK;
2558         hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2559                         "USB Host Controller";
2560         return hcd;
2561 }
2562 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2563
2564 /**
2565  * usb_create_hcd - create and initialize an HCD structure
2566  * @driver: HC driver that will use this hcd
2567  * @dev: device for this HC, stored in hcd->self.controller
2568  * @bus_name: value to store in hcd->self.bus_name
2569  * Context: !in_interrupt()
2570  *
2571  * Allocate a struct usb_hcd, with extra space at the end for the
2572  * HC driver's private data.  Initialize the generic members of the
2573  * hcd structure.
2574  *
2575  * Return: On success, a pointer to the created and initialized HCD
2576  * structure. On failure (e.g. if memory is unavailable), %NULL.
2577  */
2578 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2579                 struct device *dev, const char *bus_name)
2580 {
2581         return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2582 }
2583 EXPORT_SYMBOL_GPL(usb_create_hcd);
2584
2585 /*
2586  * Roothubs that share one PCI device must also share the bandwidth mutex.
2587  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2588  * deallocated.
2589  *
2590  * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2591  * freed.  When hcd_release() is called for either hcd in a peer set
2592  * invalidate the peer's ->shared_hcd and ->primary_hcd pointers to
2593  * block new peering attempts
2594  */
2595 static void hcd_release(struct kref *kref)
2596 {
2597         struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2598
2599         mutex_lock(&usb_port_peer_mutex);
2600         if (usb_hcd_is_primary_hcd(hcd))
2601                 kfree(hcd->bandwidth_mutex);
2602         if (hcd->shared_hcd) {
2603                 struct usb_hcd *peer = hcd->shared_hcd;
2604
2605                 peer->shared_hcd = NULL;
2606                 if (peer->primary_hcd == hcd)
2607                         peer->primary_hcd = NULL;
2608         }
2609         mutex_unlock(&usb_port_peer_mutex);
2610         kfree(hcd);
2611 }
2612
2613 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2614 {
2615         if (hcd)
2616                 kref_get (&hcd->kref);
2617         return hcd;
2618 }
2619 EXPORT_SYMBOL_GPL(usb_get_hcd);
2620
2621 void usb_put_hcd (struct usb_hcd *hcd)
2622 {
2623         if (hcd)
2624                 kref_put (&hcd->kref, hcd_release);
2625 }
2626 EXPORT_SYMBOL_GPL(usb_put_hcd);
2627
2628 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2629 {
2630         if (!hcd->primary_hcd)
2631                 return 1;
2632         return hcd == hcd->primary_hcd;
2633 }
2634 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2635
2636 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2637 {
2638         if (!hcd->driver->find_raw_port_number)
2639                 return port1;
2640
2641         return hcd->driver->find_raw_port_number(hcd, port1);
2642 }
2643
2644 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2645                 unsigned int irqnum, unsigned long irqflags)
2646 {
2647         int retval;
2648
2649         if (hcd->driver->irq) {
2650
2651                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2652                                 hcd->driver->description, hcd->self.busnum);
2653                 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2654                                 hcd->irq_descr, hcd);
2655                 if (retval != 0) {
2656                         dev_err(hcd->self.controller,
2657                                         "request interrupt %d failed\n",
2658                                         irqnum);
2659                         return retval;
2660                 }
2661                 hcd->irq = irqnum;
2662                 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2663                                 (hcd->driver->flags & HCD_MEMORY) ?
2664                                         "io mem" : "io base",
2665                                         (unsigned long long)hcd->rsrc_start);
2666         } else {
2667                 hcd->irq = 0;
2668                 if (hcd->rsrc_start)
2669                         dev_info(hcd->self.controller, "%s 0x%08llx\n",
2670                                         (hcd->driver->flags & HCD_MEMORY) ?
