7a4d9c81aa2a38364c43435bb505c190646a7a6a
[cascardo/linux.git] / fs / btrfs / compression.c
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "ordered-data.h"
41 #include "compression.h"
42 #include "extent_io.h"
43 #include "extent_map.h"
44
45 struct compressed_bio {
46         /* number of bios pending for this compressed extent */
47         atomic_t pending_bios;
48
49         /* the pages with the compressed data on them */
50         struct page **compressed_pages;
51
52         /* inode that owns this data */
53         struct inode *inode;
54
55         /* starting offset in the inode for our pages */
56         u64 start;
57
58         /* number of bytes in the inode we're working on */
59         unsigned long len;
60
61         /* number of bytes on disk */
62         unsigned long compressed_len;
63
64         /* the compression algorithm for this bio */
65         int compress_type;
66
67         /* number of compressed pages in the array */
68         unsigned long nr_pages;
69
70         /* IO errors */
71         int errors;
72         int mirror_num;
73
74         /* for reads, this is the bio we are copying the data into */
75         struct bio *orig_bio;
76
77         /*
78          * the start of a variable length array of checksums only
79          * used by reads
80          */
81         u32 sums;
82 };
83
84 static int btrfs_decompress_biovec(int type, struct page **pages_in,
85                                    u64 disk_start, struct bio_vec *bvec,
86                                    int vcnt, size_t srclen);
87
88 static inline int compressed_bio_size(struct btrfs_root *root,
89                                       unsigned long disk_size)
90 {
91         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
92
93         return sizeof(struct compressed_bio) +
94                 (DIV_ROUND_UP(disk_size, root->sectorsize)) * csum_size;
95 }
96
97 static struct bio *compressed_bio_alloc(struct block_device *bdev,
98                                         u64 first_byte, gfp_t gfp_flags)
99 {
100         return btrfs_bio_alloc(bdev, first_byte >> 9, BIO_MAX_PAGES, gfp_flags);
101 }
102
103 static int check_compressed_csum(struct inode *inode,
104                                  struct compressed_bio *cb,
105                                  u64 disk_start)
106 {
107         int ret;
108         struct page *page;
109         unsigned long i;
110         char *kaddr;
111         u32 csum;
112         u32 *cb_sum = &cb->sums;
113
114         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
115                 return 0;
116
117         for (i = 0; i < cb->nr_pages; i++) {
118                 page = cb->compressed_pages[i];
119                 csum = ~(u32)0;
120
121                 kaddr = kmap_atomic(page);
122                 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
123                 btrfs_csum_final(csum, (char *)&csum);
124                 kunmap_atomic(kaddr);
125
126                 if (csum != *cb_sum) {
127                         btrfs_info(BTRFS_I(inode)->root->fs_info,
128                            "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
129                            btrfs_ino(inode), disk_start, csum, *cb_sum,
130                            cb->mirror_num);
131                         ret = -EIO;
132                         goto fail;
133                 }
134                 cb_sum++;
135
136         }
137         ret = 0;
138 fail:
139         return ret;
140 }
141
142 /* when we finish reading compressed pages from the disk, we
143  * decompress them and then run the bio end_io routines on the
144  * decompressed pages (in the inode address space).
145  *
146  * This allows the checksumming and other IO error handling routines
147  * to work normally
148  *
149  * The compressed pages are freed here, and it must be run
150  * in process context
151  */
152 static void end_compressed_bio_read(struct bio *bio)
153 {
154         struct compressed_bio *cb = bio->bi_private;
155         struct inode *inode;
156         struct page *page;
157         unsigned long index;
158         int ret;
159
160         if (bio->bi_error)
161                 cb->errors = 1;
162
163         /* if there are more bios still pending for this compressed
164          * extent, just exit
165          */
166         if (!atomic_dec_and_test(&cb->pending_bios))
167                 goto out;
168
169         inode = cb->inode;
170         ret = check_compressed_csum(inode, cb,
171                                     (u64)bio->bi_iter.bi_sector << 9);
172         if (ret)
173                 goto csum_failed;
174
175         /* ok, we're the last bio for this extent, lets start
176          * the decompression.
