UPSTREAM: xHCI: add cmd_ring_state
[cascardo/linux.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29
30 #include "xhci.h"
31
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
34
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42  * handshake - spin reading hc until handshake completes or fails
43  * @ptr: address of hc register to be read
44  * @mask: bits to look at in result of read
45  * @done: value of those bits when handshake succeeds
46  * @usec: timeout in microseconds
47  *
48  * Returns negative errno, or zero on success
49  *
50  * Success happens when the "mask" bits have the specified value (hardware
51  * handshake done).  There are two failure modes:  "usec" have passed (major
52  * hardware flakeout), or the register reads as all-ones (hardware removed).
53  */
54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55                       u32 mask, u32 done, int usec)
56 {
57         u32     result;
58
59         do {
60                 result = xhci_readl(xhci, ptr);
61                 if (result == ~(u32)0)          /* card removed */
62                         return -ENODEV;
63                 result &= mask;
64                 if (result == done)
65                         return 0;
66                 udelay(1);
67                 usec--;
68         } while (usec > 0);
69         return -ETIMEDOUT;
70 }
71
72 /*
73  * Disable interrupts and begin the xHCI halting process.
74  */
75 void xhci_quiesce(struct xhci_hcd *xhci)
76 {
77         u32 halted;
78         u32 cmd;
79         u32 mask;
80
81         mask = ~(XHCI_IRQS);
82         halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83         if (!halted)
84                 mask &= ~CMD_RUN;
85
86         cmd = xhci_readl(xhci, &xhci->op_regs->command);
87         cmd &= mask;
88         xhci_writel(xhci, cmd, &xhci->op_regs->command);
89 }
90
91 /*
92  * Force HC into halt state.
93  *
94  * Disable any IRQs and clear the run/stop bit.
95  * HC will complete any current and actively pipelined transactions, and
96  * should halt within 16 ms of the run/stop bit being cleared.
97  * Read HC Halted bit in the status register to see when the HC is finished.
98  */
99 int xhci_halt(struct xhci_hcd *xhci)
100 {
101         int ret;
102         xhci_dbg(xhci, "// Halt the HC\n");
103         xhci_quiesce(xhci);
104
105         ret = handshake(xhci, &xhci->op_regs->status,
106                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107         if (!ret) {
108                 xhci->xhc_state |= XHCI_STATE_HALTED;
109                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
110         } else
111                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
112                                 XHCI_MAX_HALT_USEC);
113         return ret;
114 }
115
116 /*
117  * Set the run bit and wait for the host to be running.
118  */
119 static int xhci_start(struct xhci_hcd *xhci)
120 {
121         u32 temp;
122         int ret;
123
124         temp = xhci_readl(xhci, &xhci->op_regs->command);
125         temp |= (CMD_RUN);
126         xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
127                         temp);
128         xhci_writel(xhci, temp, &xhci->op_regs->command);
129
130         /*
131          * Wait for the HCHalted Status bit to be 0 to indicate the host is
132          * running.
133          */
134         ret = handshake(xhci, &xhci->op_regs->status,
135                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
136         if (ret == -ETIMEDOUT)
137                 xhci_err(xhci, "Host took too long to start, "
138                                 "waited %u microseconds.\n",
139                                 XHCI_MAX_HALT_USEC);
140         if (!ret)
141                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
142         return ret;
143 }
144
145 /*
146  * Reset a halted HC.
147  *
148  * This resets pipelines, timers, counters, state machines, etc.
149  * Transactions will be terminated immediately, and operational registers
150  * will be set to their defaults.
151  */
152 int xhci_reset(struct xhci_hcd *xhci)
153 {
154         u32 command;
155         u32 state;
156         int ret;
157
158         state = xhci_readl(xhci, &xhci->op_regs->status);
159         if ((state & STS_HALT) == 0) {
160                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
161                 return 0;
162         }
163
164         xhci_dbg(xhci, "// Reset the HC\n");
165         command = xhci_readl(xhci, &xhci->op_regs->command);
166         command |= CMD_RESET;
167         xhci_writel(xhci, command, &xhci->op_regs->command);
168
169         ret = handshake(xhci, &xhci->op_regs->command,
170                         CMD_RESET, 0, 250 * 1000);
171         if (ret)
172                 return ret;
173
174         xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
175         /*
176          * xHCI cannot write to any doorbells or operational registers other
177          * than status until the "Controller Not Ready" flag is cleared.
178          */
179         return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
180 }
181
182 #ifdef CONFIG_PCI
183 static int xhci_free_msi(struct xhci_hcd *xhci)
184 {
185         int i;
186
187         if (!xhci->msix_entries)
188                 return -EINVAL;
189
190         for (i = 0; i < xhci->msix_count; i++)
191                 if (xhci->msix_entries[i].vector)
192                         free_irq(xhci->msix_entries[i].vector,
193                                         xhci_to_hcd(xhci));
194         return 0;
195 }
196
197 /*
198  * Set up MSI
199  */
200 static int xhci_setup_msi(struct xhci_hcd *xhci)
201 {
202         int ret;
203         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
204
205         ret = pci_enable_msi(pdev);
206         if (ret) {
207                 xhci_dbg(xhci, "failed to allocate MSI entry\n");
208                 return ret;
209         }
210
211         ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
212                                 0, "xhci_hcd", xhci_to_hcd(xhci));
213         if (ret) {
214                 xhci_dbg(xhci, "disable MSI interrupt\n");
215                 pci_disable_msi(pdev);
216         }
217
218         return ret;
219 }
220
221 /*
222  * Free IRQs
223  * free all IRQs request
224  */
225 static void xhci_free_irq(struct xhci_hcd *xhci)
226 {
227         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
228         int ret;
229
230         /* return if using legacy interrupt */
231         if (xhci_to_hcd(xhci)->irq > 0)
232                 return;
233
234         ret = xhci_free_msi(xhci);
235         if (!ret)
236                 return;
237         if (pdev->irq > 0)
238                 free_irq(pdev->irq, xhci_to_hcd(xhci));
239
240         return;
241 }
242
243 /*
244  * Set up MSI-X
245  */
246 static int xhci_setup_msix(struct xhci_hcd *xhci)
247 {
248         int i, ret = 0;
249         struct usb_hcd *hcd = xhci_to_hcd(xhci);
250         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
251
252         /*
253          * calculate number of msi-x vectors supported.
254          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
255          *   with max number of interrupters based on the xhci HCSPARAMS1.
256          * - num_online_cpus: maximum msi-x vectors per CPUs core.
257          *   Add additional 1 vector to ensure always available interrupt.
258          */
259         xhci->msix_count = min(num_online_cpus() + 1,
260                                 HCS_MAX_INTRS(xhci->hcs_params1));
261
262         xhci->msix_entries =
263                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
264                                 GFP_KERNEL);
265         if (!xhci->msix_entries) {
266                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
267                 return -ENOMEM;
268         }
269
270         for (i = 0; i < xhci->msix_count; i++) {
271                 xhci->msix_entries[i].entry = i;
272                 xhci->msix_entries[i].vector = 0;
273         }
274
275         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
276         if (ret) {
277                 xhci_dbg(xhci, "Failed to enable MSI-X\n");
278                 goto free_entries;
279         }
280
281         for (i = 0; i < xhci->msix_count; i++) {
282                 ret = request_irq(xhci->msix_entries[i].vector,
283                                 (irq_handler_t)xhci_msi_irq,
284                                 0, "xhci_hcd", xhci_to_hcd(xhci));
285                 if (ret)
286                         goto disable_msix;
287         }
288
289         hcd->msix_enabled = 1;
290         return ret;
291
292 disable_msix:
293         xhci_dbg(xhci, "disable MSI-X interrupt\n");
294         xhci_free_irq(xhci);
295         pci_disable_msix(pdev);
296 free_entries:
297         kfree(xhci->msix_entries);
298         xhci->msix_entries = NULL;
299         return ret;
300 }
301
302 /* Free any IRQs and disable MSI-X */
303 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
304 {
305         struct usb_hcd *hcd = xhci_to_hcd(xhci);
306         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
307
308         xhci_free_irq(xhci);
309
310         if (xhci->msix_entries) {
311                 pci_disable_msix(pdev);
312                 kfree(xhci->msix_entries);
313                 xhci->msix_entries = NULL;
314         } else {
315                 pci_disable_msi(pdev);
316         }
317
318         hcd->msix_enabled = 0;
319         return;
320 }
321
322 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
323 {
324         int i;
325
326         if (xhci->msix_entries) {
327                 for (i = 0; i < xhci->msix_count; i++)
328                         synchronize_irq(xhci->msix_entries[i].vector);
329         }
330 }
331
332 static int xhci_try_enable_msi(struct usb_hcd *hcd)
333 {
334         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
335         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
336         int ret;
337
338         /*
339          * Some Fresco Logic host controllers advertise MSI, but fail to
340          * generate interrupts.  Don't even try to enable MSI.
341          */
342         if (xhci->quirks & XHCI_BROKEN_MSI)
343                 return 0;
344
345         /* unregister the legacy interrupt */
346         if (hcd->irq)
347                 free_irq(hcd->irq, hcd);
348         hcd->irq = 0;
349
350         ret = xhci_setup_msix(xhci);
351         if (ret)
352                 /* fall back to msi*/
353                 ret = xhci_setup_msi(xhci);
354
355         if (!ret)
356                 /* hcd->irq is 0, we have MSI */
357                 return 0;
358
359         if (!pdev->irq) {
360                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
361                 return -EINVAL;
362         }
363
364         /* fall back to legacy interrupt*/
365         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
366                         hcd->irq_descr, hcd);
367         if (ret) {
368                 xhci_err(xhci, "request interrupt %d failed\n",
369                                 pdev->irq);
370                 return ret;
371         }
372         hcd->irq = pdev->irq;
373         return 0;
374 }
375
376 #else
377
378 static int xhci_try_enable_msi(struct usb_hcd *hcd)
379 {
380         return 0;
381 }
382
383 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
384 {
385 }
386
387 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
388 {
389 }
390
391 #endif
392
393 /*
394  * Initialize memory for HCD and xHC (one-time init).
395  *
396  * Program the PAGESIZE register, initialize the device context array, create
397  * device contexts (?), set up a command ring segment (or two?), create event
398  * ring (one for now).
399  */
400 int xhci_init(struct usb_hcd *hcd)
401 {
402         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
403         int retval = 0;
404
405         xhci_dbg(xhci, "xhci_init\n");
406         spin_lock_init(&xhci->lock);
407         if (xhci->hci_version == 0x95 && link_quirk) {
408                 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
409                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
410         } else {
411                 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
412         }
413         retval = xhci_mem_init(xhci, GFP_KERNEL);
414         xhci_dbg(xhci, "Finished xhci_init\n");
415
416         return retval;
417 }
418
419 /*-------------------------------------------------------------------------*/
420
421
422 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
423 static void xhci_event_ring_work(unsigned long arg)
424 {
425         unsigned long flags;
426         int temp;
427         u64 temp_64;
428         struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
429         int i, j;
430
431         xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
432
433         spin_lock_irqsave(&xhci->lock, flags);
434         temp = xhci_readl(xhci, &xhci->op_regs->status);
435         xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
436         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
437                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
438                 xhci_dbg(xhci, "HW died, polling stopped.\n");
439                 spin_unlock_irqrestore(&xhci->lock, flags);
440                 return;
441         }
442
443         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
444         xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
445         xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
446         xhci->error_bitmask = 0;
447         xhci_dbg(xhci, "Event ring:\n");
448         xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
449         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
450         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
451         temp_64 &= ~ERST_PTR_MASK;
452         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
453         xhci_dbg(xhci, "Command ring:\n");
454         xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
455         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
456         xhci_dbg_cmd_ptrs(xhci);
457         for (i = 0; i < MAX_HC_SLOTS; ++i) {
458                 if (!xhci->devs[i])
459                         continue;
460                 for (j = 0; j < 31; ++j) {
461                         xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
462                 }
463         }
464         spin_unlock_irqrestore(&xhci->lock, flags);
465
466         if (!xhci->zombie)
467                 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
468         else
469                 xhci_dbg(xhci, "Quit polling the event ring.\n");
470 }
471 #endif
472
473 static int xhci_run_finished(struct xhci_hcd *xhci)
474 {
475         if (xhci_start(xhci)) {
476                 xhci_halt(xhci);
477                 return -ENODEV;
478         }
479         xhci->shared_hcd->state = HC_STATE_RUNNING;
480         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
481
482         if (xhci->quirks & XHCI_NEC_HOST)
483                 xhci_ring_cmd_db(xhci);
484
485         xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
486         return 0;
487 }
488
489 /*
490  * Start the HC after it was halted.
491  *
492  * This function is called by the USB core when the HC driver is added.
493  * Its opposite is xhci_stop().
494  *
495  * xhci_init() must be called once before this function can be called.
496  * Reset the HC, enable device slot contexts, program DCBAAP, and
497  * set command ring pointer and event ring pointer.
498  *
499  * Setup MSI-X vectors and enable interrupts.
500  */
501 int xhci_run(struct usb_hcd *hcd)
502 {
503         u32 temp;
504         u64 temp_64;
505         int ret;
506         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
507
508         /* Start the xHCI host controller running only after the USB 2.0 roothub
509          * is setup.
510          */
511
512         hcd->uses_new_polling = 1;
513         if (!usb_hcd_is_primary_hcd(hcd))
514                 return xhci_run_finished(xhci);
515
516         xhci_dbg(xhci, "xhci_run\n");
517
518         ret = xhci_try_enable_msi(hcd);
519         if (ret)
520                 return ret;
521
522 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
523         init_timer(&xhci->event_ring_timer);
524         xhci->event_ring_timer.data = (unsigned long) xhci;
525         xhci->event_ring_timer.function = xhci_event_ring_work;
526         /* Poll the event ring */
527         xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
528         xhci->zombie = 0;
529         xhci_dbg(xhci, "Setting event ring polling timer\n");
530         add_timer(&xhci->event_ring_timer);
531 #endif
532
533         xhci_dbg(xhci, "Command ring memory map follows:\n");
534         xhci_debug_ring(xhci, xhci->cmd_ring);
535         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
536         xhci_dbg_cmd_ptrs(xhci);
537
538         xhci_dbg(xhci, "ERST memory map follows:\n");
539         xhci_dbg_erst(xhci, &xhci->erst);
540         xhci_dbg(xhci, "Event ring:\n");
541         xhci_debug_ring(xhci, xhci->event_ring);
542         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
543         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
544         temp_64 &= ~ERST_PTR_MASK;
545         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
546
547         xhci_dbg(xhci, "// Set the interrupt modulation register\n");
548         temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
549         temp &= ~ER_IRQ_INTERVAL_MASK;
550         temp |= (u32) 160;
551         xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
552
553         /* Set the HCD state before we enable the irqs */
554         temp = xhci_readl(xhci, &xhci->op_regs->command);
555         temp |= (CMD_EIE);
556         xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
557                         temp);
558         xhci_writel(xhci, temp, &xhci->op_regs->command);
559
560         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
561         xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
562                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
563         xhci_writel(xhci, ER_IRQ_ENABLE(temp),
564                         &xhci->ir_set->irq_pending);
565         xhci_print_ir_set(xhci, 0);
566
567         if (xhci->quirks & XHCI_NEC_HOST)
568                 xhci_queue_vendor_command(xhci, 0, 0, 0,
569                                 TRB_TYPE(TRB_NEC_GET_FW));
570
571         xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
572         return 0;
573 }
574
575 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
576 {
577         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
578
579         spin_lock_irq(&xhci->lock);
580         xhci_halt(xhci);
581
582         /* The shared_hcd is going to be deallocated shortly (the USB core only
583          * calls this function when allocation fails in usb_add_hcd(), or
584          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
585          */
586         xhci->shared_hcd = NULL;
587         spin_unlock_irq(&xhci->lock);
588 }
589
590 /*
591  * Stop xHCI driver.
592  *
593  * This function is called by the USB core when the HC driver is removed.
594  * Its opposite is xhci_run().
595  *
596  * Disable device contexts, disable IRQs, and quiesce the HC.
597  * Reset the HC, finish any completed transactions, and cleanup memory.