2671                                         "io mem" : "io base",
2672                                         (unsigned long long)hcd->rsrc_start);
2673         }
2674         return 0;
2675 }
2676
2677 /*
2678  * Before we free this root hub, flush in-flight peering attempts
2679  * and disable peer lookups
2680  */
2681 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2682 {
2683         struct usb_device *rhdev;
2684
2685         mutex_lock(&usb_port_peer_mutex);
2686         rhdev = hcd->self.root_hub;
2687         hcd->self.root_hub = NULL;
2688         mutex_unlock(&usb_port_peer_mutex);
2689         usb_put_dev(rhdev);
2690 }
2691
2692 /**
2693  * usb_add_hcd - finish generic HCD structure initialization and register
2694  * @hcd: the usb_hcd structure to initialize
2695  * @irqnum: Interrupt line to allocate
2696  * @irqflags: Interrupt type flags
2697  *
2698  * Finish the remaining parts of generic HCD initialization: allocate the
2699  * buffers of consistent memory, register the bus, request the IRQ line,
2700  * and call the driver's reset() and start() routines.
2701  */
2702 int usb_add_hcd(struct usb_hcd *hcd,
2703                 unsigned int irqnum, unsigned long irqflags)
2704 {
2705         int retval;
2706         struct usb_device *rhdev;
2707
2708         if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2709                 struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2710
2711                 if (IS_ERR(phy)) {
2712                         retval = PTR_ERR(phy);
2713                         if (retval == -EPROBE_DEFER)
2714                                 return retval;
2715                 } else {
2716                         retval = usb_phy_init(phy);
2717                         if (retval) {
2718                                 usb_put_phy(phy);
2719                                 return retval;
2720                         }
2721                         hcd->usb_phy = phy;
2722                         hcd->remove_phy = 1;
2723                 }
2724         }
2725
2726         if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) {
2727                 struct phy *phy = phy_get(hcd->self.controller, "usb");
2728
2729                 if (IS_ERR(phy)) {
2730                         retval = PTR_ERR(phy);
2731                         if (retval == -EPROBE_DEFER)
2732                                 goto err_phy;
2733                 } else {
2734                         retval = phy_init(phy);
2735                         if (retval) {
2736                                 phy_put(phy);
2737                                 goto err_phy;
2738                         }
2739                         retval = phy_power_on(phy);
2740                         if (retval) {
2741                                 phy_exit(phy);
2742                                 phy_put(phy);
2743                                 goto err_phy;
2744                         }
2745                         hcd->phy = phy;
2746                         hcd->remove_phy = 1;
2747                 }
2748         }
2749
2750         dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2751
2752         /* Keep old behaviour if authorized_default is not in [0, 1]. */
2753         if (authorized_default < 0 || authorized_default > 1) {
2754                 if (hcd->wireless)
2755                         clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2756                 else
2757                         set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2758         } else {
2759                 if (authorized_default)
2760                         set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2761                 else
2762                         clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2763         }
2764         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2765
2766         /* per default all interfaces are authorized */
2767         set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2768
2769         /* HC is in reset state, but accessible.  Now do the one-time init,
2770          * bottom up so that hcds can customize the root hubs before hub_wq
2771          * starts talking to them.  (Note, bus id is assigned early too.)
2772          */
2773         retval = hcd_buffer_create(hcd);
2774         if (retval != 0) {
2775                 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2776                 goto err_create_buf;
2777         }
2778
2779         retval = usb_register_bus(&hcd->self);
2780         if (retval < 0)
2781                 goto err_register_bus;
2782
2783         rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2784         if (rhdev == NULL) {
2785                 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2786                 retval = -ENOMEM;
2787                 goto err_allocate_root_hub;
2788         }
2789         mutex_lock(&usb_port_peer_mutex);
2790         hcd->self.root_hub = rhdev;
2791         mutex_unlock(&usb_port_peer_mutex);
2792
2793         switch (hcd->speed) {
2794         case HCD_USB11:
2795                 rhdev->speed = USB_SPEED_FULL;
2796                 break;
2797         case HCD_USB2:
2798                 rhdev->speed = USB_SPEED_HIGH;
2799                 break;
2800         case HCD_USB25:
2801                 rhdev->speed = USB_SPEED_WIRELESS;
2802                 break;
2803         case HCD_USB3:
2804                 rhdev->speed = USB_SPEED_SUPER;
2805                 break;
2806         case HCD_USB31:
2807                 rhdev->speed = USB_SPEED_SUPER_PLUS;
2808                 break;
2809         default:
2810                 retval = -EINVAL;
2811                 goto err_set_rh_speed;
2812         }
2813
2814         /* wakeup flag init defaults to "everything works" for root hubs,
2815          * but drivers can override it in reset() if needed, along with
2816          * recording the overall controller's system wakeup capability.
