Merge branch 'drm-fixes-4.7' of git://people.freedesktop.org/~agd5f/linux into drm...
[cascardo/linux.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include <linux/vmalloc.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "print-tree.h"
27 #include "locking.h"
28
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30                       *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
32                       *root, struct btrfs_key *ins_key,
33                       struct btrfs_path *path, int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35                           struct btrfs_root *root, struct extent_buffer *dst,
36                           struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38                               struct btrfs_root *root,
39                               struct extent_buffer *dst_buf,
40                               struct extent_buffer *src_buf);
41 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
42                     int level, int slot);
43 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44                                  struct extent_buffer *eb);
45
46 struct btrfs_path *btrfs_alloc_path(void)
47 {
48         struct btrfs_path *path;
49         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
50         return path;
51 }
52
53 /*
54  * set all locked nodes in the path to blocking locks.  This should
55  * be done before scheduling
56  */
57 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
58 {
59         int i;
60         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61                 if (!p->nodes[i] || !p->locks[i])
62                         continue;
63                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
64                 if (p->locks[i] == BTRFS_READ_LOCK)
65                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
66                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
67                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
68         }
69 }
70
71 /*
72  * reset all the locked nodes in the patch to spinning locks.
73  *
74  * held is used to keep lockdep happy, when lockdep is enabled
75  * we set held to a blocking lock before we go around and
76  * retake all the spinlocks in the path.  You can safely use NULL
77  * for held
78  */
79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
80                                         struct extent_buffer *held, int held_rw)
81 {
82         int i;
83
84         if (held) {
85                 btrfs_set_lock_blocking_rw(held, held_rw);
86                 if (held_rw == BTRFS_WRITE_LOCK)
87                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
88                 else if (held_rw == BTRFS_READ_LOCK)
89                         held_rw = BTRFS_READ_LOCK_BLOCKING;
90         }
91         btrfs_set_path_blocking(p);
92
93         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
94                 if (p->nodes[i] && p->locks[i]) {
95                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
96                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
97                                 p->locks[i] = BTRFS_WRITE_LOCK;
98                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
99                                 p->locks[i] = BTRFS_READ_LOCK;
100                 }
101         }
102
103         if (held)
104                 btrfs_clear_lock_blocking_rw(held, held_rw);
105 }
106
107 /* this also releases the path */
108 void btrfs_free_path(struct btrfs_path *p)
109 {
110         if (!p)
111                 return;
112         btrfs_release_path(p);
113         kmem_cache_free(btrfs_path_cachep, p);
114 }
115
116 /*
117  * path release drops references on the extent buffers in the path
118  * and it drops any locks held by this path
119  *
120  * It is safe to call this on paths that no locks or extent buffers held.
121  */
122 noinline void btrfs_release_path(struct btrfs_path *p)
123 {
124         int i;
125
126         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
127                 p->slots[i] = 0;
128                 if (!p->nodes[i])
129                         continue;
130                 if (p->locks[i]) {
131                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
132                         p->locks[i] = 0;
133                 }
134                 free_extent_buffer(p->nodes[i]);
135                 p->nodes[i] = NULL;
136         }
137 }
138
139 /*
140  * safely gets a reference on the root node of a tree.  A lock
141  * is not taken, so a concurrent writer may put a different node
142  * at the root of the tree.  See btrfs_lock_root_node for the
143  * looping required.
144  *
145  * The extent buffer returned by this has a reference taken, so
146  * it won't disappear.  It may stop being the root of the tree
147  * at any time because there are no locks held.
148  */
149 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
150 {
151         struct extent_buffer *eb;
152
153         while (1) {
154                 rcu_read_lock();
155                 eb = rcu_dereference(root->node);
156
157                 /*
158                  * RCU really hurts here, we could free up the root node because
159                  * it was COWed but we may not get the new root node yet so do
160                  * the inc_not_zero dance and if it doesn't work then
161                  * synchronize_rcu and try again.
162                  */
163                 if (atomic_inc_not_zero(&eb->refs)) {
164                         rcu_read_unlock();
165                         break;
166                 }
167                 rcu_read_unlock();
168                 synchronize_rcu();
169         }
170         return eb;
171 }
172
173 /* loop around taking references on and locking the root node of the
174  * tree until you end up with a lock on the root.  A locked buffer
175  * is returned, with a reference held.
176  */
177 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
178 {
179         struct extent_buffer *eb;
180
181         while (1) {
182                 eb = btrfs_root_node(root);
183                 btrfs_tree_lock(eb);
184                 if (eb == root->node)
185                         break;
186                 btrfs_tree_unlock(eb);
187                 free_extent_buffer(eb);
188         }
189         return eb;
190 }
191
192 /* loop around taking references on and locking the root node of the
193  * tree until you end up with a lock on the root.  A locked buffer
194  * is returned, with a reference held.
195  */
196 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
197 {
198         struct extent_buffer *eb;
199
200         while (1) {
201                 eb = btrfs_root_node(root);
202                 btrfs_tree_read_lock(eb);
203                 if (eb == root->node)
204                         break;
205                 btrfs_tree_read_unlock(eb);
206                 free_extent_buffer(eb);
207         }
208         return eb;
209 }
210
211 /* cowonly root (everything not a reference counted cow subvolume), just get
212  * put onto a simple dirty list.  transaction.c walks this to make sure they
213  * get properly updated on disk.
214  */
215 static void add_root_to_dirty_list(struct btrfs_root *root)
216 {
217         if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
218             !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
219                 return;
220
221         spin_lock(&root->fs_info->trans_lock);
222         if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
223                 /* Want the extent tree to be the last on the list */
224                 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
225                         list_move_tail(&root->dirty_list,
226                                        &root->fs_info->dirty_cowonly_roots);
227                 else
228                         list_move(&root->dirty_list,
229                                   &root->fs_info->dirty_cowonly_roots);
230         }
231         spin_unlock(&root->fs_info->trans_lock);
232 }
233
234 /*
235  * used by snapshot creation to make a copy of a root for a tree with
236  * a given objectid.  The buffer with the new root node is returned in
237  * cow_ret, and this func returns zero on success or a negative error code.
238  */
239 int btrfs_copy_root(struct btrfs_trans_handle *trans,
240                       struct btrfs_root *root,
241                       struct extent_buffer *buf,
242                       struct extent_buffer **cow_ret, u64 new_root_objectid)
243 {
244         struct extent_buffer *cow;
245         int ret = 0;
246         int level;
247         struct btrfs_disk_key disk_key;
248
249         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
250                 trans->transid != root->fs_info->running_transaction->transid);
251         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
252                 trans->transid != root->last_trans);
253
254         level = btrfs_header_level(buf);
255         if (level == 0)
256                 btrfs_item_key(buf, &disk_key, 0);
257         else
258                 btrfs_node_key(buf, &disk_key, 0);
259
260         cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
261                         &disk_key, level, buf->start, 0);
262         if (IS_ERR(cow))
263                 return PTR_ERR(cow);
264
265         copy_extent_buffer(cow, buf, 0, 0, cow->len);
266         btrfs_set_header_bytenr(cow, cow->start);
267         btrfs_set_header_generation(cow, trans->transid);
268         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
269         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
270                                      BTRFS_HEADER_FLAG_RELOC);
271         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
272                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
273         else
274                 btrfs_set_header_owner(cow, new_root_objectid);
275
276         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
277                             BTRFS_FSID_SIZE);
278
279         WARN_ON(btrfs_header_generation(buf) > trans->transid);
280         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
281                 ret = btrfs_inc_ref(trans, root, cow, 1);
282         else
283                 ret = btrfs_inc_ref(trans, root, cow, 0);
284
285         if (ret)
286                 return ret;
287
288         btrfs_mark_buffer_dirty(cow);
289         *cow_ret = cow;
290         return 0;
291 }
292
293 enum mod_log_op {
294         MOD_LOG_KEY_REPLACE,
295         MOD_LOG_KEY_ADD,
296         MOD_LOG_KEY_REMOVE,
297         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
298         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
299         MOD_LOG_MOVE_KEYS,
300         MOD_LOG_ROOT_REPLACE,
301 };
302
303 struct tree_mod_move {
304         int dst_slot;
305         int nr_items;
306 };
307
308 struct tree_mod_root {
309         u64 logical;
310         u8 level;
311 };
312
313 struct tree_mod_elem {
314         struct rb_node node;
315         u64 logical;
316         u64 seq;
317         enum mod_log_op op;
318
319         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
320         int slot;
321
322         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
323         u64 generation;
324
325         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
326         struct btrfs_disk_key key;
327         u64 blockptr;
328
329         /* this is used for op == MOD_LOG_MOVE_KEYS */
330         struct tree_mod_move move;
331
332         /* this is used for op == MOD_LOG_ROOT_REPLACE */
333         struct tree_mod_root old_root;
334 };
335
336 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
337 {
338         read_lock(&fs_info->tree_mod_log_lock);
339 }
340
341 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
342 {
343         read_unlock(&fs_info->tree_mod_log_lock);
344 }
345
346 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
347 {
348         write_lock(&fs_info->tree_mod_log_lock);
349 }
350
351 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
352 {
353         write_unlock(&fs_info->tree_mod_log_lock);
354 }
355
356 /*
357  * Pull a new tree mod seq number for our operation.
358  */
359 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
360 {
361         return atomic64_inc_return(&fs_info->tree_mod_seq);
362 }
363
364 /*
365  * This adds a new blocker to the tree mod log's blocker list if the @elem
366  * passed does not already have a sequence number set. So when a caller expects
367  * to record tree modifications, it should ensure to set elem->seq to zero
368  * before calling btrfs_get_tree_mod_seq.
369  * Returns a fresh, unused tree log modification sequence number, even if no new
370  * blocker was added.
371  */
372 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
373                            struct seq_list *elem)
374 {
375         tree_mod_log_write_lock(fs_info);
376         spin_lock(&fs_info->tree_mod_seq_lock);
377         if (!elem->seq) {
378                 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
379                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
380         }
381         spin_unlock(&fs_info->tree_mod_seq_lock);
382         tree_mod_log_write_unlock(fs_info);
383
384         return elem->seq;
385 }
386
387 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
388                             struct seq_list *elem)
389 {
390         struct rb_root *tm_root;
391         struct rb_node *node;
392         struct rb_node *next;
393         struct seq_list *cur_elem;
394         struct tree_mod_elem *tm;
395         u64 min_seq = (u64)-1;
396         u64 seq_putting = elem->seq;
397
398         if (!seq_putting)
399                 return;
400
401         spin_lock(&fs_info->tree_mod_seq_lock);
402         list_del(&elem->list);
403         elem->seq = 0;
404
405         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
406                 if (cur_elem->seq < min_seq) {
407                         if (seq_putting > cur_elem->seq) {
408                                 /*
409                                  * blocker with lower sequence number exists, we
410                                  * cannot remove anything from the log
411                                  */
412                                 spin_unlock(&fs_info->tree_mod_seq_lock);
413                                 return;
414                         }
415                         min_seq = cur_elem->seq;
416                 }
417         }
418         spin_unlock(&fs_info->tree_mod_seq_lock);
419
420         /*
421          * anything that's lower than the lowest existing (read: blocked)
422          * sequence number can be removed from the tree.
423          */
424         tree_mod_log_write_lock(fs_info);
425         tm_root = &fs_info->tree_mod_log;
426         for (node = rb_first(tm_root); node; node = next) {
427                 next = rb_next(node);
428                 tm = container_of(node, struct tree_mod_elem, node);
429                 if (tm->seq > min_seq)
430                         continue;
431                 rb_erase(node, tm_root);
432                 kfree(tm);
433         }
434         tree_mod_log_write_unlock(fs_info);
435 }
436
437 /*
438  * key order of the log:
439  *       node/leaf start address -> sequence
440  *
441  * The 'start address' is the logical address of the *new* root node
442  * for root replace operations, or the logical address of the affected
443  * block for all other operations.
444  *
445  * Note: must be called with write lock (tree_mod_log_write_lock).
446  */
447 static noinline int
448 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
449 {
450         struct rb_root *tm_root;
451         struct rb_node **new;
452         struct rb_node *parent = NULL;
453         struct tree_mod_elem *cur;
454
455         BUG_ON(!tm);
456
457         tm->seq = btrfs_inc_tree_mod_seq(fs_info);
458
459         tm_root = &fs_info->tree_mod_log;
460         new = &tm_root->rb_node;
461         while (*new) {
462                 cur = container_of(*new, struct tree_mod_elem, node);
463                 parent = *new;
464                 if (cur->logical < tm->logical)
465                         new = &((*new)->rb_left);
466                 else if (cur->logical > tm->logical)
467                         new = &((*new)->rb_right);
468                 else if (cur->seq < tm->seq)
469                         new = &((*new)->rb_left);
470                 else if (cur->seq > tm->seq)
471                         new = &((*new)->rb_right);
472                 else
473                         return -EEXIST;
474         }
475
476         rb_link_node(&tm->node, parent, new);
477         rb_insert_color(&tm->node, tm_root);
478         return 0;
479 }
480
481 /*
482  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483  * returns zero with the tree_mod_log_lock acquired. The caller must hold
484  * this until all tree mod log insertions are recorded in the rb tree and then
485  * call tree_mod_log_write_unlock() to release.
486  */
487 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
488                                     struct extent_buffer *eb) {
489         smp_mb();
490         if (list_empty(&(fs_info)->tree_mod_seq_list))
491                 return 1;
492         if (eb && btrfs_header_level(eb) == 0)
493                 return 1;
494
495         tree_mod_log_write_lock(fs_info);
496         if (list_empty(&(fs_info)->tree_mod_seq_list)) {
497                 tree_mod_log_write_unlock(fs_info);
498                 return 1;
499         }
500
501         return 0;
502 }
503
504 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
505 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
506                                     struct extent_buffer *eb)
507 {
508         smp_mb();
509         if (list_empty(&(fs_info)->tree_mod_seq_list))
510                 return 0;
511         if (eb && btrfs_header_level(eb) == 0)
512                 return 0;
513
514         return 1;
515 }
516
517 static struct tree_mod_elem *
518 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
519                     enum mod_log_op op, gfp_t flags)
520 {
521         struct tree_mod_elem *tm;
522
523         tm = kzalloc(sizeof(*tm), flags);
524         if (!tm)
525                 return NULL;
526
527         tm->logical = eb->start;
528         if (op != MOD_LOG_KEY_ADD) {
529                 btrfs_node_key(eb, &tm->key, slot);
530                 tm->blockptr = btrfs_node_blockptr(eb, slot);
531         }
532         tm->op = op;
533         tm->slot = slot;
534         tm->generation = btrfs_node_ptr_generation(eb, slot);
535         RB_CLEAR_NODE(&tm->node);
536
537         return tm;
538 }
539
540 static noinline int
541 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
542                         struct extent_buffer *eb, int slot,
543                         enum mod_log_op op, gfp_t flags)
544 {
545         struct tree_mod_elem *tm;
546         int ret;
547
548         if (!tree_mod_need_log(fs_info, eb))
549                 return 0;
550
551         tm = alloc_tree_mod_elem(eb, slot, op, flags);
552         if (!tm)
553                 return -ENOMEM;
554
555         if (tree_mod_dont_log(fs_info, eb)) {
556                 kfree(tm);
557                 return 0;
558         }
559
560         ret = __tree_mod_log_insert(fs_info, tm);
561         tree_mod_log_write_unlock(fs_info);
562         if (ret)
563                 kfree(tm);
564
565         return ret;
566 }
567
568 static noinline int
569 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
570                          struct extent_buffer *eb, int dst_slot, int src_slot,
571                          int nr_items, gfp_t flags)
572 {
573         struct tree_mod_elem *tm = NULL;
574         struct tree_mod_elem **tm_list = NULL;
575         int ret = 0;
576         int i;
577         int locked = 0;
578
579         if (!tree_mod_need_log(fs_info, eb))
580                 return 0;
581
582         tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
583         if (!tm_list)
584                 return -ENOMEM;
585
586         tm = kzalloc(sizeof(*tm), flags);
587         if (!tm) {
588                 ret = -ENOMEM;
589                 goto free_tms;
590         }
591
592         tm->logical = eb->start;
593         tm->slot = src_slot;
594         tm->move.dst_slot = dst_slot;
595         tm->move.nr_items = nr_items;
596         tm->op = MOD_LOG_MOVE_KEYS;
597
598         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
599                 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
600                     MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
601                 if (!tm_list[i]) {
602                         ret = -ENOMEM;
603                         goto free_tms;
604                 }
605         }
606
607         if (tree_mod_dont_log(fs_info, eb))
608                 goto free_tms;
609         locked = 1;
610
611         /*
612          * When we override something during the move, we log these removals.
613          * This can only happen when we move towards the beginning of the
614          * buffer, i.e. dst_slot < src_slot.
615          */
616         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
617                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
618                 if (ret)
619                         goto free_tms;
620         }
621
622         ret = __tree_mod_log_insert(fs_info, tm);
623         if (ret)
624                 goto free_tms;
625         tree_mod_log_write_unlock(fs_info);
626         kfree(tm_list);
627
628         return 0;
629 free_tms:
630         for (i = 0; i < nr_items; i++) {
631                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
632                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
633                 kfree(tm_list[i]);
634         }
635         if (locked)
636                 tree_mod_log_write_unlock(fs_info);
637         kfree(tm_list);
638         kfree(tm);
639
640         return ret;
641 }
642
643 static inline int
644 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
645                        struct tree_mod_elem **tm_list,
646                        int nritems)
647 {
648         int i, j;
649         int ret;
650
651         for (i = nritems - 1; i >= 0; i--) {
652                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
653                 if (ret) {
654                         for (j = nritems - 1; j > i; j--)
655                                 rb_erase(&tm_list[j]->node,
656                                          &fs_info->tree_mod_log);
657                         return ret;
658                 }
659         }
660
661         return 0;
662 }
663
664 static noinline int
665 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
666                          struct extent_buffer *old_root,
667                          struct extent_buffer *new_root, gfp_t flags,
668                          int log_removal)
669 {
670         struct tree_mod_elem *tm = NULL;
671         struct tree_mod_elem **tm_list = NULL;
672         int nritems = 0;
673         int ret = 0;
674         int i;
675
676         if (!tree_mod_need_log(fs_info, NULL))
677                 return 0;
678
679         if (log_removal && btrfs_header_level(old_root) > 0) {
680                 nritems = btrfs_header_nritems(old_root);
681                 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
682                                   flags);
683                 if (!tm_list) {
684                         ret = -ENOMEM;
685                         goto free_tms;
686                 }
687                 for (i = 0; i < nritems; i++) {
688                         tm_list[i] = alloc_tree_mod_elem(old_root, i,
689                             MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
690                         if (!tm_list[i]) {
691                                 ret = -ENOMEM;
692                                 goto free_tms;
693                         }
694                 }
695         }
696
697         tm = kzalloc(sizeof(*tm), flags);
698         if (!tm) {
699                 ret = -ENOMEM;
700                 goto free_tms;
701         }
702
703         tm->logical = new_root->start;
704         tm->old_root.logical = old_root->start;
705         tm->old_root.level = btrfs_header_level(old_root);
706         tm->generation = btrfs_header_generation(old_root);
707         tm->op = MOD_LOG_ROOT_REPLACE;
708
709         if (tree_mod_dont_log(fs_info, NULL))
710                 goto free_tms;
711
712         if (tm_list)
713                 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
714         if (!ret)
715                 ret = __tree_mod_log_insert(fs_info, tm);
716
717         tree_mod_log_write_unlock(fs_info);
718         if (ret)
719                 goto free_tms;
720         kfree(tm_list);
721
722         return ret;
723
724 free_tms:
725         if (tm_list) {
726                 for (i = 0; i < nritems; i++)
727                         kfree(tm_list[i]);
728                 kfree(tm_list);
729         }
730         kfree(tm);
731
732         return ret;
733 }
734
735 static struct tree_mod_elem *
736 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
737                       int smallest)
738 {
739         struct rb_root *tm_root;
740         struct rb_node *node;
741         struct tree_mod_elem *cur = NULL;
742         struct tree_mod_elem *found = NULL;
743
744         tree_mod_log_read_lock(fs_info);
745         tm_root = &fs_info->tree_mod_log;
746         node = tm_root->rb_node;
747         while (node) {
748                 cur = container_of(node, struct tree_mod_elem, node);
749                 if (cur->logical < start) {
750                         node = node->rb_left;
751                 } else if (cur->logical > start) {
752                         node = node->rb_right;
753                 } else if (cur->seq < min_seq) {
754                         node = node->rb_left;
755                 } else if (!smallest) {
756                         /* we want the node with the highest seq */
757                         if (found)
758                                 BUG_ON(found->seq > cur->seq);
759                         found = cur;
760                         node = node->rb_left;
761                 } else if (cur->seq > min_seq) {
762                         /* we want the node with the smallest seq */
763                         if (found)
764                                 BUG_ON(found->seq < cur->seq);
765                         found = cur;
766                         node = node->rb_right;
767                 } else {
768                         found = cur;
769                         break;
770                 }
771         }
772         tree_mod_log_read_unlock(fs_info);
773
774         return found;
775 }
776
777 /*
778  * this returns the element from the log with the smallest time sequence
779  * value that's in the log (the oldest log item). any element with a time
780  * sequence lower than min_seq will be ignored.
781  */
782 static struct tree_mod_elem *
783 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
784                            u64 min_seq)
785 {
786         return __tree_mod_log_search(fs_info, start, min_seq, 1);
787 }
788
789 /*
790  * this returns the element from the log with the largest time sequence
791  * value that's in the log (the most recent log item). any element with
792  * a time sequence lower than min_seq will be ignored.
