Btrfs: fix all callers of read_tree_block
[cascardo/linux.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31                       *root, struct btrfs_key *ins_key,
32                       struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34                           struct btrfs_root *root, struct extent_buffer *dst,
35                           struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37                               struct btrfs_root *root,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41                     int level, int slot);
42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43                                  struct extent_buffer *eb);
44 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
45                                           u32 blocksize, u64 parent_transid,
46                                           u64 time_seq);
47 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
48                                                 u64 bytenr, u32 blocksize,
49                                                 u64 time_seq);
50
51 struct btrfs_path *btrfs_alloc_path(void)
52 {
53         struct btrfs_path *path;
54         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
55         return path;
56 }
57
58 /*
59  * set all locked nodes in the path to blocking locks.  This should
60  * be done before scheduling
61  */
62 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
63 {
64         int i;
65         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
66                 if (!p->nodes[i] || !p->locks[i])
67                         continue;
68                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
69                 if (p->locks[i] == BTRFS_READ_LOCK)
70                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
71                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
72                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
73         }
74 }
75
76 /*
77  * reset all the locked nodes in the patch to spinning locks.
78  *
79  * held is used to keep lockdep happy, when lockdep is enabled
80  * we set held to a blocking lock before we go around and
81  * retake all the spinlocks in the path.  You can safely use NULL
82  * for held
83  */
84 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
85                                         struct extent_buffer *held, int held_rw)
86 {
87         int i;
88
89 #ifdef CONFIG_DEBUG_LOCK_ALLOC
90         /* lockdep really cares that we take all of these spinlocks
91          * in the right order.  If any of the locks in the path are not
92          * currently blocking, it is going to complain.  So, make really
93          * really sure by forcing the path to blocking before we clear
94          * the path blocking.
95          */
96         if (held) {
97                 btrfs_set_lock_blocking_rw(held, held_rw);
98                 if (held_rw == BTRFS_WRITE_LOCK)
99                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
100                 else if (held_rw == BTRFS_READ_LOCK)
101                         held_rw = BTRFS_READ_LOCK_BLOCKING;
102         }
103         btrfs_set_path_blocking(p);
104 #endif
105
106         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
107                 if (p->nodes[i] && p->locks[i]) {
108                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
109                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
110                                 p->locks[i] = BTRFS_WRITE_LOCK;
111                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
112                                 p->locks[i] = BTRFS_READ_LOCK;
113                 }
114         }
115
116 #ifdef CONFIG_DEBUG_LOCK_ALLOC
117         if (held)
118                 btrfs_clear_lock_blocking_rw(held, held_rw);
119 #endif
120 }
121
122 /* this also releases the path */
123 void btrfs_free_path(struct btrfs_path *p)
124 {
125         if (!p)
126                 return;
127         btrfs_release_path(p);
128         kmem_cache_free(btrfs_path_cachep, p);
129 }
130
131 /*
132  * path release drops references on the extent buffers in the path
133  * and it drops any locks held by this path
134  *
135  * It is safe to call this on paths that no locks or extent buffers held.
136  */
137 noinline void btrfs_release_path(struct btrfs_path *p)
138 {
139         int i;
140
141         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
142                 p->slots[i] = 0;
143                 if (!p->nodes[i])
144                         continue;
145                 if (p->locks[i]) {
146                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
147                         p->locks[i] = 0;
148                 }
149                 free_extent_buffer(p->nodes[i]);
150                 p->nodes[i] = NULL;
151         }
152 }
153
154 /*
155  * safely gets a reference on the root node of a tree.  A lock
156  * is not taken, so a concurrent writer may put a different node
157  * at the root of the tree.  See btrfs_lock_root_node for the
158  * looping required.
159  *
160  * The extent buffer returned by this has a reference taken, so
161  * it won't disappear.  It may stop being the root of the tree
162  * at any time because there are no locks held.
163  */
164 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
165 {
166         struct extent_buffer *eb;
167
168         while (1) {
169                 rcu_read_lock();
170                 eb = rcu_dereference(root->node);
171
172                 /*
173                  * RCU really hurts here, we could free up the root node because
174                  * it was cow'ed but we may not get the new root node yet so do
175                  * the inc_not_zero dance and if it doesn't work then
176                  * synchronize_rcu and try again.
177                  */
178                 if (atomic_inc_not_zero(&eb->refs)) {
179                         rcu_read_unlock();
180                         break;
181                 }
182                 rcu_read_unlock();
183                 synchronize_rcu();
184         }
185         return eb;
186 }
187
188 /* loop around taking references on and locking the root node of the
189  * tree until you end up with a lock on the root.  A locked buffer
190  * is returned, with a reference held.
191  */
192 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
193 {
194         struct extent_buffer *eb;
195
196         while (1) {
197                 eb = btrfs_root_node(root);
198                 btrfs_tree_lock(eb);
199                 if (eb == root->node)
200                         break;
201                 btrfs_tree_unlock(eb);
202                 free_extent_buffer(eb);
203         }
204         return eb;
205 }
206
207 /* loop around taking references on and locking the root node of the
208  * tree until you end up with a lock on the root.  A locked buffer
209  * is returned, with a reference held.
210  */
211 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
212 {
213         struct extent_buffer *eb;
214
215         while (1) {
216                 eb = btrfs_root_node(root);
217                 btrfs_tree_read_lock(eb);
218                 if (eb == root->node)
219                         break;
220                 btrfs_tree_read_unlock(eb);
221                 free_extent_buffer(eb);
222         }
223         return eb;
224 }
225
226 /* cowonly root (everything not a reference counted cow subvolume), just get
227  * put onto a simple dirty list.  transaction.c walks this to make sure they
228  * get properly updated on disk.
229  */
230 static void add_root_to_dirty_list(struct btrfs_root *root)
231 {
232         spin_lock(&root->fs_info->trans_lock);
233         if (root->track_dirty && list_empty(&root->dirty_list)) {
234                 list_add(&root->dirty_list,
235                          &root->fs_info->dirty_cowonly_roots);
236         }
237         spin_unlock(&root->fs_info->trans_lock);
238 }
239
240 /*
241  * used by snapshot creation to make a copy of a root for a tree with
242  * a given objectid.  The buffer with the new root node is returned in
243  * cow_ret, and this func returns zero on success or a negative error code.
244  */
245 int btrfs_copy_root(struct btrfs_trans_handle *trans,
246                       struct btrfs_root *root,
247                       struct extent_buffer *buf,
248                       struct extent_buffer **cow_ret, u64 new_root_objectid)
249 {
250         struct extent_buffer *cow;
251         int ret = 0;
252         int level;
253         struct btrfs_disk_key disk_key;
254
255         WARN_ON(root->ref_cows && trans->transid !=
256                 root->fs_info->running_transaction->transid);
257         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
258
259         level = btrfs_header_level(buf);
260         if (level == 0)
261                 btrfs_item_key(buf, &disk_key, 0);
262         else
263                 btrfs_node_key(buf, &disk_key, 0);
264
265         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
266                                      new_root_objectid, &disk_key, level,
267                                      buf->start, 0);
268         if (IS_ERR(cow))
269                 return PTR_ERR(cow);
270
271         copy_extent_buffer(cow, buf, 0, 0, cow->len);
272         btrfs_set_header_bytenr(cow, cow->start);
273         btrfs_set_header_generation(cow, trans->transid);
274         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
275         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
276                                      BTRFS_HEADER_FLAG_RELOC);
277         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
278                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
279         else
280                 btrfs_set_header_owner(cow, new_root_objectid);
281
282         write_extent_buffer(cow, root->fs_info->fsid,
283                             (unsigned long)btrfs_header_fsid(cow),
284                             BTRFS_FSID_SIZE);
285
286         WARN_ON(btrfs_header_generation(buf) > trans->transid);
287         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
288                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
289         else
290                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
291
292         if (ret)
293                 return ret;
294
295         btrfs_mark_buffer_dirty(cow);
296         *cow_ret = cow;
297         return 0;
298 }
299
300 enum mod_log_op {
301         MOD_LOG_KEY_REPLACE,
302         MOD_LOG_KEY_ADD,
303         MOD_LOG_KEY_REMOVE,
304         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
305         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
306         MOD_LOG_MOVE_KEYS,
307         MOD_LOG_ROOT_REPLACE,
308 };
309
310 struct tree_mod_move {
311         int dst_slot;
312         int nr_items;
313 };
314
315 struct tree_mod_root {
316         u64 logical;
317         u8 level;
318 };
319
320 struct tree_mod_elem {
321         struct rb_node node;
322         u64 index;              /* shifted logical */
323         u64 seq;
324         enum mod_log_op op;
325
326         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
327         int slot;
328
329         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
330         u64 generation;
331
332         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
333         struct btrfs_disk_key key;
334         u64 blockptr;
335
336         /* this is used for op == MOD_LOG_MOVE_KEYS */
337         struct tree_mod_move move;
338
339         /* this is used for op == MOD_LOG_ROOT_REPLACE */
340         struct tree_mod_root old_root;
341 };
342
343 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
344 {
345         read_lock(&fs_info->tree_mod_log_lock);
346 }
347
348 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
349 {
350         read_unlock(&fs_info->tree_mod_log_lock);
351 }
352
353 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
354 {
355         write_lock(&fs_info->tree_mod_log_lock);
356 }
357
358 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
359 {
360         write_unlock(&fs_info->tree_mod_log_lock);
361 }
362
363 /*
364  * This adds a new blocker to the tree mod log's blocker list if the @elem
365  * passed does not already have a sequence number set. So when a caller expects
366  * to record tree modifications, it should ensure to set elem->seq to zero
367  * before calling btrfs_get_tree_mod_seq.
368  * Returns a fresh, unused tree log modification sequence number, even if no new
369  * blocker was added.
370  */
371 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
372                            struct seq_list *elem)
373 {
374         u64 seq;
375
376         tree_mod_log_write_lock(fs_info);
377         spin_lock(&fs_info->tree_mod_seq_lock);
378         if (!elem->seq) {
379                 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
380                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
381         }
382         seq = btrfs_inc_tree_mod_seq(fs_info);
383         spin_unlock(&fs_info->tree_mod_seq_lock);
384         tree_mod_log_write_unlock(fs_info);
385
386         return seq;
387 }
388
389 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
390                             struct seq_list *elem)
391 {
392         struct rb_root *tm_root;
393         struct rb_node *node;
394         struct rb_node *next;
395         struct seq_list *cur_elem;
396         struct tree_mod_elem *tm;
397         u64 min_seq = (u64)-1;
398         u64 seq_putting = elem->seq;
399
400         if (!seq_putting)
401                 return;
402
403         spin_lock(&fs_info->tree_mod_seq_lock);
404         list_del(&elem->list);
405         elem->seq = 0;
406
407         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
408                 if (cur_elem->seq < min_seq) {
409                         if (seq_putting > cur_elem->seq) {
410                                 /*
411                                  * blocker with lower sequence number exists, we
412                                  * cannot remove anything from the log
413                                  */
414                                 spin_unlock(&fs_info->tree_mod_seq_lock);
415                                 return;
416                         }
417                         min_seq = cur_elem->seq;
418                 }
419         }
420         spin_unlock(&fs_info->tree_mod_seq_lock);
421
422         /*
423          * anything that's lower than the lowest existing (read: blocked)
424          * sequence number can be removed from the tree.
425          */
426         tree_mod_log_write_lock(fs_info);
427         tm_root = &fs_info->tree_mod_log;
428         for (node = rb_first(tm_root); node; node = next) {
429                 next = rb_next(node);
430                 tm = container_of(node, struct tree_mod_elem, node);
431                 if (tm->seq > min_seq)
432                         continue;
433                 rb_erase(node, tm_root);
434                 kfree(tm);
435         }
436         tree_mod_log_write_unlock(fs_info);
437 }
438
439 /*
440  * key order of the log:
441  *       index -> sequence
442  *
443  * the index is the shifted logical of the *new* root node for root replace
444  * operations, or the shifted logical of the affected block for all other
445  * operations.
