Btrfs: check if extent buffer is aligned to sectorsize
[cascardo/linux.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include <linux/vmalloc.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "print-tree.h"
27 #include "locking.h"
28
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30                       *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
32                       *root, struct btrfs_key *ins_key,
33                       struct btrfs_path *path, int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35                           struct btrfs_root *root, struct extent_buffer *dst,
36                           struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38                               struct btrfs_root *root,
39                               struct extent_buffer *dst_buf,
40                               struct extent_buffer *src_buf);
41 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
42                     int level, int slot);
43 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44                                  struct extent_buffer *eb);
45
46 struct btrfs_path *btrfs_alloc_path(void)
47 {
48         struct btrfs_path *path;
49         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
50         return path;
51 }
52
53 /*
54  * set all locked nodes in the path to blocking locks.  This should
55  * be done before scheduling
56  */
57 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
58 {
59         int i;
60         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61                 if (!p->nodes[i] || !p->locks[i])
62                         continue;
63                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
64                 if (p->locks[i] == BTRFS_READ_LOCK)
65                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
66                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
67                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
68         }
69 }
70
71 /*
72  * reset all the locked nodes in the patch to spinning locks.
73  *
74  * held is used to keep lockdep happy, when lockdep is enabled
75  * we set held to a blocking lock before we go around and
76  * retake all the spinlocks in the path.  You can safely use NULL
77  * for held
78  */
79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
80                                         struct extent_buffer *held, int held_rw)
81 {
82         int i;
83
84         if (held) {
85                 btrfs_set_lock_blocking_rw(held, held_rw);
86                 if (held_rw == BTRFS_WRITE_LOCK)
87                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
88                 else if (held_rw == BTRFS_READ_LOCK)
89                         held_rw = BTRFS_READ_LOCK_BLOCKING;
90         }
91         btrfs_set_path_blocking(p);
92
93         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
94                 if (p->nodes[i] && p->locks[i]) {
95                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
96                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
97                                 p->locks[i] = BTRFS_WRITE_LOCK;
98                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
99                                 p->locks[i] = BTRFS_READ_LOCK;
100                 }
101         }
102
103         if (held)
104                 btrfs_clear_lock_blocking_rw(held, held_rw);
105 }
106
107 /* this also releases the path */
108 void btrfs_free_path(struct btrfs_path *p)
109 {
110         if (!p)
111                 return;
112         btrfs_release_path(p);
113         kmem_cache_free(btrfs_path_cachep, p);
114 }
115
116 /*
117  * path release drops references on the extent buffers in the path
118  * and it drops any locks held by this path
119  *
120  * It is safe to call this on paths that no locks or extent buffers held.
121  */
122 noinline void btrfs_release_path(struct btrfs_path *p)
123 {
124         int i;
125
126         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
127                 p->slots[i] = 0;
128                 if (!p->nodes[i])
129                         continue;
130                 if (p->locks[i]) {
131                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
132                         p->locks[i] = 0;
133                 }
134                 free_extent_buffer(p->nodes[i]);
135                 p->nodes[i] = NULL;
136         }
137 }
138
139 /*
140  * safely gets a reference on the root node of a tree.  A lock
141  * is not taken, so a concurrent writer may put a different node
142  * at the root of the tree.  See btrfs_lock_root_node for the
143  * looping required.
144  *
145  * The extent buffer returned by this has a reference taken, so
146  * it won't disappear.  It may stop being the root of the tree
147  * at any time because there are no locks held.
148  */
149 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
150 {
151         struct extent_buffer *eb;
152
153         while (1) {
154                 rcu_read_lock();
155                 eb = rcu_dereference(root->node);
156
157                 /*
158                  * RCU really hurts here, we could free up the root node because
159                  * it was COWed but we may not get the new root node yet so do
160                  * the inc_not_zero dance and if it doesn't work then
161                  * synchronize_rcu and try again.
162                  */
163                 if (atomic_inc_not_zero(&eb->refs)) {
164                         rcu_read_unlock();
165                         break;
166                 }
167                 rcu_read_unlock();
168                 synchronize_rcu();
169         }
170         return eb;
171 }
172
173 /* loop around taking references on and locking the root node of the
174  * tree until you end up with a lock on the root.  A locked buffer
175  * is returned, with a reference held.
176  */
177 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
178 {
179         struct extent_buffer *eb;
180
181         while (1) {
182                 eb = btrfs_root_node(root);
183                 btrfs_tree_lock(eb);
184                 if (eb == root->node)
185                         break;
186                 btrfs_tree_unlock(eb);
187                 free_extent_buffer(eb);
188         }
189         return eb;
190 }
191
192 /* loop around taking references on and locking the root node of the
193  * tree until you end up with a lock on the root.  A locked buffer
194  * is returned, with a reference held.
195  */
196 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
197 {
198         struct extent_buffer *eb;
199
200         while (1) {
201                 eb = btrfs_root_node(root);
202                 btrfs_tree_read_lock(eb);
203                 if (eb == root->node)
204                         break;
205                 btrfs_tree_read_unlock(eb);
206                 free_extent_buffer(eb);
207         }
208         return eb;
209 }
210
211 /* cowonly root (everything not a reference counted cow subvolume), just get
212  * put onto a simple dirty list.  transaction.c walks this to make sure they
213  * get properly updated on disk.
214  */
215 static void add_root_to_dirty_list(struct btrfs_root *root)
216 {
217         if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
218             !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
219                 return;
220
221         spin_lock(&root->fs_info->trans_lock);
222         if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
223                 /* Want the extent tree to be the last on the list */
224                 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
225                         list_move_tail(&root->dirty_list,
226                                        &root->fs_info->dirty_cowonly_roots);
227                 else
228                         list_move(&root->dirty_list,
229                                   &root->fs_info->dirty_cowonly_roots);
230         }
231         spin_unlock(&root->fs_info->trans_lock);
232 }
233
234 /*
235  * used by snapshot creation to make a copy of a root for a tree with
236  * a given objectid.  The buffer with the new root node is returned in
237  * cow_ret, and this func returns zero on success or a negative error code.
238  */
239 int btrfs_copy_root(struct btrfs_trans_handle *trans,
240                       struct btrfs_root *root,
241                       struct extent_buffer *buf,
242                       struct extent_buffer **cow_ret, u64 new_root_objectid)
243 {
244         struct extent_buffer *cow;
245         int ret = 0;
246         int level;
247         struct btrfs_disk_key disk_key;
248
249         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
250                 trans->transid != root->fs_info->running_transaction->transid);
251         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
252                 trans->transid != root->last_trans);
253
254         level = btrfs_header_level(buf);
255         if (level == 0)
256                 btrfs_item_key(buf, &disk_key, 0);
257         else
258                 btrfs_node_key(buf, &disk_key, 0);
259
260         cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
261                         &disk_key, level, buf->start, 0);
262         if (IS_ERR(cow))
263                 return PTR_ERR(cow);
264
265         copy_extent_buffer(cow, buf, 0, 0, cow->len);
266         btrfs_set_header_bytenr(cow, cow->start);
267         btrfs_set_header_generation(cow, trans->transid);
268         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
269         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
270                                      BTRFS_HEADER_FLAG_RELOC);
271         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
272                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
273         else
274                 btrfs_set_header_owner(cow, new_root_objectid);
275
276         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
277                             BTRFS_FSID_SIZE);
278
279         WARN_ON(btrfs_header_generation(buf) > trans->transid);
280         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
281                 ret = btrfs_inc_ref(trans, root, cow, 1);
282         else
283                 ret = btrfs_inc_ref(trans, root, cow, 0);
284
285         if (ret)
286                 return ret;
287
288         btrfs_mark_buffer_dirty(cow);
289         *cow_ret = cow;
290         return 0;
291 }
292
293 enum mod_log_op {
294         MOD_LOG_KEY_REPLACE,
295         MOD_LOG_KEY_ADD,
296         MOD_LOG_KEY_REMOVE,
297         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
298         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
299         MOD_LOG_MOVE_KEYS,
300         MOD_LOG_ROOT_REPLACE,
301 };
302
303 struct tree_mod_move {
304         int dst_slot;
305         int nr_items;
306 };
307
308 struct tree_mod_root {
309         u64 logical;
310         u8 level;
311 };
312
313 struct tree_mod_elem {
314         struct rb_node node;
315         u64 logical;
316         u64 seq;
317         enum mod_log_op op;
318
319         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
320         int slot;
321
322         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
323         u64 generation;
324
325         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
326         struct btrfs_disk_key key;
327         u64 blockptr;
328
329         /* this is used for op == MOD_LOG_MOVE_KEYS */
330         struct tree_mod_move move;
331
332         /* this is used for op == MOD_LOG_ROOT_REPLACE */
333         struct tree_mod_root old_root;
334 };
335
336 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
337 {
338         read_lock(&fs_info->tree_mod_log_lock);
339 }
340
341 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
342 {
343         read_unlock(&fs_info->tree_mod_log_lock);
344 }
345
346 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
347 {
348         write_lock(&fs_info->tree_mod_log_lock);
349 }
350
351 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
352 {
353         write_unlock(&fs_info->tree_mod_log_lock);
354 }
355
356 /*
357  * Pull a new tree mod seq number for our operation.
358  */
359 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
360 {
361         return atomic64_inc_return(&fs_info->tree_mod_seq);
362 }
363
364 /*
365  * This adds a new blocker to the tree mod log's blocker list if the @elem
366  * passed does not already have a sequence number set. So when a caller expects
367  * to record tree modifications, it should ensure to set elem->seq to zero
368  * before calling btrfs_get_tree_mod_seq.
369  * Returns a fresh, unused tree log modification sequence number, even if no new
370  * blocker was added.
371  */
372 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
373                            struct seq_list *elem)
374 {
375         tree_mod_log_write_lock(fs_info);
376         spin_lock(&fs_info->tree_mod_seq_lock);
377         if (!elem->seq) {
378                 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
379                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
380         }
381         spin_unlock(&fs_info->tree_mod_seq_lock);
382         tree_mod_log_write_unlock(fs_info);
383
384         return elem->seq;
385 }
386
387 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
388                             struct seq_list *elem)
389 {
390         struct rb_root *tm_root;
391         struct rb_node *node;
392         struct rb_node *next;
393         struct seq_list *cur_elem;
394         struct tree_mod_elem *tm;
395         u64 min_seq = (u64)-1;
396         u64 seq_putting = elem->seq;
397
398         if (!seq_putting)
399                 return;
400
401         spin_lock(&fs_info->tree_mod_seq_lock);
402         list_del(&elem->list);
403         elem->seq = 0;
404
405         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
406                 if (cur_elem->seq < min_seq) {
407                         if (seq_putting > cur_elem->seq) {
408                                 /*
409                                  * blocker with lower sequence number exists, we
410                                  * cannot remove anything from the log
411                                  */
412                                 spin_unlock(&fs_info->tree_mod_seq_lock);
413                                 return;
414                         }
415                         min_seq = cur_elem->seq;
416                 }
417         }
418         spin_unlock(&fs_info->tree_mod_seq_lock);
419
420         /*
421          * anything that's lower than the lowest existing (read: blocked)
422          * sequence number can be removed from the tree.
423          */
424         tree_mod_log_write_lock(fs_info);
425         tm_root = &fs_info->tree_mod_log;
426         for (node = rb_first(tm_root); node; node = next) {
427                 next = rb_next(node);
428                 tm = container_of(node, struct tree_mod_elem, node);
429                 if (tm->seq > min_seq)
430                         continue;
431                 rb_erase(node, tm_root);
432                 kfree(tm);
433         }
434         tree_mod_log_write_unlock(fs_info);
435 }
436
437 /*
438  * key order of the log:
439  *       node/leaf start address -> sequence
440  *
441  * The 'start address' is the logical address of the *new* root node
442  * for root replace operations, or the logical address of the affected
443  * block for all other operations.
444  *
445  * Note: must be called with write lock (tree_mod_log_write_lock).
446  */
447 static noinline int
448 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
449 {
450         struct rb_root *tm_root;
451         struct rb_node **new;
452         struct rb_node *parent = NULL;
453         struct tree_mod_elem *cur;
454
455         BUG_ON(!tm);
456
457         tm->seq = btrfs_inc_tree_mod_seq(fs_info);
458
459         tm_root = &fs_info->tree_mod_log;
460         new = &tm_root->rb_node;
461         while (*new) {
462                 cur = container_of(*new, struct tree_mod_elem, node);
463                 parent = *new;
464                 if (cur->logical < tm->logical)
465                         new = &((*new)->rb_left);
466                 else if (cur->logical > tm->logical)
467                         new = &((*new)->rb_right);
468                 else if (cur->seq < tm->seq)
469                         new = &((*new)->rb_left);
470                 else if (cur->seq > tm->seq)
471                         new = &((*new)->rb_right);
472                 else
473                         return -EEXIST;
474         }
475
476         rb_link_node(&tm->node, parent, new);
477         rb_insert_color(&tm->node, tm_root);
478         return 0;
479 }
480
481 /*
482  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483  * returns zero with the tree_mod_log_lock acquired. The caller must hold
484  * this until all tree mod log insertions are recorded in the rb tree and then
485  * call tree_mod_log_write_unlock() to release.
486  */
487 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
488                                     struct extent_buffer *eb) {
489         smp_mb();
490         if (list_empty(&(fs_info)->tree_mod_seq_list))
491                 return 1;
492         if (eb && btrfs_header_level(eb) == 0)
493                 return 1;
494
495         tree_mod_log_write_lock(fs_info);
496         if (list_empty(&(fs_info)->tree_mod_seq_list)) {
497                 tree_mod_log_write_unlock(fs_info);
498                 return 1;
499         }
500
501         return 0;
502 }
503
504 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
505 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
506                                     struct extent_buffer *eb)
507 {
508         smp_mb();
509         if (list_empty(&(fs_info)->tree_mod_seq_list))
510                 return 0;
511         if (eb && btrfs_header_level(eb) == 0)
512                 return 0;
513
514         return 1;
515 }
516
517 static struct tree_mod_elem *
518 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
519                     enum mod_log_op op, gfp_t flags)
520 {
521         struct tree_mod_elem *tm;
522
523         tm = kzalloc(sizeof(*tm), flags);
524         if (!tm)
525                 return NULL;
526
527         tm->logical = eb->start;
528         if (op != MOD_LOG_KEY_ADD) {
529                 btrfs_node_key(eb, &tm->key, slot);
530                 tm->blockptr = btrfs_node_blockptr(eb, slot);
531         }
532         tm->op = op;
533         tm->slot = slot;
534         tm->generation = btrfs_node_ptr_generation(eb, slot);
535         RB_CLEAR_NODE(&tm->node);
536
537         return tm;
538 }
539
540 static noinline int
541 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
542                         struct extent_buffer *eb, int slot,
543                         enum mod_log_op op, gfp_t flags)
544 {
545         struct tree_mod_elem *tm;
546         int ret;
547
548         if (!tree_mod_need_log(fs_info, eb))
549                 return 0;
550
551         tm = alloc_tree_mod_elem(eb, slot, op, flags);
552         if (!tm)
553                 return -ENOMEM;
554
555         if (tree_mod_dont_log(fs_info, eb)) {
556                 kfree(tm);
557                 return 0;
558         }
559
560         ret = __tree_mod_log_insert(fs_info, tm);
561         tree_mod_log_write_unlock(fs_info);
562         if (ret)
563                 kfree(tm);
564
565         return ret;
566 }
567
568 static noinline int
569 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
570                          struct extent_buffer *eb, int dst_slot, int src_slot,
571                          int nr_items, gfp_t flags)
572 {
573         struct tree_mod_elem *tm = NULL;
574         struct tree_mod_elem **tm_list = NULL;
575         int ret = 0;
576         int i;
577         int locked = 0;
578
579         if (!tree_mod_need_log(fs_info, eb))
580                 return 0;
581
582         tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
583         if (!tm_list)
584                 return -ENOMEM;
585
586         tm = kzalloc(sizeof(*tm), flags);
587         if (!tm) {
588                 ret = -ENOMEM;
589                 goto free_tms;
590         }
591
592         tm->logical = eb->start;
593         tm->slot = src_slot;
594         tm->move.dst_slot = dst_slot;
595         tm->move.nr_items = nr_items;
596         tm->op = MOD_LOG_MOVE_KEYS;
597
598         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
599                 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
600                     MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
601                 if (!tm_list[i]) {
602                         ret = -ENOMEM;
603                         goto free_tms;
604                 }
605         }
606
607         if (tree_mod_dont_log(fs_info, eb))
608                 goto free_tms;
609         locked = 1;
610
611         /*
612          * When we override something during the move, we log these removals.
613          * This can only happen when we move towards the beginning of the
614          * buffer, i.e. dst_slot < src_slot.
615          */
616         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
617                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
618                 if (ret)
619                         goto free_tms;
620         }
621
622         ret = __tree_mod_log_insert(fs_info, tm);
623         if (ret)
624                 goto free_tms;
625         tree_mod_log_write_unlock(fs_info);
626         kfree(tm_list);
627
628         return 0;
629 free_tms:
630         for (i = 0; i < nr_items; i++) {
631                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
632                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
633                 kfree(tm_list[i]);
634         }
635         if (locked)
636                 tree_mod_log_write_unlock(fs_info);
637         kfree(tm_list);
638         kfree(tm);
639
640         return ret;
641 }
642
643 static inline int
644 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
645                        struct tree_mod_elem **tm_list,
646                        int nritems)
647 {
648         int i, j;
649         int ret;
650
651         for (i = nritems - 1; i >= 0; i--) {
652                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
653                 if (ret) {
654                         for (j = nritems - 1; j > i; j--)
655                                 rb_erase(&tm_list[j]->node,
656                                          &fs_info->tree_mod_log);
657                         return ret;
658                 }
659         }
660
661         return 0;
662 }
663
664 static noinline int
665 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
666                          struct extent_buffer *old_root,
667                          struct extent_buffer *new_root, gfp_t flags,
668                          int log_removal)
669 {
670         struct tree_mod_elem *tm = NULL;
671         struct tree_mod_elem **tm_list = NULL;
672         int nritems = 0;
673         int ret = 0;
674         int i;
675
676         if (!tree_mod_need_log(fs_info, NULL))
677                 return 0;
678
679         if (log_removal && btrfs_header_level(old_root) > 0) {
680                 nritems = btrfs_header_nritems(old_root);
681                 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
682                                   flags);
683                 if (!tm_list) {
684                         ret = -ENOMEM;
685                         goto free_tms;
686                 }
687                 for (i = 0; i < nritems; i++) {
688                         tm_list[i] = alloc_tree_mod_elem(old_root, i,
689                             MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
690                         if (!tm_list[i]) {
691                                 ret = -ENOMEM;
692                                 goto free_tms;
693                         }
694                 }
695         }
696
697         tm = kzalloc(sizeof(*tm), flags);
698         if (!tm) {
699                 ret = -ENOMEM;
700                 goto free_tms;
701         }
702
703         tm->logical = new_root->start;
704         tm->old_root.logical = old_root->start;
705         tm->old_root.level = btrfs_header_level(old_root);
706         tm->generation = btrfs_header_generation(old_root);
707         tm->op = MOD_LOG_ROOT_REPLACE;
708
709         if (tree_mod_dont_log(fs_info, NULL))
710                 goto free_tms;
711
712         if (tm_list)
713                 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
714         if (!ret)
715                 ret = __tree_mod_log_insert(fs_info, tm);
716
717         tree_mod_log_write_unlock(fs_info);
718         if (ret)
719                 goto free_tms;
720         kfree(tm_list);
721
722         return ret;
723
724 free_tms:
725         if (tm_list) {
726                 for (i = 0; i < nritems; i++)
727                         kfree(tm_list[i]);
728                 kfree(tm_list);
729         }
730         kfree(tm);
731
732         return ret;
733 }
734
735 static struct tree_mod_elem *
736 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
737                       int smallest)
738 {
739         struct rb_root *tm_root;
740         struct rb_node *node;
741         struct tree_mod_elem *cur = NULL;
742         struct tree_mod_elem *found = NULL;
743
744         tree_mod_log_read_lock(fs_info);
745         tm_root = &fs_info->tree_mod_log;
746         node = tm_root->rb_node;
747         while (node) {
748                 cur = container_of(node, struct tree_mod_elem, node);
749                 if (cur->logical < start) {
750                         node = node->rb_left;
751                 } else if (cur->logical > start) {
752                         node = node->rb_right;
753                 } else if (cur->seq < min_seq) {
754                         node = node->rb_left;
755                 } else if (!smallest) {
756                         /* we want the node with the highest seq */
757                         if (found)
758                                 BUG_ON(found->seq > cur->seq);
759                         found = cur;
760                         node = node->rb_left;
761                 } else if (cur->seq > min_seq) {
762                         /* we want the node with the smallest seq */
763                         if (found)
764                                 BUG_ON(found->seq < cur->seq);
765                         found = cur;
766                         node = node->rb_right;
767                 } else {
768                         found = cur;
769                         break;
770                 }
771         }
772         tree_mod_log_read_unlock(fs_info);
773
774         return found;
775 }
776
777 /*
778  * this returns the element from the log with the smallest time sequence
779  * value that's in the log (the oldest log item). any element with a time
780  * sequence lower than min_seq will be ignored.
781  */
782 static struct tree_mod_elem *
783 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
784                            u64 min_seq)
785 {
786         return __tree_mod_log_search(fs_info, start, min_seq, 1);
787 }
788
789 /*
790  * this returns the element from the log with the largest time sequence
791  * value that's in the log (the most recent log item). any element with
792  * a time sequence lower than min_seq will be ignored.