793  */
794 static struct tree_mod_elem *
795 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
796 {
797         return __tree_mod_log_search(fs_info, start, min_seq, 0);
798 }
799
800 static noinline int
801 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
802                      struct extent_buffer *src, unsigned long dst_offset,
803                      unsigned long src_offset, int nr_items)
804 {
805         int ret = 0;
806         struct tree_mod_elem **tm_list = NULL;
807         struct tree_mod_elem **tm_list_add, **tm_list_rem;
808         int i;
809         int locked = 0;
810
811         if (!tree_mod_need_log(fs_info, NULL))
812                 return 0;
813
814         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
815                 return 0;
816
817         tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
818                           GFP_NOFS);
819         if (!tm_list)
820                 return -ENOMEM;
821
822         tm_list_add = tm_list;
823         tm_list_rem = tm_list + nr_items;
824         for (i = 0; i < nr_items; i++) {
825                 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
826                     MOD_LOG_KEY_REMOVE, GFP_NOFS);
827                 if (!tm_list_rem[i]) {
828                         ret = -ENOMEM;
829                         goto free_tms;
830                 }
831
832                 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
833                     MOD_LOG_KEY_ADD, GFP_NOFS);
834                 if (!tm_list_add[i]) {
835                         ret = -ENOMEM;
836                         goto free_tms;
837                 }
838         }
839
840         if (tree_mod_dont_log(fs_info, NULL))
841                 goto free_tms;
842         locked = 1;
843
844         for (i = 0; i < nr_items; i++) {
845                 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
846                 if (ret)
847                         goto free_tms;
848                 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
849                 if (ret)
850                         goto free_tms;
851         }
852
853         tree_mod_log_write_unlock(fs_info);
854         kfree(tm_list);
855
856         return 0;
857
858 free_tms:
859         for (i = 0; i < nr_items * 2; i++) {
860                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
861                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
862                 kfree(tm_list[i]);
863         }
864         if (locked)
865                 tree_mod_log_write_unlock(fs_info);
866         kfree(tm_list);
867
868         return ret;
869 }
870
871 static inline void
872 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
873                      int dst_offset, int src_offset, int nr_items)
874 {
875         int ret;
876         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
877                                        nr_items, GFP_NOFS);
878         BUG_ON(ret < 0);
879 }
880
881 static noinline void
882 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
883                           struct extent_buffer *eb, int slot, int atomic)
884 {
885         int ret;
886
887         ret = tree_mod_log_insert_key(fs_info, eb, slot,
888                                         MOD_LOG_KEY_REPLACE,
889                                         atomic ? GFP_ATOMIC : GFP_NOFS);
890         BUG_ON(ret < 0);
891 }
892
893 static noinline int
894 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
895 {
896         struct tree_mod_elem **tm_list = NULL;
897         int nritems = 0;
898         int i;
899         int ret = 0;
900
901         if (btrfs_header_level(eb) == 0)
902                 return 0;
903
904         if (!tree_mod_need_log(fs_info, NULL))
905                 return 0;
906
907         nritems = btrfs_header_nritems(eb);
908         tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
909         if (!tm_list)
910                 return -ENOMEM;
911
912         for (i = 0; i < nritems; i++) {
913                 tm_list[i] = alloc_tree_mod_elem(eb, i,
914                     MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
915                 if (!tm_list[i]) {
916                         ret = -ENOMEM;
917                         goto free_tms;
918                 }
919         }
920
921         if (tree_mod_dont_log(fs_info, eb))
922                 goto free_tms;
923
924         ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
925         tree_mod_log_write_unlock(fs_info);
926         if (ret)
927                 goto free_tms;
928         kfree(tm_list);
929
930         return 0;
931
932 free_tms:
933         for (i = 0; i < nritems; i++)
934                 kfree(tm_list[i]);
935         kfree(tm_list);
936
937         return ret;
938 }
939
940 static noinline void
941 tree_mod_log_set_root_pointer(struct btrfs_root *root,
942                               struct extent_buffer *new_root_node,
943                               int log_removal)
944 {
945         int ret;
946         ret = tree_mod_log_insert_root(root->fs_info, root->node,
947                                        new_root_node, GFP_NOFS, log_removal);
948         BUG_ON(ret < 0);
949 }
950
951 /*
952  * check if the tree block can be shared by multiple trees
953  */
954 int btrfs_block_can_be_shared(struct btrfs_root *root,
955                               struct extent_buffer *buf)
956 {
957         /*
958          * Tree blocks not in reference counted trees and tree roots
959          * are never shared. If a block was allocated after the last
960          * snapshot and the block was not allocated by tree relocation,
961          * we know the block is not shared.
962          */
963         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
964             buf != root->node && buf != root->commit_root &&
965             (btrfs_header_generation(buf) <=
966              btrfs_root_last_snapshot(&root->root_item) ||
967              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
968                 return 1;
969 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
970         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
971             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
972                 return 1;
973 #endif
974         return 0;
975 }
976
977 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
978                                        struct btrfs_root *root,
979                                        struct extent_buffer *buf,
980                                        struct extent_buffer *cow,
981                                        int *last_ref)
982 {
983         u64 refs;
984         u64 owner;
985         u64 flags;
986         u64 new_flags = 0;
987         int ret;
988
989         /*
990          * Backrefs update rules:
991          *
992          * Always use full backrefs for extent pointers in tree block
993          * allocated by tree relocation.
994          *
995          * If a shared tree block is no longer referenced by its owner
996          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
997          * use full backrefs for extent pointers in tree block.
998          *
999          * If a tree block is been relocating
1000          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001          * use full backrefs for extent pointers in tree block.
1002          * The reason for this is some operations (such as drop tree)
1003          * are only allowed for blocks use full backrefs.
1004          */
1005
1006         if (btrfs_block_can_be_shared(root, buf)) {
1007                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
1008                                                btrfs_header_level(buf), 1,
1009                                                &refs, &flags);
1010                 if (ret)
1011                         return ret;
1012                 if (refs == 0) {
1013                         ret = -EROFS;
1014                         btrfs_handle_fs_error(root->fs_info, ret, NULL);
1015                         return ret;
1016                 }
1017         } else {
1018                 refs = 1;
1019                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1020                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1021                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1022                 else
1023                         flags = 0;
1024         }
1025
1026         owner = btrfs_header_owner(buf);
1027         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1028                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1029
1030         if (refs > 1) {
1031                 if ((owner == root->root_key.objectid ||
1032                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1033                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1034                         ret = btrfs_inc_ref(trans, root, buf, 1);
1035                         BUG_ON(ret); /* -ENOMEM */
1036
1037                         if (root->root_key.objectid ==
1038                             BTRFS_TREE_RELOC_OBJECTID) {
1039                                 ret = btrfs_dec_ref(trans, root, buf, 0);
1040                                 BUG_ON(ret); /* -ENOMEM */
1041                                 ret = btrfs_inc_ref(trans, root, cow, 1);
1042                                 BUG_ON(ret); /* -ENOMEM */
1043                         }
1044                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1045                 } else {
1046
1047                         if (root->root_key.objectid ==
1048                             BTRFS_TREE_RELOC_OBJECTID)
1049                                 ret = btrfs_inc_ref(trans, root, cow, 1);
1050                         else
1051                                 ret = btrfs_inc_ref(trans, root, cow, 0);
1052                         BUG_ON(ret); /* -ENOMEM */
1053                 }
1054                 if (new_flags != 0) {
1055                         int level = btrfs_header_level(buf);
1056
1057                         ret = btrfs_set_disk_extent_flags(trans, root,
1058                                                           buf->start,
1059                                                           buf->len,
1060                                                           new_flags, level, 0);
1061                         if (ret)
1062                                 return ret;
1063                 }
1064         } else {
1065                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1066                         if (root->root_key.objectid ==
1067                             BTRFS_TREE_RELOC_OBJECTID)
1068                                 ret = btrfs_inc_ref(trans, root, cow, 1);
1069                         else
1070                                 ret = btrfs_inc_ref(trans, root, cow, 0);
1071                         BUG_ON(ret); /* -ENOMEM */
1072                         ret = btrfs_dec_ref(trans, root, buf, 1);
1073                         BUG_ON(ret); /* -ENOMEM */
1074                 }
1075                 clean_tree_block(trans, root->fs_info, buf);
1076                 *last_ref = 1;
1077         }
1078         return 0;
1079 }
1080
1081 /*
1082  * does the dirty work in cow of a single block.  The parent block (if
1083  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1084  * dirty and returned locked.  If you modify the block it needs to be marked
1085  * dirty again.
1086  *
1087  * search_start -- an allocation hint for the new block
1088  *
1089  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1090  * bytes the allocator should try to find free next to the block it returns.
1091  * This is just a hint and may be ignored by the allocator.
1092  */
1093 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1094                              struct btrfs_root *root,
1095                              struct extent_buffer *buf,
1096                              struct extent_buffer *parent, int parent_slot,
1097                              struct extent_buffer **cow_ret,
1098                              u64 search_start, u64 empty_size)
1099 {
1100         struct btrfs_disk_key disk_key;
1101         struct extent_buffer *cow;
1102         int level, ret;
1103         int last_ref = 0;
1104         int unlock_orig = 0;
1105         u64 parent_start;
1106
1107         if (*cow_ret == buf)
1108                 unlock_orig = 1;
1109
1110         btrfs_assert_tree_locked(buf);
1111
1112         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1113                 trans->transid != root->fs_info->running_transaction->transid);
1114         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1115                 trans->transid != root->last_trans);
1116
1117         level = btrfs_header_level(buf);
1118
1119         if (level == 0)
1120                 btrfs_item_key(buf, &disk_key, 0);
1121         else
1122                 btrfs_node_key(buf, &disk_key, 0);
1123
1124         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1125                 if (parent)
1126                         parent_start = parent->start;
1127                 else
1128                         parent_start = 0;
1129         } else
1130                 parent_start = 0;
1131
1132         cow = btrfs_alloc_tree_block(trans, root, parent_start,
1133                         root->root_key.objectid, &disk_key, level,
1134                         search_start, empty_size);
1135         if (IS_ERR(cow))
1136                 return PTR_ERR(cow);
1137
1138         /* cow is set to blocking by btrfs_init_new_buffer */
1139
1140         copy_extent_buffer(cow, buf, 0, 0, cow->len);
1141         btrfs_set_header_bytenr(cow, cow->start);
1142         btrfs_set_header_generation(cow, trans->transid);
1143         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1144         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1145                                      BTRFS_HEADER_FLAG_RELOC);
1146         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1147                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1148         else
1149                 btrfs_set_header_owner(cow, root->root_key.objectid);
1150
1151         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1152                             BTRFS_FSID_SIZE);
1153
1154         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1155         if (ret) {
1156                 btrfs_abort_transaction(trans, root, ret);
1157                 return ret;
1158         }
1159
1160         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1161                 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1162                 if (ret) {
1163                         btrfs_abort_transaction(trans, root, ret);
1164                         return ret;
1165                 }
1166         }
1167
1168         if (buf == root->node) {
1169                 WARN_ON(parent && parent != buf);
1170                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1171                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1172                         parent_start = buf->start;
1173                 else
1174                         parent_start = 0;
1175
1176                 extent_buffer_get(cow);
1177                 tree_mod_log_set_root_pointer(root, cow, 1);
1178                 rcu_assign_pointer(root->node, cow);
1179
1180                 btrfs_free_tree_block(trans, root, buf, parent_start,
1181                                       last_ref);
1182                 free_extent_buffer(buf);
1183                 add_root_to_dirty_list(root);
1184         } else {
1185                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1186                         parent_start = parent->start;
1187                 else
1188                         parent_start = 0;
1189
1190                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1191                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1192                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
1193                 btrfs_set_node_blockptr(parent, parent_slot,
1194                                         cow->start);
1195                 btrfs_set_node_ptr_generation(parent, parent_slot,
1196                                               trans->transid);
1197                 btrfs_mark_buffer_dirty(parent);
1198                 if (last_ref) {
1199                         ret = tree_mod_log_free_eb(root->fs_info, buf);
1200                         if (ret) {
1201                                 btrfs_abort_transaction(trans, root, ret);
1202                                 return ret;
1203                         }
1204                 }
1205                 btrfs_free_tree_block(trans, root, buf, parent_start,
1206                                       last_ref);
1207         }
1208         if (unlock_orig)
1209                 btrfs_tree_unlock(buf);
1210         free_extent_buffer_stale(buf);
1211         btrfs_mark_buffer_dirty(cow);
1212         *cow_ret = cow;
1213         return 0;
1214 }
1215
1216 /*
1217  * returns the logical address of the oldest predecessor of the given root.
1218  * entries older than time_seq are ignored.
1219  */
1220 static struct tree_mod_elem *
1221 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1222                            struct extent_buffer *eb_root, u64 time_seq)
1223 {
1224         struct tree_mod_elem *tm;
1225         struct tree_mod_elem *found = NULL;
1226         u64 root_logical = eb_root->start;
1227         int looped = 0;
1228
1229         if (!time_seq)
1230                 return NULL;
1231
1232         /*
1233          * the very last operation that's logged for a root is the
1234          * replacement operation (if it is replaced at all). this has
1235          * the logical address of the *new* root, making it the very
1236          * first operation that's logged for this root.
1237          */
1238         while (1) {
1239                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1240                                                 time_seq);
1241                 if (!looped && !tm)
1242                         return NULL;
1243                 /*
1244                  * if there are no tree operation for the oldest root, we simply
1245                  * return it. this should only happen if that (old) root is at
1246                  * level 0.
1247                  */
1248                 if (!tm)
1249                         break;
1250
1251                 /*
1252                  * if there's an operation that's not a root replacement, we
1253                  * found the oldest version of our root. normally, we'll find a
1254                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1255                  */
1256                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1257                         break;
1258
1259                 found = tm;
1260                 root_logical = tm->old_root.logical;
1261                 looped = 1;
1262         }
1263
1264         /* if there's no old root to return, return what we found instead */
1265         if (!found)
1266                 found = tm;
1267
1268         return found;
1269 }
1270
1271 /*
1272  * tm is a pointer to the first operation to rewind within eb. then, all
1273  * previous operations will be rewound (until we reach something older than
1274  * time_seq).
1275  */
1276 static void
1277 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1278                       u64 time_seq, struct tree_mod_elem *first_tm)
1279 {
1280         u32 n;
1281         struct rb_node *next;
1282         struct tree_mod_elem *tm = first_tm;
1283         unsigned long o_dst;
1284         unsigned long o_src;
1285         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1286
1287         n = btrfs_header_nritems(eb);
1288         tree_mod_log_read_lock(fs_info);
1289         while (tm && tm->seq >= time_seq) {
1290                 /*
1291                  * all the operations are recorded with the operator used for
1292                  * the modification. as we're going backwards, we do the
1293                  * opposite of each operation here.
1294                  */
1295                 switch (tm->op) {
1296                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1297                         BUG_ON(tm->slot < n);
1298                         /* Fallthrough */
1299                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1300                 case MOD_LOG_KEY_REMOVE:
1301                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1302                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1303                         btrfs_set_node_ptr_generation(eb, tm->slot,
1304                                                       tm->generation);
1305                         n++;
1306                         break;
1307                 case MOD_LOG_KEY_REPLACE:
1308                         BUG_ON(tm->slot >= n);
1309                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1310                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1311                         btrfs_set_node_ptr_generation(eb, tm->slot,
1312                                                       tm->generation);
1313                         break;
1314                 case MOD_LOG_KEY_ADD:
1315                         /* if a move operation is needed it's in the log */
1316                         n--;
1317                         break;
1318                 case MOD_LOG_MOVE_KEYS:
1319                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1320                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1321                         memmove_extent_buffer(eb, o_dst, o_src,
1322                                               tm->move.nr_items * p_size);
1323                         break;
1324                 case MOD_LOG_ROOT_REPLACE:
1325                         /*
1326                          * this operation is special. for roots, this must be
1327                          * handled explicitly before rewinding.
1328                          * for non-roots, this operation may exist if the node
1329                          * was a root: root A -> child B; then A gets empty and
1330                          * B is promoted to the new root. in the mod log, we'll
1331                          * have a root-replace operation for B, a tree block
1332                          * that is no root. we simply ignore that operation.
1333                          */
1334                         break;
1335                 }
1336                 next = rb_next(&tm->node);
1337                 if (!next)
1338                         break;
1339                 tm = container_of(next, struct tree_mod_elem, node);
1340                 if (tm->logical != first_tm->logical)
1341                         break;
1342         }
1343         tree_mod_log_read_unlock(fs_info);
1344         btrfs_set_header_nritems(eb, n);
1345 }
1346
1347 /*
1348  * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1349  * is returned. If rewind operations happen, a fresh buffer is returned. The
1350  * returned buffer is always read-locked. If the returned buffer is not the
1351  * input buffer, the lock on the input buffer is released and the input buffer
1352  * is freed (its refcount is decremented).
1353  */
1354 static struct extent_buffer *
1355 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1356                     struct extent_buffer *eb, u64 time_seq)
1357 {
1358         struct extent_buffer *eb_rewin;
1359         struct tree_mod_elem *tm;
1360
1361         if (!time_seq)
1362                 return eb;
1363
1364         if (btrfs_header_level(eb) == 0)
1365                 return eb;
1366
1367         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1368         if (!tm)
1369                 return eb;
1370
1371         btrfs_set_path_blocking(path);
1372         btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1373
1374         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1375                 BUG_ON(tm->slot != 0);
1376                 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start,
1377                                                 eb->len);
1378                 if (!eb_rewin) {
1379                         btrfs_tree_read_unlock_blocking(eb);
1380                         free_extent_buffer(eb);
1381                         return NULL;
1382                 }
1383                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1384                 btrfs_set_header_backref_rev(eb_rewin,
1385                                              btrfs_header_backref_rev(eb));
1386                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1387                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1388         } else {
1389                 eb_rewin = btrfs_clone_extent_buffer(eb);
1390                 if (!eb_rewin) {
1391                         btrfs_tree_read_unlock_blocking(eb);
1392                         free_extent_buffer(eb);
1393                         return NULL;
1394                 }
1395         }
1396
1397         btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1398         btrfs_tree_read_unlock_blocking(eb);
1399         free_extent_buffer(eb);
1400
1401         extent_buffer_get(eb_rewin);
1402         btrfs_tree_read_lock(eb_rewin);
1403         __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1404         WARN_ON(btrfs_header_nritems(eb_rewin) >
1405                 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1406
1407         return eb_rewin;
1408 }
1409
1410 /*
1411  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1412  * value. If there are no changes, the current root->root_node is returned. If
1413  * anything changed in between, there's a fresh buffer allocated on which the
1414  * rewind operations are done. In any case, the returned buffer is read locked.
1415  * Returns NULL on error (with no locks held).
1416  */
1417 static inline struct extent_buffer *
1418 get_old_root(struct btrfs_root *root, u64 time_seq)
1419 {
1420         struct tree_mod_elem *tm;
1421         struct extent_buffer *eb = NULL;
1422         struct extent_buffer *eb_root;
1423         struct extent_buffer *old;
1424         struct tree_mod_root *old_root = NULL;
1425         u64 old_generation = 0;
1426         u64 logical;
1427
1428         eb_root = btrfs_read_lock_root_node(root);
1429         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1430         if (!tm)
1431                 return eb_root;
1432
1433         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1434                 old_root = &tm->old_root;
1435                 old_generation = tm->generation;
1436                 logical = old_root->logical;
1437         } else {
1438                 logical = eb_root->start;
1439         }
1440
1441         tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1442         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1443                 btrfs_tree_read_unlock(eb_root);
1444                 free_extent_buffer(eb_root);
1445                 old = read_tree_block(root, logical, 0);
1446                 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1447                         if (!IS_ERR(old))
1448                                 free_extent_buffer(old);
1449                         btrfs_warn(root->fs_info,
1450                                 "failed to read tree block %llu from get_old_root", logical);
1451                 } else {
1452                         eb = btrfs_clone_extent_buffer(old);
1453                         free_extent_buffer(old);
1454                 }
1455         } else if (old_root) {
1456                 btrfs_tree_read_unlock(eb_root);
1457                 free_extent_buffer(eb_root);
1458                 eb = alloc_dummy_extent_buffer(root->fs_info, logical,
1459                                         root->nodesize);
1460         } else {
1461                 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1462                 eb = btrfs_clone_extent_buffer(eb_root);
1463                 btrfs_tree_read_unlock_blocking(eb_root);
1464                 free_extent_buffer(eb_root);
1465         }
1466
1467         if (!eb)
1468                 return NULL;
1469         extent_buffer_get(eb);
1470         btrfs_tree_read_lock(eb);
1471         if (old_root) {
1472                 btrfs_set_header_bytenr(eb, eb->start);
1473                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1474                 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1475                 btrfs_set_header_level(eb, old_root->level);
1476                 btrfs_set_header_generation(eb, old_generation);
1477         }
1478         if (tm)
1479                 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1480         else
1481                 WARN_ON(btrfs_header_level(eb) != 0);
1482         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1483
1484         return eb;
1485 }
1486
1487 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1488 {
1489         struct tree_mod_elem *tm;
1490         int level;
1491         struct extent_buffer *eb_root = btrfs_root_node(root);
1492
1493         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1494         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1495                 level = tm->old_root.level;
1496         } else {
1497                 level = btrfs_header_level(eb_root);
1498         }
1499         free_extent_buffer(eb_root);
1500
1501         return level;
1502 }
1503
1504 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1505                                    struct btrfs_root *root,
1506                                    struct extent_buffer *buf)
1507 {
1508         if (btrfs_test_is_dummy_root(root))
1509                 return 0;
1510
1511         /* ensure we can see the force_cow */
1512         smp_rmb();
1513
1514         /*
1515          * We do not need to cow a block if
1516          * 1) this block is not created or changed in this transaction;
1517          * 2) this block does not belong to TREE_RELOC tree;
1518          * 3) the root is not forced COW.
1519          *
1520          * What is forced COW:
1521          *    when we create snapshot during committing the transaction,
1522          *    after we've finished coping src root, we must COW the shared
1523          *    block to ensure the metadata consistency.
1524          */
1525         if (btrfs_header_generation(buf) == trans->transid &&
1526             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1527             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1528               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1529             !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1530                 return 0;
1531         return 1;
1532 }
1533
1534 /*
1535  * cows a single block, see __btrfs_cow_block for the real work.