446  */
447 static noinline int
448 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
449 {
450         struct rb_root *tm_root;
451         struct rb_node **new;
452         struct rb_node *parent = NULL;
453         struct tree_mod_elem *cur;
454
455         BUG_ON(!tm || !tm->seq);
456
457         tm_root = &fs_info->tree_mod_log;
458         new = &tm_root->rb_node;
459         while (*new) {
460                 cur = container_of(*new, struct tree_mod_elem, node);
461                 parent = *new;
462                 if (cur->index < tm->index)
463                         new = &((*new)->rb_left);
464                 else if (cur->index > tm->index)
465                         new = &((*new)->rb_right);
466                 else if (cur->seq < tm->seq)
467                         new = &((*new)->rb_left);
468                 else if (cur->seq > tm->seq)
469                         new = &((*new)->rb_right);
470                 else {
471                         kfree(tm);
472                         return -EEXIST;
473                 }
474         }
475
476         rb_link_node(&tm->node, parent, new);
477         rb_insert_color(&tm->node, tm_root);
478         return 0;
479 }
480
481 /*
482  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483  * returns zero with the tree_mod_log_lock acquired. The caller must hold
484  * this until all tree mod log insertions are recorded in the rb tree and then
485  * call tree_mod_log_write_unlock() to release.
486  */
487 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
488                                     struct extent_buffer *eb) {
489         smp_mb();
490         if (list_empty(&(fs_info)->tree_mod_seq_list))
491                 return 1;
492         if (eb && btrfs_header_level(eb) == 0)
493                 return 1;
494
495         tree_mod_log_write_lock(fs_info);
496         if (list_empty(&fs_info->tree_mod_seq_list)) {
497                 /*
498                  * someone emptied the list while we were waiting for the lock.
499                  * we must not add to the list when no blocker exists.
500                  */
501                 tree_mod_log_write_unlock(fs_info);
502                 return 1;
503         }
504
505         return 0;
506 }
507
508 /*
509  * This allocates memory and gets a tree modification sequence number.
510  *
511  * Returns <0 on error.
512  * Returns >0 (the added sequence number) on success.
513  */
514 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
515                                  struct tree_mod_elem **tm_ret)
516 {
517         struct tree_mod_elem *tm;
518
519         /*
520          * once we switch from spin locks to something different, we should
521          * honor the flags parameter here.
522          */
523         tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
524         if (!tm)
525                 return -ENOMEM;
526
527         tm->seq = btrfs_inc_tree_mod_seq(fs_info);
528         return tm->seq;
529 }
530
531 static inline int
532 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
533                           struct extent_buffer *eb, int slot,
534                           enum mod_log_op op, gfp_t flags)
535 {
536         int ret;
537         struct tree_mod_elem *tm;
538
539         ret = tree_mod_alloc(fs_info, flags, &tm);
540         if (ret < 0)
541                 return ret;
542
543         tm->index = eb->start >> PAGE_CACHE_SHIFT;
544         if (op != MOD_LOG_KEY_ADD) {
545                 btrfs_node_key(eb, &tm->key, slot);
546                 tm->blockptr = btrfs_node_blockptr(eb, slot);
547         }
548         tm->op = op;
549         tm->slot = slot;
550         tm->generation = btrfs_node_ptr_generation(eb, slot);
551
552         return __tree_mod_log_insert(fs_info, tm);
553 }
554
555 static noinline int
556 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
557                              struct extent_buffer *eb, int slot,
558                              enum mod_log_op op, gfp_t flags)
559 {
560         int ret;
561
562         if (tree_mod_dont_log(fs_info, eb))
563                 return 0;
564
565         ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
566
567         tree_mod_log_write_unlock(fs_info);
568         return ret;
569 }
570
571 static noinline int
572 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
573                         int slot, enum mod_log_op op)
574 {
575         return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
576 }
577
578 static noinline int
579 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
580                              struct extent_buffer *eb, int slot,
581                              enum mod_log_op op)
582 {
583         return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
584 }
585
586 static noinline int
587 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
588                          struct extent_buffer *eb, int dst_slot, int src_slot,
589                          int nr_items, gfp_t flags)
590 {
591         struct tree_mod_elem *tm;
592         int ret;
593         int i;
594
595         if (tree_mod_dont_log(fs_info, eb))
596                 return 0;
597
598         /*
599          * When we override something during the move, we log these removals.
600          * This can only happen when we move towards the beginning of the
601          * buffer, i.e. dst_slot < src_slot.
602          */
603         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
604                 ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
605                                               MOD_LOG_KEY_REMOVE_WHILE_MOVING);
606                 BUG_ON(ret < 0);
607         }
608
609         ret = tree_mod_alloc(fs_info, flags, &tm);
610         if (ret < 0)
611                 goto out;
612
613         tm->index = eb->start >> PAGE_CACHE_SHIFT;
614         tm->slot = src_slot;
615         tm->move.dst_slot = dst_slot;
616         tm->move.nr_items = nr_items;
617         tm->op = MOD_LOG_MOVE_KEYS;
618
619         ret = __tree_mod_log_insert(fs_info, tm);
620 out:
621         tree_mod_log_write_unlock(fs_info);
622         return ret;
623 }
624
625 static inline void
626 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
627 {
628         int i;
629         u32 nritems;
630         int ret;
631
632         if (btrfs_header_level(eb) == 0)
633                 return;
634
635         nritems = btrfs_header_nritems(eb);
636         for (i = nritems - 1; i >= 0; i--) {
637                 ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
638                                               MOD_LOG_KEY_REMOVE_WHILE_FREEING);
639                 BUG_ON(ret < 0);
640         }
641 }
642
643 static noinline int
644 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
645                          struct extent_buffer *old_root,
646                          struct extent_buffer *new_root, gfp_t flags,
647                          int log_removal)
648 {
649         struct tree_mod_elem *tm;
650         int ret;
651
652         if (tree_mod_dont_log(fs_info, NULL))
653                 return 0;
654
655         if (log_removal)
656                 __tree_mod_log_free_eb(fs_info, old_root);
657
658         ret = tree_mod_alloc(fs_info, flags, &tm);
659         if (ret < 0)
660                 goto out;
661
662         tm->index = new_root->start >> PAGE_CACHE_SHIFT;
663         tm->old_root.logical = old_root->start;
664         tm->old_root.level = btrfs_header_level(old_root);
665         tm->generation = btrfs_header_generation(old_root);
666         tm->op = MOD_LOG_ROOT_REPLACE;
667
668         ret = __tree_mod_log_insert(fs_info, tm);
669 out:
670         tree_mod_log_write_unlock(fs_info);
671         return ret;
672 }
673
674 static struct tree_mod_elem *
675 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
676                       int smallest)
677 {
678         struct rb_root *tm_root;
679         struct rb_node *node;
680         struct tree_mod_elem *cur = NULL;
681         struct tree_mod_elem *found = NULL;
682         u64 index = start >> PAGE_CACHE_SHIFT;
683
684         tree_mod_log_read_lock(fs_info);
685         tm_root = &fs_info->tree_mod_log;
686         node = tm_root->rb_node;
687         while (node) {
688                 cur = container_of(node, struct tree_mod_elem, node);
689                 if (cur->index < index) {
690                         node = node->rb_left;
691                 } else if (cur->index > index) {
692                         node = node->rb_right;
693                 } else if (cur->seq < min_seq) {
694                         node = node->rb_left;
695                 } else if (!smallest) {
696                         /* we want the node with the highest seq */
697                         if (found)
698                                 BUG_ON(found->seq > cur->seq);
699                         found = cur;
700                         node = node->rb_left;
701                 } else if (cur->seq > min_seq) {
702                         /* we want the node with the smallest seq */
703                         if (found)
704                                 BUG_ON(found->seq < cur->seq);
705                         found = cur;
706                         node = node->rb_right;
707                 } else {
708                         found = cur;
709                         break;
710                 }
711         }
712         tree_mod_log_read_unlock(fs_info);
713
714         return found;
715 }
716
717 /*
718  * this returns the element from the log with the smallest time sequence
719  * value that's in the log (the oldest log item). any element with a time
720  * sequence lower than min_seq will be ignored.
721  */
722 static struct tree_mod_elem *
723 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
724                            u64 min_seq)
725 {
726         return __tree_mod_log_search(fs_info, start, min_seq, 1);
727 }
728
729 /*
730  * this returns the element from the log with the largest time sequence
731  * value that's in the log (the most recent log item). any element with
732  * a time sequence lower than min_seq will be ignored.
733  */
734 static struct tree_mod_elem *
735 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
736 {
737         return __tree_mod_log_search(fs_info, start, min_seq, 0);
738 }
739
740 static noinline void
741 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
742                      struct extent_buffer *src, unsigned long dst_offset,
743                      unsigned long src_offset, int nr_items)
744 {
745         int ret;
746         int i;
747
748         if (tree_mod_dont_log(fs_info, NULL))
749                 return;
750
751         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
752                 tree_mod_log_write_unlock(fs_info);
753                 return;
754         }
755
756         for (i = 0; i < nr_items; i++) {
757                 ret = tree_mod_log_insert_key_locked(fs_info, src,
758                                                 i + src_offset,
759                                                 MOD_LOG_KEY_REMOVE);
760                 BUG_ON(ret < 0);
761                 ret = tree_mod_log_insert_key_locked(fs_info, dst,
762                                                      i + dst_offset,
763                                                      MOD_LOG_KEY_ADD);
764                 BUG_ON(ret < 0);
765         }
766
767         tree_mod_log_write_unlock(fs_info);
768 }
769
770 static inline void
771 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
772                      int dst_offset, int src_offset, int nr_items)
773 {
774         int ret;
775         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
776                                        nr_items, GFP_NOFS);
777         BUG_ON(ret < 0);
778 }
779
780 static noinline void
781 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
782                           struct extent_buffer *eb, int slot, int atomic)
783 {
784         int ret;
785
786         ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
787                                            MOD_LOG_KEY_REPLACE,
788                                            atomic ? GFP_ATOMIC : GFP_NOFS);
789         BUG_ON(ret < 0);
790 }
791
792 static noinline void
793 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
794 {
795         if (tree_mod_dont_log(fs_info, eb))
796                 return;
797
798         __tree_mod_log_free_eb(fs_info, eb);
799
800         tree_mod_log_write_unlock(fs_info);
801 }
802
803 static noinline void
804 tree_mod_log_set_root_pointer(struct btrfs_root *root,
805                               struct extent_buffer *new_root_node,
806                               int log_removal)
807 {
808         int ret;
809         ret = tree_mod_log_insert_root(root->fs_info, root->node,
810                                        new_root_node, GFP_NOFS, log_removal);
811         BUG_ON(ret < 0);
812 }
813
814 /*
815  * check if the tree block can be shared by multiple trees
816  */
817 int btrfs_block_can_be_shared(struct btrfs_root *root,
818                               struct extent_buffer *buf)
819 {
820         /*
821          * Tree blocks not in refernece counted trees and tree roots
822          * are never shared. If a block was allocated after the last
823          * snapshot and the block was not allocated by tree relocation,
824          * we know the block is not shared.
825          */
826         if (root->ref_cows &&
827             buf != root->node && buf != root->commit_root &&
828             (btrfs_header_generation(buf) <=
829              btrfs_root_last_snapshot(&root->root_item) ||
830              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
831                 return 1;
832 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
833         if (root->ref_cows &&
834             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
835                 return 1;
836 #endif
837         return 0;
838 }
839
840 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
841                                        struct btrfs_root *root,
842                                        struct extent_buffer *buf,
843                                        struct extent_buffer *cow,
844                                        int *last_ref)
845 {
846         u64 refs;
847         u64 owner;
848         u64 flags;
849         u64 new_flags = 0;
850         int ret;
851
852         /*
853          * Backrefs update rules:
854          *
855          * Always use full backrefs for extent pointers in tree block
856          * allocated by tree relocation.
857          *
858          * If a shared tree block is no longer referenced by its owner
859          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
860          * use full backrefs for extent pointers in tree block.
861          *
862          * If a tree block is been relocating
863          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
864          * use full backrefs for extent pointers in tree block.
865          * The reason for this is some operations (such as drop tree)
866          * are only allowed for blocks use full backrefs.