793  */
794 static struct tree_mod_elem *
795 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
796 {
797         return __tree_mod_log_search(fs_info, start, min_seq, 0);
798 }
799
800 static noinline int
801 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
802                      struct extent_buffer *src, unsigned long dst_offset,
803                      unsigned long src_offset, int nr_items)
804 {
805         int ret = 0;
806         struct tree_mod_elem **tm_list = NULL;
807         struct tree_mod_elem **tm_list_add, **tm_list_rem;
808         int i;
809         int locked = 0;
810
811         if (!tree_mod_need_log(fs_info, NULL))
812                 return 0;
813
814         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
815                 return 0;
816
817         tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
818                           GFP_NOFS);
819         if (!tm_list)
820                 return -ENOMEM;
821
822         tm_list_add = tm_list;
823         tm_list_rem = tm_list + nr_items;
824         for (i = 0; i < nr_items; i++) {
825                 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
826                     MOD_LOG_KEY_REMOVE, GFP_NOFS);
827                 if (!tm_list_rem[i]) {
828                         ret = -ENOMEM;
829                         goto free_tms;
830                 }
831
832                 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
833                     MOD_LOG_KEY_ADD, GFP_NOFS);
834                 if (!tm_list_add[i]) {
835                         ret = -ENOMEM;
836                         goto free_tms;
837                 }
838         }
839
840         if (tree_mod_dont_log(fs_info, NULL))
841                 goto free_tms;
842         locked = 1;
843
844         for (i = 0; i < nr_items; i++) {
845                 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
846                 if (ret)
847                         goto free_tms;
848                 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
849                 if (ret)
850                         goto free_tms;
851         }
852
853         tree_mod_log_write_unlock(fs_info);
854         kfree(tm_list);
855
856         return 0;
857
858 free_tms:
859         for (i = 0; i < nr_items * 2; i++) {
860                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
861                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
862                 kfree(tm_list[i]);
863         }
864         if (locked)
865                 tree_mod_log_write_unlock(fs_info);
866         kfree(tm_list);
867
868         return ret;
869 }
870
871 static inline void
872 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
873                      int dst_offset, int src_offset, int nr_items)
874 {
875         int ret;
876         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
877                                        nr_items, GFP_NOFS);
878         BUG_ON(ret < 0);
879 }
880
881 static noinline void
882 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
883                           struct extent_buffer *eb, int slot, int atomic)
884 {
885         int ret;
886
887         ret = tree_mod_log_insert_key(fs_info, eb, slot,
888                                         MOD_LOG_KEY_REPLACE,
889                                         atomic ? GFP_ATOMIC : GFP_NOFS);
890         BUG_ON(ret < 0);
891 }
892
893 static noinline int
894 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
895 {
896         struct tree_mod_elem **tm_list = NULL;
897         int nritems = 0;
898         int i;
899         int ret = 0;
900
901         if (btrfs_header_level(eb) == 0)
902                 return 0;
903
904         if (!tree_mod_need_log(fs_info, NULL))
905                 return 0;
906
907         nritems = btrfs_header_nritems(eb);
908         tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
909         if (!tm_list)
910                 return -ENOMEM;
911
912         for (i = 0; i < nritems; i++) {
913                 tm_list[i] = alloc_tree_mod_elem(eb, i,
914                     MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
915                 if (!tm_list[i]) {
916                         ret = -ENOMEM;
917                         goto free_tms;
918                 }
919         }
920
921         if (tree_mod_dont_log(fs_info, eb))
922                 goto free_tms;
923
924         ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
925         tree_mod_log_write_unlock(fs_info);
926         if (ret)
927                 goto free_tms;
928         kfree(tm_list);
929
930         return 0;
931
932 free_tms:
933         for (i = 0; i < nritems; i++)
934                 kfree(tm_list[i]);
935         kfree(tm_list);
936
937         return ret;
938 }
939
940 static noinline void
941 tree_mod_log_set_root_pointer(struct btrfs_root *root,
942                               struct extent_buffer *new_root_node,
943                               int log_removal)
944 {
945         int ret;
946         ret = tree_mod_log_insert_root(root->fs_info, root->node,
947                                        new_root_node, GFP_NOFS, log_removal);
948         BUG_ON(ret < 0);
949 }
950
951 /*
952  * check if the tree block can be shared by multiple trees
953  */
954 int btrfs_block_can_be_shared(struct btrfs_root *root,
955                               struct extent_buffer *buf)
956 {
957         /*
958          * Tree blocks not in reference counted trees and tree roots
959          * are never shared. If a block was allocated after the last
960          * snapshot and the block was not allocated by tree relocation,
961          * we know the block is not shared.
962          */
963         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
964             buf != root->node && buf != root->commit_root &&
965             (btrfs_header_generation(buf) <=
966              btrfs_root_last_snapshot(&root->root_item) ||
967              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
968                 return 1;
969 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
970         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
971             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
972                 return 1;
973 #endif
974         return 0;
975 }
976
977 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
978                                        struct btrfs_root *root,
979                                        struct extent_buffer *buf,
980                                        struct extent_buffer *cow,
981                                        int *last_ref)
982 {
983         u64 refs;
984         u64 owner;
985         u64 flags;
986         u64 new_flags = 0;
987         int ret;
988
989         /*
990          * Backrefs update rules:
991          *
992          * Always use full backrefs for extent pointers in tree block
993          * allocated by tree relocation.
994          *
995          * If a shared tree block is no longer referenced by its owner
996          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
997          * use full backrefs for extent pointers in tree block.
998          *
999          * If a tree block is been relocating
1000          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001          * use full backrefs for extent pointers in tree block.
1002          * The reason for this is some operations (such as drop tree)
1003          * are only allowed for blocks use full backrefs.
1004          */
1005
1006         if (btrfs_block_can_be_shared(root, buf)) {
1007                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
1008                                                btrfs_header_level(buf), 1,
1009                                                &refs, &flags);
1010                 if (ret)
1011                         return ret;
1012                 if (refs == 0) {
1013                         ret = -EROFS;
1014                         btrfs_handle_fs_error(root->fs_info, ret, NULL);
1015                         return ret;
1016                 }
1017         } else {
1018                 refs = 1;
1019                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1020                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1021                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1022                 else
1023                         flags = 0;
1024         }
1025
1026         owner = btrfs_header_owner(buf);
1027         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1028                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1029
1030         if (refs > 1) {
1031                 if ((owner == root->root_key.objectid ||
1032                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1033                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1034                         ret = btrfs_inc_ref(trans, root, buf, 1);
1035                         BUG_ON(ret); /* -ENOMEM */
1036
1037                         if (root->root_key.objectid ==
1038                             BTRFS_TREE_RELOC_OBJECTID) {
1039                                 ret = btrfs_dec_ref(trans, root, buf, 0);
1040                                 BUG_ON(ret); /* -ENOMEM */
1041                                 ret = btrfs_inc_ref(trans, root, cow, 1);
1042                                 BUG_ON(ret); /* -ENOMEM */
1043                         }
1044                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1045                 } else {
1046
1047                         if (root->root_key.objectid ==
1048                             BTRFS_TREE_RELOC_OBJECTID)
1049                                 ret = btrfs_inc_ref(trans, root, cow, 1);
1050                         else
1051                                 ret = btrfs_inc_ref(trans, root, cow, 0);
1052                         BUG_ON(ret); /* -ENOMEM */
1053                 }
1054                 if (new_flags != 0) {
1055                         int level = btrfs_header_level(buf);
1056
1057                         ret = btrfs_set_disk_extent_flags(trans, root,
1058                                                           buf->start,
1059                                                           buf->len,
1060                                                           new_flags, level, 0);
1061                         if (ret)
1062                                 return ret;
1063                 }
1064         } else {
1065                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1066                         if (root->root_key.objectid ==
1067                             BTRFS_TREE_RELOC_OBJECTID)
1068                                 ret = btrfs_inc_ref(trans, root, cow, 1);
1069                         else
1070                                 ret = btrfs_inc_ref(trans, root, cow, 0);
1071                         BUG_ON(ret); /* -ENOMEM */
1072                         ret = btrfs_dec_ref(trans, root, buf, 1);
1073                         BUG_ON(ret); /* -ENOMEM */
1074                 }
1075                 clean_tree_block(trans, root->fs_info, buf);
1076                 *last_ref = 1;
1077         }
1078         return 0;
1079 }
1080
1081 /*
1082  * does the dirty work in cow of a single block.  The parent block (if
1083  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1084  * dirty and returned locked.  If you modify the block it needs to be marked
1085  * dirty again.
1086  *
1087  * search_start -- an allocation hint for the new block
1088  *
1089  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1090  * bytes the allocator should try to find free next to the block it returns.
1091  * This is just a hint and may be ignored by the allocator.
1092  */
1093 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1094                              struct btrfs_root *root,
1095                              struct extent_buffer *buf,
1096                              struct extent_buffer *parent, int parent_slot,
1097                              struct extent_buffer **cow_ret,
1098                              u64 search_start, u64 empty_size)
1099 {
1100         struct btrfs_disk_key disk_key;
1101         struct extent_buffer *cow;
1102         int level, ret;
1103         int last_ref = 0;
1104         int unlock_orig = 0;
1105         u64 parent_start;
1106
1107         if (*cow_ret == buf)
1108                 unlock_orig = 1;
1109
1110         btrfs_assert_tree_locked(buf);
1111
1112         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1113                 trans->transid != root->fs_info->running_transaction->transid);
1114         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1115                 trans->transid != root->last_trans);
1116
1117         level = btrfs_header_level(buf);
1118
1119         if (level == 0)
1120                 btrfs_item_key(buf, &disk_key, 0);
1121         else
1122                 btrfs_node_key(buf, &disk_key, 0);
1123
1124         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1125                 if (parent)
1126                         parent_start = parent->start;
1127                 else
1128                         parent_start = 0;
1129         } else
1130                 parent_start = 0;
1131
1132         cow = btrfs_alloc_tree_block(trans, root, parent_start,
1133                         root->root_key.objectid, &disk_key, level,
1134                         search_start, empty_size);
1135         if (IS_ERR(cow))
1136                 return PTR_ERR(cow);
1137
1138         /* cow is set to blocking by btrfs_init_new_buffer */
1139
1140         copy_extent_buffer(cow, buf, 0, 0, cow->len);
1141         btrfs_set_header_bytenr(cow, cow->start);
1142         btrfs_set_header_generation(cow, trans->transid);
1143         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1144         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1145                                      BTRFS_HEADER_FLAG_RELOC);
1146         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1147                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1148         else
1149                 btrfs_set_header_owner(cow, root->root_key.objectid);
1150
1151         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1152                             BTRFS_FSID_SIZE);
1153
1154         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1155         if (ret) {
1156                 btrfs_abort_transaction(trans, root, ret);
1157                 return ret;
1158         }
1159
1160         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1161                 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1162                 if (ret) {
1163                         btrfs_abort_transaction(trans, root, ret);
1164                         return ret;
1165                 }
1166         }
1167
1168         if (buf == root->node) {
1169                 WARN_ON(parent && parent != buf);
1170                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1171                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1172                         parent_start = buf->start;
1173                 else
1174                         parent_start = 0;
1175
1176                 extent_buffer_get(cow);
1177                 tree_mod_log_set_root_pointer(root, cow, 1);
1178                 rcu_assign_pointer(root->node, cow);
1179
1180                 btrfs_free_tree_block(trans, root, buf, parent_start,
1181                                       last_ref);
1182                 free_extent_buffer(buf);
1183                 add_root_to_dirty_list(root);
1184         } else {
1185                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1186                         parent_start = parent->start;
1187                 else
1188                         parent_start = 0;
1189
1190                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1191                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1192                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
1193                 btrfs_set_node_blockptr(parent, parent_slot,
1194                                         cow->start);
1195                 btrfs_set_node_ptr_generation(parent, parent_slot,
1196                                               trans->transid);
1197                 btrfs_mark_buffer_dirty(parent);
1198                 if (last_ref) {
1199                         ret = tree_mod_log_free_eb(root->fs_info, buf);
1200                         if (ret) {
1201                                 btrfs_abort_transaction(trans, root, ret);
1202                                 return ret;
1203                         }
1204                 }
1205                 btrfs_free_tree_block(trans, root, buf, parent_start,
1206                                       last_ref);
1207         }
1208         if (unlock_orig)
1209                 btrfs_tree_unlock(buf);
1210         free_extent_buffer_stale(buf);
1211         btrfs_mark_buffer_dirty(cow);
1212         *cow_ret = cow;
1213         return 0;
1214 }
1215
1216 /*
1217  * returns the logical address of the oldest predecessor of the given root.
1218  * entries older than time_seq are ignored.
1219  */
1220 static struct tree_mod_elem *
1221 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1222                            struct extent_buffer *eb_root, u64 time_seq)
1223 {
1224         struct tree_mod_elem *tm;
1225         struct tree_mod_elem *found = NULL;
1226         u64 root_logical = eb_root->start;
1227         int looped = 0;
1228
1229         if (!time_seq)
1230                 return NULL;
1231
1232         /*
1233          * the very last operation that's logged for a root is the
1234          * replacement operation (if it is replaced at all). this has
1235          * the logical address of the *new* root, making it the very
1236          * first operation that's logged for this root.
1237          */
1238         while (1) {
1239                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1240                                                 time_seq);
1241                 if (!looped && !tm)
1242                         return NULL;
1243                 /*
1244                  * if there are no tree operation for the oldest root, we simply
1245                  * return it. this should only happen if that (old) root is at
1246                  * level 0.
1247                  */
1248                 if (!tm)
1249                         break;
1250
1251                 /*
1252                  * if there's an operation that's not a root replacement, we
1253                  * found the oldest version of our root. normally, we'll find a
1254                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1255                  */
1256                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1257                         break;
1258
1259                 found = tm;
1260                 root_logical = tm->old_root.logical;
1261                 looped = 1;
1262         }
1263
1264         /* if there's no old root to return, return what we found instead */
1265         if (!found)
1266                 found = tm;
1267
1268         return found;
1269 }
1270
1271 /*
1272  * tm is a pointer to the first operation to rewind within eb. then, all
1273  * previous operations will be rewound (until we reach something older than
1274  * time_seq).
1275  */
1276 static void
1277 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1278                       u64 time_seq, struct tree_mod_elem *first_tm)
1279 {
1280         u32 n;
1281         struct rb_node *next;
1282         struct tree_mod_elem *tm = first_tm;
1283         unsigned long o_dst;
1284         unsigned long o_src;
1285         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1286
1287         n = btrfs_header_nritems(eb);
1288         tree_mod_log_read_lock(fs_info);
1289         while (tm && tm->seq >= time_seq) {
1290                 /*
1291                  * all the operations are recorded with the operator used for
1292                  * the modification. as we're going backwards, we do the
1293                  * opposite of each operation here.
1294                  */
1295                 switch (tm->op) {
1296                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1297                         BUG_ON(tm->slot < n);
1298                         /* Fallthrough */
1299                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1300                 case MOD_LOG_KEY_REMOVE:
1301                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1302                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1303                         btrfs_set_node_ptr_generation(eb, tm->slot,
1304                                                       tm->generation);
1305                         n++;
1306                         break;
1307                 case MOD_LOG_KEY_REPLACE:
1308                         BUG_ON(tm->slot >= n);
1309                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1310                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1311                         btrfs_set_node_ptr_generation(eb, tm->slot,
1312                                                       tm->generation);
1313                         break;
1314                 case MOD_LOG_KEY_ADD:
1315                         /* if a move operation is needed it's in the log */
1316                         n--;
1317                         break;
1318                 case MOD_LOG_MOVE_KEYS:
1319                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1320                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1321                         memmove_extent_buffer(eb, o_dst, o_src,
1322                                               tm->move.nr_items * p_size);
1323                         break;
1324                 case MOD_LOG_ROOT_REPLACE:
1325                         /*
1326                          * this operation is special. for roots, this must be
1327                          * handled explicitly before rewinding.
1328                          * for non-roots, this operation may exist if the node
1329                          * was a root: root A -> child B; then A gets empty and
1330                          * B is promoted to the new root. in the mod log, we'll
1331                          * have a root-replace operation for B, a tree block
1332                          * that is no root. we simply ignore that operation.
1333                          */
1334                         break;
1335                 }
1336                 next = rb_next(&tm->node);
1337                 if (!next)
1338                         break;
1339                 tm = container_of(next, struct tree_mod_elem, node);
1340                 if (tm->logical != first_tm->logical)
1341                         break;
1342         }
1343         tree_mod_log_read_unlock(fs_info);
1344         btrfs_set_header_nritems(eb, n);
1345 }
1346
1347 /*
1348  * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1349  * is returned. If rewind operations happen, a fresh buffer is returned. The
1350  * returned buffer is always read-locked. If the returned buffer is not the
1351  * input buffer, the lock on the input buffer is released and the input buffer
1352  * is freed (its refcount is decremented).
1353  */
1354 static struct extent_buffer *
1355 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1356                     struct extent_buffer *eb, u64 time_seq)
1357 {
1358         struct extent_buffer *eb_rewin;
1359         struct tree_mod_elem *tm;
1360
1361         if (!time_seq)
1362                 return eb;
1363
1364         if (btrfs_header_level(eb) == 0)
1365                 return eb;
1366
1367         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1368         if (!tm)
1369                 return eb;
1370
1371         btrfs_set_path_blocking(path);
1372         btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1373
1374         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1375                 BUG_ON(tm->slot != 0);
1376                 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start,
1377                                                 eb->len);
1378                 if (!eb_rewin) {
1379                         btrfs_tree_read_unlock_blocking(eb);
1380                         free_extent_buffer(eb);
1381                         return NULL;
1382                 }
1383                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1384                 btrfs_set_header_backref_rev(eb_rewin,
1385                                              btrfs_header_backref_rev(eb));
1386                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1387                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1388         } else {
1389                 eb_rewin = btrfs_clone_extent_buffer(eb);
1390                 if (!eb_rewin) {
1391                         btrfs_tree_read_unlock_blocking(eb);
1392                         free_extent_buffer(eb);
1393                         return NULL;
1394                 }
1395         }
1396
1397         btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1398         btrfs_tree_read_unlock_blocking(eb);
1399         free_extent_buffer(eb);
1400
1401         extent_buffer_get(eb_rewin);
1402         btrfs_tree_read_lock(eb_rewin);
1403         __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1404         WARN_ON(btrfs_header_nritems(eb_rewin) >
1405                 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1406
1407         return eb_rewin;
1408 }
1409
1410 /*
1411  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1412  * value. If there are no changes, the current root->root_node is returned. If
1413  * anything changed in between, there's a fresh buffer allocated on which the
1414  * rewind operations are done. In any case, the returned buffer is read locked.
1415  * Returns NULL on error (with no locks held).
1416  */
1417 static inline struct extent_buffer *
1418 get_old_root(struct btrfs_root *root, u64 time_seq)
1419 {
1420         struct tree_mod_elem *tm;
1421         struct extent_buffer *eb = NULL;
1422         struct extent_buffer *eb_root;
1423         struct extent_buffer *old;
1424         struct tree_mod_root *old_root = NULL;
1425         u64 old_generation = 0;
1426         u64 logical;
1427
1428         eb_root = btrfs_read_lock_root_node(root);
1429         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1430         if (!tm)
1431                 return eb_root;
1432
1433         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1434                 old_root = &tm->old_root;
1435                 old_generation = tm->generation;
1436                 logical = old_root->logical;
1437         } else {
1438                 logical = eb_root->start;
1439         }
1440
1441         tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1442         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1443                 btrfs_tree_read_unlock(eb_root);
1444                 free_extent_buffer(eb_root);
1445                 old = read_tree_block(root, logical, 0);
1446                 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1447                         if (!IS_ERR(old))
1448                                 free_extent_buffer(old);
1449                         btrfs_warn(root->fs_info,
1450                                 "failed to read tree block %llu from get_old_root", logical);
1451                 } else {
1452                         eb = btrfs_clone_extent_buffer(old);
1453                         free_extent_buffer(old);
1454                 }
1455         } else if (old_root) {
1456                 btrfs_tree_read_unlock(eb_root);
1457                 free_extent_buffer(eb_root);
1458                 eb = alloc_dummy_extent_buffer(root->fs_info, logical,
1459                                         root->nodesize);
1460         } else {
1461                 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1462                 eb = btrfs_clone_extent_buffer(eb_root);
1463                 btrfs_tree_read_unlock_blocking(eb_root);
1464                 free_extent_buffer(eb_root);
1465         }
1466
1467         if (!eb)
1468                 return NULL;
1469         extent_buffer_get(eb);
1470         btrfs_tree_read_lock(eb);
1471         if (old_root) {
1472                 btrfs_set_header_bytenr(eb, eb->start);
1473                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1474                 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1475                 btrfs_set_header_level(eb, old_root->level);
1476                 btrfs_set_header_generation(eb, old_generation);
1477         }
1478         if (tm)
1479                 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1480         else
1481                 WARN_ON(btrfs_header_level(eb) != 0);
1482         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1483
1484         return eb;
1485 }
1486
1487 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1488 {
1489         struct tree_mod_elem *tm;
1490         int level;
1491         struct extent_buffer *eb_root = btrfs_root_node(root);
1492
1493         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1494         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1495                 level = tm->old_root.level;
1496         } else {
1497                 level = btrfs_header_level(eb_root);
1498         }
1499         free_extent_buffer(eb_root);
1500
1501         return level;
1502 }
1503
1504 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1505                                    struct btrfs_root *root,
1506                                    struct extent_buffer *buf)
1507 {
1508         if (btrfs_test_is_dummy_root(root))
1509                 return 0;
1510
1511         /* ensure we can see the force_cow */
1512         smp_rmb();
1513
1514         /*
1515          * We do not need to cow a block if
1516          * 1) this block is not created or changed in this transaction;
1517          * 2) this block does not belong to TREE_RELOC tree;
1518          * 3) the root is not forced COW.
1519          *
1520          * What is forced COW:
1521          *    when we create snapshot during committing the transaction,
1522          *    after we've finished coping src root, we must COW the shared
1523          *    block to ensure the metadata consistency.
1524          */
1525         if (btrfs_header_generation(buf) == trans->transid &&
1526             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1527             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1528               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1529             !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1530                 return 0;
1531         return 1;
1532 }
1533
1534 /*
1535  * cows a single block, see __btrfs_cow_block for the real work.