1536  * This version of it has extra checks so that a block isn't COWed more than
1537  * once per transaction, as long as it hasn't been written yet
1538  */
1539 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1540                     struct btrfs_root *root, struct extent_buffer *buf,
1541                     struct extent_buffer *parent, int parent_slot,
1542                     struct extent_buffer **cow_ret)
1543 {
1544         u64 search_start;
1545         int ret;
1546
1547         if (trans->transaction != root->fs_info->running_transaction)
1548                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1549                        trans->transid,
1550                        root->fs_info->running_transaction->transid);
1551
1552         if (trans->transid != root->fs_info->generation)
1553                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1554                        trans->transid, root->fs_info->generation);
1555
1556         if (!should_cow_block(trans, root, buf)) {
1557                 trans->dirty = true;
1558                 *cow_ret = buf;
1559                 return 0;
1560         }
1561
1562         search_start = buf->start & ~((u64)SZ_1G - 1);
1563
1564         if (parent)
1565                 btrfs_set_lock_blocking(parent);
1566         btrfs_set_lock_blocking(buf);
1567
1568         ret = __btrfs_cow_block(trans, root, buf, parent,
1569                                  parent_slot, cow_ret, search_start, 0);
1570
1571         trace_btrfs_cow_block(root, buf, *cow_ret);
1572
1573         return ret;
1574 }
1575
1576 /*
1577  * helper function for defrag to decide if two blocks pointed to by a
1578  * node are actually close by
1579  */
1580 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1581 {
1582         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1583                 return 1;
1584         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1585                 return 1;
1586         return 0;
1587 }
1588
1589 /*
1590  * compare two keys in a memcmp fashion
1591  */
1592 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1593 {
1594         struct btrfs_key k1;
1595
1596         btrfs_disk_key_to_cpu(&k1, disk);
1597
1598         return btrfs_comp_cpu_keys(&k1, k2);
1599 }
1600
1601 /*
1602  * same as comp_keys only with two btrfs_key's
1603  */
1604 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1605 {
1606         if (k1->objectid > k2->objectid)
1607                 return 1;
1608         if (k1->objectid < k2->objectid)
1609                 return -1;
1610         if (k1->type > k2->type)
1611                 return 1;
1612         if (k1->type < k2->type)
1613                 return -1;
1614         if (k1->offset > k2->offset)
1615                 return 1;
1616         if (k1->offset < k2->offset)
1617                 return -1;
1618         return 0;
1619 }
1620
1621 /*
1622  * this is used by the defrag code to go through all the
1623  * leaves pointed to by a node and reallocate them so that
1624  * disk order is close to key order
1625  */
1626 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1627                        struct btrfs_root *root, struct extent_buffer *parent,
1628                        int start_slot, u64 *last_ret,
1629                        struct btrfs_key *progress)
1630 {
1631         struct extent_buffer *cur;
1632         u64 blocknr;
1633         u64 gen;
1634         u64 search_start = *last_ret;
1635         u64 last_block = 0;
1636         u64 other;
1637         u32 parent_nritems;
1638         int end_slot;
1639         int i;
1640         int err = 0;
1641         int parent_level;
1642         int uptodate;
1643         u32 blocksize;
1644         int progress_passed = 0;
1645         struct btrfs_disk_key disk_key;
1646
1647         parent_level = btrfs_header_level(parent);
1648
1649         WARN_ON(trans->transaction != root->fs_info->running_transaction);
1650         WARN_ON(trans->transid != root->fs_info->generation);
1651
1652         parent_nritems = btrfs_header_nritems(parent);
1653         blocksize = root->nodesize;
1654         end_slot = parent_nritems - 1;
1655
1656         if (parent_nritems <= 1)
1657                 return 0;
1658
1659         btrfs_set_lock_blocking(parent);
1660
1661         for (i = start_slot; i <= end_slot; i++) {
1662                 int close = 1;
1663
1664                 btrfs_node_key(parent, &disk_key, i);
1665                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1666                         continue;
1667
1668                 progress_passed = 1;
1669                 blocknr = btrfs_node_blockptr(parent, i);
1670                 gen = btrfs_node_ptr_generation(parent, i);
1671                 if (last_block == 0)
1672                         last_block = blocknr;
1673
1674                 if (i > 0) {
1675                         other = btrfs_node_blockptr(parent, i - 1);
1676                         close = close_blocks(blocknr, other, blocksize);
1677                 }
1678                 if (!close && i < end_slot) {
1679                         other = btrfs_node_blockptr(parent, i + 1);
1680                         close = close_blocks(blocknr, other, blocksize);
1681                 }
1682                 if (close) {
1683                         last_block = blocknr;
1684                         continue;
1685                 }
1686
1687                 cur = btrfs_find_tree_block(root->fs_info, blocknr);
1688                 if (cur)
1689                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1690                 else
1691                         uptodate = 0;
1692                 if (!cur || !uptodate) {
1693                         if (!cur) {
1694                                 cur = read_tree_block(root, blocknr, gen);
1695                                 if (IS_ERR(cur)) {
1696                                         return PTR_ERR(cur);
1697                                 } else if (!extent_buffer_uptodate(cur)) {
1698                                         free_extent_buffer(cur);
1699                                         return -EIO;
1700                                 }
1701                         } else if (!uptodate) {
1702                                 err = btrfs_read_buffer(cur, gen);
1703                                 if (err) {
1704                                         free_extent_buffer(cur);
1705                                         return err;
1706                                 }
1707                         }
1708                 }
1709                 if (search_start == 0)
1710                         search_start = last_block;
1711
1712                 btrfs_tree_lock(cur);
1713                 btrfs_set_lock_blocking(cur);
1714                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1715                                         &cur, search_start,
1716                                         min(16 * blocksize,
1717                                             (end_slot - i) * blocksize));
1718                 if (err) {
1719                         btrfs_tree_unlock(cur);
1720                         free_extent_buffer(cur);
1721                         break;
1722                 }
1723                 search_start = cur->start;
1724                 last_block = cur->start;
1725                 *last_ret = search_start;
1726                 btrfs_tree_unlock(cur);
1727                 free_extent_buffer(cur);
1728         }
1729         return err;
1730 }
1731
1732 /*
1733  * The leaf data grows from end-to-front in the node.
1734  * this returns the address of the start of the last item,
1735  * which is the stop of the leaf data stack
1736  */
1737 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1738                                          struct extent_buffer *leaf)
1739 {
1740         u32 nr = btrfs_header_nritems(leaf);
1741         if (nr == 0)
1742                 return BTRFS_LEAF_DATA_SIZE(root);
1743         return btrfs_item_offset_nr(leaf, nr - 1);
1744 }
1745
1746
1747 /*
1748  * search for key in the extent_buffer.  The items start at offset p,
1749  * and they are item_size apart.  There are 'max' items in p.
1750  *
1751  * the slot in the array is returned via slot, and it points to
1752  * the place where you would insert key if it is not found in
1753  * the array.
1754  *
1755  * slot may point to max if the key is bigger than all of the keys
1756  */
1757 static noinline int generic_bin_search(struct extent_buffer *eb,
1758                                        unsigned long p,
1759                                        int item_size, struct btrfs_key *key,
1760                                        int max, int *slot)
1761 {
1762         int low = 0;
1763         int high = max;
1764         int mid;
1765         int ret;
1766         struct btrfs_disk_key *tmp = NULL;
1767         struct btrfs_disk_key unaligned;
1768         unsigned long offset;
1769         char *kaddr = NULL;
1770         unsigned long map_start = 0;
1771         unsigned long map_len = 0;
1772         int err;
1773
1774         while (low < high) {
1775                 mid = (low + high) / 2;
1776                 offset = p + mid * item_size;
1777
1778                 if (!kaddr || offset < map_start ||
1779                     (offset + sizeof(struct btrfs_disk_key)) >
1780                     map_start + map_len) {
1781
1782                         err = map_private_extent_buffer(eb, offset,
1783                                                 sizeof(struct btrfs_disk_key),
1784                                                 &kaddr, &map_start, &map_len);
1785
1786                         if (!err) {
1787                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1788                                                         map_start);
1789                         } else {
1790                                 read_extent_buffer(eb, &unaligned,
1791                                                    offset, sizeof(unaligned));
1792                                 tmp = &unaligned;
1793                         }
1794
1795                 } else {
1796                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1797                                                         map_start);
1798                 }
1799                 ret = comp_keys(tmp, key);
1800
1801                 if (ret < 0)
1802                         low = mid + 1;
1803                 else if (ret > 0)
1804                         high = mid;
1805                 else {
1806                         *slot = mid;
1807                         return 0;
1808                 }
1809         }
1810         *slot = low;
1811         return 1;
1812 }
1813
1814 /*
1815  * simple bin_search frontend that does the right thing for
1816  * leaves vs nodes
1817  */
1818 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1819                       int level, int *slot)
1820 {
1821         if (level == 0)
1822                 return generic_bin_search(eb,
1823                                           offsetof(struct btrfs_leaf, items),
1824                                           sizeof(struct btrfs_item),
1825                                           key, btrfs_header_nritems(eb),
1826                                           slot);
1827         else
1828                 return generic_bin_search(eb,
1829                                           offsetof(struct btrfs_node, ptrs),
1830                                           sizeof(struct btrfs_key_ptr),
1831                                           key, btrfs_header_nritems(eb),
1832                                           slot);
1833 }
1834
1835 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1836                      int level, int *slot)
1837 {
1838         return bin_search(eb, key, level, slot);
1839 }
1840
1841 static void root_add_used(struct btrfs_root *root, u32 size)
1842 {
1843         spin_lock(&root->accounting_lock);
1844         btrfs_set_root_used(&root->root_item,
1845                             btrfs_root_used(&root->root_item) + size);
1846         spin_unlock(&root->accounting_lock);
1847 }
1848
1849 static void root_sub_used(struct btrfs_root *root, u32 size)
1850 {
1851         spin_lock(&root->accounting_lock);
1852         btrfs_set_root_used(&root->root_item,
1853                             btrfs_root_used(&root->root_item) - size);
1854         spin_unlock(&root->accounting_lock);
1855 }
1856
1857 /* given a node and slot number, this reads the blocks it points to.  The
1858  * extent buffer is returned with a reference taken (but unlocked).
1859  * NULL is returned on error.
1860  */
1861 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1862                                    struct extent_buffer *parent, int slot)
1863 {
1864         int level = btrfs_header_level(parent);
1865         struct extent_buffer *eb;
1866
1867         if (slot < 0)
1868                 return NULL;
1869         if (slot >= btrfs_header_nritems(parent))
1870                 return NULL;
1871
1872         BUG_ON(level == 0);
1873
1874         eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1875                              btrfs_node_ptr_generation(parent, slot));
1876         if (IS_ERR(eb) || !extent_buffer_uptodate(eb)) {
1877                 if (!IS_ERR(eb))
1878                         free_extent_buffer(eb);
1879                 eb = NULL;
1880         }
1881
1882         return eb;
1883 }
1884
1885 /*
1886  * node level balancing, used to make sure nodes are in proper order for
1887  * item deletion.  We balance from the top down, so we have to make sure
1888  * that a deletion won't leave an node completely empty later on.
1889  */
1890 static noinline int balance_level(struct btrfs_trans_handle *trans,
1891                          struct btrfs_root *root,
1892                          struct btrfs_path *path, int level)
1893 {
1894         struct extent_buffer *right = NULL;
1895         struct extent_buffer *mid;
1896         struct extent_buffer *left = NULL;
1897         struct extent_buffer *parent = NULL;
1898         int ret = 0;
1899         int wret;
1900         int pslot;
1901         int orig_slot = path->slots[level];
1902         u64 orig_ptr;
1903
1904         if (level == 0)
1905                 return 0;
1906
1907         mid = path->nodes[level];
1908
1909         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1910                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1911         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1912
1913         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1914
1915         if (level < BTRFS_MAX_LEVEL - 1) {
1916                 parent = path->nodes[level + 1];
1917                 pslot = path->slots[level + 1];
1918         }
1919
1920         /*
1921          * deal with the case where there is only one pointer in the root
1922          * by promoting the node below to a root
1923          */
1924         if (!parent) {
1925                 struct extent_buffer *child;
1926
1927                 if (btrfs_header_nritems(mid) != 1)
1928                         return 0;
1929
1930                 /* promote the child to a root */
1931                 child = read_node_slot(root, mid, 0);
1932                 if (!child) {
1933                         ret = -EROFS;
1934                         btrfs_handle_fs_error(root->fs_info, ret, NULL);
1935                         goto enospc;
1936                 }
1937
1938                 btrfs_tree_lock(child);
1939                 btrfs_set_lock_blocking(child);
1940                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1941                 if (ret) {
1942                         btrfs_tree_unlock(child);
1943                         free_extent_buffer(child);
1944                         goto enospc;
1945                 }
1946
1947                 tree_mod_log_set_root_pointer(root, child, 1);
1948                 rcu_assign_pointer(root->node, child);
1949
1950                 add_root_to_dirty_list(root);
1951                 btrfs_tree_unlock(child);
1952
1953                 path->locks[level] = 0;
1954                 path->nodes[level] = NULL;
1955                 clean_tree_block(trans, root->fs_info, mid);
1956                 btrfs_tree_unlock(mid);
1957                 /* once for the path */
1958                 free_extent_buffer(mid);
1959
1960                 root_sub_used(root, mid->len);
1961                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1962                 /* once for the root ptr */
1963                 free_extent_buffer_stale(mid);
1964                 return 0;
1965         }
1966         if (btrfs_header_nritems(mid) >
1967             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1968                 return 0;
1969
1970         left = read_node_slot(root, parent, pslot - 1);
1971         if (left) {
1972                 btrfs_tree_lock(left);
1973                 btrfs_set_lock_blocking(left);
1974                 wret = btrfs_cow_block(trans, root, left,
1975                                        parent, pslot - 1, &left);
1976                 if (wret) {
1977                         ret = wret;
1978                         goto enospc;
1979                 }
1980         }
1981         right = read_node_slot(root, parent, pslot + 1);
1982         if (right) {
1983                 btrfs_tree_lock(right);
1984                 btrfs_set_lock_blocking(right);
1985                 wret = btrfs_cow_block(trans, root, right,
1986                                        parent, pslot + 1, &right);
1987                 if (wret) {
1988                         ret = wret;
1989                         goto enospc;
1990                 }
1991         }
1992
1993         /* first, try to make some room in the middle buffer */
1994         if (left) {
1995                 orig_slot += btrfs_header_nritems(left);
1996                 wret = push_node_left(trans, root, left, mid, 1);
1997                 if (wret < 0)
1998                         ret = wret;
1999         }
2000
2001         /*
2002          * then try to empty the right most buffer into the middle
2003          */
2004         if (right) {
2005                 wret = push_node_left(trans, root, mid, right, 1);
2006                 if (wret < 0 && wret != -ENOSPC)
2007                         ret = wret;
2008                 if (btrfs_header_nritems(right) == 0) {
2009                         clean_tree_block(trans, root->fs_info, right);
2010                         btrfs_tree_unlock(right);
2011                         del_ptr(root, path, level + 1, pslot + 1);
2012                         root_sub_used(root, right->len);
2013                         btrfs_free_tree_block(trans, root, right, 0, 1);
2014                         free_extent_buffer_stale(right);
2015                         right = NULL;
2016                 } else {
2017                         struct btrfs_disk_key right_key;
2018                         btrfs_node_key(right, &right_key, 0);
2019                         tree_mod_log_set_node_key(root->fs_info, parent,
2020                                                   pslot + 1, 0);
2021                         btrfs_set_node_key(parent, &right_key, pslot + 1);
2022                         btrfs_mark_buffer_dirty(parent);
2023                 }
2024         }
2025         if (btrfs_header_nritems(mid) == 1) {
2026                 /*
2027                  * we're not allowed to leave a node with one item in the
2028                  * tree during a delete.  A deletion from lower in the tree
2029                  * could try to delete the only pointer in this node.
2030                  * So, pull some keys from the left.
2031                  * There has to be a left pointer at this point because
2032                  * otherwise we would have pulled some pointers from the
2033                  * right
2034                  */
2035                 if (!left) {
2036                         ret = -EROFS;
2037                         btrfs_handle_fs_error(root->fs_info, ret, NULL);
2038                         goto enospc;
2039                 }
2040                 wret = balance_node_right(trans, root, mid, left);
2041                 if (wret < 0) {
2042                         ret = wret;
2043                         goto enospc;
2044                 }
2045                 if (wret == 1) {
2046                         wret = push_node_left(trans, root, left, mid, 1);
2047                         if (wret < 0)
2048                                 ret = wret;
2049                 }
2050                 BUG_ON(wret == 1);
2051         }
2052         if (btrfs_header_nritems(mid) == 0) {
2053                 clean_tree_block(trans, root->fs_info, mid);
2054                 btrfs_tree_unlock(mid);
2055                 del_ptr(root, path, level + 1, pslot);
2056                 root_sub_used(root, mid->len);
2057                 btrfs_free_tree_block(trans, root, mid, 0, 1);
2058                 free_extent_buffer_stale(mid);
2059                 mid = NULL;
2060         } else {
2061                 /* update the parent key to reflect our changes */
2062                 struct btrfs_disk_key mid_key;
2063                 btrfs_node_key(mid, &mid_key, 0);
2064                 tree_mod_log_set_node_key(root->fs_info, parent,
2065                                           pslot, 0);
2066                 btrfs_set_node_key(parent, &mid_key, pslot);
2067                 btrfs_mark_buffer_dirty(parent);
2068         }
2069
2070         /* update the path */
2071         if (left) {
2072                 if (btrfs_header_nritems(left) > orig_slot) {
2073                         extent_buffer_get(left);
2074                         /* left was locked after cow */
2075                         path->nodes[level] = left;
2076                         path->slots[level + 1] -= 1;
2077                         path->slots[level] = orig_slot;
2078                         if (mid) {
2079                                 btrfs_tree_unlock(mid);
2080                                 free_extent_buffer(mid);
2081                         }
2082                 } else {
2083                         orig_slot -= btrfs_header_nritems(left);
2084                         path->slots[level] = orig_slot;
2085                 }
2086         }
2087         /* double check we haven't messed things up */
2088         if (orig_ptr !=
2089             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2090                 BUG();
2091 enospc:
2092         if (right) {
2093                 btrfs_tree_unlock(right);
2094                 free_extent_buffer(right);
2095         }
2096         if (left) {
2097                 if (path->nodes[level] != left)
2098                         btrfs_tree_unlock(left);
2099                 free_extent_buffer(left);
2100         }
2101         return ret;
2102 }
2103
2104 /* Node balancing for insertion.  Here we only split or push nodes around
2105  * when they are completely full.  This is also done top down, so we
2106  * have to be pessimistic.
2107  */
2108 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2109                                           struct btrfs_root *root,
2110                                           struct btrfs_path *path, int level)
2111 {
2112         struct extent_buffer *right = NULL;
2113         struct extent_buffer *mid;
2114         struct extent_buffer *left = NULL;
2115         struct extent_buffer *parent = NULL;
2116         int ret = 0;
2117         int wret;
2118         int pslot;
2119         int orig_slot = path->slots[level];
2120
2121         if (level == 0)
2122                 return 1;
2123
2124         mid = path->nodes[level];
2125         WARN_ON(btrfs_header_generation(mid) != trans->transid);
2126
2127         if (level < BTRFS_MAX_LEVEL - 1) {
2128                 parent = path->nodes[level + 1];
2129                 pslot = path->slots[level + 1];
2130         }
2131
2132         if (!parent)
2133                 return 1;
2134
2135         left = read_node_slot(root, parent, pslot - 1);
2136
2137         /* first, try to make some room in the middle buffer */
2138         if (left) {
2139                 u32 left_nr;
2140
2141                 btrfs_tree_lock(left);
2142                 btrfs_set_lock_blocking(left);
2143
2144                 left_nr = btrfs_header_nritems(left);
2145                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2146                         wret = 1;
2147                 } else {
2148                         ret = btrfs_cow_block(trans, root, left, parent,
2149                                               pslot - 1, &left);
2150                         if (ret)
2151                                 wret = 1;
2152                         else {
2153                                 wret = push_node_left(trans, root,
2154                                                       left, mid, 0);
2155                         }
2156                 }
2157                 if (wret < 0)
2158                         ret = wret;
2159                 if (wret == 0) {
2160                         struct btrfs_disk_key disk_key;
2161                         orig_slot += left_nr;
2162                         btrfs_node_key(mid, &disk_key, 0);
2163                         tree_mod_log_set_node_key(root->fs_info, parent,
2164                                                   pslot, 0);
2165                         btrfs_set_node_key(parent, &disk_key, pslot);
2166                         btrfs_mark_buffer_dirty(parent);
2167                         if (btrfs_header_nritems(left) > orig_slot) {
2168                                 path->nodes[level] = left;
2169                                 path->slots[level + 1] -= 1;
2170                                 path->slots[level] = orig_slot;
2171                                 btrfs_tree_unlock(mid);
2172                                 free_extent_buffer(mid);
2173                         } else {
2174                                 orig_slot -=
2175                                         btrfs_header_nritems(left);
2176                                 path->slots[level] = orig_slot;
2177                                 btrfs_tree_unlock(left);
2178                                 free_extent_buffer(left);
2179                         }
2180                         return 0;
2181                 }
2182                 btrfs_tree_unlock(left);
2183                 free_extent_buffer(left);
2184         }
2185         right = read_node_slot(root, parent, pslot + 1);
2186
2187         /*
2188          * then try to empty the right most buffer into the middle
2189          */
2190         if (right) {
2191                 u32 right_nr;
2192
2193                 btrfs_tree_lock(right);
2194                 btrfs_set_lock_blocking(right);
2195
2196                 right_nr = btrfs_header_nritems(right);
2197                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2198                         wret = 1;
2199                 } else {
2200                         ret = btrfs_cow_block(trans, root, right,
2201                                               parent, pslot + 1,
2202                                               &right);
2203                         if (ret)
2204                                 wret = 1;
2205                         else {
2206                                 wret = balance_node_right(trans, root,
2207                                                           right, mid);
2208                         }
2209                 }
2210                 if (wret < 0)
2211                         ret = wret;
2212                 if (wret == 0) {
2213                         struct btrfs_disk_key disk_key;
2214
2215                         btrfs_node_key(right, &disk_key, 0);
2216                         tree_mod_log_set_node_key(root->fs_info, parent,
2217                                                   pslot + 1, 0);
2218                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2219                         btrfs_mark_buffer_dirty(parent);
2220
2221                         if (btrfs_header_nritems(mid) <= orig_slot) {
2222                                 path->nodes[level] = right;
2223                                 path->slots[level + 1] += 1;
2224                                 path->slots[level] = orig_slot -
2225                                         btrfs_header_nritems(mid);
2226                                 btrfs_tree_unlock(mid);
2227                                 free_extent_buffer(mid);
2228                         } else {
2229                                 btrfs_tree_unlock(right);
2230                                 free_extent_buffer(right);
2231                         }
2232                         return 0;
2233                 }
2234                 btrfs_tree_unlock(right);
2235                 free_extent_buffer(right);
2236         }
2237         return 1;
2238 }
2239
2240 /*
2241  * readahead one full node of leaves, finding things that are close
2242  * to the block in 'slot', and triggering ra on them.
2243  */
2244 static void reada_for_search(struct btrfs_root *root,
2245                              struct btrfs_path *path,
2246                              int level, int slot, u64 objectid)
2247 {
2248         struct extent_buffer *node;
2249         struct btrfs_disk_key disk_key;
2250         u32 nritems;
2251         u64 search;
2252         u64 target;
2253         u64 nread = 0;
2254         u64 gen;
2255         struct extent_buffer *eb;
2256         u32 nr;
2257         u32 blocksize;
2258         u32 nscan = 0;
2259
2260         if (level != 1)
2261                 return;
2262
2263         if (!path->nodes[level])
2264                 return;
2265
2266         node = path->nodes[level];
2267
2268         search = btrfs_node_blockptr(node, slot);
2269         blocksize = root->nodesize;
2270         eb = btrfs_find_tree_block(root->fs_info, search);
2271         if (eb) {
2272                 free_extent_buffer(eb);
2273                 return;
2274         }
2275
2276         target = search;
2277
2278         nritems = btrfs_header_nritems(node);
2279         nr = slot;
2280
2281         while (1) {
2282                 if (path->reada == READA_BACK) {
2283                         if (nr == 0)
2284                                 break;
2285                         nr--;
2286                 } else if (path->reada == READA_FORWARD) {
2287                         nr++;
2288                         if (nr >= nritems)
2289                                 break;
2290                 }
2291                 if (path->reada == READA_BACK && objectid) {
2292                         btrfs_node_key(node, &disk_key, nr);
2293                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2294                                 break;
2295                 }
2296                 search = btrfs_node_blockptr(node, nr);
2297                 if ((search <= target && target - search <= 65536) ||
2298                     (search > target && search - target <= 65536)) {
2299                         gen = btrfs_node_ptr_generation(node, nr);
2300                         readahead_tree_block(root, search);
2301                         nread += blocksize;
2302                 }
2303                 nscan++;
2304                 if ((nread > 65536 || nscan > 32))
2305                         break;
2306         }
2307 }
2308
2309 static noinline void reada_for_balance(struct btrfs_root *root,
2310                                        struct btrfs_path *path, int level)
2311 {
2312         int slot;
2313         int nritems;
2314         struct extent_buffer *parent;
2315         struct extent_buffer *eb;
2316         u64 gen;
2317         u64 block1 = 0;
2318         u64 block2 = 0;
2319
2320         parent = path->nodes[level + 1];
2321         if (!parent)
2322                 return;
2323
2324         nritems = btrfs_header_nritems(parent);
2325         slot = path->slots[level + 1];
2326
2327         if (slot > 0) {
2328                 block1 = btrfs_node_blockptr(parent, slot - 1);
2329                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2330                 eb = btrfs_find_tree_block(root->fs_info, block1);
2331                 /*
2332                  * if we get -eagain from btrfs_buffer_uptodate, we
2333                  * don't want to return eagain here.  That will loop
2334                  * forever
2335                  */
2336                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2337                         block1 = 0;
2338                 free_extent_buffer(eb);
2339         }
2340         if (slot + 1 < nritems) {
2341                 block2 = btrfs_node_blockptr(parent, slot + 1);
2342                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2343                 eb = btrfs_find_tree_block(root->fs_info, block2);
2344                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2345                         block2 = 0;
2346                 free_extent_buffer(eb);
2347         }
2348
2349         if (block1)
2350                 readahead_tree_block(root, block1);
2351         if (block2)
2352                 readahead_tree_block(root, block2);
2353 }
2354
2355
2356 /*
2357  * when we walk down the tree, it is usually safe to unlock the higher layers
2358  * in the tree.  The exceptions are when our path goes through slot 0, because
2359  * operations on the tree might require changing key pointers higher up in the
2360  * tree.