867          */
868
869         if (btrfs_block_can_be_shared(root, buf)) {
870                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
871                                                btrfs_header_level(buf), 1,
872                                                &refs, &flags);
873                 if (ret)
874                         return ret;
875                 if (refs == 0) {
876                         ret = -EROFS;
877                         btrfs_std_error(root->fs_info, ret);
878                         return ret;
879                 }
880         } else {
881                 refs = 1;
882                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
883                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
884                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
885                 else
886                         flags = 0;
887         }
888
889         owner = btrfs_header_owner(buf);
890         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
891                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
892
893         if (refs > 1) {
894                 if ((owner == root->root_key.objectid ||
895                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
896                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
897                         ret = btrfs_inc_ref(trans, root, buf, 1, 1);
898                         BUG_ON(ret); /* -ENOMEM */
899
900                         if (root->root_key.objectid ==
901                             BTRFS_TREE_RELOC_OBJECTID) {
902                                 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
903                                 BUG_ON(ret); /* -ENOMEM */
904                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
905                                 BUG_ON(ret); /* -ENOMEM */
906                         }
907                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
908                 } else {
909
910                         if (root->root_key.objectid ==
911                             BTRFS_TREE_RELOC_OBJECTID)
912                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
913                         else
914                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
915                         BUG_ON(ret); /* -ENOMEM */
916                 }
917                 if (new_flags != 0) {
918                         ret = btrfs_set_disk_extent_flags(trans, root,
919                                                           buf->start,
920                                                           buf->len,
921                                                           new_flags, 0);
922                         if (ret)
923                                 return ret;
924                 }
925         } else {
926                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
927                         if (root->root_key.objectid ==
928                             BTRFS_TREE_RELOC_OBJECTID)
929                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
930                         else
931                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
932                         BUG_ON(ret); /* -ENOMEM */
933                         ret = btrfs_dec_ref(trans, root, buf, 1, 1);
934                         BUG_ON(ret); /* -ENOMEM */
935                 }
936                 clean_tree_block(trans, root, buf);
937                 *last_ref = 1;
938         }
939         return 0;
940 }
941
942 /*
943  * does the dirty work in cow of a single block.  The parent block (if
944  * supplied) is updated to point to the new cow copy.  The new buffer is marked
945  * dirty and returned locked.  If you modify the block it needs to be marked
946  * dirty again.
947  *
948  * search_start -- an allocation hint for the new block
949  *
950  * empty_size -- a hint that you plan on doing more cow.  This is the size in
951  * bytes the allocator should try to find free next to the block it returns.
952  * This is just a hint and may be ignored by the allocator.
953  */
954 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
955                              struct btrfs_root *root,
956                              struct extent_buffer *buf,
957                              struct extent_buffer *parent, int parent_slot,
958                              struct extent_buffer **cow_ret,
959                              u64 search_start, u64 empty_size)
960 {
961         struct btrfs_disk_key disk_key;
962         struct extent_buffer *cow;
963         int level, ret;
964         int last_ref = 0;
965         int unlock_orig = 0;
966         u64 parent_start;
967
968         if (*cow_ret == buf)
969                 unlock_orig = 1;
970
971         btrfs_assert_tree_locked(buf);
972
973         WARN_ON(root->ref_cows && trans->transid !=
974                 root->fs_info->running_transaction->transid);
975         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
976
977         level = btrfs_header_level(buf);
978
979         if (level == 0)
980                 btrfs_item_key(buf, &disk_key, 0);
981         else
982                 btrfs_node_key(buf, &disk_key, 0);
983
984         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
985                 if (parent)
986                         parent_start = parent->start;
987                 else
988                         parent_start = 0;
989         } else
990                 parent_start = 0;
991
992         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
993                                      root->root_key.objectid, &disk_key,
994                                      level, search_start, empty_size);
995         if (IS_ERR(cow))
996                 return PTR_ERR(cow);
997
998         /* cow is set to blocking by btrfs_init_new_buffer */
999
1000         copy_extent_buffer(cow, buf, 0, 0, cow->len);
1001         btrfs_set_header_bytenr(cow, cow->start);
1002         btrfs_set_header_generation(cow, trans->transid);
1003         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1004         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1005                                      BTRFS_HEADER_FLAG_RELOC);
1006         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1007                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1008         else
1009                 btrfs_set_header_owner(cow, root->root_key.objectid);
1010
1011         write_extent_buffer(cow, root->fs_info->fsid,
1012                             (unsigned long)btrfs_header_fsid(cow),
1013                             BTRFS_FSID_SIZE);
1014
1015         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1016         if (ret) {
1017                 btrfs_abort_transaction(trans, root, ret);
1018                 return ret;
1019         }
1020
1021         if (root->ref_cows)
1022                 btrfs_reloc_cow_block(trans, root, buf, cow);
1023
1024         if (buf == root->node) {
1025                 WARN_ON(parent && parent != buf);
1026                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1027                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1028                         parent_start = buf->start;
1029                 else
1030                         parent_start = 0;
1031
1032                 extent_buffer_get(cow);
1033                 tree_mod_log_set_root_pointer(root, cow, 1);
1034                 rcu_assign_pointer(root->node, cow);
1035
1036                 btrfs_free_tree_block(trans, root, buf, parent_start,
1037                                       last_ref);
1038                 free_extent_buffer(buf);
1039                 add_root_to_dirty_list(root);
1040         } else {
1041                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1042                         parent_start = parent->start;
1043                 else
1044                         parent_start = 0;
1045
1046                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1047                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1048                                         MOD_LOG_KEY_REPLACE);
1049                 btrfs_set_node_blockptr(parent, parent_slot,
1050                                         cow->start);
1051                 btrfs_set_node_ptr_generation(parent, parent_slot,
1052                                               trans->transid);
1053                 btrfs_mark_buffer_dirty(parent);
1054                 tree_mod_log_free_eb(root->fs_info, buf);
1055                 btrfs_free_tree_block(trans, root, buf, parent_start,
1056                                       last_ref);
1057         }
1058         if (unlock_orig)
1059                 btrfs_tree_unlock(buf);
1060         free_extent_buffer_stale(buf);
1061         btrfs_mark_buffer_dirty(cow);
1062         *cow_ret = cow;
1063         return 0;
1064 }
1065
1066 /*
1067  * returns the logical address of the oldest predecessor of the given root.
1068  * entries older than time_seq are ignored.
1069  */
1070 static struct tree_mod_elem *
1071 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1072                            struct extent_buffer *eb_root, u64 time_seq)
1073 {
1074         struct tree_mod_elem *tm;
1075         struct tree_mod_elem *found = NULL;
1076         u64 root_logical = eb_root->start;
1077         int looped = 0;
1078
1079         if (!time_seq)
1080                 return 0;
1081
1082         /*
1083          * the very last operation that's logged for a root is the replacement
1084          * operation (if it is replaced at all). this has the index of the *new*
1085          * root, making it the very first operation that's logged for this root.
1086          */
1087         while (1) {
1088                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1089                                                 time_seq);
1090                 if (!looped && !tm)
1091                         return 0;
1092                 /*
1093                  * if there are no tree operation for the oldest root, we simply
1094                  * return it. this should only happen if that (old) root is at
1095                  * level 0.
1096                  */
1097                 if (!tm)
1098                         break;
1099
1100                 /*
1101                  * if there's an operation that's not a root replacement, we
1102                  * found the oldest version of our root. normally, we'll find a
1103                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1104                  */
1105                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1106                         break;
1107
1108                 found = tm;
1109                 root_logical = tm->old_root.logical;
1110                 looped = 1;
1111         }
1112
1113         /* if there's no old root to return, return what we found instead */
1114         if (!found)
1115                 found = tm;
1116
1117         return found;
1118 }
1119
1120 /*
1121  * tm is a pointer to the first operation to rewind within eb. then, all
1122  * previous operations will be rewinded (until we reach something older than
1123  * time_seq).
1124  */
1125 static void
1126 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1127                       struct tree_mod_elem *first_tm)
1128 {
1129         u32 n;
1130         struct rb_node *next;
1131         struct tree_mod_elem *tm = first_tm;
1132         unsigned long o_dst;
1133         unsigned long o_src;
1134         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1135
1136         n = btrfs_header_nritems(eb);
1137         while (tm && tm->seq >= time_seq) {
1138                 /*
1139                  * all the operations are recorded with the operator used for
1140                  * the modification. as we're going backwards, we do the
1141                  * opposite of each operation here.
1142                  */
1143                 switch (tm->op) {
1144                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1145                         BUG_ON(tm->slot < n);
1146                         /* Fallthrough */
1147                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1148                 case MOD_LOG_KEY_REMOVE:
1149                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1150                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1151                         btrfs_set_node_ptr_generation(eb, tm->slot,
1152                                                       tm->generation);
1153                         n++;
1154                         break;
1155                 case MOD_LOG_KEY_REPLACE:
1156                         BUG_ON(tm->slot >= n);
1157                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1158                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1159                         btrfs_set_node_ptr_generation(eb, tm->slot,
1160                                                       tm->generation);
1161                         break;
1162                 case MOD_LOG_KEY_ADD:
1163                         /* if a move operation is needed it's in the log */
1164                         n--;
1165                         break;
1166                 case MOD_LOG_MOVE_KEYS:
1167                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1168                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1169                         memmove_extent_buffer(eb, o_dst, o_src,
1170                                               tm->move.nr_items * p_size);
1171                         break;
1172                 case MOD_LOG_ROOT_REPLACE:
1173                         /*
1174                          * this operation is special. for roots, this must be
1175                          * handled explicitly before rewinding.
1176                          * for non-roots, this operation may exist if the node
1177                          * was a root: root A -> child B; then A gets empty and
1178                          * B is promoted to the new root. in the mod log, we'll
1179                          * have a root-replace operation for B, a tree block
1180                          * that is no root. we simply ignore that operation.
1181                          */
1182                         break;
1183                 }
1184                 next = rb_next(&tm->node);
1185                 if (!next)
1186                         break;
1187                 tm = container_of(next, struct tree_mod_elem, node);
1188                 if (tm->index != first_tm->index)
1189                         break;
1190         }
1191         btrfs_set_header_nritems(eb, n);
1192 }
1193
1194 /*
1195  * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1196  * is returned. If rewind operations happen, a fresh buffer is returned. The
1197  * returned buffer is always read-locked. If the returned buffer is not the
1198  * input buffer, the lock on the input buffer is released and the input buffer
1199  * is freed (its refcount is decremented).
1200  */
1201 static struct extent_buffer *
1202 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1203                     u64 time_seq)
1204 {
1205         struct extent_buffer *eb_rewin;
1206         struct tree_mod_elem *tm;
1207
1208         if (!time_seq)
1209                 return eb;
1210
1211         if (btrfs_header_level(eb) == 0)
1212                 return eb;
1213
1214         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1215         if (!tm)
1216                 return eb;
1217
1218         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1219                 BUG_ON(tm->slot != 0);
1220                 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1221                                                 fs_info->tree_root->nodesize);
1222                 BUG_ON(!eb_rewin);
1223                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1224                 btrfs_set_header_backref_rev(eb_rewin,
1225                                              btrfs_header_backref_rev(eb));
1226                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1227                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1228         } else {
1229                 eb_rewin = btrfs_clone_extent_buffer(eb);
1230                 BUG_ON(!eb_rewin);
1231         }
1232
1233         extent_buffer_get(eb_rewin);
1234         btrfs_tree_read_unlock(eb);
1235         free_extent_buffer(eb);
1236
1237         extent_buffer_get(eb_rewin);
1238         btrfs_tree_read_lock(eb_rewin);
1239         __tree_mod_log_rewind(eb_rewin, time_seq, tm);
1240         WARN_ON(btrfs_header_nritems(eb_rewin) >
1241                 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1242
1243         return eb_rewin;
1244 }
1245
1246 /*
1247  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1248  * value. If there are no changes, the current root->root_node is returned. If
1249  * anything changed in between, there's a fresh buffer allocated on which the
1250  * rewind operations are done. In any case, the returned buffer is read locked.
1251  * Returns NULL on error (with no locks held).