177          */
178         ret = btrfs_decompress_biovec(cb->compress_type,
179                                       cb->compressed_pages,
180                                       cb->start,
181                                       cb->orig_bio->bi_io_vec,
182                                       cb->orig_bio->bi_vcnt,
183                                       cb->compressed_len);
184 csum_failed:
185         if (ret)
186                 cb->errors = 1;
187
188         /* release the compressed pages */
189         index = 0;
190         for (index = 0; index < cb->nr_pages; index++) {
191                 page = cb->compressed_pages[index];
192                 page->mapping = NULL;
193                 put_page(page);
194         }
195
196         /* do io completion on the original bio */
197         if (cb->errors) {
198                 bio_io_error(cb->orig_bio);
199         } else {
200                 int i;
201                 struct bio_vec *bvec;
202
203                 /*
204                  * we have verified the checksum already, set page
205                  * checked so the end_io handlers know about it
206                  */
207                 bio_for_each_segment_all(bvec, cb->orig_bio, i)
208                         SetPageChecked(bvec->bv_page);
209
210                 bio_endio(cb->orig_bio);
211         }
212
213         /* finally free the cb struct */
214         kfree(cb->compressed_pages);
215         kfree(cb);
216 out:
217         bio_put(bio);
218 }
219
220 /*
221  * Clear the writeback bits on all of the file
222  * pages for a compressed write
223  */
224 static noinline void end_compressed_writeback(struct inode *inode,
225                                               const struct compressed_bio *cb)
226 {
227         unsigned long index = cb->start >> PAGE_SHIFT;
228         unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
229         struct page *pages[16];
230         unsigned long nr_pages = end_index - index + 1;
231         int i;
232         int ret;
233
234         if (cb->errors)
235                 mapping_set_error(inode->i_mapping, -EIO);
236
237         while (nr_pages > 0) {
238                 ret = find_get_pages_contig(inode->i_mapping, index,
239                                      min_t(unsigned long,
240                                      nr_pages, ARRAY_SIZE(pages)), pages);
241                 if (ret == 0) {
242                         nr_pages -= 1;
243                         index += 1;
244                         continue;
245                 }
246                 for (i = 0; i < ret; i++) {
247                         if (cb->errors)
248                                 SetPageError(pages[i]);
249                         end_page_writeback(pages[i]);
250                         put_page(pages[i]);
251                 }
252                 nr_pages -= ret;
253                 index += ret;
254         }
255         /* the inode may be gone now */
256 }
257
258 /*
259  * do the cleanup once all the compressed pages hit the disk.
260  * This will clear writeback on the file pages and free the compressed
261  * pages.
262  *
263  * This also calls the writeback end hooks for the file pages so that
264  * metadata and checksums can be updated in the file.
265  */
266 static void end_compressed_bio_write(struct bio *bio)
267 {
268         struct extent_io_tree *tree;
269         struct compressed_bio *cb = bio->bi_private;
270         struct inode *inode;
271         struct page *page;
272         unsigned long index;
273
274         if (bio->bi_error)
275                 cb->errors = 1;
276
277         /* if there are more bios still pending for this compressed
278          * extent, just exit
279          */
280         if (!atomic_dec_and_test(&cb->pending_bios))
281                 goto out;
282
283         /* ok, we're the last bio for this extent, step one is to
284          * call back into the FS and do all the end_io operations
285          */
286         inode = cb->inode;
287         tree = &BTRFS_I(inode)->io_tree;
288         cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
289         tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
290                                          cb->start,
291                                          cb->start + cb->len - 1,
292                                          NULL,
293                                          bio->bi_error ? 0 : 1);
294         cb->compressed_pages[0]->mapping = NULL;
295
296         end_compressed_writeback(inode, cb);
297         /* note, our inode could be gone now */
298
299         /*
300          * release the compressed pages, these came from alloc_page and
301          * are not attached to the inode at all
302          */
303         index = 0;
304         for (index = 0; index < cb->nr_pages; index++) {
305                 page = cb->compressed_pages[index];
306                 page->mapping = NULL;
307                 put_page(page);
308         }
309
310         /* finally free the cb struct */
311         kfree(cb->compressed_pages);
312         kfree(cb);
313 out:
314         bio_put(bio);
315 }
316
317 /*
318  * worker function to build and submit bios for previously compressed pages.
319  * The corresponding pages in the inode should be marked for writeback
320  * and the compressed pages should have a reference on them for dropping
321  * when the IO is complete.
322  *
323  * This also checksums the file bytes and gets things ready for
324  * the end io hooks.