2361  *
2362  * callers might also have set path->keep_locks, which tells this code to keep
2363  * the lock if the path points to the last slot in the block.  This is part of
2364  * walking through the tree, and selecting the next slot in the higher block.
2365  *
2366  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2367  * if lowest_unlock is 1, level 0 won't be unlocked
2368  */
2369 static noinline void unlock_up(struct btrfs_path *path, int level,
2370                                int lowest_unlock, int min_write_lock_level,
2371                                int *write_lock_level)
2372 {
2373         int i;
2374         int skip_level = level;
2375         int no_skips = 0;
2376         struct extent_buffer *t;
2377
2378         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2379                 if (!path->nodes[i])
2380                         break;
2381                 if (!path->locks[i])
2382                         break;
2383                 if (!no_skips && path->slots[i] == 0) {
2384                         skip_level = i + 1;
2385                         continue;
2386                 }
2387                 if (!no_skips && path->keep_locks) {
2388                         u32 nritems;
2389                         t = path->nodes[i];
2390                         nritems = btrfs_header_nritems(t);
2391                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2392                                 skip_level = i + 1;
2393                                 continue;
2394                         }
2395                 }
2396                 if (skip_level < i && i >= lowest_unlock)
2397                         no_skips = 1;
2398
2399                 t = path->nodes[i];
2400                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2401                         btrfs_tree_unlock_rw(t, path->locks[i]);
2402                         path->locks[i] = 0;
2403                         if (write_lock_level &&
2404                             i > min_write_lock_level &&
2405                             i <= *write_lock_level) {
2406                                 *write_lock_level = i - 1;
2407                         }
2408                 }
2409         }
2410 }
2411
2412 /*
2413  * This releases any locks held in the path starting at level and
2414  * going all the way up to the root.
2415  *
2416  * btrfs_search_slot will keep the lock held on higher nodes in a few
2417  * corner cases, such as COW of the block at slot zero in the node.  This
2418  * ignores those rules, and it should only be called when there are no
2419  * more updates to be done higher up in the tree.
2420  */
2421 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2422 {
2423         int i;
2424
2425         if (path->keep_locks)
2426                 return;
2427
2428         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2429                 if (!path->nodes[i])
2430                         continue;
2431                 if (!path->locks[i])
2432                         continue;
2433                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2434                 path->locks[i] = 0;
2435         }
2436 }
2437
2438 /*
2439  * helper function for btrfs_search_slot.  The goal is to find a block
2440  * in cache without setting the path to blocking.  If we find the block
2441  * we return zero and the path is unchanged.
2442  *
2443  * If we can't find the block, we set the path blocking and do some
2444  * reada.  -EAGAIN is returned and the search must be repeated.
2445  */
2446 static int
2447 read_block_for_search(struct btrfs_trans_handle *trans,
2448                        struct btrfs_root *root, struct btrfs_path *p,
2449                        struct extent_buffer **eb_ret, int level, int slot,
2450                        struct btrfs_key *key, u64 time_seq)
2451 {
2452         u64 blocknr;
2453         u64 gen;
2454         struct extent_buffer *b = *eb_ret;
2455         struct extent_buffer *tmp;
2456         int ret;
2457
2458         blocknr = btrfs_node_blockptr(b, slot);
2459         gen = btrfs_node_ptr_generation(b, slot);
2460
2461         tmp = btrfs_find_tree_block(root->fs_info, blocknr);
2462         if (tmp) {
2463                 /* first we do an atomic uptodate check */
2464                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2465                         *eb_ret = tmp;
2466                         return 0;
2467                 }
2468
2469                 /* the pages were up to date, but we failed
2470                  * the generation number check.  Do a full
2471                  * read for the generation number that is correct.
2472                  * We must do this without dropping locks so
2473                  * we can trust our generation number
2474                  */
2475                 btrfs_set_path_blocking(p);
2476
2477                 /* now we're allowed to do a blocking uptodate check */
2478                 ret = btrfs_read_buffer(tmp, gen);
2479                 if (!ret) {
2480                         *eb_ret = tmp;
2481                         return 0;
2482                 }
2483                 free_extent_buffer(tmp);
2484                 btrfs_release_path(p);
2485                 return -EIO;
2486         }
2487
2488         /*
2489          * reduce lock contention at high levels
2490          * of the btree by dropping locks before
2491          * we read.  Don't release the lock on the current
2492          * level because we need to walk this node to figure
2493          * out which blocks to read.
2494          */
2495         btrfs_unlock_up_safe(p, level + 1);
2496         btrfs_set_path_blocking(p);
2497
2498         free_extent_buffer(tmp);
2499         if (p->reada != READA_NONE)
2500                 reada_for_search(root, p, level, slot, key->objectid);
2501
2502         btrfs_release_path(p);
2503
2504         ret = -EAGAIN;
2505         tmp = read_tree_block(root, blocknr, 0);
2506         if (!IS_ERR(tmp)) {
2507                 /*
2508                  * If the read above didn't mark this buffer up to date,
2509                  * it will never end up being up to date.  Set ret to EIO now
2510                  * and give up so that our caller doesn't loop forever
2511                  * on our EAGAINs.
2512                  */
2513                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2514                         ret = -EIO;
2515                 free_extent_buffer(tmp);
2516         } else {
2517                 ret = PTR_ERR(tmp);
2518         }
2519         return ret;
2520 }
2521
2522 /*
2523  * helper function for btrfs_search_slot.  This does all of the checks
2524  * for node-level blocks and does any balancing required based on
2525  * the ins_len.
2526  *
2527  * If no extra work was required, zero is returned.  If we had to
2528  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2529  * start over
2530  */
2531 static int
2532 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2533                        struct btrfs_root *root, struct btrfs_path *p,
2534                        struct extent_buffer *b, int level, int ins_len,
2535                        int *write_lock_level)
2536 {
2537         int ret;
2538         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2539             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2540                 int sret;
2541
2542                 if (*write_lock_level < level + 1) {
2543                         *write_lock_level = level + 1;
2544                         btrfs_release_path(p);
2545                         goto again;
2546                 }
2547
2548                 btrfs_set_path_blocking(p);
2549                 reada_for_balance(root, p, level);
2550                 sret = split_node(trans, root, p, level);
2551                 btrfs_clear_path_blocking(p, NULL, 0);
2552
2553                 BUG_ON(sret > 0);
2554                 if (sret) {
2555                         ret = sret;
2556                         goto done;
2557                 }
2558                 b = p->nodes[level];
2559         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2560                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2561                 int sret;
2562
2563                 if (*write_lock_level < level + 1) {
2564                         *write_lock_level = level + 1;
2565                         btrfs_release_path(p);
2566                         goto again;
2567                 }
2568
2569                 btrfs_set_path_blocking(p);
2570                 reada_for_balance(root, p, level);
2571                 sret = balance_level(trans, root, p, level);
2572                 btrfs_clear_path_blocking(p, NULL, 0);
2573
2574                 if (sret) {
2575                         ret = sret;
2576                         goto done;
2577                 }
2578                 b = p->nodes[level];
2579                 if (!b) {
2580                         btrfs_release_path(p);
2581                         goto again;
2582                 }
2583                 BUG_ON(btrfs_header_nritems(b) == 1);
2584         }
2585         return 0;
2586
2587 again:
2588         ret = -EAGAIN;
2589 done:
2590         return ret;
2591 }
2592
2593 static void key_search_validate(struct extent_buffer *b,
2594                                 struct btrfs_key *key,
2595                                 int level)
2596 {
2597 #ifdef CONFIG_BTRFS_ASSERT
2598         struct btrfs_disk_key disk_key;
2599
2600         btrfs_cpu_key_to_disk(&disk_key, key);
2601
2602         if (level == 0)
2603                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2604                     offsetof(struct btrfs_leaf, items[0].key),
2605                     sizeof(disk_key)));
2606         else
2607                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2608                     offsetof(struct btrfs_node, ptrs[0].key),
2609                     sizeof(disk_key)));
2610 #endif
2611 }
2612
2613 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2614                       int level, int *prev_cmp, int *slot)
2615 {
2616         if (*prev_cmp != 0) {
2617                 *prev_cmp = bin_search(b, key, level, slot);
2618                 return *prev_cmp;
2619         }
2620
2621         key_search_validate(b, key, level);
2622         *slot = 0;
2623
2624         return 0;
2625 }
2626
2627 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2628                 u64 iobjectid, u64 ioff, u8 key_type,
2629                 struct btrfs_key *found_key)
2630 {
2631         int ret;
2632         struct btrfs_key key;
2633         struct extent_buffer *eb;
2634
2635         ASSERT(path);
2636         ASSERT(found_key);
2637
2638         key.type = key_type;
2639         key.objectid = iobjectid;
2640         key.offset = ioff;
2641
2642         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2643         if (ret < 0)
2644                 return ret;
2645
2646         eb = path->nodes[0];
2647         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2648                 ret = btrfs_next_leaf(fs_root, path);
2649                 if (ret)
2650                         return ret;
2651                 eb = path->nodes[0];
2652         }
2653
2654         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2655         if (found_key->type != key.type ||
2656                         found_key->objectid != key.objectid)
2657                 return 1;
2658
2659         return 0;
2660 }
2661
2662 /*
2663  * look for key in the tree.  path is filled in with nodes along the way
2664  * if key is found, we return zero and you can find the item in the leaf
2665  * level of the path (level 0)
2666  *
2667  * If the key isn't found, the path points to the slot where it should
2668  * be inserted, and 1 is returned.  If there are other errors during the
2669  * search a negative error number is returned.
2670  *
2671  * if ins_len > 0, nodes and leaves will be split as we walk down the
2672  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2673  * possible)
2674  */
2675 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2676                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2677                       ins_len, int cow)
2678 {
2679         struct extent_buffer *b;
2680         int slot;
2681         int ret;
2682         int err;
2683         int level;
2684         int lowest_unlock = 1;
2685         int root_lock;
2686         /* everything at write_lock_level or lower must be write locked */
2687         int write_lock_level = 0;
2688         u8 lowest_level = 0;
2689         int min_write_lock_level;
2690         int prev_cmp;
2691
2692         lowest_level = p->lowest_level;
2693         WARN_ON(lowest_level && ins_len > 0);
2694         WARN_ON(p->nodes[0] != NULL);
2695         BUG_ON(!cow && ins_len);
2696
2697         if (ins_len < 0) {
2698                 lowest_unlock = 2;
2699
2700                 /* when we are removing items, we might have to go up to level
2701                  * two as we update tree pointers  Make sure we keep write
2702                  * for those levels as well
2703                  */
2704                 write_lock_level = 2;
2705         } else if (ins_len > 0) {
2706                 /*
2707                  * for inserting items, make sure we have a write lock on
2708                  * level 1 so we can update keys
2709                  */
2710                 write_lock_level = 1;
2711         }
2712
2713         if (!cow)
2714                 write_lock_level = -1;
2715
2716         if (cow && (p->keep_locks || p->lowest_level))
2717                 write_lock_level = BTRFS_MAX_LEVEL;
2718
2719         min_write_lock_level = write_lock_level;
2720
2721 again:
2722         prev_cmp = -1;
2723         /*
2724          * we try very hard to do read locks on the root
2725          */
2726         root_lock = BTRFS_READ_LOCK;
2727         level = 0;
2728         if (p->search_commit_root) {
2729                 /*
2730                  * the commit roots are read only
2731                  * so we always do read locks
2732                  */
2733                 if (p->need_commit_sem)
2734                         down_read(&root->fs_info->commit_root_sem);
2735                 b = root->commit_root;
2736                 extent_buffer_get(b);
2737                 level = btrfs_header_level(b);
2738                 if (p->need_commit_sem)
2739                         up_read(&root->fs_info->commit_root_sem);
2740                 if (!p->skip_locking)
2741                         btrfs_tree_read_lock(b);
2742         } else {
2743                 if (p->skip_locking) {
2744                         b = btrfs_root_node(root);
2745                         level = btrfs_header_level(b);
2746                 } else {
2747                         /* we don't know the level of the root node
2748                          * until we actually have it read locked
2749                          */
2750                         b = btrfs_read_lock_root_node(root);
2751                         level = btrfs_header_level(b);
2752                         if (level <= write_lock_level) {
2753                                 /* whoops, must trade for write lock */
2754                                 btrfs_tree_read_unlock(b);
2755                                 free_extent_buffer(b);
2756                                 b = btrfs_lock_root_node(root);
2757                                 root_lock = BTRFS_WRITE_LOCK;
2758
2759                                 /* the level might have changed, check again */
2760                                 level = btrfs_header_level(b);
2761                         }
2762                 }
2763         }
2764         p->nodes[level] = b;
2765         if (!p->skip_locking)
2766                 p->locks[level] = root_lock;
2767
2768         while (b) {
2769                 level = btrfs_header_level(b);
2770
2771                 /*
2772                  * setup the path here so we can release it under lock
2773                  * contention with the cow code
2774                  */
2775                 if (cow) {
2776                         /*
2777                          * if we don't really need to cow this block
2778                          * then we don't want to set the path blocking,
2779                          * so we test it here
2780                          */
2781                         if (!should_cow_block(trans, root, b)) {
2782                                 trans->dirty = true;
2783                                 goto cow_done;
2784                         }
2785
2786                         /*
2787                          * must have write locks on this node and the
2788                          * parent
2789                          */
2790                         if (level > write_lock_level ||
2791                             (level + 1 > write_lock_level &&
2792                             level + 1 < BTRFS_MAX_LEVEL &&
2793                             p->nodes[level + 1])) {
2794                                 write_lock_level = level + 1;
2795                                 btrfs_release_path(p);
2796                                 goto again;
2797                         }
2798
2799                         btrfs_set_path_blocking(p);
2800                         err = btrfs_cow_block(trans, root, b,
2801                                               p->nodes[level + 1],
2802                                               p->slots[level + 1], &b);
2803                         if (err) {
2804                                 ret = err;
2805                                 goto done;
2806                         }
2807                 }
2808 cow_done:
2809                 p->nodes[level] = b;
2810                 btrfs_clear_path_blocking(p, NULL, 0);
2811
2812                 /*
2813                  * we have a lock on b and as long as we aren't changing
2814                  * the tree, there is no way to for the items in b to change.
2815                  * It is safe to drop the lock on our parent before we
2816                  * go through the expensive btree search on b.
2817                  *
2818                  * If we're inserting or deleting (ins_len != 0), then we might
2819                  * be changing slot zero, which may require changing the parent.
2820                  * So, we can't drop the lock until after we know which slot
2821                  * we're operating on.
2822                  */
2823                 if (!ins_len && !p->keep_locks) {
2824                         int u = level + 1;
2825
2826                         if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2827                                 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2828                                 p->locks[u] = 0;
2829                         }
2830                 }
2831
2832                 ret = key_search(b, key, level, &prev_cmp, &slot);
2833
2834                 if (level != 0) {
2835                         int dec = 0;
2836                         if (ret && slot > 0) {
2837                                 dec = 1;
2838                                 slot -= 1;
2839                         }
2840                         p->slots[level] = slot;
2841                         err = setup_nodes_for_search(trans, root, p, b, level,
2842                                              ins_len, &write_lock_level);
2843                         if (err == -EAGAIN)
2844                                 goto again;
2845                         if (err) {
2846                                 ret = err;
2847                                 goto done;
2848                         }
2849                         b = p->nodes[level];
2850                         slot = p->slots[level];
2851
2852                         /*
2853                          * slot 0 is special, if we change the key
2854                          * we have to update the parent pointer
2855                          * which means we must have a write lock
2856                          * on the parent
2857                          */
2858                         if (slot == 0 && ins_len &&
2859                             write_lock_level < level + 1) {
2860                                 write_lock_level = level + 1;
2861                                 btrfs_release_path(p);
2862                                 goto again;
2863                         }
2864
2865                         unlock_up(p, level, lowest_unlock,
2866                                   min_write_lock_level, &write_lock_level);
2867
2868                         if (level == lowest_level) {
2869                                 if (dec)
2870                                         p->slots[level]++;
2871                                 goto done;
2872                         }
2873
2874                         err = read_block_for_search(trans, root, p,
2875                                                     &b, level, slot, key, 0);
2876                         if (err == -EAGAIN)
2877                                 goto again;
2878                         if (err) {
2879                                 ret = err;
2880                                 goto done;
2881                         }
2882
2883                         if (!p->skip_locking) {
2884                                 level = btrfs_header_level(b);
2885                                 if (level <= write_lock_level) {
2886                                         err = btrfs_try_tree_write_lock(b);
2887                                         if (!err) {
2888                                                 btrfs_set_path_blocking(p);
2889                                                 btrfs_tree_lock(b);
2890                                                 btrfs_clear_path_blocking(p, b,
2891                                                                   BTRFS_WRITE_LOCK);
2892                                         }
2893                                         p->locks[level] = BTRFS_WRITE_LOCK;
2894                                 } else {
2895                                         err = btrfs_tree_read_lock_atomic(b);
2896                                         if (!err) {
2897                                                 btrfs_set_path_blocking(p);
2898                                                 btrfs_tree_read_lock(b);
2899                                                 btrfs_clear_path_blocking(p, b,
2900                                                                   BTRFS_READ_LOCK);
2901                                         }
2902                                         p->locks[level] = BTRFS_READ_LOCK;
2903                                 }
2904                                 p->nodes[level] = b;
2905                         }
2906                 } else {
2907                         p->slots[level] = slot;
2908                         if (ins_len > 0 &&
2909                             btrfs_leaf_free_space(root, b) < ins_len) {
2910                                 if (write_lock_level < 1) {
2911                                         write_lock_level = 1;
2912                                         btrfs_release_path(p);
2913                                         goto again;
2914                                 }
2915
2916                                 btrfs_set_path_blocking(p);
2917                                 err = split_leaf(trans, root, key,
2918                                                  p, ins_len, ret == 0);
2919                                 btrfs_clear_path_blocking(p, NULL, 0);
2920
2921                                 BUG_ON(err > 0);
2922                                 if (err) {
2923                                         ret = err;
2924                                         goto done;
2925                                 }
2926                         }
2927                         if (!p->search_for_split)
2928                                 unlock_up(p, level, lowest_unlock,
2929                                           min_write_lock_level, &write_lock_level);
2930                         goto done;
2931                 }
2932         }
2933         ret = 1;
2934 done:
2935         /*
2936          * we don't really know what they plan on doing with the path
2937          * from here on, so for now just mark it as blocking
2938          */
2939         if (!p->leave_spinning)
2940                 btrfs_set_path_blocking(p);
2941         if (ret < 0 && !p->skip_release_on_error)
2942                 btrfs_release_path(p);
2943         return ret;
2944 }
2945
2946 /*
2947  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2948  * current state of the tree together with the operations recorded in the tree
2949  * modification log to search for the key in a previous version of this tree, as
2950  * denoted by the time_seq parameter.
2951  *
2952  * Naturally, there is no support for insert, delete or cow operations.
2953  *
2954  * The resulting path and return value will be set up as if we called
2955  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2956  */
2957 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2958                           struct btrfs_path *p, u64 time_seq)
2959 {
2960         struct extent_buffer *b;
2961         int slot;
2962         int ret;
2963         int err;
2964         int level;
2965         int lowest_unlock = 1;
2966         u8 lowest_level = 0;
2967         int prev_cmp = -1;
2968
2969         lowest_level = p->lowest_level;
2970         WARN_ON(p->nodes[0] != NULL);
2971
2972         if (p->search_commit_root) {
2973                 BUG_ON(time_seq);
2974                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2975         }
2976
2977 again:
2978         b = get_old_root(root, time_seq);
2979         level = btrfs_header_level(b);
2980         p->locks[level] = BTRFS_READ_LOCK;
2981
2982         while (b) {
2983                 level = btrfs_header_level(b);
2984                 p->nodes[level] = b;
2985                 btrfs_clear_path_blocking(p, NULL, 0);
2986
2987                 /*
2988                  * we have a lock on b and as long as we aren't changing
2989                  * the tree, there is no way to for the items in b to change.
2990                  * It is safe to drop the lock on our parent before we
2991                  * go through the expensive btree search on b.
2992                  */
2993                 btrfs_unlock_up_safe(p, level + 1);
2994
2995                 /*
2996                  * Since we can unwind ebs we want to do a real search every
2997                  * time.
2998                  */
2999                 prev_cmp = -1;
3000                 ret = key_search(b, key, level, &prev_cmp, &slot);
3001
3002                 if (level != 0) {
3003                         int dec = 0;
3004                         if (ret && slot > 0) {
3005                                 dec = 1;
3006                                 slot -= 1;
3007                         }
3008                         p->slots[level] = slot;
3009                         unlock_up(p, level, lowest_unlock, 0, NULL);
3010
3011                         if (level == lowest_level) {
3012                                 if (dec)
3013                                         p->slots[level]++;
3014                                 goto done;
3015                         }
3016
3017                         err = read_block_for_search(NULL, root, p, &b, level,
3018                                                     slot, key, time_seq);
3019                         if (err == -EAGAIN)
3020                                 goto again;
3021                         if (err) {
3022                                 ret = err;
3023                                 goto done;
3024                         }
3025
3026                         level = btrfs_header_level(b);
3027                         err = btrfs_tree_read_lock_atomic(b);
3028                         if (!err) {
3029                                 btrfs_set_path_blocking(p);
3030                                 btrfs_tree_read_lock(b);
3031                                 btrfs_clear_path_blocking(p, b,
3032                                                           BTRFS_READ_LOCK);
3033                         }
3034                         b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3035                         if (!b) {
3036                                 ret = -ENOMEM;
3037                                 goto done;
3038                         }
3039                         p->locks[level] = BTRFS_READ_LOCK;
3040                         p->nodes[level] = b;
3041                 } else {
3042                         p->slots[level] = slot;
3043                         unlock_up(p, level, lowest_unlock, 0, NULL);
3044                         goto done;
3045                 }
3046         }
3047         ret = 1;
3048 done:
3049         if (!p->leave_spinning)
3050                 btrfs_set_path_blocking(p);
3051         if (ret < 0)
3052                 btrfs_release_path(p);
3053
3054         return ret;
3055 }
3056
3057 /*
3058  * helper to use instead of search slot if no exact match is needed but
3059  * instead the next or previous item should be returned.