1252  */
1253 static inline struct extent_buffer *
1254 get_old_root(struct btrfs_root *root, u64 time_seq)
1255 {
1256         struct tree_mod_elem *tm;
1257         struct extent_buffer *eb = NULL;
1258         struct extent_buffer *eb_root;
1259         struct extent_buffer *old;
1260         struct tree_mod_root *old_root = NULL;
1261         u64 old_generation = 0;
1262         u64 logical;
1263         u32 blocksize;
1264
1265         eb_root = btrfs_read_lock_root_node(root);
1266         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1267         if (!tm)
1268                 return eb_root;
1269
1270         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1271                 old_root = &tm->old_root;
1272                 old_generation = tm->generation;
1273                 logical = old_root->logical;
1274         } else {
1275                 logical = eb_root->start;
1276         }
1277
1278         tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1279         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1280                 btrfs_tree_read_unlock(eb_root);
1281                 free_extent_buffer(eb_root);
1282                 blocksize = btrfs_level_size(root, old_root->level);
1283                 old = read_tree_block(root, logical, blocksize, 0);
1284                 if (!old || !extent_buffer_uptodate(old)) {
1285                         free_extent_buffer(old);
1286                         pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1287                                 logical);
1288                         WARN_ON(1);
1289                 } else {
1290                         eb = btrfs_clone_extent_buffer(old);
1291                         free_extent_buffer(old);
1292                 }
1293         } else if (old_root) {
1294                 btrfs_tree_read_unlock(eb_root);
1295                 free_extent_buffer(eb_root);
1296                 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1297         } else {
1298                 eb = btrfs_clone_extent_buffer(eb_root);
1299                 btrfs_tree_read_unlock(eb_root);
1300                 free_extent_buffer(eb_root);
1301         }
1302
1303         if (!eb)
1304                 return NULL;
1305         extent_buffer_get(eb);
1306         btrfs_tree_read_lock(eb);
1307         if (old_root) {
1308                 btrfs_set_header_bytenr(eb, eb->start);
1309                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1310                 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1311                 btrfs_set_header_level(eb, old_root->level);
1312                 btrfs_set_header_generation(eb, old_generation);
1313         }
1314         if (tm)
1315                 __tree_mod_log_rewind(eb, time_seq, tm);
1316         else
1317                 WARN_ON(btrfs_header_level(eb) != 0);
1318         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1319
1320         return eb;
1321 }
1322
1323 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1324 {
1325         struct tree_mod_elem *tm;
1326         int level;
1327         struct extent_buffer *eb_root = btrfs_root_node(root);
1328
1329         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1330         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1331                 level = tm->old_root.level;
1332         } else {
1333                 level = btrfs_header_level(eb_root);
1334         }
1335         free_extent_buffer(eb_root);
1336
1337         return level;
1338 }
1339
1340 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1341                                    struct btrfs_root *root,
1342                                    struct extent_buffer *buf)
1343 {
1344         /* ensure we can see the force_cow */
1345         smp_rmb();
1346
1347         /*
1348          * We do not need to cow a block if
1349          * 1) this block is not created or changed in this transaction;
1350          * 2) this block does not belong to TREE_RELOC tree;
1351          * 3) the root is not forced COW.
1352          *
1353          * What is forced COW:
1354          *    when we create snapshot during commiting the transaction,
1355          *    after we've finished coping src root, we must COW the shared
1356          *    block to ensure the metadata consistency.
1357          */
1358         if (btrfs_header_generation(buf) == trans->transid &&
1359             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1360             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1361               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1362             !root->force_cow)
1363                 return 0;
1364         return 1;
1365 }
1366
1367 /*
1368  * cows a single block, see __btrfs_cow_block for the real work.
1369  * This version of it has extra checks so that a block isn't cow'd more than
1370  * once per transaction, as long as it hasn't been written yet
1371  */
1372 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1373                     struct btrfs_root *root, struct extent_buffer *buf,
1374                     struct extent_buffer *parent, int parent_slot,
1375                     struct extent_buffer **cow_ret)
1376 {
1377         u64 search_start;
1378         int ret;
1379
1380         if (trans->transaction != root->fs_info->running_transaction)
1381                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1382                        (unsigned long long)trans->transid,
1383                        (unsigned long long)
1384                        root->fs_info->running_transaction->transid);
1385
1386         if (trans->transid != root->fs_info->generation)
1387                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1388                        (unsigned long long)trans->transid,
1389                        (unsigned long long)root->fs_info->generation);
1390
1391         if (!should_cow_block(trans, root, buf)) {
1392                 *cow_ret = buf;
1393                 return 0;
1394         }
1395
1396         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1397
1398         if (parent)
1399                 btrfs_set_lock_blocking(parent);
1400         btrfs_set_lock_blocking(buf);
1401
1402         ret = __btrfs_cow_block(trans, root, buf, parent,
1403                                  parent_slot, cow_ret, search_start, 0);
1404
1405         trace_btrfs_cow_block(root, buf, *cow_ret);
1406
1407         return ret;
1408 }
1409
1410 /*
1411  * helper function for defrag to decide if two blocks pointed to by a
1412  * node are actually close by
1413  */
1414 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1415 {
1416         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1417                 return 1;
1418         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1419                 return 1;
1420         return 0;
1421 }
1422
1423 /*
1424  * compare two keys in a memcmp fashion
1425  */
1426 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1427 {
1428         struct btrfs_key k1;
1429
1430         btrfs_disk_key_to_cpu(&k1, disk);
1431
1432         return btrfs_comp_cpu_keys(&k1, k2);
1433 }
1434
1435 /*
1436  * same as comp_keys only with two btrfs_key's
1437  */
1438 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1439 {
1440         if (k1->objectid > k2->objectid)
1441                 return 1;
1442         if (k1->objectid < k2->objectid)
1443                 return -1;
1444         if (k1->type > k2->type)
1445                 return 1;
1446         if (k1->type < k2->type)
1447                 return -1;
1448         if (k1->offset > k2->offset)
1449                 return 1;
1450         if (k1->offset < k2->offset)
1451                 return -1;
1452         return 0;
1453 }
1454
1455 /*
1456  * this is used by the defrag code to go through all the
1457  * leaves pointed to by a node and reallocate them so that
1458  * disk order is close to key order
1459  */
1460 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1461                        struct btrfs_root *root, struct extent_buffer *parent,
1462                        int start_slot, u64 *last_ret,
1463                        struct btrfs_key *progress)
1464 {
1465         struct extent_buffer *cur;
1466         u64 blocknr;
1467         u64 gen;
1468         u64 search_start = *last_ret;
1469         u64 last_block = 0;
1470         u64 other;
1471         u32 parent_nritems;
1472         int end_slot;
1473         int i;
1474         int err = 0;
1475         int parent_level;
1476         int uptodate;
1477         u32 blocksize;
1478         int progress_passed = 0;
1479         struct btrfs_disk_key disk_key;
1480
1481         parent_level = btrfs_header_level(parent);
1482
1483         WARN_ON(trans->transaction != root->fs_info->running_transaction);
1484         WARN_ON(trans->transid != root->fs_info->generation);
1485
1486         parent_nritems = btrfs_header_nritems(parent);
1487         blocksize = btrfs_level_size(root, parent_level - 1);
1488         end_slot = parent_nritems;
1489
1490         if (parent_nritems == 1)
1491                 return 0;
1492
1493         btrfs_set_lock_blocking(parent);
1494
1495         for (i = start_slot; i < end_slot; i++) {
1496                 int close = 1;
1497
1498                 btrfs_node_key(parent, &disk_key, i);
1499                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1500                         continue;
1501
1502                 progress_passed = 1;
1503                 blocknr = btrfs_node_blockptr(parent, i);
1504                 gen = btrfs_node_ptr_generation(parent, i);
1505                 if (last_block == 0)
1506                         last_block = blocknr;
1507
1508                 if (i > 0) {
1509                         other = btrfs_node_blockptr(parent, i - 1);
1510                         close = close_blocks(blocknr, other, blocksize);
1511                 }
1512                 if (!close && i < end_slot - 2) {
1513                         other = btrfs_node_blockptr(parent, i + 1);
1514                         close = close_blocks(blocknr, other, blocksize);
1515                 }
1516                 if (close) {
1517                         last_block = blocknr;
1518                         continue;
1519                 }
1520
1521                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1522                 if (cur)
1523                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1524                 else
1525                         uptodate = 0;
1526                 if (!cur || !uptodate) {
1527                         if (!cur) {
1528                                 cur = read_tree_block(root, blocknr,
1529                                                          blocksize, gen);
1530                                 if (!cur || !extent_buffer_uptodate(cur)) {
1531                                         free_extent_buffer(cur);
1532                                         return -EIO;
1533                                 }
1534                         } else if (!uptodate) {
1535                                 err = btrfs_read_buffer(cur, gen);
1536                                 if (err) {
1537                                         free_extent_buffer(cur);
1538                                         return err;
1539                                 }
1540                         }
1541                 }
1542                 if (search_start == 0)
1543                         search_start = last_block;
1544
1545                 btrfs_tree_lock(cur);
1546                 btrfs_set_lock_blocking(cur);
1547                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1548                                         &cur, search_start,
1549                                         min(16 * blocksize,
1550                                             (end_slot - i) * blocksize));
1551                 if (err) {
1552                         btrfs_tree_unlock(cur);
1553                         free_extent_buffer(cur);
1554                         break;
1555                 }
1556                 search_start = cur->start;
1557                 last_block = cur->start;
1558                 *last_ret = search_start;
1559                 btrfs_tree_unlock(cur);
1560                 free_extent_buffer(cur);
1561         }
1562         return err;
1563 }
1564
1565 /*
1566  * The leaf data grows from end-to-front in the node.
1567  * this returns the address of the start of the last item,
1568  * which is the stop of the leaf data stack
1569  */
1570 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1571                                          struct extent_buffer *leaf)
1572 {
1573         u32 nr = btrfs_header_nritems(leaf);
1574         if (nr == 0)
1575                 return BTRFS_LEAF_DATA_SIZE(root);
1576         return btrfs_item_offset_nr(leaf, nr - 1);
1577 }
1578
1579
1580 /*
1581  * search for key in the extent_buffer.  The items start at offset p,
1582  * and they are item_size apart.  There are 'max' items in p.
1583  *
1584  * the slot in the array is returned via slot, and it points to
1585  * the place where you would insert key if it is not found in
1586  * the array.
1587  *
1588  * slot may point to max if the key is bigger than all of the keys
1589  */
1590 static noinline int generic_bin_search(struct extent_buffer *eb,
1591                                        unsigned long p,
1592                                        int item_size, struct btrfs_key *key,
1593                                        int max, int *slot)
1594 {
1595         int low = 0;
1596         int high = max;
1597         int mid;
1598         int ret;
1599         struct btrfs_disk_key *tmp = NULL;
1600         struct btrfs_disk_key unaligned;
1601         unsigned long offset;
1602         char *kaddr = NULL;
1603         unsigned long map_start = 0;
1604         unsigned long map_len = 0;
1605         int err;
1606
1607         while (low < high) {
1608                 mid = (low + high) / 2;
1609                 offset = p + mid * item_size;
1610
1611                 if (!kaddr || offset < map_start ||
1612                     (offset + sizeof(struct btrfs_disk_key)) >
1613                     map_start + map_len) {
1614
1615                         err = map_private_extent_buffer(eb, offset,
1616                                                 sizeof(struct btrfs_disk_key),
1617                                                 &kaddr, &map_start, &map_len);
1618
1619                         if (!err) {
1620                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1621                                                         map_start);
1622                         } else {
1623                                 read_extent_buffer(eb, &unaligned,
1624                                                    offset, sizeof(unaligned));
1625                                 tmp = &unaligned;
1626                         }
1627
1628                 } else {
1629                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1630                                                         map_start);
1631                 }
1632                 ret = comp_keys(tmp, key);
1633
1634                 if (ret < 0)
1635                         low = mid + 1;
1636                 else if (ret > 0)
1637                         high = mid;
1638                 else {
1639                         *slot = mid;
1640                         return 0;
1641                 }
1642         }
1643         *slot = low;
1644         return 1;
1645 }
1646
1647 /*
1648  * simple bin_search frontend that does the right thing for
1649  * leaves vs nodes
1650  */
1651 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1652                       int level, int *slot)
1653 {
1654         if (level == 0)
1655                 return generic_bin_search(eb,
1656                                           offsetof(struct btrfs_leaf, items),
1657                                           sizeof(struct btrfs_item),
1658                                           key, btrfs_header_nritems(eb),
1659                                           slot);
1660         else
1661                 return generic_bin_search(eb,
1662                                           offsetof(struct btrfs_node, ptrs),
1663                                           sizeof(struct btrfs_key_ptr),
1664                                           key, btrfs_header_nritems(eb),
1665                                           slot);
1666 }
1667
1668 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1669                      int level, int *slot)
1670 {
1671         return bin_search(eb, key, level, slot);
1672 }
1673
1674 static void root_add_used(struct btrfs_root *root, u32 size)
1675 {
1676         spin_lock(&root->accounting_lock);
1677         btrfs_set_root_used(&root->root_item,
1678                             btrfs_root_used(&root->root_item) + size);
1679         spin_unlock(&root->accounting_lock);
1680 }
1681
1682 static void root_sub_used(struct btrfs_root *root, u32 size)
1683 {
1684         spin_lock(&root->accounting_lock);
1685         btrfs_set_root_used(&root->root_item,
1686                             btrfs_root_used(&root->root_item) - size);
1687         spin_unlock(&root->accounting_lock);
1688 }
1689
1690 /* given a node and slot number, this reads the blocks it points to.  The
1691  * extent buffer is returned with a reference taken (but unlocked).