325  */
326 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
327                                  unsigned long len, u64 disk_start,
328                                  unsigned long compressed_len,
329                                  struct page **compressed_pages,
330                                  unsigned long nr_pages)
331 {
332         struct bio *bio = NULL;
333         struct btrfs_root *root = BTRFS_I(inode)->root;
334         struct compressed_bio *cb;
335         unsigned long bytes_left;
336         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
337         int pg_index = 0;
338         struct page *page;
339         u64 first_byte = disk_start;
340         struct block_device *bdev;
341         int ret;
342         int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
343
344         WARN_ON(start & ((u64)PAGE_SIZE - 1));
345         cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
346         if (!cb)
347                 return -ENOMEM;
348         atomic_set(&cb->pending_bios, 0);
349         cb->errors = 0;
350         cb->inode = inode;
351         cb->start = start;
352         cb->len = len;
353         cb->mirror_num = 0;
354         cb->compressed_pages = compressed_pages;
355         cb->compressed_len = compressed_len;
356         cb->orig_bio = NULL;
357         cb->nr_pages = nr_pages;
358
359         bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
360
361         bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
362         if (!bio) {
363                 kfree(cb);
364                 return -ENOMEM;
365         }
366         bio->bi_private = cb;
367         bio->bi_end_io = end_compressed_bio_write;
368         atomic_inc(&cb->pending_bios);
369
370         /* create and submit bios for the compressed pages */
371         bytes_left = compressed_len;
372         for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
373                 page = compressed_pages[pg_index];
374                 page->mapping = inode->i_mapping;
375                 if (bio->bi_iter.bi_size)
376                         ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
377                                                            PAGE_SIZE,
378                                                            bio, 0);
379                 else
380                         ret = 0;
381
382                 page->mapping = NULL;
383                 if (ret || bio_add_page(bio, page, PAGE_SIZE, 0) <
384                     PAGE_SIZE) {
385                         bio_get(bio);
386
387                         /*
388                          * inc the count before we submit the bio so
389                          * we know the end IO handler won't happen before
390                          * we inc the count.  Otherwise, the cb might get
391                          * freed before we're done setting it up
392                          */
393                         atomic_inc(&cb->pending_bios);
394                         ret = btrfs_bio_wq_end_io(root->fs_info, bio,
395                                         BTRFS_WQ_ENDIO_DATA);
396                         BUG_ON(ret); /* -ENOMEM */
397
398                         if (!skip_sum) {
399                                 ret = btrfs_csum_one_bio(root, inode, bio,
400                                                          start, 1);
401                                 BUG_ON(ret); /* -ENOMEM */
402                         }
403
404                         ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
405                         if (ret) {
406                                 bio->bi_error = ret;
407                                 bio_endio(bio);
408                         }
409
410                         bio_put(bio);
411
412                         bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
413                         BUG_ON(!bio);
414                         bio->bi_private = cb;
415                         bio->bi_end_io = end_compressed_bio_write;
416                         bio_add_page(bio, page, PAGE_SIZE, 0);
417                 }
418                 if (bytes_left < PAGE_SIZE) {
419                         btrfs_info(BTRFS_I(inode)->root->fs_info,
420                                         "bytes left %lu compress len %lu nr %lu",
421                                bytes_left, cb->compressed_len, cb->nr_pages);
422                 }
423                 bytes_left -= PAGE_SIZE;
424                 first_byte += PAGE_SIZE;
425                 cond_resched();
426         }
427         bio_get(bio);
428
429         ret = btrfs_bio_wq_end_io(root->fs_info, bio, BTRFS_WQ_ENDIO_DATA);
430         BUG_ON(ret); /* -ENOMEM */
431
432         if (!skip_sum) {
433                 ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
434                 BUG_ON(ret); /* -ENOMEM */
435         }
436
437         ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
438         if (ret) {
439                 bio->bi_error = ret;
440                 bio_endio(bio);
441         }
442
443         bio_put(bio);
444         return 0;
445 }
446
447 static noinline int add_ra_bio_pages(struct inode *inode,
448                                      u64 compressed_end,
449                                      struct compressed_bio *cb)
450 {
451         unsigned long end_index;
452         unsigned long pg_index;
453         u64 last_offset;
454         u64 isize = i_size_read(inode);
455         int ret;
456         struct page *page;
457         unsigned long nr_pages = 0;
458         struct extent_map *em;
459         struct address_space *mapping = inode->i_mapping;
460         struct extent_map_tree *em_tree;
461         struct extent_io_tree *tree;
462         u64 end;
463         int misses = 0;
464
465         page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
466         last_offset = (page_offset(page) + PAGE_SIZE);
467         em_tree = &BTRFS_I(inode)->extent_tree;
468         tree = &BTRFS_I(inode)->io_tree;
469
470         if (isize == 0)
471                 return 0;
472
473         end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
474
475         while (last_offset < compressed_end) {
476                 pg_index = last_offset >> PAGE_SHIFT;
477
478                 if (pg_index > end_index)
479                         break;
480
481                 rcu_read_lock();
482                 page = radix_tree_lookup(&mapping->page_tree, pg_index);
483                 rcu_read_unlock();
484                 if (page && !radix_tree_exceptional_entry(page)) {
485                         misses++;
486                         if (misses > 4)
487                                 break;
488                         goto next;
489                 }
490
491                 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
492                                                                  ~__GFP_FS));
493                 if (!page)
494                         break;
495
496                 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
497                         put_page(page);
498                         goto next;
499                 }
500
501                 end = last_offset + PAGE_SIZE - 1;
502                 /*
503                  * at this point, we have a locked page in the page cache
504                  * for these bytes in the file.  But, we have to make
505                  * sure they map to this compressed extent on disk.