3060  * When find_higher is true, the next higher item is returned, the next lower
3061  * otherwise.
3062  * When return_any and find_higher are both true, and no higher item is found,
3063  * return the next lower instead.
3064  * When return_any is true and find_higher is false, and no lower item is found,
3065  * return the next higher instead.
3066  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3067  * < 0 on error
3068  */
3069 int btrfs_search_slot_for_read(struct btrfs_root *root,
3070                                struct btrfs_key *key, struct btrfs_path *p,
3071                                int find_higher, int return_any)
3072 {
3073         int ret;
3074         struct extent_buffer *leaf;
3075
3076 again:
3077         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3078         if (ret <= 0)
3079                 return ret;
3080         /*
3081          * a return value of 1 means the path is at the position where the
3082          * item should be inserted. Normally this is the next bigger item,
3083          * but in case the previous item is the last in a leaf, path points
3084          * to the first free slot in the previous leaf, i.e. at an invalid
3085          * item.
3086          */
3087         leaf = p->nodes[0];
3088
3089         if (find_higher) {
3090                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3091                         ret = btrfs_next_leaf(root, p);
3092                         if (ret <= 0)
3093                                 return ret;
3094                         if (!return_any)
3095                                 return 1;
3096                         /*
3097                          * no higher item found, return the next
3098                          * lower instead
3099                          */
3100                         return_any = 0;
3101                         find_higher = 0;
3102                         btrfs_release_path(p);
3103                         goto again;
3104                 }
3105         } else {
3106                 if (p->slots[0] == 0) {
3107                         ret = btrfs_prev_leaf(root, p);
3108                         if (ret < 0)
3109                                 return ret;
3110                         if (!ret) {
3111                                 leaf = p->nodes[0];
3112                                 if (p->slots[0] == btrfs_header_nritems(leaf))
3113                                         p->slots[0]--;
3114                                 return 0;
3115                         }
3116                         if (!return_any)
3117                                 return 1;
3118                         /*
3119                          * no lower item found, return the next
3120                          * higher instead
3121                          */
3122                         return_any = 0;
3123                         find_higher = 1;
3124                         btrfs_release_path(p);
3125                         goto again;
3126                 } else {
3127                         --p->slots[0];
3128                 }
3129         }
3130         return 0;
3131 }
3132
3133 /*
3134  * adjust the pointers going up the tree, starting at level
3135  * making sure the right key of each node is points to 'key'.
3136  * This is used after shifting pointers to the left, so it stops
3137  * fixing up pointers when a given leaf/node is not in slot 0 of the
3138  * higher levels
3139  *
3140  */
3141 static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3142                            struct btrfs_path *path,
3143                            struct btrfs_disk_key *key, int level)
3144 {
3145         int i;
3146         struct extent_buffer *t;
3147
3148         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3149                 int tslot = path->slots[i];
3150                 if (!path->nodes[i])
3151                         break;
3152                 t = path->nodes[i];
3153                 tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3154                 btrfs_set_node_key(t, key, tslot);
3155                 btrfs_mark_buffer_dirty(path->nodes[i]);
3156                 if (tslot != 0)
3157                         break;
3158         }
3159 }
3160
3161 /*
3162  * update item key.
3163  *
3164  * This function isn't completely safe. It's the caller's responsibility
3165  * that the new key won't break the order
3166  */
3167 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3168                              struct btrfs_path *path,
3169                              struct btrfs_key *new_key)
3170 {
3171         struct btrfs_disk_key disk_key;
3172         struct extent_buffer *eb;
3173         int slot;
3174
3175         eb = path->nodes[0];
3176         slot = path->slots[0];
3177         if (slot > 0) {
3178                 btrfs_item_key(eb, &disk_key, slot - 1);
3179                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3180         }
3181         if (slot < btrfs_header_nritems(eb) - 1) {
3182                 btrfs_item_key(eb, &disk_key, slot + 1);
3183                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3184         }
3185
3186         btrfs_cpu_key_to_disk(&disk_key, new_key);
3187         btrfs_set_item_key(eb, &disk_key, slot);
3188         btrfs_mark_buffer_dirty(eb);
3189         if (slot == 0)
3190                 fixup_low_keys(fs_info, path, &disk_key, 1);
3191 }
3192
3193 /*
3194  * try to push data from one node into the next node left in the
3195  * tree.
3196  *
3197  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3198  * error, and > 0 if there was no room in the left hand block.
3199  */
3200 static int push_node_left(struct btrfs_trans_handle *trans,
3201                           struct btrfs_root *root, struct extent_buffer *dst,
3202                           struct extent_buffer *src, int empty)
3203 {
3204         int push_items = 0;
3205         int src_nritems;
3206         int dst_nritems;
3207         int ret = 0;
3208
3209         src_nritems = btrfs_header_nritems(src);
3210         dst_nritems = btrfs_header_nritems(dst);
3211         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3212         WARN_ON(btrfs_header_generation(src) != trans->transid);
3213         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3214
3215         if (!empty && src_nritems <= 8)
3216                 return 1;
3217
3218         if (push_items <= 0)
3219                 return 1;
3220
3221         if (empty) {
3222                 push_items = min(src_nritems, push_items);
3223                 if (push_items < src_nritems) {
3224                         /* leave at least 8 pointers in the node if
3225                          * we aren't going to empty it
3226                          */
3227                         if (src_nritems - push_items < 8) {
3228                                 if (push_items <= 8)
3229                                         return 1;
3230                                 push_items -= 8;
3231                         }
3232                 }
3233         } else
3234                 push_items = min(src_nritems - 8, push_items);
3235
3236         ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3237                                    push_items);
3238         if (ret) {
3239                 btrfs_abort_transaction(trans, root, ret);
3240                 return ret;
3241         }
3242         copy_extent_buffer(dst, src,
3243                            btrfs_node_key_ptr_offset(dst_nritems),
3244                            btrfs_node_key_ptr_offset(0),
3245                            push_items * sizeof(struct btrfs_key_ptr));
3246
3247         if (push_items < src_nritems) {
3248                 /*
3249                  * don't call tree_mod_log_eb_move here, key removal was already
3250                  * fully logged by tree_mod_log_eb_copy above.
3251                  */
3252                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3253                                       btrfs_node_key_ptr_offset(push_items),
3254                                       (src_nritems - push_items) *
3255                                       sizeof(struct btrfs_key_ptr));
3256         }
3257         btrfs_set_header_nritems(src, src_nritems - push_items);
3258         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3259         btrfs_mark_buffer_dirty(src);
3260         btrfs_mark_buffer_dirty(dst);
3261
3262         return ret;
3263 }
3264
3265 /*
3266  * try to push data from one node into the next node right in the
3267  * tree.
3268  *
3269  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3270  * error, and > 0 if there was no room in the right hand block.
3271  *
3272  * this will  only push up to 1/2 the contents of the left node over
3273  */
3274 static int balance_node_right(struct btrfs_trans_handle *trans,
3275                               struct btrfs_root *root,
3276                               struct extent_buffer *dst,
3277                               struct extent_buffer *src)
3278 {
3279         int push_items = 0;
3280         int max_push;
3281         int src_nritems;
3282         int dst_nritems;
3283         int ret = 0;
3284
3285         WARN_ON(btrfs_header_generation(src) != trans->transid);
3286         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3287
3288         src_nritems = btrfs_header_nritems(src);
3289         dst_nritems = btrfs_header_nritems(dst);
3290         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3291         if (push_items <= 0)
3292                 return 1;
3293
3294         if (src_nritems < 4)
3295                 return 1;
3296
3297         max_push = src_nritems / 2 + 1;
3298         /* don't try to empty the node */
3299         if (max_push >= src_nritems)
3300                 return 1;
3301
3302         if (max_push < push_items)
3303                 push_items = max_push;
3304
3305         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3306         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3307                                       btrfs_node_key_ptr_offset(0),
3308                                       (dst_nritems) *
3309                                       sizeof(struct btrfs_key_ptr));
3310
3311         ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3312                                    src_nritems - push_items, push_items);
3313         if (ret) {
3314                 btrfs_abort_transaction(trans, root, ret);
3315                 return ret;
3316         }
3317         copy_extent_buffer(dst, src,
3318                            btrfs_node_key_ptr_offset(0),
3319                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3320                            push_items * sizeof(struct btrfs_key_ptr));
3321
3322         btrfs_set_header_nritems(src, src_nritems - push_items);
3323         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3324
3325         btrfs_mark_buffer_dirty(src);
3326         btrfs_mark_buffer_dirty(dst);
3327
3328         return ret;
3329 }
3330
3331 /*
3332  * helper function to insert a new root level in the tree.
3333  * A new node is allocated, and a single item is inserted to
3334  * point to the existing root
3335  *
3336  * returns zero on success or < 0 on failure.
3337  */
3338 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3339                            struct btrfs_root *root,
3340                            struct btrfs_path *path, int level)
3341 {
3342         u64 lower_gen;
3343         struct extent_buffer *lower;
3344         struct extent_buffer *c;
3345         struct extent_buffer *old;
3346         struct btrfs_disk_key lower_key;
3347
3348         BUG_ON(path->nodes[level]);
3349         BUG_ON(path->nodes[level-1] != root->node);
3350
3351         lower = path->nodes[level-1];
3352         if (level == 1)
3353                 btrfs_item_key(lower, &lower_key, 0);
3354         else
3355                 btrfs_node_key(lower, &lower_key, 0);
3356
3357         c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3358                                    &lower_key, level, root->node->start, 0);
3359         if (IS_ERR(c))
3360                 return PTR_ERR(c);
3361
3362         root_add_used(root, root->nodesize);
3363
3364         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3365         btrfs_set_header_nritems(c, 1);
3366         btrfs_set_header_level(c, level);
3367         btrfs_set_header_bytenr(c, c->start);
3368         btrfs_set_header_generation(c, trans->transid);
3369         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3370         btrfs_set_header_owner(c, root->root_key.objectid);
3371
3372         write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3373                             BTRFS_FSID_SIZE);
3374
3375         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3376                             btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3377
3378         btrfs_set_node_key(c, &lower_key, 0);
3379         btrfs_set_node_blockptr(c, 0, lower->start);
3380         lower_gen = btrfs_header_generation(lower);
3381         WARN_ON(lower_gen != trans->transid);
3382
3383         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3384
3385         btrfs_mark_buffer_dirty(c);
3386
3387         old = root->node;
3388         tree_mod_log_set_root_pointer(root, c, 0);
3389         rcu_assign_pointer(root->node, c);
3390
3391         /* the super has an extra ref to root->node */
3392         free_extent_buffer(old);
3393
3394         add_root_to_dirty_list(root);
3395         extent_buffer_get(c);
3396         path->nodes[level] = c;
3397         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3398         path->slots[level] = 0;
3399         return 0;
3400 }
3401
3402 /*
3403  * worker function to insert a single pointer in a node.
3404  * the node should have enough room for the pointer already
3405  *
3406  * slot and level indicate where you want the key to go, and
3407  * blocknr is the block the key points to.
3408  */
3409 static void insert_ptr(struct btrfs_trans_handle *trans,
3410                        struct btrfs_root *root, struct btrfs_path *path,
3411                        struct btrfs_disk_key *key, u64 bytenr,
3412                        int slot, int level)
3413 {
3414         struct extent_buffer *lower;
3415         int nritems;
3416         int ret;
3417
3418         BUG_ON(!path->nodes[level]);
3419         btrfs_assert_tree_locked(path->nodes[level]);
3420         lower = path->nodes[level];
3421         nritems = btrfs_header_nritems(lower);
3422         BUG_ON(slot > nritems);
3423         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3424         if (slot != nritems) {
3425                 if (level)
3426                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3427                                              slot, nritems - slot);
3428                 memmove_extent_buffer(lower,
3429                               btrfs_node_key_ptr_offset(slot + 1),
3430                               btrfs_node_key_ptr_offset(slot),
3431                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3432         }
3433         if (level) {
3434                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3435                                               MOD_LOG_KEY_ADD, GFP_NOFS);
3436                 BUG_ON(ret < 0);
3437         }
3438         btrfs_set_node_key(lower, key, slot);
3439         btrfs_set_node_blockptr(lower, slot, bytenr);
3440         WARN_ON(trans->transid == 0);
3441         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3442         btrfs_set_header_nritems(lower, nritems + 1);
3443         btrfs_mark_buffer_dirty(lower);
3444 }
3445
3446 /*
3447  * split the node at the specified level in path in two.
3448  * The path is corrected to point to the appropriate node after the split
3449  *
3450  * Before splitting this tries to make some room in the node by pushing
3451  * left and right, if either one works, it returns right away.
3452  *
3453  * returns 0 on success and < 0 on failure
3454  */
3455 static noinline int split_node(struct btrfs_trans_handle *trans,
3456                                struct btrfs_root *root,
3457                                struct btrfs_path *path, int level)
3458 {
3459         struct extent_buffer *c;
3460         struct extent_buffer *split;
3461         struct btrfs_disk_key disk_key;
3462         int mid;
3463         int ret;
3464         u32 c_nritems;
3465
3466         c = path->nodes[level];
3467         WARN_ON(btrfs_header_generation(c) != trans->transid);
3468         if (c == root->node) {
3469                 /*
3470                  * trying to split the root, lets make a new one
3471                  *
3472                  * tree mod log: We don't log_removal old root in
3473                  * insert_new_root, because that root buffer will be kept as a
3474                  * normal node. We are going to log removal of half of the
3475                  * elements below with tree_mod_log_eb_copy. We're holding a
3476                  * tree lock on the buffer, which is why we cannot race with
3477                  * other tree_mod_log users.
3478                  */
3479                 ret = insert_new_root(trans, root, path, level + 1);
3480                 if (ret)
3481                         return ret;
3482         } else {
3483                 ret = push_nodes_for_insert(trans, root, path, level);
3484                 c = path->nodes[level];
3485                 if (!ret && btrfs_header_nritems(c) <
3486                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3487                         return 0;
3488                 if (ret < 0)
3489                         return ret;
3490         }
3491
3492         c_nritems = btrfs_header_nritems(c);
3493         mid = (c_nritems + 1) / 2;
3494         btrfs_node_key(c, &disk_key, mid);
3495
3496         split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3497                         &disk_key, level, c->start, 0);
3498         if (IS_ERR(split))
3499                 return PTR_ERR(split);
3500
3501         root_add_used(root, root->nodesize);
3502
3503         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3504         btrfs_set_header_level(split, btrfs_header_level(c));
3505         btrfs_set_header_bytenr(split, split->start);
3506         btrfs_set_header_generation(split, trans->transid);
3507         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3508         btrfs_set_header_owner(split, root->root_key.objectid);
3509         write_extent_buffer(split, root->fs_info->fsid,
3510                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
3511         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3512                             btrfs_header_chunk_tree_uuid(split),
3513                             BTRFS_UUID_SIZE);
3514
3515         ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3516                                    mid, c_nritems - mid);
3517         if (ret) {
3518                 btrfs_abort_transaction(trans, root, ret);
3519                 return ret;
3520         }
3521         copy_extent_buffer(split, c,
3522                            btrfs_node_key_ptr_offset(0),
3523                            btrfs_node_key_ptr_offset(mid),
3524                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3525         btrfs_set_header_nritems(split, c_nritems - mid);
3526         btrfs_set_header_nritems(c, mid);
3527         ret = 0;
3528
3529         btrfs_mark_buffer_dirty(c);
3530         btrfs_mark_buffer_dirty(split);
3531
3532         insert_ptr(trans, root, path, &disk_key, split->start,
3533                    path->slots[level + 1] + 1, level + 1);
3534
3535         if (path->slots[level] >= mid) {
3536                 path->slots[level] -= mid;
3537                 btrfs_tree_unlock(c);
3538                 free_extent_buffer(c);
3539                 path->nodes[level] = split;
3540                 path->slots[level + 1] += 1;
3541         } else {
3542                 btrfs_tree_unlock(split);
3543                 free_extent_buffer(split);
3544         }
3545         return ret;
3546 }
3547
3548 /*
3549  * how many bytes are required to store the items in a leaf.  start
3550  * and nr indicate which items in the leaf to check.  This totals up the
3551  * space used both by the item structs and the item data
3552  */
3553 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3554 {
3555         struct btrfs_item *start_item;
3556         struct btrfs_item *end_item;
3557         struct btrfs_map_token token;
3558         int data_len;
3559         int nritems = btrfs_header_nritems(l);
3560         int end = min(nritems, start + nr) - 1;
3561
3562         if (!nr)
3563                 return 0;
3564         btrfs_init_map_token(&token);
3565         start_item = btrfs_item_nr(start);
3566         end_item = btrfs_item_nr(end);
3567         data_len = btrfs_token_item_offset(l, start_item, &token) +
3568                 btrfs_token_item_size(l, start_item, &token);
3569         data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3570         data_len += sizeof(struct btrfs_item) * nr;
3571         WARN_ON(data_len < 0);
3572         return data_len;
3573 }
3574
3575 /*
3576  * The space between the end of the leaf items and
3577  * the start of the leaf data.  IOW, how much room
3578  * the leaf has left for both items and data
3579  */
3580 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3581                                    struct extent_buffer *leaf)
3582 {
3583         int nritems = btrfs_header_nritems(leaf);
3584         int ret;
3585         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3586         if (ret < 0) {
3587                 btrfs_crit(root->fs_info,
3588                         "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3589                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3590                        leaf_space_used(leaf, 0, nritems), nritems);
3591         }
3592         return ret;
3593 }
3594
3595 /*
3596  * min slot controls the lowest index we're willing to push to the
3597  * right.  We'll push up to and including min_slot, but no lower
3598  */
3599 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3600                                       struct btrfs_root *root,
3601                                       struct btrfs_path *path,
3602                                       int data_size, int empty,
3603                                       struct extent_buffer *right,
3604                                       int free_space, u32 left_nritems,
3605                                       u32 min_slot)
3606 {
3607         struct extent_buffer *left = path->nodes[0];
3608         struct extent_buffer *upper = path->nodes[1];
3609         struct btrfs_map_token token;
3610         struct btrfs_disk_key disk_key;
3611         int slot;
3612         u32 i;
3613         int push_space = 0;
3614         int push_items = 0;
3615         struct btrfs_item *item;
3616         u32 nr;
3617         u32 right_nritems;
3618         u32 data_end;
3619         u32 this_item_size;
3620
3621         btrfs_init_map_token(&token);
3622
3623         if (empty)
3624                 nr = 0;
3625         else
3626                 nr = max_t(u32, 1, min_slot);
3627
3628         if (path->slots[0] >= left_nritems)
3629                 push_space += data_size;
3630
3631         slot = path->slots[1];
3632         i = left_nritems - 1;
3633         while (i >= nr) {
3634                 item = btrfs_item_nr(i);
3635
3636                 if (!empty && push_items > 0) {
3637                         if (path->slots[0] > i)
3638                                 break;
3639                         if (path->slots[0] == i) {
3640                                 int space = btrfs_leaf_free_space(root, left);
3641                                 if (space + push_space * 2 > free_space)
3642                                         break;
3643                         }
3644                 }
3645
3646                 if (path->slots[0] == i)
3647                         push_space += data_size;
3648
3649                 this_item_size = btrfs_item_size(left, item);
3650                 if (this_item_size + sizeof(*item) + push_space > free_space)
3651                         break;
3652
3653                 push_items++;
3654                 push_space += this_item_size + sizeof(*item);
3655                 if (i == 0)
3656                         break;
3657                 i--;
3658         }
3659
3660         if (push_items == 0)
3661                 goto out_unlock;
3662
3663         WARN_ON(!empty && push_items == left_nritems);
3664
3665         /* push left to right */
3666         right_nritems = btrfs_header_nritems(right);
3667
3668         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3669         push_space -= leaf_data_end(root, left);
3670
3671         /* make room in the right data area */
3672         data_end = leaf_data_end(root, right);
3673         memmove_extent_buffer(right,
3674                               btrfs_leaf_data(right) + data_end - push_space,
3675                               btrfs_leaf_data(right) + data_end,
3676                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3677
3678         /* copy from the left data area */
3679         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3680                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3681                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3682                      push_space);
3683
3684         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3685                               btrfs_item_nr_offset(0),
3686                               right_nritems * sizeof(struct btrfs_item));
3687
3688         /* copy the items from left to right */
3689         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3690                    btrfs_item_nr_offset(left_nritems - push_items),
3691                    push_items * sizeof(struct btrfs_item));
3692
3693         /* update the item pointers */
3694         right_nritems += push_items;
3695         btrfs_set_header_nritems(right, right_nritems);
3696         push_space = BTRFS_LEAF_DATA_SIZE(root);
3697         for (i = 0; i < right_nritems; i++) {
3698                 item = btrfs_item_nr(i);
3699                 push_space -= btrfs_token_item_size(right, item, &token);
3700                 btrfs_set_token_item_offset(right, item, push_space, &token);
3701         }
3702
3703         left_nritems -= push_items;
3704         btrfs_set_header_nritems(left, left_nritems);
3705
3706         if (left_nritems)
3707                 btrfs_mark_buffer_dirty(left);
3708         else
3709                 clean_tree_block(trans, root->fs_info, left);
3710
3711         btrfs_mark_buffer_dirty(right);
3712
3713         btrfs_item_key(right, &disk_key, 0);
3714         btrfs_set_node_key(upper, &disk_key, slot + 1);
3715         btrfs_mark_buffer_dirty(upper);
3716
3717         /* then fixup the leaf pointer in the path */
3718         if (path->slots[0] >= left_nritems) {
3719                 path->slots[0] -= left_nritems;
3720                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3721                         clean_tree_block(trans, root->fs_info, path->nodes[0]);
3722                 btrfs_tree_unlock(path->nodes[0]);
3723                 free_extent_buffer(path->nodes[0]);
3724                 path->nodes[0] = right;
3725                 path->slots[1] += 1;
3726         } else {
3727                 btrfs_tree_unlock(right);
3728                 free_extent_buffer(right);
3729         }
3730         return 0;
3731
3732 out_unlock:
3733         btrfs_tree_unlock(right);
3734         free_extent_buffer(right);
3735         return 1;
3736 }
3737
3738 /*
3739  * push some data in the path leaf to the right, trying to free up at
3740  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3741  *
3742  * returns 1 if the push failed because the other node didn't have enough
3743  * room, 0 if everything worked out and < 0 if there were major errors.