598  */
599 void xhci_stop(struct usb_hcd *hcd)
600 {
601         u32 temp;
602         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
603
604         if (!usb_hcd_is_primary_hcd(hcd)) {
605                 xhci_only_stop_hcd(xhci->shared_hcd);
606                 return;
607         }
608
609         spin_lock_irq(&xhci->lock);
610         /* Make sure the xHC is halted for a USB3 roothub
611          * (xhci_stop() could be called as part of failed init).
612          */
613         xhci_halt(xhci);
614         xhci_reset(xhci);
615         spin_unlock_irq(&xhci->lock);
616
617         xhci_cleanup_msix(xhci);
618
619 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
620         /* Tell the event ring poll function not to reschedule */
621         xhci->zombie = 1;
622         del_timer_sync(&xhci->event_ring_timer);
623 #endif
624
625         if (xhci->quirks & XHCI_AMD_PLL_FIX)
626                 usb_amd_dev_put();
627
628         xhci_dbg(xhci, "// Disabling event ring interrupts\n");
629         temp = xhci_readl(xhci, &xhci->op_regs->status);
630         xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
631         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
632         xhci_writel(xhci, ER_IRQ_DISABLE(temp),
633                         &xhci->ir_set->irq_pending);
634         xhci_print_ir_set(xhci, 0);
635
636         xhci_dbg(xhci, "cleaning up memory\n");
637         xhci_mem_cleanup(xhci);
638         xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
639                     xhci_readl(xhci, &xhci->op_regs->status));
640 }
641
642 /*
643  * Shutdown HC (not bus-specific)
644  *
645  * This is called when the machine is rebooting or halting.  We assume that the
646  * machine will be powered off, and the HC's internal state will be reset.
647  * Don't bother to free memory.
648  *
649  * This will only ever be called with the main usb_hcd (the USB3 roothub).
650  */
651 void xhci_shutdown(struct usb_hcd *hcd)
652 {
653         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
654
655         spin_lock_irq(&xhci->lock);
656         xhci_halt(xhci);
657         spin_unlock_irq(&xhci->lock);
658
659         xhci_cleanup_msix(xhci);
660
661         xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
662                     xhci_readl(xhci, &xhci->op_regs->status));
663 }
664
665 #ifdef CONFIG_PM
666 static void xhci_save_registers(struct xhci_hcd *xhci)
667 {
668         xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
669         xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
670         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
671         xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
672         xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
673         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
674         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
675         xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
676         xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
677 }
678
679 static void xhci_restore_registers(struct xhci_hcd *xhci)
680 {
681         xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
682         xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
683         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
684         xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
685         xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
686         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
687         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
688         xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
689         xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
690 }
691
692 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
693 {
694         u64     val_64;
695
696         /* step 2: initialize command ring buffer */
697         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
698         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
699                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
700                                       xhci->cmd_ring->dequeue) &
701                  (u64) ~CMD_RING_RSVD_BITS) |
702                 xhci->cmd_ring->cycle_state;
703         xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
704                         (long unsigned long) val_64);
705         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
706 }
707
708 /*
709  * The whole command ring must be cleared to zero when we suspend the host.
710  *
711  * The host doesn't save the command ring pointer in the suspend well, so we
712  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
713  * aligned, because of the reserved bits in the command ring dequeue pointer
714  * register.  Therefore, we can't just set the dequeue pointer back in the
715  * middle of the ring (TRBs are 16-byte aligned).
716  */
717 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
718 {
719         struct xhci_ring *ring;
720         struct xhci_segment *seg;
721
722         ring = xhci->cmd_ring;
723         seg = ring->deq_seg;
724         do {
725                 memset(seg->trbs, 0,
726                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
727                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
728                         cpu_to_le32(~TRB_CYCLE);
729                 seg = seg->next;
730         } while (seg != ring->deq_seg);
731
732         /* Reset the software enqueue and dequeue pointers */
733         ring->deq_seg = ring->first_seg;
734         ring->dequeue = ring->first_seg->trbs;
735         ring->enq_seg = ring->deq_seg;
736         ring->enqueue = ring->dequeue;
737
738         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
739         /*
740          * Ring is now zeroed, so the HW should look for change of ownership
741          * when the cycle bit is set to 1.
742          */
743         ring->cycle_state = 1;
744
745         /*
746          * Reset the hardware dequeue pointer.
747          * Yes, this will need to be re-written after resume, but we're paranoid
748          * and want to make sure the hardware doesn't access bogus memory
749          * because, say, the BIOS or an SMI started the host without changing
750          * the command ring pointers.
751          */
752         xhci_set_cmd_ring_deq(xhci);
753 }
754
755 /*
756  * Stop HC (not bus-specific)
757  *
758  * This is called when the machine transition into S3/S4 mode.
759  *
760  */
761 int xhci_suspend(struct xhci_hcd *xhci)
762 {
763         int                     rc = 0;
764         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
765         u32                     command;
766
767         spin_lock_irq(&xhci->lock);
768         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
769         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
770         /* step 1: stop endpoint */
771         /* skipped assuming that port suspend has done */
772
773         /* step 2: clear Run/Stop bit */
774         command = xhci_readl(xhci, &xhci->op_regs->command);
775         command &= ~CMD_RUN;
776         xhci_writel(xhci, command, &xhci->op_regs->command);
777         if (handshake(xhci, &xhci->op_regs->status,
778                       STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
779                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
780                 spin_unlock_irq(&xhci->lock);
781                 return -ETIMEDOUT;
782         }
783         xhci_clear_command_ring(xhci);
784
785         if (xhci->quirks & XHCI_RESET_ON_RESUME) {
786                 xhci_info(xhci, "Will reset on resume, not saving xHC regs.\n");
787                 spin_unlock_irq(&xhci->lock);
788                 xhci_msix_sync_irqs(xhci);
789                 return rc;
790         }
791
792         /* step 3: save registers */
793         xhci_save_registers(xhci);
794
795         /* step 4: set CSS flag */
796         command = xhci_readl(xhci, &xhci->op_regs->command);
797         command |= CMD_CSS;
798         xhci_writel(xhci, command, &xhci->op_regs->command);
799         if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) {
800                 xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n");
801                 spin_unlock_irq(&xhci->lock);
802                 return -ETIMEDOUT;
803         }
804         spin_unlock_irq(&xhci->lock);
805
806         /* step 5: remove core well power */
807         /* synchronize irq when using MSI-X */
808         xhci_msix_sync_irqs(xhci);
809
810         return rc;
811 }
812
813 /*
814  * start xHC (not bus-specific)
815  *
816  * This is called when the machine transition from S3/S4 mode.
817  *
818  */
819 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
820 {
821         u32                     command, temp = 0;
822         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
823         struct usb_hcd          *secondary_hcd;
824         int                     retval = 0;
825
826         /* Wait a bit if either of the roothubs need to settle from the
827          * transition into bus suspend.
828          */
829         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
830                         time_before(jiffies,
831                                 xhci->bus_state[1].next_statechange))
832                 msleep(100);
833
834         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
835         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
836
837         spin_lock_irq(&xhci->lock);
838         if (xhci->quirks & XHCI_RESET_ON_RESUME)
839                 hibernated = true;
840
841         if (!hibernated) {
842                 /* step 1: restore register */
843                 xhci_restore_registers(xhci);
844                 /* step 2: initialize command ring buffer */
845                 xhci_set_cmd_ring_deq(xhci);
846                 /* step 3: restore state and start state*/
847                 /* step 3: set CRS flag */
848                 command = xhci_readl(xhci, &xhci->op_regs->command);
849                 command |= CMD_CRS;
850                 xhci_writel(xhci, command, &xhci->op_regs->command);
851                 if (handshake(xhci, &xhci->op_regs->status,
852                               STS_RESTORE, 0, 10*100)) {
853                         xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n");
854                         spin_unlock_irq(&xhci->lock);
855                         return -ETIMEDOUT;
856                 }
857                 temp = xhci_readl(xhci, &xhci->op_regs->status);
858         }
859
860         /* If restore operation fails, re-initialize the HC during resume */
861         if ((temp & STS_SRE) || hibernated) {
862                 /* Let the USB core know _both_ roothubs lost power. */
863                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
864                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
865
866                 xhci_dbg(xhci, "Stop HCD\n");
867                 xhci_halt(xhci);
868                 xhci_reset(xhci);
869                 spin_unlock_irq(&xhci->lock);
870                 xhci_cleanup_msix(xhci);
871
872 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
873                 /* Tell the event ring poll function not to reschedule */
874                 xhci->zombie = 1;
875                 del_timer_sync(&xhci->event_ring_timer);
876 #endif
877
878                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
879                 temp = xhci_readl(xhci, &xhci->op_regs->status);
880                 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
881                 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
882                 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
883                                 &xhci->ir_set->irq_pending);
884                 xhci_print_ir_set(xhci, 0);
885
886                 xhci_dbg(xhci, "cleaning up memory\n");
887                 xhci_mem_cleanup(xhci);
888                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
889                             xhci_readl(xhci, &xhci->op_regs->status));
890
891                 /* USB core calls the PCI reinit and start functions twice:
892                  * first with the primary HCD, and then with the secondary HCD.
893                  * If we don't do the same, the host will never be started.
894                  */
895                 if (!usb_hcd_is_primary_hcd(hcd))
896                         secondary_hcd = hcd;
897                 else
898                         secondary_hcd = xhci->shared_hcd;
899
900                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
901                 retval = xhci_init(hcd->primary_hcd);
902                 if (retval)
903                         return retval;
904                 xhci_dbg(xhci, "Start the primary HCD\n");
905                 retval = xhci_run(hcd->primary_hcd);
906                 if (!retval) {
907                         xhci_dbg(xhci, "Start the secondary HCD\n");
908                         retval = xhci_run(secondary_hcd);
909                 }
910                 hcd->state = HC_STATE_SUSPENDED;
911                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
912                 goto done;
913         }
914
915         /* step 4: set Run/Stop bit */
916         command = xhci_readl(xhci, &xhci->op_regs->command);
917         command |= CMD_RUN;
918         xhci_writel(xhci, command, &xhci->op_regs->command);
919         handshake(xhci, &xhci->op_regs->status, STS_HALT,
920                   0, 250 * 1000);
921
922         /* step 5: walk topology and initialize portsc,
923          * portpmsc and portli
924          */
925         /* this is done in bus_resume */
926
927         /* step 6: restart each of the previously
928          * Running endpoints by ringing their doorbells
929          */
930
931         spin_unlock_irq(&xhci->lock);
932
933  done:
934         if (retval == 0) {
935                 usb_hcd_resume_root_hub(hcd);
936                 usb_hcd_resume_root_hub(xhci->shared_hcd);
937         }
938         return retval;
939 }
940 #endif  /* CONFIG_PM */
941
942 /*-------------------------------------------------------------------------*/
943
944 /**
945  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
946  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
947  * value to right shift 1 for the bitmask.
948  *
949  * Index  = (epnum * 2) + direction - 1,
950  * where direction = 0 for OUT, 1 for IN.
951  * For control endpoints, the IN index is used (OUT index is unused), so
952  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
953  */
954 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
955 {
956         unsigned int index;
957         if (usb_endpoint_xfer_control(desc))
958                 index = (unsigned int) (usb_endpoint_num(desc)*2);
959         else
960                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
961                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
962         return index;
963 }
964
965 /* Find the flag for this endpoint (for use in the control context).  Use the
966  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
967  * bit 1, etc.
968  */
969 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
970 {
971         return 1 << (xhci_get_endpoint_index(desc) + 1);
972 }
973
974 /* Find the flag for this endpoint (for use in the control context).  Use the
975  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
976  * bit 1, etc.
977  */
978 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
979 {
980         return 1 << (ep_index + 1);
981 }
982
983 /* Compute the last valid endpoint context index.  Basically, this is the
984  * endpoint index plus one.  For slot contexts with more than valid endpoint,
985  * we find the most significant bit set in the added contexts flags.
986  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
987  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
988  */
989 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
990 {
991         return fls(added_ctxs) - 1;
992 }
993
994 /* Returns 1 if the arguments are OK;
995  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
996  */
997 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
998                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
999                 const char *func) {
1000         struct xhci_hcd *xhci;
1001         struct xhci_virt_device *virt_dev;
1002
1003         if (!hcd || (check_ep && !ep) || !udev) {
1004                 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1005                                 func);
1006                 return -EINVAL;
1007         }
1008         if (!udev->parent) {
1009                 printk(KERN_DEBUG "xHCI %s called for root hub\n",
1010                                 func);
1011                 return 0;
1012         }
1013
1014         xhci = hcd_to_xhci(hcd);
1015         if (xhci->xhc_state & XHCI_STATE_HALTED)
1016                 return -ENODEV;
1017
1018         if (check_virt_dev) {
1019                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1020                         printk(KERN_DEBUG "xHCI %s called with unaddressed "
1021                                                 "device\n", func);
1022                         return -EINVAL;
1023                 }
1024
1025                 virt_dev = xhci->devs[udev->slot_id];
1026                 if (virt_dev->udev != udev) {
1027                         printk(KERN_DEBUG "xHCI %s called with udev and "
1028                                           "virt_dev does not match\n", func);
1029                         return -EINVAL;
1030                 }
1031         }
1032
1033         return 1;
1034 }
1035
1036 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1037                 struct usb_device *udev, struct xhci_command *command,
1038                 bool ctx_change, bool must_succeed);
1039
1040 /*
1041  * Full speed devices may have a max packet size greater than 8 bytes, but the
1042  * USB core doesn't know that until it reads the first 8 bytes of the
1043  * descriptor.  If the usb_device's max packet size changes after that point,
1044  * we need to issue an evaluate context command and wait on it.
1045  */
1046 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1047                 unsigned int ep_index, struct urb *urb)
1048 {
1049         struct xhci_container_ctx *in_ctx;
1050         struct xhci_container_ctx *out_ctx;
1051         struct xhci_input_control_ctx *ctrl_ctx;
1052         struct xhci_ep_ctx *ep_ctx;
1053         int max_packet_size;
1054         int hw_max_packet_size;
1055         int ret = 0;
1056
1057         out_ctx = xhci->devs[slot_id]->out_ctx;
1058         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1059         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1060         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1061         if (hw_max_packet_size != max_packet_size) {
1062                 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1063                 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1064                                 max_packet_size);
1065                 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1066                                 hw_max_packet_size);
1067                 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1068
1069                 /* Set up the modified control endpoint 0 */
1070                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1071                                 xhci->devs[slot_id]->out_ctx, ep_index);
1072                 in_ctx = xhci->devs[slot_id]->in_ctx;
1073                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1074                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1075                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1076
1077                 /* Set up the input context flags for the command */
1078                 /* FIXME: This won't work if a non-default control endpoint
1079                  * changes max packet sizes.
1080                  */
1081                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1082                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1083                 ctrl_ctx->drop_flags = 0;
1084
1085                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1086                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1087                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1088                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1089
1090                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1091                                 true, false);
1092
1093                 /* Clean up the input context for later use by bandwidth
1094                  * functions.
1095                  */
1096                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1097         }
1098         return ret;
1099 }
1100
1101 /*
1102  * non-error returns are a promise to giveback() the urb later
1103  * we drop ownership so next owner (or urb unlink) can get it
1104  */
1105 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1106 {
1107         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1108         struct xhci_td *buffer;
1109         unsigned long flags;
1110         int ret = 0;
1111         unsigned int slot_id, ep_index;
1112         struct urb_priv *urb_priv;
1113         int size, i;
1114
1115         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1116                                         true, true, __func__) <= 0)
1117                 return -EINVAL;
1118
1119         slot_id = urb->dev->slot_id;
1120         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1121
1122         if (!HCD_HW_ACCESSIBLE(hcd)) {
1123                 if (!in_interrupt())
1124                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1125                 ret = -ESHUTDOWN;
1126                 goto exit;
1127         }
1128
1129         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1130                 size = urb->number_of_packets;
1131         else
1132                 size = 1;
1133
1134         urb_priv = kzalloc(sizeof(struct urb_priv) +
1135                                   size * sizeof(struct xhci_td *), mem_flags);
1136         if (!urb_priv)
1137                 return -ENOMEM;
1138
1139         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1140         if (!buffer) {
1141                 kfree(urb_priv);
1142                 return -ENOMEM;
1143         }
1144
1145         for (i = 0; i < size; i++) {
1146                 urb_priv->td[i] = buffer;
1147                 buffer++;
1148         }
1149
1150         urb_priv->length = size;
1151         urb_priv->td_cnt = 0;
1152         urb->hcpriv = urb_priv;
1153
1154         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1155                 /* Check to see if the max packet size for the default control
1156                  * endpoint changed during FS device enumeration
1157                  */
1158                 if (urb->dev->speed == USB_SPEED_FULL) {
1159                         ret = xhci_check_maxpacket(xhci, slot_id,
1160                                         ep_index, urb);
1161                         if (ret < 0) {
1162                                 xhci_urb_free_priv(xhci, urb_priv);
1163                                 urb->hcpriv = NULL;
1164                                 return ret;
1165                         }
1166                 }
1167
1168                 /* We have a spinlock and interrupts disabled, so we must pass
1169                  * atomic context to this function, which may allocate memory.