1536  * This version of it has extra checks so that a block isn't COWed more than
1537  * once per transaction, as long as it hasn't been written yet
1538  */
1539 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1540                     struct btrfs_root *root, struct extent_buffer *buf,
1541                     struct extent_buffer *parent, int parent_slot,
1542                     struct extent_buffer **cow_ret)
1543 {
1544         u64 search_start;
1545         int ret;
1546
1547         if (trans->transaction != root->fs_info->running_transaction)
1548                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1549                        trans->transid,
1550                        root->fs_info->running_transaction->transid);
1551
1552         if (trans->transid != root->fs_info->generation)
1553                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1554                        trans->transid, root->fs_info->generation);
1555
1556         if (!should_cow_block(trans, root, buf)) {
1557                 *cow_ret = buf;
1558                 return 0;
1559         }
1560
1561         search_start = buf->start & ~((u64)SZ_1G - 1);
1562
1563         if (parent)
1564                 btrfs_set_lock_blocking(parent);
1565         btrfs_set_lock_blocking(buf);
1566
1567         ret = __btrfs_cow_block(trans, root, buf, parent,
1568                                  parent_slot, cow_ret, search_start, 0);
1569
1570         trace_btrfs_cow_block(root, buf, *cow_ret);
1571
1572         return ret;
1573 }
1574
1575 /*
1576  * helper function for defrag to decide if two blocks pointed to by a
1577  * node are actually close by
1578  */
1579 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1580 {
1581         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1582                 return 1;
1583         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1584                 return 1;
1585         return 0;
1586 }
1587
1588 /*
1589  * compare two keys in a memcmp fashion
1590  */
1591 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1592 {
1593         struct btrfs_key k1;
1594
1595         btrfs_disk_key_to_cpu(&k1, disk);
1596
1597         return btrfs_comp_cpu_keys(&k1, k2);
1598 }
1599
1600 /*
1601  * same as comp_keys only with two btrfs_key's
1602  */
1603 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1604 {
1605         if (k1->objectid > k2->objectid)
1606                 return 1;
1607         if (k1->objectid < k2->objectid)
1608                 return -1;
1609         if (k1->type > k2->type)
1610                 return 1;
1611         if (k1->type < k2->type)
1612                 return -1;
1613         if (k1->offset > k2->offset)
1614                 return 1;
1615         if (k1->offset < k2->offset)
1616                 return -1;
1617         return 0;
1618 }
1619
1620 /*
1621  * this is used by the defrag code to go through all the
1622  * leaves pointed to by a node and reallocate them so that
1623  * disk order is close to key order
1624  */
1625 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1626                        struct btrfs_root *root, struct extent_buffer *parent,
1627                        int start_slot, u64 *last_ret,
1628                        struct btrfs_key *progress)
1629 {
1630         struct extent_buffer *cur;
1631         u64 blocknr;
1632         u64 gen;
1633         u64 search_start = *last_ret;
1634         u64 last_block = 0;
1635         u64 other;
1636         u32 parent_nritems;
1637         int end_slot;
1638         int i;
1639         int err = 0;
1640         int parent_level;
1641         int uptodate;
1642         u32 blocksize;
1643         int progress_passed = 0;
1644         struct btrfs_disk_key disk_key;
1645
1646         parent_level = btrfs_header_level(parent);
1647
1648         WARN_ON(trans->transaction != root->fs_info->running_transaction);
1649         WARN_ON(trans->transid != root->fs_info->generation);
1650
1651         parent_nritems = btrfs_header_nritems(parent);
1652         blocksize = root->nodesize;
1653         end_slot = parent_nritems - 1;
1654
1655         if (parent_nritems <= 1)
1656                 return 0;
1657
1658         btrfs_set_lock_blocking(parent);
1659
1660         for (i = start_slot; i <= end_slot; i++) {
1661                 int close = 1;
1662
1663                 btrfs_node_key(parent, &disk_key, i);
1664                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1665                         continue;
1666
1667                 progress_passed = 1;
1668                 blocknr = btrfs_node_blockptr(parent, i);
1669                 gen = btrfs_node_ptr_generation(parent, i);
1670                 if (last_block == 0)
1671                         last_block = blocknr;
1672
1673                 if (i > 0) {
1674                         other = btrfs_node_blockptr(parent, i - 1);
1675                         close = close_blocks(blocknr, other, blocksize);
1676                 }
1677                 if (!close && i < end_slot) {
1678                         other = btrfs_node_blockptr(parent, i + 1);
1679                         close = close_blocks(blocknr, other, blocksize);
1680                 }
1681                 if (close) {
1682                         last_block = blocknr;
1683                         continue;
1684                 }
1685
1686                 cur = btrfs_find_tree_block(root->fs_info, blocknr);
1687                 if (cur)
1688                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1689                 else
1690                         uptodate = 0;
1691                 if (!cur || !uptodate) {
1692                         if (!cur) {
1693                                 cur = read_tree_block(root, blocknr, gen);
1694                                 if (IS_ERR(cur)) {
1695                                         return PTR_ERR(cur);
1696                                 } else if (!extent_buffer_uptodate(cur)) {
1697                                         free_extent_buffer(cur);
1698                                         return -EIO;
1699                                 }
1700                         } else if (!uptodate) {
1701                                 err = btrfs_read_buffer(cur, gen);
1702                                 if (err) {
1703                                         free_extent_buffer(cur);
1704                                         return err;
1705                                 }
1706                         }
1707                 }
1708                 if (search_start == 0)
1709                         search_start = last_block;
1710
1711                 btrfs_tree_lock(cur);
1712                 btrfs_set_lock_blocking(cur);
1713                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1714                                         &cur, search_start,
1715                                         min(16 * blocksize,
1716                                             (end_slot - i) * blocksize));
1717                 if (err) {
1718                         btrfs_tree_unlock(cur);
1719                         free_extent_buffer(cur);
1720                         break;
1721                 }
1722                 search_start = cur->start;
1723                 last_block = cur->start;
1724                 *last_ret = search_start;
1725                 btrfs_tree_unlock(cur);
1726                 free_extent_buffer(cur);
1727         }
1728         return err;
1729 }
1730
1731 /*
1732  * The leaf data grows from end-to-front in the node.
1733  * this returns the address of the start of the last item,
1734  * which is the stop of the leaf data stack
1735  */
1736 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1737                                          struct extent_buffer *leaf)
1738 {
1739         u32 nr = btrfs_header_nritems(leaf);
1740         if (nr == 0)
1741                 return BTRFS_LEAF_DATA_SIZE(root);
1742         return btrfs_item_offset_nr(leaf, nr - 1);
1743 }
1744
1745
1746 /*
1747  * search for key in the extent_buffer.  The items start at offset p,
1748  * and they are item_size apart.  There are 'max' items in p.
1749  *
1750  * the slot in the array is returned via slot, and it points to
1751  * the place where you would insert key if it is not found in
1752  * the array.
1753  *
1754  * slot may point to max if the key is bigger than all of the keys
1755  */
1756 static noinline int generic_bin_search(struct extent_buffer *eb,
1757                                        unsigned long p,
1758                                        int item_size, struct btrfs_key *key,
1759                                        int max, int *slot)
1760 {
1761         int low = 0;
1762         int high = max;
1763         int mid;
1764         int ret;
1765         struct btrfs_disk_key *tmp = NULL;
1766         struct btrfs_disk_key unaligned;
1767         unsigned long offset;
1768         char *kaddr = NULL;
1769         unsigned long map_start = 0;
1770         unsigned long map_len = 0;
1771         int err;
1772
1773         while (low < high) {
1774                 mid = (low + high) / 2;
1775                 offset = p + mid * item_size;
1776
1777                 if (!kaddr || offset < map_start ||
1778                     (offset + sizeof(struct btrfs_disk_key)) >
1779                     map_start + map_len) {
1780
1781                         err = map_private_extent_buffer(eb, offset,
1782                                                 sizeof(struct btrfs_disk_key),
1783                                                 &kaddr, &map_start, &map_len);
1784
1785                         if (!err) {
1786                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1787                                                         map_start);
1788                         } else {
1789                                 read_extent_buffer(eb, &unaligned,
1790                                                    offset, sizeof(unaligned));
1791                                 tmp = &unaligned;
1792                         }
1793
1794                 } else {
1795                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1796                                                         map_start);
1797                 }
1798                 ret = comp_keys(tmp, key);
1799
1800                 if (ret < 0)
1801                         low = mid + 1;
1802                 else if (ret > 0)
1803                         high = mid;
1804                 else {
1805                         *slot = mid;
1806                         return 0;
1807                 }
1808         }
1809         *slot = low;
1810         return 1;
1811 }
1812
1813 /*
1814  * simple bin_search frontend that does the right thing for
1815  * leaves vs nodes
1816  */
1817 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1818                       int level, int *slot)
1819 {
1820         if (level == 0)
1821                 return generic_bin_search(eb,
1822                                           offsetof(struct btrfs_leaf, items),
1823                                           sizeof(struct btrfs_item),
1824                                           key, btrfs_header_nritems(eb),
1825                                           slot);
1826         else
1827                 return generic_bin_search(eb,
1828                                           offsetof(struct btrfs_node, ptrs),
1829                                           sizeof(struct btrfs_key_ptr),
1830                                           key, btrfs_header_nritems(eb),
1831                                           slot);
1832 }
1833
1834 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1835                      int level, int *slot)
1836 {
1837         return bin_search(eb, key, level, slot);
1838 }
1839
1840 static void root_add_used(struct btrfs_root *root, u32 size)
1841 {
1842         spin_lock(&root->accounting_lock);
1843         btrfs_set_root_used(&root->root_item,
1844                             btrfs_root_used(&root->root_item) + size);
1845         spin_unlock(&root->accounting_lock);
1846 }
1847
1848 static void root_sub_used(struct btrfs_root *root, u32 size)
1849 {
1850         spin_lock(&root->accounting_lock);
1851         btrfs_set_root_used(&root->root_item,
1852                             btrfs_root_used(&root->root_item) - size);
1853         spin_unlock(&root->accounting_lock);
1854 }
1855
1856 /* given a node and slot number, this reads the blocks it points to.  The
1857  * extent buffer is returned with a reference taken (but unlocked).
1858  * NULL is returned on error.
1859  */
1860 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1861                                    struct extent_buffer *parent, int slot)
1862 {
1863         int level = btrfs_header_level(parent);
1864         struct extent_buffer *eb;
1865
1866         if (slot < 0)
1867                 return NULL;
1868         if (slot >= btrfs_header_nritems(parent))
1869                 return NULL;
1870
1871         BUG_ON(level == 0);
1872
1873         eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1874                              btrfs_node_ptr_generation(parent, slot));
1875         if (IS_ERR(eb) || !extent_buffer_uptodate(eb)) {
1876                 if (!IS_ERR(eb))
1877                         free_extent_buffer(eb);
1878                 eb = NULL;
1879         }
1880
1881         return eb;
1882 }
1883
1884 /*
1885  * node level balancing, used to make sure nodes are in proper order for
1886  * item deletion.  We balance from the top down, so we have to make sure
1887  * that a deletion won't leave an node completely empty later on.
1888  */
1889 static noinline int balance_level(struct btrfs_trans_handle *trans,
1890                          struct btrfs_root *root,
1891                          struct btrfs_path *path, int level)
1892 {
1893         struct extent_buffer *right = NULL;
1894         struct extent_buffer *mid;
1895         struct extent_buffer *left = NULL;
1896         struct extent_buffer *parent = NULL;
1897         int ret = 0;
1898         int wret;
1899         int pslot;
1900         int orig_slot = path->slots[level];
1901         u64 orig_ptr;
1902
1903         if (level == 0)
1904                 return 0;
1905
1906         mid = path->nodes[level];
1907
1908         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1909                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1910         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1911
1912         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1913
1914         if (level < BTRFS_MAX_LEVEL - 1) {
1915                 parent = path->nodes[level + 1];
1916                 pslot = path->slots[level + 1];
1917         }
1918
1919         /*
1920          * deal with the case where there is only one pointer in the root
1921          * by promoting the node below to a root
1922          */
1923         if (!parent) {
1924                 struct extent_buffer *child;
1925
1926                 if (btrfs_header_nritems(mid) != 1)
1927                         return 0;
1928
1929                 /* promote the child to a root */
1930                 child = read_node_slot(root, mid, 0);
1931                 if (!child) {
1932                         ret = -EROFS;
1933                         btrfs_handle_fs_error(root->fs_info, ret, NULL);
1934                         goto enospc;
1935                 }
1936
1937                 btrfs_tree_lock(child);
1938                 btrfs_set_lock_blocking(child);
1939                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1940                 if (ret) {
1941                         btrfs_tree_unlock(child);
1942                         free_extent_buffer(child);
1943                         goto enospc;
1944                 }
1945
1946                 tree_mod_log_set_root_pointer(root, child, 1);
1947                 rcu_assign_pointer(root->node, child);
1948
1949                 add_root_to_dirty_list(root);
1950                 btrfs_tree_unlock(child);
1951
1952                 path->locks[level] = 0;
1953                 path->nodes[level] = NULL;
1954                 clean_tree_block(trans, root->fs_info, mid);
1955                 btrfs_tree_unlock(mid);
1956                 /* once for the path */
1957                 free_extent_buffer(mid);
1958
1959                 root_sub_used(root, mid->len);
1960                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1961                 /* once for the root ptr */
1962                 free_extent_buffer_stale(mid);
1963                 return 0;
1964         }
1965         if (btrfs_header_nritems(mid) >
1966             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1967                 return 0;
1968
1969         left = read_node_slot(root, parent, pslot - 1);
1970         if (left) {
1971                 btrfs_tree_lock(left);
1972                 btrfs_set_lock_blocking(left);
1973                 wret = btrfs_cow_block(trans, root, left,
1974                                        parent, pslot - 1, &left);
1975                 if (wret) {
1976                         ret = wret;
1977                         goto enospc;
1978                 }
1979         }
1980         right = read_node_slot(root, parent, pslot + 1);
1981         if (right) {
1982                 btrfs_tree_lock(right);
1983                 btrfs_set_lock_blocking(right);
1984                 wret = btrfs_cow_block(trans, root, right,
1985                                        parent, pslot + 1, &right);
1986                 if (wret) {
1987                         ret = wret;
1988                         goto enospc;
1989                 }
1990         }
1991
1992         /* first, try to make some room in the middle buffer */
1993         if (left) {
1994                 orig_slot += btrfs_header_nritems(left);
1995                 wret = push_node_left(trans, root, left, mid, 1);
1996                 if (wret < 0)
1997                         ret = wret;
1998         }
1999
2000         /*
2001          * then try to empty the right most buffer into the middle
2002          */
2003         if (right) {
2004                 wret = push_node_left(trans, root, mid, right, 1);
2005                 if (wret < 0 && wret != -ENOSPC)
2006                         ret = wret;
2007                 if (btrfs_header_nritems(right) == 0) {
2008                         clean_tree_block(trans, root->fs_info, right);
2009                         btrfs_tree_unlock(right);
2010                         del_ptr(root, path, level + 1, pslot + 1);
2011                         root_sub_used(root, right->len);
2012                         btrfs_free_tree_block(trans, root, right, 0, 1);
2013                         free_extent_buffer_stale(right);
2014                         right = NULL;
2015                 } else {
2016                         struct btrfs_disk_key right_key;
2017                         btrfs_node_key(right, &right_key, 0);
2018                         tree_mod_log_set_node_key(root->fs_info, parent,
2019                                                   pslot + 1, 0);
2020                         btrfs_set_node_key(parent, &right_key, pslot + 1);
2021                         btrfs_mark_buffer_dirty(parent);
2022                 }
2023         }
2024         if (btrfs_header_nritems(mid) == 1) {
2025                 /*
2026                  * we're not allowed to leave a node with one item in the
2027                  * tree during a delete.  A deletion from lower in the tree
2028                  * could try to delete the only pointer in this node.
2029                  * So, pull some keys from the left.
2030                  * There has to be a left pointer at this point because
2031                  * otherwise we would have pulled some pointers from the
2032                  * right
2033                  */
2034                 if (!left) {
2035                         ret = -EROFS;
2036                         btrfs_handle_fs_error(root->fs_info, ret, NULL);
2037                         goto enospc;
2038                 }
2039                 wret = balance_node_right(trans, root, mid, left);
2040                 if (wret < 0) {
2041                         ret = wret;
2042                         goto enospc;
2043                 }
2044                 if (wret == 1) {
2045                         wret = push_node_left(trans, root, left, mid, 1);
2046                         if (wret < 0)
2047                                 ret = wret;
2048                 }
2049                 BUG_ON(wret == 1);
2050         }
2051         if (btrfs_header_nritems(mid) == 0) {
2052                 clean_tree_block(trans, root->fs_info, mid);
2053                 btrfs_tree_unlock(mid);
2054                 del_ptr(root, path, level + 1, pslot);
2055                 root_sub_used(root, mid->len);
2056                 btrfs_free_tree_block(trans, root, mid, 0, 1);
2057                 free_extent_buffer_stale(mid);
2058                 mid = NULL;
2059         } else {
2060                 /* update the parent key to reflect our changes */
2061                 struct btrfs_disk_key mid_key;
2062                 btrfs_node_key(mid, &mid_key, 0);
2063                 tree_mod_log_set_node_key(root->fs_info, parent,
2064                                           pslot, 0);
2065                 btrfs_set_node_key(parent, &mid_key, pslot);
2066                 btrfs_mark_buffer_dirty(parent);
2067         }
2068
2069         /* update the path */
2070         if (left) {
2071                 if (btrfs_header_nritems(left) > orig_slot) {
2072                         extent_buffer_get(left);
2073                         /* left was locked after cow */
2074                         path->nodes[level] = left;
2075                         path->slots[level + 1] -= 1;
2076                         path->slots[level] = orig_slot;
2077                         if (mid) {
2078                                 btrfs_tree_unlock(mid);
2079                                 free_extent_buffer(mid);
2080                         }
2081                 } else {
2082                         orig_slot -= btrfs_header_nritems(left);
2083                         path->slots[level] = orig_slot;
2084                 }
2085         }
2086         /* double check we haven't messed things up */
2087         if (orig_ptr !=
2088             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2089                 BUG();
2090 enospc:
2091         if (right) {
2092                 btrfs_tree_unlock(right);
2093                 free_extent_buffer(right);
2094         }
2095         if (left) {
2096                 if (path->nodes[level] != left)
2097                         btrfs_tree_unlock(left);
2098                 free_extent_buffer(left);
2099         }
2100         return ret;
2101 }
2102
2103 /* Node balancing for insertion.  Here we only split or push nodes around
2104  * when they are completely full.  This is also done top down, so we
2105  * have to be pessimistic.
2106  */
2107 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2108                                           struct btrfs_root *root,
2109                                           struct btrfs_path *path, int level)
2110 {
2111         struct extent_buffer *right = NULL;
2112         struct extent_buffer *mid;
2113         struct extent_buffer *left = NULL;
2114         struct extent_buffer *parent = NULL;
2115         int ret = 0;
2116         int wret;
2117         int pslot;
2118         int orig_slot = path->slots[level];
2119
2120         if (level == 0)
2121                 return 1;
2122
2123         mid = path->nodes[level];
2124         WARN_ON(btrfs_header_generation(mid) != trans->transid);
2125
2126         if (level < BTRFS_MAX_LEVEL - 1) {
2127                 parent = path->nodes[level + 1];
2128                 pslot = path->slots[level + 1];
2129         }
2130
2131         if (!parent)
2132                 return 1;
2133
2134         left = read_node_slot(root, parent, pslot - 1);
2135
2136         /* first, try to make some room in the middle buffer */
2137         if (left) {
2138                 u32 left_nr;
2139
2140                 btrfs_tree_lock(left);
2141                 btrfs_set_lock_blocking(left);
2142
2143                 left_nr = btrfs_header_nritems(left);
2144                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2145                         wret = 1;
2146                 } else {
2147                         ret = btrfs_cow_block(trans, root, left, parent,
2148                                               pslot - 1, &left);
2149                         if (ret)
2150                                 wret = 1;
2151                         else {
2152                                 wret = push_node_left(trans, root,
2153                                                       left, mid, 0);
2154                         }
2155                 }
2156                 if (wret < 0)
2157                         ret = wret;
2158                 if (wret == 0) {
2159                         struct btrfs_disk_key disk_key;
2160                         orig_slot += left_nr;
2161                         btrfs_node_key(mid, &disk_key, 0);
2162                         tree_mod_log_set_node_key(root->fs_info, parent,
2163                                                   pslot, 0);
2164                         btrfs_set_node_key(parent, &disk_key, pslot);
2165                         btrfs_mark_buffer_dirty(parent);
2166                         if (btrfs_header_nritems(left) > orig_slot) {
2167                                 path->nodes[level] = left;
2168                                 path->slots[level + 1] -= 1;
2169                                 path->slots[level] = orig_slot;
2170                                 btrfs_tree_unlock(mid);
2171                                 free_extent_buffer(mid);
2172                         } else {
2173                                 orig_slot -=
2174                                         btrfs_header_nritems(left);
2175                                 path->slots[level] = orig_slot;
2176                                 btrfs_tree_unlock(left);
2177                                 free_extent_buffer(left);
2178                         }
2179                         return 0;
2180                 }
2181                 btrfs_tree_unlock(left);
2182                 free_extent_buffer(left);
2183         }
2184         right = read_node_slot(root, parent, pslot + 1);
2185
2186         /*
2187          * then try to empty the right most buffer into the middle
2188          */
2189         if (right) {
2190                 u32 right_nr;
2191
2192                 btrfs_tree_lock(right);
2193                 btrfs_set_lock_blocking(right);
2194
2195                 right_nr = btrfs_header_nritems(right);
2196                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2197                         wret = 1;
2198                 } else {
2199                         ret = btrfs_cow_block(trans, root, right,
2200                                               parent, pslot + 1,
2201                                               &right);
2202                         if (ret)
2203                                 wret = 1;
2204                         else {
2205                                 wret = balance_node_right(trans, root,
2206                                                           right, mid);
2207                         }
2208                 }
2209                 if (wret < 0)
2210                         ret = wret;
2211                 if (wret == 0) {
2212                         struct btrfs_disk_key disk_key;
2213
2214                         btrfs_node_key(right, &disk_key, 0);
2215                         tree_mod_log_set_node_key(root->fs_info, parent,
2216                                                   pslot + 1, 0);
2217                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2218                         btrfs_mark_buffer_dirty(parent);
2219
2220                         if (btrfs_header_nritems(mid) <= orig_slot) {
2221                                 path->nodes[level] = right;
2222                                 path->slots[level + 1] += 1;
2223                                 path->slots[level] = orig_slot -
2224                                         btrfs_header_nritems(mid);
2225                                 btrfs_tree_unlock(mid);
2226                                 free_extent_buffer(mid);
2227                         } else {
2228                                 btrfs_tree_unlock(right);
2229                                 free_extent_buffer(right);
2230                         }
2231                         return 0;
2232                 }
2233                 btrfs_tree_unlock(right);
2234                 free_extent_buffer(right);
2235         }
2236         return 1;
2237 }
2238
2239 /*
2240  * readahead one full node of leaves, finding things that are close
2241  * to the block in 'slot', and triggering ra on them.
2242  */
2243 static void reada_for_search(struct btrfs_root *root,
2244                              struct btrfs_path *path,
2245                              int level, int slot, u64 objectid)
2246 {
2247         struct extent_buffer *node;
2248         struct btrfs_disk_key disk_key;
2249         u32 nritems;
2250         u64 search;
2251         u64 target;
2252         u64 nread = 0;
2253         u64 gen;
2254         struct extent_buffer *eb;
2255         u32 nr;
2256         u32 blocksize;
2257         u32 nscan = 0;
2258
2259         if (level != 1)
2260                 return;
2261
2262         if (!path->nodes[level])
2263                 return;
2264
2265         node = path->nodes[level];
2266
2267         search = btrfs_node_blockptr(node, slot);
2268         blocksize = root->nodesize;
2269         eb = btrfs_find_tree_block(root->fs_info, search);
2270         if (eb) {
2271                 free_extent_buffer(eb);
2272                 return;
2273         }
2274
2275         target = search;
2276
2277         nritems = btrfs_header_nritems(node);
2278         nr = slot;
2279
2280         while (1) {
2281                 if (path->reada == READA_BACK) {
2282                         if (nr == 0)
2283                                 break;
2284                         nr--;
2285                 } else if (path->reada == READA_FORWARD) {
2286                         nr++;
2287                         if (nr >= nritems)
2288                                 break;
2289                 }
2290                 if (path->reada == READA_BACK && objectid) {
2291                         btrfs_node_key(node, &disk_key, nr);
2292                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2293                                 break;
2294                 }
2295                 search = btrfs_node_blockptr(node, nr);
2296                 if ((search <= target && target - search <= 65536) ||
2297                     (search > target && search - target <= 65536)) {
2298                         gen = btrfs_node_ptr_generation(node, nr);
2299                         readahead_tree_block(root, search);
2300                         nread += blocksize;
2301                 }
2302                 nscan++;
2303                 if ((nread > 65536 || nscan > 32))
2304                         break;
2305         }
2306 }
2307
2308 static noinline void reada_for_balance(struct btrfs_root *root,
2309                                        struct btrfs_path *path, int level)
2310 {
2311         int slot;
2312         int nritems;
2313         struct extent_buffer *parent;
2314         struct extent_buffer *eb;
2315         u64 gen;
2316         u64 block1 = 0;
2317         u64 block2 = 0;
2318
2319         parent = path->nodes[level + 1];
2320         if (!parent)
2321                 return;
2322
2323         nritems = btrfs_header_nritems(parent);
2324         slot = path->slots[level + 1];
2325
2326         if (slot > 0) {
2327                 block1 = btrfs_node_blockptr(parent, slot - 1);
2328                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2329                 eb = btrfs_find_tree_block(root->fs_info, block1);
2330                 /*
2331                  * if we get -eagain from btrfs_buffer_uptodate, we
2332                  * don't want to return eagain here.  That will loop
2333                  * forever
2334                  */
2335                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2336                         block1 = 0;
2337                 free_extent_buffer(eb);
2338         }
2339         if (slot + 1 < nritems) {
2340                 block2 = btrfs_node_blockptr(parent, slot + 1);
2341                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2342                 eb = btrfs_find_tree_block(root->fs_info, block2);
2343                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2344                         block2 = 0;
2345                 free_extent_buffer(eb);
2346         }
2347
2348         if (block1)
2349                 readahead_tree_block(root, block1);
2350         if (block2)
2351                 readahead_tree_block(root, block2);
2352 }
2353
2354
2355 /*
2356  * when we walk down the tree, it is usually safe to unlock the higher layers
2357  * in the tree.  The exceptions are when our path goes through slot 0, because
2358  * operations on the tree might require changing key pointers higher up in the
2359  * tree.
2360  *
2361  * callers might also have set path->keep_locks, which tells this code to keep
2362  * the lock if the path points to the last slot in the block.  This is part of
2363  * walking through the tree, and selecting the next slot in the higher block.
2364  *
2365  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2366  * if lowest_unlock is 1, level 0 won't be unlocked
2367  */
2368 static noinline void unlock_up(struct btrfs_path *path, int level,
2369                                int lowest_unlock, int min_write_lock_level,
2370                                int *write_lock_level)
2371 {
2372         int i;
2373         int skip_level = level;
2374         int no_skips = 0;
2375         struct extent_buffer *t;
2376
2377         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2378                 if (!path->nodes[i])
2379                         break;
2380                 if (!path->locks[i])
2381                         break;
2382                 if (!no_skips && path->slots[i] == 0) {
2383                         skip_level = i + 1;
2384                         continue;
2385                 }
2386                 if (!no_skips && path->keep_locks) {
2387                         u32 nritems;
2388                         t = path->nodes[i];
2389                         nritems = btrfs_header_nritems(t);
2390                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2391                                 skip_level = i + 1;
2392                                 continue;
2393                         }
2394                 }
2395                 if (skip_level < i && i >= lowest_unlock)
2396                         no_skips = 1;
2397
2398                 t = path->nodes[i];
2399                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2400                         btrfs_tree_unlock_rw(t, path->locks[i]);
2401                         path->locks[i] = 0;
2402                         if (write_lock_level &&
2403                             i > min_write_lock_level &&
2404                             i <= *write_lock_level) {
2405                                 *write_lock_level = i - 1;
2406                         }
2407                 }
2408         }
2409 }
2410
2411 /*
2412  * This releases any locks held in the path starting at level and
2413  * going all the way up to the root.
2414  *
2415  * btrfs_search_slot will keep the lock held on higher nodes in a few
2416  * corner cases, such as COW of the block at slot zero in the node.  This
2417  * ignores those rules, and it should only be called when there are no
2418  * more updates to be done higher up in the tree.
2419  */
2420 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2421 {
2422         int i;
2423
2424         if (path->keep_locks)
2425                 return;
2426
2427         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2428                 if (!path->nodes[i])
2429                         continue;
2430                 if (!path->locks[i])
2431                         continue;
2432                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2433                 path->locks[i] = 0;
2434         }
2435 }
2436
2437 /*
2438  * helper function for btrfs_search_slot.  The goal is to find a block
2439  * in cache without setting the path to blocking.  If we find the block
2440  * we return zero and the path is unchanged.
2441  *
2442  * If we can't find the block, we set the path blocking and do some
2443  * reada.  -EAGAIN is returned and the search must be repeated.
2444  */
2445 static int
2446 read_block_for_search(struct btrfs_trans_handle *trans,
2447                        struct btrfs_root *root, struct btrfs_path *p,
2448                        struct extent_buffer **eb_ret, int level, int slot,
2449                        struct btrfs_key *key, u64 time_seq)
2450 {
2451         u64 blocknr;
2452         u64 gen;
2453         struct extent_buffer *b = *eb_ret;
2454         struct extent_buffer *tmp;
2455         int ret;
2456
2457         blocknr = btrfs_node_blockptr(b, slot);
2458         gen = btrfs_node_ptr_generation(b, slot);
2459
2460         tmp = btrfs_find_tree_block(root->fs_info, blocknr);
2461         if (tmp) {
2462                 /* first we do an atomic uptodate check */
2463                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2464                         *eb_ret = tmp;
2465                         return 0;
2466                 }
2467
2468                 /* the pages were up to date, but we failed
2469                  * the generation number check.  Do a full
2470                  * read for the generation number that is correct.
2471                  * We must do this without dropping locks so
2472                  * we can trust our generation number
2473                  */
2474                 btrfs_set_path_blocking(p);
2475
2476                 /* now we're allowed to do a blocking uptodate check */
2477                 ret = btrfs_read_buffer(tmp, gen);
2478                 if (!ret) {
2479                         *eb_ret = tmp;
2480                         return 0;
2481                 }
2482                 free_extent_buffer(tmp);
2483                 btrfs_release_path(p);
2484                 return -EIO;
2485         }
2486
2487         /*
2488          * reduce lock contention at high levels
2489          * of the btree by dropping locks before
2490          * we read.  Don't release the lock on the current
2491          * level because we need to walk this node to figure
2492          * out which blocks to read.
2493          */
2494         btrfs_unlock_up_safe(p, level + 1);
2495         btrfs_set_path_blocking(p);
2496
2497         free_extent_buffer(tmp);
2498         if (p->reada != READA_NONE)
2499                 reada_for_search(root, p, level, slot, key->objectid);
2500
2501         btrfs_release_path(p);
2502
2503         ret = -EAGAIN;
2504         tmp = read_tree_block(root, blocknr, 0);
2505         if (!IS_ERR(tmp)) {
2506                 /*
2507                  * If the read above didn't mark this buffer up to date,
2508                  * it will never end up being up to date.  Set ret to EIO now
2509                  * and give up so that our caller doesn't loop forever
2510                  * on our EAGAINs.
2511                  */
2512                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2513                         ret = -EIO;
2514                 free_extent_buffer(tmp);
2515         } else {
2516                 ret = PTR_ERR(tmp);
2517         }
2518         return ret;
2519 }
2520
2521 /*
2522  * helper function for btrfs_search_slot.  This does all of the checks
2523  * for node-level blocks and does any balancing required based on
2524  * the ins_len.
2525  *
2526  * If no extra work was required, zero is returned.  If we had to
2527  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2528  * start over
2529  */
2530 static int
2531 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2532                        struct btrfs_root *root, struct btrfs_path *p,
2533                        struct extent_buffer *b, int level, int ins_len,
2534                        int *write_lock_level)
2535 {
2536         int ret;
2537         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2538             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2539                 int sret;
2540
2541                 if (*write_lock_level < level + 1) {
2542                         *write_lock_level = level + 1;
2543                         btrfs_release_path(p);
2544                         goto again;
2545                 }
2546
2547                 btrfs_set_path_blocking(p);
2548                 reada_for_balance(root, p, level);
2549                 sret = split_node(trans, root, p, level);
2550                 btrfs_clear_path_blocking(p, NULL, 0);
2551
2552                 BUG_ON(sret > 0);
2553                 if (sret) {
2554                         ret = sret;
2555                         goto done;
2556                 }
2557                 b = p->nodes[level];
2558         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2559                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2560                 int sret;
2561
2562                 if (*write_lock_level < level + 1) {
2563                         *write_lock_level = level + 1;
2564                         btrfs_release_path(p);
2565                         goto again;
2566                 }
2567
2568                 btrfs_set_path_blocking(p);
2569                 reada_for_balance(root, p, level);
2570                 sret = balance_level(trans, root, p, level);
2571                 btrfs_clear_path_blocking(p, NULL, 0);
2572
2573                 if (sret) {
2574                         ret = sret;
2575                         goto done;
2576                 }
2577                 b = p->nodes[level];
2578                 if (!b) {
2579                         btrfs_release_path(p);
2580                         goto again;
2581                 }
2582                 BUG_ON(btrfs_header_nritems(b) == 1);
2583         }
2584         return 0;
2585
2586 again:
2587         ret = -EAGAIN;
2588 done:
2589         return ret;
2590 }
2591
2592 static void key_search_validate(struct extent_buffer *b,
2593                                 struct btrfs_key *key,
2594                                 int level)
2595 {
2596 #ifdef CONFIG_BTRFS_ASSERT
2597         struct btrfs_disk_key disk_key;
2598
2599         btrfs_cpu_key_to_disk(&disk_key, key);
2600
2601         if (level == 0)
2602                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2603                     offsetof(struct btrfs_leaf, items[0].key),
2604                     sizeof(disk_key)));
2605         else
2606                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2607                     offsetof(struct btrfs_node, ptrs[0].key),
2608                     sizeof(disk_key)));
2609 #endif
2610 }
2611
2612 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2613                       int level, int *prev_cmp, int *slot)
2614 {
2615         if (*prev_cmp != 0) {
2616                 *prev_cmp = bin_search(b, key, level, slot);
2617                 return *prev_cmp;
2618         }
2619
2620         key_search_validate(b, key, level);
2621         *slot = 0;
2622
2623         return 0;
2624 }
2625
2626 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2627                 u64 iobjectid, u64 ioff, u8 key_type,
2628                 struct btrfs_key *found_key)
2629 {
2630         int ret;
2631         struct btrfs_key key;
2632         struct extent_buffer *eb;
2633
2634         ASSERT(path);
2635         ASSERT(found_key);
2636
2637         key.type = key_type;
2638         key.objectid = iobjectid;
2639         key.offset = ioff;
2640
2641         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2642         if (ret < 0)
2643                 return ret;
2644
2645         eb = path->nodes[0];
2646         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2647                 ret = btrfs_next_leaf(fs_root, path);
2648                 if (ret)
2649                         return ret;
2650                 eb = path->nodes[0];
2651         }
2652
2653         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2654         if (found_key->type != key.type ||
2655                         found_key->objectid != key.objectid)
2656                 return 1;
2657
2658         return 0;
2659 }
2660
2661 /*
2662  * look for key in the tree.  path is filled in with nodes along the way
2663  * if key is found, we return zero and you can find the item in the leaf
2664  * level of the path (level 0)
2665  *
2666  * If the key isn't found, the path points to the slot where it should
2667  * be inserted, and 1 is returned.  If there are other errors during the
2668  * search a negative error number is returned.
2669  *
2670  * if ins_len > 0, nodes and leaves will be split as we walk down the
2671  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2672  * possible)
2673  */
2674 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2675                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2676                       ins_len, int cow)
2677 {
2678         struct extent_buffer *b;
2679         int slot;
2680         int ret;
2681         int err;
2682         int level;
2683         int lowest_unlock = 1;
2684         int root_lock;
2685         /* everything at write_lock_level or lower must be write locked */
2686         int write_lock_level = 0;
2687         u8 lowest_level = 0;
2688         int min_write_lock_level;
2689         int prev_cmp;
2690
2691         lowest_level = p->lowest_level;
2692         WARN_ON(lowest_level && ins_len > 0);
2693         WARN_ON(p->nodes[0] != NULL);
2694         BUG_ON(!cow && ins_len);
2695
2696         if (ins_len < 0) {
2697                 lowest_unlock = 2;
2698
2699                 /* when we are removing items, we might have to go up to level
2700                  * two as we update tree pointers  Make sure we keep write
2701                  * for those levels as well
2702                  */
2703                 write_lock_level = 2;
2704         } else if (ins_len > 0) {
2705                 /*
2706                  * for inserting items, make sure we have a write lock on
2707                  * level 1 so we can update keys
2708                  */
2709                 write_lock_level = 1;
2710         }
2711
2712         if (!cow)
2713                 write_lock_level = -1;
2714
2715         if (cow && (p->keep_locks || p->lowest_level))
2716                 write_lock_level = BTRFS_MAX_LEVEL;
2717
2718         min_write_lock_level = write_lock_level;
2719
2720 again:
2721         prev_cmp = -1;
2722         /*
2723          * we try very hard to do read locks on the root
2724          */
2725         root_lock = BTRFS_READ_LOCK;
2726         level = 0;
2727         if (p->search_commit_root) {
2728                 /*
2729                  * the commit roots are read only
2730                  * so we always do read locks
2731                  */
2732                 if (p->need_commit_sem)
2733                         down_read(&root->fs_info->commit_root_sem);
2734                 b = root->commit_root;
2735                 extent_buffer_get(b);
2736                 level = btrfs_header_level(b);
2737                 if (p->need_commit_sem)
2738                         up_read(&root->fs_info->commit_root_sem);
2739                 if (!p->skip_locking)
2740                         btrfs_tree_read_lock(b);
2741         } else {
2742                 if (p->skip_locking) {
2743                         b = btrfs_root_node(root);
2744                         level = btrfs_header_level(b);
2745                 } else {
2746                         /* we don't know the level of the root node
2747                          * until we actually have it read locked
2748                          */
2749                         b = btrfs_read_lock_root_node(root);
2750                         level = btrfs_header_level(b);
2751                         if (level <= write_lock_level) {
2752                                 /* whoops, must trade for write lock */
2753                                 btrfs_tree_read_unlock(b);
2754                                 free_extent_buffer(b);
2755                                 b = btrfs_lock_root_node(root);
2756                                 root_lock = BTRFS_WRITE_LOCK;
2757
2758                                 /* the level might have changed, check again */
2759                                 level = btrfs_header_level(b);
2760                         }
2761                 }
2762         }
2763         p->nodes[level] = b;
2764         if (!p->skip_locking)
2765                 p->locks[level] = root_lock;
2766
2767         while (b) {
2768                 level = btrfs_header_level(b);
2769
2770                 /*
2771                  * setup the path here so we can release it under lock
2772                  * contention with the cow code
2773                  */
2774                 if (cow) {
2775                         /*
2776                          * if we don't really need to cow this block
2777                          * then we don't want to set the path blocking,
2778                          * so we test it here
2779                          */
2780                         if (!should_cow_block(trans, root, b))
2781                                 goto cow_done;
2782
2783                         /*
2784                          * must have write locks on this node and the
2785                          * parent
2786                          */
2787                         if (level > write_lock_level ||
2788                             (level + 1 > write_lock_level &&
2789                             level + 1 < BTRFS_MAX_LEVEL &&
2790                             p->nodes[level + 1])) {
2791                                 write_lock_level = level + 1;
2792                                 btrfs_release_path(p);
2793                                 goto again;
2794                         }
2795
2796                         btrfs_set_path_blocking(p);
2797                         err = btrfs_cow_block(trans, root, b,
2798                                               p->nodes[level + 1],
2799                                               p->slots[level + 1], &b);
2800                         if (err) {
2801                                 ret = err;
2802                                 goto done;
2803                         }
2804                 }
2805 cow_done:
2806                 p->nodes[level] = b;
2807                 btrfs_clear_path_blocking(p, NULL, 0);
2808
2809                 /*
2810                  * we have a lock on b and as long as we aren't changing
2811                  * the tree, there is no way to for the items in b to change.
2812                  * It is safe to drop the lock on our parent before we
2813                  * go through the expensive btree search on b.
2814                  *
2815                  * If we're inserting or deleting (ins_len != 0), then we might
2816                  * be changing slot zero, which may require changing the parent.
2817                  * So, we can't drop the lock until after we know which slot
2818                  * we're operating on.
2819                  */
2820                 if (!ins_len && !p->keep_locks) {
2821                         int u = level + 1;
2822
2823                         if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2824                                 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2825                                 p->locks[u] = 0;
2826                         }
2827                 }
2828
2829                 ret = key_search(b, key, level, &prev_cmp, &slot);
2830
2831                 if (level != 0) {
2832                         int dec = 0;
2833                         if (ret && slot > 0) {
2834                                 dec = 1;
2835                                 slot -= 1;
2836                         }
2837                         p->slots[level] = slot;
2838                         err = setup_nodes_for_search(trans, root, p, b, level,
2839                                              ins_len, &write_lock_level);
2840                         if (err == -EAGAIN)
2841                                 goto again;
2842                         if (err) {
2843                                 ret = err;
2844                                 goto done;
2845                         }
2846                         b = p->nodes[level];
2847                         slot = p->slots[level];
2848
2849                         /*
2850                          * slot 0 is special, if we change the key
2851                          * we have to update the parent pointer
2852                          * which means we must have a write lock
2853                          * on the parent
2854                          */
2855                         if (slot == 0 && ins_len &&
2856                             write_lock_level < level + 1) {
2857                                 write_lock_level = level + 1;
2858                                 btrfs_release_path(p);
2859                                 goto again;
2860                         }
2861
2862                         unlock_up(p, level, lowest_unlock,
2863                                   min_write_lock_level, &write_lock_level);
2864
2865                         if (level == lowest_level) {
2866                                 if (dec)
2867                                         p->slots[level]++;
2868                                 goto done;
2869                         }
2870
2871                         err = read_block_for_search(trans, root, p,
2872                                                     &b, level, slot, key, 0);
2873                         if (err == -EAGAIN)
2874                                 goto again;
2875                         if (err) {
2876                                 ret = err;
2877                                 goto done;
2878                         }
2879
2880                         if (!p->skip_locking) {
2881                                 level = btrfs_header_level(b);
2882                                 if (level <= write_lock_level) {
2883                                         err = btrfs_try_tree_write_lock(b);
2884                                         if (!err) {
2885                                                 btrfs_set_path_blocking(p);
2886                                                 btrfs_tree_lock(b);
2887                                                 btrfs_clear_path_blocking(p, b,
2888                                                                   BTRFS_WRITE_LOCK);
2889                                         }
2890                                         p->locks[level] = BTRFS_WRITE_LOCK;
2891                                 } else {
2892                                         err = btrfs_tree_read_lock_atomic(b);
2893                                         if (!err) {
2894                                                 btrfs_set_path_blocking(p);
2895                                                 btrfs_tree_read_lock(b);
2896                                                 btrfs_clear_path_blocking(p, b,
2897                                                                   BTRFS_READ_LOCK);
2898                                         }
2899                                         p->locks[level] = BTRFS_READ_LOCK;
2900                                 }
2901                                 p->nodes[level] = b;
2902                         }
2903                 } else {
2904                         p->slots[level] = slot;
2905                         if (ins_len > 0 &&
2906                             btrfs_leaf_free_space(root, b) < ins_len) {
2907                                 if (write_lock_level < 1) {
2908                                         write_lock_level = 1;
2909                                         btrfs_release_path(p);
2910                                         goto again;
2911                                 }
2912
2913                                 btrfs_set_path_blocking(p);
2914                                 err = split_leaf(trans, root, key,
2915                                                  p, ins_len, ret == 0);
2916                                 btrfs_clear_path_blocking(p, NULL, 0);
2917
2918                                 BUG_ON(err > 0);
2919                                 if (err) {
2920                                         ret = err;
2921                                         goto done;
2922                                 }
2923                         }
2924                         if (!p->search_for_split)
2925                                 unlock_up(p, level, lowest_unlock,
2926                                           min_write_lock_level, &write_lock_level);
2927                         goto done;
2928                 }
2929         }
2930         ret = 1;
2931 done:
2932         /*
2933          * we don't really know what they plan on doing with the path
2934          * from here on, so for now just mark it as blocking
2935          */
2936         if (!p->leave_spinning)
2937                 btrfs_set_path_blocking(p);
2938         if (ret < 0 && !p->skip_release_on_error)
2939                 btrfs_release_path(p);
2940         return ret;
2941 }
2942
2943 /*
2944  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2945  * current state of the tree together with the operations recorded in the tree
2946  * modification log to search for the key in a previous version of this tree, as
2947  * denoted by the time_seq parameter.
2948  *
2949  * Naturally, there is no support for insert, delete or cow operations.
2950  *
2951  * The resulting path and return value will be set up as if we called
2952  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2953  */
2954 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2955                           struct btrfs_path *p, u64 time_seq)
2956 {
2957         struct extent_buffer *b;
2958         int slot;
2959         int ret;
2960         int err;
2961         int level;
2962         int lowest_unlock = 1;
2963         u8 lowest_level = 0;
2964         int prev_cmp = -1;
2965
2966         lowest_level = p->lowest_level;
2967         WARN_ON(p->nodes[0] != NULL);
2968
2969         if (p->search_commit_root) {
2970                 BUG_ON(time_seq);
2971                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2972         }
2973
2974 again:
2975         b = get_old_root(root, time_seq);
2976         level = btrfs_header_level(b);
2977         p->locks[level] = BTRFS_READ_LOCK;
2978
2979         while (b) {
2980                 level = btrfs_header_level(b);
2981                 p->nodes[level] = b;
2982                 btrfs_clear_path_blocking(p, NULL, 0);
2983
2984                 /*
2985                  * we have a lock on b and as long as we aren't changing
2986                  * the tree, there is no way to for the items in b to change.
2987                  * It is safe to drop the lock on our parent before we
2988                  * go through the expensive btree search on b.
2989                  */
2990                 btrfs_unlock_up_safe(p, level + 1);
2991
2992                 /*
2993                  * Since we can unwind ebs we want to do a real search every
2994                  * time.
2995                  */
2996                 prev_cmp = -1;
2997                 ret = key_search(b, key, level, &prev_cmp, &slot);
2998
2999                 if (level != 0) {
3000                         int dec = 0;
3001                         if (ret && slot > 0) {
3002                                 dec = 1;
3003                                 slot -= 1;
3004                         }
3005                         p->slots[level] = slot;
3006                         unlock_up(p, level, lowest_unlock, 0, NULL);
3007
3008                         if (level == lowest_level) {
3009                                 if (dec)
3010                                         p->slots[level]++;
3011                                 goto done;
3012                         }
3013
3014                         err = read_block_for_search(NULL, root, p, &b, level,
3015                                                     slot, key, time_seq);
3016                         if (err == -EAGAIN)
3017                                 goto again;
3018                         if (err) {
3019                                 ret = err;
3020                                 goto done;
3021                         }
3022
3023                         level = btrfs_header_level(b);
3024                         err = btrfs_tree_read_lock_atomic(b);
3025                         if (!err) {
3026                                 btrfs_set_path_blocking(p);
3027                                 btrfs_tree_read_lock(b);
3028                                 btrfs_clear_path_blocking(p, b,
3029                                                           BTRFS_READ_LOCK);
3030                         }
3031                         b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3032                         if (!b) {
3033                                 ret = -ENOMEM;
3034                                 goto done;
3035                         }
3036                         p->locks[level] = BTRFS_READ_LOCK;
3037                         p->nodes[level] = b;
3038                 } else {
3039                         p->slots[level] = slot;
3040                         unlock_up(p, level, lowest_unlock, 0, NULL);
3041                         goto done;
3042                 }
3043         }
3044         ret = 1;
3045 done:
3046         if (!p->leave_spinning)
3047                 btrfs_set_path_blocking(p);
3048         if (ret < 0)
3049                 btrfs_release_path(p);
3050
3051         return ret;
3052 }
3053
3054 /*
3055  * helper to use instead of search slot if no exact match is needed but
3056  * instead the next or previous item should be returned.
3057  * When find_higher is true, the next higher item is returned, the next lower
3058  * otherwise.
3059  * When return_any and find_higher are both true, and no higher item is found,
3060  * return the next lower instead.
3061  * When return_any is true and find_higher is false, and no lower item is found,
3062  * return the next higher instead.
3063  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3064  * < 0 on error
3065  */
3066 int btrfs_search_slot_for_read(struct btrfs_root *root,
3067                                struct btrfs_key *key, struct btrfs_path *p,
3068                                int find_higher, int return_any)
3069 {
3070         int ret;
3071         struct extent_buffer *leaf;
3072
3073 again:
3074         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3075         if (ret <= 0)
3076                 return ret;
3077         /*
3078          * a return value of 1 means the path is at the position where the
3079          * item should be inserted. Normally this is the next bigger item,
3080          * but in case the previous item is the last in a leaf, path points
3081          * to the first free slot in the previous leaf, i.e. at an invalid
3082          * item.
3083          */
3084         leaf = p->nodes[0];
3085
3086         if (find_higher) {
3087                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3088                         ret = btrfs_next_leaf(root, p);
3089                         if (ret <= 0)
3090                                 return ret;
3091                         if (!return_any)
3092                                 return 1;
3093                         /*
3094                          * no higher item found, return the next
3095                          * lower instead
3096                          */
3097                         return_any = 0;
3098                         find_higher = 0;
3099                         btrfs_release_path(p);
3100                         goto again;
3101                 }
3102         } else {
3103                 if (p->slots[0] == 0) {
3104                         ret = btrfs_prev_leaf(root, p);
3105                         if (ret < 0)
3106                                 return ret;
3107                         if (!ret) {
3108                                 leaf = p->nodes[0];
3109                                 if (p->slots[0] == btrfs_header_nritems(leaf))
3110                                         p->slots[0]--;
3111                                 return 0;
3112                         }
3113                         if (!return_any)
3114                                 return 1;
3115                         /*
3116                          * no lower item found, return the next
3117                          * higher instead
3118                          */
3119                         return_any = 0;
3120                         find_higher = 1;
3121                         btrfs_release_path(p);
3122                         goto again;
3123                 } else {
3124                         --p->slots[0];
3125                 }
3126         }
3127         return 0;
3128 }
3129
3130 /*
3131  * adjust the pointers going up the tree, starting at level
3132  * making sure the right key of each node is points to 'key'.
3133  * This is used after shifting pointers to the left, so it stops
3134  * fixing up pointers when a given leaf/node is not in slot 0 of the
3135  * higher levels
3136  *
3137  */
3138 static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3139                            struct btrfs_path *path,
3140                            struct btrfs_disk_key *key, int level)
3141 {
3142         int i;
3143         struct extent_buffer *t;
3144
3145         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3146                 int tslot = path->slots[i];
3147                 if (!path->nodes[i])
3148                         break;
3149                 t = path->nodes[i];
3150                 tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3151                 btrfs_set_node_key(t, key, tslot);
3152                 btrfs_mark_buffer_dirty(path->nodes[i]);
3153                 if (tslot != 0)
3154                         break;
3155         }
3156 }
3157
3158 /*
3159  * update item key.
3160  *
3161  * This function isn't completely safe. It's the caller's responsibility
3162  * that the new key won't break the order
3163  */
3164 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3165                              struct btrfs_path *path,
3166                              struct btrfs_key *new_key)
3167 {
3168         struct btrfs_disk_key disk_key;
3169         struct extent_buffer *eb;
3170         int slot;
3171
3172         eb = path->nodes[0];
3173         slot = path->slots[0];
3174         if (slot > 0) {
3175                 btrfs_item_key(eb, &disk_key, slot - 1);
3176                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3177         }
3178         if (slot < btrfs_header_nritems(eb) - 1) {
3179                 btrfs_item_key(eb, &disk_key, slot + 1);
3180                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3181         }
3182
3183         btrfs_cpu_key_to_disk(&disk_key, new_key);
3184         btrfs_set_item_key(eb, &disk_key, slot);
3185         btrfs_mark_buffer_dirty(eb);
3186         if (slot == 0)
3187                 fixup_low_keys(fs_info, path, &disk_key, 1);
3188 }
3189
3190 /*
3191  * try to push data from one node into the next node left in the
3192  * tree.
3193  *
3194  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3195  * error, and > 0 if there was no room in the left hand block.
3196  */
3197 static int push_node_left(struct btrfs_trans_handle *trans,
3198                           struct btrfs_root *root, struct extent_buffer *dst,
3199                           struct extent_buffer *src, int empty)
3200 {
3201         int push_items = 0;
3202         int src_nritems;
3203         int dst_nritems;
3204         int ret = 0;
3205
3206         src_nritems = btrfs_header_nritems(src);
3207         dst_nritems = btrfs_header_nritems(dst);
3208         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3209         WARN_ON(btrfs_header_generation(src) != trans->transid);
3210         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3211
3212         if (!empty && src_nritems <= 8)
3213                 return 1;
3214
3215         if (push_items <= 0)
3216                 return 1;
3217
3218         if (empty) {
3219                 push_items = min(src_nritems, push_items);
3220                 if (push_items < src_nritems) {
3221                         /* leave at least 8 pointers in the node if
3222                          * we aren't going to empty it
3223                          */
3224                         if (src_nritems - push_items < 8) {
3225                                 if (push_items <= 8)
3226                                         return 1;
3227                                 push_items -= 8;
3228                         }
3229                 }
3230         } else
3231                 push_items = min(src_nritems - 8, push_items);
3232
3233         ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3234                                    push_items);
3235         if (ret) {
3236                 btrfs_abort_transaction(trans, root, ret);
3237                 return ret;
3238         }
3239         copy_extent_buffer(dst, src,
3240                            btrfs_node_key_ptr_offset(dst_nritems),
3241                            btrfs_node_key_ptr_offset(0),
3242                            push_items * sizeof(struct btrfs_key_ptr));
3243
3244         if (push_items < src_nritems) {
3245                 /*
3246                  * don't call tree_mod_log_eb_move here, key removal was already
3247                  * fully logged by tree_mod_log_eb_copy above.
3248                  */
3249                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3250                                       btrfs_node_key_ptr_offset(push_items),
3251                                       (src_nritems - push_items) *
3252                                       sizeof(struct btrfs_key_ptr));
3253         }
3254         btrfs_set_header_nritems(src, src_nritems - push_items);
3255         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3256         btrfs_mark_buffer_dirty(src);
3257         btrfs_mark_buffer_dirty(dst);
3258
3259         return ret;
3260 }
3261
3262 /*
3263  * try to push data from one node into the next node right in the
3264  * tree.
3265  *
3266  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3267  * error, and > 0 if there was no room in the right hand block.
3268  *
3269  * this will  only push up to 1/2 the contents of the left node over
3270  */
3271 static int balance_node_right(struct btrfs_trans_handle *trans,
3272                               struct btrfs_root *root,
3273                               struct extent_buffer *dst,
3274                               struct extent_buffer *src)
3275 {
3276         int push_items = 0;
3277         int max_push;
3278         int src_nritems;
3279         int dst_nritems;
3280         int ret = 0;
3281
3282         WARN_ON(btrfs_header_generation(src) != trans->transid);
3283         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3284
3285         src_nritems = btrfs_header_nritems(src);
3286         dst_nritems = btrfs_header_nritems(dst);
3287         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3288         if (push_items <= 0)
3289                 return 1;
3290
3291         if (src_nritems < 4)
3292                 return 1;
3293
3294         max_push = src_nritems / 2 + 1;
3295         /* don't try to empty the node */
3296         if (max_push >= src_nritems)
3297                 return 1;
3298
3299         if (max_push < push_items)
3300                 push_items = max_push;
3301
3302         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3303         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3304                                       btrfs_node_key_ptr_offset(0),
3305                                       (dst_nritems) *
3306                                       sizeof(struct btrfs_key_ptr));
3307
3308         ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3309                                    src_nritems - push_items, push_items);
3310         if (ret) {
3311                 btrfs_abort_transaction(trans, root, ret);
3312                 return ret;
3313         }
3314         copy_extent_buffer(dst, src,
3315                            btrfs_node_key_ptr_offset(0),
3316                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3317                            push_items * sizeof(struct btrfs_key_ptr));
3318
3319         btrfs_set_header_nritems(src, src_nritems - push_items);
3320         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3321
3322         btrfs_mark_buffer_dirty(src);
3323         btrfs_mark_buffer_dirty(dst);
3324
3325         return ret;
3326 }
3327
3328 /*
3329  * helper function to insert a new root level in the tree.
3330  * A new node is allocated, and a single item is inserted to
3331  * point to the existing root
3332  *
3333  * returns zero on success or < 0 on failure.
3334  */
3335 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3336                            struct btrfs_root *root,
3337                            struct btrfs_path *path, int level)
3338 {
3339         u64 lower_gen;
3340         struct extent_buffer *lower;
3341         struct extent_buffer *c;
3342         struct extent_buffer *old;
3343         struct btrfs_disk_key lower_key;
3344
3345         BUG_ON(path->nodes[level]);
3346         BUG_ON(path->nodes[level-1] != root->node);
3347
3348         lower = path->nodes[level-1];
3349         if (level == 1)
3350                 btrfs_item_key(lower, &lower_key, 0);
3351         else
3352                 btrfs_node_key(lower, &lower_key, 0);
3353
3354         c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3355                                    &lower_key, level, root->node->start, 0);
3356         if (IS_ERR(c))
3357                 return PTR_ERR(c);
3358
3359         root_add_used(root, root->nodesize);
3360
3361         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3362         btrfs_set_header_nritems(c, 1);
3363         btrfs_set_header_level(c, level);
3364         btrfs_set_header_bytenr(c, c->start);
3365         btrfs_set_header_generation(c, trans->transid);
3366         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3367         btrfs_set_header_owner(c, root->root_key.objectid);
3368
3369         write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3370                             BTRFS_FSID_SIZE);
3371
3372         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3373                             btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3374
3375         btrfs_set_node_key(c, &lower_key, 0);
3376         btrfs_set_node_blockptr(c, 0, lower->start);
3377         lower_gen = btrfs_header_generation(lower);
3378         WARN_ON(lower_gen != trans->transid);
3379
3380         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3381
3382         btrfs_mark_buffer_dirty(c);
3383
3384         old = root->node;
3385         tree_mod_log_set_root_pointer(root, c, 0);
3386         rcu_assign_pointer(root->node, c);
3387
3388         /* the super has an extra ref to root->node */
3389         free_extent_buffer(old);
3390
3391         add_root_to_dirty_list(root);
3392         extent_buffer_get(c);
3393         path->nodes[level] = c;
3394         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3395         path->slots[level] = 0;
3396         return 0;
3397 }
3398
3399 /*
3400  * worker function to insert a single pointer in a node.
3401  * the node should have enough room for the pointer already
3402  *
3403  * slot and level indicate where you want the key to go, and
3404  * blocknr is the block the key points to.
3405  */
3406 static void insert_ptr(struct btrfs_trans_handle *trans,
3407                        struct btrfs_root *root, struct btrfs_path *path,
3408                        struct btrfs_disk_key *key, u64 bytenr,
3409                        int slot, int level)
3410 {
3411         struct extent_buffer *lower;
3412         int nritems;
3413         int ret;
3414
3415         BUG_ON(!path->nodes[level]);
3416         btrfs_assert_tree_locked(path->nodes[level]);
3417         lower = path->nodes[level];
3418         nritems = btrfs_header_nritems(lower);
3419         BUG_ON(slot > nritems);
3420         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3421         if (slot != nritems) {
3422                 if (level)
3423                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3424                                              slot, nritems - slot);
3425                 memmove_extent_buffer(lower,
3426                               btrfs_node_key_ptr_offset(slot + 1),
3427                               btrfs_node_key_ptr_offset(slot),
3428                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3429         }
3430         if (level) {
3431                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3432                                               MOD_LOG_KEY_ADD, GFP_NOFS);
3433                 BUG_ON(ret < 0);
3434         }
3435         btrfs_set_node_key(lower, key, slot);
3436         btrfs_set_node_blockptr(lower, slot, bytenr);
3437         WARN_ON(trans->transid == 0);
3438         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3439         btrfs_set_header_nritems(lower, nritems + 1);
3440         btrfs_mark_buffer_dirty(lower);
3441 }
3442
3443 /*
3444  * split the node at the specified level in path in two.
3445  * The path is corrected to point to the appropriate node after the split
3446  *
3447  * Before splitting this tries to make some room in the node by pushing
3448  * left and right, if either one works, it returns right away.
3449  *
3450  * returns 0 on success and < 0 on failure
3451  */
3452 static noinline int split_node(struct btrfs_trans_handle *trans,
3453                                struct btrfs_root *root,
3454                                struct btrfs_path *path, int level)
3455 {
3456         struct extent_buffer *c;
3457         struct extent_buffer *split;
3458         struct btrfs_disk_key disk_key;
3459         int mid;
3460         int ret;
3461         u32 c_nritems;
3462
3463         c = path->nodes[level];
3464         WARN_ON(btrfs_header_generation(c) != trans->transid);
3465         if (c == root->node) {
3466                 /*
3467                  * trying to split the root, lets make a new one
3468                  *
3469                  * tree mod log: We don't log_removal old root in
3470                  * insert_new_root, because that root buffer will be kept as a
3471                  * normal node. We are going to log removal of half of the
3472                  * elements below with tree_mod_log_eb_copy. We're holding a
3473                  * tree lock on the buffer, which is why we cannot race with
3474                  * other tree_mod_log users.
3475                  */
3476                 ret = insert_new_root(trans, root, path, level + 1);
3477                 if (ret)
3478                         return ret;
3479         } else {
3480                 ret = push_nodes_for_insert(trans, root, path, level);
3481                 c = path->nodes[level];
3482                 if (!ret && btrfs_header_nritems(c) <
3483                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3484                         return 0;
3485                 if (ret < 0)
3486                         return ret;
3487         }
3488
3489         c_nritems = btrfs_header_nritems(c);
3490         mid = (c_nritems + 1) / 2;
3491         btrfs_node_key(c, &disk_key, mid);
3492
3493         split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3494                         &disk_key, level, c->start, 0);
3495         if (IS_ERR(split))
3496                 return PTR_ERR(split);
3497
3498         root_add_used(root, root->nodesize);
3499
3500         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3501         btrfs_set_header_level(split, btrfs_header_level(c));
3502         btrfs_set_header_bytenr(split, split->start);
3503         btrfs_set_header_generation(split, trans->transid);
3504         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3505         btrfs_set_header_owner(split, root->root_key.objectid);
3506         write_extent_buffer(split, root->fs_info->fsid,
3507                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
3508         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3509                             btrfs_header_chunk_tree_uuid(split),
3510                             BTRFS_UUID_SIZE);
3511
3512         ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3513                                    mid, c_nritems - mid);
3514         if (ret) {
3515                 btrfs_abort_transaction(trans, root, ret);
3516                 return ret;
3517         }
3518         copy_extent_buffer(split, c,
3519                            btrfs_node_key_ptr_offset(0),
3520                            btrfs_node_key_ptr_offset(mid),
3521                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3522         btrfs_set_header_nritems(split, c_nritems - mid);
3523         btrfs_set_header_nritems(c, mid);
3524         ret = 0;
3525
3526         btrfs_mark_buffer_dirty(c);
3527         btrfs_mark_buffer_dirty(split);
3528
3529         insert_ptr(trans, root, path, &disk_key, split->start,
3530                    path->slots[level + 1] + 1, level + 1);
3531
3532         if (path->slots[level] >= mid) {
3533                 path->slots[level] -= mid;
3534                 btrfs_tree_unlock(c);
3535                 free_extent_buffer(c);
3536                 path->nodes[level] = split;
3537                 path->slots[level + 1] += 1;
3538         } else {
3539                 btrfs_tree_unlock(split);
3540                 free_extent_buffer(split);
3541         }
3542         return ret;
3543 }
3544
3545 /*
3546  * how many bytes are required to store the items in a leaf.  start
3547  * and nr indicate which items in the leaf to check.  This totals up the
3548  * space used both by the item structs and the item data
3549  */
3550 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3551 {
3552         struct btrfs_item *start_item;
3553         struct btrfs_item *end_item;
3554         struct btrfs_map_token token;
3555         int data_len;
3556         int nritems = btrfs_header_nritems(l);
3557         int end = min(nritems, start + nr) - 1;
3558
3559         if (!nr)
3560                 return 0;
3561         btrfs_init_map_token(&token);
3562         start_item = btrfs_item_nr(start);
3563         end_item = btrfs_item_nr(end);
3564         data_len = btrfs_token_item_offset(l, start_item, &token) +
3565                 btrfs_token_item_size(l, start_item, &token);
3566         data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3567         data_len += sizeof(struct btrfs_item) * nr;
3568         WARN_ON(data_len < 0);
3569         return data_len;
3570 }
3571
3572 /*
3573  * The space between the end of the leaf items and
3574  * the start of the leaf data.  IOW, how much room
3575  * the leaf has left for both items and data
3576  */
3577 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3578                                    struct extent_buffer *leaf)
3579 {
3580         int nritems = btrfs_header_nritems(leaf);
3581         int ret;
3582         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3583         if (ret < 0) {
3584                 btrfs_crit(root->fs_info,
3585                         "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3586                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3587                        leaf_space_used(leaf, 0, nritems), nritems);
3588         }
3589         return ret;
3590 }
3591
3592 /*
3593  * min slot controls the lowest index we're willing to push to the
3594  * right.  We'll push up to and including min_slot, but no lower
3595  */
3596 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3597                                       struct btrfs_root *root,
3598                                       struct btrfs_path *path,
3599                                       int data_size, int empty,
3600                                       struct extent_buffer *right,
3601                                       int free_space, u32 left_nritems,
3602                                       u32 min_slot)
3603 {
3604         struct extent_buffer *left = path->nodes[0];
3605         struct extent_buffer *upper = path->nodes[1];
3606         struct btrfs_map_token token;
3607         struct btrfs_disk_key disk_key;
3608         int slot;
3609         u32 i;
3610         int push_space = 0;
3611         int push_items = 0;
3612         struct btrfs_item *item;
3613         u32 nr;
3614         u32 right_nritems;
3615         u32 data_end;
3616         u32 this_item_size;
3617
3618         btrfs_init_map_token(&token);
3619
3620         if (empty)
3621                 nr = 0;
3622         else
3623                 nr = max_t(u32, 1, min_slot);
3624
3625         if (path->slots[0] >= left_nritems)
3626                 push_space += data_size;
3627
3628         slot = path->slots[1];
3629         i = left_nritems - 1;
3630         while (i >= nr) {
3631                 item = btrfs_item_nr(i);
3632
3633                 if (!empty && push_items > 0) {
3634                         if (path->slots[0] > i)
3635                                 break;
3636                         if (path->slots[0] == i) {
3637                                 int space = btrfs_leaf_free_space(root, left);
3638                                 if (space + push_space * 2 > free_space)
3639                                         break;
3640                         }
3641                 }
3642
3643                 if (path->slots[0] == i)
3644                         push_space += data_size;
3645
3646                 this_item_size = btrfs_item_size(left, item);
3647                 if (this_item_size + sizeof(*item) + push_space > free_space)
3648                         break;
3649
3650                 push_items++;
3651                 push_space += this_item_size + sizeof(*item);
3652                 if (i == 0)
3653                         break;
3654                 i--;
3655         }
3656
3657         if (push_items == 0)
3658                 goto out_unlock;
3659
3660         WARN_ON(!empty && push_items == left_nritems);
3661
3662         /* push left to right */
3663         right_nritems = btrfs_header_nritems(right);
3664
3665         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3666         push_space -= leaf_data_end(root, left);
3667
3668         /* make room in the right data area */
3669         data_end = leaf_data_end(root, right);
3670         memmove_extent_buffer(right,
3671                               btrfs_leaf_data(right) + data_end - push_space,
3672                               btrfs_leaf_data(right) + data_end,
3673                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3674
3675         /* copy from the left data area */
3676         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3677                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3678                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3679                      push_space);
3680
3681         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3682                               btrfs_item_nr_offset(0),
3683                               right_nritems * sizeof(struct btrfs_item));
3684
3685         /* copy the items from left to right */
3686         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3687                    btrfs_item_nr_offset(left_nritems - push_items),
3688                    push_items * sizeof(struct btrfs_item));
3689
3690         /* update the item pointers */
3691         right_nritems += push_items;
3692         btrfs_set_header_nritems(right, right_nritems);
3693         push_space = BTRFS_LEAF_DATA_SIZE(root);
3694         for (i = 0; i < right_nritems; i++) {
3695                 item = btrfs_item_nr(i);
3696                 push_space -= btrfs_token_item_size(right, item, &token);
3697                 btrfs_set_token_item_offset(right, item, push_space, &token);
3698         }
3699
3700         left_nritems -= push_items;
3701         btrfs_set_header_nritems(left, left_nritems);
3702
3703         if (left_nritems)
3704                 btrfs_mark_buffer_dirty(left);
3705         else
3706                 clean_tree_block(trans, root->fs_info, left);
3707
3708         btrfs_mark_buffer_dirty(right);
3709
3710         btrfs_item_key(right, &disk_key, 0);
3711         btrfs_set_node_key(upper, &disk_key, slot + 1);
3712         btrfs_mark_buffer_dirty(upper);
3713
3714         /* then fixup the leaf pointer in the path */
3715         if (path->slots[0] >= left_nritems) {
3716                 path->slots[0] -= left_nritems;
3717                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3718                         clean_tree_block(trans, root->fs_info, path->nodes[0]);
3719                 btrfs_tree_unlock(path->nodes[0]);
3720                 free_extent_buffer(path->nodes[0]);
3721                 path->nodes[0] = right;
3722                 path->slots[1] += 1;
3723         } else {
3724                 btrfs_tree_unlock(right);
3725                 free_extent_buffer(right);
3726         }
3727         return 0;
3728
3729 out_unlock:
3730         btrfs_tree_unlock(right);
3731         free_extent_buffer(right);
3732         return 1;
3733 }
3734
3735 /*
3736  * push some data in the path leaf to the right, trying to free up at
3737  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3738  *
3739  * returns 1 if the push failed because the other node didn't have enough
3740  * room, 0 if everything worked out and < 0 if there were major errors.
3741  *
3742  * this will push starting from min_slot to the end of the leaf.  It won't
3743  * push any slot lower than min_slot
3744  */
3745 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3746                            *root, struct btrfs_path *path,
3747                            int min_data_size, int data_size,
3748                            int empty, u32 min_slot)
3749 {
3750         struct extent_buffer *left = path->nodes[0];
3751         struct extent_buffer *right;
3752         struct extent_buffer *upper;
3753         int slot;
3754         int free_space;
3755         u32 left_nritems;
3756         int ret;
3757
3758         if (!path->nodes[1])
3759                 return 1;
3760
3761         slot = path->slots[1];
3762         upper = path->nodes[1];
3763         if (slot >= btrfs_header_nritems(upper) - 1)
3764                 return 1;
3765
3766         btrfs_assert_tree_locked(path->nodes[1]);
3767
3768         right = read_node_slot(root, upper, slot + 1);
3769         if (right == NULL)
3770                 return 1;
3771
3772         btrfs_tree_lock(right);
3773         btrfs_set_lock_blocking(right);
3774
3775         free_space = btrfs_leaf_free_space(root, right);
3776         if (free_space < data_size)
3777                 goto out_unlock;
3778
3779         /* cow and double check */
3780         ret = btrfs_cow_block(trans, root, right, upper,
3781                               slot + 1, &right);
3782         if (ret)
3783                 goto out_unlock;
3784
3785         free_space = btrfs_leaf_free_space(root, right);
3786         if (free_space < data_size)
3787                 goto out_unlock;
3788
3789         left_nritems = btrfs_header_nritems(left);
3790         if (left_nritems == 0)
3791                 goto out_unlock;
3792
3793         if (path->slots[0] == left_nritems && !empty) {
3794                 /* Key greater than all keys in the leaf, right neighbor has
3795                  * enough room for it and we're not emptying our leaf to delete
3796                  * it, therefore use right neighbor to insert the new item and
3797                  * no need to touch/dirty our left leaft. */
3798                 btrfs_tree_unlock(left);
3799                 free_extent_buffer(left);
3800                 path->nodes[0] = right;
3801                 path->slots[0] = 0;
3802                 path->slots[1]++;
3803                 return 0;
3804         }
3805
3806         return __push_leaf_right(trans, root, path, min_data_size, empty,
3807                                 right, free_space, left_nritems, min_slot);
3808 out_unlock:
3809         btrfs_tree_unlock(right);
3810         free_extent_buffer(right);
3811         return 1;
3812 }
3813
3814 /*
3815  * push some data in the path leaf to the left, trying to free up at
3816  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3817  *
3818  * max_slot can put a limit on how far into the leaf we'll push items.  The
3819  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3820  * items
3821  */
3822 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3823                                      struct btrfs_root *root,
3824                                      struct btrfs_path *path, int data_size,
3825                                      int empty, struct extent_buffer *left,
3826                                      int free_space, u32 right_nritems,
3827                                      u32 max_slot)
3828 {
3829         struct btrfs_disk_key disk_key;
3830         struct extent_buffer *right = path->nodes[0];
3831         int i;
3832         int push_space = 0;
3833         int push_items = 0;
3834         struct btrfs_item *item;
3835         u32 old_left_nritems;
3836         u32 nr;
3837         int ret = 0;
3838         u32 this_item_size;
3839         u32 old_left_item_size;
3840         struct btrfs_map_token token;
3841
3842         btrfs_init_map_token(&token);
3843
3844         if (empty)
3845                 nr = min(right_nritems, max_slot);
3846         else
3847                 nr = min(right_nritems - 1, max_slot);
3848
3849         for (i = 0; i < nr; i++) {
3850                 item = btrfs_item_nr(i);
3851
3852                 if (!empty && push_items > 0) {
3853                         if (path->slots[0] < i)
3854                                 break;
3855                         if (path->slots[0] == i) {
3856                                 int space = btrfs_leaf_free_space(root, right);
3857                                 if (space + push_space * 2 > free_space)
3858                                         break;
3859                         }
3860                 }
3861
3862                 if (path->slots[0] == i)
3863                         push_space += data_size;
3864
3865                 this_item_size = btrfs_item_size(right, item);
3866                 if (this_item_size + sizeof(*item) + push_space > free_space)
3867                         break;
3868
3869                 push_items++;
3870                 push_space += this_item_size + sizeof(*item);
3871         }
3872
3873         if (push_items == 0) {
3874                 ret = 1;
3875                 goto out;
3876         }
3877         WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3878
3879         /* push data from right to left */
3880         copy_extent_buffer(left, right,
3881                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3882                            btrfs_item_nr_offset(0),
3883                            push_items * sizeof(struct btrfs_item));
3884
3885         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3886                      btrfs_item_offset_nr(right, push_items - 1);
3887
3888         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3889                      leaf_data_end(root, left) - push_space,
3890                      btrfs_leaf_data(right) +
3891                      btrfs_item_offset_nr(right, push_items - 1),
3892                      push_space);
3893         old_left_nritems = btrfs_header_nritems(left);
3894         BUG_ON(old_left_nritems <= 0);
3895
3896         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3897         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3898                 u32 ioff;
3899
3900                 item = btrfs_item_nr(i);
3901
3902                 ioff = btrfs_token_item_offset(left, item, &token);
3903                 btrfs_set_token_item_offset(left, item,
3904                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3905                       &token);
3906         }
3907         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3908
3909         /* fixup right node */
3910         if (push_items > right_nritems)
3911                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3912                        right_nritems);
3913
3914         if (push_items < right_nritems) {
3915                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3916                                                   leaf_data_end(root, right);
3917                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3918                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3919                                       btrfs_leaf_data(right) +
3920                                       leaf_data_end(root, right), push_space);
3921
3922                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3923                               btrfs_item_nr_offset(push_items),
3924                              (btrfs_header_nritems(right) - push_items) *
3925                              sizeof(struct btrfs_item));
3926         }
3927         right_nritems -= push_items;
3928         btrfs_set_header_nritems(right, right_nritems);
3929         push_space = BTRFS_LEAF_DATA_SIZE(root);
3930         for (i = 0; i < right_nritems; i++) {
3931                 item = btrfs_item_nr(i);
3932
3933                 push_space = push_space - btrfs_token_item_size(right,
3934                                                                 item, &token);
3935                 btrfs_set_token_item_offset(right, item, push_space, &token);
3936         }
3937
3938         btrfs_mark_buffer_dirty(left);
3939         if (right_nritems)
3940                 btrfs_mark_buffer_dirty(right);
3941         else
3942                 clean_tree_block(trans, root->fs_info, right);
3943
3944         btrfs_item_key(right, &disk_key, 0);
3945         fixup_low_keys(root->fs_info, path, &disk_key, 1);
3946
3947         /* then fixup the leaf pointer in the path */
3948         if (path->slots[0] < push_items) {
3949                 path->slots[0] += old_left_nritems;
3950                 btrfs_tree_unlock(path->nodes[0]);
3951                 free_extent_buffer(path->nodes[0]);
3952                 path->nodes[0] = left;
3953                 path->slots[1] -= 1;
3954         } else {
3955                 btrfs_tree_unlock(left);
3956                 free_extent_buffer(left);
3957                 path->slots[0] -= push_items;
3958         }
3959         BUG_ON(path->slots[0] < 0);
3960         return ret;
3961 out:
3962         btrfs_tree_unlock(left);
3963         free_extent_buffer(left);
3964         return ret;
3965 }
3966
3967 /*
3968  * push some data in the path leaf to the left, trying to free up at
3969  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3970  *
3971  * max_slot can put a limit on how far into the leaf we'll push items.  The
3972  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3973  * items
3974  */
3975 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3976                           *root, struct btrfs_path *path, int min_data_size,
3977                           int data_size, int empty, u32 max_slot)
3978 {
3979         struct extent_buffer *right = path->nodes[0];
3980         struct extent_buffer *left;
3981         int slot;
3982         int free_space;
3983         u32 right_nritems;
3984         int ret = 0;
3985
3986         slot = path->slots[1];
3987         if (slot == 0)
3988                 return 1;
3989         if (!path->nodes[1])
3990                 return 1;
3991
3992         right_nritems = btrfs_header_nritems(right);
3993         if (right_nritems == 0)
3994                 return 1;
3995
3996         btrfs_assert_tree_locked(path->nodes[1]);
3997
3998         left = read_node_slot(root, path->nodes[1], slot - 1);
3999         if (left == NULL)
4000                 return 1;
4001
4002         btrfs_tree_lock(left);
4003         btrfs_set_lock_blocking(left);
4004
4005         free_space = btrfs_leaf_free_space(root, left);
4006         if (free_space < data_size) {
4007                 ret = 1;
4008                 goto out;
4009         }
4010
4011         /* cow and double check */
4012         ret = btrfs_cow_block(trans, root, left,
4013                               path->nodes[1], slot - 1, &left);
4014         if (ret) {
4015                 /* we hit -ENOSPC, but it isn't fatal here */
4016                 if (ret == -ENOSPC)
4017                         ret = 1;
4018                 goto out;
4019         }
4020
4021         free_space = btrfs_leaf_free_space(root, left);
4022         if (free_space < data_size) {
4023                 ret = 1;
4024                 goto out;
4025         }
4026
4027         return __push_leaf_left(trans, root, path, min_data_size,
4028                                empty, left, free_space, right_nritems,
4029                                max_slot);
4030 out:
4031         btrfs_tree_unlock(left);
4032         free_extent_buffer(left);
4033         return ret;
4034 }
4035
4036 /*
4037  * split the path's leaf in two, making sure there is at least data_size
4038  * available for the resulting leaf level of the path.
4039  */
4040 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4041                                     struct btrfs_root *root,
4042                                     struct btrfs_path *path,
4043                                     struct extent_buffer *l,
4044                                     struct extent_buffer *right,
4045                                     int slot, int mid, int nritems)
4046 {
4047         int data_copy_size;
4048         int rt_data_off;
4049         int i;
4050         struct btrfs_disk_key disk_key;
4051         struct btrfs_map_token token;
4052
4053         btrfs_init_map_token(&token);
4054
4055         nritems = nritems - mid;
4056         btrfs_set_header_nritems(right, nritems);
4057         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4058
4059         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4060                            btrfs_item_nr_offset(mid),
4061                            nritems * sizeof(struct btrfs_item));
4062
4063         copy_extent_buffer(right, l,
4064                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4065                      data_copy_size, btrfs_leaf_data(l) +
4066                      leaf_data_end(root, l), data_copy_size);
4067
4068         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4069                       btrfs_item_end_nr(l, mid);
4070
4071         for (i = 0; i < nritems; i++) {
4072                 struct btrfs_item *item = btrfs_item_nr(i);
4073                 u32 ioff;
4074
4075                 ioff = btrfs_token_item_offset(right, item, &token);
4076                 btrfs_set_token_item_offset(right, item,
4077                                             ioff + rt_data_off, &token);
4078         }
4079
4080         btrfs_set_header_nritems(l, mid);
4081         btrfs_item_key(right, &disk_key, 0);
4082         insert_ptr(trans, root, path, &disk_key, right->start,
4083                    path->slots[1] + 1, 1);
4084
4085         btrfs_mark_buffer_dirty(right);
4086         btrfs_mark_buffer_dirty(l);
4087         BUG_ON(path->slots[0] != slot);
4088
4089         if (mid <= slot) {
4090                 btrfs_tree_unlock(path->nodes[0]);
4091                 free_extent_buffer(path->nodes[0]);
4092                 path->nodes[0] = right;
4093                 path->slots[0] -= mid;
4094                 path->slots[1] += 1;
4095         } else {
4096                 btrfs_tree_unlock(right);
4097                 free_extent_buffer(right);
4098         }
4099
4100         BUG_ON(path->slots[0] < 0);
4101 }
4102
4103 /*
4104  * double splits happen when we need to insert a big item in the middle
4105  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4106  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4107  *          A                 B                 C
4108  *
4109  * We avoid this by trying to push the items on either side of our target
4110  * into the adjacent leaves.  If all goes well we can avoid the double split
4111  * completely.
4112  */
4113 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4114                                           struct btrfs_root *root,
4115                                           struct btrfs_path *path,
4116                                           int data_size)
4117 {
4118         int ret;
4119         int progress = 0;
4120         int slot;
4121         u32 nritems;
4122         int space_needed = data_size;
4123
4124         slot = path->slots[0];
4125         if (slot < btrfs_header_nritems(path->nodes[0]))
4126                 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4127
4128         /*
4129          * try to push all the items after our slot into the
4130          * right leaf
4131          */
4132         ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4133         if (ret < 0)
4134                 return ret;
4135
4136         if (ret == 0)
4137                 progress++;
4138
4139         nritems = btrfs_header_nritems(path->nodes[0]);
4140         /*
4141          * our goal is to get our slot at the start or end of a leaf.  If
4142          * we've done so we're done
4143          */
4144         if (path->slots[0] == 0 || path->slots[0] == nritems)
4145                 return 0;
4146
4147         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4148                 return 0;
4149
4150         /* try to push all the items before our slot into the next leaf */
4151         slot = path->slots[0];
4152         ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4153         if (ret < 0)
4154                 return ret;
4155
4156         if (ret == 0)
4157                 progress++;
4158
4159         if (progress)
4160                 return 0;
4161         return 1;
4162 }
4163
4164 /*
4165  * split the path's leaf in two, making sure there is at least data_size
4166  * available for the resulting leaf level of the path.
4167  *
4168  * returns 0 if all went well and < 0 on failure.
4169  */
4170 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4171                                struct btrfs_root *root,
4172                                struct btrfs_key *ins_key,
4173                                struct btrfs_path *path, int data_size,
4174                                int extend)
4175 {
4176         struct btrfs_disk_key disk_key;
4177         struct extent_buffer *l;
4178         u32 nritems;
4179         int mid;
4180         int slot;
4181         struct extent_buffer *right;
4182         struct btrfs_fs_info *fs_info = root->fs_info;
4183         int ret = 0;
4184         int wret;
4185         int split;
4186         int num_doubles = 0;
4187         int tried_avoid_double = 0;
4188
4189         l = path->nodes[0];
4190         slot = path->slots[0];
4191         if (extend && data_size + btrfs_item_size_nr(l, slot) +
4192             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4193                 return -EOVERFLOW;
4194
4195         /* first try to make some room by pushing left and right */
4196         if (data_size && path->nodes[1]) {
4197                 int space_needed = data_size;
4198
4199                 if (slot < btrfs_header_nritems(l))
4200                         space_needed -= btrfs_leaf_free_space(root, l);
4201
4202                 wret = push_leaf_right(trans, root, path, space_needed,
4203                                        space_needed, 0, 0);
4204                 if (wret < 0)
4205                         return wret;
4206                 if (wret) {
4207                         wret = push_leaf_left(trans, root, path, space_needed,
4208                                               space_needed, 0, (u32)-1);
4209                         if (wret < 0)
4210                                 return wret;
4211                 }
4212                 l = path->nodes[0];
4213
4214                 /* did the pushes work? */
4215                 if (btrfs_leaf_free_space(root, l) >= data_size)
4216                         return 0;
4217         }
4218
4219         if (!path->nodes[1]) {
4220                 ret = insert_new_root(trans, root, path, 1);
4221                 if (ret)
4222                         return ret;
4223         }
4224 again:
4225         split = 1;
4226         l = path->nodes[0];
4227         slot = path->slots[0];
4228         nritems = btrfs_header_nritems(l);
4229         mid = (nritems + 1) / 2;
4230
4231         if (mid <= slot) {
4232                 if (nritems == 1 ||
4233                     leaf_space_used(l, mid, nritems - mid) + data_size >
4234                         BTRFS_LEAF_DATA_SIZE(root)) {
4235                         if (slot >= nritems) {
4236                                 split = 0;
4237                         } else {
4238                                 mid = slot;
4239                                 if (mid != nritems &&
4240                                     leaf_space_used(l, mid, nritems - mid) +
4241                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4242                                         if (data_size && !tried_avoid_double)
4243                                                 goto push_for_double;
4244                                         split = 2;
4245                                 }
4246                         }
4247                 }
4248         } else {
4249                 if (leaf_space_used(l, 0, mid) + data_size >
4250                         BTRFS_LEAF_DATA_SIZE(root)) {
4251                         if (!extend && data_size && slot == 0) {
4252                                 split = 0;
4253                         } else if ((extend || !data_size) && slot == 0) {
4254                                 mid = 1;
4255                         } else {
4256                                 mid = slot;
4257                                 if (mid != nritems &&
4258                                     leaf_space_used(l, mid, nritems - mid) +
4259                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4260                                         if (data_size && !tried_avoid_double)
4261                                                 goto push_for_double;
4262                                         split = 2;
4263                                 }
4264                         }
4265                 }
4266         }
4267
4268         if (split == 0)
4269                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4270         else
4271                 btrfs_item_key(l, &disk_key, mid);
4272
4273         right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4274                         &disk_key, 0, l->start, 0);
4275         if (IS_ERR(right))
4276                 return PTR_ERR(right);
4277
4278         root_add_used(root, root->nodesize);
4279
4280         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4281         btrfs_set_header_bytenr(right, right->start);
4282         btrfs_set_header_generation(right, trans->transid);
4283         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4284         btrfs_set_header_owner(right, root->root_key.objectid);
4285         btrfs_set_header_level(right, 0);
4286         write_extent_buffer(right, fs_info->fsid,
4287                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
4288
4289         write_extent_buffer(right, fs_info->chunk_tree_uuid,
4290                             btrfs_header_chunk_tree_uuid(right),
4291                             BTRFS_UUID_SIZE);
4292
4293         if (split == 0) {
4294                 if (mid <= slot) {
4295                         btrfs_set_header_nritems(right, 0);
4296                         insert_ptr(trans, root, path, &disk_key, right->start,
4297                                    path->slots[1] + 1, 1);
4298                         btrfs_tree_unlock(path->nodes[0]);
4299                         free_extent_buffer(path->nodes[0]);
4300                         path->nodes[0] = right;
4301                         path->slots[0] = 0;
4302                         path->slots[1] += 1;
4303                 } else {
4304                         btrfs_set_header_nritems(right, 0);
4305                         insert_ptr(trans, root, path, &disk_key, right->start,
4306                                           path->slots[1], 1);
4307                         btrfs_tree_unlock(path->nodes[0]);
4308                         free_extent_buffer(path->nodes[0]);
4309                         path->nodes[0] = right;
4310                         path->slots[0] = 0;
4311                         if (path->slots[1] == 0)
4312                                 fixup_low_keys(fs_info, path, &disk_key, 1);
4313                 }
4314                 btrfs_mark_buffer_dirty(right);
4315                 return ret;
4316         }
4317
4318         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4319
4320         if (split == 2) {
4321                 BUG_ON(num_doubles != 0);
4322                 num_doubles++;
4323                 goto again;
4324         }
4325
4326         return 0;
4327
4328 push_for_double:
4329         push_for_double_split(trans, root, path, data_size);
4330         tried_avoid_double = 1;
4331         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4332                 return 0;
4333         goto again;
4334 }
4335
4336 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4337                                          struct btrfs_root *root,
4338                                          struct btrfs_path *path, int ins_len)
4339 {
4340         struct btrfs_key key;
4341         struct extent_buffer *leaf;
4342         struct btrfs_file_extent_item *fi;
4343         u64 extent_len = 0;
4344         u32 item_size;
4345         int ret;
4346
4347         leaf = path->nodes[0];
4348         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4349
4350         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4351                key.type != BTRFS_EXTENT_CSUM_KEY);
4352
4353         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4354                 return 0;
4355
4356         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4357         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4358                 fi = btrfs_item_ptr(leaf, path->slots[0],
4359                                     struct btrfs_file_extent_item);
4360                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4361         }
4362         btrfs_release_path(path);
4363
4364         path->keep_locks = 1;
4365         path->search_for_split = 1;
4366         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4367         path->search_for_split = 0;
4368         if (ret > 0)
4369                 ret = -EAGAIN;
4370         if (ret < 0)
4371                 goto err;
4372
4373         ret = -EAGAIN;
4374         leaf = path->nodes[0];
4375         /* if our item isn't there, return now */
4376         if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4377                 goto err;
4378
4379         /* the leaf has  changed, it now has room.  return now */
4380         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4381                 goto err;
4382
4383         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4384                 fi = btrfs_item_ptr(leaf, path->slots[0],
4385                                     struct btrfs_file_extent_item);
4386                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4387                         goto err;
4388         }
4389
4390         btrfs_set_path_blocking(path);
4391         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4392         if (ret)
4393                 goto err;
4394
4395         path->keep_locks = 0;
4396         btrfs_unlock_up_safe(path, 1);
4397         return 0;
4398 err:
4399         path->keep_locks = 0;
4400         return ret;
4401 }
4402
4403 static noinline int split_item(struct btrfs_trans_handle *trans,
4404                                struct btrfs_root *root,
4405                                struct btrfs_path *path,
4406                                struct btrfs_key *new_key,
4407                                unsigned long split_offset)
4408 {
4409         struct extent_buffer *leaf;
4410         struct btrfs_item *item;
4411         struct btrfs_item *new_item;
4412         int slot;
4413         char *buf;
4414         u32 nritems;
4415         u32 item_size;
4416         u32 orig_offset;
4417         struct btrfs_disk_key disk_key;
4418
4419         leaf = path->nodes[0];
4420         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4421
4422         btrfs_set_path_blocking(path);
4423
4424         item = btrfs_item_nr(path->slots[0]);
4425         orig_offset = btrfs_item_offset(leaf, item);
4426         item_size = btrfs_item_size(leaf, item);
4427
4428         buf = kmalloc(item_size, GFP_NOFS);
4429         if (!buf)
4430                 return -ENOMEM;
4431
4432         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4433                             path->slots[0]), item_size);
4434
4435         slot = path->slots[0] + 1;
4436         nritems = btrfs_header_nritems(leaf);
4437         if (slot != nritems) {
4438                 /* shift the items */
4439                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4440                                 btrfs_item_nr_offset(slot),
4441                                 (nritems - slot) * sizeof(struct btrfs_item));
4442         }
4443
4444         btrfs_cpu_key_to_disk(&disk_key, new_key);
4445         btrfs_set_item_key(leaf, &disk_key, slot);
4446
4447         new_item = btrfs_item_nr(slot);
4448
4449         btrfs_set_item_offset(leaf, new_item, orig_offset);
4450         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4451
4452         btrfs_set_item_offset(leaf, item,
4453                               orig_offset + item_size - split_offset);
4454         btrfs_set_item_size(leaf, item, split_offset);
4455
4456         btrfs_set_header_nritems(leaf, nritems + 1);
4457
4458         /* write the data for the start of the original item */
4459         write_extent_buffer(leaf, buf,
4460                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4461                             split_offset);
4462
4463         /* write the data for the new item */
4464         write_extent_buffer(leaf, buf + split_offset,
4465                             btrfs_item_ptr_offset(leaf, slot),
4466                             item_size - split_offset);
4467         btrfs_mark_buffer_dirty(leaf);
4468
4469         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4470         kfree(buf);
4471         return 0;
4472 }
4473
4474 /*
4475  * This function splits a single item into two items,
4476  * giving 'new_key' to the new item and splitting the
4477  * old one at split_offset (from the start of the item).
4478  *
4479  * The path may be released by this operation.  After
4480  * the split, the path is pointing to the old item.  The
4481  * new item is going to be in the same node as the old one.
4482  *
4483  * Note, the item being split must be smaller enough to live alone on
4484  * a tree block with room for one extra struct btrfs_item
4485  *
4486  * This allows us to split the item in place, keeping a lock on the
4487  * leaf the entire time.
4488  */
4489 int btrfs_split_item(struct btrfs_trans_handle *trans,
4490                      struct btrfs_root *root,
4491                      struct btrfs_path *path,
4492                      struct btrfs_key *new_key,
4493                      unsigned long split_offset)
4494 {
4495         int ret;
4496         ret = setup_leaf_for_split(trans, root, path,
4497                                    sizeof(struct btrfs_item));
4498         if (ret)
4499                 return ret;
4500
4501         ret = split_item(trans, root, path, new_key, split_offset);
4502         return ret;
4503 }
4504
4505 /*
4506  * This function duplicate a item, giving 'new_key' to the new item.
4507  * It guarantees both items live in the same tree leaf and the new item
4508  * is contiguous with the original item.
4509  *
4510  * This allows us to split file extent in place, keeping a lock on the
4511  * leaf the entire time.
4512  */
4513 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4514                          struct btrfs_root *root,
4515                          struct btrfs_path *path,
4516                          struct btrfs_key *new_key)
4517 {
4518         struct extent_buffer *leaf;
4519         int ret;
4520         u32 item_size;
4521
4522         leaf = path->nodes[0];
4523         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4524         ret = setup_leaf_for_split(trans, root, path,
4525                                    item_size + sizeof(struct btrfs_item));
4526         if (ret)
4527                 return ret;
4528
4529         path->slots[0]++;
4530         setup_items_for_insert(root, path, new_key, &item_size,
4531                                item_size, item_size +
4532                                sizeof(struct btrfs_item), 1);
4533         leaf = path->nodes[0];
4534         memcpy_extent_buffer(leaf,
4535                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4536                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4537                              item_size);
4538         return 0;
4539 }
4540
4541 /*
4542  * make the item pointed to by the path smaller.  new_size indicates
4543  * how small to make it, and from_end tells us if we just chop bytes
4544  * off the end of the item or if we shift the item to chop bytes off
4545  * the front.
4546  */
4547 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4548                          u32 new_size, int from_end)
4549 {
4550         int slot;
4551         struct extent_buffer *leaf;
4552         struct btrfs_item *item;
4553         u32 nritems;
4554         unsigned int data_end;
4555         unsigned int old_data_start;
4556         unsigned int old_size;
4557         unsigned int size_diff;
4558         int i;
4559         struct btrfs_map_token token;
4560
4561         btrfs_init_map_token(&token);
4562
4563         leaf = path->nodes[0];
4564         slot = path->slots[0];
4565
4566         old_size = btrfs_item_size_nr(leaf, slot);
4567         if (old_size == new_size)
4568                 return;
4569
4570         nritems = btrfs_header_nritems(leaf);
4571         data_end = leaf_data_end(root, leaf);
4572
4573         old_data_start = btrfs_item_offset_nr(leaf, slot);
4574
4575         size_diff = old_size - new_size;
4576
4577         BUG_ON(slot < 0);
4578         BUG_ON(slot >= nritems);
4579
4580         /*
4581          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4582          */
4583         /* first correct the data pointers */
4584         for (i = slot; i < nritems; i++) {
4585                 u32 ioff;
4586                 item = btrfs_item_nr(i);
4587
4588                 ioff = btrfs_token_item_offset(leaf, item, &token);
4589                 btrfs_set_token_item_offset(leaf, item,
4590                                             ioff + size_diff, &token);
4591         }
4592
4593         /* shift the data */
4594         if (from_end) {
4595                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4596                               data_end + size_diff, btrfs_leaf_data(leaf) +
4597                               data_end, old_data_start + new_size - data_end);
4598         } else {
4599                 struct btrfs_disk_key disk_key;
4600                 u64 offset;
4601
4602                 btrfs_item_key(leaf, &disk_key, slot);
4603
4604                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4605                         unsigned long ptr;
4606                         struct btrfs_file_extent_item *fi;
4607
4608                         fi = btrfs_item_ptr(leaf, slot,
4609                                             struct btrfs_file_extent_item);
4610                         fi = (struct btrfs_file_extent_item *)(
4611                              (unsigned long)fi - size_diff);
4612
4613                         if (btrfs_file_extent_type(leaf, fi) ==
4614                             BTRFS_FILE_EXTENT_INLINE) {
4615                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4616                                 memmove_extent_buffer(leaf, ptr,
4617                                       (unsigned long)fi,
4618                                       BTRFS_FILE_EXTENT_INLINE_DATA_START);
4619                         }
4620                 }
4621
4622                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4623                               data_end + size_diff, btrfs_leaf_data(leaf) +
4624                               data_end, old_data_start - data_end);
4625
4626                 offset = btrfs_disk_key_offset(&disk_key);
4627                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4628                 btrfs_set_item_key(leaf, &disk_key, slot);
4629                 if (slot == 0)
4630                         fixup_low_keys(root->fs_info, path, &disk_key, 1);
4631         }
4632
4633         item = btrfs_item_nr(slot);
4634         btrfs_set_item_size(leaf, item, new_size);
4635         btrfs_mark_buffer_dirty(leaf);
4636
4637         if (btrfs_leaf_free_space(root, leaf) < 0) {
4638                 btrfs_print_leaf(root, leaf);
4639                 BUG();
4640         }
4641 }
4642
4643 /*
4644  * make the item pointed to by the path bigger, data_size is the added size.
4645  */
4646 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4647                        u32 data_size)
4648 {
4649         int slot;
4650         struct extent_buffer *leaf;
4651         struct btrfs_item *item;
4652         u32 nritems;
4653         unsigned int data_end;
4654         unsigned int old_data;
4655         unsigned int old_size;
4656         int i;
4657         struct btrfs_map_token token;
4658
4659         btrfs_init_map_token(&token);
4660
4661         leaf = path->nodes[0];
4662
4663         nritems = btrfs_header_nritems(leaf);
4664         data_end = leaf_data_end(root, leaf);
4665
4666         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4667                 btrfs_print_leaf(root, leaf);
4668                 BUG();
4669         }
4670         slot = path->slots[0];
4671         old_data = btrfs_item_end_nr(leaf, slot);
4672
4673         BUG_ON(slot < 0);
4674         if (slot >= nritems) {
4675                 btrfs_print_leaf(root, leaf);
4676                 btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4677                        slot, nritems);
4678                 BUG_ON(1);
4679         }
4680
4681         /*
4682          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4683          */
4684         /* first correct the data pointers */
4685         for (i = slot; i < nritems; i++) {
4686                 u32 ioff;
4687                 item = btrfs_item_nr(i);
4688
4689                 ioff = btrfs_token_item_offset(leaf, item, &token);
4690                 btrfs_set_token_item_offset(leaf, item,
4691                                             ioff - data_size, &token);
4692         }
4693
4694         /* shift the data */
4695         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4696                       data_end - data_size, btrfs_leaf_data(leaf) +
4697                       data_end, old_data - data_end);
4698
4699         data_end = old_data;
4700         old_size = btrfs_item_size_nr(leaf, slot);
4701         item = btrfs_item_nr(slot);
4702         btrfs_set_item_size(leaf, item, old_size + data_size);
4703         btrfs_mark_buffer_dirty(leaf);
4704
4705         if (btrfs_leaf_free_space(root, leaf) < 0) {
4706                 btrfs_print_leaf(root, leaf);
4707                 BUG();
4708         }
4709 }
4710
4711 /*
4712  * this is a helper for btrfs_insert_empty_items, the main goal here is
4713  * to save stack depth by doing the bulk of the work in a function
4714  * that doesn't call btrfs_search_slot
4715  */
4716 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4717                             struct btrfs_key *cpu_key, u32 *data_size,
4718                             u32 total_data, u32 total_size, int nr)
4719 {
4720         struct btrfs_item *item;
4721         int i;
4722         u32 nritems;
4723         unsigned int data_end;
4724         struct btrfs_disk_key disk_key;
4725         struct extent_buffer *leaf;
4726         int slot;
4727         struct btrfs_map_token token;
4728
4729         if (path->slots[0] == 0) {
4730                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4731                 fixup_low_keys(root->fs_info, path, &disk_key, 1);
4732         }
4733         btrfs_unlock_up_safe(path, 1);
4734
4735         btrfs_init_map_token(&token);
4736
4737         leaf = path->nodes[0];
4738         slot = path->slots[0];
4739
4740         nritems = btrfs_header_nritems(leaf);
4741         data_end = leaf_data_end(root, leaf);
4742
4743         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4744                 btrfs_print_leaf(root, leaf);
4745                 btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4746                        total_size, btrfs_leaf_free_space(root, leaf));
4747                 BUG();
4748         }
4749
4750         if (slot != nritems) {
4751                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4752
4753                 if (old_data < data_end) {
4754                         btrfs_print_leaf(root, leaf);
4755                         btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4756                                slot, old_data, data_end);
4757                         BUG_ON(1);
4758                 }
4759                 /*
4760                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4761                  */
4762                 /* first correct the data pointers */
4763                 for (i = slot; i < nritems; i++) {
4764                         u32 ioff;
4765
4766                         item = btrfs_item_nr( i);
4767                         ioff = btrfs_token_item_offset(leaf, item, &token);
4768                         btrfs_set_token_item_offset(leaf, item,
4769                                                     ioff - total_data, &token);
4770                 }
4771                 /* shift the items */
4772                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4773                               btrfs_item_nr_offset(slot),
4774                               (nritems - slot) * sizeof(struct btrfs_item));
4775
4776                 /* shift the data */
4777                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4778                               data_end - total_data, btrfs_leaf_data(leaf) +
4779                               data_end, old_data - data_end);
4780                 data_end = old_data;
4781         }
4782
4783         /* setup the item for the new data */
4784         for (i = 0; i < nr; i++) {
4785                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4786                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4787                 item = btrfs_item_nr(slot + i);
4788                 btrfs_set_token_item_offset(leaf, item,
4789                                             data_end - data_size[i], &token);
4790                 data_end -= data_size[i];
4791                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4792         }
4793
4794         btrfs_set_header_nritems(leaf, nritems + nr);
4795         btrfs_mark_buffer_dirty(leaf);
4796
4797         if (btrfs_leaf_free_space(root, leaf) < 0) {
4798                 btrfs_print_leaf(root, leaf);
4799                 BUG();
4800         }
4801 }
4802
4803 /*
4804  * Given a key and some data, insert items into the tree.
4805  * This does all the path init required, making room in the tree if needed.
4806  */
4807 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4808                             struct btrfs_root *root,
4809                             struct btrfs_path *path,
4810                             struct btrfs_key *cpu_key, u32 *data_size,
4811                             int nr)
4812 {
4813         int ret = 0;
4814         int slot;
4815         int i;
4816         u32 total_size = 0;
4817         u32 total_data = 0;
4818
4819         for (i = 0; i < nr; i++)
4820                 total_data += data_size[i];
4821
4822         total_size = total_data + (nr * sizeof(struct btrfs_item));
4823         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4824         if (ret == 0)
4825                 return -EEXIST;
4826         if (ret < 0)
4827                 return ret;
4828
4829         slot = path->slots[0];
4830         BUG_ON(slot < 0);
4831
4832         setup_items_for_insert(root, path, cpu_key, data_size,
4833                                total_data, total_size, nr);
4834         return 0;
4835 }
4836
4837 /*
4838  * Given a key and some data, insert an item into the tree.
4839  * This does all the path init required, making room in the tree if needed.
4840  */
4841 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4842                       *root, struct btrfs_key *cpu_key, void *data, u32
4843                       data_size)
4844 {
4845         int ret = 0;
4846         struct btrfs_path *path;
4847         struct extent_buffer *leaf;
4848         unsigned long ptr;
4849
4850         path = btrfs_alloc_path();
4851         if (!path)
4852                 return -ENOMEM;
4853         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4854         if (!ret) {
4855                 leaf = path->nodes[0];
4856                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4857                 write_extent_buffer(leaf, data, ptr, data_size);
4858                 btrfs_mark_buffer_dirty(leaf);
4859         }
4860         btrfs_free_path(path);
4861         return ret;
4862 }
4863
4864 /*
4865  * delete the pointer from a given node.
4866  *
4867  * the tree should have been previously balanced so the deletion does not
4868  * empty a node.
4869  */
4870 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4871                     int level, int slot)
4872 {
4873         struct extent_buffer *parent = path->nodes[level];
4874         u32 nritems;
4875         int ret;
4876
4877         nritems = btrfs_header_nritems(parent);
4878         if (slot != nritems - 1) {
4879                 if (level)
4880                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4881                                              slot + 1, nritems - slot - 1);
4882                 memmove_extent_buffer(parent,
4883                               btrfs_node_key_ptr_offset(slot),
4884                               btrfs_node_key_ptr_offset(slot + 1),
4885                               sizeof(struct btrfs_key_ptr) *
4886                               (nritems - slot - 1));
4887         } else if (level) {
4888                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4889                                               MOD_LOG_KEY_REMOVE, GFP_NOFS);
4890                 BUG_ON(ret < 0);
4891         }
4892
4893         nritems--;
4894         btrfs_set_header_nritems(parent, nritems);
4895         if (nritems == 0 && parent == root->node) {
4896                 BUG_ON(btrfs_header_level(root->node) != 1);
4897                 /* just turn the root into a leaf and break */
4898                 btrfs_set_header_level(root->node, 0);
4899         } else if (slot == 0) {
4900                 struct btrfs_disk_key disk_key;
4901
4902                 btrfs_node_key(parent, &disk_key, 0);
4903                 fixup_low_keys(root->fs_info, path, &disk_key, level + 1);
4904         }
4905         btrfs_mark_buffer_dirty(parent);
4906 }
4907
4908 /*
4909  * a helper function to delete the leaf pointed to by path->slots[1] and
4910  * path->nodes[1].
4911  *
4912  * This deletes the pointer in path->nodes[1] and frees the leaf
4913  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4914  *
4915  * The path must have already been setup for deleting the leaf, including
4916  * all the proper balancing.  path->nodes[1] must be locked.
4917  */
4918 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4919                                     struct btrfs_root *root,
4920                                     struct btrfs_path *path,
4921                                     struct extent_buffer *leaf)
4922 {
4923         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4924         del_ptr(root, path, 1, path->slots[1]);
4925
4926         /*
4927          * btrfs_free_extent is expensive, we want to make sure we
4928          * aren't holding any locks when we call it
4929          */
4930         btrfs_unlock_up_safe(path, 0);
4931
4932         root_sub_used(root, leaf->len);
4933
4934         extent_buffer_get(leaf);
4935         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4936         free_extent_buffer_stale(leaf);
4937 }
4938 /*
4939  * delete the item at the leaf level in path.  If that empties
4940  * the leaf, remove it from the tree
4941  */
4942 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4943                     struct btrfs_path *path, int slot, int nr)
4944 {
4945         struct extent_buffer *leaf;
4946         struct btrfs_item *item;
4947         u32 last_off;
4948         u32 dsize = 0;
4949         int ret = 0;
4950         int wret;
4951         int i;
4952         u32 nritems;
4953         struct btrfs_map_token token;
4954
4955         btrfs_init_map_token(&token);
4956
4957         leaf = path->nodes[0];
4958         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4959
4960         for (i = 0; i < nr; i++)
4961                 dsize += btrfs_item_size_nr(leaf, slot + i);
4962
4963         nritems = btrfs_header_nritems(leaf);
4964
4965         if (slot + nr != nritems) {
4966                 int data_end = leaf_data_end(root, leaf);
4967
4968                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4969                               data_end + dsize,
4970                               btrfs_leaf_data(leaf) + data_end,
4971                               last_off - data_end);
4972
4973                 for (i = slot + nr; i < nritems; i++) {
4974                         u32 ioff;
4975
4976                         item = btrfs_item_nr(i);
4977                         ioff = btrfs_token_item_offset(leaf, item, &token);
4978                         btrfs_set_token_item_offset(leaf, item,
4979                                                     ioff + dsize, &token);
4980                 }
4981
4982                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4983                               btrfs_item_nr_offset(slot + nr),
4984                               sizeof(struct btrfs_item) *
4985                               (nritems - slot - nr));
4986         }
4987         btrfs_set_header_nritems(leaf, nritems - nr);
4988         nritems -= nr;
4989
4990         /* delete the leaf if we've emptied it */
4991         if (nritems == 0) {
4992                 if (leaf == root->node) {
4993                         btrfs_set_header_level(leaf, 0);
4994                 } else {
4995                         btrfs_set_path_blocking(path);
4996                         clean_tree_block(trans, root->fs_info, leaf);
4997                         btrfs_del_leaf(trans, root, path, leaf);
4998                 }
4999         } else {
5000                 int used = leaf_space_used(leaf, 0, nritems);
5001                 if (slot == 0) {
5002                         struct btrfs_disk_key disk_key;
5003
5004                         btrfs_item_key(leaf, &disk_key, 0);
5005                         fixup_low_keys(root->fs_info, path, &disk_key, 1);
5006                 }
5007
5008                 /* delete the leaf if it is mostly empty */
5009                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5010                         /* push_leaf_left fixes the path.
5011                          * make sure the path still points to our leaf
5012                          * for possible call to del_ptr below
5013                          */
5014                         slot = path->slots[1];
5015                         extent_buffer_get(leaf);
5016
5017                         btrfs_set_path_blocking(path);
5018                         wret = push_leaf_left(trans, root, path, 1, 1,
5019                                               1, (u32)-1);
5020                         if (wret < 0 && wret != -ENOSPC)
5021                                 ret = wret;
5022
5023                         if (path->nodes[0] == leaf &&
5024                             btrfs_header_nritems(leaf)) {
5025                                 wret = push_leaf_right(trans, root, path, 1,
5026                                                        1, 1, 0);
5027                                 if (wret < 0 && wret != -ENOSPC)
5028                                         ret = wret;
5029                         }
5030
5031                         if (btrfs_header_nritems(leaf) == 0) {
5032                                 path->slots[1] = slot;
5033                                 btrfs_del_leaf(trans, root, path, leaf);
5034                                 free_extent_buffer(leaf);
5035                                 ret = 0;
5036                         } else {
5037                                 /* if we're still in the path, make sure
5038                                  * we're dirty.  Otherwise, one of the
5039                                  * push_leaf functions must have already
5040                                  * dirtied this buffer
5041                                  */
5042                                 if (path->nodes[0] == leaf)
5043                                         btrfs_mark_buffer_dirty(leaf);
5044                                 free_extent_buffer(leaf);
5045                         }
5046                 } else {
5047                         btrfs_mark_buffer_dirty(leaf);
5048                 }
5049         }
5050         return ret;
5051 }
5052
5053 /*
5054  * search the tree again to find a leaf with lesser keys
5055  * returns 0 if it found something or 1 if there are no lesser leaves.
5056  * returns < 0 on io errors.
5057  *
5058  * This may release the path, and so you may lose any locks held at the
5059  * time you call it.
5060  */
5061 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5062 {
5063         struct btrfs_key key;
5064         struct btrfs_disk_key found_key;
5065         int ret;
5066
5067         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5068
5069         if (key.offset > 0) {
5070                 key.offset--;
5071         } else if (key.type > 0) {
5072                 key.type--;
5073                 key.offset = (u64)-1;
5074         } else if (key.objectid > 0) {
5075                 key.objectid--;
5076                 key.type = (u8)-1;
5077                 key.offset = (u64)-1;
5078         } else {
5079                 return 1;
5080         }
5081
5082         btrfs_release_path(path);
5083         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5084         if (ret < 0)
5085                 return ret;
5086         btrfs_item_key(path->nodes[0], &found_key, 0);
5087         ret = comp_keys(&found_key, &key);
5088         /*
5089          * We might have had an item with the previous key in the tree right
5090          * before we released our path. And after we released our path, that
5091          * item might have been pushed to the first slot (0) of the leaf we
5092          * were holding due to a tree balance. Alternatively, an item with the
5093          * previous key can exist as the only element of a leaf (big fat item).
5094          * Therefore account for these 2 cases, so that our callers (like
5095          * btrfs_previous_item) don't miss an existing item with a key matching
5096          * the previous key we computed above.
5097          */
5098         if (ret <= 0)
5099                 return 0;
5100         return 1;
5101 }
5102
5103 /*
5104  * A helper function to walk down the tree starting at min_key, and looking
5105  * for nodes or leaves that are have a minimum transaction id.
5106  * This is used by the btree defrag code, and tree logging
5107  *
5108  * This does not cow, but it does stuff the starting key it finds back
5109  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5110  * key and get a writable path.
5111  *
5112  * This does lock as it descends, and path->keep_locks should be set
5113  * to 1 by the caller.
5114  *
5115  * This honors path->lowest_level to prevent descent past a given level
5116  * of the tree.
5117  *
5118  * min_trans indicates the oldest transaction that you are interested
5119  * in walking through.  Any nodes or leaves older than min_trans are
5120  * skipped over (without reading them).
5121  *
5122  * returns zero if something useful was found, < 0 on error and 1 if there
5123  * was nothing in the tree that matched the search criteria.
5124  */
5125 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5126                          struct btrfs_path *path,
5127                          u64 min_trans)
5128 {
5129         struct extent_buffer *cur;
5130         struct btrfs_key found_key;
5131         int slot;
5132         int sret;
5133         u32 nritems;
5134         int level;
5135         int ret = 1;
5136         int keep_locks = path->keep_locks;
5137
5138         path->keep_locks = 1;
5139 again:
5140         cur = btrfs_read_lock_root_node(root);
5141         level = btrfs_header_level(cur);
5142         WARN_ON(path->nodes[level]);
5143         path->nodes[level] = cur;
5144         path->locks[level] = BTRFS_READ_LOCK;
5145
5146         if (btrfs_header_generation(cur) < min_trans) {
5147                 ret = 1;
5148                 goto out;
5149         }
5150         while (1) {
5151                 nritems = btrfs_header_nritems(cur);
5152                 level = btrfs_header_level(cur);
5153                 sret = bin_search(cur, min_key, level, &slot);
5154
5155                 /* at the lowest level, we're done, setup the path and exit */
5156                 if (level == path->lowest_level) {
5157                         if (slot >= nritems)
5158                                 goto find_next_key;
5159                         ret = 0;
5160                         path->slots[level] = slot;
5161                         btrfs_item_key_to_cpu(cur, &found_key, slot);
5162                         goto out;
5163                 }
5164                 if (sret && slot > 0)
5165                         slot--;
5166                 /*
5167                  * check this node pointer against the min_trans parameters.
5168                  * If it is too old, old, skip to the next one.
5169                  */
5170                 while (slot < nritems) {
5171                         u64 gen;
5172
5173                         gen = btrfs_node_ptr_generation(cur, slot);
5174                         if (gen < min_trans) {
5175                                 slot++;
5176                                 continue;
5177                         }
5178                         break;
5179                 }
5180 find_next_key:
5181                 /*
5182                  * we didn't find a candidate key in this node, walk forward
5183                  * and find another one
5184                  */
5185                 if (slot >= nritems) {
5186                         path->slots[level] = slot;
5187                         btrfs_set_path_blocking(path);
5188                         sret = btrfs_find_next_key(root, path, min_key, level,
5189                                                   min_trans);
5190                         if (sret == 0) {
5191                                 btrfs_release_path(path);
5192                                 goto again;
5193                         } else {
5194                                 goto out;
5195                         }
5196                 }
5197                 /* save our key for returning back */
5198                 btrfs_node_key_to_cpu(cur, &found_key, slot);
5199                 path->slots[level] = slot;
5200                 if (level == path->lowest_level) {
5201                         ret = 0;
5202                         goto out;
5203                 }
5204                 btrfs_set_path_blocking(path);
5205                 cur = read_node_slot(root, cur, slot);
5206                 BUG_ON(!cur); /* -ENOMEM */
5207
5208                 btrfs_tree_read_lock(cur);
5209
5210                 path->locks[level - 1] = BTRFS_READ_LOCK;
5211                 path->nodes[level - 1] = cur;
5212                 unlock_up(path, level, 1, 0, NULL);
5213                 btrfs_clear_path_blocking(path, NULL, 0);
5214         }
5215 out:
5216         path->keep_locks = keep_locks;
5217         if (ret == 0) {
5218                 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5219                 btrfs_set_path_blocking(path);
5220                 memcpy(min_key, &found_key, sizeof(found_key));
5221         }
5222         return ret;
5223 }
5224
5225 static void tree_move_down(struct btrfs_root *root,
5226                            struct btrfs_path *path,
5227                            int *level, int root_level)
5228 {
5229         BUG_ON(*level == 0);
5230         path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5231                                         path->slots[*level]);
5232         path->slots[*level - 1] = 0;
5233         (*level)--;
5234 }
5235
5236 static int tree_move_next_or_upnext(struct btrfs_root *root,
5237                                     struct btrfs_path *path,
5238                                     int *level, int root_level)
5239 {
5240         int ret = 0;
5241         int nritems;
5242         nritems = btrfs_header_nritems(path->nodes[*level]);
5243
5244         path->slots[*level]++;
5245
5246         while (path->slots[*level] >= nritems) {
5247                 if (*level == root_level)
5248                         return -1;
5249
5250                 /* move upnext */
5251                 path->slots[*level] = 0;
5252                 free_extent_buffer(path->nodes[*level]);
5253                 path->nodes[*level] = NULL;
5254                 (*level)++;
5255                 path->slots[*level]++;
5256
5257                 nritems = btrfs_header_nritems(path->nodes[*level]);
5258                 ret = 1;
5259         }
5260         return ret;
5261 }
5262
5263 /*
5264  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5265  * or down.
5266  */
5267 static int tree_advance(struct btrfs_root *root,
5268                         struct btrfs_path *path,
5269                         int *level, int root_level,
5270                         int allow_down,
5271                         struct btrfs_key *key)
5272 {
5273         int ret;
5274
5275         if (*level == 0 || !allow_down) {
5276                 ret = tree_move_next_or_upnext(root, path, level, root_level);
5277         } else {
5278                 tree_move_down(root, path, level, root_level);
5279                 ret = 0;
5280         }
5281         if (ret >= 0) {
5282                 if (*level == 0)
5283                         btrfs_item_key_to_cpu(path->nodes[*level], key,
5284                                         path->slots[*level]);
5285                 else
5286                         btrfs_node_key_to_cpu(path->nodes[*level], key,
5287                                         path->slots[*level]);
5288         }
5289         return ret;
5290 }
5291
5292 static int tree_compare_item(struct btrfs_root *left_root,
5293                              struct btrfs_path *left_path,
5294                              struct btrfs_path *right_path,
5295                              char *tmp_buf)
5296 {
5297         int cmp;
5298         int len1, len2;
5299         unsigned long off1, off2;
5300
5301         len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5302         len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5303         if (len1 != len2)
5304                 return 1;
5305
5306         off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5307         off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5308                                 right_path->slots[0]);
5309
5310         read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5311
5312         cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5313         if (cmp)
5314                 return 1;
5315         return 0;
5316 }
5317
5318 #define ADVANCE 1
5319 #define ADVANCE_ONLY_NEXT -1
5320
5321 /*
5322  * This function compares two trees and calls the provided callback for
5323  * every changed/new/deleted item it finds.
5324  * If shared tree blocks are encountered, whole subtrees are skipped, making
5325  * the compare pretty fast on snapshotted subvolumes.
5326  *
5327  * This currently works on commit roots only. As commit roots are read only,
5328  * we don't do any locking. The commit roots are protected with transactions.
5329  * Transactions are ended and rejoined when a commit is tried in between.
5330  *
5331  * This function checks for modifications done to the trees while comparing.
5332  * If it detects a change, it aborts immediately.
5333  */
5334 int btrfs_compare_trees(struct btrfs_root *left_root,
5335                         struct btrfs_root *right_root,
5336                         btrfs_changed_cb_t changed_cb, void *ctx)
5337 {
5338         int ret;
5339         int cmp;
5340         struct btrfs_path *left_path = NULL;
5341         struct btrfs_path *right_path = NULL;
5342         struct btrfs_key left_key;
5343         struct btrfs_key right_key;
5344         char *tmp_buf = NULL;
5345         int left_root_level;
5346         int right_root_level;
5347         int left_level;
5348         int right_level;
5349         int left_end_reached;
5350         int right_end_reached;
5351         int advance_left;
5352         int advance_right;
5353         u64 left_blockptr;
5354         u64 right_blockptr;
5355         u64 left_gen;
5356         u64 right_gen;
5357
5358         left_path = btrfs_alloc_path();
5359         if (!left_path) {
5360                 ret = -ENOMEM;
5361                 goto out;
5362         }
5363         right_path = btrfs_alloc_path();
5364         if (!right_path) {
5365                 ret = -ENOMEM;
5366                 goto out;
5367         }
5368
5369         tmp_buf = kmalloc(left_root->nodesize, GFP_KERNEL | __GFP_NOWARN);
5370         if (!tmp_buf) {
5371                 tmp_buf = vmalloc(left_root->nodesize);
5372                 if (!tmp_buf) {
5373                         ret = -ENOMEM;
5374                         goto out;
5375                 }
5376         }
5377
5378         left_path->search_commit_root = 1;
5379         left_path->skip_locking = 1;
5380         right_path->search_commit_root = 1;
5381         right_path->skip_locking = 1;
5382
5383         /*
5384          * Strategy: Go to the first items of both trees. Then do
5385          *
5386          * If both trees are at level 0
5387          *   Compare keys of current items
5388          *     If left < right treat left item as new, advance left tree
5389          *       and repeat
5390          *     If left > right treat right item as deleted, advance right tree
5391          *       and repeat
5392          *     If left == right do deep compare of items, treat as changed if
5393          *       needed, advance both trees and repeat
5394          * If both trees are at the same level but not at level 0
5395          *   Compare keys of current nodes/leafs
5396          *     If left < right advance left tree and repeat
5397          *     If left > right advance right tree and repeat
5398          *     If left == right compare blockptrs of the next nodes/leafs
5399          *       If they match advance both trees but stay at the same level
5400          *         and repeat
5401          *       If they don't match advance both trees while allowing to go
5402          *         deeper and repeat
5403          * If tree levels are different
5404          *   Advance the tree that needs it and repeat
5405          *
5406          * Advancing a tree means:
5407          *   If we are at level 0, try to go to the next slot. If that's not
5408          *   possible, go one level up and repeat. Stop when we found a level
5409          *   where we could go to the next slot. We may at this point be on a
5410          *   node or a leaf.
5411          *
5412          *   If we are not at level 0 and not on shared tree blocks, go one
5413          *   level deeper.
5414          *
5415          *   If we are not at level 0 and on shared tree blocks, go one slot to
5416          *   the right if possible or go up and right.
5417          */
5418
5419         down_read(&left_root->fs_info->commit_root_sem);
5420         left_level = btrfs_header_level(left_root->commit_root);
5421         left_root_level = left_level;
5422         left_path->nodes[left_level] = left_root->commit_root;
5423         extent_buffer_get(left_path->nodes[left_level]);
5424
5425         right_level = btrfs_header_level(right_root->commit_root);
5426         right_root_level = right_level;
5427         right_path->nodes[right_level] = right_root->commit_root;
5428         extent_buffer_get(right_path->nodes[right_level]);
5429         up_read(&left_root->fs_info->commit_root_sem);
5430
5431         if (left_level == 0)
5432                 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5433                                 &left_key, left_path->slots[left_level]);
5434         else
5435                 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5436                                 &left_key, left_path->slots[left_level]);
5437         if (right_level == 0)
5438                 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5439                                 &right_key, right_path->slots[right_level]);
5440         else
5441                 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5442                                 &right_key, right_path->slots[right_level]);
5443
5444         left_end_reached = right_end_reached = 0;
5445         advance_left = advance_right = 0;
5446
5447         while (1) {
5448                 if (advance_left && !left_end_reached) {
5449                         ret = tree_advance(left_root, left_path, &left_level,
5450                                         left_root_level,
5451                                         advance_left != ADVANCE_ONLY_NEXT,
5452                                         &left_key);
5453                         if (ret < 0)
5454                                 left_end_reached = ADVANCE;
5455                         advance_left = 0;
5456                 }
5457                 if (advance_right && !right_end_reached) {
5458                         ret = tree_advance(right_root, right_path, &right_level,
5459                                         right_root_level,
5460                                         advance_right != ADVANCE_ONLY_NEXT,
5461                                         &right_key);
5462                         if (ret < 0)
5463                                 right_end_reached = ADVANCE;
5464                         advance_right = 0;
5465                 }
5466
5467                 if (left_end_reached && right_end_reached) {
5468                         ret = 0;
5469                         goto out;
5470                 } else if (left_end_reached) {
5471                         if (right_level == 0) {
5472                                 ret = changed_cb(left_root, right_root,
5473                                                 left_path, right_path,
5474                                                 &right_key,
5475                                                 BTRFS_COMPARE_TREE_DELETED,
5476                                                 ctx);
5477                                 if (ret < 0)
5478                                         goto out;
5479                         }
5480                         advance_right = ADVANCE;
5481                         continue;
5482                 } else if (right_end_reached) {
5483                         if (left_level == 0) {
5484                                 ret = changed_cb(left_root, right_root,
5485                                                 left_path, right_path,
5486                                                 &left_key,
5487                                                 BTRFS_COMPARE_TREE_NEW,
5488                                                 ctx);
5489                                 if (ret < 0)
5490                                         goto out;
5491                         }
5492                         advance_left = ADVANCE;
5493                         continue;
5494                 }
5495
5496                 if (left_level == 0 && right_level == 0) {
5497                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5498                         if (cmp < 0) {
5499                                 ret = changed_cb(left_root, right_root,
5500                                                 left_path, right_path,
5501                                                 &left_key,
5502                                                 BTRFS_COMPARE_TREE_NEW,
5503                                                 ctx);
5504                                 if (ret < 0)
5505                                         goto out;
5506                                 advance_left = ADVANCE;
5507                         } else if (cmp > 0) {
5508                                 ret = changed_cb(left_root, right_root,
5509                                                 left_path, right_path,
5510                                                 &right_key,
5511                                                 BTRFS_COMPARE_TREE_DELETED,
5512                                                 ctx);
5513                                 if (ret < 0)
5514                                         goto out;
5515                                 advance_right = ADVANCE;
5516                         } else {
5517                                 enum btrfs_compare_tree_result result;
5518
5519                                 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5520                                 ret = tree_compare_item(left_root, left_path,
5521                                                 right_path, tmp_buf);
5522                                 if (ret)
5523                                         result = BTRFS_COMPARE_TREE_CHANGED;
5524                                 else
5525                                         result = BTRFS_COMPARE_TREE_SAME;
5526                                 ret = changed_cb(left_root, right_root,
5527                                                  left_path, right_path,
5528                                                  &left_key, result, ctx);
5529                                 if (ret < 0)
5530                                         goto out;
5531                                 advance_left = ADVANCE;
5532                                 advance_right = ADVANCE;
5533                         }
5534                 } else if (left_level == right_level) {
5535                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5536                         if (cmp < 0) {
5537                                 advance_left = ADVANCE;
5538                         } else if (cmp > 0) {
5539                                 advance_right = ADVANCE;
5540                         } else {
5541                                 left_blockptr = btrfs_node_blockptr(
5542                                                 left_path->nodes[left_level],
5543                                                 left_path->slots[left_level]);
5544                                 right_blockptr = btrfs_node_blockptr(
5545                                                 right_path->nodes[right_level],
5546                                                 right_path->slots[right_level]);
5547                                 left_gen = btrfs_node_ptr_generation(
5548                                                 left_path->nodes[left_level],
5549                                                 left_path->slots[left_level]);
5550                                 right_gen = btrfs_node_ptr_generation(
5551                                                 right_path->nodes[right_level],
5552                                                 right_path->slots[right_level]);
5553                                 if (left_blockptr == right_blockptr &&
5554                                     left_gen == right_gen) {
5555                                         /*
5556                                          * As we're on a shared block, don't
5557                                          * allow to go deeper.
5558                                          */
5559                                         advance_left = ADVANCE_ONLY_NEXT;
5560                                         advance_right = ADVANCE_ONLY_NEXT;
5561                                 } else {
5562                                         advance_left = ADVANCE;
5563                                         advance_right = ADVANCE;
5564                                 }
5565                         }
5566                 } else if (left_level < right_level) {
5567                         advance_right = ADVANCE;
5568                 } else {
5569                         advance_left = ADVANCE;
5570                 }
5571         }
5572
5573 out:
5574         btrfs_free_path(left_path);
5575         btrfs_free_path(right_path);
5576         kvfree(tmp_buf);
5577         return ret;
5578 }
5579
5580 /*
5581  * this is similar to btrfs_next_leaf, but does not try to preserve
5582  * and fixup the path.  It looks for and returns the next key in the
5583  * tree based on the current path and the min_trans parameters.
5584  *
5585  * 0 is returned if another key is found, < 0 if there are any errors
5586  * and 1 is returned if there are no higher keys in the tree
5587  *
5588  * path->keep_locks should be set to 1 on the search made before
5589  * calling this function.
5590  */
5591 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5592                         struct btrfs_key *key, int level, u64 min_trans)
5593 {
5594         int slot;
5595         struct extent_buffer *c;
5596
5597         WARN_ON(!path->keep_locks);
5598         while (level < BTRFS_MAX_LEVEL) {
5599                 if (!path->nodes[level])
5600                         return 1;
5601
5602                 slot = path->slots[level] + 1;
5603                 c = path->nodes[level];
5604 next:
5605                 if (slot >= btrfs_header_nritems(c)) {
5606                         int ret;
5607                         int orig_lowest;
5608                         struct btrfs_key cur_key;
5609                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5610                             !path->nodes[level + 1])
5611                                 return 1;
5612
5613                         if (path->locks[level + 1]) {
5614                                 level++;
5615                                 continue;
5616                         }
5617
5618                         slot = btrfs_header_nritems(c) - 1;
5619                         if (level == 0)
5620                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5621                         else
5622                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5623
5624                         orig_lowest = path->lowest_level;
5625                         btrfs_release_path(path);
5626                         path->lowest_level = level;
5627                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5628                                                 0, 0);
5629                         path->lowest_level = orig_lowest;
5630                         if (ret < 0)
5631                                 return ret;
5632
5633                         c = path->nodes[level];
5634                         slot = path->slots[level];
5635                         if (ret == 0)
5636                                 slot++;
5637                         goto next;
5638                 }
5639
5640                 if (level == 0)
5641                         btrfs_item_key_to_cpu(c, key, slot);
5642                 else {
5643                         u64 gen = btrfs_node_ptr_generation(c, slot);
5644
5645                         if (gen < min_trans) {
5646                                 slot++;
5647                                 goto next;
5648                         }
5649                         btrfs_node_key_to_cpu(c, key, slot);
5650                 }
5651                 return 0;
5652         }
5653         return 1;
5654 }
5655
5656 /*
5657  * search the tree again to find a leaf with greater keys
5658  * returns 0 if it found something or 1 if there are no greater leaves.
5659  * returns < 0 on io errors.
5660  */
5661 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5662 {
5663         return btrfs_next_old_leaf(root, path, 0);
5664 }
5665
5666 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5667                         u64 time_seq)
5668 {
5669         int slot;
5670         int level;
5671         struct extent_buffer *c;
5672         struct extent_buffer *next;
5673         struct btrfs_key key;
5674         u32 nritems;
5675         int ret;
5676         int old_spinning = path->leave_spinning;
5677         int next_rw_lock = 0;
5678
5679         nritems = btrfs_header_nritems(path->nodes[0]);
5680         if (nritems == 0)
5681                 return 1;
5682
5683         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5684 again:
5685         level = 1;
5686         next = NULL;
5687         next_rw_lock = 0;
5688         btrfs_release_path(path);
5689
5690         path->keep_locks = 1;
5691         path->leave_spinning = 1;
5692
5693         if (time_seq)
5694                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5695         else
5696                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5697         path->keep_locks = 0;
5698
5699         if (ret < 0)
5700                 return ret;
5701
5702         nritems = btrfs_header_nritems(path->nodes[0]);
5703         /*
5704          * by releasing the path above we dropped all our locks.  A balance
5705          * could have added more items next to the key that used to be
5706          * at the very end of the block.  So, check again here and
5707          * advance the path if there are now more items available.
5708          */
5709         if (nritems > 0 && path->slots[0] < nritems - 1) {
5710                 if (ret == 0)
5711                         path->slots[0]++;
5712                 ret = 0;
5713                 goto done;
5714         }
5715         /*
5716          * So the above check misses one case:
5717          * - after releasing the path above, someone has removed the item that
5718          *   used to be at the very end of the block, and balance between leafs
5719          *   gets another one with bigger key.offset to replace it.
5720          *
5721          * This one should be returned as well, or we can get leaf corruption
5722          * later(esp. in __btrfs_drop_extents()).
5723          *
5724          * And a bit more explanation about this check,
5725          * with ret > 0, the key isn't found, the path points to the slot
5726          * where it should be inserted, so the path->slots[0] item must be the
5727          * bigger one.
5728          */
5729         if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5730                 ret = 0;
5731                 goto done;
5732         }
5733
5734         while (level < BTRFS_MAX_LEVEL) {
5735                 if (!path->nodes[level]) {
5736                         ret = 1;
5737                         goto done;
5738                 }
5739
5740                 slot = path->slots[level] + 1;
5741                 c = path->nodes[level];
5742                 if (slot >= btrfs_header_nritems(c)) {
5743                         level++;
5744                         if (level == BTRFS_MAX_LEVEL) {
5745                                 ret = 1;
5746                                 goto done;
5747                         }
5748                         continue;
5749                 }
5750
5751                 if (next) {
5752                         btrfs_tree_unlock_rw(next, next_rw_lock);
5753                         free_extent_buffer(next);
5754                 }
5755
5756                 next = c;
5757                 next_rw_lock = path->locks[level];
5758                 ret = read_block_for_search(NULL, root, path, &next, level,
5759                                             slot, &key, 0);
5760                 if (ret == -EAGAIN)
5761                         goto again;
5762
5763                 if (ret < 0) {
5764                         btrfs_release_path(path);
5765                         goto done;
5766                 }
5767
5768                 if (!path->skip_locking) {
5769                         ret = btrfs_try_tree_read_lock(next);
5770                         if (!ret && time_seq) {
5771                                 /*
5772                                  * If we don't get the lock, we may be racing
5773                                  * with push_leaf_left, holding that lock while
5774                                  * itself waiting for the leaf we've currently
5775                                  * locked. To solve this situation, we give up
5776                                  * on our lock and cycle.
5777                                  */
5778                                 free_extent_buffer(next);
5779                                 btrfs_release_path(path);
5780                                 cond_resched();
5781                                 goto again;
5782                         }
5783                         if (!ret) {
5784                                 btrfs_set_path_blocking(path);
5785                                 btrfs_tree_read_lock(next);
5786                                 btrfs_clear_path_blocking(path, next,
5787                                                           BTRFS_READ_LOCK);
5788                         }
5789                         next_rw_lock = BTRFS_READ_LOCK;
5790                 }
5791                 break;
5792         }
5793         path->slots[level] = slot;
5794         while (1) {
5795                 level--;
5796                 c = path->nodes[level];
5797                 if (path->locks[level])
5798                         btrfs_tree_unlock_rw(c, path->locks[level]);
5799
5800                 free_extent_buffer(c);
5801                 path->nodes[level] = next;
5802                 path->slots[level] = 0;
5803                 if (!path->skip_locking)
5804                         path->locks[level] = next_rw_lock;
5805                 if (!level)
5806                         break;
5807
5808                 ret = read_block_for_search(NULL, root, path, &next, level,
5809                                             0, &key, 0);
5810                 if (ret == -EAGAIN)
5811                         goto again;
5812
5813                 if (ret < 0) {
5814                         btrfs_release_path(path);
5815                         goto done;
5816                 }
5817
5818                 if (!path->skip_locking) {
5819                         ret = btrfs_try_tree_read_lock(next);
5820                         if (!ret) {
5821                                 btrfs_set_path_blocking(path);
5822                                 btrfs_tree_read_lock(next);
5823                                 btrfs_clear_path_blocking(path, next,
5824                                                           BTRFS_READ_LOCK);
5825                         }
5826                         next_rw_lock = BTRFS_READ_LOCK;
5827                 }
5828         }
5829         ret = 0;
5830 done:
5831         unlock_up(path, 0, 1, 0, NULL);
5832         path->leave_spinning = old_spinning;
5833         if (!old_spinning)
5834                 btrfs_set_path_blocking(path);
5835
5836         return ret;
5837 }
5838
5839 /*
5840  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5841  * searching until it gets past min_objectid or finds an item of 'type'
5842  *
5843  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5844  */
5845 int btrfs_previous_item(struct btrfs_root *root,
5846                         struct btrfs_path *path, u64 min_objectid,
5847                         int type)
5848 {
5849         struct btrfs_key found_key;
5850         struct extent_buffer *leaf;
5851         u32 nritems;
5852         int ret;
5853
5854         while (1) {
5855                 if (path->slots[0] == 0) {
5856                         btrfs_set_path_blocking(path);
5857                         ret = btrfs_prev_leaf(root, path);
5858                         if (ret != 0)
5859                                 return ret;
5860                 } else {
5861                         path->slots[0]--;
5862                 }
5863                 leaf = path->nodes[0];
5864                 nritems = btrfs_header_nritems(leaf);
5865                 if (nritems == 0)
5866                         return 1;
5867                 if (path->slots[0] == nritems)
5868                         path->slots[0]--;
5869
5870                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5871                 if (found_key.objectid < min_objectid)
5872                         break;
5873                 if (found_key.type == type)
5874                         return 0;
5875                 if (found_key.objectid == min_objectid &&
5876                     found_key.type < type)
5877                         break;
5878         }
5879         return 1;
5880 }
5881
5882 /*
5883  * search in extent tree to find a previous Metadata/Data extent item with
5884  * min objecitd.
5885  *
5886  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5887  */
5888 int btrfs_previous_extent_item(struct btrfs_root *root,
5889                         struct btrfs_path *path, u64 min_objectid)
5890 {
5891         struct btrfs_key found_key;
5892         struct extent_buffer *leaf;
5893         u32 nritems;
5894         int ret;
5895
5896         while (1) {
5897                 if (path->slots[0] == 0) {
5898                         btrfs_set_path_blocking(path);
5899                         ret = btrfs_prev_leaf(root, path);
5900                         if (ret != 0)
5901                                 return ret;
5902                 } else {
5903                         path->slots[0]--;
5904                 }
5905                 leaf = path->nodes[0];
5906                 nritems = btrfs_header_nritems(leaf);
5907                 if (nritems == 0)
5908                         return 1;
5909                 if (path->slots[0] == nritems)
5910                         path->slots[0]--;
5911
5912                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5913                 if (found_key.objectid < min_objectid)
5914                         break;
5915                 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5916                     found_key.type == BTRFS_METADATA_ITEM_KEY)
5917                         return 0;
5918                 if (found_key.objectid == min_objectid &&
5919                     found_key.type < BTRFS_EXTENT_ITEM_KEY)
5920                         break;
5921         }
5922         return 1;
5923 }