3744  *
3745  * this will push starting from min_slot to the end of the leaf.  It won't
3746  * push any slot lower than min_slot
3747  */
3748 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3749                            *root, struct btrfs_path *path,
3750                            int min_data_size, int data_size,
3751                            int empty, u32 min_slot)
3752 {
3753         struct extent_buffer *left = path->nodes[0];
3754         struct extent_buffer *right;
3755         struct extent_buffer *upper;
3756         int slot;
3757         int free_space;
3758         u32 left_nritems;
3759         int ret;
3760
3761         if (!path->nodes[1])
3762                 return 1;
3763
3764         slot = path->slots[1];
3765         upper = path->nodes[1];
3766         if (slot >= btrfs_header_nritems(upper) - 1)
3767                 return 1;
3768
3769         btrfs_assert_tree_locked(path->nodes[1]);
3770
3771         right = read_node_slot(root, upper, slot + 1);
3772         if (right == NULL)
3773                 return 1;
3774
3775         btrfs_tree_lock(right);
3776         btrfs_set_lock_blocking(right);
3777
3778         free_space = btrfs_leaf_free_space(root, right);
3779         if (free_space < data_size)
3780                 goto out_unlock;
3781
3782         /* cow and double check */
3783         ret = btrfs_cow_block(trans, root, right, upper,
3784                               slot + 1, &right);
3785         if (ret)
3786                 goto out_unlock;
3787
3788         free_space = btrfs_leaf_free_space(root, right);
3789         if (free_space < data_size)
3790                 goto out_unlock;
3791
3792         left_nritems = btrfs_header_nritems(left);
3793         if (left_nritems == 0)
3794                 goto out_unlock;
3795
3796         if (path->slots[0] == left_nritems && !empty) {
3797                 /* Key greater than all keys in the leaf, right neighbor has
3798                  * enough room for it and we're not emptying our leaf to delete
3799                  * it, therefore use right neighbor to insert the new item and
3800                  * no need to touch/dirty our left leaft. */
3801                 btrfs_tree_unlock(left);
3802                 free_extent_buffer(left);
3803                 path->nodes[0] = right;
3804                 path->slots[0] = 0;
3805                 path->slots[1]++;
3806                 return 0;
3807         }
3808
3809         return __push_leaf_right(trans, root, path, min_data_size, empty,
3810                                 right, free_space, left_nritems, min_slot);
3811 out_unlock:
3812         btrfs_tree_unlock(right);
3813         free_extent_buffer(right);
3814         return 1;
3815 }
3816
3817 /*
3818  * push some data in the path leaf to the left, trying to free up at
3819  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3820  *
3821  * max_slot can put a limit on how far into the leaf we'll push items.  The
3822  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3823  * items
3824  */
3825 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3826                                      struct btrfs_root *root,
3827                                      struct btrfs_path *path, int data_size,
3828                                      int empty, struct extent_buffer *left,
3829                                      int free_space, u32 right_nritems,
3830                                      u32 max_slot)
3831 {
3832         struct btrfs_disk_key disk_key;
3833         struct extent_buffer *right = path->nodes[0];
3834         int i;
3835         int push_space = 0;
3836         int push_items = 0;
3837         struct btrfs_item *item;
3838         u32 old_left_nritems;
3839         u32 nr;
3840         int ret = 0;
3841         u32 this_item_size;
3842         u32 old_left_item_size;
3843         struct btrfs_map_token token;
3844
3845         btrfs_init_map_token(&token);
3846
3847         if (empty)
3848                 nr = min(right_nritems, max_slot);
3849         else
3850                 nr = min(right_nritems - 1, max_slot);
3851
3852         for (i = 0; i < nr; i++) {
3853                 item = btrfs_item_nr(i);
3854
3855                 if (!empty && push_items > 0) {
3856                         if (path->slots[0] < i)
3857                                 break;
3858                         if (path->slots[0] == i) {
3859                                 int space = btrfs_leaf_free_space(root, right);
3860                                 if (space + push_space * 2 > free_space)
3861                                         break;
3862                         }
3863                 }
3864
3865                 if (path->slots[0] == i)
3866                         push_space += data_size;
3867
3868                 this_item_size = btrfs_item_size(right, item);
3869                 if (this_item_size + sizeof(*item) + push_space > free_space)
3870                         break;
3871
3872                 push_items++;
3873                 push_space += this_item_size + sizeof(*item);
3874         }
3875
3876         if (push_items == 0) {
3877                 ret = 1;
3878                 goto out;
3879         }
3880         WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3881
3882         /* push data from right to left */
3883         copy_extent_buffer(left, right,
3884                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3885                            btrfs_item_nr_offset(0),
3886                            push_items * sizeof(struct btrfs_item));
3887
3888         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3889                      btrfs_item_offset_nr(right, push_items - 1);
3890
3891         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3892                      leaf_data_end(root, left) - push_space,
3893                      btrfs_leaf_data(right) +
3894                      btrfs_item_offset_nr(right, push_items - 1),
3895                      push_space);
3896         old_left_nritems = btrfs_header_nritems(left);
3897         BUG_ON(old_left_nritems <= 0);
3898
3899         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3900         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3901                 u32 ioff;
3902
3903                 item = btrfs_item_nr(i);
3904
3905                 ioff = btrfs_token_item_offset(left, item, &token);
3906                 btrfs_set_token_item_offset(left, item,
3907                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3908                       &token);
3909         }
3910         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3911
3912         /* fixup right node */
3913         if (push_items > right_nritems)
3914                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3915                        right_nritems);
3916
3917         if (push_items < right_nritems) {
3918                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3919                                                   leaf_data_end(root, right);
3920                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3921                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3922                                       btrfs_leaf_data(right) +
3923                                       leaf_data_end(root, right), push_space);
3924
3925                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3926                               btrfs_item_nr_offset(push_items),
3927                              (btrfs_header_nritems(right) - push_items) *
3928                              sizeof(struct btrfs_item));
3929         }
3930         right_nritems -= push_items;
3931         btrfs_set_header_nritems(right, right_nritems);
3932         push_space = BTRFS_LEAF_DATA_SIZE(root);
3933         for (i = 0; i < right_nritems; i++) {
3934                 item = btrfs_item_nr(i);
3935
3936                 push_space = push_space - btrfs_token_item_size(right,
3937                                                                 item, &token);
3938                 btrfs_set_token_item_offset(right, item, push_space, &token);
3939         }
3940
3941         btrfs_mark_buffer_dirty(left);
3942         if (right_nritems)
3943                 btrfs_mark_buffer_dirty(right);
3944         else
3945                 clean_tree_block(trans, root->fs_info, right);
3946
3947         btrfs_item_key(right, &disk_key, 0);
3948         fixup_low_keys(root->fs_info, path, &disk_key, 1);
3949
3950         /* then fixup the leaf pointer in the path */
3951         if (path->slots[0] < push_items) {
3952                 path->slots[0] += old_left_nritems;
3953                 btrfs_tree_unlock(path->nodes[0]);
3954                 free_extent_buffer(path->nodes[0]);
3955                 path->nodes[0] = left;
3956                 path->slots[1] -= 1;
3957         } else {
3958                 btrfs_tree_unlock(left);
3959                 free_extent_buffer(left);
3960                 path->slots[0] -= push_items;
3961         }
3962         BUG_ON(path->slots[0] < 0);
3963         return ret;
3964 out:
3965         btrfs_tree_unlock(left);
3966         free_extent_buffer(left);
3967         return ret;
3968 }
3969
3970 /*
3971  * push some data in the path leaf to the left, trying to free up at
3972  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3973  *
3974  * max_slot can put a limit on how far into the leaf we'll push items.  The
3975  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3976  * items
3977  */
3978 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3979                           *root, struct btrfs_path *path, int min_data_size,
3980                           int data_size, int empty, u32 max_slot)
3981 {
3982         struct extent_buffer *right = path->nodes[0];
3983         struct extent_buffer *left;
3984         int slot;
3985         int free_space;
3986         u32 right_nritems;
3987         int ret = 0;
3988
3989         slot = path->slots[1];
3990         if (slot == 0)
3991                 return 1;
3992         if (!path->nodes[1])
3993                 return 1;
3994
3995         right_nritems = btrfs_header_nritems(right);
3996         if (right_nritems == 0)
3997                 return 1;
3998
3999         btrfs_assert_tree_locked(path->nodes[1]);
4000
4001         left = read_node_slot(root, path->nodes[1], slot - 1);
4002         if (left == NULL)
4003                 return 1;
4004
4005         btrfs_tree_lock(left);
4006         btrfs_set_lock_blocking(left);
4007
4008         free_space = btrfs_leaf_free_space(root, left);
4009         if (free_space < data_size) {
4010                 ret = 1;
4011                 goto out;
4012         }
4013
4014         /* cow and double check */
4015         ret = btrfs_cow_block(trans, root, left,
4016                               path->nodes[1], slot - 1, &left);
4017         if (ret) {
4018                 /* we hit -ENOSPC, but it isn't fatal here */
4019                 if (ret == -ENOSPC)
4020                         ret = 1;
4021                 goto out;
4022         }
4023
4024         free_space = btrfs_leaf_free_space(root, left);
4025         if (free_space < data_size) {
4026                 ret = 1;
4027                 goto out;
4028         }
4029
4030         return __push_leaf_left(trans, root, path, min_data_size,
4031                                empty, left, free_space, right_nritems,
4032                                max_slot);
4033 out:
4034         btrfs_tree_unlock(left);
4035         free_extent_buffer(left);
4036         return ret;
4037 }
4038
4039 /*
4040  * split the path's leaf in two, making sure there is at least data_size
4041  * available for the resulting leaf level of the path.
4042  */
4043 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4044                                     struct btrfs_root *root,
4045                                     struct btrfs_path *path,
4046                                     struct extent_buffer *l,
4047                                     struct extent_buffer *right,
4048                                     int slot, int mid, int nritems)
4049 {
4050         int data_copy_size;
4051         int rt_data_off;
4052         int i;
4053         struct btrfs_disk_key disk_key;
4054         struct btrfs_map_token token;
4055
4056         btrfs_init_map_token(&token);
4057
4058         nritems = nritems - mid;
4059         btrfs_set_header_nritems(right, nritems);
4060         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4061
4062         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4063                            btrfs_item_nr_offset(mid),
4064                            nritems * sizeof(struct btrfs_item));
4065
4066         copy_extent_buffer(right, l,
4067                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4068                      data_copy_size, btrfs_leaf_data(l) +
4069                      leaf_data_end(root, l), data_copy_size);
4070
4071         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4072                       btrfs_item_end_nr(l, mid);
4073
4074         for (i = 0; i < nritems; i++) {
4075                 struct btrfs_item *item = btrfs_item_nr(i);
4076                 u32 ioff;
4077
4078                 ioff = btrfs_token_item_offset(right, item, &token);
4079                 btrfs_set_token_item_offset(right, item,
4080                                             ioff + rt_data_off, &token);
4081         }
4082
4083         btrfs_set_header_nritems(l, mid);
4084         btrfs_item_key(right, &disk_key, 0);
4085         insert_ptr(trans, root, path, &disk_key, right->start,
4086                    path->slots[1] + 1, 1);
4087
4088         btrfs_mark_buffer_dirty(right);
4089         btrfs_mark_buffer_dirty(l);
4090         BUG_ON(path->slots[0] != slot);
4091
4092         if (mid <= slot) {
4093                 btrfs_tree_unlock(path->nodes[0]);
4094                 free_extent_buffer(path->nodes[0]);
4095                 path->nodes[0] = right;
4096                 path->slots[0] -= mid;
4097                 path->slots[1] += 1;
4098         } else {
4099                 btrfs_tree_unlock(right);
4100                 free_extent_buffer(right);
4101         }
4102
4103         BUG_ON(path->slots[0] < 0);
4104 }
4105
4106 /*
4107  * double splits happen when we need to insert a big item in the middle
4108  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4109  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4110  *          A                 B                 C
4111  *
4112  * We avoid this by trying to push the items on either side of our target
4113  * into the adjacent leaves.  If all goes well we can avoid the double split
4114  * completely.
4115  */
4116 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4117                                           struct btrfs_root *root,
4118                                           struct btrfs_path *path,
4119                                           int data_size)
4120 {
4121         int ret;
4122         int progress = 0;
4123         int slot;
4124         u32 nritems;
4125         int space_needed = data_size;
4126
4127         slot = path->slots[0];
4128         if (slot < btrfs_header_nritems(path->nodes[0]))
4129                 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4130
4131         /*
4132          * try to push all the items after our slot into the
4133          * right leaf
4134          */
4135         ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4136         if (ret < 0)
4137                 return ret;
4138
4139         if (ret == 0)
4140                 progress++;
4141
4142         nritems = btrfs_header_nritems(path->nodes[0]);
4143         /*
4144          * our goal is to get our slot at the start or end of a leaf.  If
4145          * we've done so we're done
4146          */
4147         if (path->slots[0] == 0 || path->slots[0] == nritems)
4148                 return 0;
4149
4150         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4151                 return 0;
4152
4153         /* try to push all the items before our slot into the next leaf */
4154         slot = path->slots[0];
4155         ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4156         if (ret < 0)
4157                 return ret;
4158
4159         if (ret == 0)
4160                 progress++;
4161
4162         if (progress)
4163                 return 0;
4164         return 1;
4165 }
4166
4167 /*
4168  * split the path's leaf in two, making sure there is at least data_size
4169  * available for the resulting leaf level of the path.
4170  *
4171  * returns 0 if all went well and < 0 on failure.
4172  */
4173 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4174                                struct btrfs_root *root,
4175                                struct btrfs_key *ins_key,
4176                                struct btrfs_path *path, int data_size,
4177                                int extend)
4178 {
4179         struct btrfs_disk_key disk_key;
4180         struct extent_buffer *l;
4181         u32 nritems;
4182         int mid;
4183         int slot;
4184         struct extent_buffer *right;
4185         struct btrfs_fs_info *fs_info = root->fs_info;
4186         int ret = 0;
4187         int wret;
4188         int split;
4189         int num_doubles = 0;
4190         int tried_avoid_double = 0;
4191
4192         l = path->nodes[0];
4193         slot = path->slots[0];
4194         if (extend && data_size + btrfs_item_size_nr(l, slot) +
4195             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4196                 return -EOVERFLOW;
4197
4198         /* first try to make some room by pushing left and right */
4199         if (data_size && path->nodes[1]) {
4200                 int space_needed = data_size;
4201
4202                 if (slot < btrfs_header_nritems(l))
4203                         space_needed -= btrfs_leaf_free_space(root, l);
4204
4205                 wret = push_leaf_right(trans, root, path, space_needed,
4206                                        space_needed, 0, 0);
4207                 if (wret < 0)
4208                         return wret;
4209                 if (wret) {
4210                         wret = push_leaf_left(trans, root, path, space_needed,
4211                                               space_needed, 0, (u32)-1);
4212                         if (wret < 0)
4213                                 return wret;
4214                 }
4215                 l = path->nodes[0];
4216
4217                 /* did the pushes work? */
4218                 if (btrfs_leaf_free_space(root, l) >= data_size)
4219                         return 0;
4220         }
4221
4222         if (!path->nodes[1]) {
4223                 ret = insert_new_root(trans, root, path, 1);
4224                 if (ret)
4225                         return ret;
4226         }
4227 again:
4228         split = 1;
4229         l = path->nodes[0];
4230         slot = path->slots[0];
4231         nritems = btrfs_header_nritems(l);
4232         mid = (nritems + 1) / 2;
4233
4234         if (mid <= slot) {
4235                 if (nritems == 1 ||
4236                     leaf_space_used(l, mid, nritems - mid) + data_size >
4237                         BTRFS_LEAF_DATA_SIZE(root)) {
4238                         if (slot >= nritems) {
4239                                 split = 0;
4240                         } else {
4241                                 mid = slot;
4242                                 if (mid != nritems &&
4243                                     leaf_space_used(l, mid, nritems - mid) +
4244                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4245                                         if (data_size && !tried_avoid_double)
4246                                                 goto push_for_double;
4247                                         split = 2;
4248                                 }
4249                         }
4250                 }
4251         } else {
4252                 if (leaf_space_used(l, 0, mid) + data_size >
4253                         BTRFS_LEAF_DATA_SIZE(root)) {
4254                         if (!extend && data_size && slot == 0) {
4255                                 split = 0;
4256                         } else if ((extend || !data_size) && slot == 0) {
4257                                 mid = 1;
4258                         } else {
4259                                 mid = slot;
4260                                 if (mid != nritems &&
4261                                     leaf_space_used(l, mid, nritems - mid) +
4262                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4263                                         if (data_size && !tried_avoid_double)
4264                                                 goto push_for_double;
4265                                         split = 2;
4266                                 }
4267                         }
4268                 }
4269         }
4270
4271         if (split == 0)
4272                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4273         else
4274                 btrfs_item_key(l, &disk_key, mid);
4275
4276         right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4277                         &disk_key, 0, l->start, 0);
4278         if (IS_ERR(right))
4279                 return PTR_ERR(right);
4280
4281         root_add_used(root, root->nodesize);
4282
4283         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4284         btrfs_set_header_bytenr(right, right->start);
4285         btrfs_set_header_generation(right, trans->transid);
4286         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4287         btrfs_set_header_owner(right, root->root_key.objectid);
4288         btrfs_set_header_level(right, 0);
4289         write_extent_buffer(right, fs_info->fsid,
4290                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
4291
4292         write_extent_buffer(right, fs_info->chunk_tree_uuid,
4293                             btrfs_header_chunk_tree_uuid(right),
4294                             BTRFS_UUID_SIZE);
4295
4296         if (split == 0) {
4297                 if (mid <= slot) {
4298                         btrfs_set_header_nritems(right, 0);
4299                         insert_ptr(trans, root, path, &disk_key, right->start,
4300                                    path->slots[1] + 1, 1);
4301                         btrfs_tree_unlock(path->nodes[0]);
4302                         free_extent_buffer(path->nodes[0]);
4303                         path->nodes[0] = right;
4304                         path->slots[0] = 0;
4305                         path->slots[1] += 1;
4306                 } else {
4307                         btrfs_set_header_nritems(right, 0);
4308                         insert_ptr(trans, root, path, &disk_key, right->start,
4309                                           path->slots[1], 1);
4310                         btrfs_tree_unlock(path->nodes[0]);
4311                         free_extent_buffer(path->nodes[0]);
4312                         path->nodes[0] = right;
4313                         path->slots[0] = 0;
4314                         if (path->slots[1] == 0)
4315                                 fixup_low_keys(fs_info, path, &disk_key, 1);
4316                 }
4317                 btrfs_mark_buffer_dirty(right);
4318                 return ret;
4319         }
4320
4321         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4322
4323         if (split == 2) {
4324                 BUG_ON(num_doubles != 0);
4325                 num_doubles++;
4326                 goto again;
4327         }
4328
4329         return 0;
4330
4331 push_for_double:
4332         push_for_double_split(trans, root, path, data_size);
4333         tried_avoid_double = 1;
4334         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4335                 return 0;
4336         goto again;
4337 }
4338
4339 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4340                                          struct btrfs_root *root,
4341                                          struct btrfs_path *path, int ins_len)
4342 {
4343         struct btrfs_key key;
4344         struct extent_buffer *leaf;
4345         struct btrfs_file_extent_item *fi;
4346         u64 extent_len = 0;
4347         u32 item_size;
4348         int ret;
4349
4350         leaf = path->nodes[0];
4351         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4352
4353         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4354                key.type != BTRFS_EXTENT_CSUM_KEY);
4355
4356         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4357                 return 0;
4358
4359         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4360         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4361                 fi = btrfs_item_ptr(leaf, path->slots[0],
4362                                     struct btrfs_file_extent_item);
4363                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4364         }
4365         btrfs_release_path(path);
4366
4367         path->keep_locks = 1;
4368         path->search_for_split = 1;
4369         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4370         path->search_for_split = 0;
4371         if (ret > 0)
4372                 ret = -EAGAIN;
4373         if (ret < 0)
4374                 goto err;
4375
4376         ret = -EAGAIN;
4377         leaf = path->nodes[0];
4378         /* if our item isn't there, return now */
4379         if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4380                 goto err;
4381
4382         /* the leaf has  changed, it now has room.  return now */
4383         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4384                 goto err;
4385
4386         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4387                 fi = btrfs_item_ptr(leaf, path->slots[0],
4388                                     struct btrfs_file_extent_item);
4389                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4390                         goto err;
4391         }
4392
4393         btrfs_set_path_blocking(path);
4394         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4395         if (ret)
4396                 goto err;
4397
4398         path->keep_locks = 0;
4399         btrfs_unlock_up_safe(path, 1);
4400         return 0;
4401 err:
4402         path->keep_locks = 0;
4403         return ret;
4404 }
4405
4406 static noinline int split_item(struct btrfs_trans_handle *trans,
4407                                struct btrfs_root *root,
4408                                struct btrfs_path *path,
4409                                struct btrfs_key *new_key,
4410                                unsigned long split_offset)
4411 {
4412         struct extent_buffer *leaf;
4413         struct btrfs_item *item;
4414         struct btrfs_item *new_item;
4415         int slot;
4416         char *buf;
4417         u32 nritems;
4418         u32 item_size;
4419         u32 orig_offset;
4420         struct btrfs_disk_key disk_key;
4421
4422         leaf = path->nodes[0];
4423         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4424
4425         btrfs_set_path_blocking(path);
4426
4427         item = btrfs_item_nr(path->slots[0]);
4428         orig_offset = btrfs_item_offset(leaf, item);
4429         item_size = btrfs_item_size(leaf, item);
4430
4431         buf = kmalloc(item_size, GFP_NOFS);
4432         if (!buf)
4433                 return -ENOMEM;
4434
4435         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4436                             path->slots[0]), item_size);
4437
4438         slot = path->slots[0] + 1;
4439         nritems = btrfs_header_nritems(leaf);
4440         if (slot != nritems) {
4441                 /* shift the items */
4442                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4443                                 btrfs_item_nr_offset(slot),
4444                                 (nritems - slot) * sizeof(struct btrfs_item));
4445         }
4446
4447         btrfs_cpu_key_to_disk(&disk_key, new_key);
4448         btrfs_set_item_key(leaf, &disk_key, slot);
4449
4450         new_item = btrfs_item_nr(slot);
4451
4452         btrfs_set_item_offset(leaf, new_item, orig_offset);
4453         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4454
4455         btrfs_set_item_offset(leaf, item,
4456                               orig_offset + item_size - split_offset);
4457         btrfs_set_item_size(leaf, item, split_offset);
4458
4459         btrfs_set_header_nritems(leaf, nritems + 1);
4460
4461         /* write the data for the start of the original item */
4462         write_extent_buffer(leaf, buf,
4463                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4464                             split_offset);
4465
4466         /* write the data for the new item */
4467         write_extent_buffer(leaf, buf + split_offset,
4468                             btrfs_item_ptr_offset(leaf, slot),
4469                             item_size - split_offset);
4470         btrfs_mark_buffer_dirty(leaf);
4471
4472         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4473         kfree(buf);
4474         return 0;
4475 }
4476
4477 /*
4478  * This function splits a single item into two items,
4479  * giving 'new_key' to the new item and splitting the
4480  * old one at split_offset (from the start of the item).
4481  *
4482  * The path may be released by this operation.  After
4483  * the split, the path is pointing to the old item.  The
4484  * new item is going to be in the same node as the old one.
4485  *
4486  * Note, the item being split must be smaller enough to live alone on
4487  * a tree block with room for one extra struct btrfs_item
4488  *
4489  * This allows us to split the item in place, keeping a lock on the
4490  * leaf the entire time.
4491  */
4492 int btrfs_split_item(struct btrfs_trans_handle *trans,
4493                      struct btrfs_root *root,
4494                      struct btrfs_path *path,
4495                      struct btrfs_key *new_key,
4496                      unsigned long split_offset)
4497 {
4498         int ret;
4499         ret = setup_leaf_for_split(trans, root, path,
4500                                    sizeof(struct btrfs_item));
4501         if (ret)
4502                 return ret;
4503
4504         ret = split_item(trans, root, path, new_key, split_offset);
4505         return ret;
4506 }
4507
4508 /*
4509  * This function duplicate a item, giving 'new_key' to the new item.