1170                  */
1171                 spin_lock_irqsave(&xhci->lock, flags);
1172                 if (xhci->xhc_state & XHCI_STATE_DYING)
1173                         goto dying;
1174                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1175                                 slot_id, ep_index);
1176                 if (ret)
1177                         goto free_priv;
1178                 spin_unlock_irqrestore(&xhci->lock, flags);
1179         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1180                 spin_lock_irqsave(&xhci->lock, flags);
1181                 if (xhci->xhc_state & XHCI_STATE_DYING)
1182                         goto dying;
1183                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1184                                 EP_GETTING_STREAMS) {
1185                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1186                                         "is transitioning to using streams.\n");
1187                         ret = -EINVAL;
1188                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1189                                 EP_GETTING_NO_STREAMS) {
1190                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1191                                         "is transitioning to "
1192                                         "not having streams.\n");
1193                         ret = -EINVAL;
1194                 } else {
1195                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1196                                         slot_id, ep_index);
1197                 }
1198                 if (ret)
1199                         goto free_priv;
1200                 spin_unlock_irqrestore(&xhci->lock, flags);
1201         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1202                 spin_lock_irqsave(&xhci->lock, flags);
1203                 if (xhci->xhc_state & XHCI_STATE_DYING)
1204                         goto dying;
1205                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1206                                 slot_id, ep_index);
1207                 if (ret)
1208                         goto free_priv;
1209                 spin_unlock_irqrestore(&xhci->lock, flags);
1210         } else {
1211                 spin_lock_irqsave(&xhci->lock, flags);
1212                 if (xhci->xhc_state & XHCI_STATE_DYING)
1213                         goto dying;
1214                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1215                                 slot_id, ep_index);
1216                 if (ret)
1217                         goto free_priv;
1218                 spin_unlock_irqrestore(&xhci->lock, flags);
1219         }
1220 exit:
1221         return ret;
1222 dying:
1223         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1224                         "non-responsive xHCI host.\n",
1225                         urb->ep->desc.bEndpointAddress, urb);
1226         ret = -ESHUTDOWN;
1227 free_priv:
1228         xhci_urb_free_priv(xhci, urb_priv);
1229         urb->hcpriv = NULL;
1230         spin_unlock_irqrestore(&xhci->lock, flags);
1231         return ret;
1232 }
1233
1234 /* Get the right ring for the given URB.
1235  * If the endpoint supports streams, boundary check the URB's stream ID.
1236  * If the endpoint doesn't support streams, return the singular endpoint ring.
1237  */
1238 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1239                 struct urb *urb)
1240 {
1241         unsigned int slot_id;
1242         unsigned int ep_index;
1243         unsigned int stream_id;
1244         struct xhci_virt_ep *ep;
1245
1246         slot_id = urb->dev->slot_id;
1247         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1248         stream_id = urb->stream_id;
1249         ep = &xhci->devs[slot_id]->eps[ep_index];
1250         /* Common case: no streams */
1251         if (!(ep->ep_state & EP_HAS_STREAMS))
1252                 return ep->ring;
1253
1254         if (stream_id == 0) {
1255                 xhci_warn(xhci,
1256                                 "WARN: Slot ID %u, ep index %u has streams, "
1257                                 "but URB has no stream ID.\n",
1258                                 slot_id, ep_index);
1259                 return NULL;
1260         }
1261
1262         if (stream_id < ep->stream_info->num_streams)
1263                 return ep->stream_info->stream_rings[stream_id];
1264
1265         xhci_warn(xhci,
1266                         "WARN: Slot ID %u, ep index %u has "
1267                         "stream IDs 1 to %u allocated, "
1268                         "but stream ID %u is requested.\n",
1269                         slot_id, ep_index,
1270                         ep->stream_info->num_streams - 1,
1271                         stream_id);
1272         return NULL;
1273 }
1274
1275 /*
1276  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1277  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1278  * should pick up where it left off in the TD, unless a Set Transfer Ring
1279  * Dequeue Pointer is issued.
1280  *
1281  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1282  * the ring.  Since the ring is a contiguous structure, they can't be physically
1283  * removed.  Instead, there are two options:
1284  *
1285  *  1) If the HC is in the middle of processing the URB to be canceled, we
1286  *     simply move the ring's dequeue pointer past those TRBs using the Set
1287  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1288  *     when drivers timeout on the last submitted URB and attempt to cancel.
1289  *
1290  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1291  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1292  *     HC will need to invalidate the any TRBs it has cached after the stop
1293  *     endpoint command, as noted in the xHCI 0.95 errata.
1294  *
1295  *  3) The TD may have completed by the time the Stop Endpoint Command
1296  *     completes, so software needs to handle that case too.
1297  *
1298  * This function should protect against the TD enqueueing code ringing the
1299  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1300  * It also needs to account for multiple cancellations on happening at the same
1301  * time for the same endpoint.
1302  *
1303  * Note that this function can be called in any context, or so says
1304  * usb_hcd_unlink_urb()
1305  */
1306 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1307 {
1308         unsigned long flags;
1309         int ret, i;
1310         u32 temp;
1311         struct xhci_hcd *xhci;
1312         struct urb_priv *urb_priv;
1313         struct xhci_td *td;
1314         unsigned int ep_index;
1315         struct xhci_ring *ep_ring;
1316         struct xhci_virt_ep *ep;
1317
1318         xhci = hcd_to_xhci(hcd);
1319         spin_lock_irqsave(&xhci->lock, flags);
1320         /* Make sure the URB hasn't completed or been unlinked already */
1321         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1322         if (ret || !urb->hcpriv)
1323                 goto done;
1324         temp = xhci_readl(xhci, &xhci->op_regs->status);
1325         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1326                 xhci_dbg(xhci, "HW died, freeing TD.\n");
1327                 urb_priv = urb->hcpriv;
1328                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1329                         td = urb_priv->td[i];
1330                         if (!list_empty(&td->td_list))
1331                                 list_del_init(&td->td_list);
1332                         if (!list_empty(&td->cancelled_td_list))
1333                                 list_del_init(&td->cancelled_td_list);
1334                 }
1335
1336                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1337                 spin_unlock_irqrestore(&xhci->lock, flags);
1338                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1339                 xhci_urb_free_priv(xhci, urb_priv);
1340                 return ret;
1341         }
1342         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1343                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1344                 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1345                                 "non-responsive xHCI host.\n",
1346                                 urb->ep->desc.bEndpointAddress, urb);
1347                 /* Let the stop endpoint command watchdog timer (which set this
1348                  * state) finish cleaning up the endpoint TD lists.  We must
1349                  * have caught it in the middle of dropping a lock and giving
1350                  * back an URB.
1351                  */
1352                 goto done;
1353         }
1354
1355         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1356         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1357         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1358         if (!ep_ring) {
1359                 ret = -EINVAL;
1360                 goto done;
1361         }
1362
1363         urb_priv = urb->hcpriv;
1364         i = urb_priv->td_cnt;
1365         if (i < urb_priv->length)
1366                 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1367                                 "starting at offset 0x%llx\n",
1368                                 urb, urb->dev->devpath,
1369                                 urb->ep->desc.bEndpointAddress,
1370                                 (unsigned long long) xhci_trb_virt_to_dma(
1371                                         urb_priv->td[i]->start_seg,
1372                                         urb_priv->td[i]->first_trb));
1373
1374         for (; i < urb_priv->length; i++) {
1375                 td = urb_priv->td[i];
1376                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1377         }
1378
1379         /* Queue a stop endpoint command, but only if this is
1380          * the first cancellation to be handled.
1381          */
1382         if (!(ep->ep_state & EP_HALT_PENDING)) {
1383                 ep->ep_state |= EP_HALT_PENDING;
1384                 ep->stop_cmds_pending++;
1385                 ep->stop_cmd_timer.expires = jiffies +
1386                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1387                 add_timer(&ep->stop_cmd_timer);
1388                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1389                 xhci_ring_cmd_db(xhci);
1390         }
1391 done:
1392         spin_unlock_irqrestore(&xhci->lock, flags);
1393         return ret;
1394 }
1395
1396 /* Drop an endpoint from a new bandwidth configuration for this device.
1397  * Only one call to this function is allowed per endpoint before
1398  * check_bandwidth() or reset_bandwidth() must be called.
1399  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1400  * add the endpoint to the schedule with possibly new parameters denoted by a
1401  * different endpoint descriptor in usb_host_endpoint.
1402  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1403  * not allowed.
1404  *
1405  * The USB core will not allow URBs to be queued to an endpoint that is being
1406  * disabled, so there's no need for mutual exclusion to protect
1407  * the xhci->devs[slot_id] structure.
1408  */
1409 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1410                 struct usb_host_endpoint *ep)
1411 {
1412         struct xhci_hcd *xhci;
1413         struct xhci_container_ctx *in_ctx, *out_ctx;
1414         struct xhci_input_control_ctx *ctrl_ctx;
1415         struct xhci_slot_ctx *slot_ctx;
1416         unsigned int last_ctx;
1417         unsigned int ep_index;
1418         struct xhci_ep_ctx *ep_ctx;
1419         u32 drop_flag;
1420         u32 new_add_flags, new_drop_flags, new_slot_info;
1421         int ret;
1422
1423         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1424         if (ret <= 0)
1425                 return ret;
1426         xhci = hcd_to_xhci(hcd);
1427         if (xhci->xhc_state & XHCI_STATE_DYING)
1428                 return -ENODEV;
1429
1430         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1431         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1432         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1433                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1434                                 __func__, drop_flag);
1435                 return 0;
1436         }
1437
1438         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1439         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1440         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1441         ep_index = xhci_get_endpoint_index(&ep->desc);
1442         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1443         /* If the HC already knows the endpoint is disabled,
1444          * or the HCD has noted it is disabled, ignore this request
1445          */
1446         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1447              cpu_to_le32(EP_STATE_DISABLED)) ||
1448             le32_to_cpu(ctrl_ctx->drop_flags) &
1449             xhci_get_endpoint_flag(&ep->desc)) {
1450                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1451                                 __func__, ep);
1452                 return 0;
1453         }
1454
1455         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1456         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1457
1458         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1459         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1460
1461         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1462         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1463         /* Update the last valid endpoint context, if we deleted the last one */
1464         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1465             LAST_CTX(last_ctx)) {
1466                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1467                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1468         }
1469         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1470
1471         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1472
1473         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1474                         (unsigned int) ep->desc.bEndpointAddress,
1475                         udev->slot_id,
1476                         (unsigned int) new_drop_flags,
1477                         (unsigned int) new_add_flags,
1478                         (unsigned int) new_slot_info);
1479         return 0;
1480 }
1481
1482 /* Add an endpoint to a new possible bandwidth configuration for this device.
1483  * Only one call to this function is allowed per endpoint before
1484  * check_bandwidth() or reset_bandwidth() must be called.
1485  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1486  * add the endpoint to the schedule with possibly new parameters denoted by a
1487  * different endpoint descriptor in usb_host_endpoint.
1488  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1489  * not allowed.
1490  *
1491  * The USB core will not allow URBs to be queued to an endpoint until the
1492  * configuration or alt setting is installed in the device, so there's no need
1493  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1494  */
1495 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1496                 struct usb_host_endpoint *ep)
1497 {
1498         struct xhci_hcd *xhci;
1499         struct xhci_container_ctx *in_ctx, *out_ctx;
1500         unsigned int ep_index;
1501         struct xhci_ep_ctx *ep_ctx;
1502         struct xhci_slot_ctx *slot_ctx;
1503         struct xhci_input_control_ctx *ctrl_ctx;
1504         u32 added_ctxs;
1505         unsigned int last_ctx;
1506         u32 new_add_flags, new_drop_flags, new_slot_info;
1507         struct xhci_virt_device *virt_dev;
1508         int ret = 0;
1509
1510         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1511         if (ret <= 0) {
1512                 /* So we won't queue a reset ep command for a root hub */
1513                 ep->hcpriv = NULL;
1514                 return ret;
1515         }
1516         xhci = hcd_to_xhci(hcd);
1517         if (xhci->xhc_state & XHCI_STATE_DYING)
1518                 return -ENODEV;
1519
1520         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1521         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1522         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1523                 /* FIXME when we have to issue an evaluate endpoint command to
1524                  * deal with ep0 max packet size changing once we get the
1525                  * descriptors
1526                  */
1527                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1528                                 __func__, added_ctxs);
1529                 return 0;
1530         }
1531
1532         virt_dev = xhci->devs[udev->slot_id];
1533         in_ctx = virt_dev->in_ctx;
1534         out_ctx = virt_dev->out_ctx;
1535         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1536         ep_index = xhci_get_endpoint_index(&ep->desc);
1537         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1538
1539         /* If this endpoint is already in use, and the upper layers are trying
1540          * to add it again without dropping it, reject the addition.
1541          */
1542         if (virt_dev->eps[ep_index].ring &&
1543                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1544                                 xhci_get_endpoint_flag(&ep->desc))) {
1545                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1546                                 "without dropping it.\n",
1547                                 (unsigned int) ep->desc.bEndpointAddress);
1548                 return -EINVAL;
1549         }
1550
1551         /* If the HCD has already noted the endpoint is enabled,
1552          * ignore this request.
1553          */
1554         if (le32_to_cpu(ctrl_ctx->add_flags) &
1555             xhci_get_endpoint_flag(&ep->desc)) {
1556                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1557                                 __func__, ep);
1558                 return 0;
1559         }
1560
1561         /*
1562          * Configuration and alternate setting changes must be done in
1563          * process context, not interrupt context (or so documenation
1564          * for usb_set_interface() and usb_set_configuration() claim).
1565          */
1566         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1567                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1568                                 __func__, ep->desc.bEndpointAddress);
1569                 return -ENOMEM;
1570         }
1571
1572         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1573         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1574
1575         /* If xhci_endpoint_disable() was called for this endpoint, but the
1576          * xHC hasn't been notified yet through the check_bandwidth() call,
1577          * this re-adds a new state for the endpoint from the new endpoint
1578          * descriptors.  We must drop and re-add this endpoint, so we leave the
1579          * drop flags alone.
1580          */
1581         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1582
1583         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1584         /* Update the last valid endpoint context, if we just added one past */
1585         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1586             LAST_CTX(last_ctx)) {
1587                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1588                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1589         }
1590         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1591
1592         /* Store the usb_device pointer for later use */
1593         ep->hcpriv = udev;
1594
1595         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1596                         (unsigned int) ep->desc.bEndpointAddress,
1597                         udev->slot_id,
1598                         (unsigned int) new_drop_flags,
1599                         (unsigned int) new_add_flags,
1600                         (unsigned int) new_slot_info);
1601         return 0;
1602 }
1603
1604 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1605 {
1606         struct xhci_input_control_ctx *ctrl_ctx;
1607         struct xhci_ep_ctx *ep_ctx;
1608         struct xhci_slot_ctx *slot_ctx;
1609         int i;
1610
1611         /* When a device's add flag and drop flag are zero, any subsequent
1612          * configure endpoint command will leave that endpoint's state
1613          * untouched.  Make sure we don't leave any old state in the input
1614          * endpoint contexts.