1692  * NULL is returned on error.
1693  */
1694 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1695                                    struct extent_buffer *parent, int slot)
1696 {
1697         int level = btrfs_header_level(parent);
1698         struct extent_buffer *eb;
1699
1700         if (slot < 0)
1701                 return NULL;
1702         if (slot >= btrfs_header_nritems(parent))
1703                 return NULL;
1704
1705         BUG_ON(level == 0);
1706
1707         eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1708                              btrfs_level_size(root, level - 1),
1709                              btrfs_node_ptr_generation(parent, slot));
1710         if (eb && !extent_buffer_uptodate(eb)) {
1711                 free_extent_buffer(eb);
1712                 eb = NULL;
1713         }
1714
1715         return eb;
1716 }
1717
1718 /*
1719  * node level balancing, used to make sure nodes are in proper order for
1720  * item deletion.  We balance from the top down, so we have to make sure
1721  * that a deletion won't leave an node completely empty later on.
1722  */
1723 static noinline int balance_level(struct btrfs_trans_handle *trans,
1724                          struct btrfs_root *root,
1725                          struct btrfs_path *path, int level)
1726 {
1727         struct extent_buffer *right = NULL;
1728         struct extent_buffer *mid;
1729         struct extent_buffer *left = NULL;
1730         struct extent_buffer *parent = NULL;
1731         int ret = 0;
1732         int wret;
1733         int pslot;
1734         int orig_slot = path->slots[level];
1735         u64 orig_ptr;
1736
1737         if (level == 0)
1738                 return 0;
1739
1740         mid = path->nodes[level];
1741
1742         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1743                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1744         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1745
1746         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1747
1748         if (level < BTRFS_MAX_LEVEL - 1) {
1749                 parent = path->nodes[level + 1];
1750                 pslot = path->slots[level + 1];
1751         }
1752
1753         /*
1754          * deal with the case where there is only one pointer in the root
1755          * by promoting the node below to a root
1756          */
1757         if (!parent) {
1758                 struct extent_buffer *child;
1759
1760                 if (btrfs_header_nritems(mid) != 1)
1761                         return 0;
1762
1763                 /* promote the child to a root */
1764                 child = read_node_slot(root, mid, 0);
1765                 if (!child) {
1766                         ret = -EROFS;
1767                         btrfs_std_error(root->fs_info, ret);
1768                         goto enospc;
1769                 }
1770
1771                 btrfs_tree_lock(child);
1772                 btrfs_set_lock_blocking(child);
1773                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1774                 if (ret) {
1775                         btrfs_tree_unlock(child);
1776                         free_extent_buffer(child);
1777                         goto enospc;
1778                 }
1779
1780                 tree_mod_log_set_root_pointer(root, child, 1);
1781                 rcu_assign_pointer(root->node, child);
1782
1783                 add_root_to_dirty_list(root);
1784                 btrfs_tree_unlock(child);
1785
1786                 path->locks[level] = 0;
1787                 path->nodes[level] = NULL;
1788                 clean_tree_block(trans, root, mid);
1789                 btrfs_tree_unlock(mid);
1790                 /* once for the path */
1791                 free_extent_buffer(mid);
1792
1793                 root_sub_used(root, mid->len);
1794                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1795                 /* once for the root ptr */
1796                 free_extent_buffer_stale(mid);
1797                 return 0;
1798         }
1799         if (btrfs_header_nritems(mid) >
1800             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1801                 return 0;
1802
1803         left = read_node_slot(root, parent, pslot - 1);
1804         if (left) {
1805                 btrfs_tree_lock(left);
1806                 btrfs_set_lock_blocking(left);
1807                 wret = btrfs_cow_block(trans, root, left,
1808                                        parent, pslot - 1, &left);
1809                 if (wret) {
1810                         ret = wret;
1811                         goto enospc;
1812                 }
1813         }
1814         right = read_node_slot(root, parent, pslot + 1);
1815         if (right) {
1816                 btrfs_tree_lock(right);
1817                 btrfs_set_lock_blocking(right);
1818                 wret = btrfs_cow_block(trans, root, right,
1819                                        parent, pslot + 1, &right);
1820                 if (wret) {
1821                         ret = wret;
1822                         goto enospc;
1823                 }
1824         }
1825
1826         /* first, try to make some room in the middle buffer */
1827         if (left) {
1828                 orig_slot += btrfs_header_nritems(left);
1829                 wret = push_node_left(trans, root, left, mid, 1);
1830                 if (wret < 0)
1831                         ret = wret;
1832         }
1833
1834         /*
1835          * then try to empty the right most buffer into the middle
1836          */
1837         if (right) {
1838                 wret = push_node_left(trans, root, mid, right, 1);
1839                 if (wret < 0 && wret != -ENOSPC)
1840                         ret = wret;
1841                 if (btrfs_header_nritems(right) == 0) {
1842                         clean_tree_block(trans, root, right);
1843                         btrfs_tree_unlock(right);
1844                         del_ptr(root, path, level + 1, pslot + 1);
1845                         root_sub_used(root, right->len);
1846                         btrfs_free_tree_block(trans, root, right, 0, 1);
1847                         free_extent_buffer_stale(right);
1848                         right = NULL;
1849                 } else {
1850                         struct btrfs_disk_key right_key;
1851                         btrfs_node_key(right, &right_key, 0);
1852                         tree_mod_log_set_node_key(root->fs_info, parent,
1853                                                   pslot + 1, 0);
1854                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1855                         btrfs_mark_buffer_dirty(parent);
1856                 }
1857         }
1858         if (btrfs_header_nritems(mid) == 1) {
1859                 /*
1860                  * we're not allowed to leave a node with one item in the
1861                  * tree during a delete.  A deletion from lower in the tree
1862                  * could try to delete the only pointer in this node.
1863                  * So, pull some keys from the left.
1864                  * There has to be a left pointer at this point because
1865                  * otherwise we would have pulled some pointers from the
1866                  * right
1867                  */
1868                 if (!left) {
1869                         ret = -EROFS;
1870                         btrfs_std_error(root->fs_info, ret);
1871                         goto enospc;
1872                 }
1873                 wret = balance_node_right(trans, root, mid, left);
1874                 if (wret < 0) {
1875                         ret = wret;
1876                         goto enospc;
1877                 }
1878                 if (wret == 1) {
1879                         wret = push_node_left(trans, root, left, mid, 1);
1880                         if (wret < 0)
1881                                 ret = wret;
1882                 }
1883                 BUG_ON(wret == 1);
1884         }
1885         if (btrfs_header_nritems(mid) == 0) {
1886                 clean_tree_block(trans, root, mid);
1887                 btrfs_tree_unlock(mid);
1888                 del_ptr(root, path, level + 1, pslot);
1889                 root_sub_used(root, mid->len);
1890                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1891                 free_extent_buffer_stale(mid);
1892                 mid = NULL;
1893         } else {
1894                 /* update the parent key to reflect our changes */
1895                 struct btrfs_disk_key mid_key;
1896                 btrfs_node_key(mid, &mid_key, 0);
1897                 tree_mod_log_set_node_key(root->fs_info, parent,
1898                                           pslot, 0);
1899                 btrfs_set_node_key(parent, &mid_key, pslot);
1900                 btrfs_mark_buffer_dirty(parent);
1901         }
1902
1903         /* update the path */
1904         if (left) {
1905                 if (btrfs_header_nritems(left) > orig_slot) {
1906                         extent_buffer_get(left);
1907                         /* left was locked after cow */
1908                         path->nodes[level] = left;
1909                         path->slots[level + 1] -= 1;
1910                         path->slots[level] = orig_slot;
1911                         if (mid) {
1912                                 btrfs_tree_unlock(mid);
1913                                 free_extent_buffer(mid);
1914                         }
1915                 } else {
1916                         orig_slot -= btrfs_header_nritems(left);
1917                         path->slots[level] = orig_slot;
1918                 }
1919         }
1920         /* double check we haven't messed things up */
1921         if (orig_ptr !=
1922             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1923                 BUG();
1924 enospc:
1925         if (right) {
1926                 btrfs_tree_unlock(right);
1927                 free_extent_buffer(right);
1928         }
1929         if (left) {
1930                 if (path->nodes[level] != left)
1931                         btrfs_tree_unlock(left);
1932                 free_extent_buffer(left);
1933         }
1934         return ret;
1935 }
1936
1937 /* Node balancing for insertion.  Here we only split or push nodes around
1938  * when they are completely full.  This is also done top down, so we
1939  * have to be pessimistic.
1940  */
1941 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1942                                           struct btrfs_root *root,
1943                                           struct btrfs_path *path, int level)
1944 {
1945         struct extent_buffer *right = NULL;
1946         struct extent_buffer *mid;
1947         struct extent_buffer *left = NULL;
1948         struct extent_buffer *parent = NULL;
1949         int ret = 0;
1950         int wret;
1951         int pslot;
1952         int orig_slot = path->slots[level];
1953
1954         if (level == 0)
1955                 return 1;
1956
1957         mid = path->nodes[level];
1958         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1959
1960         if (level < BTRFS_MAX_LEVEL - 1) {
1961                 parent = path->nodes[level + 1];
1962                 pslot = path->slots[level + 1];
1963         }
1964
1965         if (!parent)
1966                 return 1;
1967
1968         left = read_node_slot(root, parent, pslot - 1);
1969
1970         /* first, try to make some room in the middle buffer */
1971         if (left) {
1972                 u32 left_nr;
1973
1974                 btrfs_tree_lock(left);
1975                 btrfs_set_lock_blocking(left);
1976
1977                 left_nr = btrfs_header_nritems(left);
1978                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1979                         wret = 1;
1980                 } else {
1981                         ret = btrfs_cow_block(trans, root, left, parent,
1982                                               pslot - 1, &left);
1983                         if (ret)
1984                                 wret = 1;
1985                         else {
1986                                 wret = push_node_left(trans, root,
1987                                                       left, mid, 0);
1988                         }
1989                 }
1990                 if (wret < 0)
1991                         ret = wret;
1992                 if (wret == 0) {
1993                         struct btrfs_disk_key disk_key;
1994                         orig_slot += left_nr;
1995                         btrfs_node_key(mid, &disk_key, 0);
1996                         tree_mod_log_set_node_key(root->fs_info, parent,
1997                                                   pslot, 0);
1998                         btrfs_set_node_key(parent, &disk_key, pslot);
1999                         btrfs_mark_buffer_dirty(parent);
2000                         if (btrfs_header_nritems(left) > orig_slot) {
2001                                 path->nodes[level] = left;
2002                                 path->slots[level + 1] -= 1;
2003                                 path->slots[level] = orig_slot;
2004                                 btrfs_tree_unlock(mid);
2005                                 free_extent_buffer(mid);
2006                         } else {
2007                                 orig_slot -=
2008                                         btrfs_header_nritems(left);
2009                                 path->slots[level] = orig_slot;
2010                                 btrfs_tree_unlock(left);
2011                                 free_extent_buffer(left);
2012                         }
2013                         return 0;
2014                 }
2015                 btrfs_tree_unlock(left);
2016                 free_extent_buffer(left);
2017         }
2018         right = read_node_slot(root, parent, pslot + 1);
2019
2020         /*
2021          * then try to empty the right most buffer into the middle
2022          */
2023         if (right) {
2024                 u32 right_nr;
2025
2026                 btrfs_tree_lock(right);
2027                 btrfs_set_lock_blocking(right);
2028
2029                 right_nr = btrfs_header_nritems(right);
2030                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2031                         wret = 1;
2032                 } else {
2033                         ret = btrfs_cow_block(trans, root, right,
2034                                               parent, pslot + 1,
2035                                               &right);
2036                         if (ret)
2037                                 wret = 1;
2038                         else {
2039                                 wret = balance_node_right(trans, root,
2040                                                           right, mid);
2041                         }
2042                 }
2043                 if (wret < 0)
2044                         ret = wret;
2045                 if (wret == 0) {
2046                         struct btrfs_disk_key disk_key;
2047
2048                         btrfs_node_key(right, &disk_key, 0);
2049                         tree_mod_log_set_node_key(root->fs_info, parent,
2050                                                   pslot + 1, 0);
2051                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2052                         btrfs_mark_buffer_dirty(parent);
2053
2054                         if (btrfs_header_nritems(mid) <= orig_slot) {
2055                                 path->nodes[level] = right;
2056                                 path->slots[level + 1] += 1;
2057                                 path->slots[level] = orig_slot -
2058                                         btrfs_header_nritems(mid);
2059                                 btrfs_tree_unlock(mid);
2060                                 free_extent_buffer(mid);
2061                         } else {
2062                                 btrfs_tree_unlock(right);
2063                                 free_extent_buffer(right);
2064                         }
2065                         return 0;
2066                 }
2067                 btrfs_tree_unlock(right);
2068                 free_extent_buffer(right);
2069         }
2070         return 1;
2071 }
2072
2073 /*
2074  * readahead one full node of leaves, finding things that are close
2075  * to the block in 'slot', and triggering ra on them.