4510  * It guarantees both items live in the same tree leaf and the new item
4511  * is contiguous with the original item.
4512  *
4513  * This allows us to split file extent in place, keeping a lock on the
4514  * leaf the entire time.
4515  */
4516 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4517                          struct btrfs_root *root,
4518                          struct btrfs_path *path,
4519                          struct btrfs_key *new_key)
4520 {
4521         struct extent_buffer *leaf;
4522         int ret;
4523         u32 item_size;
4524
4525         leaf = path->nodes[0];
4526         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4527         ret = setup_leaf_for_split(trans, root, path,
4528                                    item_size + sizeof(struct btrfs_item));
4529         if (ret)
4530                 return ret;
4531
4532         path->slots[0]++;
4533         setup_items_for_insert(root, path, new_key, &item_size,
4534                                item_size, item_size +
4535                                sizeof(struct btrfs_item), 1);
4536         leaf = path->nodes[0];
4537         memcpy_extent_buffer(leaf,
4538                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4539                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4540                              item_size);
4541         return 0;
4542 }
4543
4544 /*
4545  * make the item pointed to by the path smaller.  new_size indicates
4546  * how small to make it, and from_end tells us if we just chop bytes
4547  * off the end of the item or if we shift the item to chop bytes off
4548  * the front.
4549  */
4550 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4551                          u32 new_size, int from_end)
4552 {
4553         int slot;
4554         struct extent_buffer *leaf;
4555         struct btrfs_item *item;
4556         u32 nritems;
4557         unsigned int data_end;
4558         unsigned int old_data_start;
4559         unsigned int old_size;
4560         unsigned int size_diff;
4561         int i;
4562         struct btrfs_map_token token;
4563
4564         btrfs_init_map_token(&token);
4565
4566         leaf = path->nodes[0];
4567         slot = path->slots[0];
4568
4569         old_size = btrfs_item_size_nr(leaf, slot);
4570         if (old_size == new_size)
4571                 return;
4572
4573         nritems = btrfs_header_nritems(leaf);
4574         data_end = leaf_data_end(root, leaf);
4575
4576         old_data_start = btrfs_item_offset_nr(leaf, slot);
4577
4578         size_diff = old_size - new_size;
4579
4580         BUG_ON(slot < 0);
4581         BUG_ON(slot >= nritems);
4582
4583         /*
4584          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4585          */
4586         /* first correct the data pointers */
4587         for (i = slot; i < nritems; i++) {
4588                 u32 ioff;
4589                 item = btrfs_item_nr(i);
4590
4591                 ioff = btrfs_token_item_offset(leaf, item, &token);
4592                 btrfs_set_token_item_offset(leaf, item,
4593                                             ioff + size_diff, &token);
4594         }
4595
4596         /* shift the data */
4597         if (from_end) {
4598                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4599                               data_end + size_diff, btrfs_leaf_data(leaf) +
4600                               data_end, old_data_start + new_size - data_end);
4601         } else {
4602                 struct btrfs_disk_key disk_key;
4603                 u64 offset;
4604
4605                 btrfs_item_key(leaf, &disk_key, slot);
4606
4607                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4608                         unsigned long ptr;
4609                         struct btrfs_file_extent_item *fi;
4610
4611                         fi = btrfs_item_ptr(leaf, slot,
4612                                             struct btrfs_file_extent_item);
4613                         fi = (struct btrfs_file_extent_item *)(
4614                              (unsigned long)fi - size_diff);
4615
4616                         if (btrfs_file_extent_type(leaf, fi) ==
4617                             BTRFS_FILE_EXTENT_INLINE) {
4618                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4619                                 memmove_extent_buffer(leaf, ptr,
4620                                       (unsigned long)fi,
4621                                       BTRFS_FILE_EXTENT_INLINE_DATA_START);
4622                         }
4623                 }
4624
4625                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4626                               data_end + size_diff, btrfs_leaf_data(leaf) +
4627                               data_end, old_data_start - data_end);
4628
4629                 offset = btrfs_disk_key_offset(&disk_key);
4630                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4631                 btrfs_set_item_key(leaf, &disk_key, slot);
4632                 if (slot == 0)
4633                         fixup_low_keys(root->fs_info, path, &disk_key, 1);
4634         }
4635
4636         item = btrfs_item_nr(slot);
4637         btrfs_set_item_size(leaf, item, new_size);
4638         btrfs_mark_buffer_dirty(leaf);
4639
4640         if (btrfs_leaf_free_space(root, leaf) < 0) {
4641                 btrfs_print_leaf(root, leaf);
4642                 BUG();
4643         }
4644 }
4645
4646 /*
4647  * make the item pointed to by the path bigger, data_size is the added size.
4648  */
4649 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4650                        u32 data_size)
4651 {
4652         int slot;
4653         struct extent_buffer *leaf;
4654         struct btrfs_item *item;
4655         u32 nritems;
4656         unsigned int data_end;
4657         unsigned int old_data;
4658         unsigned int old_size;
4659         int i;
4660         struct btrfs_map_token token;
4661
4662         btrfs_init_map_token(&token);
4663
4664         leaf = path->nodes[0];
4665
4666         nritems = btrfs_header_nritems(leaf);
4667         data_end = leaf_data_end(root, leaf);
4668
4669         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4670                 btrfs_print_leaf(root, leaf);
4671                 BUG();
4672         }
4673         slot = path->slots[0];
4674         old_data = btrfs_item_end_nr(leaf, slot);
4675
4676         BUG_ON(slot < 0);
4677         if (slot >= nritems) {
4678                 btrfs_print_leaf(root, leaf);
4679                 btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4680                        slot, nritems);
4681                 BUG_ON(1);
4682         }
4683
4684         /*
4685          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4686          */
4687         /* first correct the data pointers */
4688         for (i = slot; i < nritems; i++) {
4689                 u32 ioff;
4690                 item = btrfs_item_nr(i);
4691
4692                 ioff = btrfs_token_item_offset(leaf, item, &token);
4693                 btrfs_set_token_item_offset(leaf, item,
4694                                             ioff - data_size, &token);
4695         }
4696
4697         /* shift the data */
4698         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4699                       data_end - data_size, btrfs_leaf_data(leaf) +
4700                       data_end, old_data - data_end);
4701
4702         data_end = old_data;
4703         old_size = btrfs_item_size_nr(leaf, slot);
4704         item = btrfs_item_nr(slot);
4705         btrfs_set_item_size(leaf, item, old_size + data_size);
4706         btrfs_mark_buffer_dirty(leaf);
4707
4708         if (btrfs_leaf_free_space(root, leaf) < 0) {
4709                 btrfs_print_leaf(root, leaf);
4710                 BUG();
4711         }
4712 }
4713
4714 /*
4715  * this is a helper for btrfs_insert_empty_items, the main goal here is
4716  * to save stack depth by doing the bulk of the work in a function
4717  * that doesn't call btrfs_search_slot
4718  */
4719 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4720                             struct btrfs_key *cpu_key, u32 *data_size,
4721                             u32 total_data, u32 total_size, int nr)
4722 {
4723         struct btrfs_item *item;
4724         int i;
4725         u32 nritems;
4726         unsigned int data_end;
4727         struct btrfs_disk_key disk_key;
4728         struct extent_buffer *leaf;
4729         int slot;
4730         struct btrfs_map_token token;
4731
4732         if (path->slots[0] == 0) {
4733                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4734                 fixup_low_keys(root->fs_info, path, &disk_key, 1);
4735         }
4736         btrfs_unlock_up_safe(path, 1);
4737
4738         btrfs_init_map_token(&token);
4739
4740         leaf = path->nodes[0];
4741         slot = path->slots[0];
4742
4743         nritems = btrfs_header_nritems(leaf);
4744         data_end = leaf_data_end(root, leaf);
4745
4746         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4747                 btrfs_print_leaf(root, leaf);
4748                 btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4749                        total_size, btrfs_leaf_free_space(root, leaf));
4750                 BUG();
4751         }
4752
4753         if (slot != nritems) {
4754                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4755
4756                 if (old_data < data_end) {
4757                         btrfs_print_leaf(root, leaf);
4758                         btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4759                                slot, old_data, data_end);
4760                         BUG_ON(1);
4761                 }
4762                 /*
4763                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4764                  */
4765                 /* first correct the data pointers */
4766                 for (i = slot; i < nritems; i++) {
4767                         u32 ioff;
4768
4769                         item = btrfs_item_nr( i);
4770                         ioff = btrfs_token_item_offset(leaf, item, &token);
4771                         btrfs_set_token_item_offset(leaf, item,
4772                                                     ioff - total_data, &token);
4773                 }
4774                 /* shift the items */
4775                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4776                               btrfs_item_nr_offset(slot),
4777                               (nritems - slot) * sizeof(struct btrfs_item));
4778
4779                 /* shift the data */
4780                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4781                               data_end - total_data, btrfs_leaf_data(leaf) +
4782                               data_end, old_data - data_end);
4783                 data_end = old_data;
4784         }
4785
4786         /* setup the item for the new data */
4787         for (i = 0; i < nr; i++) {
4788                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4789                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4790                 item = btrfs_item_nr(slot + i);
4791                 btrfs_set_token_item_offset(leaf, item,
4792                                             data_end - data_size[i], &token);
4793                 data_end -= data_size[i];
4794                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4795         }
4796
4797         btrfs_set_header_nritems(leaf, nritems + nr);
4798         btrfs_mark_buffer_dirty(leaf);
4799
4800         if (btrfs_leaf_free_space(root, leaf) < 0) {
4801                 btrfs_print_leaf(root, leaf);
4802                 BUG();
4803         }
4804 }
4805
4806 /*
4807  * Given a key and some data, insert items into the tree.
4808  * This does all the path init required, making room in the tree if needed.
4809  */
4810 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4811                             struct btrfs_root *root,
4812                             struct btrfs_path *path,
4813                             struct btrfs_key *cpu_key, u32 *data_size,
4814                             int nr)
4815 {
4816         int ret = 0;
4817         int slot;
4818         int i;
4819         u32 total_size = 0;
4820         u32 total_data = 0;
4821
4822         for (i = 0; i < nr; i++)
4823                 total_data += data_size[i];
4824
4825         total_size = total_data + (nr * sizeof(struct btrfs_item));
4826         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4827         if (ret == 0)
4828                 return -EEXIST;
4829         if (ret < 0)
4830                 return ret;
4831
4832         slot = path->slots[0];
4833         BUG_ON(slot < 0);
4834
4835         setup_items_for_insert(root, path, cpu_key, data_size,
4836                                total_data, total_size, nr);
4837         return 0;
4838 }
4839
4840 /*
4841  * Given a key and some data, insert an item into the tree.
4842  * This does all the path init required, making room in the tree if needed.
4843  */
4844 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4845                       *root, struct btrfs_key *cpu_key, void *data, u32
4846                       data_size)
4847 {
4848         int ret = 0;
4849         struct btrfs_path *path;
4850         struct extent_buffer *leaf;
4851         unsigned long ptr;
4852
4853         path = btrfs_alloc_path();
4854         if (!path)
4855                 return -ENOMEM;
4856         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4857         if (!ret) {
4858                 leaf = path->nodes[0];
4859                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4860                 write_extent_buffer(leaf, data, ptr, data_size);
4861                 btrfs_mark_buffer_dirty(leaf);
4862         }
4863         btrfs_free_path(path);
4864         return ret;
4865 }
4866
4867 /*
4868  * delete the pointer from a given node.
4869  *
4870  * the tree should have been previously balanced so the deletion does not
4871  * empty a node.
4872  */
4873 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4874                     int level, int slot)
4875 {
4876         struct extent_buffer *parent = path->nodes[level];
4877         u32 nritems;
4878         int ret;
4879
4880         nritems = btrfs_header_nritems(parent);
4881         if (slot != nritems - 1) {
4882                 if (level)
4883                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4884                                              slot + 1, nritems - slot - 1);
4885                 memmove_extent_buffer(parent,
4886                               btrfs_node_key_ptr_offset(slot),
4887                               btrfs_node_key_ptr_offset(slot + 1),
4888                               sizeof(struct btrfs_key_ptr) *
4889                               (nritems - slot - 1));
4890         } else if (level) {
4891                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4892                                               MOD_LOG_KEY_REMOVE, GFP_NOFS);
4893                 BUG_ON(ret < 0);
4894         }
4895
4896         nritems--;
4897         btrfs_set_header_nritems(parent, nritems);
4898         if (nritems == 0 && parent == root->node) {
4899                 BUG_ON(btrfs_header_level(root->node) != 1);
4900                 /* just turn the root into a leaf and break */
4901                 btrfs_set_header_level(root->node, 0);
4902         } else if (slot == 0) {
4903                 struct btrfs_disk_key disk_key;
4904
4905                 btrfs_node_key(parent, &disk_key, 0);
4906                 fixup_low_keys(root->fs_info, path, &disk_key, level + 1);
4907         }
4908         btrfs_mark_buffer_dirty(parent);
4909 }
4910
4911 /*
4912  * a helper function to delete the leaf pointed to by path->slots[1] and
4913  * path->nodes[1].
4914  *
4915  * This deletes the pointer in path->nodes[1] and frees the leaf
4916  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4917  *
4918  * The path must have already been setup for deleting the leaf, including
4919  * all the proper balancing.  path->nodes[1] must be locked.
4920  */
4921 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4922                                     struct btrfs_root *root,
4923                                     struct btrfs_path *path,
4924                                     struct extent_buffer *leaf)
4925 {
4926         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4927         del_ptr(root, path, 1, path->slots[1]);
4928
4929         /*
4930          * btrfs_free_extent is expensive, we want to make sure we
4931          * aren't holding any locks when we call it
4932          */
4933         btrfs_unlock_up_safe(path, 0);
4934
4935         root_sub_used(root, leaf->len);
4936
4937         extent_buffer_get(leaf);
4938         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4939         free_extent_buffer_stale(leaf);
4940 }
4941 /*
4942  * delete the item at the leaf level in path.  If that empties
4943  * the leaf, remove it from the tree
4944  */
4945 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4946                     struct btrfs_path *path, int slot, int nr)
4947 {
4948         struct extent_buffer *leaf;
4949         struct btrfs_item *item;
4950         u32 last_off;
4951         u32 dsize = 0;
4952         int ret = 0;
4953         int wret;
4954         int i;
4955         u32 nritems;
4956         struct btrfs_map_token token;
4957
4958         btrfs_init_map_token(&token);
4959
4960         leaf = path->nodes[0];
4961         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4962
4963         for (i = 0; i < nr; i++)
4964                 dsize += btrfs_item_size_nr(leaf, slot + i);
4965
4966         nritems = btrfs_header_nritems(leaf);
4967
4968         if (slot + nr != nritems) {
4969                 int data_end = leaf_data_end(root, leaf);
4970
4971                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4972                               data_end + dsize,
4973                               btrfs_leaf_data(leaf) + data_end,
4974                               last_off - data_end);
4975
4976                 for (i = slot + nr; i < nritems; i++) {
4977                         u32 ioff;
4978
4979                         item = btrfs_item_nr(i);
4980                         ioff = btrfs_token_item_offset(leaf, item, &token);
4981                         btrfs_set_token_item_offset(leaf, item,
4982                                                     ioff + dsize, &token);
4983                 }
4984
4985                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4986                               btrfs_item_nr_offset(slot + nr),
4987                               sizeof(struct btrfs_item) *
4988                               (nritems - slot - nr));
4989         }
4990         btrfs_set_header_nritems(leaf, nritems - nr);
4991         nritems -= nr;
4992
4993         /* delete the leaf if we've emptied it */
4994         if (nritems == 0) {
4995                 if (leaf == root->node) {
4996                         btrfs_set_header_level(leaf, 0);
4997                 } else {
4998                         btrfs_set_path_blocking(path);
4999                         clean_tree_block(trans, root->fs_info, leaf);
5000                         btrfs_del_leaf(trans, root, path, leaf);
5001                 }
5002         } else {
5003                 int used = leaf_space_used(leaf, 0, nritems);
5004                 if (slot == 0) {
5005                         struct btrfs_disk_key disk_key;
5006
5007                         btrfs_item_key(leaf, &disk_key, 0);
5008                         fixup_low_keys(root->fs_info, path, &disk_key, 1);
5009                 }
5010
5011                 /* delete the leaf if it is mostly empty */
5012                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5013                         /* push_leaf_left fixes the path.
5014                          * make sure the path still points to our leaf
5015                          * for possible call to del_ptr below
5016                          */
5017                         slot = path->slots[1];
5018                         extent_buffer_get(leaf);
5019
5020                         btrfs_set_path_blocking(path);
5021                         wret = push_leaf_left(trans, root, path, 1, 1,
5022                                               1, (u32)-1);
5023                         if (wret < 0 && wret != -ENOSPC)
5024                                 ret = wret;
5025
5026                         if (path->nodes[0] == leaf &&
5027                             btrfs_header_nritems(leaf)) {
5028                                 wret = push_leaf_right(trans, root, path, 1,
5029                                                        1, 1, 0);
5030                                 if (wret < 0 && wret != -ENOSPC)
5031                                         ret = wret;
5032                         }
5033
5034                         if (btrfs_header_nritems(leaf) == 0) {
5035                                 path->slots[1] = slot;
5036                                 btrfs_del_leaf(trans, root, path, leaf);
5037                                 free_extent_buffer(leaf);
5038                                 ret = 0;
5039                         } else {
5040                                 /* if we're still in the path, make sure
5041                                  * we're dirty.  Otherwise, one of the
5042                                  * push_leaf functions must have already
5043                                  * dirtied this buffer
5044                                  */
5045                                 if (path->nodes[0] == leaf)
5046                                         btrfs_mark_buffer_dirty(leaf);
5047                                 free_extent_buffer(leaf);
5048                         }
5049                 } else {
5050                         btrfs_mark_buffer_dirty(leaf);
5051                 }
5052         }
5053         return ret;
5054 }
5055
5056 /*
5057  * search the tree again to find a leaf with lesser keys
5058  * returns 0 if it found something or 1 if there are no lesser leaves.
5059  * returns < 0 on io errors.
5060  *
5061  * This may release the path, and so you may lose any locks held at the
5062  * time you call it.
5063  */
5064 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5065 {
5066         struct btrfs_key key;
5067         struct btrfs_disk_key found_key;
5068         int ret;
5069
5070         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5071
5072         if (key.offset > 0) {
5073                 key.offset--;
5074         } else if (key.type > 0) {
5075                 key.type--;
5076                 key.offset = (u64)-1;
5077         } else if (key.objectid > 0) {
5078                 key.objectid--;
5079                 key.type = (u8)-1;
5080                 key.offset = (u64)-1;
5081         } else {
5082                 return 1;
5083         }
5084
5085         btrfs_release_path(path);
5086         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5087         if (ret < 0)
5088                 return ret;
5089         btrfs_item_key(path->nodes[0], &found_key, 0);
5090         ret = comp_keys(&found_key, &key);
5091         /*
5092          * We might have had an item with the previous key in the tree right
5093          * before we released our path. And after we released our path, that
5094          * item might have been pushed to the first slot (0) of the leaf we
5095          * were holding due to a tree balance. Alternatively, an item with the
5096          * previous key can exist as the only element of a leaf (big fat item).
5097          * Therefore account for these 2 cases, so that our callers (like
5098          * btrfs_previous_item) don't miss an existing item with a key matching
5099          * the previous key we computed above.
5100          */
5101         if (ret <= 0)
5102                 return 0;
5103         return 1;
5104 }
5105
5106 /*
5107  * A helper function to walk down the tree starting at min_key, and looking
5108  * for nodes or leaves that are have a minimum transaction id.
5109  * This is used by the btree defrag code, and tree logging
5110  *
5111  * This does not cow, but it does stuff the starting key it finds back
5112  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5113  * key and get a writable path.
5114  *
5115  * This does lock as it descends, and path->keep_locks should be set
5116  * to 1 by the caller.
5117  *
5118  * This honors path->lowest_level to prevent descent past a given level
5119  * of the tree.
5120  *
5121  * min_trans indicates the oldest transaction that you are interested
5122  * in walking through.  Any nodes or leaves older than min_trans are
5123  * skipped over (without reading them).
5124  *
5125  * returns zero if something useful was found, < 0 on error and 1 if there
5126  * was nothing in the tree that matched the search criteria.
5127  */
5128 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5129                          struct btrfs_path *path,
5130                          u64 min_trans)
5131 {
5132         struct extent_buffer *cur;
5133         struct btrfs_key found_key;
5134         int slot;
5135         int sret;
5136         u32 nritems;
5137         int level;
5138         int ret = 1;
5139         int keep_locks = path->keep_locks;
5140
5141         path->keep_locks = 1;
5142 again:
5143         cur = btrfs_read_lock_root_node(root);
5144         level = btrfs_header_level(cur);
5145         WARN_ON(path->nodes[level]);
5146         path->nodes[level] = cur;
5147         path->locks[level] = BTRFS_READ_LOCK;
5148
5149         if (btrfs_header_generation(cur) < min_trans) {
5150                 ret = 1;
5151                 goto out;
5152         }
5153         while (1) {
5154                 nritems = btrfs_header_nritems(cur);
5155                 level = btrfs_header_level(cur);
5156                 sret = bin_search(cur, min_key, level, &slot);
5157
5158                 /* at the lowest level, we're done, setup the path and exit */
5159                 if (level == path->lowest_level) {
5160                         if (slot >= nritems)
5161                                 goto find_next_key;
5162                         ret = 0;
5163                         path->slots[level] = slot;
5164                         btrfs_item_key_to_cpu(cur, &found_key, slot);
5165                         goto out;
5166                 }
5167                 if (sret && slot > 0)
5168                         slot--;
5169                 /*
5170                  * check this node pointer against the min_trans parameters.
5171                  * If it is too old, old, skip to the next one.