1615          */
1616         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1617         ctrl_ctx->drop_flags = 0;
1618         ctrl_ctx->add_flags = 0;
1619         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1620         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1621         /* Endpoint 0 is always valid */
1622         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1623         for (i = 1; i < 31; ++i) {
1624                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1625                 ep_ctx->ep_info = 0;
1626                 ep_ctx->ep_info2 = 0;
1627                 ep_ctx->deq = 0;
1628                 ep_ctx->tx_info = 0;
1629         }
1630 }
1631
1632 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1633                 struct usb_device *udev, u32 *cmd_status)
1634 {
1635         int ret;
1636
1637         switch (*cmd_status) {
1638         case COMP_ENOMEM:
1639                 dev_warn(&udev->dev, "Not enough host controller resources "
1640                                 "for new device state.\n");
1641                 ret = -ENOMEM;
1642                 /* FIXME: can we allocate more resources for the HC? */
1643                 break;
1644         case COMP_BW_ERR:
1645         case COMP_2ND_BW_ERR:
1646                 dev_warn(&udev->dev, "Not enough bandwidth "
1647                                 "for new device state.\n");
1648                 ret = -ENOSPC;
1649                 /* FIXME: can we go back to the old state? */
1650                 break;
1651         case COMP_TRB_ERR:
1652                 /* the HCD set up something wrong */
1653                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1654                                 "add flag = 1, "
1655                                 "and endpoint is not disabled.\n");
1656                 ret = -EINVAL;
1657                 break;
1658         case COMP_DEV_ERR:
1659                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1660                                 "configure command.\n");
1661                 ret = -ENODEV;
1662                 break;
1663         case COMP_SUCCESS:
1664                 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1665                 ret = 0;
1666                 break;
1667         default:
1668                 xhci_err(xhci, "ERROR: unexpected command completion "
1669                                 "code 0x%x.\n", *cmd_status);
1670                 ret = -EINVAL;
1671                 break;
1672         }
1673         return ret;
1674 }
1675
1676 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1677                 struct usb_device *udev, u32 *cmd_status)
1678 {
1679         int ret;
1680         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1681
1682         switch (*cmd_status) {
1683         case COMP_EINVAL:
1684                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1685                                 "context command.\n");
1686                 ret = -EINVAL;
1687                 break;
1688         case COMP_EBADSLT:
1689                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1690                                 "evaluate context command.\n");
1691         case COMP_CTX_STATE:
1692                 dev_warn(&udev->dev, "WARN: invalid context state for "
1693                                 "evaluate context command.\n");
1694                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1695                 ret = -EINVAL;
1696                 break;
1697         case COMP_DEV_ERR:
1698                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1699                                 "context command.\n");
1700                 ret = -ENODEV;
1701                 break;
1702         case COMP_MEL_ERR:
1703                 /* Max Exit Latency too large error */
1704                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1705                 ret = -EINVAL;
1706                 break;
1707         case COMP_SUCCESS:
1708                 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1709                 ret = 0;
1710                 break;
1711         default:
1712                 xhci_err(xhci, "ERROR: unexpected command completion "
1713                                 "code 0x%x.\n", *cmd_status);
1714                 ret = -EINVAL;
1715                 break;
1716         }
1717         return ret;
1718 }
1719
1720 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1721                 struct xhci_container_ctx *in_ctx)
1722 {
1723         struct xhci_input_control_ctx *ctrl_ctx;
1724         u32 valid_add_flags;
1725         u32 valid_drop_flags;
1726
1727         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1728         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1729          * (bit 1).  The default control endpoint is added during the Address
1730          * Device command and is never removed until the slot is disabled.
1731          */
1732         valid_add_flags = ctrl_ctx->add_flags >> 2;
1733         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1734
1735         /* Use hweight32 to count the number of ones in the add flags, or
1736          * number of endpoints added.  Don't count endpoints that are changed
1737          * (both added and dropped).
1738          */
1739         return hweight32(valid_add_flags) -
1740                 hweight32(valid_add_flags & valid_drop_flags);
1741 }
1742
1743 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1744                 struct xhci_container_ctx *in_ctx)
1745 {
1746         struct xhci_input_control_ctx *ctrl_ctx;
1747         u32 valid_add_flags;
1748         u32 valid_drop_flags;
1749
1750         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1751         valid_add_flags = ctrl_ctx->add_flags >> 2;
1752         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1753
1754         return hweight32(valid_drop_flags) -
1755                 hweight32(valid_add_flags & valid_drop_flags);
1756 }
1757
1758 /*
1759  * We need to reserve the new number of endpoints before the configure endpoint
1760  * command completes.  We can't subtract the dropped endpoints from the number
1761  * of active endpoints until the command completes because we can oversubscribe
1762  * the host in this case:
1763  *
1764  *  - the first configure endpoint command drops more endpoints than it adds
1765  *  - a second configure endpoint command that adds more endpoints is queued
1766  *  - the first configure endpoint command fails, so the config is unchanged
1767  *  - the second command may succeed, even though there isn't enough resources
1768  *
1769  * Must be called with xhci->lock held.
1770  */
1771 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1772                 struct xhci_container_ctx *in_ctx)
1773 {
1774         u32 added_eps;
1775
1776         added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1777         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1778                 xhci_dbg(xhci, "Not enough ep ctxs: "
1779                                 "%u active, need to add %u, limit is %u.\n",
1780                                 xhci->num_active_eps, added_eps,
1781                                 xhci->limit_active_eps);
1782                 return -ENOMEM;
1783         }
1784         xhci->num_active_eps += added_eps;
1785         xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1786                         xhci->num_active_eps);
1787         return 0;
1788 }
1789
1790 /*
1791  * The configure endpoint was failed by the xHC for some other reason, so we
1792  * need to revert the resources that failed configuration would have used.
1793  *
1794  * Must be called with xhci->lock held.
1795  */
1796 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1797                 struct xhci_container_ctx *in_ctx)
1798 {
1799         u32 num_failed_eps;
1800
1801         num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1802         xhci->num_active_eps -= num_failed_eps;
1803         xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1804                         num_failed_eps,
1805                         xhci->num_active_eps);
1806 }
1807
1808 /*
1809  * Now that the command has completed, clean up the active endpoint count by
1810  * subtracting out the endpoints that were dropped (but not changed).
1811  *
1812  * Must be called with xhci->lock held.
1813  */
1814 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1815                 struct xhci_container_ctx *in_ctx)
1816 {
1817         u32 num_dropped_eps;
1818
1819         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1820         xhci->num_active_eps -= num_dropped_eps;
1821         if (num_dropped_eps)
1822                 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1823                                 num_dropped_eps,
1824                                 xhci->num_active_eps);
1825 }
1826
1827 unsigned int xhci_get_block_size(struct usb_device *udev)
1828 {
1829         switch (udev->speed) {
1830         case USB_SPEED_LOW:
1831         case USB_SPEED_FULL:
1832                 return FS_BLOCK;
1833         case USB_SPEED_HIGH:
1834                 return HS_BLOCK;
1835         case USB_SPEED_SUPER:
1836                 return SS_BLOCK;
1837         case USB_SPEED_UNKNOWN:
1838         case USB_SPEED_WIRELESS:
1839         default:
1840                 /* Should never happen */
1841                 return 1;
1842         }
1843 }
1844
1845 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1846 {
1847         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1848                 return LS_OVERHEAD;
1849         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1850                 return FS_OVERHEAD;
1851         return HS_OVERHEAD;
1852 }
1853
1854 /* If we are changing a LS/FS device under a HS hub,
1855  * make sure (if we are activating a new TT) that the HS bus has enough
1856  * bandwidth for this new TT.
1857  */
1858 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1859                 struct xhci_virt_device *virt_dev,
1860                 int old_active_eps)
1861 {
1862         struct xhci_interval_bw_table *bw_table;
1863         struct xhci_tt_bw_info *tt_info;
1864
1865         /* Find the bandwidth table for the root port this TT is attached to. */
1866         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1867         tt_info = virt_dev->tt_info;
1868         /* If this TT already had active endpoints, the bandwidth for this TT
1869          * has already been added.  Removing all periodic endpoints (and thus
1870          * making the TT enactive) will only decrease the bandwidth used.
1871          */
1872         if (old_active_eps)
1873                 return 0;
1874         if (old_active_eps == 0 && tt_info->active_eps != 0) {
1875                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
1876                         return -ENOMEM;
1877                 return 0;
1878         }
1879         /* Not sure why we would have no new active endpoints...
1880          *
1881          * Maybe because of an Evaluate Context change for a hub update or a
1882          * control endpoint 0 max packet size change?
1883          * FIXME: skip the bandwidth calculation in that case.
1884          */
1885         return 0;
1886 }
1887
1888 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
1889                 struct xhci_virt_device *virt_dev)
1890 {
1891         unsigned int bw_reserved;
1892
1893         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
1894         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
1895                 return -ENOMEM;
1896
1897         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
1898         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
1899                 return -ENOMEM;
1900
1901         return 0;
1902 }
1903
1904 /*
1905  * This algorithm is a very conservative estimate of the worst-case scheduling
1906  * scenario for any one interval.  The hardware dynamically schedules the
1907  * packets, so we can't tell which microframe could be the limiting factor in
1908  * the bandwidth scheduling.  This only takes into account periodic endpoints.
1909  *
1910  * Obviously, we can't solve an NP complete problem to find the minimum worst
1911  * case scenario.  Instead, we come up with an estimate that is no less than
1912  * the worst case bandwidth used for any one microframe, but may be an
1913  * over-estimate.
1914  *
1915  * We walk the requirements for each endpoint by interval, starting with the
1916  * smallest interval, and place packets in the schedule where there is only one
1917  * possible way to schedule packets for that interval.  In order to simplify
1918  * this algorithm, we record the largest max packet size for each interval, and
1919  * assume all packets will be that size.
1920  *
1921  * For interval 0, we obviously must schedule all packets for each interval.
1922  * The bandwidth for interval 0 is just the amount of data to be transmitted
1923  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
1924  * the number of packets).
1925  *
1926  * For interval 1, we have two possible microframes to schedule those packets
1927  * in.  For this algorithm, if we can schedule the same number of packets for
1928  * each possible scheduling opportunity (each microframe), we will do so.  The
1929  * remaining number of packets will be saved to be transmitted in the gaps in
1930  * the next interval's scheduling sequence.
1931  *
1932  * As we move those remaining packets to be scheduled with interval 2 packets,
1933  * we have to double the number of remaining packets to transmit.  This is
1934  * because the intervals are actually powers of 2, and we would be transmitting
1935  * the previous interval's packets twice in this interval.  We also have to be
1936  * sure that when we look at the largest max packet size for this interval, we
1937  * also look at the largest max packet size for the remaining packets and take
1938  * the greater of the two.
1939  *
1940  * The algorithm continues to evenly distribute packets in each scheduling
1941  * opportunity, and push the remaining packets out, until we get to the last
1942  * interval.  Then those packets and their associated overhead are just added
1943  * to the bandwidth used.
1944  */
1945 static int xhci_check_bw_table(struct xhci_hcd *xhci,
1946                 struct xhci_virt_device *virt_dev,
1947                 int old_active_eps)
1948 {
1949         unsigned int bw_reserved;
1950         unsigned int max_bandwidth;
1951         unsigned int bw_used;
1952         unsigned int block_size;
1953         struct xhci_interval_bw_table *bw_table;
1954         unsigned int packet_size = 0;
1955         unsigned int overhead = 0;
1956         unsigned int packets_transmitted = 0;
1957         unsigned int packets_remaining = 0;
1958         unsigned int i;
1959
1960         if (virt_dev->udev->speed == USB_SPEED_SUPER)
1961                 return xhci_check_ss_bw(xhci, virt_dev);
1962
1963         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
1964                 max_bandwidth = HS_BW_LIMIT;
1965                 /* Convert percent of bus BW reserved to blocks reserved */
1966                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
1967         } else {
1968                 max_bandwidth = FS_BW_LIMIT;
1969                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
1970         }
1971
1972         bw_table = virt_dev->bw_table;
1973         /* We need to translate the max packet size and max ESIT payloads into
1974          * the units the hardware uses.
1975          */
1976         block_size = xhci_get_block_size(virt_dev->udev);
1977
1978         /* If we are manipulating a LS/FS device under a HS hub, double check
1979          * that the HS bus has enough bandwidth if we are activing a new TT.
1980          */
1981         if (virt_dev->tt_info) {
1982                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1983                                 virt_dev->real_port);
1984                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
1985                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
1986                                         "newly activated TT.\n");
1987                         return -ENOMEM;
1988                 }
1989                 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
1990                                 virt_dev->tt_info->slot_id,
1991                                 virt_dev->tt_info->ttport);
1992         } else {
1993                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1994                                 virt_dev->real_port);
1995         }
1996
1997         /* Add in how much bandwidth will be used for interval zero, or the
1998          * rounded max ESIT payload + number of packets * largest overhead.
1999          */
2000         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2001                 bw_table->interval_bw[0].num_packets *
2002                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2003
2004         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2005                 unsigned int bw_added;
2006                 unsigned int largest_mps;
2007                 unsigned int interval_overhead;
2008
2009                 /*
2010                  * How many packets could we transmit in this interval?
2011                  * If packets didn't fit in the previous interval, we will need
2012                  * to transmit that many packets twice within this interval.
2013                  */
2014                 packets_remaining = 2 * packets_remaining +
2015                         bw_table->interval_bw[i].num_packets;
2016
2017                 /* Find the largest max packet size of this or the previous
2018                  * interval.
2019                  */
2020                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2021                         largest_mps = 0;
2022                 else {
2023                         struct xhci_virt_ep *virt_ep;
2024                         struct list_head *ep_entry;
2025
2026                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2027                         virt_ep = list_entry(ep_entry,
2028                                         struct xhci_virt_ep, bw_endpoint_list);
2029                         /* Convert to blocks, rounding up */
2030                         largest_mps = DIV_ROUND_UP(
2031                                         virt_ep->bw_info.max_packet_size,
2032                                         block_size);
2033                 }
2034                 if (largest_mps > packet_size)
2035                         packet_size = largest_mps;
2036
2037                 /* Use the larger overhead of this or the previous interval. */
2038                 interval_overhead = xhci_get_largest_overhead(
2039                                 &bw_table->interval_bw[i]);
2040                 if (interval_overhead > overhead)
2041                         overhead = interval_overhead;
2042
2043                 /* How many packets can we evenly distribute across
2044                  * (1 << (i + 1)) possible scheduling opportunities?
2045                  */
2046                 packets_transmitted = packets_remaining >> (i + 1);
2047
2048                 /* Add in the bandwidth used for those scheduled packets */
2049                 bw_added = packets_transmitted * (overhead + packet_size);
2050
2051                 /* How many packets do we have remaining to transmit? */
2052                 packets_remaining = packets_remaining % (1 << (i + 1));
2053
2054                 /* What largest max packet size should those packets have? */
2055                 /* If we've transmitted all packets, don't carry over the
2056                  * largest packet size.
2057                  */
2058                 if (packets_remaining == 0) {
2059                         packet_size = 0;
2060                         overhead = 0;
2061                 } else if (packets_transmitted > 0) {
2062                         /* Otherwise if we do have remaining packets, and we've
2063                          * scheduled some packets in this interval, take the
2064                          * largest max packet size from endpoints with this
2065                          * interval.
2066                          */
2067                         packet_size = largest_mps;
2068                         overhead = interval_overhead;
2069                 }
2070                 /* Otherwise carry over packet_size and overhead from the last
2071                  * time we had a remainder.
2072                  */
2073                 bw_used += bw_added;
2074                 if (bw_used > max_bandwidth) {
2075                         xhci_warn(xhci, "Not enough bandwidth. "
2076                                         "Proposed: %u, Max: %u\n",
2077                                 bw_used, max_bandwidth);
2078                         return -ENOMEM;
2079                 }
2080         }
2081         /*
2082          * Ok, we know we have some packets left over after even-handedly
2083          * scheduling interval 15.  We don't know which microframes they will
2084          * fit into, so we over-schedule and say they will be scheduled every
2085          * microframe.