2076  */
2077 static void reada_for_search(struct btrfs_root *root,
2078                              struct btrfs_path *path,
2079                              int level, int slot, u64 objectid)
2080 {
2081         struct extent_buffer *node;
2082         struct btrfs_disk_key disk_key;
2083         u32 nritems;
2084         u64 search;
2085         u64 target;
2086         u64 nread = 0;
2087         u64 gen;
2088         int direction = path->reada;
2089         struct extent_buffer *eb;
2090         u32 nr;
2091         u32 blocksize;
2092         u32 nscan = 0;
2093
2094         if (level != 1)
2095                 return;
2096
2097         if (!path->nodes[level])
2098                 return;
2099
2100         node = path->nodes[level];
2101
2102         search = btrfs_node_blockptr(node, slot);
2103         blocksize = btrfs_level_size(root, level - 1);
2104         eb = btrfs_find_tree_block(root, search, blocksize);
2105         if (eb) {
2106                 free_extent_buffer(eb);
2107                 return;
2108         }
2109
2110         target = search;
2111
2112         nritems = btrfs_header_nritems(node);
2113         nr = slot;
2114
2115         while (1) {
2116                 if (direction < 0) {
2117                         if (nr == 0)
2118                                 break;
2119                         nr--;
2120                 } else if (direction > 0) {
2121                         nr++;
2122                         if (nr >= nritems)
2123                                 break;
2124                 }
2125                 if (path->reada < 0 && objectid) {
2126                         btrfs_node_key(node, &disk_key, nr);
2127                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2128                                 break;
2129                 }
2130                 search = btrfs_node_blockptr(node, nr);
2131                 if ((search <= target && target - search <= 65536) ||
2132                     (search > target && search - target <= 65536)) {
2133                         gen = btrfs_node_ptr_generation(node, nr);
2134                         readahead_tree_block(root, search, blocksize, gen);
2135                         nread += blocksize;
2136                 }
2137                 nscan++;
2138                 if ((nread > 65536 || nscan > 32))
2139                         break;
2140         }
2141 }
2142
2143 /*
2144  * returns -EAGAIN if it had to drop the path, or zero if everything was in
2145  * cache
2146  */
2147 static noinline int reada_for_balance(struct btrfs_root *root,
2148                                       struct btrfs_path *path, int level)
2149 {
2150         int slot;
2151         int nritems;
2152         struct extent_buffer *parent;
2153         struct extent_buffer *eb;
2154         u64 gen;
2155         u64 block1 = 0;
2156         u64 block2 = 0;
2157         int ret = 0;
2158         int blocksize;
2159
2160         parent = path->nodes[level + 1];
2161         if (!parent)
2162                 return 0;
2163
2164         nritems = btrfs_header_nritems(parent);
2165         slot = path->slots[level + 1];
2166         blocksize = btrfs_level_size(root, level);
2167
2168         if (slot > 0) {
2169                 block1 = btrfs_node_blockptr(parent, slot - 1);
2170                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2171                 eb = btrfs_find_tree_block(root, block1, blocksize);
2172                 /*
2173                  * if we get -eagain from btrfs_buffer_uptodate, we
2174                  * don't want to return eagain here.  That will loop
2175                  * forever
2176                  */
2177                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2178                         block1 = 0;
2179                 free_extent_buffer(eb);
2180         }
2181         if (slot + 1 < nritems) {
2182                 block2 = btrfs_node_blockptr(parent, slot + 1);
2183                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2184                 eb = btrfs_find_tree_block(root, block2, blocksize);
2185                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2186                         block2 = 0;
2187                 free_extent_buffer(eb);
2188         }
2189         if (block1 || block2) {
2190                 ret = -EAGAIN;
2191
2192                 /* release the whole path */
2193                 btrfs_release_path(path);
2194
2195                 /* read the blocks */
2196                 if (block1)
2197                         readahead_tree_block(root, block1, blocksize, 0);
2198                 if (block2)
2199                         readahead_tree_block(root, block2, blocksize, 0);
2200
2201                 if (block1) {
2202                         eb = read_tree_block(root, block1, blocksize, 0);
2203                         free_extent_buffer(eb);
2204                 }
2205                 if (block2) {
2206                         eb = read_tree_block(root, block2, blocksize, 0);
2207                         free_extent_buffer(eb);
2208                 }
2209         }
2210         return ret;
2211 }
2212
2213
2214 /*
2215  * when we walk down the tree, it is usually safe to unlock the higher layers
2216  * in the tree.  The exceptions are when our path goes through slot 0, because
2217  * operations on the tree might require changing key pointers higher up in the
2218  * tree.
2219  *
2220  * callers might also have set path->keep_locks, which tells this code to keep
2221  * the lock if the path points to the last slot in the block.  This is part of
2222  * walking through the tree, and selecting the next slot in the higher block.
2223  *
2224  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2225  * if lowest_unlock is 1, level 0 won't be unlocked
2226  */
2227 static noinline void unlock_up(struct btrfs_path *path, int level,
2228                                int lowest_unlock, int min_write_lock_level,
2229                                int *write_lock_level)
2230 {
2231         int i;
2232         int skip_level = level;
2233         int no_skips = 0;
2234         struct extent_buffer *t;
2235
2236         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2237                 if (!path->nodes[i])
2238                         break;
2239                 if (!path->locks[i])
2240                         break;
2241                 if (!no_skips && path->slots[i] == 0) {
2242                         skip_level = i + 1;
2243                         continue;
2244                 }
2245                 if (!no_skips && path->keep_locks) {
2246                         u32 nritems;
2247                         t = path->nodes[i];
2248                         nritems = btrfs_header_nritems(t);
2249                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2250                                 skip_level = i + 1;
2251                                 continue;
2252                         }
2253                 }
2254                 if (skip_level < i && i >= lowest_unlock)
2255                         no_skips = 1;
2256
2257                 t = path->nodes[i];
2258                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2259                         btrfs_tree_unlock_rw(t, path->locks[i]);
2260                         path->locks[i] = 0;
2261                         if (write_lock_level &&
2262                             i > min_write_lock_level &&
2263                             i <= *write_lock_level) {
2264                                 *write_lock_level = i - 1;
2265                         }
2266                 }
2267         }
2268 }
2269
2270 /*
2271  * This releases any locks held in the path starting at level and
2272  * going all the way up to the root.
2273  *
2274  * btrfs_search_slot will keep the lock held on higher nodes in a few
2275  * corner cases, such as COW of the block at slot zero in the node.  This
2276  * ignores those rules, and it should only be called when there are no
2277  * more updates to be done higher up in the tree.
2278  */
2279 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2280 {
2281         int i;
2282
2283         if (path->keep_locks)
2284                 return;
2285
2286         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2287                 if (!path->nodes[i])
2288                         continue;
2289                 if (!path->locks[i])
2290                         continue;
2291                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2292                 path->locks[i] = 0;
2293         }
2294 }
2295
2296 /*
2297  * helper function for btrfs_search_slot.  The goal is to find a block
2298  * in cache without setting the path to blocking.  If we find the block
2299  * we return zero and the path is unchanged.
2300  *
2301  * If we can't find the block, we set the path blocking and do some
2302  * reada.  -EAGAIN is returned and the search must be repeated.
2303  */
2304 static int
2305 read_block_for_search(struct btrfs_trans_handle *trans,
2306                        struct btrfs_root *root, struct btrfs_path *p,
2307                        struct extent_buffer **eb_ret, int level, int slot,
2308                        struct btrfs_key *key, u64 time_seq)
2309 {
2310         u64 blocknr;
2311         u64 gen;
2312         u32 blocksize;
2313         struct extent_buffer *b = *eb_ret;
2314         struct extent_buffer *tmp;
2315         int ret;
2316
2317         blocknr = btrfs_node_blockptr(b, slot);
2318         gen = btrfs_node_ptr_generation(b, slot);
2319         blocksize = btrfs_level_size(root, level - 1);
2320
2321         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2322         if (tmp) {
2323                 /* first we do an atomic uptodate check */
2324                 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2325                         if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2326                                 /*
2327                                  * we found an up to date block without
2328                                  * sleeping, return
2329                                  * right away
2330                                  */
2331                                 *eb_ret = tmp;
2332                                 return 0;
2333                         }
2334                         /* the pages were up to date, but we failed
2335                          * the generation number check.  Do a full
2336                          * read for the generation number that is correct.
2337                          * We must do this without dropping locks so
2338                          * we can trust our generation number
2339                          */
2340                         free_extent_buffer(tmp);
2341                         btrfs_set_path_blocking(p);
2342
2343                         /* now we're allowed to do a blocking uptodate check */
2344                         tmp = read_tree_block(root, blocknr, blocksize, gen);
2345                         if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2346                                 *eb_ret = tmp;
2347                                 return 0;
2348                         }
2349                         free_extent_buffer(tmp);
2350                         btrfs_release_path(p);
2351                         return -EIO;
2352                 }
2353         }
2354
2355         /*
2356          * reduce lock contention at high levels
2357          * of the btree by dropping locks before
2358          * we read.  Don't release the lock on the current
2359          * level because we need to walk this node to figure
2360          * out which blocks to read.
2361          */
2362         btrfs_unlock_up_safe(p, level + 1);
2363         btrfs_set_path_blocking(p);
2364
2365         free_extent_buffer(tmp);
2366         if (p->reada)
2367                 reada_for_search(root, p, level, slot, key->objectid);
2368
2369         btrfs_release_path(p);
2370
2371         ret = -EAGAIN;
2372         tmp = read_tree_block(root, blocknr, blocksize, 0);
2373         if (tmp) {
2374                 /*
2375                  * If the read above didn't mark this buffer up to date,
2376                  * it will never end up being up to date.  Set ret to EIO now
2377                  * and give up so that our caller doesn't loop forever
2378                  * on our EAGAINs.
2379                  */
2380                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2381                         ret = -EIO;
2382                 free_extent_buffer(tmp);
2383         }
2384         return ret;
2385 }
2386
2387 /*
2388  * helper function for btrfs_search_slot.  This does all of the checks
2389  * for node-level blocks and does any balancing required based on
2390  * the ins_len.