2817          */
2818         device_set_wakeup_capable(&rhdev->dev, 1);
2819
2820         /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2821          * registered.  But since the controller can die at any time,
2822          * let's initialize the flag before touching the hardware.
2823          */
2824         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2825
2826         /* "reset" is misnamed; its role is now one-time init. the controller
2827          * should already have been reset (and boot firmware kicked off etc).
2828          */
2829         if (hcd->driver->reset) {
2830                 retval = hcd->driver->reset(hcd);
2831                 if (retval < 0) {
2832                         dev_err(hcd->self.controller, "can't setup: %d\n",
2833                                         retval);
2834                         goto err_hcd_driver_setup;
2835                 }
2836         }
2837         hcd->rh_pollable = 1;
2838
2839         /* NOTE: root hub and controller capabilities may not be the same */
2840         if (device_can_wakeup(hcd->self.controller)
2841                         && device_can_wakeup(&hcd->self.root_hub->dev))
2842                 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2843
2844         /* initialize tasklets */
2845         init_giveback_urb_bh(&hcd->high_prio_bh);
2846         init_giveback_urb_bh(&hcd->low_prio_bh);
2847
2848         /* enable irqs just before we start the controller,
2849          * if the BIOS provides legacy PCI irqs.
2850          */
2851         if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2852                 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2853                 if (retval)
2854                         goto err_request_irq;
2855         }
2856
2857         hcd->state = HC_STATE_RUNNING;
2858         retval = hcd->driver->start(hcd);
2859         if (retval < 0) {
2860                 dev_err(hcd->self.controller, "startup error %d\n", retval);
2861                 goto err_hcd_driver_start;
2862         }
2863
2864         /* starting here, usbcore will pay attention to this root hub */
2865         retval = register_root_hub(hcd);
2866         if (retval != 0)
2867                 goto err_register_root_hub;
2868
2869         retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2870         if (retval < 0) {
2871                 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2872                        retval);
2873                 goto error_create_attr_group;
2874         }
2875         if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2876                 usb_hcd_poll_rh_status(hcd);
2877
2878         return retval;
2879
2880 error_create_attr_group:
2881         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2882         if (HC_IS_RUNNING(hcd->state))
2883                 hcd->state = HC_STATE_QUIESCING;
2884         spin_lock_irq(&hcd_root_hub_lock);
2885         hcd->rh_registered = 0;
2886         spin_unlock_irq(&hcd_root_hub_lock);
2887
2888 #ifdef CONFIG_PM
2889         cancel_work_sync(&hcd->wakeup_work);
2890 #endif
2891         mutex_lock(&usb_bus_list_lock);
2892         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2893         mutex_unlock(&usb_bus_list_lock);
2894 err_register_root_hub:
2895         hcd->rh_pollable = 0;
2896         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2897         del_timer_sync(&hcd->rh_timer);
2898         hcd->driver->stop(hcd);
2899         hcd->state = HC_STATE_HALT;
2900         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2901         del_timer_sync(&hcd->rh_timer);
2902 err_hcd_driver_start:
2903         if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2904                 free_irq(irqnum, hcd);
2905 err_request_irq:
2906 err_hcd_driver_setup:
2907 err_set_rh_speed:
2908         usb_put_invalidate_rhdev(hcd);
2909 err_allocate_root_hub:
2910         usb_deregister_bus(&hcd->self);
2911 err_register_bus:
2912         hcd_buffer_destroy(hcd);
2913 err_create_buf:
2914         if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2915                 phy_power_off(hcd->phy);
2916                 phy_exit(hcd->phy);
2917                 phy_put(hcd->phy);
2918                 hcd->phy = NULL;
2919         }
2920 err_phy:
2921         if (hcd->remove_phy && hcd->usb_phy) {
2922                 usb_phy_shutdown(hcd->usb_phy);
2923                 usb_put_phy(hcd->usb_phy);
2924                 hcd->usb_phy = NULL;
2925         }
2926         return retval;
2927 }
2928 EXPORT_SYMBOL_GPL(usb_add_hcd);
2929
2930 /**
2931  * usb_remove_hcd - shutdown processing for generic HCDs
2932  * @hcd: the usb_hcd structure to remove
2933  * Context: !in_interrupt()
2934  *
2935  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2936  * invoking the HCD's stop() method.