2086          */
2087         if (packets_remaining > 0)
2088                 bw_used += overhead + packet_size;
2089
2090         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2091                 unsigned int port_index = virt_dev->real_port - 1;
2092
2093                 /* OK, we're manipulating a HS device attached to a
2094                  * root port bandwidth domain.  Include the number of active TTs
2095                  * in the bandwidth used.
2096                  */
2097                 bw_used += TT_HS_OVERHEAD *
2098                         xhci->rh_bw[port_index].num_active_tts;
2099         }
2100
2101         xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2102                 "Available: %u " "percent\n",
2103                 bw_used, max_bandwidth, bw_reserved,
2104                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2105                 max_bandwidth);
2106
2107         bw_used += bw_reserved;
2108         if (bw_used > max_bandwidth) {
2109                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2110                                 bw_used, max_bandwidth);
2111                 return -ENOMEM;
2112         }
2113
2114         bw_table->bw_used = bw_used;
2115         return 0;
2116 }
2117
2118 static bool xhci_is_async_ep(unsigned int ep_type)
2119 {
2120         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2121                                         ep_type != ISOC_IN_EP &&
2122                                         ep_type != INT_IN_EP);
2123 }
2124
2125 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2126 {
2127         return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2128 }
2129
2130 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2131 {
2132         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2133
2134         if (ep_bw->ep_interval == 0)
2135                 return SS_OVERHEAD_BURST +
2136                         (ep_bw->mult * ep_bw->num_packets *
2137                                         (SS_OVERHEAD + mps));
2138         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2139                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2140                                 1 << ep_bw->ep_interval);
2141
2142 }
2143
2144 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2145                 struct xhci_bw_info *ep_bw,
2146                 struct xhci_interval_bw_table *bw_table,
2147                 struct usb_device *udev,
2148                 struct xhci_virt_ep *virt_ep,
2149                 struct xhci_tt_bw_info *tt_info)
2150 {
2151         struct xhci_interval_bw *interval_bw;
2152         int normalized_interval;
2153
2154         if (xhci_is_async_ep(ep_bw->type))
2155                 return;
2156
2157         if (udev->speed == USB_SPEED_SUPER) {
2158                 if (xhci_is_sync_in_ep(ep_bw->type))
2159                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2160                                 xhci_get_ss_bw_consumed(ep_bw);
2161                 else
2162                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2163                                 xhci_get_ss_bw_consumed(ep_bw);
2164                 return;
2165         }
2166
2167         /* SuperSpeed endpoints never get added to intervals in the table, so
2168          * this check is only valid for HS/FS/LS devices.
2169          */
2170         if (list_empty(&virt_ep->bw_endpoint_list))
2171                 return;
2172         /* For LS/FS devices, we need to translate the interval expressed in
2173          * microframes to frames.
2174          */
2175         if (udev->speed == USB_SPEED_HIGH)
2176                 normalized_interval = ep_bw->ep_interval;
2177         else
2178                 normalized_interval = ep_bw->ep_interval - 3;
2179
2180         if (normalized_interval == 0)
2181                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2182         interval_bw = &bw_table->interval_bw[normalized_interval];
2183         interval_bw->num_packets -= ep_bw->num_packets;
2184         switch (udev->speed) {
2185         case USB_SPEED_LOW:
2186                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2187                 break;
2188         case USB_SPEED_FULL:
2189                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2190                 break;
2191         case USB_SPEED_HIGH:
2192                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2193                 break;
2194         case USB_SPEED_SUPER:
2195         case USB_SPEED_UNKNOWN:
2196         case USB_SPEED_WIRELESS:
2197                 /* Should never happen because only LS/FS/HS endpoints will get
2198                  * added to the endpoint list.
2199                  */
2200                 return;
2201         }
2202         if (tt_info)
2203                 tt_info->active_eps -= 1;
2204         list_del_init(&virt_ep->bw_endpoint_list);
2205 }
2206
2207 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2208                 struct xhci_bw_info *ep_bw,
2209                 struct xhci_interval_bw_table *bw_table,
2210                 struct usb_device *udev,
2211                 struct xhci_virt_ep *virt_ep,
2212                 struct xhci_tt_bw_info *tt_info)
2213 {
2214         struct xhci_interval_bw *interval_bw;
2215         struct xhci_virt_ep *smaller_ep;
2216         int normalized_interval;
2217
2218         if (xhci_is_async_ep(ep_bw->type))
2219                 return;
2220
2221         if (udev->speed == USB_SPEED_SUPER) {
2222                 if (xhci_is_sync_in_ep(ep_bw->type))
2223                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2224                                 xhci_get_ss_bw_consumed(ep_bw);
2225                 else
2226                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2227                                 xhci_get_ss_bw_consumed(ep_bw);
2228                 return;
2229         }
2230
2231         /* For LS/FS devices, we need to translate the interval expressed in
2232          * microframes to frames.
2233          */
2234         if (udev->speed == USB_SPEED_HIGH)
2235                 normalized_interval = ep_bw->ep_interval;
2236         else
2237                 normalized_interval = ep_bw->ep_interval - 3;
2238
2239         if (normalized_interval == 0)
2240                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2241         interval_bw = &bw_table->interval_bw[normalized_interval];
2242         interval_bw->num_packets += ep_bw->num_packets;
2243         switch (udev->speed) {
2244         case USB_SPEED_LOW:
2245                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2246                 break;
2247         case USB_SPEED_FULL:
2248                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2249                 break;
2250         case USB_SPEED_HIGH:
2251                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2252                 break;
2253         case USB_SPEED_SUPER:
2254         case USB_SPEED_UNKNOWN:
2255         case USB_SPEED_WIRELESS:
2256                 /* Should never happen because only LS/FS/HS endpoints will get
2257                  * added to the endpoint list.
2258                  */
2259                 return;
2260         }
2261
2262         if (tt_info)
2263                 tt_info->active_eps += 1;
2264         /* Insert the endpoint into the list, largest max packet size first. */
2265         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2266                         bw_endpoint_list) {
2267                 if (ep_bw->max_packet_size >=
2268                                 smaller_ep->bw_info.max_packet_size) {
2269                         /* Add the new ep before the smaller endpoint */
2270                         list_add_tail(&virt_ep->bw_endpoint_list,
2271                                         &smaller_ep->bw_endpoint_list);
2272                         return;
2273                 }
2274         }
2275         /* Add the new endpoint at the end of the list. */
2276         list_add_tail(&virt_ep->bw_endpoint_list,
2277                         &interval_bw->endpoints);
2278 }
2279
2280 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2281                 struct xhci_virt_device *virt_dev,
2282                 int old_active_eps)
2283 {
2284         struct xhci_root_port_bw_info *rh_bw_info;
2285         if (!virt_dev->tt_info)
2286                 return;
2287
2288         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2289         if (old_active_eps == 0 &&
2290                                 virt_dev->tt_info->active_eps != 0) {
2291                 rh_bw_info->num_active_tts += 1;
2292                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2293         } else if (old_active_eps != 0 &&
2294                                 virt_dev->tt_info->active_eps == 0) {
2295                 rh_bw_info->num_active_tts -= 1;
2296                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2297         }
2298 }
2299
2300 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2301                 struct xhci_virt_device *virt_dev,
2302                 struct xhci_container_ctx *in_ctx)
2303 {
2304         struct xhci_bw_info ep_bw_info[31];
2305         int i;
2306         struct xhci_input_control_ctx *ctrl_ctx;
2307         int old_active_eps = 0;
2308
2309         if (virt_dev->tt_info)
2310                 old_active_eps = virt_dev->tt_info->active_eps;
2311
2312         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2313
2314         for (i = 0; i < 31; i++) {
2315                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2316                         continue;
2317
2318                 /* Make a copy of the BW info in case we need to revert this */
2319                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2320                                 sizeof(ep_bw_info[i]));
2321                 /* Drop the endpoint from the interval table if the endpoint is
2322                  * being dropped or changed.
2323                  */
2324                 if (EP_IS_DROPPED(ctrl_ctx, i))
2325                         xhci_drop_ep_from_interval_table(xhci,
2326                                         &virt_dev->eps[i].bw_info,
2327                                         virt_dev->bw_table,
2328                                         virt_dev->udev,
2329                                         &virt_dev->eps[i],
2330                                         virt_dev->tt_info);
2331         }
2332         /* Overwrite the information stored in the endpoints' bw_info */
2333         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2334         for (i = 0; i < 31; i++) {
2335                 /* Add any changed or added endpoints to the interval table */
2336                 if (EP_IS_ADDED(ctrl_ctx, i))
2337                         xhci_add_ep_to_interval_table(xhci,
2338                                         &virt_dev->eps[i].bw_info,
2339                                         virt_dev->bw_table,
2340                                         virt_dev->udev,
2341                                         &virt_dev->eps[i],
2342                                         virt_dev->tt_info);
2343         }
2344
2345         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2346                 /* Ok, this fits in the bandwidth we have.
2347                  * Update the number of active TTs.
2348                  */
2349                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2350                 return 0;
2351         }
2352
2353         /* We don't have enough bandwidth for this, revert the stored info. */
2354         for (i = 0; i < 31; i++) {
2355                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2356                         continue;
2357
2358                 /* Drop the new copies of any added or changed endpoints from
2359                  * the interval table.
2360                  */
2361                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2362                         xhci_drop_ep_from_interval_table(xhci,
2363                                         &virt_dev->eps[i].bw_info,
2364                                         virt_dev->bw_table,
2365                                         virt_dev->udev,
2366                                         &virt_dev->eps[i],
2367                                         virt_dev->tt_info);
2368                 }
2369                 /* Revert the endpoint back to its old information */
2370                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2371                                 sizeof(ep_bw_info[i]));
2372                 /* Add any changed or dropped endpoints back into the table */
2373                 if (EP_IS_DROPPED(ctrl_ctx, i))
2374                         xhci_add_ep_to_interval_table(xhci,
2375                                         &virt_dev->eps[i].bw_info,
2376                                         virt_dev->bw_table,
2377                                         virt_dev->udev,
2378                                         &virt_dev->eps[i],
2379                                         virt_dev->tt_info);
2380         }
2381         return -ENOMEM;
2382 }
2383
2384
2385 /* Issue a configure endpoint command or evaluate context command
2386  * and wait for it to finish.
2387  */
2388 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2389                 struct usb_device *udev,
2390                 struct xhci_command *command,
2391                 bool ctx_change, bool must_succeed)
2392 {
2393         int ret;
2394         int timeleft;
2395         unsigned long flags;
2396         struct xhci_container_ctx *in_ctx;
2397         struct completion *cmd_completion;
2398         u32 *cmd_status;
2399         struct xhci_virt_device *virt_dev;
2400
2401         spin_lock_irqsave(&xhci->lock, flags);
2402         virt_dev = xhci->devs[udev->slot_id];
2403
2404         if (command)
2405                 in_ctx = command->in_ctx;
2406         else
2407                 in_ctx = virt_dev->in_ctx;
2408
2409         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2410                         xhci_reserve_host_resources(xhci, in_ctx)) {
2411                 spin_unlock_irqrestore(&xhci->lock, flags);
2412                 xhci_warn(xhci, "Not enough host resources, "
2413                                 "active endpoint contexts = %u\n",
2414                                 xhci->num_active_eps);
2415                 return -ENOMEM;
2416         }
2417         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2418                         xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2419                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2420                         xhci_free_host_resources(xhci, in_ctx);
2421                 spin_unlock_irqrestore(&xhci->lock, flags);
2422                 xhci_warn(xhci, "Not enough bandwidth\n");
2423                 return -ENOMEM;
2424         }
2425
2426         if (command) {
2427                 cmd_completion = command->completion;
2428                 cmd_status = &command->status;
2429                 command->command_trb = xhci->cmd_ring->enqueue;
2430
2431                 /* Enqueue pointer can be left pointing to the link TRB,
2432                  * we must handle that
2433                  */
2434                 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2435                         command->command_trb =
2436                                 xhci->cmd_ring->enq_seg->next->trbs;
2437
2438                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2439         } else {
2440                 cmd_completion = &virt_dev->cmd_completion;
2441                 cmd_status = &virt_dev->cmd_status;
2442         }
2443         init_completion(cmd_completion);
2444
2445         if (!ctx_change)
2446                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2447                                 udev->slot_id, must_succeed);
2448         else
2449                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2450                                 udev->slot_id);
2451         if (ret < 0) {
2452                 if (command)
2453                         list_del(&command->cmd_list);
2454                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2455                         xhci_free_host_resources(xhci, in_ctx);
2456                 spin_unlock_irqrestore(&xhci->lock, flags);
2457                 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2458                 return -ENOMEM;
2459         }
2460         xhci_ring_cmd_db(xhci);
2461         spin_unlock_irqrestore(&xhci->lock, flags);
2462
2463         /* Wait for the configure endpoint command to complete */
2464         timeleft = wait_for_completion_interruptible_timeout(
2465                         cmd_completion,
2466                         USB_CTRL_SET_TIMEOUT);
2467         if (timeleft <= 0) {
2468                 xhci_warn(xhci, "%s while waiting for %s command\n",
2469                                 timeleft == 0 ? "Timeout" : "Signal",
2470                                 ctx_change == 0 ?
2471                                         "configure endpoint" :
2472                                         "evaluate context");
2473                 /* FIXME cancel the configure endpoint command */
2474                 return -ETIME;
2475         }
2476
2477         if (!ctx_change)
2478                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2479         else
2480                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2481
2482         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2483                 spin_lock_irqsave(&xhci->lock, flags);
2484                 /* If the command failed, remove the reserved resources.
2485                  * Otherwise, clean up the estimate to include dropped eps.
2486                  */
2487                 if (ret)
2488                         xhci_free_host_resources(xhci, in_ctx);
2489                 else
2490                         xhci_finish_resource_reservation(xhci, in_ctx);
2491                 spin_unlock_irqrestore(&xhci->lock, flags);
2492         }
2493         return ret;
2494 }
2495
2496 /* Called after one or more calls to xhci_add_endpoint() or
2497  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2498  * to call xhci_reset_bandwidth().
2499  *
2500  * Since we are in the middle of changing either configuration or
2501  * installing a new alt setting, the USB core won't allow URBs to be
2502  * enqueued for any endpoint on the old config or interface.  Nothing
2503  * else should be touching the xhci->devs[slot_id] structure, so we
2504  * don't need to take the xhci->lock for manipulating that.
2505  */
2506 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2507 {
2508         int i;
2509         int ret = 0;
2510         struct xhci_hcd *xhci;
2511         struct xhci_virt_device *virt_dev;
2512         struct xhci_input_control_ctx *ctrl_ctx;
2513         struct xhci_slot_ctx *slot_ctx;
2514
2515         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2516         if (ret <= 0)
2517                 return ret;
2518         xhci = hcd_to_xhci(hcd);
2519         if (xhci->xhc_state & XHCI_STATE_DYING)
2520                 return -ENODEV;
2521
2522         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2523         virt_dev = xhci->devs[udev->slot_id];
2524
2525         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2526         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2527         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2528         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2529         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2530
2531         /* Don't issue the command if there's no endpoints to update. */
2532         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2533                         ctrl_ctx->drop_flags == 0)
2534                 return 0;
2535
2536         xhci_dbg(xhci, "New Input Control Context:\n");
2537         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2538         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2539                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2540
2541         ret = xhci_configure_endpoint(xhci, udev, NULL,
2542                         false, false);
2543         if (ret) {
2544                 /* Callee should call reset_bandwidth() */
2545                 return ret;
2546         }
2547
2548         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2549         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2550                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2551
2552         /* Free any rings that were dropped, but not changed. */
2553         for (i = 1; i < 31; ++i) {
2554                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2555                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2556                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2557         }
2558         xhci_zero_in_ctx(xhci, virt_dev);
2559         /*
2560          * Install any rings for completely new endpoints or changed endpoints,
2561          * and free or cache any old rings from changed endpoints.
2562          */
2563         for (i = 1; i < 31; ++i) {
2564                 if (!virt_dev->eps[i].new_ring)
2565                         continue;
2566                 /* Only cache or free the old ring if it exists.
2567                  * It may not if this is the first add of an endpoint.