506                  */
507                 set_page_extent_mapped(page);
508                 lock_extent(tree, last_offset, end);
509                 read_lock(&em_tree->lock);
510                 em = lookup_extent_mapping(em_tree, last_offset,
511                                            PAGE_SIZE);
512                 read_unlock(&em_tree->lock);
513
514                 if (!em || last_offset < em->start ||
515                     (last_offset + PAGE_SIZE > extent_map_end(em)) ||
516                     (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
517                         free_extent_map(em);
518                         unlock_extent(tree, last_offset, end);
519                         unlock_page(page);
520                         put_page(page);
521                         break;
522                 }
523                 free_extent_map(em);
524
525                 if (page->index == end_index) {
526                         char *userpage;
527                         size_t zero_offset = isize & (PAGE_SIZE - 1);
528
529                         if (zero_offset) {
530                                 int zeros;
531                                 zeros = PAGE_SIZE - zero_offset;
532                                 userpage = kmap_atomic(page);
533                                 memset(userpage + zero_offset, 0, zeros);
534                                 flush_dcache_page(page);
535                                 kunmap_atomic(userpage);
536                         }
537                 }
538
539                 ret = bio_add_page(cb->orig_bio, page,
540                                    PAGE_SIZE, 0);
541
542                 if (ret == PAGE_SIZE) {
543                         nr_pages++;
544                         put_page(page);
545                 } else {
546                         unlock_extent(tree, last_offset, end);
547                         unlock_page(page);
548                         put_page(page);
549                         break;
550                 }
551 next:
552                 last_offset += PAGE_SIZE;
553         }
554         return 0;
555 }
556
557 /*
558  * for a compressed read, the bio we get passed has all the inode pages
559  * in it.  We don't actually do IO on those pages but allocate new ones
560  * to hold the compressed pages on disk.
561  *
562  * bio->bi_iter.bi_sector points to the compressed extent on disk
563  * bio->bi_io_vec points to all of the inode pages
564  * bio->bi_vcnt is a count of pages
565  *
566  * After the compressed pages are read, we copy the bytes into the
567  * bio we were passed and then call the bio end_io calls
568  */
569 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
570                                  int mirror_num, unsigned long bio_flags)
571 {
572         struct extent_io_tree *tree;
573         struct extent_map_tree *em_tree;
574         struct compressed_bio *cb;
575         struct btrfs_root *root = BTRFS_I(inode)->root;
576         unsigned long uncompressed_len = bio->bi_vcnt * PAGE_SIZE;
577         unsigned long compressed_len;
578         unsigned long nr_pages;
579         unsigned long pg_index;
580         struct page *page;
581         struct block_device *bdev;
582         struct bio *comp_bio;
583         u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
584         u64 em_len;
585         u64 em_start;
586         struct extent_map *em;
587         int ret = -ENOMEM;
588         int faili = 0;
589         u32 *sums;
590
591         tree = &BTRFS_I(inode)->io_tree;
592         em_tree = &BTRFS_I(inode)->extent_tree;
593
594         /* we need the actual starting offset of this extent in the file */
595         read_lock(&em_tree->lock);
596         em = lookup_extent_mapping(em_tree,
597                                    page_offset(bio->bi_io_vec->bv_page),
598                                    PAGE_SIZE);
599         read_unlock(&em_tree->lock);
600         if (!em)
601                 return -EIO;
602
603         compressed_len = em->block_len;
604         cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
605         if (!cb)
606                 goto out;
607
608         atomic_set(&cb->pending_bios, 0);
609         cb->errors = 0;
610         cb->inode = inode;
611         cb->mirror_num = mirror_num;
612         sums = &cb->sums;
613
614         cb->start = em->orig_start;
615         em_len = em->len;
616         em_start = em->start;
617
618         free_extent_map(em);
619         em = NULL;
620
621         cb->len = uncompressed_len;
622         cb->compressed_len = compressed_len;