5172                  */
5173                 while (slot < nritems) {
5174                         u64 gen;
5175
5176                         gen = btrfs_node_ptr_generation(cur, slot);
5177                         if (gen < min_trans) {
5178                                 slot++;
5179                                 continue;
5180                         }
5181                         break;
5182                 }
5183 find_next_key:
5184                 /*
5185                  * we didn't find a candidate key in this node, walk forward
5186                  * and find another one
5187                  */
5188                 if (slot >= nritems) {
5189                         path->slots[level] = slot;
5190                         btrfs_set_path_blocking(path);
5191                         sret = btrfs_find_next_key(root, path, min_key, level,
5192                                                   min_trans);
5193                         if (sret == 0) {
5194                                 btrfs_release_path(path);
5195                                 goto again;
5196                         } else {
5197                                 goto out;
5198                         }
5199                 }
5200                 /* save our key for returning back */
5201                 btrfs_node_key_to_cpu(cur, &found_key, slot);
5202                 path->slots[level] = slot;
5203                 if (level == path->lowest_level) {
5204                         ret = 0;
5205                         goto out;
5206                 }
5207                 btrfs_set_path_blocking(path);
5208                 cur = read_node_slot(root, cur, slot);
5209                 BUG_ON(!cur); /* -ENOMEM */
5210
5211                 btrfs_tree_read_lock(cur);
5212
5213                 path->locks[level - 1] = BTRFS_READ_LOCK;
5214                 path->nodes[level - 1] = cur;
5215                 unlock_up(path, level, 1, 0, NULL);
5216                 btrfs_clear_path_blocking(path, NULL, 0);
5217         }
5218 out:
5219         path->keep_locks = keep_locks;
5220         if (ret == 0) {
5221                 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5222                 btrfs_set_path_blocking(path);
5223                 memcpy(min_key, &found_key, sizeof(found_key));
5224         }
5225         return ret;
5226 }
5227
5228 static void tree_move_down(struct btrfs_root *root,
5229                            struct btrfs_path *path,
5230                            int *level, int root_level)
5231 {
5232         BUG_ON(*level == 0);
5233         path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5234                                         path->slots[*level]);
5235         path->slots[*level - 1] = 0;
5236         (*level)--;
5237 }
5238
5239 static int tree_move_next_or_upnext(struct btrfs_root *root,
5240                                     struct btrfs_path *path,
5241                                     int *level, int root_level)
5242 {
5243         int ret = 0;
5244         int nritems;
5245         nritems = btrfs_header_nritems(path->nodes[*level]);
5246
5247         path->slots[*level]++;
5248
5249         while (path->slots[*level] >= nritems) {
5250                 if (*level == root_level)
5251                         return -1;
5252
5253                 /* move upnext */
5254                 path->slots[*level] = 0;
5255                 free_extent_buffer(path->nodes[*level]);
5256                 path->nodes[*level] = NULL;
5257                 (*level)++;
5258                 path->slots[*level]++;
5259
5260                 nritems = btrfs_header_nritems(path->nodes[*level]);
5261                 ret = 1;
5262         }
5263         return ret;
5264 }
5265
5266 /*
5267  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5268  * or down.
5269  */
5270 static int tree_advance(struct btrfs_root *root,
5271                         struct btrfs_path *path,
5272                         int *level, int root_level,
5273                         int allow_down,
5274                         struct btrfs_key *key)
5275 {
5276         int ret;
5277
5278         if (*level == 0 || !allow_down) {
5279                 ret = tree_move_next_or_upnext(root, path, level, root_level);
5280         } else {
5281                 tree_move_down(root, path, level, root_level);
5282                 ret = 0;
5283         }
5284         if (ret >= 0) {
5285                 if (*level == 0)
5286                         btrfs_item_key_to_cpu(path->nodes[*level], key,
5287                                         path->slots[*level]);
5288                 else
5289                         btrfs_node_key_to_cpu(path->nodes[*level], key,
5290                                         path->slots[*level]);
5291         }
5292         return ret;
5293 }
5294
5295 static int tree_compare_item(struct btrfs_root *left_root,
5296                              struct btrfs_path *left_path,
5297                              struct btrfs_path *right_path,
5298                              char *tmp_buf)
5299 {
5300         int cmp;
5301         int len1, len2;
5302         unsigned long off1, off2;
5303
5304         len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5305         len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5306         if (len1 != len2)
5307                 return 1;
5308
5309         off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5310         off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5311                                 right_path->slots[0]);
5312
5313         read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5314
5315         cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5316         if (cmp)
5317                 return 1;
5318         return 0;
5319 }
5320
5321 #define ADVANCE 1
5322 #define ADVANCE_ONLY_NEXT -1
5323
5324 /*
5325  * This function compares two trees and calls the provided callback for
5326  * every changed/new/deleted item it finds.
5327  * If shared tree blocks are encountered, whole subtrees are skipped, making
5328  * the compare pretty fast on snapshotted subvolumes.
5329  *
5330  * This currently works on commit roots only. As commit roots are read only,
5331  * we don't do any locking. The commit roots are protected with transactions.
5332  * Transactions are ended and rejoined when a commit is tried in between.
5333  *
5334  * This function checks for modifications done to the trees while comparing.
5335  * If it detects a change, it aborts immediately.
5336  */
5337 int btrfs_compare_trees(struct btrfs_root *left_root,
5338                         struct btrfs_root *right_root,
5339                         btrfs_changed_cb_t changed_cb, void *ctx)
5340 {
5341         int ret;
5342         int cmp;
5343         struct btrfs_path *left_path = NULL;
5344         struct btrfs_path *right_path = NULL;
5345         struct btrfs_key left_key;
5346         struct btrfs_key right_key;
5347         char *tmp_buf = NULL;
5348         int left_root_level;
5349         int right_root_level;
5350         int left_level;
5351         int right_level;
5352         int left_end_reached;
5353         int right_end_reached;
5354         int advance_left;
5355         int advance_right;
5356         u64 left_blockptr;
5357         u64 right_blockptr;
5358         u64 left_gen;
5359         u64 right_gen;
5360
5361         left_path = btrfs_alloc_path();
5362         if (!left_path) {
5363                 ret = -ENOMEM;
5364                 goto out;
5365         }
5366         right_path = btrfs_alloc_path();
5367         if (!right_path) {
5368                 ret = -ENOMEM;
5369                 goto out;
5370         }
5371
5372         tmp_buf = kmalloc(left_root->nodesize, GFP_KERNEL | __GFP_NOWARN);
5373         if (!tmp_buf) {
5374                 tmp_buf = vmalloc(left_root->nodesize);
5375                 if (!tmp_buf) {
5376                         ret = -ENOMEM;
5377                         goto out;
5378                 }
5379         }
5380
5381         left_path->search_commit_root = 1;
5382         left_path->skip_locking = 1;
5383         right_path->search_commit_root = 1;
5384         right_path->skip_locking = 1;
5385
5386         /*
5387          * Strategy: Go to the first items of both trees. Then do
5388          *
5389          * If both trees are at level 0
5390          *   Compare keys of current items
5391          *     If left < right treat left item as new, advance left tree
5392          *       and repeat
5393          *     If left > right treat right item as deleted, advance right tree
5394          *       and repeat
5395          *     If left == right do deep compare of items, treat as changed if
5396          *       needed, advance both trees and repeat
5397          * If both trees are at the same level but not at level 0
5398          *   Compare keys of current nodes/leafs
5399          *     If left < right advance left tree and repeat
5400          *     If left > right advance right tree and repeat
5401          *     If left == right compare blockptrs of the next nodes/leafs
5402          *       If they match advance both trees but stay at the same level
5403          *         and repeat
5404          *       If they don't match advance both trees while allowing to go
5405          *         deeper and repeat
5406          * If tree levels are different
5407          *   Advance the tree that needs it and repeat
5408          *
5409          * Advancing a tree means:
5410          *   If we are at level 0, try to go to the next slot. If that's not
5411          *   possible, go one level up and repeat. Stop when we found a level
5412          *   where we could go to the next slot. We may at this point be on a
5413          *   node or a leaf.
5414          *
5415          *   If we are not at level 0 and not on shared tree blocks, go one
5416          *   level deeper.
5417          *
5418          *   If we are not at level 0 and on shared tree blocks, go one slot to
5419          *   the right if possible or go up and right.
5420          */
5421
5422         down_read(&left_root->fs_info->commit_root_sem);
5423         left_level = btrfs_header_level(left_root->commit_root);
5424         left_root_level = left_level;
5425         left_path->nodes[left_level] = left_root->commit_root;
5426         extent_buffer_get(left_path->nodes[left_level]);
5427
5428         right_level = btrfs_header_level(right_root->commit_root);
5429         right_root_level = right_level;
5430         right_path->nodes[right_level] = right_root->commit_root;
5431         extent_buffer_get(right_path->nodes[right_level]);
5432         up_read(&left_root->fs_info->commit_root_sem);
5433
5434         if (left_level == 0)
5435                 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5436                                 &left_key, left_path->slots[left_level]);
5437         else
5438                 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5439                                 &left_key, left_path->slots[left_level]);
5440         if (right_level == 0)
5441                 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5442                                 &right_key, right_path->slots[right_level]);
5443         else
5444                 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5445                                 &right_key, right_path->slots[right_level]);
5446
5447         left_end_reached = right_end_reached = 0;
5448         advance_left = advance_right = 0;
5449
5450         while (1) {
5451                 if (advance_left && !left_end_reached) {
5452                         ret = tree_advance(left_root, left_path, &left_level,
5453                                         left_root_level,
5454                                         advance_left != ADVANCE_ONLY_NEXT,
5455                                         &left_key);
5456                         if (ret < 0)
5457                                 left_end_reached = ADVANCE;
5458                         advance_left = 0;
5459                 }
5460                 if (advance_right && !right_end_reached) {
5461                         ret = tree_advance(right_root, right_path, &right_level,
5462                                         right_root_level,
5463                                         advance_right != ADVANCE_ONLY_NEXT,
5464                                         &right_key);
5465                         if (ret < 0)
5466                                 right_end_reached = ADVANCE;
5467                         advance_right = 0;
5468                 }
5469
5470                 if (left_end_reached && right_end_reached) {
5471                         ret = 0;
5472                         goto out;
5473                 } else if (left_end_reached) {
5474                         if (right_level == 0) {
5475                                 ret = changed_cb(left_root, right_root,
5476                                                 left_path, right_path,
5477                                                 &right_key,
5478                                                 BTRFS_COMPARE_TREE_DELETED,
5479                                                 ctx);
5480                                 if (ret < 0)
5481                                         goto out;
5482                         }
5483                         advance_right = ADVANCE;
5484                         continue;
5485                 } else if (right_end_reached) {
5486                         if (left_level == 0) {
5487                                 ret = changed_cb(left_root, right_root,
5488                                                 left_path, right_path,
5489                                                 &left_key,
5490                                                 BTRFS_COMPARE_TREE_NEW,
5491                                                 ctx);
5492                                 if (ret < 0)
5493                                         goto out;
5494                         }
5495                         advance_left = ADVANCE;
5496                         continue;
5497                 }
5498
5499                 if (left_level == 0 && right_level == 0) {
5500                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5501                         if (cmp < 0) {
5502                                 ret = changed_cb(left_root, right_root,
5503                                                 left_path, right_path,
5504                                                 &left_key,
5505                                                 BTRFS_COMPARE_TREE_NEW,
5506                                                 ctx);
5507                                 if (ret < 0)
5508                                         goto out;
5509                                 advance_left = ADVANCE;
5510                         } else if (cmp > 0) {
5511                                 ret = changed_cb(left_root, right_root,
5512                                                 left_path, right_path,
5513                                                 &right_key,
5514                                                 BTRFS_COMPARE_TREE_DELETED,
5515                                                 ctx);
5516                                 if (ret < 0)
5517                                         goto out;
5518                                 advance_right = ADVANCE;
5519                         } else {
5520                                 enum btrfs_compare_tree_result result;
5521
5522                                 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5523                                 ret = tree_compare_item(left_root, left_path,
5524                                                 right_path, tmp_buf);
5525                                 if (ret)
5526                                         result = BTRFS_COMPARE_TREE_CHANGED;
5527                                 else
5528                                         result = BTRFS_COMPARE_TREE_SAME;
5529                                 ret = changed_cb(left_root, right_root,
5530                                                  left_path, right_path,
5531                                                  &left_key, result, ctx);
5532                                 if (ret < 0)
5533                                         goto out;
5534                                 advance_left = ADVANCE;
5535                                 advance_right = ADVANCE;
5536                         }
5537                 } else if (left_level == right_level) {
5538                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5539                         if (cmp < 0) {
5540                                 advance_left = ADVANCE;
5541                         } else if (cmp > 0) {
5542                                 advance_right = ADVANCE;
5543                         } else {
5544                                 left_blockptr = btrfs_node_blockptr(
5545                                                 left_path->nodes[left_level],
5546                                                 left_path->slots[left_level]);
5547                                 right_blockptr = btrfs_node_blockptr(
5548                                                 right_path->nodes[right_level],
5549                                                 right_path->slots[right_level]);
5550                                 left_gen = btrfs_node_ptr_generation(
5551                                                 left_path->nodes[left_level],
5552                                                 left_path->slots[left_level]);
5553                                 right_gen = btrfs_node_ptr_generation(
5554                                                 right_path->nodes[right_level],
5555                                                 right_path->slots[right_level]);
5556                                 if (left_blockptr == right_blockptr &&
5557                                     left_gen == right_gen) {
5558                                         /*
5559                                          * As we're on a shared block, don't
5560                                          * allow to go deeper.
5561                                          */
5562                                         advance_left = ADVANCE_ONLY_NEXT;
5563                                         advance_right = ADVANCE_ONLY_NEXT;
5564                                 } else {
5565                                         advance_left = ADVANCE;
5566                                         advance_right = ADVANCE;
5567                                 }
5568                         }
5569                 } else if (left_level < right_level) {
5570                         advance_right = ADVANCE;
5571                 } else {
5572                         advance_left = ADVANCE;
5573                 }
5574         }
5575
5576 out:
5577         btrfs_free_path(left_path);
5578         btrfs_free_path(right_path);
5579         kvfree(tmp_buf);
5580         return ret;
5581 }
5582
5583 /*
5584  * this is similar to btrfs_next_leaf, but does not try to preserve
5585  * and fixup the path.  It looks for and returns the next key in the
5586  * tree based on the current path and the min_trans parameters.
5587  *
5588  * 0 is returned if another key is found, < 0 if there are any errors
5589  * and 1 is returned if there are no higher keys in the tree
5590  *
5591  * path->keep_locks should be set to 1 on the search made before
5592  * calling this function.
5593  */
5594 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5595                         struct btrfs_key *key, int level, u64 min_trans)
5596 {
5597         int slot;
5598         struct extent_buffer *c;
5599
5600         WARN_ON(!path->keep_locks);
5601         while (level < BTRFS_MAX_LEVEL) {
5602                 if (!path->nodes[level])
5603                         return 1;
5604
5605                 slot = path->slots[level] + 1;
5606                 c = path->nodes[level];
5607 next:
5608                 if (slot >= btrfs_header_nritems(c)) {
5609                         int ret;
5610                         int orig_lowest;
5611                         struct btrfs_key cur_key;
5612                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5613                             !path->nodes[level + 1])
5614                                 return 1;
5615
5616                         if (path->locks[level + 1]) {
5617                                 level++;
5618                                 continue;
5619                         }
5620
5621                         slot = btrfs_header_nritems(c) - 1;
5622                         if (level == 0)
5623                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5624                         else
5625                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5626
5627                         orig_lowest = path->lowest_level;
5628                         btrfs_release_path(path);
5629                         path->lowest_level = level;
5630                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5631                                                 0, 0);
5632                         path->lowest_level = orig_lowest;
5633                         if (ret < 0)
5634                                 return ret;
5635
5636                         c = path->nodes[level];
5637                         slot = path->slots[level];
5638                         if (ret == 0)
5639                                 slot++;
5640                         goto next;
5641                 }
5642
5643                 if (level == 0)
5644                         btrfs_item_key_to_cpu(c, key, slot);
5645                 else {
5646                         u64 gen = btrfs_node_ptr_generation(c, slot);
5647
5648                         if (gen < min_trans) {
5649                                 slot++;
5650                                 goto next;
5651                         }
5652                         btrfs_node_key_to_cpu(c, key, slot);
5653                 }
5654                 return 0;
5655         }
5656         return 1;
5657 }
5658
5659 /*
5660  * search the tree again to find a leaf with greater keys
5661  * returns 0 if it found something or 1 if there are no greater leaves.
5662  * returns < 0 on io errors.
5663  */
5664 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5665 {
5666         return btrfs_next_old_leaf(root, path, 0);
5667 }
5668
5669 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5670                         u64 time_seq)
5671 {
5672         int slot;
5673         int level;
5674         struct extent_buffer *c;
5675         struct extent_buffer *next;
5676         struct btrfs_key key;
5677         u32 nritems;
5678         int ret;
5679         int old_spinning = path->leave_spinning;
5680         int next_rw_lock = 0;
5681
5682         nritems = btrfs_header_nritems(path->nodes[0]);
5683         if (nritems == 0)
5684                 return 1;
5685
5686         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5687 again:
5688         level = 1;
5689         next = NULL;
5690         next_rw_lock = 0;
5691         btrfs_release_path(path);
5692
5693         path->keep_locks = 1;
5694         path->leave_spinning = 1;
5695
5696         if (time_seq)
5697                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5698         else
5699                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5700         path->keep_locks = 0;
5701
5702         if (ret < 0)
5703                 return ret;
5704
5705         nritems = btrfs_header_nritems(path->nodes[0]);
5706         /*
5707          * by releasing the path above we dropped all our locks.  A balance
5708          * could have added more items next to the key that used to be
5709          * at the very end of the block.  So, check again here and
5710          * advance the path if there are now more items available.
5711          */
5712         if (nritems > 0 && path->slots[0] < nritems - 1) {
5713                 if (ret == 0)
5714                         path->slots[0]++;
5715                 ret = 0;
5716                 goto done;
5717         }
5718         /*
5719          * So the above check misses one case:
5720          * - after releasing the path above, someone has removed the item that
5721          *   used to be at the very end of the block, and balance between leafs
5722          *   gets another one with bigger key.offset to replace it.
5723          *
5724          * This one should be returned as well, or we can get leaf corruption
5725          * later(esp. in __btrfs_drop_extents()).
5726          *
5727          * And a bit more explanation about this check,
5728          * with ret > 0, the key isn't found, the path points to the slot
5729          * where it should be inserted, so the path->slots[0] item must be the
5730          * bigger one.
5731          */
5732         if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5733                 ret = 0;
5734                 goto done;
5735         }
5736
5737         while (level < BTRFS_MAX_LEVEL) {
5738                 if (!path->nodes[level]) {
5739                         ret = 1;
5740                         goto done;
5741                 }
5742
5743                 slot = path->slots[level] + 1;
5744                 c = path->nodes[level];
5745                 if (slot >= btrfs_header_nritems(c)) {
5746                         level++;
5747                         if (level == BTRFS_MAX_LEVEL) {
5748                                 ret = 1;
5749                                 goto done;
5750                         }
5751                         continue;
5752                 }
5753
5754                 if (next) {
5755                         btrfs_tree_unlock_rw(next, next_rw_lock);
5756                         free_extent_buffer(next);
5757                 }
5758
5759                 next = c;
5760                 next_rw_lock = path->locks[level];
5761                 ret = read_block_for_search(NULL, root, path, &next, level,
5762                                             slot, &key, 0);
5763                 if (ret == -EAGAIN)
5764                         goto again;
5765
5766                 if (ret < 0) {
5767                         btrfs_release_path(path);
5768                         goto done;
5769                 }
5770
5771                 if (!path->skip_locking) {
5772                         ret = btrfs_try_tree_read_lock(next);
5773                         if (!ret && time_seq) {
5774                                 /*
5775                                  * If we don't get the lock, we may be racing
5776                                  * with push_leaf_left, holding that lock while
5777                                  * itself waiting for the leaf we've currently
5778                                  * locked. To solve this situation, we give up
5779                                  * on our lock and cycle.
5780                                  */
5781                                 free_extent_buffer(next);
5782                                 btrfs_release_path(path);
5783                                 cond_resched();
5784                                 goto again;
5785                         }
5786                         if (!ret) {
5787                                 btrfs_set_path_blocking(path);
5788                                 btrfs_tree_read_lock(next);
5789                                 btrfs_clear_path_blocking(path, next,
5790                                                           BTRFS_READ_LOCK);
5791                         }
5792                         next_rw_lock = BTRFS_READ_LOCK;
5793                 }
5794                 break;
5795         }
5796         path->slots[level] = slot;
5797         while (1) {
5798                 level--;
5799                 c = path->nodes[level];
5800                 if (path->locks[level])
5801                         btrfs_tree_unlock_rw(c, path->locks[level]);
5802
5803                 free_extent_buffer(c);
5804                 path->nodes[level] = next;
5805                 path->slots[level] = 0;
5806                 if (!path->skip_locking)
5807                         path->locks[level] = next_rw_lock;
5808                 if (!level)
5809                         break;
5810
5811                 ret = read_block_for_search(NULL, root, path, &next, level,
5812                                             0, &key, 0);
5813                 if (ret == -EAGAIN)
5814                         goto again;
5815
5816                 if (ret < 0) {
5817                         btrfs_release_path(path);
5818                         goto done;
5819                 }
5820
5821                 if (!path->skip_locking) {
5822                         ret = btrfs_try_tree_read_lock(next);
5823                         if (!ret) {
5824                                 btrfs_set_path_blocking(path);
5825                                 btrfs_tree_read_lock(next);
5826                                 btrfs_clear_path_blocking(path, next,
5827                                                           BTRFS_READ_LOCK);
5828                         }
5829                         next_rw_lock = BTRFS_READ_LOCK;
5830                 }
5831         }
5832         ret = 0;
5833 done:
5834         unlock_up(path, 0, 1, 0, NULL);
5835         path->leave_spinning = old_spinning;
5836         if (!old_spinning)
5837                 btrfs_set_path_blocking(path);
5838
5839         return ret;
5840 }
5841
5842 /*
5843  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5844  * searching until it gets past min_objectid or finds an item of 'type'
5845  *
5846  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5847  */
5848 int btrfs_previous_item(struct btrfs_root *root,
5849                         struct btrfs_path *path, u64 min_objectid,
5850                         int type)
5851 {
5852         struct btrfs_key found_key;
5853         struct extent_buffer *leaf;
5854         u32 nritems;
5855         int ret;
5856
5857         while (1) {
5858                 if (path->slots[0] == 0) {
5859                         btrfs_set_path_blocking(path);
5860                         ret = btrfs_prev_leaf(root, path);
5861                         if (ret != 0)
5862                                 return ret;
5863                 } else {
5864                         path->slots[0]--;
5865                 }
5866                 leaf = path->nodes[0];
5867                 nritems = btrfs_header_nritems(leaf);
5868                 if (nritems == 0)
5869                         return 1;
5870                 if (path->slots[0] == nritems)
5871                         path->slots[0]--;
5872
5873                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5874                 if (found_key.objectid < min_objectid)
5875                         break;
5876                 if (found_key.type == type)
5877                         return 0;
5878                 if (found_key.objectid == min_objectid &&
5879                     found_key.type < type)
5880                         break;
5881         }
5882         return 1;
5883 }
5884
5885 /*
5886  * search in extent tree to find a previous Metadata/Data extent item with
5887  * min objecitd.
5888  *
5889  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5890  */
5891 int btrfs_previous_extent_item(struct btrfs_root *root,
5892                         struct btrfs_path *path, u64 min_objectid)
5893 {
5894         struct btrfs_key found_key;
5895         struct extent_buffer *leaf;
5896         u32 nritems;
5897         int ret;
5898
5899         while (1) {
5900                 if (path->slots[0] == 0) {
5901                         btrfs_set_path_blocking(path);
5902                         ret = btrfs_prev_leaf(root, path);
5903                         if (ret != 0)
5904                                 return ret;
5905                 } else {
5906                         path->slots[0]--;
5907                 }
5908                 leaf = path->nodes[0];
5909                 nritems = btrfs_header_nritems(leaf);
5910                 if (nritems == 0)
5911                         return 1;
5912                 if (path->slots[0] == nritems)
5913                         path->slots[0]--;
5914
5915                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5916                 if (found_key.objectid < min_objectid)
5917                         break;
5918                 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5919                     found_key.type == BTRFS_METADATA_ITEM_KEY)
5920                         return 0;
5921                 if (found_key.objectid == min_objectid &&
5922                     found_key.type < BTRFS_EXTENT_ITEM_KEY)
5923                         break;
5924         }
5925         return 1;
5926 }