2568                  */
2569                 if (virt_dev->eps[i].ring) {
2570                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2571                 }
2572                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2573                 virt_dev->eps[i].new_ring = NULL;
2574         }
2575
2576         return ret;
2577 }
2578
2579 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2580 {
2581         struct xhci_hcd *xhci;
2582         struct xhci_virt_device *virt_dev;
2583         int i, ret;
2584
2585         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2586         if (ret <= 0)
2587                 return;
2588         xhci = hcd_to_xhci(hcd);
2589
2590         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2591         virt_dev = xhci->devs[udev->slot_id];
2592         /* Free any rings allocated for added endpoints */
2593         for (i = 0; i < 31; ++i) {
2594                 if (virt_dev->eps[i].new_ring) {
2595                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2596                         virt_dev->eps[i].new_ring = NULL;
2597                 }
2598         }
2599         xhci_zero_in_ctx(xhci, virt_dev);
2600 }
2601
2602 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2603                 struct xhci_container_ctx *in_ctx,
2604                 struct xhci_container_ctx *out_ctx,
2605                 u32 add_flags, u32 drop_flags)
2606 {
2607         struct xhci_input_control_ctx *ctrl_ctx;
2608         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2609         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2610         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2611         xhci_slot_copy(xhci, in_ctx, out_ctx);
2612         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2613
2614         xhci_dbg(xhci, "Input Context:\n");
2615         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2616 }
2617
2618 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2619                 unsigned int slot_id, unsigned int ep_index,
2620                 struct xhci_dequeue_state *deq_state)
2621 {
2622         struct xhci_container_ctx *in_ctx;
2623         struct xhci_ep_ctx *ep_ctx;
2624         u32 added_ctxs;
2625         dma_addr_t addr;
2626
2627         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2628                         xhci->devs[slot_id]->out_ctx, ep_index);
2629         in_ctx = xhci->devs[slot_id]->in_ctx;
2630         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2631         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2632                         deq_state->new_deq_ptr);
2633         if (addr == 0) {
2634                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2635                                 "reset ep command\n");
2636                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2637                                 deq_state->new_deq_seg,
2638                                 deq_state->new_deq_ptr);
2639                 return;
2640         }
2641         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2642
2643         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2644         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2645                         xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2646 }
2647
2648 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2649                 struct usb_device *udev, unsigned int ep_index)
2650 {
2651         struct xhci_dequeue_state deq_state;
2652         struct xhci_virt_ep *ep;
2653
2654         xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2655         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2656         /* We need to move the HW's dequeue pointer past this TD,
2657          * or it will attempt to resend it on the next doorbell ring.
2658          */
2659         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2660                         ep_index, ep->stopped_stream, ep->stopped_td,
2661                         &deq_state);
2662
2663         /* HW with the reset endpoint quirk will use the saved dequeue state to
2664          * issue a configure endpoint command later.
2665          */
2666         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2667                 xhci_dbg(xhci, "Queueing new dequeue state\n");
2668                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2669                                 ep_index, ep->stopped_stream, &deq_state);
2670         } else {
2671                 /* Better hope no one uses the input context between now and the
2672                  * reset endpoint completion!
2673                  * XXX: No idea how this hardware will react when stream rings
2674                  * are enabled.
2675                  */
2676                 xhci_dbg(xhci, "Setting up input context for "
2677                                 "configure endpoint command\n");
2678                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2679                                 ep_index, &deq_state);
2680         }
2681 }
2682
2683 /* Deal with stalled endpoints.  The core should have sent the control message
2684  * to clear the halt condition.  However, we need to make the xHCI hardware
2685  * reset its sequence number, since a device will expect a sequence number of
2686  * zero after the halt condition is cleared.
2687  * Context: in_interrupt
2688  */
2689 void xhci_endpoint_reset(struct usb_hcd *hcd,
2690                 struct usb_host_endpoint *ep)
2691 {
2692         struct xhci_hcd *xhci;
2693         struct usb_device *udev;
2694         unsigned int ep_index;
2695         unsigned long flags;
2696         int ret;
2697         struct xhci_virt_ep *virt_ep;
2698
2699         xhci = hcd_to_xhci(hcd);
2700         udev = (struct usb_device *) ep->hcpriv;
2701         /* Called with a root hub endpoint (or an endpoint that wasn't added
2702          * with xhci_add_endpoint()
2703          */
2704         if (!ep->hcpriv)
2705                 return;
2706         ep_index = xhci_get_endpoint_index(&ep->desc);
2707         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2708         if (!virt_ep->stopped_td) {
2709                 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2710                                 ep->desc.bEndpointAddress);
2711                 return;
2712         }
2713         if (usb_endpoint_xfer_control(&ep->desc)) {
2714                 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2715                 return;
2716         }
2717
2718         xhci_dbg(xhci, "Queueing reset endpoint command\n");
2719         spin_lock_irqsave(&xhci->lock, flags);
2720         ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2721         /*
2722          * Can't change the ring dequeue pointer until it's transitioned to the
2723          * stopped state, which is only upon a successful reset endpoint
2724          * command.  Better hope that last command worked!
2725          */
2726         if (!ret) {
2727                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2728                 kfree(virt_ep->stopped_td);
2729                 xhci_ring_cmd_db(xhci);
2730         }
2731         virt_ep->stopped_td = NULL;
2732         virt_ep->stopped_trb = NULL;
2733         virt_ep->stopped_stream = 0;
2734         spin_unlock_irqrestore(&xhci->lock, flags);
2735
2736         if (ret)
2737                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2738 }
2739
2740 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2741                 struct usb_device *udev, struct usb_host_endpoint *ep,
2742                 unsigned int slot_id)
2743 {
2744         int ret;
2745         unsigned int ep_index;
2746         unsigned int ep_state;
2747
2748         if (!ep)
2749                 return -EINVAL;
2750         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2751         if (ret <= 0)
2752                 return -EINVAL;
2753         if (ep->ss_ep_comp.bmAttributes == 0) {
2754                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2755                                 " descriptor for ep 0x%x does not support streams\n",
2756                                 ep->desc.bEndpointAddress);
2757                 return -EINVAL;
2758         }
2759
2760         ep_index = xhci_get_endpoint_index(&ep->desc);
2761         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2762         if (ep_state & EP_HAS_STREAMS ||
2763                         ep_state & EP_GETTING_STREAMS) {
2764                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2765                                 "already has streams set up.\n",
2766                                 ep->desc.bEndpointAddress);
2767                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2768                                 "dynamic stream context array reallocation.\n");
2769                 return -EINVAL;
2770         }
2771         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2772                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2773                                 "endpoint 0x%x; URBs are pending.\n",
2774                                 ep->desc.bEndpointAddress);
2775                 return -EINVAL;
2776         }
2777         return 0;
2778 }
2779
2780 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2781                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2782 {
2783         unsigned int max_streams;
2784
2785         /* The stream context array size must be a power of two */
2786         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2787         /*
2788          * Find out how many primary stream array entries the host controller
2789          * supports.  Later we may use secondary stream arrays (similar to 2nd
2790          * level page entries), but that's an optional feature for xHCI host
2791          * controllers. xHCs must support at least 4 stream IDs.
2792          */
2793         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2794         if (*num_stream_ctxs > max_streams) {
2795                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2796                                 max_streams);
2797                 *num_stream_ctxs = max_streams;
2798                 *num_streams = max_streams;
2799         }
2800 }
2801
2802 /* Returns an error code if one of the endpoint already has streams.
2803  * This does not change any data structures, it only checks and gathers
2804  * information.
2805  */
2806 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2807                 struct usb_device *udev,
2808                 struct usb_host_endpoint **eps, unsigned int num_eps,
2809                 unsigned int *num_streams, u32 *changed_ep_bitmask)
2810 {
2811         unsigned int max_streams;
2812         unsigned int endpoint_flag;
2813         int i;
2814         int ret;
2815
2816         for (i = 0; i < num_eps; i++) {
2817                 ret = xhci_check_streams_endpoint(xhci, udev,
2818                                 eps[i], udev->slot_id);
2819                 if (ret < 0)
2820                         return ret;
2821
2822                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2823                 if (max_streams < (*num_streams - 1)) {
2824                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2825                                         eps[i]->desc.bEndpointAddress,
2826                                         max_streams);
2827                         *num_streams = max_streams+1;
2828                 }
2829
2830                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2831                 if (*changed_ep_bitmask & endpoint_flag)
2832                         return -EINVAL;
2833                 *changed_ep_bitmask |= endpoint_flag;
2834         }
2835         return 0;
2836 }
2837
2838 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2839                 struct usb_device *udev,
2840                 struct usb_host_endpoint **eps, unsigned int num_eps)
2841 {
2842         u32 changed_ep_bitmask = 0;
2843         unsigned int slot_id;
2844         unsigned int ep_index;
2845         unsigned int ep_state;
2846         int i;
2847
2848         slot_id = udev->slot_id;
2849         if (!xhci->devs[slot_id])
2850                 return 0;
2851
2852         for (i = 0; i < num_eps; i++) {
2853                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2854                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2855                 /* Are streams already being freed for the endpoint? */
2856                 if (ep_state & EP_GETTING_NO_STREAMS) {
2857                         xhci_warn(xhci, "WARN Can't disable streams for "
2858                                         "endpoint 0x%x\n, "
2859                                         "streams are being disabled already.",
2860                                         eps[i]->desc.bEndpointAddress);
2861                         return 0;
2862                 }
2863                 /* Are there actually any streams to free? */
2864                 if (!(ep_state & EP_HAS_STREAMS) &&
2865                                 !(ep_state & EP_GETTING_STREAMS)) {
2866                         xhci_warn(xhci, "WARN Can't disable streams for "
2867                                         "endpoint 0x%x\n, "
2868                                         "streams are already disabled!",
2869                                         eps[i]->desc.bEndpointAddress);
2870                         xhci_warn(xhci, "WARN xhci_free_streams() called "
2871                                         "with non-streams endpoint\n");
2872                         return 0;
2873                 }
2874                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2875         }
2876         return changed_ep_bitmask;
2877 }
2878
2879 /*
2880  * The USB device drivers use this function (though the HCD interface in USB
2881  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
2882  * coordinate mass storage command queueing across multiple endpoints (basically
2883  * a stream ID == a task ID).
2884  *
2885  * Setting up streams involves allocating the same size stream context array
2886  * for each endpoint and issuing a configure endpoint command for all endpoints.
2887  *
2888  * Don't allow the call to succeed if one endpoint only supports one stream
2889  * (which means it doesn't support streams at all).
2890  *
2891  * Drivers may get less stream IDs than they asked for, if the host controller
2892  * hardware or endpoints claim they can't support the number of requested
2893  * stream IDs.
2894  */
2895 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
2896                 struct usb_host_endpoint **eps, unsigned int num_eps,
2897                 unsigned int num_streams, gfp_t mem_flags)
2898 {
2899         int i, ret;
2900         struct xhci_hcd *xhci;
2901         struct xhci_virt_device *vdev;
2902         struct xhci_command *config_cmd;
2903         unsigned int ep_index;
2904         unsigned int num_stream_ctxs;
2905         unsigned long flags;
2906         u32 changed_ep_bitmask = 0;
2907
2908         if (!eps)
2909                 return -EINVAL;
2910
2911         /* Add one to the number of streams requested to account for
2912          * stream 0 that is reserved for xHCI usage.
2913          */
2914         num_streams += 1;
2915         xhci = hcd_to_xhci(hcd);
2916         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2917                         num_streams);
2918
2919         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2920         if (!config_cmd) {
2921                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2922                 return -ENOMEM;
2923         }
2924
2925         /* Check to make sure all endpoints are not already configured for
2926          * streams.  While we're at it, find the maximum number of streams that
2927          * all the endpoints will support and check for duplicate endpoints.
2928          */
2929         spin_lock_irqsave(&xhci->lock, flags);
2930         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2931                         num_eps, &num_streams, &changed_ep_bitmask);
2932         if (ret < 0) {
2933                 xhci_free_command(xhci, config_cmd);
2934                 spin_unlock_irqrestore(&xhci->lock, flags);
2935                 return ret;
2936         }
2937         if (num_streams <= 1) {
2938                 xhci_warn(xhci, "WARN: endpoints can't handle "
2939                                 "more than one stream.\n");
2940                 xhci_free_command(xhci, config_cmd);
2941                 spin_unlock_irqrestore(&xhci->lock, flags);
2942                 return -EINVAL;
2943         }
2944         vdev = xhci->devs[udev->slot_id];
2945         /* Mark each endpoint as being in transition, so
2946          * xhci_urb_enqueue() will reject all URBs.
2947          */
2948         for (i = 0; i < num_eps; i++) {
2949                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2950                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2951         }
2952         spin_unlock_irqrestore(&xhci->lock, flags);
2953
2954         /* Setup internal data structures and allocate HW data structures for
2955          * streams (but don't install the HW structures in the input context
2956          * until we're sure all memory allocation succeeded).
2957          */
2958         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2959         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2960                         num_stream_ctxs, num_streams);
2961
2962         for (i = 0; i < num_eps; i++) {
2963                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2964                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2965                                 num_stream_ctxs,
2966                                 num_streams, mem_flags);
2967                 if (!vdev->eps[ep_index].stream_info)
2968                         goto cleanup;
2969                 /* Set maxPstreams in endpoint context and update deq ptr to
2970                  * point to stream context array. FIXME
2971                  */
2972         }
2973
2974         /* Set up the input context for a configure endpoint command. */
2975         for (i = 0; i < num_eps; i++) {
2976                 struct xhci_ep_ctx *ep_ctx;
2977
2978                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2979                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2980
2981                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2982                                 vdev->out_ctx, ep_index);
2983                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2984                                 vdev->eps[ep_index].stream_info);
2985         }
2986         /* Tell the HW to drop its old copy of the endpoint context info
2987          * and add the updated copy from the input context.
2988          */
2989         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2990                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2991
2992         /* Issue and wait for the configure endpoint command */
2993         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2994                         false, false);
2995
2996         /* xHC rejected the configure endpoint command for some reason, so we
2997          * leave the old ring intact and free our internal streams data
2998          * structure.
2999          */
3000         if (ret < 0)
3001                 goto cleanup;
3002
3003         spin_lock_irqsave(&xhci->lock, flags);
3004         for (i = 0; i < num_eps; i++) {
3005                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3006                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3007                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3008                          udev->slot_id, ep_index);
3009                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3010         }
3011         xhci_free_command(xhci, config_cmd);
3012         spin_unlock_irqrestore(&xhci->lock, flags);
3013
3014         /* Subtract 1 for stream 0, which drivers can't use */
3015         return num_streams - 1;
3016
3017 cleanup:
3018         /* If it didn't work, free the streams! */
3019         for (i = 0; i < num_eps; i++) {
3020                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3021                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3022                 vdev->eps[ep_index].stream_info = NULL;
3023                 /* FIXME Unset maxPstreams in endpoint context and
3024                  * update deq ptr to point to normal string ring.
3025                  */
3026                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3027                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3028                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3029         }
3030         xhci_free_command(xhci, config_cmd);
3031         return -ENOMEM;
3032 }
3033
3034 /* Transition the endpoint from using streams to being a "normal" endpoint
3035  * without streams.
3036  *
3037  * Modify the endpoint context state, submit a configure endpoint command,
3038  * and free all endpoint rings for streams if that completes successfully.
3039  */
3040 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3041                 struct usb_host_endpoint **eps, unsigned int num_eps,
3042                 gfp_t mem_flags)
3043 {
3044         int i, ret;
3045         struct xhci_hcd *xhci;
3046         struct xhci_virt_device *vdev;
3047         struct xhci_command *command;
3048         unsigned int ep_index;
3049         unsigned long flags;
3050         u32 changed_ep_bitmask;
3051
3052         xhci = hcd_to_xhci(hcd);
3053         vdev = xhci->devs[udev->slot_id];
3054
3055         /* Set up a configure endpoint command to remove the streams rings */
3056         spin_lock_irqsave(&xhci->lock, flags);
3057         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3058                         udev, eps, num_eps);
3059         if (changed_ep_bitmask == 0) {
3060                 spin_unlock_irqrestore(&xhci->lock, flags);
3061                 return -EINVAL;
3062         }
3063
3064         /* Use the xhci_command structure from the first endpoint.  We may have
3065          * allocated too many, but the driver may call xhci_free_streams() for
3066          * each endpoint it grouped into one call to xhci_alloc_streams().