623         cb->compress_type = extent_compress_type(bio_flags);
624         cb->orig_bio = bio;
625
626         nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
627         cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
628                                        GFP_NOFS);
629         if (!cb->compressed_pages)
630                 goto fail1;
631
632         bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
633
634         for (pg_index = 0; pg_index < nr_pages; pg_index++) {
635                 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
636                                                               __GFP_HIGHMEM);
637                 if (!cb->compressed_pages[pg_index]) {
638                         faili = pg_index - 1;
639                         ret = -ENOMEM;
640                         goto fail2;
641                 }
642         }
643         faili = nr_pages - 1;
644         cb->nr_pages = nr_pages;
645
646         add_ra_bio_pages(inode, em_start + em_len, cb);
647
648         /* include any pages we added in add_ra-bio_pages */
649         uncompressed_len = bio->bi_vcnt * PAGE_SIZE;
650         cb->len = uncompressed_len;
651
652         comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
653         if (!comp_bio)
654                 goto fail2;
655         comp_bio->bi_private = cb;
656         comp_bio->bi_end_io = end_compressed_bio_read;
657         atomic_inc(&cb->pending_bios);
658
659         for (pg_index = 0; pg_index < nr_pages; pg_index++) {
660                 page = cb->compressed_pages[pg_index];
661                 page->mapping = inode->i_mapping;
662                 page->index = em_start >> PAGE_SHIFT;
663
664                 if (comp_bio->bi_iter.bi_size)
665                         ret = tree->ops->merge_bio_hook(READ, page, 0,
666                                                         PAGE_SIZE,
667                                                         comp_bio, 0);
668                 else
669                         ret = 0;
670
671                 page->mapping = NULL;
672                 if (ret || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
673                     PAGE_SIZE) {
674                         bio_get(comp_bio);
675
676                         ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
677                                         BTRFS_WQ_ENDIO_DATA);
678                         BUG_ON(ret); /* -ENOMEM */
679
680                         /*
681                          * inc the count before we submit the bio so
682                          * we know the end IO handler won't happen before
683                          * we inc the count.  Otherwise, the cb might get
684                          * freed before we're done setting it up
685                          */
686                         atomic_inc(&cb->pending_bios);
687
688                         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
689                                 ret = btrfs_lookup_bio_sums(root, inode,
690                                                         comp_bio, sums);
691                                 BUG_ON(ret); /* -ENOMEM */
692                         }
693                         sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
694                                              root->sectorsize);
695
696                         ret = btrfs_map_bio(root, READ, comp_bio,
697                                             mirror_num, 0);
698                         if (ret) {
699                                 bio->bi_error = ret;
700                                 bio_endio(comp_bio);
701                         }
702
703                         bio_put(comp_bio);
704
705                         comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
706                                                         GFP_NOFS);
707                         BUG_ON(!comp_bio);
708                         comp_bio->bi_private = cb;
709                         comp_bio->bi_end_io = end_compressed_bio_read;
710
711                         bio_add_page(comp_bio, page, PAGE_SIZE, 0);
712                 }
713                 cur_disk_byte += PAGE_SIZE;
714         }
715         bio_get(comp_bio);
716
717         ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
718                         BTRFS_WQ_ENDIO_DATA);
719         BUG_ON(ret); /* -ENOMEM */
720
721         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
722                 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
723                 BUG_ON(ret); /* -ENOMEM */
724         }
