Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cascardo/linux.git] / fs / btrfs / backref.c
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/vmalloc.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "backref.h"
23 #include "ulist.h"
24 #include "transaction.h"
25 #include "delayed-ref.h"
26 #include "locking.h"
27
28 struct extent_inode_elem {
29         u64 inum;
30         u64 offset;
31         struct extent_inode_elem *next;
32 };
33
34 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
35                                 struct btrfs_file_extent_item *fi,
36                                 u64 extent_item_pos,
37                                 struct extent_inode_elem **eie)
38 {
39         u64 offset = 0;
40         struct extent_inode_elem *e;
41
42         if (!btrfs_file_extent_compression(eb, fi) &&
43             !btrfs_file_extent_encryption(eb, fi) &&
44             !btrfs_file_extent_other_encoding(eb, fi)) {
45                 u64 data_offset;
46                 u64 data_len;
47
48                 data_offset = btrfs_file_extent_offset(eb, fi);
49                 data_len = btrfs_file_extent_num_bytes(eb, fi);
50
51                 if (extent_item_pos < data_offset ||
52                     extent_item_pos >= data_offset + data_len)
53                         return 1;
54                 offset = extent_item_pos - data_offset;
55         }
56
57         e = kmalloc(sizeof(*e), GFP_NOFS);
58         if (!e)
59                 return -ENOMEM;
60
61         e->next = *eie;
62         e->inum = key->objectid;
63         e->offset = key->offset + offset;
64         *eie = e;
65
66         return 0;
67 }
68
69 static void free_inode_elem_list(struct extent_inode_elem *eie)
70 {
71         struct extent_inode_elem *eie_next;
72
73         for (; eie; eie = eie_next) {
74                 eie_next = eie->next;
75                 kfree(eie);
76         }
77 }
78
79 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
80                                 u64 extent_item_pos,
81                                 struct extent_inode_elem **eie)
82 {
83         u64 disk_byte;
84         struct btrfs_key key;
85         struct btrfs_file_extent_item *fi;
86         int slot;
87         int nritems;
88         int extent_type;
89         int ret;
90
91         /*
92          * from the shared data ref, we only have the leaf but we need
93          * the key. thus, we must look into all items and see that we
94          * find one (some) with a reference to our extent item.
95          */
96         nritems = btrfs_header_nritems(eb);
97         for (slot = 0; slot < nritems; ++slot) {
98                 btrfs_item_key_to_cpu(eb, &key, slot);
99                 if (key.type != BTRFS_EXTENT_DATA_KEY)
100                         continue;
101                 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
102                 extent_type = btrfs_file_extent_type(eb, fi);
103                 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
104                         continue;
105                 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
106                 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
107                 if (disk_byte != wanted_disk_byte)
108                         continue;
109
110                 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
111                 if (ret < 0)
112                         return ret;
113         }
114
115         return 0;
116 }
117
118 /*
119  * this structure records all encountered refs on the way up to the root
120  */
121 struct __prelim_ref {
122         struct list_head list;
123         u64 root_id;
124         struct btrfs_key key_for_search;
125         int level;
126         int count;
127         struct extent_inode_elem *inode_list;
128         u64 parent;
129         u64 wanted_disk_byte;
130 };
131
132 static struct kmem_cache *btrfs_prelim_ref_cache;
133
134 int __init btrfs_prelim_ref_init(void)
135 {
136         btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
137                                         sizeof(struct __prelim_ref),
138                                         0,
139                                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
140                                         NULL);
141         if (!btrfs_prelim_ref_cache)
142                 return -ENOMEM;
143         return 0;
144 }
145
146 void btrfs_prelim_ref_exit(void)
147 {
148         if (btrfs_prelim_ref_cache)
149                 kmem_cache_destroy(btrfs_prelim_ref_cache);
150 }
151
152 /*
153  * the rules for all callers of this function are:
154  * - obtaining the parent is the goal
155  * - if you add a key, you must know that it is a correct key
156  * - if you cannot add the parent or a correct key, then we will look into the
157  *   block later to set a correct key
158  *
159  * delayed refs
160  * ============
161  *        backref type | shared | indirect | shared | indirect
162  * information         |   tree |     tree |   data |     data
163  * --------------------+--------+----------+--------+----------
164  *      parent logical |    y   |     -    |    -   |     -
165  *      key to resolve |    -   |     y    |    y   |     y
166  *  tree block logical |    -   |     -    |    -   |     -
167  *  root for resolving |    y   |     y    |    y   |     y
168  *
169  * - column 1:       we've the parent -> done
170  * - column 2, 3, 4: we use the key to find the parent
171  *
172  * on disk refs (inline or keyed)
173  * ==============================
174  *        backref type | shared | indirect | shared | indirect
175  * information         |   tree |     tree |   data |     data
176  * --------------------+--------+----------+--------+----------
177  *      parent logical |    y   |     -    |    y   |     -
178  *      key to resolve |    -   |     -    |    -   |     y
179  *  tree block logical |    y   |     y    |    y   |     y
180  *  root for resolving |    -   |     y    |    y   |     y
181  *
182  * - column 1, 3: we've the parent -> done
183  * - column 2:    we take the first key from the block to find the parent
184  *                (see __add_missing_keys)
185  * - column 4:    we use the key to find the parent
186  *
187  * additional information that's available but not required to find the parent
188  * block might help in merging entries to gain some speed.
189  */
190
191 static int __add_prelim_ref(struct list_head *head, u64 root_id,
192                             struct btrfs_key *key, int level,
193                             u64 parent, u64 wanted_disk_byte, int count,
194                             gfp_t gfp_mask)
195 {
196         struct __prelim_ref *ref;
197
198         if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
199                 return 0;
200
201         ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
202         if (!ref)
203                 return -ENOMEM;
204
205         ref->root_id = root_id;
206         if (key)
207                 ref->key_for_search = *key;
208         else
209                 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
210
211         ref->inode_list = NULL;
212         ref->level = level;
213         ref->count = count;
214         ref->parent = parent;
215         ref->wanted_disk_byte = wanted_disk_byte;
216         list_add_tail(&ref->list, head);
217
218         return 0;
219 }
220
221 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
222                            struct ulist *parents, struct __prelim_ref *ref,
223                            int level, u64 time_seq, const u64 *extent_item_pos,
224                            u64 total_refs)
225 {
226         int ret = 0;
227         int slot;
228         struct extent_buffer *eb;
229         struct btrfs_key key;
230         struct btrfs_key *key_for_search = &ref->key_for_search;
231         struct btrfs_file_extent_item *fi;
232         struct extent_inode_elem *eie = NULL, *old = NULL;
233         u64 disk_byte;
234         u64 wanted_disk_byte = ref->wanted_disk_byte;
235         u64 count = 0;
236
237         if (level != 0) {
238                 eb = path->nodes[level];
239                 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
240                 if (ret < 0)
241                         return ret;
242                 return 0;
243         }
244
245         /*
246          * We normally enter this function with the path already pointing to
247          * the first item to check. But sometimes, we may enter it with
248          * slot==nritems. In that case, go to the next leaf before we continue.
249          */
250         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
251                 ret = btrfs_next_old_leaf(root, path, time_seq);
252
253         while (!ret && count < total_refs) {
254                 eb = path->nodes[0];
255                 slot = path->slots[0];
256
257                 btrfs_item_key_to_cpu(eb, &key, slot);
258
259                 if (key.objectid != key_for_search->objectid ||
260                     key.type != BTRFS_EXTENT_DATA_KEY)
261                         break;
262
263                 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
264                 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
265
266                 if (disk_byte == wanted_disk_byte) {
267                         eie = NULL;
268                         old = NULL;
269                         count++;
270                         if (extent_item_pos) {
271                                 ret = check_extent_in_eb(&key, eb, fi,
272                                                 *extent_item_pos,
273                                                 &eie);
274                                 if (ret < 0)
275                                         break;
276                         }
277                         if (ret > 0)
278                                 goto next;
279                         ret = ulist_add_merge(parents, eb->start,
280                                               (uintptr_t)eie,
281                                               (u64 *)&old, GFP_NOFS);
282                         if (ret < 0)
283                                 break;
284                         if (!ret && extent_item_pos) {
285                                 while (old->next)
286                                         old = old->next;
287                                 old->next = eie;
288                         }
289                         eie = NULL;
290                 }
291 next:
292                 ret = btrfs_next_old_item(root, path, time_seq);
293         }
294
295         if (ret > 0)
296                 ret = 0;
297         else if (ret < 0)
298                 free_inode_elem_list(eie);
299         return ret;
300 }
301
302 /*
303  * resolve an indirect backref in the form (root_id, key, level)
304  * to a logical address
305  */
306 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
307                                   struct btrfs_path *path, u64 time_seq,
308                                   struct __prelim_ref *ref,
309                                   struct ulist *parents,
310                                   const u64 *extent_item_pos, u64 total_refs)
311 {
312         struct btrfs_root *root;
313         struct btrfs_key root_key;
314         struct extent_buffer *eb;
315         int ret = 0;
316         int root_level;
317         int level = ref->level;
318         int index;
319
320         root_key.objectid = ref->root_id;
321         root_key.type = BTRFS_ROOT_ITEM_KEY;
322         root_key.offset = (u64)-1;
323
324         index = srcu_read_lock(&fs_info->subvol_srcu);
325
326         root = btrfs_read_fs_root_no_name(fs_info, &root_key);
327         if (IS_ERR(root)) {
328                 srcu_read_unlock(&fs_info->subvol_srcu, index);
329                 ret = PTR_ERR(root);
330                 goto out;
331         }
332
333         root_level = btrfs_old_root_level(root, time_seq);
334
335         if (root_level + 1 == level) {
336                 srcu_read_unlock(&fs_info->subvol_srcu, index);
337                 goto out;
338         }
339
340         path->lowest_level = level;
341         ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
342
343         /* root node has been locked, we can release @subvol_srcu safely here */
344         srcu_read_unlock(&fs_info->subvol_srcu, index);
345
346         pr_debug("search slot in root %llu (level %d, ref count %d) returned "
347                  "%d for key (%llu %u %llu)\n",
348                  ref->root_id, level, ref->count, ret,
349                  ref->key_for_search.objectid, ref->key_for_search.type,
350                  ref->key_for_search.offset);
351         if (ret < 0)
352                 goto out;
353
354         eb = path->nodes[level];
355         while (!eb) {
356                 if (WARN_ON(!level)) {
357                         ret = 1;
358                         goto out;
359                 }
360                 level--;
361                 eb = path->nodes[level];
362         }
363
364         ret = add_all_parents(root, path, parents, ref, level, time_seq,
365                               extent_item_pos, total_refs);
366 out:
367         path->lowest_level = 0;
368         btrfs_release_path(path);
369         return ret;
370 }
371
372 /*
373  * resolve all indirect backrefs from the list
374  */
375 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
376                                    struct btrfs_path *path, u64 time_seq,
377                                    struct list_head *head,
378                                    const u64 *extent_item_pos, u64 total_refs)
379 {
380         int err;
381         int ret = 0;
382         struct __prelim_ref *ref;
383         struct __prelim_ref *ref_safe;
384         struct __prelim_ref *new_ref;
385         struct ulist *parents;
386         struct ulist_node *node;
387         struct ulist_iterator uiter;
388
389         parents = ulist_alloc(GFP_NOFS);
390         if (!parents)
391                 return -ENOMEM;
392
393         /*
394          * _safe allows us to insert directly after the current item without
395          * iterating over the newly inserted items.
396          * we're also allowed to re-assign ref during iteration.
397          */
398         list_for_each_entry_safe(ref, ref_safe, head, list) {
399                 if (ref->parent)        /* already direct */
400                         continue;
401                 if (ref->count == 0)
402                         continue;
403                 err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
404                                              parents, extent_item_pos,
405                                              total_refs);
406                 /*
407                  * we can only tolerate ENOENT,otherwise,we should catch error
408                  * and return directly.
409                  */
410                 if (err == -ENOENT) {
411                         continue;
412                 } else if (err) {
413                         ret = err;
414                         goto out;
415                 }
416
417                 /* we put the first parent into the ref at hand */
418                 ULIST_ITER_INIT(&uiter);
419                 node = ulist_next(parents, &uiter);
420                 ref->parent = node ? node->val : 0;
421                 ref->inode_list = node ?
422                         (struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
423
424                 /* additional parents require new refs being added here */
425                 while ((node = ulist_next(parents, &uiter))) {
426                         new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
427                                                    GFP_NOFS);
428                         if (!new_ref) {
429                                 ret = -ENOMEM;
430                                 goto out;
431                         }
432                         memcpy(new_ref, ref, sizeof(*ref));
433                         new_ref->parent = node->val;
434                         new_ref->inode_list = (struct extent_inode_elem *)
435                                                         (uintptr_t)node->aux;
436                         list_add(&new_ref->list, &ref->list);
437                 }
438                 ulist_reinit(parents);
439         }
440 out:
441         ulist_free(parents);
442         return ret;
443 }
444
445 static inline int ref_for_same_block(struct __prelim_ref *ref1,
446                                      struct __prelim_ref *ref2)
447 {
448         if (ref1->level != ref2->level)
449                 return 0;
450         if (ref1->root_id != ref2->root_id)
451                 return 0;
452         if (ref1->key_for_search.type != ref2->key_for_search.type)
453                 return 0;
454         if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
455                 return 0;
456         if (ref1->key_for_search.offset != ref2->key_for_search.offset)
457                 return 0;
458         if (ref1->parent != ref2->parent)
459                 return 0;
460
461         return 1;
462 }
463
464 /*
465  * read tree blocks and add keys where required.
466  */
467 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
468                               struct list_head *head)
469 {
470         struct list_head *pos;
471         struct extent_buffer *eb;
472
473         list_for_each(pos, head) {
474                 struct __prelim_ref *ref;
475                 ref = list_entry(pos, struct __prelim_ref, list);
476
477                 if (ref->parent)
478                         continue;
479                 if (ref->key_for_search.type)
480                         continue;
481                 BUG_ON(!ref->wanted_disk_byte);
482                 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
483                                      fs_info->tree_root->leafsize, 0);
484                 if (!eb || !extent_buffer_uptodate(eb)) {
485                         free_extent_buffer(eb);
486                         return -EIO;
487                 }
488                 btrfs_tree_read_lock(eb);
489                 if (btrfs_header_level(eb) == 0)
490                         btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
491                 else
492                         btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
493                 btrfs_tree_read_unlock(eb);
494                 free_extent_buffer(eb);
495         }
496         return 0;
497 }
498
499 /*
500  * merge two lists of backrefs and adjust counts accordingly
501  *
502  * mode = 1: merge identical keys, if key is set
503  *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
504  *           additionally, we could even add a key range for the blocks we
505  *           looked into to merge even more (-> replace unresolved refs by those
506  *           having a parent).
507  * mode = 2: merge identical parents
508  */
509 static void __merge_refs(struct list_head *head, int mode)
510 {
511         struct list_head *pos1;
512
513         list_for_each(pos1, head) {
514                 struct list_head *n2;
515                 struct list_head *pos2;
516                 struct __prelim_ref *ref1;
517
518                 ref1 = list_entry(pos1, struct __prelim_ref, list);
519
520                 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
521                      pos2 = n2, n2 = pos2->next) {
522                         struct __prelim_ref *ref2;
523                         struct __prelim_ref *xchg;
524                         struct extent_inode_elem *eie;
525
526                         ref2 = list_entry(pos2, struct __prelim_ref, list);
527
528                         if (mode == 1) {
529                                 if (!ref_for_same_block(ref1, ref2))
530                                         continue;
531                                 if (!ref1->parent && ref2->parent) {
532                                         xchg = ref1;
533                                         ref1 = ref2;
534                                         ref2 = xchg;
535                                 }
536                         } else {
537                                 if (ref1->parent != ref2->parent)
538                                         continue;
539                         }
540
541                         eie = ref1->inode_list;
542                         while (eie && eie->next)
543                                 eie = eie->next;
544                         if (eie)
545                                 eie->next = ref2->inode_list;
546                         else
547                                 ref1->inode_list = ref2->inode_list;
548                         ref1->count += ref2->count;
549
550                         list_del(&ref2->list);
551                         kmem_cache_free(btrfs_prelim_ref_cache, ref2);
552                 }
553
554         }
555 }
556
557 /*
558  * add all currently queued delayed refs from this head whose seq nr is
559  * smaller or equal that seq to the list
560  */
561 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
562                               struct list_head *prefs, u64 *total_refs)
563 {
564         struct btrfs_delayed_extent_op *extent_op = head->extent_op;
565         struct rb_node *n = &head->node.rb_node;
566         struct btrfs_key key;
567         struct btrfs_key op_key = {0};
568         int sgn;
569         int ret = 0;
570
571         if (extent_op && extent_op->update_key)
572                 btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
573
574         spin_lock(&head->lock);
575         n = rb_first(&head->ref_root);
576         while (n) {
577                 struct btrfs_delayed_ref_node *node;
578                 node = rb_entry(n, struct btrfs_delayed_ref_node,
579                                 rb_node);
580                 n = rb_next(n);
581                 if (node->seq > seq)
582                         continue;
583
584                 switch (node->action) {
585                 case BTRFS_ADD_DELAYED_EXTENT:
586                 case BTRFS_UPDATE_DELAYED_HEAD:
587                         WARN_ON(1);
588                         continue;
589                 case BTRFS_ADD_DELAYED_REF:
590                         sgn = 1;
591                         break;
592                 case BTRFS_DROP_DELAYED_REF:
593                         sgn = -1;
594                         break;
595                 default:
596                         BUG_ON(1);
597                 }
598                 *total_refs += (node->ref_mod * sgn);
599                 switch (node->type) {
600                 case BTRFS_TREE_BLOCK_REF_KEY: {
601                         struct btrfs_delayed_tree_ref *ref;
602
603                         ref = btrfs_delayed_node_to_tree_ref(node);
604                         ret = __add_prelim_ref(prefs, ref->root, &op_key,
605                                                ref->level + 1, 0, node->bytenr,
606                                                node->ref_mod * sgn, GFP_ATOMIC);
607                         break;
608                 }
609                 case BTRFS_SHARED_BLOCK_REF_KEY: {
610                         struct btrfs_delayed_tree_ref *ref;
611
612                         ref = btrfs_delayed_node_to_tree_ref(node);
613                         ret = __add_prelim_ref(prefs, ref->root, NULL,
614                                                ref->level + 1, ref->parent,
615                                                node->bytenr,
616                                                node->ref_mod * sgn, GFP_ATOMIC);
617                         break;
618                 }
619                 case BTRFS_EXTENT_DATA_REF_KEY: {
620                         struct btrfs_delayed_data_ref *ref;
621                         ref = btrfs_delayed_node_to_data_ref(node);
622
623                         key.objectid = ref->objectid;
624                         key.type = BTRFS_EXTENT_DATA_KEY;
625                         key.offset = ref->offset;
626                         ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
627                                                node->bytenr,
628                                                node->ref_mod * sgn, GFP_ATOMIC);
629                         break;
630                 }
631                 case BTRFS_SHARED_DATA_REF_KEY: {
632                         struct btrfs_delayed_data_ref *ref;
633
634                         ref = btrfs_delayed_node_to_data_ref(node);
635
636                         key.objectid = ref->objectid;
637                         key.type = BTRFS_EXTENT_DATA_KEY;
638                         key.offset = ref->offset;
639                         ret = __add_prelim_ref(prefs, ref->root, &key, 0,
640                                                ref->parent, node->bytenr,
641                                                node->ref_mod * sgn, GFP_ATOMIC);
642                         break;
643                 }
644                 default:
645                         WARN_ON(1);
646                 }
647                 if (ret)
648                         break;
649         }
650         spin_unlock(&head->lock);
651         return ret;
652 }
653
654 /*
655  * add all inline backrefs for bytenr to the list
656  */
657 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
658                              struct btrfs_path *path, u64 bytenr,
659                              int *info_level, struct list_head *prefs,
660                              u64 *total_refs)
661 {
662         int ret = 0;
663         int slot;
664         struct extent_buffer *leaf;
665         struct btrfs_key key;
666         struct btrfs_key found_key;
667         unsigned long ptr;
668         unsigned long end;
669         struct btrfs_extent_item *ei;
670         u64 flags;
671         u64 item_size;
672
673         /*
674          * enumerate all inline refs
675          */
676         leaf = path->nodes[0];
677         slot = path->slots[0];
678
679         item_size = btrfs_item_size_nr(leaf, slot);
680         BUG_ON(item_size < sizeof(*ei));
681
682         ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
683         flags = btrfs_extent_flags(leaf, ei);
684         *total_refs += btrfs_extent_refs(leaf, ei);
685         btrfs_item_key_to_cpu(leaf, &found_key, slot);
686
687         ptr = (unsigned long)(ei + 1);
688         end = (unsigned long)ei + item_size;
689
690         if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
691             flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
692                 struct btrfs_tree_block_info *info;
693
694                 info = (struct btrfs_tree_block_info *)ptr;
695                 *info_level = btrfs_tree_block_level(leaf, info);
696                 ptr += sizeof(struct btrfs_tree_block_info);
697                 BUG_ON(ptr > end);
698         } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
699                 *info_level = found_key.offset;
700         } else {
701                 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
702         }
703
704         while (ptr < end) {
705                 struct btrfs_extent_inline_ref *iref;
706                 u64 offset;
707                 int type;
708
709                 iref = (struct btrfs_extent_inline_ref *)ptr;
710                 type = btrfs_extent_inline_ref_type(leaf, iref);
711                 offset = btrfs_extent_inline_ref_offset(leaf, iref);
712
713                 switch (type) {
714                 case BTRFS_SHARED_BLOCK_REF_KEY:
715                         ret = __add_prelim_ref(prefs, 0, NULL,
716                                                 *info_level + 1, offset,
717                                                 bytenr, 1, GFP_NOFS);
718                         break;
719                 case BTRFS_SHARED_DATA_REF_KEY: {
720                         struct btrfs_shared_data_ref *sdref;
721                         int count;
722
723                         sdref = (struct btrfs_shared_data_ref *)(iref + 1);
724                         count = btrfs_shared_data_ref_count(leaf, sdref);
725                         ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
726                                                bytenr, count, GFP_NOFS);
727                         break;
728                 }
729                 case BTRFS_TREE_BLOCK_REF_KEY:
730                         ret = __add_prelim_ref(prefs, offset, NULL,
731                                                *info_level + 1, 0,
732                                                bytenr, 1, GFP_NOFS);
733                         break;
734                 case BTRFS_EXTENT_DATA_REF_KEY: {
735                         struct btrfs_extent_data_ref *dref;
736                         int count;
737                         u64 root;
738
739                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
740                         count = btrfs_extent_data_ref_count(leaf, dref);
741                         key.objectid = btrfs_extent_data_ref_objectid(leaf,
742                                                                       dref);
743                         key.type = BTRFS_EXTENT_DATA_KEY;
744                         key.offset = btrfs_extent_data_ref_offset(leaf, dref);
745                         root = btrfs_extent_data_ref_root(leaf, dref);
746                         ret = __add_prelim_ref(prefs, root, &key, 0, 0,
747                                                bytenr, count, GFP_NOFS);
748                         break;
749                 }
750                 default:
751                         WARN_ON(1);
752                 }
753                 if (ret)
754                         return ret;
755                 ptr += btrfs_extent_inline_ref_size(type);
756         }
757
758         return 0;
759 }
760
761 /*
762  * add all non-inline backrefs for bytenr to the list
763  */
764 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
765                             struct btrfs_path *path, u64 bytenr,
766                             int info_level, struct list_head *prefs)
767 {
768         struct btrfs_root *extent_root = fs_info->extent_root;
769         int ret;
770         int slot;
771         struct extent_buffer *leaf;
772         struct btrfs_key key;
773
774         while (1) {
775                 ret = btrfs_next_item(extent_root, path);
776                 if (ret < 0)
777                         break;
778                 if (ret) {
779                         ret = 0;
780                         break;
781                 }
782
783                 slot = path->slots[0];
784                 leaf = path->nodes[0];
785                 btrfs_item_key_to_cpu(leaf, &key, slot);
786
787                 if (key.objectid != bytenr)
788                         break;
789                 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
790                         continue;
791                 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
792                         break;
793
794                 switch (key.type) {
795                 case BTRFS_SHARED_BLOCK_REF_KEY:
796                         ret = __add_prelim_ref(prefs, 0, NULL,
797                                                 info_level + 1, key.offset,
798                                                 bytenr, 1, GFP_NOFS);
799                         break;
800                 case BTRFS_SHARED_DATA_REF_KEY: {
801                         struct btrfs_shared_data_ref *sdref;
802                         int count;
803
804                         sdref = btrfs_item_ptr(leaf, slot,
805                                               struct btrfs_shared_data_ref);
806                         count = btrfs_shared_data_ref_count(leaf, sdref);
807                         ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
808                                                 bytenr, count, GFP_NOFS);
809                         break;
810                 }
811                 case BTRFS_TREE_BLOCK_REF_KEY:
812                         ret = __add_prelim_ref(prefs, key.offset, NULL,
813                                                info_level + 1, 0,
814                                                bytenr, 1, GFP_NOFS);
815                         break;
816                 case BTRFS_EXTENT_DATA_REF_KEY: {
817                         struct btrfs_extent_data_ref *dref;
818                         int count;
819                         u64 root;
820
821                         dref = btrfs_item_ptr(leaf, slot,
822                                               struct btrfs_extent_data_ref);
823                         count = btrfs_extent_data_ref_count(leaf, dref);
824                         key.objectid = btrfs_extent_data_ref_objectid(leaf,
825                                                                       dref);
826                         key.type = BTRFS_EXTENT_DATA_KEY;
827                         key.offset = btrfs_extent_data_ref_offset(leaf, dref);
828                         root = btrfs_extent_data_ref_root(leaf, dref);
829                         ret = __add_prelim_ref(prefs, root, &key, 0, 0,
830                                                bytenr, count, GFP_NOFS);
831                         break;
832                 }
833                 default:
834                         WARN_ON(1);
835                 }
836                 if (ret)
837                         return ret;
838
839         }
840
841         return ret;
842 }
843
844 /*
845  * this adds all existing backrefs (inline backrefs, backrefs and delayed
846  * refs) for the given bytenr to the refs list, merges duplicates and resolves
847  * indirect refs to their parent bytenr.
848  * When roots are found, they're added to the roots list
849  *
850  * FIXME some caching might speed things up
851  */
852 static int find_parent_nodes(struct btrfs_trans_handle *trans,
853                              struct btrfs_fs_info *fs_info, u64 bytenr,
854                              u64 time_seq, struct ulist *refs,
855                              struct ulist *roots, const u64 *extent_item_pos)
856 {
857         struct btrfs_key key;
858         struct btrfs_path *path;
859         struct btrfs_delayed_ref_root *delayed_refs = NULL;
860         struct btrfs_delayed_ref_head *head;
861         int info_level = 0;
862         int ret;
863         struct list_head prefs_delayed;
864         struct list_head prefs;
865         struct __prelim_ref *ref;
866         struct extent_inode_elem *eie = NULL;
867         u64 total_refs = 0;
868
869         INIT_LIST_HEAD(&prefs);
870         INIT_LIST_HEAD(&prefs_delayed);
871
872         key.objectid = bytenr;
873         key.offset = (u64)-1;
874         if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
875                 key.type = BTRFS_METADATA_ITEM_KEY;
876         else
877                 key.type = BTRFS_EXTENT_ITEM_KEY;
878
879         path = btrfs_alloc_path();
880         if (!path)
881                 return -ENOMEM;
882         if (!trans) {
883                 path->search_commit_root = 1;
884                 path->skip_locking = 1;
885         }
886
887         /*
888          * grab both a lock on the path and a lock on the delayed ref head.
889          * We need both to get a consistent picture of how the refs look
890          * at a specified point in time
891          */
892 again:
893         head = NULL;
894
895         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
896         if (ret < 0)
897                 goto out;
898         BUG_ON(ret == 0);
899
900         if (trans) {
901                 /*
902                  * look if there are updates for this ref queued and lock the
903                  * head
904                  */
905                 delayed_refs = &trans->transaction->delayed_refs;
906                 spin_lock(&delayed_refs->lock);
907                 head = btrfs_find_delayed_ref_head(trans, bytenr);
908                 if (head) {
909                         if (!mutex_trylock(&head->mutex)) {
910                                 atomic_inc(&head->node.refs);
911                                 spin_unlock(&delayed_refs->lock);
912
913                                 btrfs_release_path(path);
914
915                                 /*
916                                  * Mutex was contended, block until it's
917                                  * released and try again
918                                  */
919                                 mutex_lock(&head->mutex);
920                                 mutex_unlock(&head->mutex);
921                                 btrfs_put_delayed_ref(&head->node);
922                                 goto again;
923                         }
924                         spin_unlock(&delayed_refs->lock);
925                         ret = __add_delayed_refs(head, time_seq,
926                                                  &prefs_delayed, &total_refs);
927                         mutex_unlock(&head->mutex);
928                         if (ret)
929                                 goto out;
930                 } else {
931                         spin_unlock(&delayed_refs->lock);
932                 }
933         }
934
935         if (path->slots[0]) {
936                 struct extent_buffer *leaf;
937                 int slot;
938
939                 path->slots[0]--;
940                 leaf = path->nodes[0];
941                 slot = path->slots[0];
942                 btrfs_item_key_to_cpu(leaf, &key, slot);
943                 if (key.objectid == bytenr &&
944                     (key.type == BTRFS_EXTENT_ITEM_KEY ||
945                      key.type == BTRFS_METADATA_ITEM_KEY)) {
946                         ret = __add_inline_refs(fs_info, path, bytenr,
947                                                 &info_level, &prefs,
948                                                 &total_refs);
949                         if (ret)
950                                 goto out;
951                         ret = __add_keyed_refs(fs_info, path, bytenr,
952                                                info_level, &prefs);
953                         if (ret)
954                                 goto out;
955                 }
956         }
957         btrfs_release_path(path);
958
959         list_splice_init(&prefs_delayed, &prefs);
960
961         ret = __add_missing_keys(fs_info, &prefs);
962         if (ret)
963                 goto out;
964
965         __merge_refs(&prefs, 1);
966
967         ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
968                                       extent_item_pos, total_refs);
969         if (ret)
970                 goto out;
971
972         __merge_refs(&prefs, 2);
973
974         while (!list_empty(&prefs)) {
975                 ref = list_first_entry(&prefs, struct __prelim_ref, list);
976                 WARN_ON(ref->count < 0);
977                 if (roots && ref->count && ref->root_id && ref->parent == 0) {
978                         /* no parent == root of tree */
979                         ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
980                         if (ret < 0)
981                                 goto out;
982                 }
983                 if (ref->count && ref->parent) {
984                         if (extent_item_pos && !ref->inode_list) {
985                                 u32 bsz;
986                                 struct extent_buffer *eb;
987                                 bsz = btrfs_level_size(fs_info->extent_root,
988                                                         info_level);
989                                 eb = read_tree_block(fs_info->extent_root,
990                                                            ref->parent, bsz, 0);
991                                 if (!eb || !extent_buffer_uptodate(eb)) {
992                                         free_extent_buffer(eb);
993                                         ret = -EIO;
994                                         goto out;
995                                 }
996                                 ret = find_extent_in_eb(eb, bytenr,
997                                                         *extent_item_pos, &eie);
998                                 free_extent_buffer(eb);
999                                 if (ret < 0)
1000                                         goto out;
1001                                 ref->inode_list = eie;
1002                         }
1003                         ret = ulist_add_merge(refs, ref->parent,
1004                                               (uintptr_t)ref->inode_list,
1005                                               (u64 *)&eie, GFP_NOFS);
1006                         if (ret < 0)
1007                                 goto out;
1008                         if (!ret && extent_item_pos) {
1009                                 /*
1010                                  * we've recorded that parent, so we must extend
1011                                  * its inode list here
1012                                  */
1013                                 BUG_ON(!eie);
1014                                 while (eie->next)
1015                                         eie = eie->next;
1016                                 eie->next = ref->inode_list;
1017                         }
1018                         eie = NULL;
1019                 }
1020                 list_del(&ref->list);
1021                 kmem_cache_free(btrfs_prelim_ref_cache, ref);
1022         }
1023
1024 out:
1025         btrfs_free_path(path);
1026         while (!list_empty(&prefs)) {
1027                 ref = list_first_entry(&prefs, struct __prelim_ref, list);
1028                 list_del(&ref->list);
1029                 kmem_cache_free(btrfs_prelim_ref_cache, ref);
1030         }
1031         while (!list_empty(&prefs_delayed)) {
1032                 ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
1033                                        list);
1034                 list_del(&ref->list);
1035                 kmem_cache_free(btrfs_prelim_ref_cache, ref);
1036         }
1037         if (ret < 0)
1038                 free_inode_elem_list(eie);
1039         return ret;
1040 }
1041
1042 static void free_leaf_list(struct ulist *blocks)
1043 {
1044         struct ulist_node *node = NULL;
1045         struct extent_inode_elem *eie;
1046         struct ulist_iterator uiter;
1047
1048         ULIST_ITER_INIT(&uiter);
1049         while ((node = ulist_next(blocks, &uiter))) {
1050                 if (!node->aux)
1051                         continue;
1052                 eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1053                 free_inode_elem_list(eie);
1054                 node->aux = 0;
1055         }
1056
1057         ulist_free(blocks);
1058 }
1059
1060 /*
1061  * Finds all leafs with a reference to the specified combination of bytenr and
1062  * offset. key_list_head will point to a list of corresponding keys (caller must
1063  * free each list element). The leafs will be stored in the leafs ulist, which
1064  * must be freed with ulist_free.
1065  *
1066  * returns 0 on success, <0 on error
1067  */
1068 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1069                                 struct btrfs_fs_info *fs_info, u64 bytenr,
1070                                 u64 time_seq, struct ulist **leafs,
1071                                 const u64 *extent_item_pos)
1072 {
1073         int ret;
1074
1075         *leafs = ulist_alloc(GFP_NOFS);
1076         if (!*leafs)
1077                 return -ENOMEM;
1078
1079         ret = find_parent_nodes(trans, fs_info, bytenr,
1080                                 time_seq, *leafs, NULL, extent_item_pos);
1081         if (ret < 0 && ret != -ENOENT) {
1082                 free_leaf_list(*leafs);
1083                 return ret;
1084         }
1085
1086         return 0;
1087 }
1088
1089 /*
1090  * walk all backrefs for a given extent to find all roots that reference this
1091  * extent. Walking a backref means finding all extents that reference this
1092  * extent and in turn walk the backrefs of those, too. Naturally this is a
1093  * recursive process, but here it is implemented in an iterative fashion: We
1094  * find all referencing extents for the extent in question and put them on a
1095  * list. In turn, we find all referencing extents for those, further appending
1096  * to the list. The way we iterate the list allows adding more elements after
1097  * the current while iterating. The process stops when we reach the end of the
1098  * list. Found roots are added to the roots list.
1099  *
1100  * returns 0 on success, < 0 on error.
1101  */
1102 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1103                                 struct btrfs_fs_info *fs_info, u64 bytenr,
1104                                 u64 time_seq, struct ulist **roots)
1105 {
1106         struct ulist *tmp;
1107         struct ulist_node *node = NULL;
1108         struct ulist_iterator uiter;
1109         int ret;
1110
1111         tmp = ulist_alloc(GFP_NOFS);
1112         if (!tmp)
1113                 return -ENOMEM;
1114         *roots = ulist_alloc(GFP_NOFS);
1115         if (!*roots) {
1116                 ulist_free(tmp);
1117                 return -ENOMEM;
1118         }
1119
1120         ULIST_ITER_INIT(&uiter);
1121         while (1) {
1122                 ret = find_parent_nodes(trans, fs_info, bytenr,
1123                                         time_seq, tmp, *roots, NULL);
1124                 if (ret < 0 && ret != -ENOENT) {
1125                         ulist_free(tmp);
1126                         ulist_free(*roots);
1127                         return ret;
1128                 }
1129                 node = ulist_next(tmp, &uiter);
1130                 if (!node)
1131                         break;
1132                 bytenr = node->val;
1133                 cond_resched();
1134         }
1135
1136         ulist_free(tmp);
1137         return 0;
1138 }
1139
1140 /*
1141  * this makes the path point to (inum INODE_ITEM ioff)
1142  */
1143 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1144                         struct btrfs_path *path)
1145 {
1146         struct btrfs_key key;
1147         return btrfs_find_item(fs_root, path, inum, ioff,
1148                         BTRFS_INODE_ITEM_KEY, &key);
1149 }
1150
1151 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1152                                 struct btrfs_path *path,
1153                                 struct btrfs_key *found_key)
1154 {
1155         return btrfs_find_item(fs_root, path, inum, ioff,
1156                         BTRFS_INODE_REF_KEY, found_key);
1157 }
1158
1159 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1160                           u64 start_off, struct btrfs_path *path,
1161                           struct btrfs_inode_extref **ret_extref,
1162                           u64 *found_off)
1163 {
1164         int ret, slot;
1165         struct btrfs_key key;
1166         struct btrfs_key found_key;
1167         struct btrfs_inode_extref *extref;
1168         struct extent_buffer *leaf;
1169         unsigned long ptr;
1170
1171         key.objectid = inode_objectid;
1172         btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1173         key.offset = start_off;
1174
1175         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1176         if (ret < 0)
1177                 return ret;
1178
1179         while (1) {
1180                 leaf = path->nodes[0];
1181                 slot = path->slots[0];
1182                 if (slot >= btrfs_header_nritems(leaf)) {
1183                         /*
1184                          * If the item at offset is not found,
1185                          * btrfs_search_slot will point us to the slot
1186                          * where it should be inserted. In our case
1187                          * that will be the slot directly before the
1188                          * next INODE_REF_KEY_V2 item. In the case
1189                          * that we're pointing to the last slot in a
1190                          * leaf, we must move one leaf over.
1191                          */
1192                         ret = btrfs_next_leaf(root, path);
1193                         if (ret) {
1194                                 if (ret >= 1)
1195                                         ret = -ENOENT;
1196                                 break;
1197                         }
1198                         continue;
1199                 }
1200
1201                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1202
1203                 /*
1204                  * Check that we're still looking at an extended ref key for
1205                  * this particular objectid. If we have different
1206                  * objectid or type then there are no more to be found
1207                  * in the tree and we can exit.
1208                  */
1209                 ret = -ENOENT;
1210                 if (found_key.objectid != inode_objectid)
1211                         break;
1212                 if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
1213                         break;
1214
1215                 ret = 0;
1216                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1217                 extref = (struct btrfs_inode_extref *)ptr;
1218                 *ret_extref = extref;
1219                 if (found_off)
1220                         *found_off = found_key.offset;
1221                 break;
1222         }
1223
1224         return ret;
1225 }
1226
1227 /*
1228  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1229  * Elements of the path are separated by '/' and the path is guaranteed to be
1230  * 0-terminated. the path is only given within the current file system.
1231  * Therefore, it never starts with a '/'. the caller is responsible to provide
1232  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1233  * the start point of the resulting string is returned. this pointer is within
1234  * dest, normally.
1235  * in case the path buffer would overflow, the pointer is decremented further
1236  * as if output was written to the buffer, though no more output is actually
1237  * generated. that way, the caller can determine how much space would be
1238  * required for the path to fit into the buffer. in that case, the returned
1239  * value will be smaller than dest. callers must check this!
1240  */
1241 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1242                         u32 name_len, unsigned long name_off,
1243                         struct extent_buffer *eb_in, u64 parent,
1244                         char *dest, u32 size)
1245 {
1246         int slot;
1247         u64 next_inum;
1248         int ret;
1249         s64 bytes_left = ((s64)size) - 1;
1250         struct extent_buffer *eb = eb_in;
1251         struct btrfs_key found_key;
1252         int leave_spinning = path->leave_spinning;
1253         struct btrfs_inode_ref *iref;
1254
1255         if (bytes_left >= 0)
1256                 dest[bytes_left] = '\0';
1257
1258         path->leave_spinning = 1;
1259         while (1) {
1260                 bytes_left -= name_len;
1261                 if (bytes_left >= 0)
1262                         read_extent_buffer(eb, dest + bytes_left,
1263                                            name_off, name_len);
1264                 if (eb != eb_in) {
1265                         btrfs_tree_read_unlock_blocking(eb);
1266                         free_extent_buffer(eb);
1267                 }
1268                 ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1269                 if (ret > 0)
1270                         ret = -ENOENT;
1271                 if (ret)
1272                         break;
1273
1274                 next_inum = found_key.offset;
1275
1276                 /* regular exit ahead */
1277                 if (parent == next_inum)
1278                         break;
1279
1280                 slot = path->slots[0];
1281                 eb = path->nodes[0];
1282                 /* make sure we can use eb after releasing the path */
1283                 if (eb != eb_in) {
1284                         atomic_inc(&eb->refs);
1285                         btrfs_tree_read_lock(eb);
1286                         btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1287                 }
1288                 btrfs_release_path(path);
1289                 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1290
1291                 name_len = btrfs_inode_ref_name_len(eb, iref);
1292                 name_off = (unsigned long)(iref + 1);
1293
1294                 parent = next_inum;
1295                 --bytes_left;
1296                 if (bytes_left >= 0)
1297                         dest[bytes_left] = '/';
1298         }
1299
1300         btrfs_release_path(path);
1301         path->leave_spinning = leave_spinning;
1302
1303         if (ret)
1304                 return ERR_PTR(ret);
1305
1306         return dest + bytes_left;
1307 }
1308
1309 /*
1310  * this makes the path point to (logical EXTENT_ITEM *)
1311  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1312  * tree blocks and <0 on error.
1313  */
1314 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1315                         struct btrfs_path *path, struct btrfs_key *found_key,
1316                         u64 *flags_ret)
1317 {
1318         int ret;
1319         u64 flags;
1320         u64 size = 0;
1321         u32 item_size;
1322         struct extent_buffer *eb;
1323         struct btrfs_extent_item *ei;
1324         struct btrfs_key key;
1325
1326         if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1327                 key.type = BTRFS_METADATA_ITEM_KEY;
1328         else
1329                 key.type = BTRFS_EXTENT_ITEM_KEY;
1330         key.objectid = logical;
1331         key.offset = (u64)-1;
1332
1333         ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1334         if (ret < 0)
1335                 return ret;
1336
1337         ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1338         if (ret) {
1339                 if (ret > 0)
1340                         ret = -ENOENT;
1341                 return ret;
1342         }
1343         btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1344         if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1345                 size = fs_info->extent_root->leafsize;
1346         else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1347                 size = found_key->offset;
1348
1349         if (found_key->objectid > logical ||
1350             found_key->objectid + size <= logical) {
1351                 pr_debug("logical %llu is not within any extent\n", logical);
1352                 return -ENOENT;
1353         }
1354
1355         eb = path->nodes[0];
1356         item_size = btrfs_item_size_nr(eb, path->slots[0]);
1357         BUG_ON(item_size < sizeof(*ei));
1358
1359         ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1360         flags = btrfs_extent_flags(eb, ei);
1361
1362         pr_debug("logical %llu is at position %llu within the extent (%llu "
1363                  "EXTENT_ITEM %llu) flags %#llx size %u\n",
1364                  logical, logical - found_key->objectid, found_key->objectid,
1365                  found_key->offset, flags, item_size);
1366
1367         WARN_ON(!flags_ret);
1368         if (flags_ret) {
1369                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1370                         *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1371                 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1372                         *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1373                 else
1374                         BUG_ON(1);
1375                 return 0;
1376         }
1377
1378         return -EIO;
1379 }
1380
1381 /*
1382  * helper function to iterate extent inline refs. ptr must point to a 0 value
1383  * for the first call and may be modified. it is used to track state.
1384  * if more refs exist, 0 is returned and the next call to
1385  * __get_extent_inline_ref must pass the modified ptr parameter to get the
1386  * next ref. after the last ref was processed, 1 is returned.
1387  * returns <0 on error
1388  */
1389 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1390                                 struct btrfs_extent_item *ei, u32 item_size,
1391                                 struct btrfs_extent_inline_ref **out_eiref,
1392                                 int *out_type)
1393 {
1394         unsigned long end;
1395         u64 flags;
1396         struct btrfs_tree_block_info *info;
1397
1398         if (!*ptr) {
1399                 /* first call */
1400                 flags = btrfs_extent_flags(eb, ei);
1401                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1402                         info = (struct btrfs_tree_block_info *)(ei + 1);
1403                         *out_eiref =
1404                                 (struct btrfs_extent_inline_ref *)(info + 1);
1405                 } else {
1406                         *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1407                 }
1408                 *ptr = (unsigned long)*out_eiref;
1409                 if ((void *)*ptr >= (void *)ei + item_size)
1410                         return -ENOENT;
1411         }
1412
1413         end = (unsigned long)ei + item_size;
1414         *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1415         *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1416
1417         *ptr += btrfs_extent_inline_ref_size(*out_type);
1418         WARN_ON(*ptr > end);
1419         if (*ptr == end)
1420                 return 1; /* last */
1421
1422         return 0;
1423 }
1424
1425 /*
1426  * reads the tree block backref for an extent. tree level and root are returned
1427  * through out_level and out_root. ptr must point to a 0 value for the first
1428  * call and may be modified (see __get_extent_inline_ref comment).
1429  * returns 0 if data was provided, 1 if there was no more data to provide or
1430  * <0 on error.
1431  */
1432 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1433                                 struct btrfs_extent_item *ei, u32 item_size,
1434                                 u64 *out_root, u8 *out_level)
1435 {
1436         int ret;
1437         int type;
1438         struct btrfs_tree_block_info *info;
1439         struct btrfs_extent_inline_ref *eiref;
1440
1441         if (*ptr == (unsigned long)-1)
1442                 return 1;
1443
1444         while (1) {
1445                 ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1446                                                 &eiref, &type);
1447                 if (ret < 0)
1448                         return ret;
1449
1450                 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1451                     type == BTRFS_SHARED_BLOCK_REF_KEY)
1452                         break;
1453
1454                 if (ret == 1)
1455                         return 1;
1456         }
1457
1458         /* we can treat both ref types equally here */
1459         info = (struct btrfs_tree_block_info *)(ei + 1);
1460         *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1461         *out_level = btrfs_tree_block_level(eb, info);
1462
1463         if (ret == 1)
1464                 *ptr = (unsigned long)-1;
1465
1466         return 0;
1467 }
1468
1469 static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1470                                 u64 root, u64 extent_item_objectid,
1471                                 iterate_extent_inodes_t *iterate, void *ctx)
1472 {
1473         struct extent_inode_elem *eie;
1474         int ret = 0;
1475
1476         for (eie = inode_list; eie; eie = eie->next) {
1477                 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1478                          "root %llu\n", extent_item_objectid,
1479                          eie->inum, eie->offset, root);
1480                 ret = iterate(eie->inum, eie->offset, root, ctx);
1481                 if (ret) {
1482                         pr_debug("stopping iteration for %llu due to ret=%d\n",
1483                                  extent_item_objectid, ret);
1484                         break;
1485                 }
1486         }
1487
1488         return ret;
1489 }
1490
1491 /*
1492  * calls iterate() for every inode that references the extent identified by
1493  * the given parameters.
1494  * when the iterator function returns a non-zero value, iteration stops.
1495  */
1496 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1497                                 u64 extent_item_objectid, u64 extent_item_pos,
1498                                 int search_commit_root,
1499                                 iterate_extent_inodes_t *iterate, void *ctx)
1500 {
1501         int ret;
1502         struct btrfs_trans_handle *trans = NULL;
1503         struct ulist *refs = NULL;
1504         struct ulist *roots = NULL;
1505         struct ulist_node *ref_node = NULL;
1506         struct ulist_node *root_node = NULL;
1507         struct seq_list tree_mod_seq_elem = {};
1508         struct ulist_iterator ref_uiter;
1509         struct ulist_iterator root_uiter;
1510
1511         pr_debug("resolving all inodes for extent %llu\n",
1512                         extent_item_objectid);
1513
1514         if (!search_commit_root) {
1515                 trans = btrfs_join_transaction(fs_info->extent_root);
1516                 if (IS_ERR(trans))
1517                         return PTR_ERR(trans);
1518                 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1519         }
1520
1521         ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1522                                    tree_mod_seq_elem.seq, &refs,
1523                                    &extent_item_pos);
1524         if (ret)
1525                 goto out;
1526
1527         ULIST_ITER_INIT(&ref_uiter);
1528         while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1529                 ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1530                                            tree_mod_seq_elem.seq, &roots);
1531                 if (ret)
1532                         break;
1533                 ULIST_ITER_INIT(&root_uiter);
1534                 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1535                         pr_debug("root %llu references leaf %llu, data list "
1536                                  "%#llx\n", root_node->val, ref_node->val,
1537                                  ref_node->aux);
1538                         ret = iterate_leaf_refs((struct extent_inode_elem *)
1539                                                 (uintptr_t)ref_node->aux,
1540                                                 root_node->val,
1541                                                 extent_item_objectid,
1542                                                 iterate, ctx);
1543                 }
1544                 ulist_free(roots);
1545         }
1546
1547         free_leaf_list(refs);
1548 out:
1549         if (!search_commit_root) {
1550                 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1551                 btrfs_end_transaction(trans, fs_info->extent_root);
1552         }
1553
1554         return ret;
1555 }
1556
1557 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1558                                 struct btrfs_path *path,
1559                                 iterate_extent_inodes_t *iterate, void *ctx)
1560 {
1561         int ret;
1562         u64 extent_item_pos;
1563         u64 flags = 0;
1564         struct btrfs_key found_key;
1565         int search_commit_root = path->search_commit_root;
1566
1567         ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1568         btrfs_release_path(path);
1569         if (ret < 0)
1570                 return ret;
1571         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1572                 return -EINVAL;
1573
1574         extent_item_pos = logical - found_key.objectid;
1575         ret = iterate_extent_inodes(fs_info, found_key.objectid,
1576                                         extent_item_pos, search_commit_root,
1577                                         iterate, ctx);
1578
1579         return ret;
1580 }
1581
1582 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1583                               struct extent_buffer *eb, void *ctx);
1584
1585 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1586                               struct btrfs_path *path,
1587                               iterate_irefs_t *iterate, void *ctx)
1588 {
1589         int ret = 0;
1590         int slot;
1591         u32 cur;
1592         u32 len;
1593         u32 name_len;
1594         u64 parent = 0;
1595         int found = 0;
1596         struct extent_buffer *eb;
1597         struct btrfs_item *item;
1598         struct btrfs_inode_ref *iref;
1599         struct btrfs_key found_key;
1600
1601         while (!ret) {
1602                 ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1603                                      &found_key);
1604                 if (ret < 0)
1605                         break;
1606                 if (ret) {
1607                         ret = found ? 0 : -ENOENT;
1608                         break;
1609                 }
1610                 ++found;
1611
1612                 parent = found_key.offset;
1613                 slot = path->slots[0];
1614                 eb = btrfs_clone_extent_buffer(path->nodes[0]);
1615                 if (!eb) {
1616                         ret = -ENOMEM;
1617                         break;
1618                 }
1619                 extent_buffer_get(eb);
1620                 btrfs_tree_read_lock(eb);
1621                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1622                 btrfs_release_path(path);
1623
1624                 item = btrfs_item_nr(slot);
1625                 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1626
1627                 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1628                         name_len = btrfs_inode_ref_name_len(eb, iref);
1629                         /* path must be released before calling iterate()! */
1630                         pr_debug("following ref at offset %u for inode %llu in "
1631                                  "tree %llu\n", cur, found_key.objectid,
1632                                  fs_root->objectid);
1633                         ret = iterate(parent, name_len,
1634                                       (unsigned long)(iref + 1), eb, ctx);
1635                         if (ret)
1636                                 break;
1637                         len = sizeof(*iref) + name_len;
1638                         iref = (struct btrfs_inode_ref *)((char *)iref + len);
1639                 }
1640                 btrfs_tree_read_unlock_blocking(eb);
1641                 free_extent_buffer(eb);
1642         }
1643
1644         btrfs_release_path(path);
1645
1646         return ret;
1647 }
1648
1649 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1650                                  struct btrfs_path *path,
1651                                  iterate_irefs_t *iterate, void *ctx)
1652 {
1653         int ret;
1654         int slot;
1655         u64 offset = 0;
1656         u64 parent;
1657         int found = 0;
1658         struct extent_buffer *eb;
1659         struct btrfs_inode_extref *extref;
1660         struct extent_buffer *leaf;
1661         u32 item_size;
1662         u32 cur_offset;
1663         unsigned long ptr;
1664
1665         while (1) {
1666                 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1667                                             &offset);
1668                 if (ret < 0)
1669                         break;
1670                 if (ret) {
1671                         ret = found ? 0 : -ENOENT;
1672                         break;
1673                 }
1674                 ++found;
1675
1676                 slot = path->slots[0];
1677                 eb = btrfs_clone_extent_buffer(path->nodes[0]);
1678                 if (!eb) {
1679                         ret = -ENOMEM;
1680                         break;
1681                 }
1682                 extent_buffer_get(eb);
1683
1684                 btrfs_tree_read_lock(eb);
1685                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1686                 btrfs_release_path(path);
1687
1688                 leaf = path->nodes[0];
1689                 item_size = btrfs_item_size_nr(leaf, slot);
1690                 ptr = btrfs_item_ptr_offset(leaf, slot);
1691                 cur_offset = 0;
1692
1693                 while (cur_offset < item_size) {
1694                         u32 name_len;
1695
1696                         extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1697                         parent = btrfs_inode_extref_parent(eb, extref);
1698                         name_len = btrfs_inode_extref_name_len(eb, extref);
1699                         ret = iterate(parent, name_len,
1700                                       (unsigned long)&extref->name, eb, ctx);
1701                         if (ret)
1702                                 break;
1703
1704                         cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1705                         cur_offset += sizeof(*extref);
1706                 }
1707                 btrfs_tree_read_unlock_blocking(eb);
1708                 free_extent_buffer(eb);
1709
1710                 offset++;
1711         }
1712
1713         btrfs_release_path(path);
1714
1715         return ret;
1716 }
1717
1718 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1719                          struct btrfs_path *path, iterate_irefs_t *iterate,
1720                          void *ctx)
1721 {
1722         int ret;
1723         int found_refs = 0;
1724
1725         ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1726         if (!ret)
1727                 ++found_refs;
1728         else if (ret != -ENOENT)
1729                 return ret;
1730
1731         ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1732         if (ret == -ENOENT && found_refs)
1733                 return 0;
1734
1735         return ret;
1736 }
1737
1738 /*
1739  * returns 0 if the path could be dumped (probably truncated)
1740  * returns <0 in case of an error
1741  */
1742 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1743                          struct extent_buffer *eb, void *ctx)
1744 {
1745         struct inode_fs_paths *ipath = ctx;
1746         char *fspath;
1747         char *fspath_min;
1748         int i = ipath->fspath->elem_cnt;
1749         const int s_ptr = sizeof(char *);
1750         u32 bytes_left;
1751
1752         bytes_left = ipath->fspath->bytes_left > s_ptr ?
1753                                         ipath->fspath->bytes_left - s_ptr : 0;
1754
1755         fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1756         fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1757                                    name_off, eb, inum, fspath_min, bytes_left);
1758         if (IS_ERR(fspath))
1759                 return PTR_ERR(fspath);
1760
1761         if (fspath > fspath_min) {
1762                 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1763                 ++ipath->fspath->elem_cnt;
1764                 ipath->fspath->bytes_left = fspath - fspath_min;
1765         } else {
1766                 ++ipath->fspath->elem_missed;
1767                 ipath->fspath->bytes_missing += fspath_min - fspath;
1768                 ipath->fspath->bytes_left = 0;
1769         }
1770
1771         return 0;
1772 }
1773
1774 /*
1775  * this dumps all file system paths to the inode into the ipath struct, provided
1776  * is has been created large enough. each path is zero-terminated and accessed
1777  * from ipath->fspath->val[i].
1778  * when it returns, there are ipath->fspath->elem_cnt number of paths available
1779  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1780  * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1781  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1782  * have been needed to return all paths.
1783  */
1784 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1785 {
1786         return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1787                              inode_to_path, ipath);
1788 }
1789
1790 struct btrfs_data_container *init_data_container(u32 total_bytes)
1791 {
1792         struct btrfs_data_container *data;
1793         size_t alloc_bytes;
1794
1795         alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1796         data = vmalloc(alloc_bytes);
1797         if (!data)
1798                 return ERR_PTR(-ENOMEM);
1799
1800         if (total_bytes >= sizeof(*data)) {
1801                 data->bytes_left = total_bytes - sizeof(*data);
1802                 data->bytes_missing = 0;
1803         } else {
1804                 data->bytes_missing = sizeof(*data) - total_bytes;
1805                 data->bytes_left = 0;
1806         }
1807
1808         data->elem_cnt = 0;
1809         data->elem_missed = 0;
1810
1811         return data;
1812 }
1813
1814 /*
1815  * allocates space to return multiple file system paths for an inode.
1816  * total_bytes to allocate are passed, note that space usable for actual path
1817  * information will be total_bytes - sizeof(struct inode_fs_paths).
1818  * the returned pointer must be freed with free_ipath() in the end.
1819  */
1820 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1821                                         struct btrfs_path *path)
1822 {
1823         struct inode_fs_paths *ifp;
1824         struct btrfs_data_container *fspath;
1825
1826         fspath = init_data_container(total_bytes);
1827         if (IS_ERR(fspath))
1828                 return (void *)fspath;
1829
1830         ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1831         if (!ifp) {
1832                 kfree(fspath);
1833                 return ERR_PTR(-ENOMEM);
1834         }
1835
1836         ifp->btrfs_path = path;
1837         ifp->fspath = fspath;
1838         ifp->fs_root = fs_root;
1839
1840         return ifp;
1841 }
1842
1843 void free_ipath(struct inode_fs_paths *ipath)
1844 {
1845         if (!ipath)
1846                 return;
1847         vfree(ipath->fspath);
1848         kfree(ipath);
1849 }