2391  *
2392  * If no extra work was required, zero is returned.  If we had to
2393  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2394  * start over
2395  */
2396 static int
2397 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2398                        struct btrfs_root *root, struct btrfs_path *p,
2399                        struct extent_buffer *b, int level, int ins_len,
2400                        int *write_lock_level)
2401 {
2402         int ret;
2403         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2404             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2405                 int sret;
2406
2407                 if (*write_lock_level < level + 1) {
2408                         *write_lock_level = level + 1;
2409                         btrfs_release_path(p);
2410                         goto again;
2411                 }
2412
2413                 sret = reada_for_balance(root, p, level);
2414                 if (sret)
2415                         goto again;
2416
2417                 btrfs_set_path_blocking(p);
2418                 sret = split_node(trans, root, p, level);
2419                 btrfs_clear_path_blocking(p, NULL, 0);
2420
2421                 BUG_ON(sret > 0);
2422                 if (sret) {
2423                         ret = sret;
2424                         goto done;
2425                 }
2426                 b = p->nodes[level];
2427         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2428                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2429                 int sret;
2430
2431                 if (*write_lock_level < level + 1) {
2432                         *write_lock_level = level + 1;
2433                         btrfs_release_path(p);
2434                         goto again;
2435                 }
2436
2437                 sret = reada_for_balance(root, p, level);
2438                 if (sret)
2439                         goto again;
2440
2441                 btrfs_set_path_blocking(p);
2442                 sret = balance_level(trans, root, p, level);
2443                 btrfs_clear_path_blocking(p, NULL, 0);
2444
2445                 if (sret) {
2446                         ret = sret;
2447                         goto done;
2448                 }
2449                 b = p->nodes[level];
2450                 if (!b) {
2451                         btrfs_release_path(p);
2452                         goto again;
2453                 }
2454                 BUG_ON(btrfs_header_nritems(b) == 1);
2455         }
2456         return 0;
2457
2458 again:
2459         ret = -EAGAIN;
2460 done:
2461         return ret;
2462 }
2463
2464 /*
2465  * look for key in the tree.  path is filled in with nodes along the way
2466  * if key is found, we return zero and you can find the item in the leaf
2467  * level of the path (level 0)
2468  *
2469  * If the key isn't found, the path points to the slot where it should
2470  * be inserted, and 1 is returned.  If there are other errors during the
2471  * search a negative error number is returned.
2472  *
2473  * if ins_len > 0, nodes and leaves will be split as we walk down the
2474  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2475  * possible)
2476  */
2477 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2478                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2479                       ins_len, int cow)
2480 {
2481         struct extent_buffer *b;
2482         int slot;
2483         int ret;
2484         int err;
2485         int level;
2486         int lowest_unlock = 1;
2487         int root_lock;
2488         /* everything at write_lock_level or lower must be write locked */
2489         int write_lock_level = 0;
2490         u8 lowest_level = 0;
2491         int min_write_lock_level;
2492
2493         lowest_level = p->lowest_level;
2494         WARN_ON(lowest_level && ins_len > 0);
2495         WARN_ON(p->nodes[0] != NULL);
2496
2497         if (ins_len < 0) {
2498                 lowest_unlock = 2;
2499
2500                 /* when we are removing items, we might have to go up to level
2501                  * two as we update tree pointers  Make sure we keep write
2502                  * for those levels as well
2503                  */
2504                 write_lock_level = 2;
2505         } else if (ins_len > 0) {
2506                 /*
2507                  * for inserting items, make sure we have a write lock on
2508                  * level 1 so we can update keys
2509                  */
2510                 write_lock_level = 1;
2511         }
2512
2513         if (!cow)
2514                 write_lock_level = -1;
2515
2516         if (cow && (p->keep_locks || p->lowest_level))
2517                 write_lock_level = BTRFS_MAX_LEVEL;
2518
2519         min_write_lock_level = write_lock_level;
2520
2521 again:
2522         /*
2523          * we try very hard to do read locks on the root
2524          */
2525         root_lock = BTRFS_READ_LOCK;
2526         level = 0;
2527         if (p->search_commit_root) {
2528                 /*
2529                  * the commit roots are read only
2530                  * so we always do read locks
2531                  */
2532                 b = root->commit_root;
2533                 extent_buffer_get(b);
2534                 level = btrfs_header_level(b);
2535                 if (!p->skip_locking)
2536                         btrfs_tree_read_lock(b);
2537         } else {
2538                 if (p->skip_locking) {
2539                         b = btrfs_root_node(root);
2540                         level = btrfs_header_level(b);
2541                 } else {
2542                         /* we don't know the level of the root node
2543                          * until we actually have it read locked
2544                          */
2545                         b = btrfs_read_lock_root_node(root);
2546                         level = btrfs_header_level(b);
2547                         if (level <= write_lock_level) {
2548                                 /* whoops, must trade for write lock */
2549                                 btrfs_tree_read_unlock(b);
2550                                 free_extent_buffer(b);
2551                                 b = btrfs_lock_root_node(root);
2552                                 root_lock = BTRFS_WRITE_LOCK;
2553
2554                                 /* the level might have changed, check again */
2555                                 level = btrfs_header_level(b);
2556                         }
2557                 }
2558         }
2559         p->nodes[level] = b;
2560         if (!p->skip_locking)
2561                 p->locks[level] = root_lock;
2562
2563         while (b) {
2564                 level = btrfs_header_level(b);
2565
2566                 /*
2567                  * setup the path here so we can release it under lock
2568                  * contention with the cow code
2569                  */
2570                 if (cow) {
2571                         /*
2572                          * if we don't really need to cow this block
2573                          * then we don't want to set the path blocking,
2574                          * so we test it here
2575                          */
2576                         if (!should_cow_block(trans, root, b))
2577                                 goto cow_done;
2578
2579                         btrfs_set_path_blocking(p);
2580
2581                         /*
2582                          * must have write locks on this node and the
2583                          * parent
2584                          */
2585                         if (level > write_lock_level ||
2586                             (level + 1 > write_lock_level &&
2587                             level + 1 < BTRFS_MAX_LEVEL &&
2588                             p->nodes[level + 1])) {
2589                                 write_lock_level = level + 1;
2590                                 btrfs_release_path(p);
2591                                 goto again;
2592                         }
2593
2594                         err = btrfs_cow_block(trans, root, b,
2595                                               p->nodes[level + 1],
2596                                               p->slots[level + 1], &b);
2597                         if (err) {
2598                                 ret = err;
2599                                 goto done;
2600                         }
2601                 }
2602 cow_done:
2603                 BUG_ON(!cow && ins_len);
2604
2605                 p->nodes[level] = b;
2606                 btrfs_clear_path_blocking(p, NULL, 0);
2607
2608                 /*
2609                  * we have a lock on b and as long as we aren't changing
2610                  * the tree, there is no way to for the items in b to change.
2611                  * It is safe to drop the lock on our parent before we
2612                  * go through the expensive btree search on b.
2613                  *
2614                  * If cow is true, then we might be changing slot zero,
2615                  * which may require changing the parent.  So, we can't
2616                  * drop the lock until after we know which slot we're
2617                  * operating on.
2618                  */
2619                 if (!cow)
2620                         btrfs_unlock_up_safe(p, level + 1);
2621
2622                 ret = bin_search(b, key, level, &slot);
2623
2624                 if (level != 0) {
2625                         int dec = 0;
2626                         if (ret && slot > 0) {
2627                                 dec = 1;
2628                                 slot -= 1;
2629                         }
2630                         p->slots[level] = slot;
2631                         err = setup_nodes_for_search(trans, root, p, b, level,
2632                                              ins_len, &write_lock_level);
2633                         if (err == -EAGAIN)
2634                                 goto again;
2635                         if (err) {
2636                                 ret = err;
2637                                 goto done;
2638                         }
2639                         b = p->nodes[level];
2640                         slot = p->slots[level];
2641
2642                         /*
2643                          * slot 0 is special, if we change the key
2644                          * we have to update the parent pointer
2645                          * which means we must have a write lock
2646                          * on the parent
2647                          */
2648                         if (slot == 0 && cow &&
2649                             write_lock_level < level + 1) {
2650                                 write_lock_level = level + 1;
2651                                 btrfs_release_path(p);
2652                                 goto again;
2653                         }
2654
2655                         unlock_up(p, level, lowest_unlock,
2656                                   min_write_lock_level, &write_lock_level);
2657
2658                         if (level == lowest_level) {
2659                                 if (dec)
2660                                         p->slots[level]++;
2661                                 goto done;
2662                         }
2663
2664                         err = read_block_for_search(trans, root, p,
2665                                                     &b, level, slot, key, 0);
2666                         if (err == -EAGAIN)
2667                                 goto again;
2668                         if (err) {
2669                                 ret = err;
2670                                 goto done;
2671                         }
2672
2673                         if (!p->skip_locking) {
2674                                 level = btrfs_header_level(b);
2675                                 if (level <= write_lock_level) {
2676                                         err = btrfs_try_tree_write_lock(b);
2677                                         if (!err) {
2678                                                 btrfs_set_path_blocking(p);
2679                                                 btrfs_tree_lock(b);
2680                                                 btrfs_clear_path_blocking(p, b,
2681                                                                   BTRFS_WRITE_LOCK);
2682                                         }
2683                                         p->locks[level] = BTRFS_WRITE_LOCK;
2684                                 } else {
2685                                         err = btrfs_try_tree_read_lock(b);
2686                                         if (!err) {
2687                                                 btrfs_set_path_blocking(p);
2688                                                 btrfs_tree_read_lock(b);
2689                                                 btrfs_clear_path_blocking(p, b,
2690                                                                   BTRFS_READ_LOCK);
2691                                         }
2692                                         p->locks[level] = BTRFS_READ_LOCK;
2693                                 }
2694                                 p->nodes[level] = b;
2695                         }
2696                 } else {
2697                         p->slots[level] = slot;
2698                         if (ins_len > 0 &&
2699                             btrfs_leaf_free_space(root, b) < ins_len) {
2700                                 if (write_lock_level < 1) {
2701                                         write_lock_level = 1;
2702                                         btrfs_release_path(p);
2703                                         goto again;
2704                                 }
2705
2706                                 btrfs_set_path_blocking(p);
2707                                 err = split_leaf(trans, root, key,
2708                                                  p, ins_len, ret == 0);
2709                                 btrfs_clear_path_blocking(p, NULL, 0);
2710
2711                                 BUG_ON(err > 0);
2712                                 if (err) {
2713                                         ret = err;
2714                                         goto done;
2715                                 }
2716                         }
2717                         if (!p->search_for_split)
2718                                 unlock_up(p, level, lowest_unlock,
2719                                           min_write_lock_level, &write_lock_level);
2720                         goto done;
2721                 }
2722         }
2723         ret = 1;
2724 done:
2725         /*
2726          * we don't really know what they plan on doing with the path
2727          * from here on, so for now just mark it as blocking
2728          */
2729         if (!p->leave_spinning)
2730                 btrfs_set_path_blocking(p);
2731         if (ret < 0)
2732                 btrfs_release_path(p);
2733         return ret;
2734 }
2735
2736 /*
2737  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2738  * current state of the tree together with the operations recorded in the tree
2739  * modification log to search for the key in a previous version of this tree, as
2740  * denoted by the time_seq parameter.
2741  *
2742  * Naturally, there is no support for insert, delete or cow operations.
2743  *
2744  * The resulting path and return value will be set up as if we called
2745  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2746  */
2747 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2748                           struct btrfs_path *p, u64 time_seq)
2749 {
2750         struct extent_buffer *b;
2751         int slot;
2752         int ret;
2753         int err;
2754         int level;
2755         int lowest_unlock = 1;
2756         u8 lowest_level = 0;
2757
2758         lowest_level = p->lowest_level;
2759         WARN_ON(p->nodes[0] != NULL);
2760
2761         if (p->search_commit_root) {
2762                 BUG_ON(time_seq);
2763                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2764         }
2765
2766 again:
2767         b = get_old_root(root, time_seq);
2768         level = btrfs_header_level(b);
2769         p->locks[level] = BTRFS_READ_LOCK;
2770
2771         while (b) {
2772                 level = btrfs_header_level(b);
2773                 p->nodes[level] = b;
2774                 btrfs_clear_path_blocking(p, NULL, 0);
2775
2776                 /*
2777                  * we have a lock on b and as long as we aren't changing
2778                  * the tree, there is no way to for the items in b to change.
2779                  * It is safe to drop the lock on our parent before we
2780                  * go through the expensive btree search on b.