725
726         ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
727         if (ret) {
728                 bio->bi_error = ret;
729                 bio_endio(comp_bio);
730         }
731
732         bio_put(comp_bio);
733         return 0;
734
735 fail2:
736         while (faili >= 0) {
737                 __free_page(cb->compressed_pages[faili]);
738                 faili--;
739         }
740
741         kfree(cb->compressed_pages);
742 fail1:
743         kfree(cb);
744 out:
745         free_extent_map(em);
746         return ret;
747 }
748
749 static struct {
750         struct list_head idle_ws;
751         spinlock_t ws_lock;
752         /* Number of free workspaces */
753         int free_ws;
754         /* Total number of allocated workspaces */
755         atomic_t total_ws;
756         /* Waiters for a free workspace */
757         wait_queue_head_t ws_wait;
758 } btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
759
760 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
761         &btrfs_zlib_compress,
762         &btrfs_lzo_compress,
763 };
764
765 void __init btrfs_init_compress(void)
766 {
767         int i;
768
769         for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
770                 struct list_head *workspace;
771
772                 INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
773                 spin_lock_init(&btrfs_comp_ws[i].ws_lock);
774                 atomic_set(&btrfs_comp_ws[i].total_ws, 0);
775                 init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
776
777                 /*
778                  * Preallocate one workspace for each compression type so
779                  * we can guarantee forward progress in the worst case
780                  */
781                 workspace = btrfs_compress_op[i]->alloc_workspace();
782                 if (IS_ERR(workspace)) {
783                         printk(KERN_WARNING
784         "BTRFS: cannot preallocate compression workspace, will try later");
785                 } else {
786                         atomic_set(&btrfs_comp_ws[i].total_ws, 1);
787                         btrfs_comp_ws[i].free_ws = 1;
788                         list_add(workspace, &btrfs_comp_ws[i].idle_ws);
789                 }
790         }
791 }
792
793 /*
794  * This finds an available workspace or allocates a new one.
795  * If it's not possible to allocate a new one, waits until there's one.
796  * Preallocation makes a forward progress guarantees and we do not return
797  * errors.
798  */
799 static struct list_head *find_workspace(int type)
800 {
801         struct list_head *workspace;
802         int cpus = num_online_cpus();
803         int idx = type - 1;
804
805         struct list_head *idle_ws       = &btrfs_comp_ws[idx].idle_ws;
806         spinlock_t *ws_lock             = &btrfs_comp_ws[idx].ws_lock;
807         atomic_t *total_ws              = &btrfs_comp_ws[idx].total_ws;
808         wait_queue_head_t *ws_wait      = &btrfs_comp_ws[idx].ws_wait;
809         int *free_ws                    = &btrfs_comp_ws[idx].free_ws;
810 again:
811         spin_lock(ws_lock);
812         if (!list_empty(idle_ws)) {
813                 workspace = idle_ws->next;
814                 list_del(workspace);
815                 (*free_ws)--;
816                 spin_unlock(ws_lock);
817                 return workspace;
818
819         }
820         if (atomic_read(total_ws) > cpus) {
821                 DEFINE_WAIT(wait);
822
823                 spin_unlock(ws_lock);
824                 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
825                 if (atomic_read(total_ws) > cpus && !*free_ws)
826                         schedule();
827                 finish_wait(ws_wait, &wait);
828                 goto again;
829         }
830         atomic_inc(total_ws);
831         spin_unlock(ws_lock);
832
833         workspace = btrfs_compress_op[idx]->alloc_workspace();
834         if (IS_ERR(workspace)) {
835                 atomic_dec(total_ws);
836                 wake_up(ws_wait);
837
838                 /*
839                  * Do not return the error but go back to waiting. There's a
840                  * workspace preallocated for each type and the compression
841                  * time is bounded so we get to a workspace eventually. This
842                  * makes our caller's life easier.
843                  *
844                  * To prevent silent and low-probability deadlocks (when the
845                  * initial preallocation fails), check if there are any
846                  * workspaces at all.