2937  */
2938 void usb_remove_hcd(struct usb_hcd *hcd)
2939 {
2940         struct usb_device *rhdev = hcd->self.root_hub;
2941
2942         dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2943
2944         usb_get_dev(rhdev);
2945         sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2946
2947         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2948         if (HC_IS_RUNNING (hcd->state))
2949                 hcd->state = HC_STATE_QUIESCING;
2950
2951         dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2952         spin_lock_irq (&hcd_root_hub_lock);
2953         hcd->rh_registered = 0;
2954         spin_unlock_irq (&hcd_root_hub_lock);
2955
2956 #ifdef CONFIG_PM
2957         cancel_work_sync(&hcd->wakeup_work);
2958 #endif
2959
2960         mutex_lock(&usb_bus_list_lock);
2961         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2962         mutex_unlock(&usb_bus_list_lock);
2963
2964         /*
2965          * tasklet_kill() isn't needed here because:
2966          * - driver's disconnect() called from usb_disconnect() should
2967          *   make sure its URBs are completed during the disconnect()
2968          *   callback
2969          *
2970          * - it is too late to run complete() here since driver may have
2971          *   been removed already now
2972          */
2973
2974         /* Prevent any more root-hub status calls from the timer.
2975          * The HCD might still restart the timer (if a port status change
2976          * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2977          * the hub_status_data() callback.
2978          */
2979         hcd->rh_pollable = 0;
2980         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2981         del_timer_sync(&hcd->rh_timer);
2982
2983         hcd->driver->stop(hcd);
2984         hcd->state = HC_STATE_HALT;
2985
2986         /* In case the HCD restarted the timer, stop it again. */
2987         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2988         del_timer_sync(&hcd->rh_timer);
2989
2990         if (usb_hcd_is_primary_hcd(hcd)) {
2991                 if (hcd->irq > 0)
2992                         free_irq(hcd->irq, hcd);
2993         }
2994
2995         usb_deregister_bus(&hcd->self);
2996         hcd_buffer_destroy(hcd);
2997
2998         if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2999                 phy_power_off(hcd->phy);
3000                 phy_exit(hcd->phy);
3001                 phy_put(hcd->phy);
3002                 hcd->phy = NULL;
3003         }
3004         if (hcd->remove_phy && hcd->usb_phy) {
3005                 usb_phy_shutdown(hcd->usb_phy);
3006                 usb_put_phy(hcd->usb_phy);
3007                 hcd->usb_phy = NULL;
3008         }
3009
3010         usb_put_invalidate_rhdev(hcd);
3011 }
3012 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3013
3014 void
3015 usb_hcd_platform_shutdown(struct platform_device *dev)
3016 {
3017         struct usb_hcd *hcd = platform_get_drvdata(dev);
3018
3019         if (hcd->driver->shutdown)
3020                 hcd->driver->shutdown(hcd);
3021 }
3022 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3023
3024 /*-------------------------------------------------------------------------*/
3025
3026 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
3027
3028 const struct usb_mon_operations *mon_ops;
3029
3030 /*
3031  * The registration is unlocked.
3032  * We do it this way because we do not want to lock in hot paths.
3033  *
3034  * Notice that the code is minimally error-proof. Because usbmon needs
3035  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3036  */
3037
3038 int usb_mon_register(const struct usb_mon_operations *ops)
3039 {
3040
3041         if (mon_ops)
3042                 return -EBUSY;
3043
3044         mon_ops = ops;
3045         mb();
3046         return 0;
3047 }
3048 EXPORT_SYMBOL_GPL (usb_mon_register);
3049
3050 void usb_mon_deregister (void)
3051 {
3052
3053         if (mon_ops == NULL) {
3054                 printk(KERN_ERR "USB: monitor was not registered\n");
3055                 return;
3056         }
3057         mon_ops = NULL;
3058         mb();
3059 }
3060 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3061
3062 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */