Btrfs: kill unused code in btrfs_search_forward
[cascardo/linux.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31                       *root, struct btrfs_key *ins_key,
32                       struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34                           struct btrfs_root *root, struct extent_buffer *dst,
35                           struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37                               struct btrfs_root *root,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41                     int level, int slot);
42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43                                  struct extent_buffer *eb);
44 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
45
46 struct btrfs_path *btrfs_alloc_path(void)
47 {
48         struct btrfs_path *path;
49         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
50         return path;
51 }
52
53 /*
54  * set all locked nodes in the path to blocking locks.  This should
55  * be done before scheduling
56  */
57 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
58 {
59         int i;
60         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61                 if (!p->nodes[i] || !p->locks[i])
62                         continue;
63                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
64                 if (p->locks[i] == BTRFS_READ_LOCK)
65                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
66                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
67                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
68         }
69 }
70
71 /*
72  * reset all the locked nodes in the patch to spinning locks.
73  *
74  * held is used to keep lockdep happy, when lockdep is enabled
75  * we set held to a blocking lock before we go around and
76  * retake all the spinlocks in the path.  You can safely use NULL
77  * for held
78  */
79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
80                                         struct extent_buffer *held, int held_rw)
81 {
82         int i;
83
84 #ifdef CONFIG_DEBUG_LOCK_ALLOC
85         /* lockdep really cares that we take all of these spinlocks
86          * in the right order.  If any of the locks in the path are not
87          * currently blocking, it is going to complain.  So, make really
88          * really sure by forcing the path to blocking before we clear
89          * the path blocking.
90          */
91         if (held) {
92                 btrfs_set_lock_blocking_rw(held, held_rw);
93                 if (held_rw == BTRFS_WRITE_LOCK)
94                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
95                 else if (held_rw == BTRFS_READ_LOCK)
96                         held_rw = BTRFS_READ_LOCK_BLOCKING;
97         }
98         btrfs_set_path_blocking(p);
99 #endif
100
101         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
102                 if (p->nodes[i] && p->locks[i]) {
103                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
104                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
105                                 p->locks[i] = BTRFS_WRITE_LOCK;
106                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
107                                 p->locks[i] = BTRFS_READ_LOCK;
108                 }
109         }
110
111 #ifdef CONFIG_DEBUG_LOCK_ALLOC
112         if (held)
113                 btrfs_clear_lock_blocking_rw(held, held_rw);
114 #endif
115 }
116
117 /* this also releases the path */
118 void btrfs_free_path(struct btrfs_path *p)
119 {
120         if (!p)
121                 return;
122         btrfs_release_path(p);
123         kmem_cache_free(btrfs_path_cachep, p);
124 }
125
126 /*
127  * path release drops references on the extent buffers in the path
128  * and it drops any locks held by this path
129  *
130  * It is safe to call this on paths that no locks or extent buffers held.
131  */
132 noinline void btrfs_release_path(struct btrfs_path *p)
133 {
134         int i;
135
136         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
137                 p->slots[i] = 0;
138                 if (!p->nodes[i])
139                         continue;
140                 if (p->locks[i]) {
141                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
142                         p->locks[i] = 0;
143                 }
144                 free_extent_buffer(p->nodes[i]);
145                 p->nodes[i] = NULL;
146         }
147 }
148
149 /*
150  * safely gets a reference on the root node of a tree.  A lock
151  * is not taken, so a concurrent writer may put a different node
152  * at the root of the tree.  See btrfs_lock_root_node for the
153  * looping required.
154  *
155  * The extent buffer returned by this has a reference taken, so
156  * it won't disappear.  It may stop being the root of the tree
157  * at any time because there are no locks held.
158  */
159 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
160 {
161         struct extent_buffer *eb;
162
163         while (1) {
164                 rcu_read_lock();
165                 eb = rcu_dereference(root->node);
166
167                 /*
168                  * RCU really hurts here, we could free up the root node because
169                  * it was cow'ed but we may not get the new root node yet so do
170                  * the inc_not_zero dance and if it doesn't work then
171                  * synchronize_rcu and try again.
172                  */
173                 if (atomic_inc_not_zero(&eb->refs)) {
174                         rcu_read_unlock();
175                         break;
176                 }
177                 rcu_read_unlock();
178                 synchronize_rcu();
179         }
180         return eb;
181 }
182
183 /* loop around taking references on and locking the root node of the
184  * tree until you end up with a lock on the root.  A locked buffer
185  * is returned, with a reference held.
186  */
187 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
188 {
189         struct extent_buffer *eb;
190
191         while (1) {
192                 eb = btrfs_root_node(root);
193                 btrfs_tree_lock(eb);
194                 if (eb == root->node)
195                         break;
196                 btrfs_tree_unlock(eb);
197                 free_extent_buffer(eb);
198         }
199         return eb;
200 }
201
202 /* loop around taking references on and locking the root node of the
203  * tree until you end up with a lock on the root.  A locked buffer
204  * is returned, with a reference held.
205  */
206 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
207 {
208         struct extent_buffer *eb;
209
210         while (1) {
211                 eb = btrfs_root_node(root);
212                 btrfs_tree_read_lock(eb);
213                 if (eb == root->node)
214                         break;
215                 btrfs_tree_read_unlock(eb);
216                 free_extent_buffer(eb);
217         }
218         return eb;
219 }
220
221 /* cowonly root (everything not a reference counted cow subvolume), just get
222  * put onto a simple dirty list.  transaction.c walks this to make sure they
223  * get properly updated on disk.
224  */
225 static void add_root_to_dirty_list(struct btrfs_root *root)
226 {
227         spin_lock(&root->fs_info->trans_lock);
228         if (root->track_dirty && list_empty(&root->dirty_list)) {
229                 list_add(&root->dirty_list,
230                          &root->fs_info->dirty_cowonly_roots);
231         }
232         spin_unlock(&root->fs_info->trans_lock);
233 }
234
235 /*
236  * used by snapshot creation to make a copy of a root for a tree with
237  * a given objectid.  The buffer with the new root node is returned in
238  * cow_ret, and this func returns zero on success or a negative error code.
239  */
240 int btrfs_copy_root(struct btrfs_trans_handle *trans,
241                       struct btrfs_root *root,
242                       struct extent_buffer *buf,
243                       struct extent_buffer **cow_ret, u64 new_root_objectid)
244 {
245         struct extent_buffer *cow;
246         int ret = 0;
247         int level;
248         struct btrfs_disk_key disk_key;
249
250         WARN_ON(root->ref_cows && trans->transid !=
251                 root->fs_info->running_transaction->transid);
252         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
253
254         level = btrfs_header_level(buf);
255         if (level == 0)
256                 btrfs_item_key(buf, &disk_key, 0);
257         else
258                 btrfs_node_key(buf, &disk_key, 0);
259
260         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
261                                      new_root_objectid, &disk_key, level,
262                                      buf->start, 0);
263         if (IS_ERR(cow))
264                 return PTR_ERR(cow);
265
266         copy_extent_buffer(cow, buf, 0, 0, cow->len);
267         btrfs_set_header_bytenr(cow, cow->start);
268         btrfs_set_header_generation(cow, trans->transid);
269         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
270         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
271                                      BTRFS_HEADER_FLAG_RELOC);
272         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
273                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
274         else
275                 btrfs_set_header_owner(cow, new_root_objectid);
276
277         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
278                             BTRFS_FSID_SIZE);
279
280         WARN_ON(btrfs_header_generation(buf) > trans->transid);
281         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
282                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
283         else
284                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
285
286         if (ret)
287                 return ret;
288
289         btrfs_mark_buffer_dirty(cow);
290         *cow_ret = cow;
291         return 0;
292 }
293
294 enum mod_log_op {
295         MOD_LOG_KEY_REPLACE,
296         MOD_LOG_KEY_ADD,
297         MOD_LOG_KEY_REMOVE,
298         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
299         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
300         MOD_LOG_MOVE_KEYS,
301         MOD_LOG_ROOT_REPLACE,
302 };
303
304 struct tree_mod_move {
305         int dst_slot;
306         int nr_items;
307 };
308
309 struct tree_mod_root {
310         u64 logical;
311         u8 level;
312 };
313
314 struct tree_mod_elem {
315         struct rb_node node;
316         u64 index;              /* shifted logical */
317         u64 seq;
318         enum mod_log_op op;
319
320         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
321         int slot;
322
323         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
324         u64 generation;
325
326         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
327         struct btrfs_disk_key key;
328         u64 blockptr;
329
330         /* this is used for op == MOD_LOG_MOVE_KEYS */
331         struct tree_mod_move move;
332
333         /* this is used for op == MOD_LOG_ROOT_REPLACE */
334         struct tree_mod_root old_root;
335 };
336
337 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
338 {
339         read_lock(&fs_info->tree_mod_log_lock);
340 }
341
342 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
343 {
344         read_unlock(&fs_info->tree_mod_log_lock);
345 }
346
347 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
348 {
349         write_lock(&fs_info->tree_mod_log_lock);
350 }
351
352 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
353 {
354         write_unlock(&fs_info->tree_mod_log_lock);
355 }
356
357 /*
358  * Increment the upper half of tree_mod_seq, set lower half zero.
359  *
360  * Must be called with fs_info->tree_mod_seq_lock held.
361  */
362 static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info)
363 {
364         u64 seq = atomic64_read(&fs_info->tree_mod_seq);
365         seq &= 0xffffffff00000000ull;
366         seq += 1ull << 32;
367         atomic64_set(&fs_info->tree_mod_seq, seq);
368         return seq;
369 }
370
371 /*
372  * Increment the lower half of tree_mod_seq.
373  *
374  * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers
375  * are generated should not technically require a spin lock here. (Rationale:
376  * incrementing the minor while incrementing the major seq number is between its
377  * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it
378  * just returns a unique sequence number as usual.) We have decided to leave
379  * that requirement in here and rethink it once we notice it really imposes a
380  * problem on some workload.
381  */
382 static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info)
383 {
384         return atomic64_inc_return(&fs_info->tree_mod_seq);
385 }
386
387 /*
388  * return the last minor in the previous major tree_mod_seq number
389  */
390 u64 btrfs_tree_mod_seq_prev(u64 seq)
391 {
392         return (seq & 0xffffffff00000000ull) - 1ull;
393 }
394
395 /*
396  * This adds a new blocker to the tree mod log's blocker list if the @elem
397  * passed does not already have a sequence number set. So when a caller expects
398  * to record tree modifications, it should ensure to set elem->seq to zero
399  * before calling btrfs_get_tree_mod_seq.
400  * Returns a fresh, unused tree log modification sequence number, even if no new
401  * blocker was added.
402  */
403 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
404                            struct seq_list *elem)
405 {
406         u64 seq;
407
408         tree_mod_log_write_lock(fs_info);
409         spin_lock(&fs_info->tree_mod_seq_lock);
410         if (!elem->seq) {
411                 elem->seq = btrfs_inc_tree_mod_seq_major(fs_info);
412                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
413         }
414         seq = btrfs_inc_tree_mod_seq_minor(fs_info);
415         spin_unlock(&fs_info->tree_mod_seq_lock);
416         tree_mod_log_write_unlock(fs_info);
417
418         return seq;
419 }
420
421 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
422                             struct seq_list *elem)
423 {
424         struct rb_root *tm_root;
425         struct rb_node *node;
426         struct rb_node *next;
427         struct seq_list *cur_elem;
428         struct tree_mod_elem *tm;
429         u64 min_seq = (u64)-1;
430         u64 seq_putting = elem->seq;
431
432         if (!seq_putting)
433                 return;
434
435         spin_lock(&fs_info->tree_mod_seq_lock);
436         list_del(&elem->list);
437         elem->seq = 0;
438
439         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
440                 if (cur_elem->seq < min_seq) {
441                         if (seq_putting > cur_elem->seq) {
442                                 /*
443                                  * blocker with lower sequence number exists, we
444                                  * cannot remove anything from the log
445                                  */
446                                 spin_unlock(&fs_info->tree_mod_seq_lock);
447                                 return;
448                         }
449                         min_seq = cur_elem->seq;
450                 }
451         }
452         spin_unlock(&fs_info->tree_mod_seq_lock);
453
454         /*
455          * anything that's lower than the lowest existing (read: blocked)
456          * sequence number can be removed from the tree.
457          */
458         tree_mod_log_write_lock(fs_info);
459         tm_root = &fs_info->tree_mod_log;
460         for (node = rb_first(tm_root); node; node = next) {
461                 next = rb_next(node);
462                 tm = container_of(node, struct tree_mod_elem, node);
463                 if (tm->seq > min_seq)
464                         continue;
465                 rb_erase(node, tm_root);
466                 kfree(tm);
467         }
468         tree_mod_log_write_unlock(fs_info);
469 }
470
471 /*
472  * key order of the log:
473  *       index -> sequence
474  *
475  * the index is the shifted logical of the *new* root node for root replace
476  * operations, or the shifted logical of the affected block for all other
477  * operations.
478  */
479 static noinline int
480 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
481 {
482         struct rb_root *tm_root;
483         struct rb_node **new;
484         struct rb_node *parent = NULL;
485         struct tree_mod_elem *cur;
486         int ret = 0;
487
488         BUG_ON(!tm);
489
490         tree_mod_log_write_lock(fs_info);
491         if (list_empty(&fs_info->tree_mod_seq_list)) {
492                 tree_mod_log_write_unlock(fs_info);
493                 /*
494                  * Ok we no longer care about logging modifications, free up tm
495                  * and return 0.  Any callers shouldn't be using tm after
496                  * calling tree_mod_log_insert, but if they do we can just
497                  * change this to return a special error code to let the callers
498                  * do their own thing.
499                  */
500                 kfree(tm);
501                 return 0;
502         }
503
504         spin_lock(&fs_info->tree_mod_seq_lock);
505         tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info);
506         spin_unlock(&fs_info->tree_mod_seq_lock);
507
508         tm_root = &fs_info->tree_mod_log;
509         new = &tm_root->rb_node;
510         while (*new) {
511                 cur = container_of(*new, struct tree_mod_elem, node);
512                 parent = *new;
513                 if (cur->index < tm->index)
514                         new = &((*new)->rb_left);
515                 else if (cur->index > tm->index)
516                         new = &((*new)->rb_right);
517                 else if (cur->seq < tm->seq)
518                         new = &((*new)->rb_left);
519                 else if (cur->seq > tm->seq)
520                         new = &((*new)->rb_right);
521                 else {
522                         ret = -EEXIST;
523                         kfree(tm);
524                         goto out;
525                 }
526         }
527
528         rb_link_node(&tm->node, parent, new);
529         rb_insert_color(&tm->node, tm_root);
530 out:
531         tree_mod_log_write_unlock(fs_info);
532         return ret;
533 }
534
535 /*
536  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
537  * returns zero with the tree_mod_log_lock acquired. The caller must hold
538  * this until all tree mod log insertions are recorded in the rb tree and then
539  * call tree_mod_log_write_unlock() to release.
540  */
541 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
542                                     struct extent_buffer *eb) {
543         smp_mb();
544         if (list_empty(&(fs_info)->tree_mod_seq_list))
545                 return 1;
546         if (eb && btrfs_header_level(eb) == 0)
547                 return 1;
548         return 0;
549 }
550
551 static inline int
552 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
553                           struct extent_buffer *eb, int slot,
554                           enum mod_log_op op, gfp_t flags)
555 {
556         struct tree_mod_elem *tm;
557
558         tm = kzalloc(sizeof(*tm), flags);
559         if (!tm)
560                 return -ENOMEM;
561
562         tm->index = eb->start >> PAGE_CACHE_SHIFT;
563         if (op != MOD_LOG_KEY_ADD) {
564                 btrfs_node_key(eb, &tm->key, slot);
565                 tm->blockptr = btrfs_node_blockptr(eb, slot);
566         }
567         tm->op = op;
568         tm->slot = slot;
569         tm->generation = btrfs_node_ptr_generation(eb, slot);
570
571         return __tree_mod_log_insert(fs_info, tm);
572 }
573
574 static noinline int
575 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
576                         struct extent_buffer *eb, int slot,
577                         enum mod_log_op op, gfp_t flags)
578 {
579         if (tree_mod_dont_log(fs_info, eb))
580                 return 0;
581
582         return __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
583 }
584
585 static noinline int
586 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
587                          struct extent_buffer *eb, int dst_slot, int src_slot,
588                          int nr_items, gfp_t flags)
589 {
590         struct tree_mod_elem *tm;
591         int ret;
592         int i;
593
594         if (tree_mod_dont_log(fs_info, eb))
595                 return 0;
596
597         /*
598          * When we override something during the move, we log these removals.
599          * This can only happen when we move towards the beginning of the
600          * buffer, i.e. dst_slot < src_slot.
601          */
602         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
603                 ret = __tree_mod_log_insert_key(fs_info, eb, i + dst_slot,
604                                 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
605                 BUG_ON(ret < 0);
606         }
607
608         tm = kzalloc(sizeof(*tm), flags);
609         if (!tm)
610                 return -ENOMEM;
611
612         tm->index = eb->start >> PAGE_CACHE_SHIFT;
613         tm->slot = src_slot;
614         tm->move.dst_slot = dst_slot;
615         tm->move.nr_items = nr_items;
616         tm->op = MOD_LOG_MOVE_KEYS;
617
618         return __tree_mod_log_insert(fs_info, tm);
619 }
620
621 static inline void
622 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
623 {
624         int i;
625         u32 nritems;
626         int ret;
627
628         if (btrfs_header_level(eb) == 0)
629                 return;
630
631         nritems = btrfs_header_nritems(eb);
632         for (i = nritems - 1; i >= 0; i--) {
633                 ret = __tree_mod_log_insert_key(fs_info, eb, i,
634                                 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
635                 BUG_ON(ret < 0);
636         }
637 }
638
639 static noinline int
640 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
641                          struct extent_buffer *old_root,
642                          struct extent_buffer *new_root, gfp_t flags,
643                          int log_removal)
644 {
645         struct tree_mod_elem *tm;
646
647         if (tree_mod_dont_log(fs_info, NULL))
648                 return 0;
649
650         if (log_removal)
651                 __tree_mod_log_free_eb(fs_info, old_root);
652
653         tm = kzalloc(sizeof(*tm), flags);
654         if (!tm)
655                 return -ENOMEM;
656
657         tm->index = new_root->start >> PAGE_CACHE_SHIFT;
658         tm->old_root.logical = old_root->start;
659         tm->old_root.level = btrfs_header_level(old_root);
660         tm->generation = btrfs_header_generation(old_root);
661         tm->op = MOD_LOG_ROOT_REPLACE;
662
663         return __tree_mod_log_insert(fs_info, tm);
664 }
665
666 static struct tree_mod_elem *
667 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
668                       int smallest)
669 {
670         struct rb_root *tm_root;
671         struct rb_node *node;
672         struct tree_mod_elem *cur = NULL;
673         struct tree_mod_elem *found = NULL;
674         u64 index = start >> PAGE_CACHE_SHIFT;
675
676         tree_mod_log_read_lock(fs_info);
677         tm_root = &fs_info->tree_mod_log;
678         node = tm_root->rb_node;
679         while (node) {
680                 cur = container_of(node, struct tree_mod_elem, node);
681                 if (cur->index < index) {
682                         node = node->rb_left;
683                 } else if (cur->index > index) {
684                         node = node->rb_right;
685                 } else if (cur->seq < min_seq) {
686                         node = node->rb_left;
687                 } else if (!smallest) {
688                         /* we want the node with the highest seq */
689                         if (found)
690                                 BUG_ON(found->seq > cur->seq);
691                         found = cur;
692                         node = node->rb_left;
693                 } else if (cur->seq > min_seq) {
694                         /* we want the node with the smallest seq */
695                         if (found)
696                                 BUG_ON(found->seq < cur->seq);
697                         found = cur;
698                         node = node->rb_right;
699                 } else {
700                         found = cur;
701                         break;
702                 }
703         }
704         tree_mod_log_read_unlock(fs_info);
705
706         return found;
707 }
708
709 /*
710  * this returns the element from the log with the smallest time sequence
711  * value that's in the log (the oldest log item). any element with a time
712  * sequence lower than min_seq will be ignored.
713  */
714 static struct tree_mod_elem *
715 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
716                            u64 min_seq)
717 {
718         return __tree_mod_log_search(fs_info, start, min_seq, 1);
719 }
720
721 /*
722  * this returns the element from the log with the largest time sequence
723  * value that's in the log (the most recent log item). any element with
724  * a time sequence lower than min_seq will be ignored.
725  */
726 static struct tree_mod_elem *
727 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
728 {
729         return __tree_mod_log_search(fs_info, start, min_seq, 0);
730 }
731
732 static noinline void
733 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
734                      struct extent_buffer *src, unsigned long dst_offset,
735                      unsigned long src_offset, int nr_items)
736 {
737         int ret;
738         int i;
739
740         if (tree_mod_dont_log(fs_info, NULL))
741                 return;
742
743         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
744                 return;
745
746         for (i = 0; i < nr_items; i++) {
747                 ret = __tree_mod_log_insert_key(fs_info, src,
748                                                 i + src_offset,
749                                                 MOD_LOG_KEY_REMOVE, GFP_NOFS);
750                 BUG_ON(ret < 0);
751                 ret = __tree_mod_log_insert_key(fs_info, dst,
752                                                      i + dst_offset,
753                                                      MOD_LOG_KEY_ADD,
754                                                      GFP_NOFS);
755                 BUG_ON(ret < 0);
756         }
757 }
758
759 static inline void
760 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
761                      int dst_offset, int src_offset, int nr_items)
762 {
763         int ret;
764         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
765                                        nr_items, GFP_NOFS);
766         BUG_ON(ret < 0);
767 }
768
769 static noinline void
770 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
771                           struct extent_buffer *eb, int slot, int atomic)
772 {
773         int ret;
774
775         ret = __tree_mod_log_insert_key(fs_info, eb, slot,
776                                         MOD_LOG_KEY_REPLACE,
777                                         atomic ? GFP_ATOMIC : GFP_NOFS);
778         BUG_ON(ret < 0);
779 }
780
781 static noinline void
782 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
783 {
784         if (tree_mod_dont_log(fs_info, eb))
785                 return;
786         __tree_mod_log_free_eb(fs_info, eb);
787 }
788
789 static noinline void
790 tree_mod_log_set_root_pointer(struct btrfs_root *root,
791                               struct extent_buffer *new_root_node,
792                               int log_removal)
793 {
794         int ret;
795         ret = tree_mod_log_insert_root(root->fs_info, root->node,
796                                        new_root_node, GFP_NOFS, log_removal);
797         BUG_ON(ret < 0);
798 }
799
800 /*
801  * check if the tree block can be shared by multiple trees
802  */
803 int btrfs_block_can_be_shared(struct btrfs_root *root,
804                               struct extent_buffer *buf)
805 {
806         /*
807          * Tree blocks not in refernece counted trees and tree roots
808          * are never shared. If a block was allocated after the last
809          * snapshot and the block was not allocated by tree relocation,
810          * we know the block is not shared.
811          */
812         if (root->ref_cows &&
813             buf != root->node && buf != root->commit_root &&
814             (btrfs_header_generation(buf) <=
815              btrfs_root_last_snapshot(&root->root_item) ||
816              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
817                 return 1;
818 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
819         if (root->ref_cows &&
820             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
821                 return 1;
822 #endif
823         return 0;
824 }
825
826 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
827                                        struct btrfs_root *root,
828                                        struct extent_buffer *buf,
829                                        struct extent_buffer *cow,
830                                        int *last_ref)
831 {
832         u64 refs;
833         u64 owner;
834         u64 flags;
835         u64 new_flags = 0;
836         int ret;
837
838         /*
839          * Backrefs update rules:
840          *
841          * Always use full backrefs for extent pointers in tree block
842          * allocated by tree relocation.
843          *
844          * If a shared tree block is no longer referenced by its owner
845          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
846          * use full backrefs for extent pointers in tree block.
847          *
848          * If a tree block is been relocating
849          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
850          * use full backrefs for extent pointers in tree block.
851          * The reason for this is some operations (such as drop tree)
852          * are only allowed for blocks use full backrefs.
853          */
854
855         if (btrfs_block_can_be_shared(root, buf)) {
856                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
857                                                btrfs_header_level(buf), 1,
858                                                &refs, &flags);
859                 if (ret)
860                         return ret;
861                 if (refs == 0) {
862                         ret = -EROFS;
863                         btrfs_std_error(root->fs_info, ret);
864                         return ret;
865                 }
866         } else {
867                 refs = 1;
868                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
869                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
870                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
871                 else
872                         flags = 0;
873         }
874
875         owner = btrfs_header_owner(buf);
876         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
877                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
878
879         if (refs > 1) {
880                 if ((owner == root->root_key.objectid ||
881                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
882                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
883                         ret = btrfs_inc_ref(trans, root, buf, 1, 1);
884                         BUG_ON(ret); /* -ENOMEM */
885
886                         if (root->root_key.objectid ==
887                             BTRFS_TREE_RELOC_OBJECTID) {
888                                 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
889                                 BUG_ON(ret); /* -ENOMEM */
890                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
891                                 BUG_ON(ret); /* -ENOMEM */
892                         }
893                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
894                 } else {
895
896                         if (root->root_key.objectid ==
897                             BTRFS_TREE_RELOC_OBJECTID)
898                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
899                         else
900                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
901                         BUG_ON(ret); /* -ENOMEM */
902                 }
903                 if (new_flags != 0) {
904                         int level = btrfs_header_level(buf);
905
906                         ret = btrfs_set_disk_extent_flags(trans, root,
907                                                           buf->start,
908                                                           buf->len,
909                                                           new_flags, level, 0);
910                         if (ret)
911                                 return ret;
912                 }
913         } else {
914                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
915                         if (root->root_key.objectid ==
916                             BTRFS_TREE_RELOC_OBJECTID)
917                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
918                         else
919                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
920                         BUG_ON(ret); /* -ENOMEM */
921                         ret = btrfs_dec_ref(trans, root, buf, 1, 1);
922                         BUG_ON(ret); /* -ENOMEM */
923                 }
924                 clean_tree_block(trans, root, buf);
925                 *last_ref = 1;
926         }
927         return 0;
928 }
929
930 /*
931  * does the dirty work in cow of a single block.  The parent block (if
932  * supplied) is updated to point to the new cow copy.  The new buffer is marked
933  * dirty and returned locked.  If you modify the block it needs to be marked
934  * dirty again.
935  *
936  * search_start -- an allocation hint for the new block
937  *
938  * empty_size -- a hint that you plan on doing more cow.  This is the size in
939  * bytes the allocator should try to find free next to the block it returns.
940  * This is just a hint and may be ignored by the allocator.
941  */
942 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
943                              struct btrfs_root *root,
944                              struct extent_buffer *buf,
945                              struct extent_buffer *parent, int parent_slot,
946                              struct extent_buffer **cow_ret,
947                              u64 search_start, u64 empty_size)
948 {
949         struct btrfs_disk_key disk_key;
950         struct extent_buffer *cow;
951         int level, ret;
952         int last_ref = 0;
953         int unlock_orig = 0;
954         u64 parent_start;
955
956         if (*cow_ret == buf)
957                 unlock_orig = 1;
958
959         btrfs_assert_tree_locked(buf);
960
961         WARN_ON(root->ref_cows && trans->transid !=
962                 root->fs_info->running_transaction->transid);
963         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
964
965         level = btrfs_header_level(buf);
966
967         if (level == 0)
968                 btrfs_item_key(buf, &disk_key, 0);
969         else
970                 btrfs_node_key(buf, &disk_key, 0);
971
972         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
973                 if (parent)
974                         parent_start = parent->start;
975                 else
976                         parent_start = 0;
977         } else
978                 parent_start = 0;
979
980         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
981                                      root->root_key.objectid, &disk_key,
982                                      level, search_start, empty_size);
983         if (IS_ERR(cow))
984                 return PTR_ERR(cow);
985
986         /* cow is set to blocking by btrfs_init_new_buffer */
987
988         copy_extent_buffer(cow, buf, 0, 0, cow->len);
989         btrfs_set_header_bytenr(cow, cow->start);
990         btrfs_set_header_generation(cow, trans->transid);
991         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
992         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
993                                      BTRFS_HEADER_FLAG_RELOC);
994         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
995                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
996         else
997                 btrfs_set_header_owner(cow, root->root_key.objectid);
998
999         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1000                             BTRFS_FSID_SIZE);
1001
1002         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1003         if (ret) {
1004                 btrfs_abort_transaction(trans, root, ret);
1005                 return ret;
1006         }
1007
1008         if (root->ref_cows) {
1009                 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1010                 if (ret)
1011                         return ret;
1012         }
1013
1014         if (buf == root->node) {
1015                 WARN_ON(parent && parent != buf);
1016                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1017                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1018                         parent_start = buf->start;
1019                 else
1020                         parent_start = 0;
1021
1022                 extent_buffer_get(cow);
1023                 tree_mod_log_set_root_pointer(root, cow, 1);
1024                 rcu_assign_pointer(root->node, cow);
1025
1026                 btrfs_free_tree_block(trans, root, buf, parent_start,
1027                                       last_ref);
1028                 free_extent_buffer(buf);
1029                 add_root_to_dirty_list(root);
1030         } else {
1031                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1032                         parent_start = parent->start;
1033                 else
1034                         parent_start = 0;
1035
1036                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1037                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1038                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
1039                 btrfs_set_node_blockptr(parent, parent_slot,
1040                                         cow->start);
1041                 btrfs_set_node_ptr_generation(parent, parent_slot,
1042                                               trans->transid);
1043                 btrfs_mark_buffer_dirty(parent);
1044                 if (last_ref)
1045                         tree_mod_log_free_eb(root->fs_info, buf);
1046                 btrfs_free_tree_block(trans, root, buf, parent_start,
1047                                       last_ref);
1048         }
1049         if (unlock_orig)
1050                 btrfs_tree_unlock(buf);
1051         free_extent_buffer_stale(buf);
1052         btrfs_mark_buffer_dirty(cow);
1053         *cow_ret = cow;
1054         return 0;
1055 }
1056
1057 /*
1058  * returns the logical address of the oldest predecessor of the given root.
1059  * entries older than time_seq are ignored.
1060  */
1061 static struct tree_mod_elem *
1062 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1063                            struct extent_buffer *eb_root, u64 time_seq)
1064 {
1065         struct tree_mod_elem *tm;
1066         struct tree_mod_elem *found = NULL;
1067         u64 root_logical = eb_root->start;
1068         int looped = 0;
1069
1070         if (!time_seq)
1071                 return NULL;
1072
1073         /*
1074          * the very last operation that's logged for a root is the replacement
1075          * operation (if it is replaced at all). this has the index of the *new*
1076          * root, making it the very first operation that's logged for this root.
1077          */
1078         while (1) {
1079                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1080                                                 time_seq);
1081                 if (!looped && !tm)
1082                         return NULL;
1083                 /*
1084                  * if there are no tree operation for the oldest root, we simply
1085                  * return it. this should only happen if that (old) root is at
1086                  * level 0.
1087                  */
1088                 if (!tm)
1089                         break;
1090
1091                 /*
1092                  * if there's an operation that's not a root replacement, we
1093                  * found the oldest version of our root. normally, we'll find a
1094                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1095                  */
1096                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1097                         break;
1098
1099                 found = tm;
1100                 root_logical = tm->old_root.logical;
1101                 looped = 1;
1102         }
1103
1104         /* if there's no old root to return, return what we found instead */
1105         if (!found)
1106                 found = tm;
1107
1108         return found;
1109 }
1110
1111 /*
1112  * tm is a pointer to the first operation to rewind within eb. then, all
1113  * previous operations will be rewinded (until we reach something older than
1114  * time_seq).
1115  */
1116 static void
1117 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1118                       u64 time_seq, struct tree_mod_elem *first_tm)
1119 {
1120         u32 n;
1121         struct rb_node *next;
1122         struct tree_mod_elem *tm = first_tm;
1123         unsigned long o_dst;
1124         unsigned long o_src;
1125         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1126
1127         n = btrfs_header_nritems(eb);
1128         tree_mod_log_read_lock(fs_info);
1129         while (tm && tm->seq >= time_seq) {
1130                 /*
1131                  * all the operations are recorded with the operator used for
1132                  * the modification. as we're going backwards, we do the
1133                  * opposite of each operation here.
1134                  */
1135                 switch (tm->op) {
1136                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1137                         BUG_ON(tm->slot < n);
1138                         /* Fallthrough */
1139                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1140                 case MOD_LOG_KEY_REMOVE:
1141                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1142                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1143                         btrfs_set_node_ptr_generation(eb, tm->slot,
1144                                                       tm->generation);
1145                         n++;
1146                         break;
1147                 case MOD_LOG_KEY_REPLACE:
1148                         BUG_ON(tm->slot >= n);
1149                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1150                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1151                         btrfs_set_node_ptr_generation(eb, tm->slot,
1152                                                       tm->generation);
1153                         break;
1154                 case MOD_LOG_KEY_ADD:
1155                         /* if a move operation is needed it's in the log */
1156                         n--;
1157                         break;
1158                 case MOD_LOG_MOVE_KEYS:
1159                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1160                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1161                         memmove_extent_buffer(eb, o_dst, o_src,
1162                                               tm->move.nr_items * p_size);
1163                         break;
1164                 case MOD_LOG_ROOT_REPLACE:
1165                         /*
1166                          * this operation is special. for roots, this must be
1167                          * handled explicitly before rewinding.
1168                          * for non-roots, this operation may exist if the node
1169                          * was a root: root A -> child B; then A gets empty and
1170                          * B is promoted to the new root. in the mod log, we'll
1171                          * have a root-replace operation for B, a tree block
1172                          * that is no root. we simply ignore that operation.
1173                          */
1174                         break;
1175                 }
1176                 next = rb_next(&tm->node);
1177                 if (!next)
1178                         break;
1179                 tm = container_of(next, struct tree_mod_elem, node);
1180                 if (tm->index != first_tm->index)
1181                         break;
1182         }
1183         tree_mod_log_read_unlock(fs_info);
1184         btrfs_set_header_nritems(eb, n);
1185 }
1186
1187 /*
1188  * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1189  * is returned. If rewind operations happen, a fresh buffer is returned. The
1190  * returned buffer is always read-locked. If the returned buffer is not the
1191  * input buffer, the lock on the input buffer is released and the input buffer
1192  * is freed (its refcount is decremented).
1193  */
1194 static struct extent_buffer *
1195 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1196                     struct extent_buffer *eb, u64 time_seq)
1197 {
1198         struct extent_buffer *eb_rewin;
1199         struct tree_mod_elem *tm;
1200
1201         if (!time_seq)
1202                 return eb;
1203
1204         if (btrfs_header_level(eb) == 0)
1205                 return eb;
1206
1207         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1208         if (!tm)
1209                 return eb;
1210
1211         btrfs_set_path_blocking(path);
1212         btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1213
1214         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1215                 BUG_ON(tm->slot != 0);
1216                 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1217                                                 fs_info->tree_root->nodesize);
1218                 if (!eb_rewin) {
1219                         btrfs_tree_read_unlock_blocking(eb);
1220                         free_extent_buffer(eb);
1221                         return NULL;
1222                 }
1223                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1224                 btrfs_set_header_backref_rev(eb_rewin,
1225                                              btrfs_header_backref_rev(eb));
1226                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1227                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1228         } else {
1229                 eb_rewin = btrfs_clone_extent_buffer(eb);
1230                 if (!eb_rewin) {
1231                         btrfs_tree_read_unlock_blocking(eb);
1232                         free_extent_buffer(eb);
1233                         return NULL;
1234                 }
1235         }
1236
1237         btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1238         btrfs_tree_read_unlock_blocking(eb);
1239         free_extent_buffer(eb);
1240
1241         extent_buffer_get(eb_rewin);
1242         btrfs_tree_read_lock(eb_rewin);
1243         __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1244         WARN_ON(btrfs_header_nritems(eb_rewin) >
1245                 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1246
1247         return eb_rewin;
1248 }
1249
1250 /*
1251  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1252  * value. If there are no changes, the current root->root_node is returned. If
1253  * anything changed in between, there's a fresh buffer allocated on which the
1254  * rewind operations are done. In any case, the returned buffer is read locked.
1255  * Returns NULL on error (with no locks held).
1256  */
1257 static inline struct extent_buffer *
1258 get_old_root(struct btrfs_root *root, u64 time_seq)
1259 {
1260         struct tree_mod_elem *tm;
1261         struct extent_buffer *eb = NULL;
1262         struct extent_buffer *eb_root;
1263         struct extent_buffer *old;
1264         struct tree_mod_root *old_root = NULL;
1265         u64 old_generation = 0;
1266         u64 logical;
1267         u32 blocksize;
1268
1269         eb_root = btrfs_read_lock_root_node(root);
1270         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1271         if (!tm)
1272                 return eb_root;
1273
1274         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1275                 old_root = &tm->old_root;
1276                 old_generation = tm->generation;
1277                 logical = old_root->logical;
1278         } else {
1279                 logical = eb_root->start;
1280         }
1281
1282         tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1283         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1284                 btrfs_tree_read_unlock(eb_root);
1285                 free_extent_buffer(eb_root);
1286                 blocksize = btrfs_level_size(root, old_root->level);
1287                 old = read_tree_block(root, logical, blocksize, 0);
1288                 if (!old || !extent_buffer_uptodate(old)) {
1289                         free_extent_buffer(old);
1290                         pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1291                                 logical);
1292                         WARN_ON(1);
1293                 } else {
1294                         eb = btrfs_clone_extent_buffer(old);
1295                         free_extent_buffer(old);
1296                 }
1297         } else if (old_root) {
1298                 btrfs_tree_read_unlock(eb_root);
1299                 free_extent_buffer(eb_root);
1300                 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1301         } else {
1302                 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1303                 eb = btrfs_clone_extent_buffer(eb_root);
1304                 btrfs_tree_read_unlock_blocking(eb_root);
1305                 free_extent_buffer(eb_root);
1306         }
1307
1308         if (!eb)
1309                 return NULL;
1310         extent_buffer_get(eb);
1311         btrfs_tree_read_lock(eb);
1312         if (old_root) {
1313                 btrfs_set_header_bytenr(eb, eb->start);
1314                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1315                 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1316                 btrfs_set_header_level(eb, old_root->level);
1317                 btrfs_set_header_generation(eb, old_generation);
1318         }
1319         if (tm)
1320                 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1321         else
1322                 WARN_ON(btrfs_header_level(eb) != 0);
1323         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1324
1325         return eb;
1326 }
1327
1328 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1329 {
1330         struct tree_mod_elem *tm;
1331         int level;
1332         struct extent_buffer *eb_root = btrfs_root_node(root);
1333
1334         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1335         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1336                 level = tm->old_root.level;
1337         } else {
1338                 level = btrfs_header_level(eb_root);
1339         }
1340         free_extent_buffer(eb_root);
1341
1342         return level;
1343 }
1344
1345 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1346                                    struct btrfs_root *root,
1347                                    struct extent_buffer *buf)
1348 {
1349         /* ensure we can see the force_cow */
1350         smp_rmb();
1351
1352         /*
1353          * We do not need to cow a block if
1354          * 1) this block is not created or changed in this transaction;
1355          * 2) this block does not belong to TREE_RELOC tree;
1356          * 3) the root is not forced COW.
1357          *
1358          * What is forced COW:
1359          *    when we create snapshot during commiting the transaction,
1360          *    after we've finished coping src root, we must COW the shared
1361          *    block to ensure the metadata consistency.
1362          */
1363         if (btrfs_header_generation(buf) == trans->transid &&
1364             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1365             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1366               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1367             !root->force_cow)
1368                 return 0;
1369         return 1;
1370 }
1371
1372 /*
1373  * cows a single block, see __btrfs_cow_block for the real work.
1374  * This version of it has extra checks so that a block isn't cow'd more than
1375  * once per transaction, as long as it hasn't been written yet
1376  */
1377 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1378                     struct btrfs_root *root, struct extent_buffer *buf,
1379                     struct extent_buffer *parent, int parent_slot,
1380                     struct extent_buffer **cow_ret)
1381 {
1382         u64 search_start;
1383         int ret;
1384
1385         if (trans->transaction != root->fs_info->running_transaction)
1386                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1387                        trans->transid,
1388                        root->fs_info->running_transaction->transid);
1389
1390         if (trans->transid != root->fs_info->generation)
1391                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1392                        trans->transid, root->fs_info->generation);
1393
1394         if (!should_cow_block(trans, root, buf)) {
1395                 *cow_ret = buf;
1396                 return 0;
1397         }
1398
1399         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1400
1401         if (parent)
1402                 btrfs_set_lock_blocking(parent);
1403         btrfs_set_lock_blocking(buf);
1404
1405         ret = __btrfs_cow_block(trans, root, buf, parent,
1406                                  parent_slot, cow_ret, search_start, 0);
1407
1408         trace_btrfs_cow_block(root, buf, *cow_ret);
1409
1410         return ret;
1411 }
1412
1413 /*
1414  * helper function for defrag to decide if two blocks pointed to by a
1415  * node are actually close by
1416  */
1417 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1418 {
1419         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1420                 return 1;
1421         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1422                 return 1;
1423         return 0;
1424 }
1425
1426 /*
1427  * compare two keys in a memcmp fashion
1428  */
1429 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1430 {
1431         struct btrfs_key k1;
1432
1433         btrfs_disk_key_to_cpu(&k1, disk);
1434
1435         return btrfs_comp_cpu_keys(&k1, k2);
1436 }
1437
1438 /*
1439  * same as comp_keys only with two btrfs_key's
1440  */
1441 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1442 {
1443         if (k1->objectid > k2->objectid)
1444                 return 1;
1445         if (k1->objectid < k2->objectid)
1446                 return -1;
1447         if (k1->type > k2->type)
1448                 return 1;
1449         if (k1->type < k2->type)
1450                 return -1;
1451         if (k1->offset > k2->offset)
1452                 return 1;
1453         if (k1->offset < k2->offset)
1454                 return -1;
1455         return 0;
1456 }
1457
1458 /*
1459  * this is used by the defrag code to go through all the
1460  * leaves pointed to by a node and reallocate them so that
1461  * disk order is close to key order
1462  */
1463 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1464                        struct btrfs_root *root, struct extent_buffer *parent,
1465                        int start_slot, u64 *last_ret,
1466                        struct btrfs_key *progress)
1467 {
1468         struct extent_buffer *cur;
1469         u64 blocknr;
1470         u64 gen;
1471         u64 search_start = *last_ret;
1472         u64 last_block = 0;
1473         u64 other;
1474         u32 parent_nritems;
1475         int end_slot;
1476         int i;
1477         int err = 0;
1478         int parent_level;
1479         int uptodate;
1480         u32 blocksize;
1481         int progress_passed = 0;
1482         struct btrfs_disk_key disk_key;
1483
1484         parent_level = btrfs_header_level(parent);
1485
1486         WARN_ON(trans->transaction != root->fs_info->running_transaction);
1487         WARN_ON(trans->transid != root->fs_info->generation);
1488
1489         parent_nritems = btrfs_header_nritems(parent);
1490         blocksize = btrfs_level_size(root, parent_level - 1);
1491         end_slot = parent_nritems;
1492
1493         if (parent_nritems == 1)
1494                 return 0;
1495
1496         btrfs_set_lock_blocking(parent);
1497
1498         for (i = start_slot; i < end_slot; i++) {
1499                 int close = 1;
1500
1501                 btrfs_node_key(parent, &disk_key, i);
1502                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1503                         continue;
1504
1505                 progress_passed = 1;
1506                 blocknr = btrfs_node_blockptr(parent, i);
1507                 gen = btrfs_node_ptr_generation(parent, i);
1508                 if (last_block == 0)
1509                         last_block = blocknr;
1510
1511                 if (i > 0) {
1512                         other = btrfs_node_blockptr(parent, i - 1);
1513                         close = close_blocks(blocknr, other, blocksize);
1514                 }
1515                 if (!close && i < end_slot - 2) {
1516                         other = btrfs_node_blockptr(parent, i + 1);
1517                         close = close_blocks(blocknr, other, blocksize);
1518                 }
1519                 if (close) {
1520                         last_block = blocknr;
1521                         continue;
1522                 }
1523
1524                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1525                 if (cur)
1526                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1527                 else
1528                         uptodate = 0;
1529                 if (!cur || !uptodate) {
1530                         if (!cur) {
1531                                 cur = read_tree_block(root, blocknr,
1532                                                          blocksize, gen);
1533                                 if (!cur || !extent_buffer_uptodate(cur)) {
1534                                         free_extent_buffer(cur);
1535                                         return -EIO;
1536                                 }
1537                         } else if (!uptodate) {
1538                                 err = btrfs_read_buffer(cur, gen);
1539                                 if (err) {
1540                                         free_extent_buffer(cur);
1541                                         return err;
1542                                 }
1543                         }
1544                 }
1545                 if (search_start == 0)
1546                         search_start = last_block;
1547
1548                 btrfs_tree_lock(cur);
1549                 btrfs_set_lock_blocking(cur);
1550                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1551                                         &cur, search_start,
1552                                         min(16 * blocksize,
1553                                             (end_slot - i) * blocksize));
1554                 if (err) {
1555                         btrfs_tree_unlock(cur);
1556                         free_extent_buffer(cur);
1557                         break;
1558                 }
1559                 search_start = cur->start;
1560                 last_block = cur->start;
1561                 *last_ret = search_start;
1562                 btrfs_tree_unlock(cur);
1563                 free_extent_buffer(cur);
1564         }
1565         return err;
1566 }
1567
1568 /*
1569  * The leaf data grows from end-to-front in the node.
1570  * this returns the address of the start of the last item,
1571  * which is the stop of the leaf data stack
1572  */
1573 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1574                                          struct extent_buffer *leaf)
1575 {
1576         u32 nr = btrfs_header_nritems(leaf);
1577         if (nr == 0)
1578                 return BTRFS_LEAF_DATA_SIZE(root);
1579         return btrfs_item_offset_nr(leaf, nr - 1);
1580 }
1581
1582
1583 /*
1584  * search for key in the extent_buffer.  The items start at offset p,
1585  * and they are item_size apart.  There are 'max' items in p.
1586  *
1587  * the slot in the array is returned via slot, and it points to
1588  * the place where you would insert key if it is not found in
1589  * the array.
1590  *
1591  * slot may point to max if the key is bigger than all of the keys
1592  */
1593 static noinline int generic_bin_search(struct extent_buffer *eb,
1594                                        unsigned long p,
1595                                        int item_size, struct btrfs_key *key,
1596                                        int max, int *slot)
1597 {
1598         int low = 0;
1599         int high = max;
1600         int mid;
1601         int ret;
1602         struct btrfs_disk_key *tmp = NULL;
1603         struct btrfs_disk_key unaligned;
1604         unsigned long offset;
1605         char *kaddr = NULL;
1606         unsigned long map_start = 0;
1607         unsigned long map_len = 0;
1608         int err;
1609
1610         while (low < high) {
1611                 mid = (low + high) / 2;
1612                 offset = p + mid * item_size;
1613
1614                 if (!kaddr || offset < map_start ||
1615                     (offset + sizeof(struct btrfs_disk_key)) >
1616                     map_start + map_len) {
1617
1618                         err = map_private_extent_buffer(eb, offset,
1619                                                 sizeof(struct btrfs_disk_key),
1620                                                 &kaddr, &map_start, &map_len);
1621
1622                         if (!err) {
1623                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1624                                                         map_start);
1625                         } else {
1626                                 read_extent_buffer(eb, &unaligned,
1627                                                    offset, sizeof(unaligned));
1628                                 tmp = &unaligned;
1629                         }
1630
1631                 } else {
1632                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1633                                                         map_start);
1634                 }
1635                 ret = comp_keys(tmp, key);
1636
1637                 if (ret < 0)
1638                         low = mid + 1;
1639                 else if (ret > 0)
1640                         high = mid;
1641                 else {
1642                         *slot = mid;
1643                         return 0;
1644                 }
1645         }
1646         *slot = low;
1647         return 1;
1648 }
1649
1650 /*
1651  * simple bin_search frontend that does the right thing for
1652  * leaves vs nodes
1653  */
1654 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1655                       int level, int *slot)
1656 {
1657         if (level == 0)
1658                 return generic_bin_search(eb,
1659                                           offsetof(struct btrfs_leaf, items),
1660                                           sizeof(struct btrfs_item),
1661                                           key, btrfs_header_nritems(eb),
1662                                           slot);
1663         else
1664                 return generic_bin_search(eb,
1665                                           offsetof(struct btrfs_node, ptrs),
1666                                           sizeof(struct btrfs_key_ptr),
1667                                           key, btrfs_header_nritems(eb),
1668                                           slot);
1669 }
1670
1671 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1672                      int level, int *slot)
1673 {
1674         return bin_search(eb, key, level, slot);
1675 }
1676
1677 static void root_add_used(struct btrfs_root *root, u32 size)
1678 {
1679         spin_lock(&root->accounting_lock);
1680         btrfs_set_root_used(&root->root_item,
1681                             btrfs_root_used(&root->root_item) + size);
1682         spin_unlock(&root->accounting_lock);
1683 }
1684
1685 static void root_sub_used(struct btrfs_root *root, u32 size)
1686 {
1687         spin_lock(&root->accounting_lock);
1688         btrfs_set_root_used(&root->root_item,
1689                             btrfs_root_used(&root->root_item) - size);
1690         spin_unlock(&root->accounting_lock);
1691 }
1692
1693 /* given a node and slot number, this reads the blocks it points to.  The
1694  * extent buffer is returned with a reference taken (but unlocked).
1695  * NULL is returned on error.
1696  */
1697 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1698                                    struct extent_buffer *parent, int slot)
1699 {
1700         int level = btrfs_header_level(parent);
1701         struct extent_buffer *eb;
1702
1703         if (slot < 0)
1704                 return NULL;
1705         if (slot >= btrfs_header_nritems(parent))
1706                 return NULL;
1707
1708         BUG_ON(level == 0);
1709
1710         eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1711                              btrfs_level_size(root, level - 1),
1712                              btrfs_node_ptr_generation(parent, slot));
1713         if (eb && !extent_buffer_uptodate(eb)) {
1714                 free_extent_buffer(eb);
1715                 eb = NULL;
1716         }
1717
1718         return eb;
1719 }
1720
1721 /*
1722  * node level balancing, used to make sure nodes are in proper order for
1723  * item deletion.  We balance from the top down, so we have to make sure
1724  * that a deletion won't leave an node completely empty later on.
1725  */
1726 static noinline int balance_level(struct btrfs_trans_handle *trans,
1727                          struct btrfs_root *root,
1728                          struct btrfs_path *path, int level)
1729 {
1730         struct extent_buffer *right = NULL;
1731         struct extent_buffer *mid;
1732         struct extent_buffer *left = NULL;
1733         struct extent_buffer *parent = NULL;
1734         int ret = 0;
1735         int wret;
1736         int pslot;
1737         int orig_slot = path->slots[level];
1738         u64 orig_ptr;
1739
1740         if (level == 0)
1741                 return 0;
1742
1743         mid = path->nodes[level];
1744
1745         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1746                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1747         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1748
1749         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1750
1751         if (level < BTRFS_MAX_LEVEL - 1) {
1752                 parent = path->nodes[level + 1];
1753                 pslot = path->slots[level + 1];
1754         }
1755
1756         /*
1757          * deal with the case where there is only one pointer in the root
1758          * by promoting the node below to a root
1759          */
1760         if (!parent) {
1761                 struct extent_buffer *child;
1762
1763                 if (btrfs_header_nritems(mid) != 1)
1764                         return 0;
1765
1766                 /* promote the child to a root */
1767                 child = read_node_slot(root, mid, 0);
1768                 if (!child) {
1769                         ret = -EROFS;
1770                         btrfs_std_error(root->fs_info, ret);
1771                         goto enospc;
1772                 }
1773
1774                 btrfs_tree_lock(child);
1775                 btrfs_set_lock_blocking(child);
1776                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1777                 if (ret) {
1778                         btrfs_tree_unlock(child);
1779                         free_extent_buffer(child);
1780                         goto enospc;
1781                 }
1782
1783                 tree_mod_log_set_root_pointer(root, child, 1);
1784                 rcu_assign_pointer(root->node, child);
1785
1786                 add_root_to_dirty_list(root);
1787                 btrfs_tree_unlock(child);
1788
1789                 path->locks[level] = 0;
1790                 path->nodes[level] = NULL;
1791                 clean_tree_block(trans, root, mid);
1792                 btrfs_tree_unlock(mid);
1793                 /* once for the path */
1794                 free_extent_buffer(mid);
1795
1796                 root_sub_used(root, mid->len);
1797                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1798                 /* once for the root ptr */
1799                 free_extent_buffer_stale(mid);
1800                 return 0;
1801         }
1802         if (btrfs_header_nritems(mid) >
1803             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1804                 return 0;
1805
1806         left = read_node_slot(root, parent, pslot - 1);
1807         if (left) {
1808                 btrfs_tree_lock(left);
1809                 btrfs_set_lock_blocking(left);
1810                 wret = btrfs_cow_block(trans, root, left,
1811                                        parent, pslot - 1, &left);
1812                 if (wret) {
1813                         ret = wret;
1814                         goto enospc;
1815                 }
1816         }
1817         right = read_node_slot(root, parent, pslot + 1);
1818         if (right) {
1819                 btrfs_tree_lock(right);
1820                 btrfs_set_lock_blocking(right);
1821                 wret = btrfs_cow_block(trans, root, right,
1822                                        parent, pslot + 1, &right);
1823                 if (wret) {
1824                         ret = wret;
1825                         goto enospc;
1826                 }
1827         }
1828
1829         /* first, try to make some room in the middle buffer */
1830         if (left) {
1831                 orig_slot += btrfs_header_nritems(left);
1832                 wret = push_node_left(trans, root, left, mid, 1);
1833                 if (wret < 0)
1834                         ret = wret;
1835         }
1836
1837         /*
1838          * then try to empty the right most buffer into the middle
1839          */
1840         if (right) {
1841                 wret = push_node_left(trans, root, mid, right, 1);
1842                 if (wret < 0 && wret != -ENOSPC)
1843                         ret = wret;
1844                 if (btrfs_header_nritems(right) == 0) {
1845                         clean_tree_block(trans, root, right);
1846                         btrfs_tree_unlock(right);
1847                         del_ptr(root, path, level + 1, pslot + 1);
1848                         root_sub_used(root, right->len);
1849                         btrfs_free_tree_block(trans, root, right, 0, 1);
1850                         free_extent_buffer_stale(right);
1851                         right = NULL;
1852                 } else {
1853                         struct btrfs_disk_key right_key;
1854                         btrfs_node_key(right, &right_key, 0);
1855                         tree_mod_log_set_node_key(root->fs_info, parent,
1856                                                   pslot + 1, 0);
1857                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1858                         btrfs_mark_buffer_dirty(parent);
1859                 }
1860         }
1861         if (btrfs_header_nritems(mid) == 1) {
1862                 /*
1863                  * we're not allowed to leave a node with one item in the
1864                  * tree during a delete.  A deletion from lower in the tree
1865                  * could try to delete the only pointer in this node.
1866                  * So, pull some keys from the left.
1867                  * There has to be a left pointer at this point because
1868                  * otherwise we would have pulled some pointers from the
1869                  * right
1870                  */
1871                 if (!left) {
1872                         ret = -EROFS;
1873                         btrfs_std_error(root->fs_info, ret);
1874                         goto enospc;
1875                 }
1876                 wret = balance_node_right(trans, root, mid, left);
1877                 if (wret < 0) {
1878                         ret = wret;
1879                         goto enospc;
1880                 }
1881                 if (wret == 1) {
1882                         wret = push_node_left(trans, root, left, mid, 1);
1883                         if (wret < 0)
1884                                 ret = wret;
1885                 }
1886                 BUG_ON(wret == 1);
1887         }
1888         if (btrfs_header_nritems(mid) == 0) {
1889                 clean_tree_block(trans, root, mid);
1890                 btrfs_tree_unlock(mid);
1891                 del_ptr(root, path, level + 1, pslot);
1892                 root_sub_used(root, mid->len);
1893                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1894                 free_extent_buffer_stale(mid);
1895                 mid = NULL;
1896         } else {
1897                 /* update the parent key to reflect our changes */
1898                 struct btrfs_disk_key mid_key;
1899                 btrfs_node_key(mid, &mid_key, 0);
1900                 tree_mod_log_set_node_key(root->fs_info, parent,
1901                                           pslot, 0);
1902                 btrfs_set_node_key(parent, &mid_key, pslot);
1903                 btrfs_mark_buffer_dirty(parent);
1904         }
1905
1906         /* update the path */
1907         if (left) {
1908                 if (btrfs_header_nritems(left) > orig_slot) {
1909                         extent_buffer_get(left);
1910                         /* left was locked after cow */
1911                         path->nodes[level] = left;
1912                         path->slots[level + 1] -= 1;
1913                         path->slots[level] = orig_slot;
1914                         if (mid) {
1915                                 btrfs_tree_unlock(mid);
1916                                 free_extent_buffer(mid);
1917                         }
1918                 } else {
1919                         orig_slot -= btrfs_header_nritems(left);
1920                         path->slots[level] = orig_slot;
1921                 }
1922         }
1923         /* double check we haven't messed things up */
1924         if (orig_ptr !=
1925             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1926                 BUG();
1927 enospc:
1928         if (right) {
1929                 btrfs_tree_unlock(right);
1930                 free_extent_buffer(right);
1931         }
1932         if (left) {
1933                 if (path->nodes[level] != left)
1934                         btrfs_tree_unlock(left);
1935                 free_extent_buffer(left);
1936         }
1937         return ret;
1938 }
1939
1940 /* Node balancing for insertion.  Here we only split or push nodes around
1941  * when they are completely full.  This is also done top down, so we
1942  * have to be pessimistic.
1943  */
1944 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1945                                           struct btrfs_root *root,
1946                                           struct btrfs_path *path, int level)
1947 {
1948         struct extent_buffer *right = NULL;
1949         struct extent_buffer *mid;
1950         struct extent_buffer *left = NULL;
1951         struct extent_buffer *parent = NULL;
1952         int ret = 0;
1953         int wret;
1954         int pslot;
1955         int orig_slot = path->slots[level];
1956
1957         if (level == 0)
1958                 return 1;
1959
1960         mid = path->nodes[level];
1961         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1962
1963         if (level < BTRFS_MAX_LEVEL - 1) {
1964                 parent = path->nodes[level + 1];
1965                 pslot = path->slots[level + 1];
1966         }
1967
1968         if (!parent)
1969                 return 1;
1970
1971         left = read_node_slot(root, parent, pslot - 1);
1972
1973         /* first, try to make some room in the middle buffer */
1974         if (left) {
1975                 u32 left_nr;
1976
1977                 btrfs_tree_lock(left);
1978                 btrfs_set_lock_blocking(left);
1979
1980                 left_nr = btrfs_header_nritems(left);
1981                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1982                         wret = 1;
1983                 } else {
1984                         ret = btrfs_cow_block(trans, root, left, parent,
1985                                               pslot - 1, &left);
1986                         if (ret)
1987                                 wret = 1;
1988                         else {
1989                                 wret = push_node_left(trans, root,
1990                                                       left, mid, 0);
1991                         }
1992                 }
1993                 if (wret < 0)
1994                         ret = wret;
1995                 if (wret == 0) {
1996                         struct btrfs_disk_key disk_key;
1997                         orig_slot += left_nr;
1998                         btrfs_node_key(mid, &disk_key, 0);
1999                         tree_mod_log_set_node_key(root->fs_info, parent,
2000                                                   pslot, 0);
2001                         btrfs_set_node_key(parent, &disk_key, pslot);
2002                         btrfs_mark_buffer_dirty(parent);
2003                         if (btrfs_header_nritems(left) > orig_slot) {
2004                                 path->nodes[level] = left;
2005                                 path->slots[level + 1] -= 1;
2006                                 path->slots[level] = orig_slot;
2007                                 btrfs_tree_unlock(mid);
2008                                 free_extent_buffer(mid);
2009                         } else {
2010                                 orig_slot -=
2011                                         btrfs_header_nritems(left);
2012                                 path->slots[level] = orig_slot;
2013                                 btrfs_tree_unlock(left);
2014                                 free_extent_buffer(left);
2015                         }
2016                         return 0;
2017                 }
2018                 btrfs_tree_unlock(left);
2019                 free_extent_buffer(left);
2020         }
2021         right = read_node_slot(root, parent, pslot + 1);
2022
2023         /*
2024          * then try to empty the right most buffer into the middle
2025          */
2026         if (right) {
2027                 u32 right_nr;
2028
2029                 btrfs_tree_lock(right);
2030                 btrfs_set_lock_blocking(right);
2031
2032                 right_nr = btrfs_header_nritems(right);
2033                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2034                         wret = 1;
2035                 } else {
2036                         ret = btrfs_cow_block(trans, root, right,
2037                                               parent, pslot + 1,
2038                                               &right);
2039                         if (ret)
2040                                 wret = 1;
2041                         else {
2042                                 wret = balance_node_right(trans, root,
2043                                                           right, mid);
2044                         }
2045                 }
2046                 if (wret < 0)
2047                         ret = wret;
2048                 if (wret == 0) {
2049                         struct btrfs_disk_key disk_key;
2050
2051                         btrfs_node_key(right, &disk_key, 0);
2052                         tree_mod_log_set_node_key(root->fs_info, parent,
2053                                                   pslot + 1, 0);
2054                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2055                         btrfs_mark_buffer_dirty(parent);
2056
2057                         if (btrfs_header_nritems(mid) <= orig_slot) {
2058                                 path->nodes[level] = right;
2059                                 path->slots[level + 1] += 1;
2060                                 path->slots[level] = orig_slot -
2061                                         btrfs_header_nritems(mid);
2062                                 btrfs_tree_unlock(mid);
2063                                 free_extent_buffer(mid);
2064                         } else {
2065                                 btrfs_tree_unlock(right);
2066                                 free_extent_buffer(right);
2067                         }
2068                         return 0;
2069                 }
2070                 btrfs_tree_unlock(right);
2071                 free_extent_buffer(right);
2072         }
2073         return 1;
2074 }
2075
2076 /*
2077  * readahead one full node of leaves, finding things that are close
2078  * to the block in 'slot', and triggering ra on them.
2079  */
2080 static void reada_for_search(struct btrfs_root *root,
2081                              struct btrfs_path *path,
2082                              int level, int slot, u64 objectid)
2083 {
2084         struct extent_buffer *node;
2085         struct btrfs_disk_key disk_key;
2086         u32 nritems;
2087         u64 search;
2088         u64 target;
2089         u64 nread = 0;
2090         u64 gen;
2091         int direction = path->reada;
2092         struct extent_buffer *eb;
2093         u32 nr;
2094         u32 blocksize;
2095         u32 nscan = 0;
2096
2097         if (level != 1)
2098                 return;
2099
2100         if (!path->nodes[level])
2101                 return;
2102
2103         node = path->nodes[level];
2104
2105         search = btrfs_node_blockptr(node, slot);
2106         blocksize = btrfs_level_size(root, level - 1);
2107         eb = btrfs_find_tree_block(root, search, blocksize);
2108         if (eb) {
2109                 free_extent_buffer(eb);
2110                 return;
2111         }
2112
2113         target = search;
2114
2115         nritems = btrfs_header_nritems(node);
2116         nr = slot;
2117
2118         while (1) {
2119                 if (direction < 0) {
2120                         if (nr == 0)
2121                                 break;
2122                         nr--;
2123                 } else if (direction > 0) {
2124                         nr++;
2125                         if (nr >= nritems)
2126                                 break;
2127                 }
2128                 if (path->reada < 0 && objectid) {
2129                         btrfs_node_key(node, &disk_key, nr);
2130                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2131                                 break;
2132                 }
2133                 search = btrfs_node_blockptr(node, nr);
2134                 if ((search <= target && target - search <= 65536) ||
2135                     (search > target && search - target <= 65536)) {
2136                         gen = btrfs_node_ptr_generation(node, nr);
2137                         readahead_tree_block(root, search, blocksize, gen);
2138                         nread += blocksize;
2139                 }
2140                 nscan++;
2141                 if ((nread > 65536 || nscan > 32))
2142                         break;
2143         }
2144 }
2145
2146 static noinline void reada_for_balance(struct btrfs_root *root,
2147                                        struct btrfs_path *path, int level)
2148 {
2149         int slot;
2150         int nritems;
2151         struct extent_buffer *parent;
2152         struct extent_buffer *eb;
2153         u64 gen;
2154         u64 block1 = 0;
2155         u64 block2 = 0;
2156         int blocksize;
2157
2158         parent = path->nodes[level + 1];
2159         if (!parent)
2160                 return;
2161
2162         nritems = btrfs_header_nritems(parent);
2163         slot = path->slots[level + 1];
2164         blocksize = btrfs_level_size(root, level);
2165
2166         if (slot > 0) {
2167                 block1 = btrfs_node_blockptr(parent, slot - 1);
2168                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2169                 eb = btrfs_find_tree_block(root, block1, blocksize);
2170                 /*
2171                  * if we get -eagain from btrfs_buffer_uptodate, we
2172                  * don't want to return eagain here.  That will loop
2173                  * forever
2174                  */
2175                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2176                         block1 = 0;
2177                 free_extent_buffer(eb);
2178         }
2179         if (slot + 1 < nritems) {
2180                 block2 = btrfs_node_blockptr(parent, slot + 1);
2181                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2182                 eb = btrfs_find_tree_block(root, block2, blocksize);
2183                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2184                         block2 = 0;
2185                 free_extent_buffer(eb);
2186         }
2187
2188         if (block1)
2189                 readahead_tree_block(root, block1, blocksize, 0);
2190         if (block2)
2191                 readahead_tree_block(root, block2, blocksize, 0);
2192 }
2193
2194
2195 /*
2196  * when we walk down the tree, it is usually safe to unlock the higher layers
2197  * in the tree.  The exceptions are when our path goes through slot 0, because
2198  * operations on the tree might require changing key pointers higher up in the
2199  * tree.
2200  *
2201  * callers might also have set path->keep_locks, which tells this code to keep
2202  * the lock if the path points to the last slot in the block.  This is part of
2203  * walking through the tree, and selecting the next slot in the higher block.
2204  *
2205  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2206  * if lowest_unlock is 1, level 0 won't be unlocked
2207  */
2208 static noinline void unlock_up(struct btrfs_path *path, int level,
2209                                int lowest_unlock, int min_write_lock_level,
2210                                int *write_lock_level)
2211 {
2212         int i;
2213         int skip_level = level;
2214         int no_skips = 0;
2215         struct extent_buffer *t;
2216
2217         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2218                 if (!path->nodes[i])
2219                         break;
2220                 if (!path->locks[i])
2221                         break;
2222                 if (!no_skips && path->slots[i] == 0) {
2223                         skip_level = i + 1;
2224                         continue;
2225                 }
2226                 if (!no_skips && path->keep_locks) {
2227                         u32 nritems;
2228                         t = path->nodes[i];
2229                         nritems = btrfs_header_nritems(t);
2230                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2231                                 skip_level = i + 1;
2232                                 continue;
2233                         }
2234                 }
2235                 if (skip_level < i && i >= lowest_unlock)
2236                         no_skips = 1;
2237
2238                 t = path->nodes[i];
2239                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2240                         btrfs_tree_unlock_rw(t, path->locks[i]);
2241                         path->locks[i] = 0;
2242                         if (write_lock_level &&
2243                             i > min_write_lock_level &&
2244                             i <= *write_lock_level) {
2245                                 *write_lock_level = i - 1;
2246                         }
2247                 }
2248         }
2249 }
2250
2251 /*
2252  * This releases any locks held in the path starting at level and
2253  * going all the way up to the root.
2254  *
2255  * btrfs_search_slot will keep the lock held on higher nodes in a few
2256  * corner cases, such as COW of the block at slot zero in the node.  This
2257  * ignores those rules, and it should only be called when there are no
2258  * more updates to be done higher up in the tree.
2259  */
2260 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2261 {
2262         int i;
2263
2264         if (path->keep_locks)
2265                 return;
2266
2267         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2268                 if (!path->nodes[i])
2269                         continue;
2270                 if (!path->locks[i])
2271                         continue;
2272                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2273                 path->locks[i] = 0;
2274         }
2275 }
2276
2277 /*
2278  * helper function for btrfs_search_slot.  The goal is to find a block
2279  * in cache without setting the path to blocking.  If we find the block
2280  * we return zero and the path is unchanged.
2281  *
2282  * If we can't find the block, we set the path blocking and do some
2283  * reada.  -EAGAIN is returned and the search must be repeated.
2284  */
2285 static int
2286 read_block_for_search(struct btrfs_trans_handle *trans,
2287                        struct btrfs_root *root, struct btrfs_path *p,
2288                        struct extent_buffer **eb_ret, int level, int slot,
2289                        struct btrfs_key *key, u64 time_seq)
2290 {
2291         u64 blocknr;
2292         u64 gen;
2293         u32 blocksize;
2294         struct extent_buffer *b = *eb_ret;
2295         struct extent_buffer *tmp;
2296         int ret;
2297
2298         blocknr = btrfs_node_blockptr(b, slot);
2299         gen = btrfs_node_ptr_generation(b, slot);
2300         blocksize = btrfs_level_size(root, level - 1);
2301
2302         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2303         if (tmp) {
2304                 /* first we do an atomic uptodate check */
2305                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2306                         *eb_ret = tmp;
2307                         return 0;
2308                 }
2309
2310                 /* the pages were up to date, but we failed
2311                  * the generation number check.  Do a full
2312                  * read for the generation number that is correct.
2313                  * We must do this without dropping locks so
2314                  * we can trust our generation number
2315                  */
2316                 btrfs_set_path_blocking(p);
2317
2318                 /* now we're allowed to do a blocking uptodate check */
2319                 ret = btrfs_read_buffer(tmp, gen);
2320                 if (!ret) {
2321                         *eb_ret = tmp;
2322                         return 0;
2323                 }
2324                 free_extent_buffer(tmp);
2325                 btrfs_release_path(p);
2326                 return -EIO;
2327         }
2328
2329         /*
2330          * reduce lock contention at high levels
2331          * of the btree by dropping locks before
2332          * we read.  Don't release the lock on the current
2333          * level because we need to walk this node to figure
2334          * out which blocks to read.
2335          */
2336         btrfs_unlock_up_safe(p, level + 1);
2337         btrfs_set_path_blocking(p);
2338
2339         free_extent_buffer(tmp);
2340         if (p->reada)
2341                 reada_for_search(root, p, level, slot, key->objectid);
2342
2343         btrfs_release_path(p);
2344
2345         ret = -EAGAIN;
2346         tmp = read_tree_block(root, blocknr, blocksize, 0);
2347         if (tmp) {
2348                 /*
2349                  * If the read above didn't mark this buffer up to date,
2350                  * it will never end up being up to date.  Set ret to EIO now
2351                  * and give up so that our caller doesn't loop forever
2352                  * on our EAGAINs.
2353                  */
2354                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2355                         ret = -EIO;
2356                 free_extent_buffer(tmp);
2357         }
2358         return ret;
2359 }
2360
2361 /*
2362  * helper function for btrfs_search_slot.  This does all of the checks
2363  * for node-level blocks and does any balancing required based on
2364  * the ins_len.
2365  *
2366  * If no extra work was required, zero is returned.  If we had to
2367  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2368  * start over
2369  */
2370 static int
2371 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2372                        struct btrfs_root *root, struct btrfs_path *p,
2373                        struct extent_buffer *b, int level, int ins_len,
2374                        int *write_lock_level)
2375 {
2376         int ret;
2377         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2378             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2379                 int sret;
2380
2381                 if (*write_lock_level < level + 1) {
2382                         *write_lock_level = level + 1;
2383                         btrfs_release_path(p);
2384                         goto again;
2385                 }
2386
2387                 btrfs_set_path_blocking(p);
2388                 reada_for_balance(root, p, level);
2389                 sret = split_node(trans, root, p, level);
2390                 btrfs_clear_path_blocking(p, NULL, 0);
2391
2392                 BUG_ON(sret > 0);
2393                 if (sret) {
2394                         ret = sret;
2395                         goto done;
2396                 }
2397                 b = p->nodes[level];
2398         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2399                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2400                 int sret;
2401
2402                 if (*write_lock_level < level + 1) {
2403                         *write_lock_level = level + 1;
2404                         btrfs_release_path(p);
2405                         goto again;
2406                 }
2407
2408                 btrfs_set_path_blocking(p);
2409                 reada_for_balance(root, p, level);
2410                 sret = balance_level(trans, root, p, level);
2411                 btrfs_clear_path_blocking(p, NULL, 0);
2412
2413                 if (sret) {
2414                         ret = sret;
2415                         goto done;
2416                 }
2417                 b = p->nodes[level];
2418                 if (!b) {
2419                         btrfs_release_path(p);
2420                         goto again;
2421                 }
2422                 BUG_ON(btrfs_header_nritems(b) == 1);
2423         }
2424         return 0;
2425
2426 again:
2427         ret = -EAGAIN;
2428 done:
2429         return ret;
2430 }
2431
2432 static void key_search_validate(struct extent_buffer *b,
2433                                 struct btrfs_key *key,
2434                                 int level)
2435 {
2436 #ifdef CONFIG_BTRFS_ASSERT
2437         struct btrfs_disk_key disk_key;
2438
2439         btrfs_cpu_key_to_disk(&disk_key, key);
2440
2441         if (level == 0)
2442                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2443                     offsetof(struct btrfs_leaf, items[0].key),
2444                     sizeof(disk_key)));
2445         else
2446                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2447                     offsetof(struct btrfs_node, ptrs[0].key),
2448                     sizeof(disk_key)));
2449 #endif
2450 }
2451
2452 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2453                       int level, int *prev_cmp, int *slot)
2454 {
2455         if (*prev_cmp != 0) {
2456                 *prev_cmp = bin_search(b, key, level, slot);
2457                 return *prev_cmp;
2458         }
2459
2460         key_search_validate(b, key, level);
2461         *slot = 0;
2462
2463         return 0;
2464 }
2465
2466 /*
2467  * look for key in the tree.  path is filled in with nodes along the way
2468  * if key is found, we return zero and you can find the item in the leaf
2469  * level of the path (level 0)
2470  *
2471  * If the key isn't found, the path points to the slot where it should
2472  * be inserted, and 1 is returned.  If there are other errors during the
2473  * search a negative error number is returned.
2474  *
2475  * if ins_len > 0, nodes and leaves will be split as we walk down the
2476  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2477  * possible)
2478  */
2479 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2480                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2481                       ins_len, int cow)
2482 {
2483         struct extent_buffer *b;
2484         int slot;
2485         int ret;
2486         int err;
2487         int level;
2488         int lowest_unlock = 1;
2489         int root_lock;
2490         /* everything at write_lock_level or lower must be write locked */
2491         int write_lock_level = 0;
2492         u8 lowest_level = 0;
2493         int min_write_lock_level;
2494         int prev_cmp;
2495
2496         lowest_level = p->lowest_level;
2497         WARN_ON(lowest_level && ins_len > 0);
2498         WARN_ON(p->nodes[0] != NULL);
2499
2500         if (ins_len < 0) {
2501                 lowest_unlock = 2;
2502
2503                 /* when we are removing items, we might have to go up to level
2504                  * two as we update tree pointers  Make sure we keep write
2505                  * for those levels as well
2506                  */
2507                 write_lock_level = 2;
2508         } else if (ins_len > 0) {
2509                 /*
2510                  * for inserting items, make sure we have a write lock on
2511                  * level 1 so we can update keys
2512                  */
2513                 write_lock_level = 1;
2514         }
2515
2516         if (!cow)
2517                 write_lock_level = -1;
2518
2519         if (cow && (p->keep_locks || p->lowest_level))
2520                 write_lock_level = BTRFS_MAX_LEVEL;
2521
2522         min_write_lock_level = write_lock_level;
2523
2524 again:
2525         prev_cmp = -1;
2526         /*
2527          * we try very hard to do read locks on the root
2528          */
2529         root_lock = BTRFS_READ_LOCK;
2530         level = 0;
2531         if (p->search_commit_root) {
2532                 /*
2533                  * the commit roots are read only
2534                  * so we always do read locks
2535                  */
2536                 b = root->commit_root;
2537                 extent_buffer_get(b);
2538                 level = btrfs_header_level(b);
2539                 if (!p->skip_locking)
2540                         btrfs_tree_read_lock(b);
2541         } else {
2542                 if (p->skip_locking) {
2543                         b = btrfs_root_node(root);
2544                         level = btrfs_header_level(b);
2545                 } else {
2546                         /* we don't know the level of the root node
2547                          * until we actually have it read locked
2548                          */
2549                         b = btrfs_read_lock_root_node(root);
2550                         level = btrfs_header_level(b);
2551                         if (level <= write_lock_level) {
2552                                 /* whoops, must trade for write lock */
2553                                 btrfs_tree_read_unlock(b);
2554                                 free_extent_buffer(b);
2555                                 b = btrfs_lock_root_node(root);
2556                                 root_lock = BTRFS_WRITE_LOCK;
2557
2558                                 /* the level might have changed, check again */
2559                                 level = btrfs_header_level(b);
2560                         }
2561                 }
2562         }
2563         p->nodes[level] = b;
2564         if (!p->skip_locking)
2565                 p->locks[level] = root_lock;
2566
2567         while (b) {
2568                 level = btrfs_header_level(b);
2569
2570                 /*
2571                  * setup the path here so we can release it under lock
2572                  * contention with the cow code
2573                  */
2574                 if (cow) {
2575                         /*
2576                          * if we don't really need to cow this block
2577                          * then we don't want to set the path blocking,
2578                          * so we test it here
2579                          */
2580                         if (!should_cow_block(trans, root, b))
2581                                 goto cow_done;
2582
2583                         btrfs_set_path_blocking(p);
2584
2585                         /*
2586                          * must have write locks on this node and the
2587                          * parent
2588                          */
2589                         if (level > write_lock_level ||
2590                             (level + 1 > write_lock_level &&
2591                             level + 1 < BTRFS_MAX_LEVEL &&
2592                             p->nodes[level + 1])) {
2593                                 write_lock_level = level + 1;
2594                                 btrfs_release_path(p);
2595                                 goto again;
2596                         }
2597
2598                         err = btrfs_cow_block(trans, root, b,
2599                                               p->nodes[level + 1],
2600                                               p->slots[level + 1], &b);
2601                         if (err) {
2602                                 ret = err;
2603                                 goto done;
2604                         }
2605                 }
2606 cow_done:
2607                 BUG_ON(!cow && ins_len);
2608
2609                 p->nodes[level] = b;
2610                 btrfs_clear_path_blocking(p, NULL, 0);
2611
2612                 /*
2613                  * we have a lock on b and as long as we aren't changing
2614                  * the tree, there is no way to for the items in b to change.
2615                  * It is safe to drop the lock on our parent before we
2616                  * go through the expensive btree search on b.
2617                  *
2618                  * If cow is true, then we might be changing slot zero,
2619                  * which may require changing the parent.  So, we can't
2620                  * drop the lock until after we know which slot we're
2621                  * operating on.
2622                  */
2623                 if (!cow)
2624                         btrfs_unlock_up_safe(p, level + 1);
2625
2626                 ret = key_search(b, key, level, &prev_cmp, &slot);
2627
2628                 if (level != 0) {
2629                         int dec = 0;
2630                         if (ret && slot > 0) {
2631                                 dec = 1;
2632                                 slot -= 1;
2633                         }
2634                         p->slots[level] = slot;
2635                         err = setup_nodes_for_search(trans, root, p, b, level,
2636                                              ins_len, &write_lock_level);
2637                         if (err == -EAGAIN)
2638                                 goto again;
2639                         if (err) {
2640                                 ret = err;
2641                                 goto done;
2642                         }
2643                         b = p->nodes[level];
2644                         slot = p->slots[level];
2645
2646                         /*
2647                          * slot 0 is special, if we change the key
2648                          * we have to update the parent pointer
2649                          * which means we must have a write lock
2650                          * on the parent
2651                          */
2652                         if (slot == 0 && cow &&
2653                             write_lock_level < level + 1) {
2654                                 write_lock_level = level + 1;
2655                                 btrfs_release_path(p);
2656                                 goto again;
2657                         }
2658
2659                         unlock_up(p, level, lowest_unlock,
2660                                   min_write_lock_level, &write_lock_level);
2661
2662                         if (level == lowest_level) {
2663                                 if (dec)
2664                                         p->slots[level]++;
2665                                 goto done;
2666                         }
2667
2668                         err = read_block_for_search(trans, root, p,
2669                                                     &b, level, slot, key, 0);
2670                         if (err == -EAGAIN)
2671                                 goto again;
2672                         if (err) {
2673                                 ret = err;
2674                                 goto done;
2675                         }
2676
2677                         if (!p->skip_locking) {
2678                                 level = btrfs_header_level(b);
2679                                 if (level <= write_lock_level) {
2680                                         err = btrfs_try_tree_write_lock(b);
2681                                         if (!err) {
2682                                                 btrfs_set_path_blocking(p);
2683                                                 btrfs_tree_lock(b);
2684                                                 btrfs_clear_path_blocking(p, b,
2685                                                                   BTRFS_WRITE_LOCK);
2686                                         }
2687                                         p->locks[level] = BTRFS_WRITE_LOCK;
2688                                 } else {
2689                                         err = btrfs_try_tree_read_lock(b);
2690                                         if (!err) {
2691                                                 btrfs_set_path_blocking(p);
2692                                                 btrfs_tree_read_lock(b);
2693                                                 btrfs_clear_path_blocking(p, b,
2694                                                                   BTRFS_READ_LOCK);
2695                                         }
2696                                         p->locks[level] = BTRFS_READ_LOCK;
2697                                 }
2698                                 p->nodes[level] = b;
2699                         }
2700                 } else {
2701                         p->slots[level] = slot;
2702                         if (ins_len > 0 &&
2703                             btrfs_leaf_free_space(root, b) < ins_len) {
2704                                 if (write_lock_level < 1) {
2705                                         write_lock_level = 1;
2706                                         btrfs_release_path(p);
2707                                         goto again;
2708                                 }
2709
2710                                 btrfs_set_path_blocking(p);
2711                                 err = split_leaf(trans, root, key,
2712                                                  p, ins_len, ret == 0);
2713                                 btrfs_clear_path_blocking(p, NULL, 0);
2714
2715                                 BUG_ON(err > 0);
2716                                 if (err) {
2717                                         ret = err;
2718                                         goto done;
2719                                 }
2720                         }
2721                         if (!p->search_for_split)
2722                                 unlock_up(p, level, lowest_unlock,
2723                                           min_write_lock_level, &write_lock_level);
2724                         goto done;
2725                 }
2726         }
2727         ret = 1;
2728 done:
2729         /*
2730          * we don't really know what they plan on doing with the path
2731          * from here on, so for now just mark it as blocking
2732          */
2733         if (!p->leave_spinning)
2734                 btrfs_set_path_blocking(p);
2735         if (ret < 0)
2736                 btrfs_release_path(p);
2737         return ret;
2738 }
2739
2740 /*
2741  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2742  * current state of the tree together with the operations recorded in the tree
2743  * modification log to search for the key in a previous version of this tree, as
2744  * denoted by the time_seq parameter.
2745  *
2746  * Naturally, there is no support for insert, delete or cow operations.
2747  *
2748  * The resulting path and return value will be set up as if we called
2749  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2750  */
2751 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2752                           struct btrfs_path *p, u64 time_seq)
2753 {
2754         struct extent_buffer *b;
2755         int slot;
2756         int ret;
2757         int err;
2758         int level;
2759         int lowest_unlock = 1;
2760         u8 lowest_level = 0;
2761         int prev_cmp = -1;
2762
2763         lowest_level = p->lowest_level;
2764         WARN_ON(p->nodes[0] != NULL);
2765
2766         if (p->search_commit_root) {
2767                 BUG_ON(time_seq);
2768                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2769         }
2770
2771 again:
2772         b = get_old_root(root, time_seq);
2773         level = btrfs_header_level(b);
2774         p->locks[level] = BTRFS_READ_LOCK;
2775
2776         while (b) {
2777                 level = btrfs_header_level(b);
2778                 p->nodes[level] = b;
2779                 btrfs_clear_path_blocking(p, NULL, 0);
2780
2781                 /*
2782                  * we have a lock on b and as long as we aren't changing
2783                  * the tree, there is no way to for the items in b to change.
2784                  * It is safe to drop the lock on our parent before we
2785                  * go through the expensive btree search on b.
2786                  */
2787                 btrfs_unlock_up_safe(p, level + 1);
2788
2789                 /*
2790                  * Since we can unwind eb's we want to do a real search every
2791                  * time.
2792                  */
2793                 prev_cmp = -1;
2794                 ret = key_search(b, key, level, &prev_cmp, &slot);
2795
2796                 if (level != 0) {
2797                         int dec = 0;
2798                         if (ret && slot > 0) {
2799                                 dec = 1;
2800                                 slot -= 1;
2801                         }
2802                         p->slots[level] = slot;
2803                         unlock_up(p, level, lowest_unlock, 0, NULL);
2804
2805                         if (level == lowest_level) {
2806                                 if (dec)
2807                                         p->slots[level]++;
2808                                 goto done;
2809                         }
2810
2811                         err = read_block_for_search(NULL, root, p, &b, level,
2812                                                     slot, key, time_seq);
2813                         if (err == -EAGAIN)
2814                                 goto again;
2815                         if (err) {
2816                                 ret = err;
2817                                 goto done;
2818                         }
2819
2820                         level = btrfs_header_level(b);
2821                         err = btrfs_try_tree_read_lock(b);
2822                         if (!err) {
2823                                 btrfs_set_path_blocking(p);
2824                                 btrfs_tree_read_lock(b);
2825                                 btrfs_clear_path_blocking(p, b,
2826                                                           BTRFS_READ_LOCK);
2827                         }
2828                         b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
2829                         if (!b) {
2830                                 ret = -ENOMEM;
2831                                 goto done;
2832                         }
2833                         p->locks[level] = BTRFS_READ_LOCK;
2834                         p->nodes[level] = b;
2835                 } else {
2836                         p->slots[level] = slot;
2837                         unlock_up(p, level, lowest_unlock, 0, NULL);
2838                         goto done;
2839                 }
2840         }
2841         ret = 1;
2842 done:
2843         if (!p->leave_spinning)
2844                 btrfs_set_path_blocking(p);
2845         if (ret < 0)
2846                 btrfs_release_path(p);
2847
2848         return ret;
2849 }
2850
2851 /*
2852  * helper to use instead of search slot if no exact match is needed but
2853  * instead the next or previous item should be returned.
2854  * When find_higher is true, the next higher item is returned, the next lower
2855  * otherwise.
2856  * When return_any and find_higher are both true, and no higher item is found,
2857  * return the next lower instead.
2858  * When return_any is true and find_higher is false, and no lower item is found,
2859  * return the next higher instead.
2860  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2861  * < 0 on error
2862  */
2863 int btrfs_search_slot_for_read(struct btrfs_root *root,
2864                                struct btrfs_key *key, struct btrfs_path *p,
2865                                int find_higher, int return_any)
2866 {
2867         int ret;
2868         struct extent_buffer *leaf;
2869
2870 again:
2871         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2872         if (ret <= 0)
2873                 return ret;
2874         /*
2875          * a return value of 1 means the path is at the position where the
2876          * item should be inserted. Normally this is the next bigger item,
2877          * but in case the previous item is the last in a leaf, path points
2878          * to the first free slot in the previous leaf, i.e. at an invalid
2879          * item.
2880          */
2881         leaf = p->nodes[0];
2882
2883         if (find_higher) {
2884                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2885                         ret = btrfs_next_leaf(root, p);
2886                         if (ret <= 0)
2887                                 return ret;
2888                         if (!return_any)
2889                                 return 1;
2890                         /*
2891                          * no higher item found, return the next
2892                          * lower instead
2893                          */
2894                         return_any = 0;
2895                         find_higher = 0;
2896                         btrfs_release_path(p);
2897                         goto again;
2898                 }
2899         } else {
2900                 if (p->slots[0] == 0) {
2901                         ret = btrfs_prev_leaf(root, p);
2902                         if (ret < 0)
2903                                 return ret;
2904                         if (!ret) {
2905                                 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2906                                 return 0;
2907                         }
2908                         if (!return_any)
2909                                 return 1;
2910                         /*
2911                          * no lower item found, return the next
2912                          * higher instead
2913                          */
2914                         return_any = 0;
2915                         find_higher = 1;
2916                         btrfs_release_path(p);
2917                         goto again;
2918                 } else {
2919                         --p->slots[0];
2920                 }
2921         }
2922         return 0;
2923 }
2924
2925 /*
2926  * adjust the pointers going up the tree, starting at level
2927  * making sure the right key of each node is points to 'key'.
2928  * This is used after shifting pointers to the left, so it stops
2929  * fixing up pointers when a given leaf/node is not in slot 0 of the
2930  * higher levels
2931  *
2932  */
2933 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
2934                            struct btrfs_disk_key *key, int level)
2935 {
2936         int i;
2937         struct extent_buffer *t;
2938
2939         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2940                 int tslot = path->slots[i];
2941                 if (!path->nodes[i])
2942                         break;
2943                 t = path->nodes[i];
2944                 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
2945                 btrfs_set_node_key(t, key, tslot);
2946                 btrfs_mark_buffer_dirty(path->nodes[i]);
2947                 if (tslot != 0)
2948                         break;
2949         }
2950 }
2951
2952 /*
2953  * update item key.
2954  *
2955  * This function isn't completely safe. It's the caller's responsibility
2956  * that the new key won't break the order
2957  */
2958 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
2959                              struct btrfs_key *new_key)
2960 {
2961         struct btrfs_disk_key disk_key;
2962         struct extent_buffer *eb;
2963         int slot;
2964
2965         eb = path->nodes[0];
2966         slot = path->slots[0];
2967         if (slot > 0) {
2968                 btrfs_item_key(eb, &disk_key, slot - 1);
2969                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2970         }
2971         if (slot < btrfs_header_nritems(eb) - 1) {
2972                 btrfs_item_key(eb, &disk_key, slot + 1);
2973                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2974         }
2975
2976         btrfs_cpu_key_to_disk(&disk_key, new_key);
2977         btrfs_set_item_key(eb, &disk_key, slot);
2978         btrfs_mark_buffer_dirty(eb);
2979         if (slot == 0)
2980                 fixup_low_keys(root, path, &disk_key, 1);
2981 }
2982
2983 /*
2984  * try to push data from one node into the next node left in the
2985  * tree.
2986  *
2987  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2988  * error, and > 0 if there was no room in the left hand block.
2989  */
2990 static int push_node_left(struct btrfs_trans_handle *trans,
2991                           struct btrfs_root *root, struct extent_buffer *dst,
2992                           struct extent_buffer *src, int empty)
2993 {
2994         int push_items = 0;
2995         int src_nritems;
2996         int dst_nritems;
2997         int ret = 0;
2998
2999         src_nritems = btrfs_header_nritems(src);
3000         dst_nritems = btrfs_header_nritems(dst);
3001         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3002         WARN_ON(btrfs_header_generation(src) != trans->transid);
3003         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3004
3005         if (!empty && src_nritems <= 8)
3006                 return 1;
3007
3008         if (push_items <= 0)
3009                 return 1;
3010
3011         if (empty) {
3012                 push_items = min(src_nritems, push_items);
3013                 if (push_items < src_nritems) {
3014                         /* leave at least 8 pointers in the node if
3015                          * we aren't going to empty it
3016                          */
3017                         if (src_nritems - push_items < 8) {
3018                                 if (push_items <= 8)
3019                                         return 1;
3020                                 push_items -= 8;
3021                         }
3022                 }
3023         } else
3024                 push_items = min(src_nritems - 8, push_items);
3025
3026         tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3027                              push_items);
3028         copy_extent_buffer(dst, src,
3029                            btrfs_node_key_ptr_offset(dst_nritems),
3030                            btrfs_node_key_ptr_offset(0),
3031                            push_items * sizeof(struct btrfs_key_ptr));
3032
3033         if (push_items < src_nritems) {
3034                 /*
3035                  * don't call tree_mod_log_eb_move here, key removal was already
3036                  * fully logged by tree_mod_log_eb_copy above.
3037                  */
3038                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3039                                       btrfs_node_key_ptr_offset(push_items),
3040                                       (src_nritems - push_items) *
3041                                       sizeof(struct btrfs_key_ptr));
3042         }
3043         btrfs_set_header_nritems(src, src_nritems - push_items);
3044         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3045         btrfs_mark_buffer_dirty(src);
3046         btrfs_mark_buffer_dirty(dst);
3047
3048         return ret;
3049 }
3050
3051 /*
3052  * try to push data from one node into the next node right in the
3053  * tree.
3054  *
3055  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3056  * error, and > 0 if there was no room in the right hand block.
3057  *
3058  * this will  only push up to 1/2 the contents of the left node over
3059  */
3060 static int balance_node_right(struct btrfs_trans_handle *trans,
3061                               struct btrfs_root *root,
3062                               struct extent_buffer *dst,
3063                               struct extent_buffer *src)
3064 {
3065         int push_items = 0;
3066         int max_push;
3067         int src_nritems;
3068         int dst_nritems;
3069         int ret = 0;
3070
3071         WARN_ON(btrfs_header_generation(src) != trans->transid);
3072         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3073
3074         src_nritems = btrfs_header_nritems(src);
3075         dst_nritems = btrfs_header_nritems(dst);
3076         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3077         if (push_items <= 0)
3078                 return 1;
3079
3080         if (src_nritems < 4)
3081                 return 1;
3082
3083         max_push = src_nritems / 2 + 1;
3084         /* don't try to empty the node */
3085         if (max_push >= src_nritems)
3086                 return 1;
3087
3088         if (max_push < push_items)
3089                 push_items = max_push;
3090
3091         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3092         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3093                                       btrfs_node_key_ptr_offset(0),
3094                                       (dst_nritems) *
3095                                       sizeof(struct btrfs_key_ptr));
3096
3097         tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3098                              src_nritems - push_items, push_items);
3099         copy_extent_buffer(dst, src,
3100                            btrfs_node_key_ptr_offset(0),
3101                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3102                            push_items * sizeof(struct btrfs_key_ptr));
3103
3104         btrfs_set_header_nritems(src, src_nritems - push_items);
3105         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3106
3107         btrfs_mark_buffer_dirty(src);
3108         btrfs_mark_buffer_dirty(dst);
3109
3110         return ret;
3111 }
3112
3113 /*
3114  * helper function to insert a new root level in the tree.
3115  * A new node is allocated, and a single item is inserted to
3116  * point to the existing root
3117  *
3118  * returns zero on success or < 0 on failure.
3119  */
3120 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3121                            struct btrfs_root *root,
3122                            struct btrfs_path *path, int level)
3123 {
3124         u64 lower_gen;
3125         struct extent_buffer *lower;
3126         struct extent_buffer *c;
3127         struct extent_buffer *old;
3128         struct btrfs_disk_key lower_key;
3129
3130         BUG_ON(path->nodes[level]);
3131         BUG_ON(path->nodes[level-1] != root->node);
3132
3133         lower = path->nodes[level-1];
3134         if (level == 1)
3135                 btrfs_item_key(lower, &lower_key, 0);
3136         else
3137                 btrfs_node_key(lower, &lower_key, 0);
3138
3139         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3140                                    root->root_key.objectid, &lower_key,
3141                                    level, root->node->start, 0);
3142         if (IS_ERR(c))
3143                 return PTR_ERR(c);
3144
3145         root_add_used(root, root->nodesize);
3146
3147         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3148         btrfs_set_header_nritems(c, 1);
3149         btrfs_set_header_level(c, level);
3150         btrfs_set_header_bytenr(c, c->start);
3151         btrfs_set_header_generation(c, trans->transid);
3152         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3153         btrfs_set_header_owner(c, root->root_key.objectid);
3154
3155         write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3156                             BTRFS_FSID_SIZE);
3157
3158         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3159                             btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3160
3161         btrfs_set_node_key(c, &lower_key, 0);
3162         btrfs_set_node_blockptr(c, 0, lower->start);
3163         lower_gen = btrfs_header_generation(lower);
3164         WARN_ON(lower_gen != trans->transid);
3165
3166         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3167
3168         btrfs_mark_buffer_dirty(c);
3169
3170         old = root->node;
3171         tree_mod_log_set_root_pointer(root, c, 0);
3172         rcu_assign_pointer(root->node, c);
3173
3174         /* the super has an extra ref to root->node */
3175         free_extent_buffer(old);
3176
3177         add_root_to_dirty_list(root);
3178         extent_buffer_get(c);
3179         path->nodes[level] = c;
3180         path->locks[level] = BTRFS_WRITE_LOCK;
3181         path->slots[level] = 0;
3182         return 0;
3183 }
3184
3185 /*
3186  * worker function to insert a single pointer in a node.
3187  * the node should have enough room for the pointer already
3188  *
3189  * slot and level indicate where you want the key to go, and
3190  * blocknr is the block the key points to.
3191  */
3192 static void insert_ptr(struct btrfs_trans_handle *trans,
3193                        struct btrfs_root *root, struct btrfs_path *path,
3194                        struct btrfs_disk_key *key, u64 bytenr,
3195                        int slot, int level)
3196 {
3197         struct extent_buffer *lower;
3198         int nritems;
3199         int ret;
3200
3201         BUG_ON(!path->nodes[level]);
3202         btrfs_assert_tree_locked(path->nodes[level]);
3203         lower = path->nodes[level];
3204         nritems = btrfs_header_nritems(lower);
3205         BUG_ON(slot > nritems);
3206         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3207         if (slot != nritems) {
3208                 if (level)
3209                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3210                                              slot, nritems - slot);
3211                 memmove_extent_buffer(lower,
3212                               btrfs_node_key_ptr_offset(slot + 1),
3213                               btrfs_node_key_ptr_offset(slot),
3214                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3215         }
3216         if (level) {
3217                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3218                                               MOD_LOG_KEY_ADD, GFP_NOFS);
3219                 BUG_ON(ret < 0);
3220         }
3221         btrfs_set_node_key(lower, key, slot);
3222         btrfs_set_node_blockptr(lower, slot, bytenr);
3223         WARN_ON(trans->transid == 0);
3224         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3225         btrfs_set_header_nritems(lower, nritems + 1);
3226         btrfs_mark_buffer_dirty(lower);
3227 }
3228
3229 /*
3230  * split the node at the specified level in path in two.
3231  * The path is corrected to point to the appropriate node after the split
3232  *
3233  * Before splitting this tries to make some room in the node by pushing
3234  * left and right, if either one works, it returns right away.
3235  *
3236  * returns 0 on success and < 0 on failure
3237  */
3238 static noinline int split_node(struct btrfs_trans_handle *trans,
3239                                struct btrfs_root *root,
3240                                struct btrfs_path *path, int level)
3241 {
3242         struct extent_buffer *c;
3243         struct extent_buffer *split;
3244         struct btrfs_disk_key disk_key;
3245         int mid;
3246         int ret;
3247         u32 c_nritems;
3248
3249         c = path->nodes[level];
3250         WARN_ON(btrfs_header_generation(c) != trans->transid);
3251         if (c == root->node) {
3252                 /*
3253                  * trying to split the root, lets make a new one
3254                  *
3255                  * tree mod log: We don't log_removal old root in
3256                  * insert_new_root, because that root buffer will be kept as a
3257                  * normal node. We are going to log removal of half of the
3258                  * elements below with tree_mod_log_eb_copy. We're holding a
3259                  * tree lock on the buffer, which is why we cannot race with
3260                  * other tree_mod_log users.
3261                  */
3262                 ret = insert_new_root(trans, root, path, level + 1);
3263                 if (ret)
3264                         return ret;
3265         } else {
3266                 ret = push_nodes_for_insert(trans, root, path, level);
3267                 c = path->nodes[level];
3268                 if (!ret && btrfs_header_nritems(c) <
3269                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3270                         return 0;
3271                 if (ret < 0)
3272                         return ret;
3273         }
3274
3275         c_nritems = btrfs_header_nritems(c);
3276         mid = (c_nritems + 1) / 2;
3277         btrfs_node_key(c, &disk_key, mid);
3278
3279         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3280                                         root->root_key.objectid,
3281                                         &disk_key, level, c->start, 0);
3282         if (IS_ERR(split))
3283                 return PTR_ERR(split);
3284
3285         root_add_used(root, root->nodesize);
3286
3287         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3288         btrfs_set_header_level(split, btrfs_header_level(c));
3289         btrfs_set_header_bytenr(split, split->start);
3290         btrfs_set_header_generation(split, trans->transid);
3291         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3292         btrfs_set_header_owner(split, root->root_key.objectid);
3293         write_extent_buffer(split, root->fs_info->fsid,
3294                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
3295         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3296                             btrfs_header_chunk_tree_uuid(split),
3297                             BTRFS_UUID_SIZE);
3298
3299         tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3300         copy_extent_buffer(split, c,
3301                            btrfs_node_key_ptr_offset(0),
3302                            btrfs_node_key_ptr_offset(mid),
3303                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3304         btrfs_set_header_nritems(split, c_nritems - mid);
3305         btrfs_set_header_nritems(c, mid);
3306         ret = 0;
3307
3308         btrfs_mark_buffer_dirty(c);
3309         btrfs_mark_buffer_dirty(split);
3310
3311         insert_ptr(trans, root, path, &disk_key, split->start,
3312                    path->slots[level + 1] + 1, level + 1);
3313
3314         if (path->slots[level] >= mid) {
3315                 path->slots[level] -= mid;
3316                 btrfs_tree_unlock(c);
3317                 free_extent_buffer(c);
3318                 path->nodes[level] = split;
3319                 path->slots[level + 1] += 1;
3320         } else {
3321                 btrfs_tree_unlock(split);
3322                 free_extent_buffer(split);
3323         }
3324         return ret;
3325 }
3326
3327 /*
3328  * how many bytes are required to store the items in a leaf.  start
3329  * and nr indicate which items in the leaf to check.  This totals up the
3330  * space used both by the item structs and the item data
3331  */
3332 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3333 {
3334         struct btrfs_item *start_item;
3335         struct btrfs_item *end_item;
3336         struct btrfs_map_token token;
3337         int data_len;
3338         int nritems = btrfs_header_nritems(l);
3339         int end = min(nritems, start + nr) - 1;
3340
3341         if (!nr)
3342                 return 0;
3343         btrfs_init_map_token(&token);
3344         start_item = btrfs_item_nr(start);
3345         end_item = btrfs_item_nr(end);
3346         data_len = btrfs_token_item_offset(l, start_item, &token) +
3347                 btrfs_token_item_size(l, start_item, &token);
3348         data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3349         data_len += sizeof(struct btrfs_item) * nr;
3350         WARN_ON(data_len < 0);
3351         return data_len;
3352 }
3353
3354 /*
3355  * The space between the end of the leaf items and
3356  * the start of the leaf data.  IOW, how much room
3357  * the leaf has left for both items and data
3358  */
3359 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3360                                    struct extent_buffer *leaf)
3361 {
3362         int nritems = btrfs_header_nritems(leaf);
3363         int ret;
3364         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3365         if (ret < 0) {
3366                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3367                        "used %d nritems %d\n",
3368                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3369                        leaf_space_used(leaf, 0, nritems), nritems);
3370         }
3371         return ret;
3372 }
3373
3374 /*
3375  * min slot controls the lowest index we're willing to push to the
3376  * right.  We'll push up to and including min_slot, but no lower
3377  */
3378 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3379                                       struct btrfs_root *root,
3380                                       struct btrfs_path *path,
3381                                       int data_size, int empty,
3382                                       struct extent_buffer *right,
3383                                       int free_space, u32 left_nritems,
3384                                       u32 min_slot)
3385 {
3386         struct extent_buffer *left = path->nodes[0];
3387         struct extent_buffer *upper = path->nodes[1];
3388         struct btrfs_map_token token;
3389         struct btrfs_disk_key disk_key;
3390         int slot;
3391         u32 i;
3392         int push_space = 0;
3393         int push_items = 0;
3394         struct btrfs_item *item;
3395         u32 nr;
3396         u32 right_nritems;
3397         u32 data_end;
3398         u32 this_item_size;
3399
3400         btrfs_init_map_token(&token);
3401
3402         if (empty)
3403                 nr = 0;
3404         else
3405                 nr = max_t(u32, 1, min_slot);
3406
3407         if (path->slots[0] >= left_nritems)
3408                 push_space += data_size;
3409
3410         slot = path->slots[1];
3411         i = left_nritems - 1;
3412         while (i >= nr) {
3413                 item = btrfs_item_nr(i);
3414
3415                 if (!empty && push_items > 0) {
3416                         if (path->slots[0] > i)
3417                                 break;
3418                         if (path->slots[0] == i) {
3419                                 int space = btrfs_leaf_free_space(root, left);
3420                                 if (space + push_space * 2 > free_space)
3421                                         break;
3422                         }
3423                 }
3424
3425                 if (path->slots[0] == i)
3426                         push_space += data_size;
3427
3428                 this_item_size = btrfs_item_size(left, item);
3429                 if (this_item_size + sizeof(*item) + push_space > free_space)
3430                         break;
3431
3432                 push_items++;
3433                 push_space += this_item_size + sizeof(*item);
3434                 if (i == 0)
3435                         break;
3436                 i--;
3437         }
3438
3439         if (push_items == 0)
3440                 goto out_unlock;
3441
3442         WARN_ON(!empty && push_items == left_nritems);
3443
3444         /* push left to right */
3445         right_nritems = btrfs_header_nritems(right);
3446
3447         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3448         push_space -= leaf_data_end(root, left);
3449
3450         /* make room in the right data area */
3451         data_end = leaf_data_end(root, right);
3452         memmove_extent_buffer(right,
3453                               btrfs_leaf_data(right) + data_end - push_space,
3454                               btrfs_leaf_data(right) + data_end,
3455                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3456
3457         /* copy from the left data area */
3458         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3459                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3460                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3461                      push_space);
3462
3463         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3464                               btrfs_item_nr_offset(0),
3465                               right_nritems * sizeof(struct btrfs_item));
3466
3467         /* copy the items from left to right */
3468         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3469                    btrfs_item_nr_offset(left_nritems - push_items),
3470                    push_items * sizeof(struct btrfs_item));
3471
3472         /* update the item pointers */
3473         right_nritems += push_items;
3474         btrfs_set_header_nritems(right, right_nritems);
3475         push_space = BTRFS_LEAF_DATA_SIZE(root);
3476         for (i = 0; i < right_nritems; i++) {
3477                 item = btrfs_item_nr(i);
3478                 push_space -= btrfs_token_item_size(right, item, &token);
3479                 btrfs_set_token_item_offset(right, item, push_space, &token);
3480         }
3481
3482         left_nritems -= push_items;
3483         btrfs_set_header_nritems(left, left_nritems);
3484
3485         if (left_nritems)
3486                 btrfs_mark_buffer_dirty(left);
3487         else
3488                 clean_tree_block(trans, root, left);
3489
3490         btrfs_mark_buffer_dirty(right);
3491
3492         btrfs_item_key(right, &disk_key, 0);
3493         btrfs_set_node_key(upper, &disk_key, slot + 1);
3494         btrfs_mark_buffer_dirty(upper);
3495
3496         /* then fixup the leaf pointer in the path */
3497         if (path->slots[0] >= left_nritems) {
3498                 path->slots[0] -= left_nritems;
3499                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3500                         clean_tree_block(trans, root, path->nodes[0]);
3501                 btrfs_tree_unlock(path->nodes[0]);
3502                 free_extent_buffer(path->nodes[0]);
3503                 path->nodes[0] = right;
3504                 path->slots[1] += 1;
3505         } else {
3506                 btrfs_tree_unlock(right);
3507                 free_extent_buffer(right);
3508         }
3509         return 0;
3510
3511 out_unlock:
3512         btrfs_tree_unlock(right);
3513         free_extent_buffer(right);
3514         return 1;
3515 }
3516
3517 /*
3518  * push some data in the path leaf to the right, trying to free up at
3519  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3520  *
3521  * returns 1 if the push failed because the other node didn't have enough
3522  * room, 0 if everything worked out and < 0 if there were major errors.
3523  *
3524  * this will push starting from min_slot to the end of the leaf.  It won't
3525  * push any slot lower than min_slot
3526  */
3527 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3528                            *root, struct btrfs_path *path,
3529                            int min_data_size, int data_size,
3530                            int empty, u32 min_slot)
3531 {
3532         struct extent_buffer *left = path->nodes[0];
3533         struct extent_buffer *right;
3534         struct extent_buffer *upper;
3535         int slot;
3536         int free_space;
3537         u32 left_nritems;
3538         int ret;
3539
3540         if (!path->nodes[1])
3541                 return 1;
3542
3543         slot = path->slots[1];
3544         upper = path->nodes[1];
3545         if (slot >= btrfs_header_nritems(upper) - 1)
3546                 return 1;
3547
3548         btrfs_assert_tree_locked(path->nodes[1]);
3549
3550         right = read_node_slot(root, upper, slot + 1);
3551         if (right == NULL)
3552                 return 1;
3553
3554         btrfs_tree_lock(right);
3555         btrfs_set_lock_blocking(right);
3556
3557         free_space = btrfs_leaf_free_space(root, right);
3558         if (free_space < data_size)
3559                 goto out_unlock;
3560
3561         /* cow and double check */
3562         ret = btrfs_cow_block(trans, root, right, upper,
3563                               slot + 1, &right);
3564         if (ret)
3565                 goto out_unlock;
3566
3567         free_space = btrfs_leaf_free_space(root, right);
3568         if (free_space < data_size)
3569                 goto out_unlock;
3570
3571         left_nritems = btrfs_header_nritems(left);
3572         if (left_nritems == 0)
3573                 goto out_unlock;
3574
3575         return __push_leaf_right(trans, root, path, min_data_size, empty,
3576                                 right, free_space, left_nritems, min_slot);
3577 out_unlock:
3578         btrfs_tree_unlock(right);
3579         free_extent_buffer(right);
3580         return 1;
3581 }
3582
3583 /*
3584  * push some data in the path leaf to the left, trying to free up at
3585  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3586  *
3587  * max_slot can put a limit on how far into the leaf we'll push items.  The
3588  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3589  * items
3590  */
3591 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3592                                      struct btrfs_root *root,
3593                                      struct btrfs_path *path, int data_size,
3594                                      int empty, struct extent_buffer *left,
3595                                      int free_space, u32 right_nritems,
3596                                      u32 max_slot)
3597 {
3598         struct btrfs_disk_key disk_key;
3599         struct extent_buffer *right = path->nodes[0];
3600         int i;
3601         int push_space = 0;
3602         int push_items = 0;
3603         struct btrfs_item *item;
3604         u32 old_left_nritems;
3605         u32 nr;
3606         int ret = 0;
3607         u32 this_item_size;
3608         u32 old_left_item_size;
3609         struct btrfs_map_token token;
3610
3611         btrfs_init_map_token(&token);
3612
3613         if (empty)
3614                 nr = min(right_nritems, max_slot);
3615         else
3616                 nr = min(right_nritems - 1, max_slot);
3617
3618         for (i = 0; i < nr; i++) {
3619                 item = btrfs_item_nr(i);
3620
3621                 if (!empty && push_items > 0) {
3622                         if (path->slots[0] < i)
3623                                 break;
3624                         if (path->slots[0] == i) {
3625                                 int space = btrfs_leaf_free_space(root, right);
3626                                 if (space + push_space * 2 > free_space)
3627                                         break;
3628                         }
3629                 }
3630
3631                 if (path->slots[0] == i)
3632                         push_space += data_size;
3633
3634                 this_item_size = btrfs_item_size(right, item);
3635                 if (this_item_size + sizeof(*item) + push_space > free_space)
3636                         break;
3637
3638                 push_items++;
3639                 push_space += this_item_size + sizeof(*item);
3640         }
3641
3642         if (push_items == 0) {
3643                 ret = 1;
3644                 goto out;
3645         }
3646         if (!empty && push_items == btrfs_header_nritems(right))
3647                 WARN_ON(1);
3648
3649         /* push data from right to left */
3650         copy_extent_buffer(left, right,
3651                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3652                            btrfs_item_nr_offset(0),
3653                            push_items * sizeof(struct btrfs_item));
3654
3655         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3656                      btrfs_item_offset_nr(right, push_items - 1);
3657
3658         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3659                      leaf_data_end(root, left) - push_space,
3660                      btrfs_leaf_data(right) +
3661                      btrfs_item_offset_nr(right, push_items - 1),
3662                      push_space);
3663         old_left_nritems = btrfs_header_nritems(left);
3664         BUG_ON(old_left_nritems <= 0);
3665
3666         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3667         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3668                 u32 ioff;
3669
3670                 item = btrfs_item_nr(i);
3671
3672                 ioff = btrfs_token_item_offset(left, item, &token);
3673                 btrfs_set_token_item_offset(left, item,
3674                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3675                       &token);
3676         }
3677         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3678
3679         /* fixup right node */
3680         if (push_items > right_nritems)
3681                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3682                        right_nritems);
3683
3684         if (push_items < right_nritems) {
3685                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3686                                                   leaf_data_end(root, right);
3687                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3688                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3689                                       btrfs_leaf_data(right) +
3690                                       leaf_data_end(root, right), push_space);
3691
3692                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3693                               btrfs_item_nr_offset(push_items),
3694                              (btrfs_header_nritems(right) - push_items) *
3695                              sizeof(struct btrfs_item));
3696         }
3697         right_nritems -= push_items;
3698         btrfs_set_header_nritems(right, right_nritems);
3699         push_space = BTRFS_LEAF_DATA_SIZE(root);
3700         for (i = 0; i < right_nritems; i++) {
3701                 item = btrfs_item_nr(i);
3702
3703                 push_space = push_space - btrfs_token_item_size(right,
3704                                                                 item, &token);
3705                 btrfs_set_token_item_offset(right, item, push_space, &token);
3706         }
3707
3708         btrfs_mark_buffer_dirty(left);
3709         if (right_nritems)
3710                 btrfs_mark_buffer_dirty(right);
3711         else
3712                 clean_tree_block(trans, root, right);
3713
3714         btrfs_item_key(right, &disk_key, 0);
3715         fixup_low_keys(root, path, &disk_key, 1);
3716
3717         /* then fixup the leaf pointer in the path */
3718         if (path->slots[0] < push_items) {
3719                 path->slots[0] += old_left_nritems;
3720                 btrfs_tree_unlock(path->nodes[0]);
3721                 free_extent_buffer(path->nodes[0]);
3722                 path->nodes[0] = left;
3723                 path->slots[1] -= 1;
3724         } else {
3725                 btrfs_tree_unlock(left);
3726                 free_extent_buffer(left);
3727                 path->slots[0] -= push_items;
3728         }
3729         BUG_ON(path->slots[0] < 0);
3730         return ret;
3731 out:
3732         btrfs_tree_unlock(left);
3733         free_extent_buffer(left);
3734         return ret;
3735 }
3736
3737 /*
3738  * push some data in the path leaf to the left, trying to free up at
3739  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3740  *
3741  * max_slot can put a limit on how far into the leaf we'll push items.  The
3742  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3743  * items
3744  */
3745 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3746                           *root, struct btrfs_path *path, int min_data_size,
3747                           int data_size, int empty, u32 max_slot)
3748 {
3749         struct extent_buffer *right = path->nodes[0];
3750         struct extent_buffer *left;
3751         int slot;
3752         int free_space;
3753         u32 right_nritems;
3754         int ret = 0;
3755
3756         slot = path->slots[1];
3757         if (slot == 0)
3758                 return 1;
3759         if (!path->nodes[1])
3760                 return 1;
3761
3762         right_nritems = btrfs_header_nritems(right);
3763         if (right_nritems == 0)
3764                 return 1;
3765
3766         btrfs_assert_tree_locked(path->nodes[1]);
3767
3768         left = read_node_slot(root, path->nodes[1], slot - 1);
3769         if (left == NULL)
3770                 return 1;
3771
3772         btrfs_tree_lock(left);
3773         btrfs_set_lock_blocking(left);
3774
3775         free_space = btrfs_leaf_free_space(root, left);
3776         if (free_space < data_size) {
3777                 ret = 1;
3778                 goto out;
3779         }
3780
3781         /* cow and double check */
3782         ret = btrfs_cow_block(trans, root, left,
3783                               path->nodes[1], slot - 1, &left);
3784         if (ret) {
3785                 /* we hit -ENOSPC, but it isn't fatal here */
3786                 if (ret == -ENOSPC)
3787                         ret = 1;
3788                 goto out;
3789         }
3790
3791         free_space = btrfs_leaf_free_space(root, left);
3792         if (free_space < data_size) {
3793                 ret = 1;
3794                 goto out;
3795         }
3796
3797         return __push_leaf_left(trans, root, path, min_data_size,
3798                                empty, left, free_space, right_nritems,
3799                                max_slot);
3800 out:
3801         btrfs_tree_unlock(left);
3802         free_extent_buffer(left);
3803         return ret;
3804 }
3805
3806 /*
3807  * split the path's leaf in two, making sure there is at least data_size
3808  * available for the resulting leaf level of the path.
3809  */
3810 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3811                                     struct btrfs_root *root,
3812                                     struct btrfs_path *path,
3813                                     struct extent_buffer *l,
3814                                     struct extent_buffer *right,
3815                                     int slot, int mid, int nritems)
3816 {
3817         int data_copy_size;
3818         int rt_data_off;
3819         int i;
3820         struct btrfs_disk_key disk_key;
3821         struct btrfs_map_token token;
3822
3823         btrfs_init_map_token(&token);
3824
3825         nritems = nritems - mid;
3826         btrfs_set_header_nritems(right, nritems);
3827         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3828
3829         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3830                            btrfs_item_nr_offset(mid),
3831                            nritems * sizeof(struct btrfs_item));
3832
3833         copy_extent_buffer(right, l,
3834                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3835                      data_copy_size, btrfs_leaf_data(l) +
3836                      leaf_data_end(root, l), data_copy_size);
3837
3838         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3839                       btrfs_item_end_nr(l, mid);
3840
3841         for (i = 0; i < nritems; i++) {
3842                 struct btrfs_item *item = btrfs_item_nr(i);
3843                 u32 ioff;
3844
3845                 ioff = btrfs_token_item_offset(right, item, &token);
3846                 btrfs_set_token_item_offset(right, item,
3847                                             ioff + rt_data_off, &token);
3848         }
3849
3850         btrfs_set_header_nritems(l, mid);
3851         btrfs_item_key(right, &disk_key, 0);
3852         insert_ptr(trans, root, path, &disk_key, right->start,
3853                    path->slots[1] + 1, 1);
3854
3855         btrfs_mark_buffer_dirty(right);
3856         btrfs_mark_buffer_dirty(l);
3857         BUG_ON(path->slots[0] != slot);
3858
3859         if (mid <= slot) {
3860                 btrfs_tree_unlock(path->nodes[0]);
3861                 free_extent_buffer(path->nodes[0]);
3862                 path->nodes[0] = right;
3863                 path->slots[0] -= mid;
3864                 path->slots[1] += 1;
3865         } else {
3866                 btrfs_tree_unlock(right);
3867                 free_extent_buffer(right);
3868         }
3869
3870         BUG_ON(path->slots[0] < 0);
3871 }
3872
3873 /*
3874  * double splits happen when we need to insert a big item in the middle
3875  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3876  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3877  *          A                 B                 C
3878  *
3879  * We avoid this by trying to push the items on either side of our target
3880  * into the adjacent leaves.  If all goes well we can avoid the double split
3881  * completely.
3882  */
3883 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3884                                           struct btrfs_root *root,
3885                                           struct btrfs_path *path,
3886                                           int data_size)
3887 {
3888         int ret;
3889         int progress = 0;
3890         int slot;
3891         u32 nritems;
3892
3893         slot = path->slots[0];
3894
3895         /*
3896          * try to push all the items after our slot into the
3897          * right leaf
3898          */
3899         ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3900         if (ret < 0)
3901                 return ret;
3902
3903         if (ret == 0)
3904                 progress++;
3905
3906         nritems = btrfs_header_nritems(path->nodes[0]);
3907         /*
3908          * our goal is to get our slot at the start or end of a leaf.  If
3909          * we've done so we're done
3910          */
3911         if (path->slots[0] == 0 || path->slots[0] == nritems)
3912                 return 0;
3913
3914         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3915                 return 0;
3916
3917         /* try to push all the items before our slot into the next leaf */
3918         slot = path->slots[0];
3919         ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3920         if (ret < 0)
3921                 return ret;
3922
3923         if (ret == 0)
3924                 progress++;
3925
3926         if (progress)
3927                 return 0;
3928         return 1;
3929 }
3930
3931 /*
3932  * split the path's leaf in two, making sure there is at least data_size
3933  * available for the resulting leaf level of the path.
3934  *
3935  * returns 0 if all went well and < 0 on failure.
3936  */
3937 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3938                                struct btrfs_root *root,
3939                                struct btrfs_key *ins_key,
3940                                struct btrfs_path *path, int data_size,
3941                                int extend)
3942 {
3943         struct btrfs_disk_key disk_key;
3944         struct extent_buffer *l;
3945         u32 nritems;
3946         int mid;
3947         int slot;
3948         struct extent_buffer *right;
3949         int ret = 0;
3950         int wret;
3951         int split;
3952         int num_doubles = 0;
3953         int tried_avoid_double = 0;
3954
3955         l = path->nodes[0];
3956         slot = path->slots[0];
3957         if (extend && data_size + btrfs_item_size_nr(l, slot) +
3958             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3959                 return -EOVERFLOW;
3960
3961         /* first try to make some room by pushing left and right */
3962         if (data_size && path->nodes[1]) {
3963                 wret = push_leaf_right(trans, root, path, data_size,
3964                                        data_size, 0, 0);
3965                 if (wret < 0)
3966                         return wret;
3967                 if (wret) {
3968                         wret = push_leaf_left(trans, root, path, data_size,
3969                                               data_size, 0, (u32)-1);
3970                         if (wret < 0)
3971                                 return wret;
3972                 }
3973                 l = path->nodes[0];
3974
3975                 /* did the pushes work? */
3976                 if (btrfs_leaf_free_space(root, l) >= data_size)
3977                         return 0;
3978         }
3979
3980         if (!path->nodes[1]) {
3981                 ret = insert_new_root(trans, root, path, 1);
3982                 if (ret)
3983                         return ret;
3984         }
3985 again:
3986         split = 1;
3987         l = path->nodes[0];
3988         slot = path->slots[0];
3989         nritems = btrfs_header_nritems(l);
3990         mid = (nritems + 1) / 2;
3991
3992         if (mid <= slot) {
3993                 if (nritems == 1 ||
3994                     leaf_space_used(l, mid, nritems - mid) + data_size >
3995                         BTRFS_LEAF_DATA_SIZE(root)) {
3996                         if (slot >= nritems) {
3997                                 split = 0;
3998                         } else {
3999                                 mid = slot;
4000                                 if (mid != nritems &&
4001                                     leaf_space_used(l, mid, nritems - mid) +
4002                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4003                                         if (data_size && !tried_avoid_double)
4004                                                 goto push_for_double;
4005                                         split = 2;
4006                                 }
4007                         }
4008                 }
4009         } else {
4010                 if (leaf_space_used(l, 0, mid) + data_size >
4011                         BTRFS_LEAF_DATA_SIZE(root)) {
4012                         if (!extend && data_size && slot == 0) {
4013                                 split = 0;
4014                         } else if ((extend || !data_size) && slot == 0) {
4015                                 mid = 1;
4016                         } else {
4017                                 mid = slot;
4018                                 if (mid != nritems &&
4019                                     leaf_space_used(l, mid, nritems - mid) +
4020                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4021                                         if (data_size && !tried_avoid_double)
4022                                                 goto push_for_double;
4023                                         split = 2 ;
4024                                 }
4025                         }
4026                 }
4027         }
4028
4029         if (split == 0)
4030                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4031         else
4032                 btrfs_item_key(l, &disk_key, mid);
4033
4034         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4035                                         root->root_key.objectid,
4036                                         &disk_key, 0, l->start, 0);
4037         if (IS_ERR(right))
4038                 return PTR_ERR(right);
4039
4040         root_add_used(root, root->leafsize);
4041
4042         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4043         btrfs_set_header_bytenr(right, right->start);
4044         btrfs_set_header_generation(right, trans->transid);
4045         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4046         btrfs_set_header_owner(right, root->root_key.objectid);
4047         btrfs_set_header_level(right, 0);
4048         write_extent_buffer(right, root->fs_info->fsid,
4049                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
4050
4051         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4052                             btrfs_header_chunk_tree_uuid(right),
4053                             BTRFS_UUID_SIZE);
4054
4055         if (split == 0) {
4056                 if (mid <= slot) {
4057                         btrfs_set_header_nritems(right, 0);
4058                         insert_ptr(trans, root, path, &disk_key, right->start,
4059                                    path->slots[1] + 1, 1);
4060                         btrfs_tree_unlock(path->nodes[0]);
4061                         free_extent_buffer(path->nodes[0]);
4062                         path->nodes[0] = right;
4063                         path->slots[0] = 0;
4064                         path->slots[1] += 1;
4065                 } else {
4066                         btrfs_set_header_nritems(right, 0);
4067                         insert_ptr(trans, root, path, &disk_key, right->start,
4068                                           path->slots[1], 1);
4069                         btrfs_tree_unlock(path->nodes[0]);
4070                         free_extent_buffer(path->nodes[0]);
4071                         path->nodes[0] = right;
4072                         path->slots[0] = 0;
4073                         if (path->slots[1] == 0)
4074                                 fixup_low_keys(root, path, &disk_key, 1);
4075                 }
4076                 btrfs_mark_buffer_dirty(right);
4077                 return ret;
4078         }
4079
4080         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4081
4082         if (split == 2) {
4083                 BUG_ON(num_doubles != 0);
4084                 num_doubles++;
4085                 goto again;
4086         }
4087
4088         return 0;
4089
4090 push_for_double:
4091         push_for_double_split(trans, root, path, data_size);
4092         tried_avoid_double = 1;
4093         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4094                 return 0;
4095         goto again;
4096 }
4097
4098 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4099                                          struct btrfs_root *root,
4100                                          struct btrfs_path *path, int ins_len)
4101 {
4102         struct btrfs_key key;
4103         struct extent_buffer *leaf;
4104         struct btrfs_file_extent_item *fi;
4105         u64 extent_len = 0;
4106         u32 item_size;
4107         int ret;
4108
4109         leaf = path->nodes[0];
4110         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4111
4112         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4113                key.type != BTRFS_EXTENT_CSUM_KEY);
4114
4115         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4116                 return 0;
4117
4118         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4119         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4120                 fi = btrfs_item_ptr(leaf, path->slots[0],
4121                                     struct btrfs_file_extent_item);
4122                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4123         }
4124         btrfs_release_path(path);
4125
4126         path->keep_locks = 1;
4127         path->search_for_split = 1;
4128         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4129         path->search_for_split = 0;
4130         if (ret < 0)
4131                 goto err;
4132
4133         ret = -EAGAIN;
4134         leaf = path->nodes[0];
4135         /* if our item isn't there or got smaller, return now */
4136         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4137                 goto err;
4138
4139         /* the leaf has  changed, it now has room.  return now */
4140         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4141                 goto err;
4142
4143         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4144                 fi = btrfs_item_ptr(leaf, path->slots[0],
4145                                     struct btrfs_file_extent_item);
4146                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4147                         goto err;
4148         }
4149
4150         btrfs_set_path_blocking(path);
4151         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4152         if (ret)
4153                 goto err;
4154
4155         path->keep_locks = 0;
4156         btrfs_unlock_up_safe(path, 1);
4157         return 0;
4158 err:
4159         path->keep_locks = 0;
4160         return ret;
4161 }
4162
4163 static noinline int split_item(struct btrfs_trans_handle *trans,
4164                                struct btrfs_root *root,
4165                                struct btrfs_path *path,
4166                                struct btrfs_key *new_key,
4167                                unsigned long split_offset)
4168 {
4169         struct extent_buffer *leaf;
4170         struct btrfs_item *item;
4171         struct btrfs_item *new_item;
4172         int slot;
4173         char *buf;
4174         u32 nritems;
4175         u32 item_size;
4176         u32 orig_offset;
4177         struct btrfs_disk_key disk_key;
4178
4179         leaf = path->nodes[0];
4180         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4181
4182         btrfs_set_path_blocking(path);
4183
4184         item = btrfs_item_nr(path->slots[0]);
4185         orig_offset = btrfs_item_offset(leaf, item);
4186         item_size = btrfs_item_size(leaf, item);
4187
4188         buf = kmalloc(item_size, GFP_NOFS);
4189         if (!buf)
4190                 return -ENOMEM;
4191
4192         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4193                             path->slots[0]), item_size);
4194
4195         slot = path->slots[0] + 1;
4196         nritems = btrfs_header_nritems(leaf);
4197         if (slot != nritems) {
4198                 /* shift the items */
4199                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4200                                 btrfs_item_nr_offset(slot),
4201                                 (nritems - slot) * sizeof(struct btrfs_item));
4202         }
4203
4204         btrfs_cpu_key_to_disk(&disk_key, new_key);
4205         btrfs_set_item_key(leaf, &disk_key, slot);
4206
4207         new_item = btrfs_item_nr(slot);
4208
4209         btrfs_set_item_offset(leaf, new_item, orig_offset);
4210         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4211
4212         btrfs_set_item_offset(leaf, item,
4213                               orig_offset + item_size - split_offset);
4214         btrfs_set_item_size(leaf, item, split_offset);
4215
4216         btrfs_set_header_nritems(leaf, nritems + 1);
4217
4218         /* write the data for the start of the original item */
4219         write_extent_buffer(leaf, buf,
4220                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4221                             split_offset);
4222
4223         /* write the data for the new item */
4224         write_extent_buffer(leaf, buf + split_offset,
4225                             btrfs_item_ptr_offset(leaf, slot),
4226                             item_size - split_offset);
4227         btrfs_mark_buffer_dirty(leaf);
4228
4229         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4230         kfree(buf);
4231         return 0;
4232 }
4233
4234 /*
4235  * This function splits a single item into two items,
4236  * giving 'new_key' to the new item and splitting the
4237  * old one at split_offset (from the start of the item).
4238  *
4239  * The path may be released by this operation.  After
4240  * the split, the path is pointing to the old item.  The
4241  * new item is going to be in the same node as the old one.
4242  *
4243  * Note, the item being split must be smaller enough to live alone on
4244  * a tree block with room for one extra struct btrfs_item
4245  *
4246  * This allows us to split the item in place, keeping a lock on the
4247  * leaf the entire time.
4248  */
4249 int btrfs_split_item(struct btrfs_trans_handle *trans,
4250                      struct btrfs_root *root,
4251                      struct btrfs_path *path,
4252                      struct btrfs_key *new_key,
4253                      unsigned long split_offset)
4254 {
4255         int ret;
4256         ret = setup_leaf_for_split(trans, root, path,
4257                                    sizeof(struct btrfs_item));
4258         if (ret)
4259                 return ret;
4260
4261         ret = split_item(trans, root, path, new_key, split_offset);
4262         return ret;
4263 }
4264
4265 /*
4266  * This function duplicate a item, giving 'new_key' to the new item.
4267  * It guarantees both items live in the same tree leaf and the new item
4268  * is contiguous with the original item.
4269  *
4270  * This allows us to split file extent in place, keeping a lock on the
4271  * leaf the entire time.
4272  */
4273 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4274                          struct btrfs_root *root,
4275                          struct btrfs_path *path,
4276                          struct btrfs_key *new_key)
4277 {
4278         struct extent_buffer *leaf;
4279         int ret;
4280         u32 item_size;
4281
4282         leaf = path->nodes[0];
4283         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4284         ret = setup_leaf_for_split(trans, root, path,
4285                                    item_size + sizeof(struct btrfs_item));
4286         if (ret)
4287                 return ret;
4288
4289         path->slots[0]++;
4290         setup_items_for_insert(root, path, new_key, &item_size,
4291                                item_size, item_size +
4292                                sizeof(struct btrfs_item), 1);
4293         leaf = path->nodes[0];
4294         memcpy_extent_buffer(leaf,
4295                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4296                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4297                              item_size);
4298         return 0;
4299 }
4300
4301 /*
4302  * make the item pointed to by the path smaller.  new_size indicates
4303  * how small to make it, and from_end tells us if we just chop bytes
4304  * off the end of the item or if we shift the item to chop bytes off
4305  * the front.
4306  */
4307 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4308                          u32 new_size, int from_end)
4309 {
4310         int slot;
4311         struct extent_buffer *leaf;
4312         struct btrfs_item *item;
4313         u32 nritems;
4314         unsigned int data_end;
4315         unsigned int old_data_start;
4316         unsigned int old_size;
4317         unsigned int size_diff;
4318         int i;
4319         struct btrfs_map_token token;
4320
4321         btrfs_init_map_token(&token);
4322
4323         leaf = path->nodes[0];
4324         slot = path->slots[0];
4325
4326         old_size = btrfs_item_size_nr(leaf, slot);
4327         if (old_size == new_size)
4328                 return;
4329
4330         nritems = btrfs_header_nritems(leaf);
4331         data_end = leaf_data_end(root, leaf);
4332
4333         old_data_start = btrfs_item_offset_nr(leaf, slot);
4334
4335         size_diff = old_size - new_size;
4336
4337         BUG_ON(slot < 0);
4338         BUG_ON(slot >= nritems);
4339
4340         /*
4341          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4342          */
4343         /* first correct the data pointers */
4344         for (i = slot; i < nritems; i++) {
4345                 u32 ioff;
4346                 item = btrfs_item_nr(i);
4347
4348                 ioff = btrfs_token_item_offset(leaf, item, &token);
4349                 btrfs_set_token_item_offset(leaf, item,
4350                                             ioff + size_diff, &token);
4351         }
4352
4353         /* shift the data */
4354         if (from_end) {
4355                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4356                               data_end + size_diff, btrfs_leaf_data(leaf) +
4357                               data_end, old_data_start + new_size - data_end);
4358         } else {
4359                 struct btrfs_disk_key disk_key;
4360                 u64 offset;
4361
4362                 btrfs_item_key(leaf, &disk_key, slot);
4363
4364                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4365                         unsigned long ptr;
4366                         struct btrfs_file_extent_item *fi;
4367
4368                         fi = btrfs_item_ptr(leaf, slot,
4369                                             struct btrfs_file_extent_item);
4370                         fi = (struct btrfs_file_extent_item *)(
4371                              (unsigned long)fi - size_diff);
4372
4373                         if (btrfs_file_extent_type(leaf, fi) ==
4374                             BTRFS_FILE_EXTENT_INLINE) {
4375                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4376                                 memmove_extent_buffer(leaf, ptr,
4377                                       (unsigned long)fi,
4378                                       offsetof(struct btrfs_file_extent_item,
4379                                                  disk_bytenr));
4380                         }
4381                 }
4382
4383                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4384                               data_end + size_diff, btrfs_leaf_data(leaf) +
4385                               data_end, old_data_start - data_end);
4386
4387                 offset = btrfs_disk_key_offset(&disk_key);
4388                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4389                 btrfs_set_item_key(leaf, &disk_key, slot);
4390                 if (slot == 0)
4391                         fixup_low_keys(root, path, &disk_key, 1);
4392         }
4393
4394         item = btrfs_item_nr(slot);
4395         btrfs_set_item_size(leaf, item, new_size);
4396         btrfs_mark_buffer_dirty(leaf);
4397
4398         if (btrfs_leaf_free_space(root, leaf) < 0) {
4399                 btrfs_print_leaf(root, leaf);
4400                 BUG();
4401         }
4402 }
4403
4404 /*
4405  * make the item pointed to by the path bigger, data_size is the added size.
4406  */
4407 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4408                        u32 data_size)
4409 {
4410         int slot;
4411         struct extent_buffer *leaf;
4412         struct btrfs_item *item;
4413         u32 nritems;
4414         unsigned int data_end;
4415         unsigned int old_data;
4416         unsigned int old_size;
4417         int i;
4418         struct btrfs_map_token token;
4419
4420         btrfs_init_map_token(&token);
4421
4422         leaf = path->nodes[0];
4423
4424         nritems = btrfs_header_nritems(leaf);
4425         data_end = leaf_data_end(root, leaf);
4426
4427         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4428                 btrfs_print_leaf(root, leaf);
4429                 BUG();
4430         }
4431         slot = path->slots[0];
4432         old_data = btrfs_item_end_nr(leaf, slot);
4433
4434         BUG_ON(slot < 0);
4435         if (slot >= nritems) {
4436                 btrfs_print_leaf(root, leaf);
4437                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4438                        slot, nritems);
4439                 BUG_ON(1);
4440         }
4441
4442         /*
4443          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4444          */
4445         /* first correct the data pointers */
4446         for (i = slot; i < nritems; i++) {
4447                 u32 ioff;
4448                 item = btrfs_item_nr(i);
4449
4450                 ioff = btrfs_token_item_offset(leaf, item, &token);
4451                 btrfs_set_token_item_offset(leaf, item,
4452                                             ioff - data_size, &token);
4453         }
4454
4455         /* shift the data */
4456         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4457                       data_end - data_size, btrfs_leaf_data(leaf) +
4458                       data_end, old_data - data_end);
4459
4460         data_end = old_data;
4461         old_size = btrfs_item_size_nr(leaf, slot);
4462         item = btrfs_item_nr(slot);
4463         btrfs_set_item_size(leaf, item, old_size + data_size);
4464         btrfs_mark_buffer_dirty(leaf);
4465
4466         if (btrfs_leaf_free_space(root, leaf) < 0) {
4467                 btrfs_print_leaf(root, leaf);
4468                 BUG();
4469         }
4470 }
4471
4472 /*
4473  * this is a helper for btrfs_insert_empty_items, the main goal here is
4474  * to save stack depth by doing the bulk of the work in a function
4475  * that doesn't call btrfs_search_slot
4476  */
4477 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4478                             struct btrfs_key *cpu_key, u32 *data_size,
4479                             u32 total_data, u32 total_size, int nr)
4480 {
4481         struct btrfs_item *item;
4482         int i;
4483         u32 nritems;
4484         unsigned int data_end;
4485         struct btrfs_disk_key disk_key;
4486         struct extent_buffer *leaf;
4487         int slot;
4488         struct btrfs_map_token token;
4489
4490         btrfs_init_map_token(&token);
4491
4492         leaf = path->nodes[0];
4493         slot = path->slots[0];
4494
4495         nritems = btrfs_header_nritems(leaf);
4496         data_end = leaf_data_end(root, leaf);
4497
4498         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4499                 btrfs_print_leaf(root, leaf);
4500                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4501                        total_size, btrfs_leaf_free_space(root, leaf));
4502                 BUG();
4503         }
4504
4505         if (slot != nritems) {
4506                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4507
4508                 if (old_data < data_end) {
4509                         btrfs_print_leaf(root, leaf);
4510                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4511                                slot, old_data, data_end);
4512                         BUG_ON(1);
4513                 }
4514                 /*
4515                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4516                  */
4517                 /* first correct the data pointers */
4518                 for (i = slot; i < nritems; i++) {
4519                         u32 ioff;
4520
4521                         item = btrfs_item_nr( i);
4522                         ioff = btrfs_token_item_offset(leaf, item, &token);
4523                         btrfs_set_token_item_offset(leaf, item,
4524                                                     ioff - total_data, &token);
4525                 }
4526                 /* shift the items */
4527                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4528                               btrfs_item_nr_offset(slot),
4529                               (nritems - slot) * sizeof(struct btrfs_item));
4530
4531                 /* shift the data */
4532                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4533                               data_end - total_data, btrfs_leaf_data(leaf) +
4534                               data_end, old_data - data_end);
4535                 data_end = old_data;
4536         }
4537
4538         /* setup the item for the new data */
4539         for (i = 0; i < nr; i++) {
4540                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4541                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4542                 item = btrfs_item_nr(slot + i);
4543                 btrfs_set_token_item_offset(leaf, item,
4544                                             data_end - data_size[i], &token);
4545                 data_end -= data_size[i];
4546                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4547         }
4548
4549         btrfs_set_header_nritems(leaf, nritems + nr);
4550
4551         if (slot == 0) {
4552                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4553                 fixup_low_keys(root, path, &disk_key, 1);
4554         }
4555         btrfs_unlock_up_safe(path, 1);
4556         btrfs_mark_buffer_dirty(leaf);
4557
4558         if (btrfs_leaf_free_space(root, leaf) < 0) {
4559                 btrfs_print_leaf(root, leaf);
4560                 BUG();
4561         }
4562 }
4563
4564 /*
4565  * Given a key and some data, insert items into the tree.
4566  * This does all the path init required, making room in the tree if needed.
4567  */
4568 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4569                             struct btrfs_root *root,
4570                             struct btrfs_path *path,
4571                             struct btrfs_key *cpu_key, u32 *data_size,
4572                             int nr)
4573 {
4574         int ret = 0;
4575         int slot;
4576         int i;
4577         u32 total_size = 0;
4578         u32 total_data = 0;
4579
4580         for (i = 0; i < nr; i++)
4581                 total_data += data_size[i];
4582
4583         total_size = total_data + (nr * sizeof(struct btrfs_item));
4584         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4585         if (ret == 0)
4586                 return -EEXIST;
4587         if (ret < 0)
4588                 return ret;
4589
4590         slot = path->slots[0];
4591         BUG_ON(slot < 0);
4592
4593         setup_items_for_insert(root, path, cpu_key, data_size,
4594                                total_data, total_size, nr);
4595         return 0;
4596 }
4597
4598 /*
4599  * Given a key and some data, insert an item into the tree.
4600  * This does all the path init required, making room in the tree if needed.
4601  */
4602 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4603                       *root, struct btrfs_key *cpu_key, void *data, u32
4604                       data_size)
4605 {
4606         int ret = 0;
4607         struct btrfs_path *path;
4608         struct extent_buffer *leaf;
4609         unsigned long ptr;
4610
4611         path = btrfs_alloc_path();
4612         if (!path)
4613                 return -ENOMEM;
4614         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4615         if (!ret) {
4616                 leaf = path->nodes[0];
4617                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4618                 write_extent_buffer(leaf, data, ptr, data_size);
4619                 btrfs_mark_buffer_dirty(leaf);
4620         }
4621         btrfs_free_path(path);
4622         return ret;
4623 }
4624
4625 /*
4626  * delete the pointer from a given node.
4627  *
4628  * the tree should have been previously balanced so the deletion does not
4629  * empty a node.
4630  */
4631 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4632                     int level, int slot)
4633 {
4634         struct extent_buffer *parent = path->nodes[level];
4635         u32 nritems;
4636         int ret;
4637
4638         nritems = btrfs_header_nritems(parent);
4639         if (slot != nritems - 1) {
4640                 if (level)
4641                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4642                                              slot + 1, nritems - slot - 1);
4643                 memmove_extent_buffer(parent,
4644                               btrfs_node_key_ptr_offset(slot),
4645                               btrfs_node_key_ptr_offset(slot + 1),
4646                               sizeof(struct btrfs_key_ptr) *
4647                               (nritems - slot - 1));
4648         } else if (level) {
4649                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4650                                               MOD_LOG_KEY_REMOVE, GFP_NOFS);
4651                 BUG_ON(ret < 0);
4652         }
4653
4654         nritems--;
4655         btrfs_set_header_nritems(parent, nritems);
4656         if (nritems == 0 && parent == root->node) {
4657                 BUG_ON(btrfs_header_level(root->node) != 1);
4658                 /* just turn the root into a leaf and break */
4659                 btrfs_set_header_level(root->node, 0);
4660         } else if (slot == 0) {
4661                 struct btrfs_disk_key disk_key;
4662
4663                 btrfs_node_key(parent, &disk_key, 0);
4664                 fixup_low_keys(root, path, &disk_key, level + 1);
4665         }
4666         btrfs_mark_buffer_dirty(parent);
4667 }
4668
4669 /*
4670  * a helper function to delete the leaf pointed to by path->slots[1] and
4671  * path->nodes[1].
4672  *
4673  * This deletes the pointer in path->nodes[1] and frees the leaf
4674  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4675  *
4676  * The path must have already been setup for deleting the leaf, including
4677  * all the proper balancing.  path->nodes[1] must be locked.
4678  */
4679 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4680                                     struct btrfs_root *root,
4681                                     struct btrfs_path *path,
4682                                     struct extent_buffer *leaf)
4683 {
4684         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4685         del_ptr(root, path, 1, path->slots[1]);
4686
4687         /*
4688          * btrfs_free_extent is expensive, we want to make sure we
4689          * aren't holding any locks when we call it
4690          */
4691         btrfs_unlock_up_safe(path, 0);
4692
4693         root_sub_used(root, leaf->len);
4694
4695         extent_buffer_get(leaf);
4696         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4697         free_extent_buffer_stale(leaf);
4698 }
4699 /*
4700  * delete the item at the leaf level in path.  If that empties
4701  * the leaf, remove it from the tree
4702  */
4703 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4704                     struct btrfs_path *path, int slot, int nr)
4705 {
4706         struct extent_buffer *leaf;
4707         struct btrfs_item *item;
4708         int last_off;
4709         int dsize = 0;
4710         int ret = 0;
4711         int wret;
4712         int i;
4713         u32 nritems;
4714         struct btrfs_map_token token;
4715
4716         btrfs_init_map_token(&token);
4717
4718         leaf = path->nodes[0];
4719         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4720
4721         for (i = 0; i < nr; i++)
4722                 dsize += btrfs_item_size_nr(leaf, slot + i);
4723
4724         nritems = btrfs_header_nritems(leaf);
4725
4726         if (slot + nr != nritems) {
4727                 int data_end = leaf_data_end(root, leaf);
4728
4729                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4730                               data_end + dsize,
4731                               btrfs_leaf_data(leaf) + data_end,
4732                               last_off - data_end);
4733
4734                 for (i = slot + nr; i < nritems; i++) {
4735                         u32 ioff;
4736
4737                         item = btrfs_item_nr(i);
4738                         ioff = btrfs_token_item_offset(leaf, item, &token);
4739                         btrfs_set_token_item_offset(leaf, item,
4740                                                     ioff + dsize, &token);
4741                 }
4742
4743                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4744                               btrfs_item_nr_offset(slot + nr),
4745                               sizeof(struct btrfs_item) *
4746                               (nritems - slot - nr));
4747         }
4748         btrfs_set_header_nritems(leaf, nritems - nr);
4749         nritems -= nr;
4750
4751         /* delete the leaf if we've emptied it */
4752         if (nritems == 0) {
4753                 if (leaf == root->node) {
4754                         btrfs_set_header_level(leaf, 0);
4755                 } else {
4756                         btrfs_set_path_blocking(path);
4757                         clean_tree_block(trans, root, leaf);
4758                         btrfs_del_leaf(trans, root, path, leaf);
4759                 }
4760         } else {
4761                 int used = leaf_space_used(leaf, 0, nritems);
4762                 if (slot == 0) {
4763                         struct btrfs_disk_key disk_key;
4764
4765                         btrfs_item_key(leaf, &disk_key, 0);
4766                         fixup_low_keys(root, path, &disk_key, 1);
4767                 }
4768
4769                 /* delete the leaf if it is mostly empty */
4770                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4771                         /* push_leaf_left fixes the path.
4772                          * make sure the path still points to our leaf
4773                          * for possible call to del_ptr below
4774                          */
4775                         slot = path->slots[1];
4776                         extent_buffer_get(leaf);
4777
4778                         btrfs_set_path_blocking(path);
4779                         wret = push_leaf_left(trans, root, path, 1, 1,
4780                                               1, (u32)-1);
4781                         if (wret < 0 && wret != -ENOSPC)
4782                                 ret = wret;
4783
4784                         if (path->nodes[0] == leaf &&
4785                             btrfs_header_nritems(leaf)) {
4786                                 wret = push_leaf_right(trans, root, path, 1,
4787                                                        1, 1, 0);
4788                                 if (wret < 0 && wret != -ENOSPC)
4789                                         ret = wret;
4790                         }
4791
4792                         if (btrfs_header_nritems(leaf) == 0) {
4793                                 path->slots[1] = slot;
4794                                 btrfs_del_leaf(trans, root, path, leaf);
4795                                 free_extent_buffer(leaf);
4796                                 ret = 0;
4797                         } else {
4798                                 /* if we're still in the path, make sure
4799                                  * we're dirty.  Otherwise, one of the
4800                                  * push_leaf functions must have already
4801                                  * dirtied this buffer
4802                                  */
4803                                 if (path->nodes[0] == leaf)
4804                                         btrfs_mark_buffer_dirty(leaf);
4805                                 free_extent_buffer(leaf);
4806                         }
4807                 } else {
4808                         btrfs_mark_buffer_dirty(leaf);
4809                 }
4810         }
4811         return ret;
4812 }
4813
4814 /*
4815  * search the tree again to find a leaf with lesser keys
4816  * returns 0 if it found something or 1 if there are no lesser leaves.
4817  * returns < 0 on io errors.
4818  *
4819  * This may release the path, and so you may lose any locks held at the
4820  * time you call it.
4821  */
4822 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4823 {
4824         struct btrfs_key key;
4825         struct btrfs_disk_key found_key;
4826         int ret;
4827
4828         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4829
4830         if (key.offset > 0)
4831                 key.offset--;
4832         else if (key.type > 0)
4833                 key.type--;
4834         else if (key.objectid > 0)
4835                 key.objectid--;
4836         else
4837                 return 1;
4838
4839         btrfs_release_path(path);
4840         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4841         if (ret < 0)
4842                 return ret;
4843         btrfs_item_key(path->nodes[0], &found_key, 0);
4844         ret = comp_keys(&found_key, &key);
4845         if (ret < 0)
4846                 return 0;
4847         return 1;
4848 }
4849
4850 /*
4851  * A helper function to walk down the tree starting at min_key, and looking
4852  * for nodes or leaves that are have a minimum transaction id.
4853  * This is used by the btree defrag code, and tree logging
4854  *
4855  * This does not cow, but it does stuff the starting key it finds back
4856  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4857  * key and get a writable path.
4858  *
4859  * This does lock as it descends, and path->keep_locks should be set
4860  * to 1 by the caller.
4861  *
4862  * This honors path->lowest_level to prevent descent past a given level
4863  * of the tree.
4864  *
4865  * min_trans indicates the oldest transaction that you are interested
4866  * in walking through.  Any nodes or leaves older than min_trans are
4867  * skipped over (without reading them).
4868  *
4869  * returns zero if something useful was found, < 0 on error and 1 if there
4870  * was nothing in the tree that matched the search criteria.
4871  */
4872 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4873                          struct btrfs_path *path,
4874                          u64 min_trans)
4875 {
4876         struct extent_buffer *cur;
4877         struct btrfs_key found_key;
4878         int slot;
4879         int sret;
4880         u32 nritems;
4881         int level;
4882         int ret = 1;
4883
4884         WARN_ON(!path->keep_locks);
4885 again:
4886         cur = btrfs_read_lock_root_node(root);
4887         level = btrfs_header_level(cur);
4888         WARN_ON(path->nodes[level]);
4889         path->nodes[level] = cur;
4890         path->locks[level] = BTRFS_READ_LOCK;
4891
4892         if (btrfs_header_generation(cur) < min_trans) {
4893                 ret = 1;
4894                 goto out;
4895         }
4896         while (1) {
4897                 nritems = btrfs_header_nritems(cur);
4898                 level = btrfs_header_level(cur);
4899                 sret = bin_search(cur, min_key, level, &slot);
4900
4901                 /* at the lowest level, we're done, setup the path and exit */
4902                 if (level == path->lowest_level) {
4903                         if (slot >= nritems)
4904                                 goto find_next_key;
4905                         ret = 0;
4906                         path->slots[level] = slot;
4907                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4908                         goto out;
4909                 }
4910                 if (sret && slot > 0)
4911                         slot--;
4912                 /*
4913                  * check this node pointer against the min_trans parameters.
4914                  * If it is too old, old, skip to the next one.
4915                  */
4916                 while (slot < nritems) {
4917                         u64 gen;
4918
4919                         gen = btrfs_node_ptr_generation(cur, slot);
4920                         if (gen < min_trans) {
4921                                 slot++;
4922                                 continue;
4923                         }
4924                         break;
4925                 }
4926 find_next_key:
4927                 /*
4928                  * we didn't find a candidate key in this node, walk forward
4929                  * and find another one
4930                  */
4931                 if (slot >= nritems) {
4932                         path->slots[level] = slot;
4933                         btrfs_set_path_blocking(path);
4934                         sret = btrfs_find_next_key(root, path, min_key, level,
4935                                                   min_trans);
4936                         if (sret == 0) {
4937                                 btrfs_release_path(path);
4938                                 goto again;
4939                         } else {
4940                                 goto out;
4941                         }
4942                 }
4943                 /* save our key for returning back */
4944                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4945                 path->slots[level] = slot;
4946                 if (level == path->lowest_level) {
4947                         ret = 0;
4948                         unlock_up(path, level, 1, 0, NULL);
4949                         goto out;
4950                 }
4951                 btrfs_set_path_blocking(path);
4952                 cur = read_node_slot(root, cur, slot);
4953                 BUG_ON(!cur); /* -ENOMEM */
4954
4955                 btrfs_tree_read_lock(cur);
4956
4957                 path->locks[level - 1] = BTRFS_READ_LOCK;
4958                 path->nodes[level - 1] = cur;
4959                 unlock_up(path, level, 1, 0, NULL);
4960                 btrfs_clear_path_blocking(path, NULL, 0);
4961         }
4962 out:
4963         if (ret == 0)
4964                 memcpy(min_key, &found_key, sizeof(found_key));
4965         btrfs_set_path_blocking(path);
4966         return ret;
4967 }
4968
4969 static void tree_move_down(struct btrfs_root *root,
4970                            struct btrfs_path *path,
4971                            int *level, int root_level)
4972 {
4973         BUG_ON(*level == 0);
4974         path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4975                                         path->slots[*level]);
4976         path->slots[*level - 1] = 0;
4977         (*level)--;
4978 }
4979
4980 static int tree_move_next_or_upnext(struct btrfs_root *root,
4981                                     struct btrfs_path *path,
4982                                     int *level, int root_level)
4983 {
4984         int ret = 0;
4985         int nritems;
4986         nritems = btrfs_header_nritems(path->nodes[*level]);
4987
4988         path->slots[*level]++;
4989
4990         while (path->slots[*level] >= nritems) {
4991                 if (*level == root_level)
4992                         return -1;
4993
4994                 /* move upnext */
4995                 path->slots[*level] = 0;
4996                 free_extent_buffer(path->nodes[*level]);
4997                 path->nodes[*level] = NULL;
4998                 (*level)++;
4999                 path->slots[*level]++;
5000
5001                 nritems = btrfs_header_nritems(path->nodes[*level]);
5002                 ret = 1;
5003         }
5004         return ret;
5005 }
5006
5007 /*
5008  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5009  * or down.
5010  */
5011 static int tree_advance(struct btrfs_root *root,
5012                         struct btrfs_path *path,
5013                         int *level, int root_level,
5014                         int allow_down,
5015                         struct btrfs_key *key)
5016 {
5017         int ret;
5018
5019         if (*level == 0 || !allow_down) {
5020                 ret = tree_move_next_or_upnext(root, path, level, root_level);
5021         } else {
5022                 tree_move_down(root, path, level, root_level);
5023                 ret = 0;
5024         }
5025         if (ret >= 0) {
5026                 if (*level == 0)
5027                         btrfs_item_key_to_cpu(path->nodes[*level], key,
5028                                         path->slots[*level]);
5029                 else
5030                         btrfs_node_key_to_cpu(path->nodes[*level], key,
5031                                         path->slots[*level]);
5032         }
5033         return ret;
5034 }
5035
5036 static int tree_compare_item(struct btrfs_root *left_root,
5037                              struct btrfs_path *left_path,
5038                              struct btrfs_path *right_path,
5039                              char *tmp_buf)
5040 {
5041         int cmp;
5042         int len1, len2;
5043         unsigned long off1, off2;
5044
5045         len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5046         len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5047         if (len1 != len2)
5048                 return 1;
5049
5050         off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5051         off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5052                                 right_path->slots[0]);
5053
5054         read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5055
5056         cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5057         if (cmp)
5058                 return 1;
5059         return 0;
5060 }
5061
5062 #define ADVANCE 1
5063 #define ADVANCE_ONLY_NEXT -1
5064
5065 /*
5066  * This function compares two trees and calls the provided callback for
5067  * every changed/new/deleted item it finds.
5068  * If shared tree blocks are encountered, whole subtrees are skipped, making
5069  * the compare pretty fast on snapshotted subvolumes.
5070  *
5071  * This currently works on commit roots only. As commit roots are read only,
5072  * we don't do any locking. The commit roots are protected with transactions.
5073  * Transactions are ended and rejoined when a commit is tried in between.
5074  *
5075  * This function checks for modifications done to the trees while comparing.
5076  * If it detects a change, it aborts immediately.
5077  */
5078 int btrfs_compare_trees(struct btrfs_root *left_root,
5079                         struct btrfs_root *right_root,
5080                         btrfs_changed_cb_t changed_cb, void *ctx)
5081 {
5082         int ret;
5083         int cmp;
5084         struct btrfs_trans_handle *trans = NULL;
5085         struct btrfs_path *left_path = NULL;
5086         struct btrfs_path *right_path = NULL;
5087         struct btrfs_key left_key;
5088         struct btrfs_key right_key;
5089         char *tmp_buf = NULL;
5090         int left_root_level;
5091         int right_root_level;
5092         int left_level;
5093         int right_level;
5094         int left_end_reached;
5095         int right_end_reached;
5096         int advance_left;
5097         int advance_right;
5098         u64 left_blockptr;
5099         u64 right_blockptr;
5100         u64 left_start_ctransid;
5101         u64 right_start_ctransid;
5102         u64 ctransid;
5103
5104         left_path = btrfs_alloc_path();
5105         if (!left_path) {
5106                 ret = -ENOMEM;
5107                 goto out;
5108         }
5109         right_path = btrfs_alloc_path();
5110         if (!right_path) {
5111                 ret = -ENOMEM;
5112                 goto out;
5113         }
5114
5115         tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5116         if (!tmp_buf) {
5117                 ret = -ENOMEM;
5118                 goto out;
5119         }
5120
5121         left_path->search_commit_root = 1;
5122         left_path->skip_locking = 1;
5123         right_path->search_commit_root = 1;
5124         right_path->skip_locking = 1;
5125
5126         spin_lock(&left_root->root_item_lock);
5127         left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5128         spin_unlock(&left_root->root_item_lock);
5129
5130         spin_lock(&right_root->root_item_lock);
5131         right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5132         spin_unlock(&right_root->root_item_lock);
5133
5134         trans = btrfs_join_transaction(left_root);
5135         if (IS_ERR(trans)) {
5136                 ret = PTR_ERR(trans);
5137                 trans = NULL;
5138                 goto out;
5139         }
5140
5141         /*
5142          * Strategy: Go to the first items of both trees. Then do
5143          *
5144          * If both trees are at level 0
5145          *   Compare keys of current items
5146          *     If left < right treat left item as new, advance left tree
5147          *       and repeat
5148          *     If left > right treat right item as deleted, advance right tree
5149          *       and repeat
5150          *     If left == right do deep compare of items, treat as changed if
5151          *       needed, advance both trees and repeat
5152          * If both trees are at the same level but not at level 0
5153          *   Compare keys of current nodes/leafs
5154          *     If left < right advance left tree and repeat
5155          *     If left > right advance right tree and repeat
5156          *     If left == right compare blockptrs of the next nodes/leafs
5157          *       If they match advance both trees but stay at the same level
5158          *         and repeat
5159          *       If they don't match advance both trees while allowing to go
5160          *         deeper and repeat
5161          * If tree levels are different
5162          *   Advance the tree that needs it and repeat
5163          *
5164          * Advancing a tree means:
5165          *   If we are at level 0, try to go to the next slot. If that's not
5166          *   possible, go one level up and repeat. Stop when we found a level
5167          *   where we could go to the next slot. We may at this point be on a
5168          *   node or a leaf.
5169          *
5170          *   If we are not at level 0 and not on shared tree blocks, go one
5171          *   level deeper.
5172          *
5173          *   If we are not at level 0 and on shared tree blocks, go one slot to
5174          *   the right if possible or go up and right.
5175          */
5176
5177         left_level = btrfs_header_level(left_root->commit_root);
5178         left_root_level = left_level;
5179         left_path->nodes[left_level] = left_root->commit_root;
5180         extent_buffer_get(left_path->nodes[left_level]);
5181
5182         right_level = btrfs_header_level(right_root->commit_root);
5183         right_root_level = right_level;
5184         right_path->nodes[right_level] = right_root->commit_root;
5185         extent_buffer_get(right_path->nodes[right_level]);
5186
5187         if (left_level == 0)
5188                 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5189                                 &left_key, left_path->slots[left_level]);
5190         else
5191                 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5192                                 &left_key, left_path->slots[left_level]);
5193         if (right_level == 0)
5194                 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5195                                 &right_key, right_path->slots[right_level]);
5196         else
5197                 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5198                                 &right_key, right_path->slots[right_level]);
5199
5200         left_end_reached = right_end_reached = 0;
5201         advance_left = advance_right = 0;
5202
5203         while (1) {
5204                 /*
5205                  * We need to make sure the transaction does not get committed
5206                  * while we do anything on commit roots. This means, we need to
5207                  * join and leave transactions for every item that we process.
5208                  */
5209                 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5210                         btrfs_release_path(left_path);
5211                         btrfs_release_path(right_path);
5212
5213                         ret = btrfs_end_transaction(trans, left_root);
5214                         trans = NULL;
5215                         if (ret < 0)
5216                                 goto out;
5217                 }
5218                 /* now rejoin the transaction */
5219                 if (!trans) {
5220                         trans = btrfs_join_transaction(left_root);
5221                         if (IS_ERR(trans)) {
5222                                 ret = PTR_ERR(trans);
5223                                 trans = NULL;
5224                                 goto out;
5225                         }
5226
5227                         spin_lock(&left_root->root_item_lock);
5228                         ctransid = btrfs_root_ctransid(&left_root->root_item);
5229                         spin_unlock(&left_root->root_item_lock);
5230                         if (ctransid != left_start_ctransid)
5231                                 left_start_ctransid = 0;
5232
5233                         spin_lock(&right_root->root_item_lock);
5234                         ctransid = btrfs_root_ctransid(&right_root->root_item);
5235                         spin_unlock(&right_root->root_item_lock);
5236                         if (ctransid != right_start_ctransid)
5237                                 right_start_ctransid = 0;
5238
5239                         if (!left_start_ctransid || !right_start_ctransid) {
5240                                 WARN(1, KERN_WARNING
5241                                         "btrfs: btrfs_compare_tree detected "
5242                                         "a change in one of the trees while "
5243                                         "iterating. This is probably a "
5244                                         "bug.\n");
5245                                 ret = -EIO;
5246                                 goto out;
5247                         }
5248
5249                         /*
5250                          * the commit root may have changed, so start again
5251                          * where we stopped
5252                          */
5253                         left_path->lowest_level = left_level;
5254                         right_path->lowest_level = right_level;
5255                         ret = btrfs_search_slot(NULL, left_root,
5256                                         &left_key, left_path, 0, 0);
5257                         if (ret < 0)
5258                                 goto out;
5259                         ret = btrfs_search_slot(NULL, right_root,
5260                                         &right_key, right_path, 0, 0);
5261                         if (ret < 0)
5262                                 goto out;
5263                 }
5264
5265                 if (advance_left && !left_end_reached) {
5266                         ret = tree_advance(left_root, left_path, &left_level,
5267                                         left_root_level,
5268                                         advance_left != ADVANCE_ONLY_NEXT,
5269                                         &left_key);
5270                         if (ret < 0)
5271                                 left_end_reached = ADVANCE;
5272                         advance_left = 0;
5273                 }
5274                 if (advance_right && !right_end_reached) {
5275                         ret = tree_advance(right_root, right_path, &right_level,
5276                                         right_root_level,
5277                                         advance_right != ADVANCE_ONLY_NEXT,
5278                                         &right_key);
5279                         if (ret < 0)
5280                                 right_end_reached = ADVANCE;
5281                         advance_right = 0;
5282                 }
5283
5284                 if (left_end_reached && right_end_reached) {
5285                         ret = 0;
5286                         goto out;
5287                 } else if (left_end_reached) {
5288                         if (right_level == 0) {
5289                                 ret = changed_cb(left_root, right_root,
5290                                                 left_path, right_path,
5291                                                 &right_key,
5292                                                 BTRFS_COMPARE_TREE_DELETED,
5293                                                 ctx);
5294                                 if (ret < 0)
5295                                         goto out;
5296                         }
5297                         advance_right = ADVANCE;
5298                         continue;
5299                 } else if (right_end_reached) {
5300                         if (left_level == 0) {
5301                                 ret = changed_cb(left_root, right_root,
5302                                                 left_path, right_path,
5303                                                 &left_key,
5304                                                 BTRFS_COMPARE_TREE_NEW,
5305                                                 ctx);
5306                                 if (ret < 0)
5307                                         goto out;
5308                         }
5309                         advance_left = ADVANCE;
5310                         continue;
5311                 }
5312
5313                 if (left_level == 0 && right_level == 0) {
5314                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5315                         if (cmp < 0) {
5316                                 ret = changed_cb(left_root, right_root,
5317                                                 left_path, right_path,
5318                                                 &left_key,
5319                                                 BTRFS_COMPARE_TREE_NEW,
5320                                                 ctx);
5321                                 if (ret < 0)
5322                                         goto out;
5323                                 advance_left = ADVANCE;
5324                         } else if (cmp > 0) {
5325                                 ret = changed_cb(left_root, right_root,
5326                                                 left_path, right_path,
5327                                                 &right_key,
5328                                                 BTRFS_COMPARE_TREE_DELETED,
5329                                                 ctx);
5330                                 if (ret < 0)
5331                                         goto out;
5332                                 advance_right = ADVANCE;
5333                         } else {
5334                                 enum btrfs_compare_tree_result cmp;
5335
5336                                 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5337                                 ret = tree_compare_item(left_root, left_path,
5338                                                 right_path, tmp_buf);
5339                                 if (ret)
5340                                         cmp = BTRFS_COMPARE_TREE_CHANGED;
5341                                 else
5342                                         cmp = BTRFS_COMPARE_TREE_SAME;
5343                                 ret = changed_cb(left_root, right_root,
5344                                                  left_path, right_path,
5345                                                  &left_key, cmp, ctx);
5346                                 if (ret < 0)
5347                                         goto out;
5348                                 advance_left = ADVANCE;
5349                                 advance_right = ADVANCE;
5350                         }
5351                 } else if (left_level == right_level) {
5352                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5353                         if (cmp < 0) {
5354                                 advance_left = ADVANCE;
5355                         } else if (cmp > 0) {
5356                                 advance_right = ADVANCE;
5357                         } else {
5358                                 left_blockptr = btrfs_node_blockptr(
5359                                                 left_path->nodes[left_level],
5360                                                 left_path->slots[left_level]);
5361                                 right_blockptr = btrfs_node_blockptr(
5362                                                 right_path->nodes[right_level],
5363                                                 right_path->slots[right_level]);
5364                                 if (left_blockptr == right_blockptr) {
5365                                         /*
5366                                          * As we're on a shared block, don't
5367                                          * allow to go deeper.
5368                                          */
5369                                         advance_left = ADVANCE_ONLY_NEXT;
5370                                         advance_right = ADVANCE_ONLY_NEXT;
5371                                 } else {
5372                                         advance_left = ADVANCE;
5373                                         advance_right = ADVANCE;
5374                                 }
5375                         }
5376                 } else if (left_level < right_level) {
5377                         advance_right = ADVANCE;
5378                 } else {
5379                         advance_left = ADVANCE;
5380                 }
5381         }
5382
5383 out:
5384         btrfs_free_path(left_path);
5385         btrfs_free_path(right_path);
5386         kfree(tmp_buf);
5387
5388         if (trans) {
5389                 if (!ret)
5390                         ret = btrfs_end_transaction(trans, left_root);
5391                 else
5392                         btrfs_end_transaction(trans, left_root);
5393         }
5394
5395         return ret;
5396 }
5397
5398 /*
5399  * this is similar to btrfs_next_leaf, but does not try to preserve
5400  * and fixup the path.  It looks for and returns the next key in the
5401  * tree based on the current path and the min_trans parameters.
5402  *
5403  * 0 is returned if another key is found, < 0 if there are any errors
5404  * and 1 is returned if there are no higher keys in the tree
5405  *
5406  * path->keep_locks should be set to 1 on the search made before
5407  * calling this function.
5408  */
5409 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5410                         struct btrfs_key *key, int level, u64 min_trans)
5411 {
5412         int slot;
5413         struct extent_buffer *c;
5414
5415         WARN_ON(!path->keep_locks);
5416         while (level < BTRFS_MAX_LEVEL) {
5417                 if (!path->nodes[level])
5418                         return 1;
5419
5420                 slot = path->slots[level] + 1;
5421                 c = path->nodes[level];
5422 next:
5423                 if (slot >= btrfs_header_nritems(c)) {
5424                         int ret;
5425                         int orig_lowest;
5426                         struct btrfs_key cur_key;
5427                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5428                             !path->nodes[level + 1])
5429                                 return 1;
5430
5431                         if (path->locks[level + 1]) {
5432                                 level++;
5433                                 continue;
5434                         }
5435
5436                         slot = btrfs_header_nritems(c) - 1;
5437                         if (level == 0)
5438                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5439                         else
5440                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5441
5442                         orig_lowest = path->lowest_level;
5443                         btrfs_release_path(path);
5444                         path->lowest_level = level;
5445                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5446                                                 0, 0);
5447                         path->lowest_level = orig_lowest;
5448                         if (ret < 0)
5449                                 return ret;
5450
5451                         c = path->nodes[level];
5452                         slot = path->slots[level];
5453                         if (ret == 0)
5454                                 slot++;
5455                         goto next;
5456                 }
5457
5458                 if (level == 0)
5459                         btrfs_item_key_to_cpu(c, key, slot);
5460                 else {
5461                         u64 gen = btrfs_node_ptr_generation(c, slot);
5462
5463                         if (gen < min_trans) {
5464                                 slot++;
5465                                 goto next;
5466                         }
5467                         btrfs_node_key_to_cpu(c, key, slot);
5468                 }
5469                 return 0;
5470         }
5471         return 1;
5472 }
5473
5474 /*
5475  * search the tree again to find a leaf with greater keys
5476  * returns 0 if it found something or 1 if there are no greater leaves.
5477  * returns < 0 on io errors.
5478  */
5479 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5480 {
5481         return btrfs_next_old_leaf(root, path, 0);
5482 }
5483
5484 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5485                         u64 time_seq)
5486 {
5487         int slot;
5488         int level;
5489         struct extent_buffer *c;
5490         struct extent_buffer *next;
5491         struct btrfs_key key;
5492         u32 nritems;
5493         int ret;
5494         int old_spinning = path->leave_spinning;
5495         int next_rw_lock = 0;
5496
5497         nritems = btrfs_header_nritems(path->nodes[0]);
5498         if (nritems == 0)
5499                 return 1;
5500
5501         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5502 again:
5503         level = 1;
5504         next = NULL;
5505         next_rw_lock = 0;
5506         btrfs_release_path(path);
5507
5508         path->keep_locks = 1;
5509         path->leave_spinning = 1;
5510
5511         if (time_seq)
5512                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5513         else
5514                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5515         path->keep_locks = 0;
5516
5517         if (ret < 0)
5518                 return ret;
5519
5520         nritems = btrfs_header_nritems(path->nodes[0]);
5521         /*
5522          * by releasing the path above we dropped all our locks.  A balance
5523          * could have added more items next to the key that used to be
5524          * at the very end of the block.  So, check again here and
5525          * advance the path if there are now more items available.
5526          */
5527         if (nritems > 0 && path->slots[0] < nritems - 1) {
5528                 if (ret == 0)
5529                         path->slots[0]++;
5530                 ret = 0;
5531                 goto done;
5532         }
5533
5534         while (level < BTRFS_MAX_LEVEL) {
5535                 if (!path->nodes[level]) {
5536                         ret = 1;
5537                         goto done;
5538                 }
5539
5540                 slot = path->slots[level] + 1;
5541                 c = path->nodes[level];
5542                 if (slot >= btrfs_header_nritems(c)) {
5543                         level++;
5544                         if (level == BTRFS_MAX_LEVEL) {
5545                                 ret = 1;
5546                                 goto done;
5547                         }
5548                         continue;
5549                 }
5550
5551                 if (next) {
5552                         btrfs_tree_unlock_rw(next, next_rw_lock);
5553                         free_extent_buffer(next);
5554                 }
5555
5556                 next = c;
5557                 next_rw_lock = path->locks[level];
5558                 ret = read_block_for_search(NULL, root, path, &next, level,
5559                                             slot, &key, 0);
5560                 if (ret == -EAGAIN)
5561                         goto again;
5562
5563                 if (ret < 0) {
5564                         btrfs_release_path(path);
5565                         goto done;
5566                 }
5567
5568                 if (!path->skip_locking) {
5569                         ret = btrfs_try_tree_read_lock(next);
5570                         if (!ret && time_seq) {
5571                                 /*
5572                                  * If we don't get the lock, we may be racing
5573                                  * with push_leaf_left, holding that lock while
5574                                  * itself waiting for the leaf we've currently
5575                                  * locked. To solve this situation, we give up
5576                                  * on our lock and cycle.
5577                                  */
5578                                 free_extent_buffer(next);
5579                                 btrfs_release_path(path);
5580                                 cond_resched();
5581                                 goto again;
5582                         }
5583                         if (!ret) {
5584                                 btrfs_set_path_blocking(path);
5585                                 btrfs_tree_read_lock(next);
5586                                 btrfs_clear_path_blocking(path, next,
5587                                                           BTRFS_READ_LOCK);
5588                         }
5589                         next_rw_lock = BTRFS_READ_LOCK;
5590                 }
5591                 break;
5592         }
5593         path->slots[level] = slot;
5594         while (1) {
5595                 level--;
5596                 c = path->nodes[level];
5597                 if (path->locks[level])
5598                         btrfs_tree_unlock_rw(c, path->locks[level]);
5599
5600                 free_extent_buffer(c);
5601                 path->nodes[level] = next;
5602                 path->slots[level] = 0;
5603                 if (!path->skip_locking)
5604                         path->locks[level] = next_rw_lock;
5605                 if (!level)
5606                         break;
5607
5608                 ret = read_block_for_search(NULL, root, path, &next, level,
5609                                             0, &key, 0);
5610                 if (ret == -EAGAIN)
5611                         goto again;
5612
5613                 if (ret < 0) {
5614                         btrfs_release_path(path);
5615                         goto done;
5616                 }
5617
5618                 if (!path->skip_locking) {
5619                         ret = btrfs_try_tree_read_lock(next);
5620                         if (!ret) {
5621                                 btrfs_set_path_blocking(path);
5622                                 btrfs_tree_read_lock(next);
5623                                 btrfs_clear_path_blocking(path, next,
5624                                                           BTRFS_READ_LOCK);
5625                         }
5626                         next_rw_lock = BTRFS_READ_LOCK;
5627                 }
5628         }
5629         ret = 0;
5630 done:
5631         unlock_up(path, 0, 1, 0, NULL);
5632         path->leave_spinning = old_spinning;
5633         if (!old_spinning)
5634                 btrfs_set_path_blocking(path);
5635
5636         return ret;
5637 }
5638
5639 /*
5640  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5641  * searching until it gets past min_objectid or finds an item of 'type'
5642  *
5643  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5644  */
5645 int btrfs_previous_item(struct btrfs_root *root,
5646                         struct btrfs_path *path, u64 min_objectid,
5647                         int type)
5648 {
5649         struct btrfs_key found_key;
5650         struct extent_buffer *leaf;
5651         u32 nritems;
5652         int ret;
5653
5654         while (1) {
5655                 if (path->slots[0] == 0) {
5656                         btrfs_set_path_blocking(path);
5657                         ret = btrfs_prev_leaf(root, path);
5658                         if (ret != 0)
5659                                 return ret;
5660                 } else {
5661                         path->slots[0]--;
5662                 }
5663                 leaf = path->nodes[0];
5664                 nritems = btrfs_header_nritems(leaf);
5665                 if (nritems == 0)
5666                         return 1;
5667                 if (path->slots[0] == nritems)
5668                         path->slots[0]--;
5669
5670                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5671                 if (found_key.objectid < min_objectid)
5672                         break;
5673                 if (found_key.type == type)
5674                         return 0;
5675                 if (found_key.objectid == min_objectid &&
5676                     found_key.type < type)
5677                         break;
5678         }
5679         return 1;
5680 }