3067          */
3068         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3069         command = vdev->eps[ep_index].stream_info->free_streams_command;
3070         for (i = 0; i < num_eps; i++) {
3071                 struct xhci_ep_ctx *ep_ctx;
3072
3073                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3074                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3075                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3076                         EP_GETTING_NO_STREAMS;
3077
3078                 xhci_endpoint_copy(xhci, command->in_ctx,
3079                                 vdev->out_ctx, ep_index);
3080                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3081                                 &vdev->eps[ep_index]);
3082         }
3083         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3084                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3085         spin_unlock_irqrestore(&xhci->lock, flags);
3086
3087         /* Issue and wait for the configure endpoint command,
3088          * which must succeed.
3089          */
3090         ret = xhci_configure_endpoint(xhci, udev, command,
3091                         false, true);
3092
3093         /* xHC rejected the configure endpoint command for some reason, so we
3094          * leave the streams rings intact.
3095          */
3096         if (ret < 0)
3097                 return ret;
3098
3099         spin_lock_irqsave(&xhci->lock, flags);
3100         for (i = 0; i < num_eps; i++) {
3101                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3102                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3103                 vdev->eps[ep_index].stream_info = NULL;
3104                 /* FIXME Unset maxPstreams in endpoint context and
3105                  * update deq ptr to point to normal string ring.
3106                  */
3107                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3108                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3109         }
3110         spin_unlock_irqrestore(&xhci->lock, flags);
3111
3112         return 0;
3113 }
3114
3115 /*
3116  * Deletes endpoint resources for endpoints that were active before a Reset
3117  * Device command, or a Disable Slot command.  The Reset Device command leaves
3118  * the control endpoint intact, whereas the Disable Slot command deletes it.
3119  *
3120  * Must be called with xhci->lock held.
3121  */
3122 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3123         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3124 {
3125         int i;
3126         unsigned int num_dropped_eps = 0;
3127         unsigned int drop_flags = 0;
3128
3129         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3130                 if (virt_dev->eps[i].ring) {
3131                         drop_flags |= 1 << i;
3132                         num_dropped_eps++;
3133                 }
3134         }
3135         xhci->num_active_eps -= num_dropped_eps;
3136         if (num_dropped_eps)
3137                 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3138                                 "%u now active.\n",
3139                                 num_dropped_eps, drop_flags,
3140                                 xhci->num_active_eps);
3141 }
3142
3143 /*
3144  * This submits a Reset Device Command, which will set the device state to 0,
3145  * set the device address to 0, and disable all the endpoints except the default
3146  * control endpoint.  The USB core should come back and call
3147  * xhci_address_device(), and then re-set up the configuration.  If this is
3148  * called because of a usb_reset_and_verify_device(), then the old alternate
3149  * settings will be re-installed through the normal bandwidth allocation
3150  * functions.
3151  *
3152  * Wait for the Reset Device command to finish.  Remove all structures
3153  * associated with the endpoints that were disabled.  Clear the input device
3154  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3155  *
3156  * If the virt_dev to be reset does not exist or does not match the udev,
3157  * it means the device is lost, possibly due to the xHC restore error and
3158  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3159  * re-allocate the device.
3160  */
3161 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3162 {
3163         int ret, i;
3164         unsigned long flags;
3165         struct xhci_hcd *xhci;
3166         unsigned int slot_id;
3167         struct xhci_virt_device *virt_dev;
3168         struct xhci_command *reset_device_cmd;
3169         int timeleft;
3170         int last_freed_endpoint;
3171         struct xhci_slot_ctx *slot_ctx;
3172         int old_active_eps = 0;
3173
3174         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3175         if (ret <= 0)
3176                 return ret;
3177         xhci = hcd_to_xhci(hcd);
3178         slot_id = udev->slot_id;
3179         virt_dev = xhci->devs[slot_id];
3180         if (!virt_dev) {
3181                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3182                                 "not exist. Re-allocate the device\n", slot_id);
3183                 ret = xhci_alloc_dev(hcd, udev);
3184                 if (ret == 1)
3185                         return 0;
3186                 else
3187                         return -EINVAL;
3188         }
3189
3190         if (virt_dev->udev != udev) {
3191                 /* If the virt_dev and the udev does not match, this virt_dev
3192                  * may belong to another udev.
3193                  * Re-allocate the device.
3194                  */
3195                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3196                                 "not match the udev. Re-allocate the device\n",
3197                                 slot_id);
3198                 ret = xhci_alloc_dev(hcd, udev);
3199                 if (ret == 1)
3200                         return 0;
3201                 else
3202                         return -EINVAL;
3203         }
3204
3205         /* If device is not setup, there is no point in resetting it */
3206         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3207         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3208                                                 SLOT_STATE_DISABLED)
3209                 return 0;
3210
3211         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3212         /* Allocate the command structure that holds the struct completion.
3213          * Assume we're in process context, since the normal device reset
3214          * process has to wait for the device anyway.  Storage devices are
3215          * reset as part of error handling, so use GFP_NOIO instead of
3216          * GFP_KERNEL.
3217          */
3218         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3219         if (!reset_device_cmd) {
3220                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3221                 return -ENOMEM;
3222         }
3223
3224         /* Attempt to submit the Reset Device command to the command ring */
3225         spin_lock_irqsave(&xhci->lock, flags);
3226         reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3227
3228         /* Enqueue pointer can be left pointing to the link TRB,
3229          * we must handle that
3230          */
3231         if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3232                 reset_device_cmd->command_trb =
3233                         xhci->cmd_ring->enq_seg->next->trbs;
3234
3235         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3236         ret = xhci_queue_reset_device(xhci, slot_id);
3237         if (ret) {
3238                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3239                 list_del(&reset_device_cmd->cmd_list);
3240                 spin_unlock_irqrestore(&xhci->lock, flags);
3241                 goto command_cleanup;
3242         }
3243         xhci_ring_cmd_db(xhci);
3244         spin_unlock_irqrestore(&xhci->lock, flags);
3245
3246         /* Wait for the Reset Device command to finish */
3247         timeleft = wait_for_completion_interruptible_timeout(
3248                         reset_device_cmd->completion,
3249                         USB_CTRL_SET_TIMEOUT);
3250         if (timeleft <= 0) {
3251                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3252                                 timeleft == 0 ? "Timeout" : "Signal");
3253                 spin_lock_irqsave(&xhci->lock, flags);
3254                 /* The timeout might have raced with the event ring handler, so
3255                  * only delete from the list if the item isn't poisoned.
3256                  */
3257                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3258                         list_del(&reset_device_cmd->cmd_list);
3259                 spin_unlock_irqrestore(&xhci->lock, flags);
3260                 ret = -ETIME;
3261                 goto command_cleanup;
3262         }
3263
3264         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3265          * unless we tried to reset a slot ID that wasn't enabled,
3266          * or the device wasn't in the addressed or configured state.
3267          */
3268         ret = reset_device_cmd->status;
3269         switch (ret) {
3270         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3271         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3272                 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3273                                 slot_id,
3274                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3275                 xhci_info(xhci, "Not freeing device rings.\n");
3276                 /* Don't treat this as an error.  May change my mind later. */
3277                 ret = 0;
3278                 goto command_cleanup;
3279         case COMP_SUCCESS:
3280                 xhci_dbg(xhci, "Successful reset device command.\n");
3281                 break;
3282         default:
3283                 if (xhci_is_vendor_info_code(xhci, ret))
3284                         break;
3285                 xhci_warn(xhci, "Unknown completion code %u for "
3286                                 "reset device command.\n", ret);
3287                 ret = -EINVAL;
3288                 goto command_cleanup;
3289         }
3290
3291         /* Free up host controller endpoint resources */
3292         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3293                 spin_lock_irqsave(&xhci->lock, flags);
3294                 /* Don't delete the default control endpoint resources */
3295                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3296                 spin_unlock_irqrestore(&xhci->lock, flags);
3297         }
3298
3299         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3300         last_freed_endpoint = 1;
3301         for (i = 1; i < 31; ++i) {
3302                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3303
3304                 if (ep->ep_state & EP_HAS_STREAMS) {
3305                         xhci_free_stream_info(xhci, ep->stream_info);
3306                         ep->stream_info = NULL;
3307                         ep->ep_state &= ~EP_HAS_STREAMS;
3308                 }
3309
3310                 if (ep->ring) {
3311                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3312                         last_freed_endpoint = i;
3313                 }
3314                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3315                         xhci_drop_ep_from_interval_table(xhci,
3316                                         &virt_dev->eps[i].bw_info,
3317                                         virt_dev->bw_table,
3318                                         udev,
3319                                         &virt_dev->eps[i],
3320                                         virt_dev->tt_info);
3321                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3322         }
3323         /* If necessary, update the number of active TTs on this root port */
3324         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3325
3326         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3327         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3328         ret = 0;
3329
3330 command_cleanup:
3331         xhci_free_command(xhci, reset_device_cmd);
3332         return ret;
3333 }
3334
3335 /*
3336  * At this point, the struct usb_device is about to go away, the device has
3337  * disconnected, and all traffic has been stopped and the endpoints have been
3338  * disabled.  Free any HC data structures associated with that device.
3339  */
3340 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3341 {
3342         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3343         struct xhci_virt_device *virt_dev;
3344         unsigned long flags;
3345         u32 state;
3346         int i, ret;
3347
3348         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3349         /* If the host is halted due to driver unload, we still need to free the
3350          * device.
3351          */
3352         if (ret <= 0 && ret != -ENODEV)
3353                 return;
3354
3355         virt_dev = xhci->devs[udev->slot_id];
3356
3357         /* Stop any wayward timer functions (which may grab the lock) */
3358         for (i = 0; i < 31; ++i) {
3359                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3360                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3361         }
3362
3363         if (udev->usb2_hw_lpm_enabled) {
3364                 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3365                 udev->usb2_hw_lpm_enabled = 0;
3366         }
3367
3368         spin_lock_irqsave(&xhci->lock, flags);
3369         /* Don't disable the slot if the host controller is dead. */
3370         state = xhci_readl(xhci, &xhci->op_regs->status);
3371         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3372                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3373                 xhci_free_virt_device(xhci, udev->slot_id);
3374                 spin_unlock_irqrestore(&xhci->lock, flags);
3375                 return;
3376         }
3377
3378         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3379                 spin_unlock_irqrestore(&xhci->lock, flags);
3380                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3381                 return;
3382         }
3383         xhci_ring_cmd_db(xhci);
3384         spin_unlock_irqrestore(&xhci->lock, flags);
3385         /*
3386          * Event command completion handler will free any data structures
3387          * associated with the slot.  XXX Can free sleep?
3388          */
3389 }
3390
3391 /*
3392  * Checks if we have enough host controller resources for the default control
3393  * endpoint.
3394  *
3395  * Must be called with xhci->lock held.
3396  */
3397 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3398 {
3399         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3400                 xhci_dbg(xhci, "Not enough ep ctxs: "
3401                                 "%u active, need to add 1, limit is %u.\n",
3402                                 xhci->num_active_eps, xhci->limit_active_eps);
3403                 return -ENOMEM;
3404         }
3405         xhci->num_active_eps += 1;
3406         xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3407                         xhci->num_active_eps);
3408         return 0;
3409 }
3410
3411
3412 /*
3413  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3414  * timed out, or allocating memory failed.  Returns 1 on success.
3415  */
3416 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3417 {
3418         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3419         unsigned long flags;
3420         int timeleft;
3421         int ret;
3422
3423         spin_lock_irqsave(&xhci->lock, flags);
3424         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3425         if (ret) {
3426                 spin_unlock_irqrestore(&xhci->lock, flags);
3427                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3428                 return 0;
3429         }
3430         xhci_ring_cmd_db(xhci);
3431         spin_unlock_irqrestore(&xhci->lock, flags);
3432
3433         /* XXX: how much time for xHC slot assignment? */
3434         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3435                         USB_CTRL_SET_TIMEOUT);
3436         if (timeleft <= 0) {
3437                 xhci_warn(xhci, "%s while waiting for a slot\n",
3438                                 timeleft == 0 ? "Timeout" : "Signal");
3439                 /* FIXME cancel the enable slot request */
3440                 return 0;
3441         }
3442
3443         if (!xhci->slot_id) {
3444                 xhci_err(xhci, "Error while assigning device slot ID\n");
3445                 return 0;
3446         }
3447
3448         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3449                 spin_lock_irqsave(&xhci->lock, flags);
3450                 ret = xhci_reserve_host_control_ep_resources(xhci);
3451                 if (ret) {
3452                         spin_unlock_irqrestore(&xhci->lock, flags);
3453                         xhci_warn(xhci, "Not enough host resources, "
3454                                         "active endpoint contexts = %u\n",
3455                                         xhci->num_active_eps);
3456                         goto disable_slot;
3457                 }
3458                 spin_unlock_irqrestore(&xhci->lock, flags);
3459         }
3460         /* Use GFP_NOIO, since this function can be called from
3461          * xhci_discover_or_reset_device(), which may be called as part of
3462          * mass storage driver error handling.
3463          */
3464         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3465                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3466                 goto disable_slot;
3467         }
3468         udev->slot_id = xhci->slot_id;
3469         /* Is this a LS or FS device under a HS hub? */
3470         /* Hub or peripherial? */
3471         return 1;
3472
3473 disable_slot:
3474         /* Disable slot, if we can do it without mem alloc */
3475         spin_lock_irqsave(&xhci->lock, flags);
3476         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3477                 xhci_ring_cmd_db(xhci);
3478         spin_unlock_irqrestore(&xhci->lock, flags);
3479         return 0;
3480 }
3481
3482 /*
3483  * Issue an Address Device command (which will issue a SetAddress request to
3484  * the device).
3485  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3486  * we should only issue and wait on one address command at the same time.
3487  *
3488  * We add one to the device address issued by the hardware because the USB core
3489  * uses address 1 for the root hubs (even though they're not really devices).
3490  */
3491 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3492 {
3493         unsigned long flags;
3494         int timeleft;
3495         struct xhci_virt_device *virt_dev;
3496         int ret = 0;
3497         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3498         struct xhci_slot_ctx *slot_ctx;
3499         struct xhci_input_control_ctx *ctrl_ctx;
3500         u64 temp_64;
3501
3502         if (!udev->slot_id) {
3503                 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3504                 return -EINVAL;
3505         }
3506
3507         virt_dev = xhci->devs[udev->slot_id];
3508
3509         if (WARN_ON(!virt_dev)) {
3510                 /*
3511                  * In plug/unplug torture test with an NEC controller,
3512                  * a zero-dereference was observed once due to virt_dev = 0.
3513                  * Print useful debug rather than crash if it is observed again!
3514                  */
3515                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3516                         udev->slot_id);
3517                 return -EINVAL;
3518         }
3519
3520         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3521         /*
3522          * If this is the first Set Address since device plug-in or
3523          * virt_device realloaction after a resume with an xHCI power loss,
3524          * then set up the slot context.
3525          */
3526         if (!slot_ctx->dev_info)
3527                 xhci_setup_addressable_virt_dev(xhci, udev);
3528         /* Otherwise, update the control endpoint ring enqueue pointer. */
3529         else
3530                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3531         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3532         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3533         ctrl_ctx->drop_flags = 0;
3534
3535         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3536         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3537
3538         spin_lock_irqsave(&xhci->lock, flags);
3539         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3540                                         udev->slot_id);
3541         if (ret) {
3542                 spin_unlock_irqrestore(&xhci->lock, flags);
3543                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3544                 return ret;
3545         }
3546         xhci_ring_cmd_db(xhci);
3547         spin_unlock_irqrestore(&xhci->lock, flags);
3548
3549         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3550         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3551                         USB_CTRL_SET_TIMEOUT);
3552         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3553          * the SetAddress() "recovery interval" required by USB and aborting the
3554          * command on a timeout.
3555          */
3556         if (timeleft <= 0) {
3557                 xhci_warn(xhci, "%s while waiting for address device command\n",
3558                                 timeleft == 0 ? "Timeout" : "Signal");
3559                 /* FIXME cancel the address device command */
3560                 return -ETIME;
3561         }
3562
3563         switch (virt_dev->cmd_status) {
3564         case COMP_CTX_STATE:
3565         case COMP_EBADSLT:
3566                 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3567                                 udev->slot_id);
3568                 ret = -EINVAL;
3569                 break;
3570         case COMP_TX_ERR:
3571                 dev_warn(&udev->dev, "Device not responding to set address.\n");
3572                 ret = -EPROTO;
3573                 break;
3574         case COMP_DEV_ERR:
3575                 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3576                                 "device command.\n");
3577                 ret = -ENODEV;
3578                 break;
3579         case COMP_SUCCESS:
3580                 xhci_dbg(xhci, "Successful Address Device command\n");
3581                 break;
3582         default:
3583                 xhci_err(xhci, "ERROR: unexpected command completion "
3584                                 "code 0x%x.\n", virt_dev->cmd_status);
3585                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3586                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3587                 ret = -EINVAL;
3588                 break;
3589         }
3590         if (ret) {
3591                 return ret;
3592         }
3593         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3594         xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3595         xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3596                  udev->slot_id,
3597                  &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3598                  (unsigned long long)
3599                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3600         xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3601                         (unsigned long long)virt_dev->out_ctx->dma);
3602         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3603         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3604         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3605         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3606         /*
3607          * USB core uses address 1 for the roothubs, so we add one to the
3608          * address given back to us by the HC.
3609          */
3610         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3611         /* Use kernel assigned address for devices; store xHC assigned
3612          * address locally. */
3613         virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3614                 + 1;
3615         /* Zero the input context control for later use */
3616         ctrl_ctx->add_flags = 0;
3617         ctrl_ctx->drop_flags = 0;
3618
3619         xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3620
3621         return 0;
3622 }
3623
3624 #ifdef CONFIG_USB_SUSPEND
3625
3626 /* BESL to HIRD Encoding array for USB2 LPM */
3627 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3628         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3629
3630 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3631 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3632                                         struct usb_device *udev)
3633 {
3634         int u2del, besl, besl_host;
3635         int besl_device = 0;
3636         u32 field;
3637
3638         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3639         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3640
3641         if (field & USB_BESL_SUPPORT) {
3642                 for (besl_host = 0; besl_host < 16; besl_host++) {
3643                         if (xhci_besl_encoding[besl_host] >= u2del)
3644                                 break;
3645                 }
3646                 /* Use baseline BESL value as default */
3647                 if (field & USB_BESL_BASELINE_VALID)
3648                         besl_device = USB_GET_BESL_BASELINE(field);
3649                 else if (field & USB_BESL_DEEP_VALID)
3650                         besl_device = USB_GET_BESL_DEEP(field);
3651         } else {
3652                 if (u2del <= 50)
3653                         besl_host = 0;
3654                 else
3655                         besl_host = (u2del - 51) / 75 + 1;
3656         }
3657
3658         besl = besl_host + besl_device;
3659         if (besl > 15)
3660                 besl = 15;
3661
3662         return besl;
3663 }
3664
3665 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3666                                         struct usb_device *udev)
3667 {
3668         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3669         struct dev_info *dev_info;
3670         __le32 __iomem  **port_array;
3671         __le32 __iomem  *addr, *pm_addr;
3672         u32             temp, dev_id;
3673         unsigned int    port_num;
3674         unsigned long   flags;
3675         int             hird;
3676         int             ret;
3677
3678         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3679                         !udev->lpm_capable)
3680                 return -EINVAL;
3681
3682         /* we only support lpm for non-hub device connected to root hub yet */
3683         if (!udev->parent || udev->parent->parent ||
3684                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3685                 return -EINVAL;
3686
3687         spin_lock_irqsave(&xhci->lock, flags);
3688
3689         /* Look for devices in lpm_failed_devs list */
3690         dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3691                         le16_to_cpu(udev->descriptor.idProduct);
3692         list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3693                 if (dev_info->dev_id == dev_id) {
3694                         ret = -EINVAL;
3695                         goto finish;
3696                 }
3697         }
3698
3699         port_array = xhci->usb2_ports;
3700         port_num = udev->portnum - 1;
3701
3702         if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3703                 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3704                 ret = -EINVAL;
3705                 goto finish;
3706         }
3707
3708         /*
3709          * Test USB 2.0 software LPM.
3710          * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3711          * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3712          * in the June 2011 errata release.
3713          */
3714         xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3715         /*
3716          * Set L1 Device Slot and HIRD/BESL.
3717          * Check device's USB 2.0 extension descriptor to determine whether
3718          * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3719          */
3720         pm_addr = port_array[port_num] + 1;
3721         hird = xhci_calculate_hird_besl(xhci, udev);
3722         temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3723         xhci_writel(xhci, temp, pm_addr);
3724
3725         /* Set port link state to U2(L1) */
3726         addr = port_array[port_num];
3727         xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3728
3729         /* wait for ACK */
3730         spin_unlock_irqrestore(&xhci->lock, flags);
3731         msleep(10);
3732         spin_lock_irqsave(&xhci->lock, flags);
3733
3734         /* Check L1 Status */
3735         ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3736         if (ret != -ETIMEDOUT) {
3737                 /* enter L1 successfully */
3738                 temp = xhci_readl(xhci, addr);
3739                 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3740                                 port_num, temp);
3741                 ret = 0;
3742         } else {
3743                 temp = xhci_readl(xhci, pm_addr);
3744                 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3745                                 port_num, temp & PORT_L1S_MASK);
3746                 ret = -EINVAL;
3747         }
3748
3749         /* Resume the port */
3750         xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3751
3752         spin_unlock_irqrestore(&xhci->lock, flags);
3753         msleep(10);
3754         spin_lock_irqsave(&xhci->lock, flags);
3755
3756         /* Clear PLC */
3757         xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3758
3759         /* Check PORTSC to make sure the device is in the right state */
3760         if (!ret) {
3761                 temp = xhci_readl(xhci, addr);
3762                 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3763                 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3764                                 (temp & PORT_PLS_MASK) != XDEV_U0) {
3765                         xhci_dbg(xhci, "port L1 resume fail\n");
3766                         ret = -EINVAL;
3767                 }
3768         }
3769
3770         if (ret) {
3771                 /* Insert dev to lpm_failed_devs list */
3772                 xhci_warn(xhci, "device LPM test failed, may disconnect and "
3773                                 "re-enumerate\n");
3774                 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3775                 if (!dev_info) {
3776                         ret = -ENOMEM;
3777                         goto finish;
3778                 }
3779                 dev_info->dev_id = dev_id;
3780                 INIT_LIST_HEAD(&dev_info->list);
3781                 list_add(&dev_info->list, &xhci->lpm_failed_devs);
3782         } else {
3783                 xhci_ring_device(xhci, udev->slot_id);
3784         }
3785
3786 finish:
3787         spin_unlock_irqrestore(&xhci->lock, flags);
3788         return ret;
3789 }
3790
3791 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3792                         struct usb_device *udev, int enable)
3793 {
3794         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3795         __le32 __iomem  **port_array;
3796         __le32 __iomem  *pm_addr;
3797         u32             temp;
3798         unsigned int    port_num;
3799         unsigned long   flags;
3800         int             hird;
3801
3802         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3803                         !udev->lpm_capable)
3804                 return -EPERM;
3805
3806         if (!udev->parent || udev->parent->parent ||
3807                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3808                 return -EPERM;
3809
3810         if (udev->usb2_hw_lpm_capable != 1)
3811                 return -EPERM;
3812
3813         spin_lock_irqsave(&xhci->lock, flags);
3814
3815         port_array = xhci->usb2_ports;
3816         port_num = udev->portnum - 1;
3817         pm_addr = port_array[port_num] + 1;
3818         temp = xhci_readl(xhci, pm_addr);
3819
3820         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3821                         enable ? "enable" : "disable", port_num);
3822
3823         hird = xhci_calculate_hird_besl(xhci, udev);
3824
3825         if (enable) {
3826                 temp &= ~PORT_HIRD_MASK;
3827                 temp |= PORT_HIRD(hird) | PORT_RWE;
3828                 xhci_writel(xhci, temp, pm_addr);
3829                 temp = xhci_readl(xhci, pm_addr);
3830                 temp |= PORT_HLE;
3831                 xhci_writel(xhci, temp, pm_addr);
3832         } else {
3833                 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3834                 xhci_writel(xhci, temp, pm_addr);
3835         }
3836
3837         spin_unlock_irqrestore(&xhci->lock, flags);
3838         return 0;
3839 }
3840
3841 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3842 {
3843         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3844         int             ret;
3845
3846         ret = xhci_usb2_software_lpm_test(hcd, udev);
3847         if (!ret) {
3848                 xhci_dbg(xhci, "software LPM test succeed\n");
3849                 if (xhci->hw_lpm_support == 1) {
3850                         udev->usb2_hw_lpm_capable = 1;
3851                         ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3852                         if (!ret)
3853                                 udev->usb2_hw_lpm_enabled = 1;
3854                 }
3855         }
3856
3857         return 0;
3858 }
3859
3860 #else
3861
3862 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3863                                 struct usb_device *udev, int enable)
3864 {
3865         return 0;
3866 }
3867
3868 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3869 {
3870         return 0;
3871 }
3872
3873 #endif /* CONFIG_USB_SUSPEND */
3874
3875 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
3876  * internal data structures for the device.
3877  */
3878 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
3879                         struct usb_tt *tt, gfp_t mem_flags)
3880 {
3881         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3882         struct xhci_virt_device *vdev;
3883         struct xhci_command *config_cmd;
3884         struct xhci_input_control_ctx *ctrl_ctx;
3885         struct xhci_slot_ctx *slot_ctx;
3886         unsigned long flags;
3887         unsigned think_time;
3888         int ret;
3889
3890         /* Ignore root hubs */
3891         if (!hdev->parent)
3892                 return 0;
3893
3894         vdev = xhci->devs[hdev->slot_id];
3895         if (!vdev) {
3896                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
3897                 return -EINVAL;
3898         }
3899         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3900         if (!config_cmd) {
3901                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3902                 return -ENOMEM;
3903         }
3904
3905         spin_lock_irqsave(&xhci->lock, flags);
3906         if (hdev->speed == USB_SPEED_HIGH &&
3907                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
3908                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
3909                 xhci_free_command(xhci, config_cmd);
3910                 spin_unlock_irqrestore(&xhci->lock, flags);
3911                 return -ENOMEM;
3912         }
3913
3914         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
3915         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3916         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3917         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
3918         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
3919         if (tt->multi)
3920                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
3921         if (xhci->hci_version > 0x95) {
3922                 xhci_dbg(xhci, "xHCI version %x needs hub "
3923                                 "TT think time and number of ports\n",
3924                                 (unsigned int) xhci->hci_version);
3925                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
3926                 /* Set TT think time - convert from ns to FS bit times.
3927                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
3928                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
3929                  *
3930                  * xHCI 1.0: this field shall be 0 if the device is not a
3931                  * High-spped hub.
3932                  */
3933                 think_time = tt->think_time;
3934                 if (think_time != 0)
3935                         think_time = (think_time / 666) - 1;
3936                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
3937                         slot_ctx->tt_info |=
3938                                 cpu_to_le32(TT_THINK_TIME(think_time));
3939         } else {
3940                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
3941                                 "TT think time or number of ports\n",
3942                                 (unsigned int) xhci->hci_version);
3943         }
3944         slot_ctx->dev_state = 0;
3945         spin_unlock_irqrestore(&xhci->lock, flags);
3946
3947         xhci_dbg(xhci, "Set up %s for hub device.\n",
3948                         (xhci->hci_version > 0x95) ?
3949                         "configure endpoint" : "evaluate context");
3950         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
3951         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
3952
3953         /* Issue and wait for the configure endpoint or
3954          * evaluate context command.
3955          */
3956         if (xhci->hci_version > 0x95)
3957                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3958                                 false, false);
3959         else
3960                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3961                                 true, false);
3962
3963         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
3964         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
3965
3966         xhci_free_command(xhci, config_cmd);
3967         return ret;
3968 }
3969
3970 int xhci_get_frame(struct usb_hcd *hcd)
3971 {
3972         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3973         /* EHCI mods by the periodic size.  Why? */
3974         return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
3975 }
3976
3977 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
3978 {
3979         struct xhci_hcd         *xhci;
3980         struct device           *dev = hcd->self.controller;
3981         int                     retval;
3982         u32                     temp;
3983
3984         /* Accept arbitrarily long scatter-gather lists */
3985         hcd->self.sg_tablesize = ~0;
3986
3987         if (usb_hcd_is_primary_hcd(hcd)) {
3988                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
3989                 if (!xhci)
3990                         return -ENOMEM;
3991                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
3992                 xhci->main_hcd = hcd;
3993                 /* Mark the first roothub as being USB 2.0.
3994                  * The xHCI driver will register the USB 3.0 roothub.
3995                  */
3996                 hcd->speed = HCD_USB2;
3997                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
3998                 /*
3999                  * USB 2.0 roothub under xHCI has an integrated TT,
4000                  * (rate matching hub) as opposed to having an OHCI/UHCI
4001                  * companion controller.
4002                  */
4003                 hcd->has_tt = 1;
4004         } else {
4005                 /* xHCI private pointer was set in xhci_pci_probe for the second
4006                  * registered roothub.
4007                  */
4008                 xhci = hcd_to_xhci(hcd);
4009                 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4010                 if (HCC_64BIT_ADDR(temp)) {
4011                         xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4012                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4013                 } else {
4014                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4015                 }
4016                 return 0;
4017         }
4018
4019         xhci->cap_regs = hcd->regs;
4020         xhci->op_regs = hcd->regs +
4021                 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4022         xhci->run_regs = hcd->regs +
4023                 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4024         /* Cache read-only capability registers */
4025         xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4026         xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4027         xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4028         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4029         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4030         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4031         xhci_print_registers(xhci);
4032
4033         get_quirks(dev, xhci);
4034
4035         /* Make sure the HC is halted. */
4036         retval = xhci_halt(xhci);
4037         if (retval)
4038                 goto error;
4039
4040         xhci_dbg(xhci, "Resetting HCD\n");
4041         /* Reset the internal HC memory state and registers. */
4042         retval = xhci_reset(xhci);
4043         if (retval)
4044                 goto error;
4045         xhci_dbg(xhci, "Reset complete\n");
4046
4047         temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4048         if (HCC_64BIT_ADDR(temp)) {
4049                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4050                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4051         } else {
4052                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4053         }
4054
4055         xhci_dbg(xhci, "Calling HCD init\n");
4056         /* Initialize HCD and host controller data structures. */
4057         retval = xhci_init(hcd);
4058         if (retval)
4059                 goto error;
4060         xhci_dbg(xhci, "Called HCD init\n");
4061         return 0;
4062 error:
4063         kfree(xhci);
4064         return retval;
4065 }
4066
4067 MODULE_DESCRIPTION(DRIVER_DESC);
4068 MODULE_AUTHOR(DRIVER_AUTHOR);
4069 MODULE_LICENSE("GPL");
4070
4071 static int __init xhci_hcd_init(void)
4072 {
4073         int retval;
4074
4075         retval = xhci_register_pci();
4076         if (retval < 0) {
4077                 printk(KERN_DEBUG "Problem registering PCI driver.");
4078                 return retval;
4079         }
4080         retval = xhci_register_plat();
4081         if (retval < 0) {
4082                 printk(KERN_DEBUG "Problem registering platform driver.");
4083                 goto unreg_pci;
4084         }
4085         /*
4086          * Check the compiler generated sizes of structures that must be laid
4087          * out in specific ways for hardware access.
4088          */
4089         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4090         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4091         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4092         /* xhci_device_control has eight fields, and also
4093          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4094          */
4095         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4096         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4097         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4098         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4099         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4100         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4101         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4102         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4103         return 0;
4104 unreg_pci:
4105         xhci_unregister_pci();
4106         return retval;
4107 }
4108 module_init(xhci_hcd_init);
4109
4110 static void __exit xhci_hcd_cleanup(void)
4111 {
4112         xhci_unregister_pci();
4113         xhci_unregister_plat();
4114 }
4115 module_exit(xhci_hcd_cleanup);