847                  */
848                 if (atomic_read(total_ws) == 0) {
849                         static DEFINE_RATELIMIT_STATE(_rs,
850                                         /* once per minute */ 60 * HZ,
851                                         /* no burst */ 1);
852
853                         if (__ratelimit(&_rs)) {
854                                 printk(KERN_WARNING
855                             "no compression workspaces, low memory, retrying");
856                         }
857                 }
858                 goto again;
859         }
860         return workspace;
861 }
862
863 /*
864  * put a workspace struct back on the list or free it if we have enough
865  * idle ones sitting around
866  */
867 static void free_workspace(int type, struct list_head *workspace)
868 {
869         int idx = type - 1;
870         struct list_head *idle_ws       = &btrfs_comp_ws[idx].idle_ws;
871         spinlock_t *ws_lock             = &btrfs_comp_ws[idx].ws_lock;
872         atomic_t *total_ws              = &btrfs_comp_ws[idx].total_ws;
873         wait_queue_head_t *ws_wait      = &btrfs_comp_ws[idx].ws_wait;
874         int *free_ws                    = &btrfs_comp_ws[idx].free_ws;
875
876         spin_lock(ws_lock);
877         if (*free_ws < num_online_cpus()) {
878                 list_add(workspace, idle_ws);
879                 (*free_ws)++;
880                 spin_unlock(ws_lock);
881                 goto wake;
882         }
883         spin_unlock(ws_lock);
884
885         btrfs_compress_op[idx]->free_workspace(workspace);
886         atomic_dec(total_ws);
887 wake:
888         /*
889          * Make sure counter is updated before we wake up waiters.
890          */
891         smp_mb();
892         if (waitqueue_active(ws_wait))
893                 wake_up(ws_wait);
894 }
895
896 /*
897  * cleanup function for module exit
898  */
899 static void free_workspaces(void)
900 {
901         struct list_head *workspace;
902         int i;
903
904         for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
905                 while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
906                         workspace = btrfs_comp_ws[i].idle_ws.next;
907                         list_del(workspace);
908                         btrfs_compress_op[i]->free_workspace(workspace);
909                         atomic_dec(&btrfs_comp_ws[i].total_ws);
910                 }
911         }
912 }
913
914 /*
915  * given an address space and start/len, compress the bytes.
916  *
917  * pages are allocated to hold the compressed result and stored
918  * in 'pages'
919  *
920  * out_pages is used to return the number of pages allocated.  There
921  * may be pages allocated even if we return an error
922  *
923  * total_in is used to return the number of bytes actually read.  It
924  * may be smaller then len if we had to exit early because we
925  * ran out of room in the pages array or because we cross the
926  * max_out threshold.
927  *
928  * total_out is used to return the total number of compressed bytes
929  *
930  * max_out tells us the max number of bytes that we're allowed to
931  * stuff into pages
932  */
933 int btrfs_compress_pages(int type, struct address_space *mapping,
934                          u64 start, unsigned long len,
935                          struct page **pages,
936                          unsigned long nr_dest_pages,
937                          unsigned long *out_pages,
938                          unsigned long *total_in,
939                          unsigned long *total_out,
940                          unsigned long max_out)
941 {
942         struct list_head *workspace;
943         int ret;
944
945         workspace = find_workspace(type);
946
947         ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
948                                                       start, len, pages,
949                                                       nr_dest_pages, out_pages,
950                                                       total_in, total_out,
951                                                       max_out);
952         free_workspace(type, workspace);
953         return ret;
954 }
955
956 /*
957  * pages_in is an array of pages with compressed data.
958  *
959  * disk_start is the starting logical offset of this array in the file
960  *
961  * bvec is a bio_vec of pages from the file that we want to decompress into
962  *
963  * vcnt is the count of pages in the biovec
964  *
965  * srclen is the number of bytes in pages_in
966  *
967  * The basic idea is that we have a bio that was created by readpages.
968  * The pages in the bio are for the uncompressed data, and they may not
969  * be contiguous.  They all correspond to the range of bytes covered by
970  * the compressed extent.
971  */
972 static int btrfs_decompress_biovec(int type, struct page **pages_in,
973                                    u64 disk_start, struct bio_vec *bvec,
974                                    int vcnt, size_t srclen)
975 {
976         struct list_head *workspace;
977         int ret;
978
979         workspace = find_workspace(type);
980
981         ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
982                                                          disk_start,
983                                                          bvec, vcnt, srclen);
984         free_workspace(type, workspace);
985         return ret;
986 }
987
988 /*
989  * a less complex decompression routine.  Our compressed data fits in a
990  * single page, and we want to read a single page out of it.
991  * start_byte tells us the offset into the compressed data we're interested in
992  */
993 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
994                      unsigned long start_byte, size_t srclen, size_t destlen)
995 {
996         struct list_head *workspace;
997         int ret;
998
999         workspace = find_workspace(type);
1000
1001         ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
1002                                                   dest_page, start_byte,
1003                                                   srclen, destlen);
1004
1005         free_workspace(type, workspace);
1006         return ret;
1007 }
1008
1009 void btrfs_exit_compress(void)
1010 {
1011         free_workspaces();
1012 }
1013
1014 /*
1015  * Copy uncompressed data from working buffer to pages.
1016  *
1017  * buf_start is the byte offset we're of the start of our workspace buffer.
1018  *
1019  * total_out is the last byte of the buffer
1020  */
1021 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
1022                               unsigned long total_out, u64 disk_start,
1023                               struct bio_vec *bvec, int vcnt,
1024                               unsigned long *pg_index,
1025                               unsigned long *pg_offset)
1026 {
1027         unsigned long buf_offset;
1028         unsigned long current_buf_start;
1029         unsigned long start_byte;
1030         unsigned long working_bytes = total_out - buf_start;
1031         unsigned long bytes;
1032         char *kaddr;
1033         struct page *page_out = bvec[*pg_index].bv_page;
1034
1035         /*
1036          * start byte is the first byte of the page we're currently
1037          * copying into relative to the start of the compressed data.
1038          */
1039         start_byte = page_offset(page_out) - disk_start;
1040
1041         /* we haven't yet hit data corresponding to this page */
1042         if (total_out <= start_byte)
1043                 return 1;
1044
1045         /*
1046          * the start of the data we care about is offset into
1047          * the middle of our working buffer
1048          */
1049         if (total_out > start_byte && buf_start < start_byte) {
1050                 buf_offset = start_byte - buf_start;
1051                 working_bytes -= buf_offset;
1052         } else {
1053                 buf_offset = 0;
1054         }
1055         current_buf_start = buf_start;
1056
1057         /* copy bytes from the working buffer into the pages */
1058         while (working_bytes > 0) {
1059                 bytes = min(PAGE_SIZE - *pg_offset,
1060                             PAGE_SIZE - buf_offset);
1061                 bytes = min(bytes, working_bytes);
1062                 kaddr = kmap_atomic(page_out);
1063                 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
1064                 kunmap_atomic(kaddr);
1065                 flush_dcache_page(page_out);
1066
1067                 *pg_offset += bytes;
1068                 buf_offset += bytes;
1069                 working_bytes -= bytes;
1070                 current_buf_start += bytes;
1071
1072                 /* check if we need to pick another page */
1073                 if (*pg_offset == PAGE_SIZE) {
1074                         (*pg_index)++;
1075                         if (*pg_index >= vcnt)
1076                                 return 0;
1077
1078                         page_out = bvec[*pg_index].bv_page;
1079                         *pg_offset = 0;
1080                         start_byte = page_offset(page_out) - disk_start;
1081
1082                         /*
1083                          * make sure our new page is covered by this
1084                          * working buffer
1085                          */
1086                         if (total_out <= start_byte)
1087                                 return 1;
1088
1089                         /*
1090                          * the next page in the biovec might not be adjacent
1091                          * to the last page, but it might still be found
1092                          * inside this working buffer. bump our offset pointer
1093                          */
1094                         if (total_out > start_byte &&
1095                             current_buf_start < start_byte) {
1096                                 buf_offset = start_byte - buf_start;
1097                                 working_bytes = total_out - start_byte;
1098                                 current_buf_start = buf_start + buf_offset;
1099                         }
1100                 }
1101         }
1102
1103         return 1;
1104 }
1105
1106 /*
1107  * When uncompressing data, we need to make sure and zero any parts of
1108  * the biovec that were not filled in by the decompression code.  pg_index
1109  * and pg_offset indicate the last page and the last offset of that page
1110  * that have been filled in.  This will zero everything remaining in the
1111  * biovec.
1112  */
1113 void btrfs_clear_biovec_end(struct bio_vec *bvec, int vcnt,
1114                                    unsigned long pg_index,
1115                                    unsigned long pg_offset)
1116 {
1117         while (pg_index < vcnt) {
1118                 struct page *page = bvec[pg_index].bv_page;
1119                 unsigned long off = bvec[pg_index].bv_offset;
1120                 unsigned long len = bvec[pg_index].bv_len;
1121
1122                 if (pg_offset < off)
1123                         pg_offset = off;
1124                 if (pg_offset < off + len) {
1125                         unsigned long bytes = off + len - pg_offset;
1126                         char *kaddr;
1127
1128                         kaddr = kmap_atomic(page);
1129                         memset(kaddr + pg_offset, 0, bytes);
1130                         kunmap_atomic(kaddr);
1131                 }
1132                 pg_index++;
1133                 pg_offset = 0;
1134         }
1135 }