2781                  */
2782                 btrfs_unlock_up_safe(p, level + 1);
2783
2784                 ret = bin_search(b, key, level, &slot);
2785
2786                 if (level != 0) {
2787                         int dec = 0;
2788                         if (ret && slot > 0) {
2789                                 dec = 1;
2790                                 slot -= 1;
2791                         }
2792                         p->slots[level] = slot;
2793                         unlock_up(p, level, lowest_unlock, 0, NULL);
2794
2795                         if (level == lowest_level) {
2796                                 if (dec)
2797                                         p->slots[level]++;
2798                                 goto done;
2799                         }
2800
2801                         err = read_block_for_search(NULL, root, p, &b, level,
2802                                                     slot, key, time_seq);
2803                         if (err == -EAGAIN)
2804                                 goto again;
2805                         if (err) {
2806                                 ret = err;
2807                                 goto done;
2808                         }
2809
2810                         level = btrfs_header_level(b);
2811                         err = btrfs_try_tree_read_lock(b);
2812                         if (!err) {
2813                                 btrfs_set_path_blocking(p);
2814                                 btrfs_tree_read_lock(b);
2815                                 btrfs_clear_path_blocking(p, b,
2816                                                           BTRFS_READ_LOCK);
2817                         }
2818                         b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2819                         p->locks[level] = BTRFS_READ_LOCK;
2820                         p->nodes[level] = b;
2821                 } else {
2822                         p->slots[level] = slot;
2823                         unlock_up(p, level, lowest_unlock, 0, NULL);
2824                         goto done;
2825                 }
2826         }
2827         ret = 1;
2828 done:
2829         if (!p->leave_spinning)
2830                 btrfs_set_path_blocking(p);
2831         if (ret < 0)
2832                 btrfs_release_path(p);
2833
2834         return ret;
2835 }
2836
2837 /*
2838  * helper to use instead of search slot if no exact match is needed but
2839  * instead the next or previous item should be returned.
2840  * When find_higher is true, the next higher item is returned, the next lower
2841  * otherwise.
2842  * When return_any and find_higher are both true, and no higher item is found,
2843  * return the next lower instead.
2844  * When return_any is true and find_higher is false, and no lower item is found,
2845  * return the next higher instead.
2846  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2847  * < 0 on error
2848  */
2849 int btrfs_search_slot_for_read(struct btrfs_root *root,
2850                                struct btrfs_key *key, struct btrfs_path *p,
2851                                int find_higher, int return_any)
2852 {
2853         int ret;
2854         struct extent_buffer *leaf;
2855
2856 again:
2857         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2858         if (ret <= 0)
2859                 return ret;
2860         /*
2861          * a return value of 1 means the path is at the position where the
2862          * item should be inserted. Normally this is the next bigger item,
2863          * but in case the previous item is the last in a leaf, path points
2864          * to the first free slot in the previous leaf, i.e. at an invalid
2865          * item.
2866          */
2867         leaf = p->nodes[0];
2868
2869         if (find_higher) {
2870                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2871                         ret = btrfs_next_leaf(root, p);
2872                         if (ret <= 0)
2873                                 return ret;
2874                         if (!return_any)
2875                                 return 1;
2876                         /*
2877                          * no higher item found, return the next
2878                          * lower instead
2879                          */
2880                         return_any = 0;
2881                         find_higher = 0;
2882                         btrfs_release_path(p);
2883                         goto again;
2884                 }
2885         } else {
2886                 if (p->slots[0] == 0) {
2887                         ret = btrfs_prev_leaf(root, p);
2888                         if (ret < 0)
2889                                 return ret;
2890                         if (!ret) {
2891                                 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2892                                 return 0;
2893                         }
2894                         if (!return_any)
2895                                 return 1;
2896                         /*
2897                          * no lower item found, return the next
2898                          * higher instead
2899                          */
2900                         return_any = 0;
2901                         find_higher = 1;
2902                         btrfs_release_path(p);
2903                         goto again;
2904                 } else {
2905                         --p->slots[0];
2906                 }
2907         }
2908         return 0;
2909 }
2910
2911 /*
2912  * adjust the pointers going up the tree, starting at level
2913  * making sure the right key of each node is points to 'key'.
2914  * This is used after shifting pointers to the left, so it stops
2915  * fixing up pointers when a given leaf/node is not in slot 0 of the
2916  * higher levels
2917  *
2918  */
2919 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
2920                            struct btrfs_disk_key *key, int level)
2921 {
2922         int i;
2923         struct extent_buffer *t;
2924
2925         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2926                 int tslot = path->slots[i];
2927                 if (!path->nodes[i])
2928                         break;
2929                 t = path->nodes[i];
2930                 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
2931                 btrfs_set_node_key(t, key, tslot);
2932                 btrfs_mark_buffer_dirty(path->nodes[i]);
2933                 if (tslot != 0)
2934                         break;
2935         }
2936 }
2937
2938 /*
2939  * update item key.
2940  *
2941  * This function isn't completely safe. It's the caller's responsibility
2942  * that the new key won't break the order
2943  */
2944 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
2945                              struct btrfs_key *new_key)
2946 {
2947         struct btrfs_disk_key disk_key;
2948         struct extent_buffer *eb;
2949         int slot;
2950
2951         eb = path->nodes[0];
2952         slot = path->slots[0];
2953         if (slot > 0) {
2954                 btrfs_item_key(eb, &disk_key, slot - 1);
2955                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2956         }
2957         if (slot < btrfs_header_nritems(eb) - 1) {
2958                 btrfs_item_key(eb, &disk_key, slot + 1);
2959                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2960         }
2961
2962         btrfs_cpu_key_to_disk(&disk_key, new_key);
2963         btrfs_set_item_key(eb, &disk_key, slot);
2964         btrfs_mark_buffer_dirty(eb);
2965         if (slot == 0)
2966                 fixup_low_keys(root, path, &disk_key, 1);
2967 }
2968
2969 /*
2970  * try to push data from one node into the next node left in the
2971  * tree.
2972  *
2973  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2974  * error, and > 0 if there was no room in the left hand block.
2975  */
2976 static int push_node_left(struct btrfs_trans_handle *trans,
2977                           struct btrfs_root *root, struct extent_buffer *dst,
2978                           struct extent_buffer *src, int empty)
2979 {
2980         int push_items = 0;
2981         int src_nritems;
2982         int dst_nritems;
2983         int ret = 0;
2984
2985         src_nritems = btrfs_header_nritems(src);
2986         dst_nritems = btrfs_header_nritems(dst);
2987         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2988         WARN_ON(btrfs_header_generation(src) != trans->transid);
2989         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2990
2991         if (!empty && src_nritems <= 8)
2992                 return 1;
2993
2994         if (push_items <= 0)
2995                 return 1;
2996
2997         if (empty) {
2998                 push_items = min(src_nritems, push_items);
2999                 if (push_items < src_nritems) {
3000                         /* leave at least 8 pointers in the node if
3001                          * we aren't going to empty it
3002                          */
3003                         if (src_nritems - push_items < 8) {
3004                                 if (push_items <= 8)
3005                                         return 1;
3006                                 push_items -= 8;
3007                         }
3008                 }
3009         } else
3010                 push_items = min(src_nritems - 8, push_items);
3011
3012         tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3013                              push_items);
3014         copy_extent_buffer(dst, src,
3015                            btrfs_node_key_ptr_offset(dst_nritems),
3016                            btrfs_node_key_ptr_offset(0),
3017                            push_items * sizeof(struct btrfs_key_ptr));
3018
3019         if (push_items < src_nritems) {
3020                 /*
3021                  * don't call tree_mod_log_eb_move here, key removal was already
3022                  * fully logged by tree_mod_log_eb_copy above.
3023                  */
3024                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3025                                       btrfs_node_key_ptr_offset(push_items),
3026                                       (src_nritems - push_items) *
3027                                       sizeof(struct btrfs_key_ptr));
3028         }
3029         btrfs_set_header_nritems(src, src_nritems - push_items);
3030         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3031         btrfs_mark_buffer_dirty(src);
3032         btrfs_mark_buffer_dirty(dst);
3033
3034         return ret;
3035 }
3036
3037 /*
3038  * try to push data from one node into the next node right in the
3039  * tree.
3040  *
3041  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3042  * error, and > 0 if there was no room in the right hand block.
3043  *
3044  * this will  only push up to 1/2 the contents of the left node over
3045  */
3046 static int balance_node_right(struct btrfs_trans_handle *trans,
3047                               struct btrfs_root *root,
3048                               struct extent_buffer *dst,
3049                               struct extent_buffer *src)
3050 {
3051         int push_items = 0;
3052         int max_push;
3053         int src_nritems;
3054         int dst_nritems;
3055         int ret = 0;
3056
3057         WARN_ON(btrfs_header_generation(src) != trans->transid);
3058         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3059
3060         src_nritems = btrfs_header_nritems(src);
3061         dst_nritems = btrfs_header_nritems(dst);
3062         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3063         if (push_items <= 0)
3064                 return 1;
3065
3066         if (src_nritems < 4)
3067                 return 1;
3068
3069         max_push = src_nritems / 2 + 1;
3070         /* don't try to empty the node */
3071         if (max_push >= src_nritems)
3072                 return 1;
3073
3074         if (max_push < push_items)
3075                 push_items = max_push;
3076
3077         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3078         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3079                                       btrfs_node_key_ptr_offset(0),
3080                                       (dst_nritems) *
3081                                       sizeof(struct btrfs_key_ptr));
3082
3083         tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3084                              src_nritems - push_items, push_items);
3085         copy_extent_buffer(dst, src,
3086                            btrfs_node_key_ptr_offset(0),
3087                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3088                            push_items * sizeof(struct btrfs_key_ptr));
3089
3090         btrfs_set_header_nritems(src, src_nritems - push_items);
3091         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3092
3093         btrfs_mark_buffer_dirty(src);
3094         btrfs_mark_buffer_dirty(dst);
3095
3096         return ret;
3097 }
3098
3099 /*
3100  * helper function to insert a new root level in the tree.
3101  * A new node is allocated, and a single item is inserted to
3102  * point to the existing root
3103  *
3104  * returns zero on success or < 0 on failure.
3105  */
3106 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3107                            struct btrfs_root *root,
3108                            struct btrfs_path *path, int level, int log_removal)
3109 {
3110         u64 lower_gen;
3111         struct extent_buffer *lower;
3112         struct extent_buffer *c;
3113         struct extent_buffer *old;
3114         struct btrfs_disk_key lower_key;
3115
3116         BUG_ON(path->nodes[level]);
3117         BUG_ON(path->nodes[level-1] != root->node);
3118
3119         lower = path->nodes[level-1];
3120         if (level == 1)
3121                 btrfs_item_key(lower, &lower_key, 0);
3122         else
3123                 btrfs_node_key(lower, &lower_key, 0);
3124
3125         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3126                                    root->root_key.objectid, &lower_key,
3127                                    level, root->node->start, 0);
3128         if (IS_ERR(c))
3129                 return PTR_ERR(c);
3130
3131         root_add_used(root, root->nodesize);
3132
3133         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3134         btrfs_set_header_nritems(c, 1);
3135         btrfs_set_header_level(c, level);
3136         btrfs_set_header_bytenr(c, c->start);
3137         btrfs_set_header_generation(c, trans->transid);
3138         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3139         btrfs_set_header_owner(c, root->root_key.objectid);
3140
3141         write_extent_buffer(c, root->fs_info->fsid,
3142                             (unsigned long)btrfs_header_fsid(c),
3143                             BTRFS_FSID_SIZE);
3144
3145         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3146                             (unsigned long)btrfs_header_chunk_tree_uuid(c),
3147                             BTRFS_UUID_SIZE);
3148
3149         btrfs_set_node_key(c, &lower_key, 0);
3150         btrfs_set_node_blockptr(c, 0, lower->start);
3151         lower_gen = btrfs_header_generation(lower);
3152         WARN_ON(lower_gen != trans->transid);
3153
3154         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3155
3156         btrfs_mark_buffer_dirty(c);
3157
3158         old = root->node;
3159         tree_mod_log_set_root_pointer(root, c, log_removal);
3160         rcu_assign_pointer(root->node, c);
3161
3162         /* the super has an extra ref to root->node */
3163         free_extent_buffer(old);
3164
3165         add_root_to_dirty_list(root);
3166         extent_buffer_get(c);
3167         path->nodes[level] = c;
3168         path->locks[level] = BTRFS_WRITE_LOCK;
3169         path->slots[level] = 0;
3170         return 0;
3171 }
3172
3173 /*
3174  * worker function to insert a single pointer in a node.
3175  * the node should have enough room for the pointer already
3176  *
3177  * slot and level indicate where you want the key to go, and
3178  * blocknr is the block the key points to.
3179  */
3180 static void insert_ptr(struct btrfs_trans_handle *trans,
3181                        struct btrfs_root *root, struct btrfs_path *path,
3182                        struct btrfs_disk_key *key, u64 bytenr,
3183                        int slot, int level)
3184 {
3185         struct extent_buffer *lower;
3186         int nritems;
3187         int ret;
3188
3189         BUG_ON(!path->nodes[level]);
3190         btrfs_assert_tree_locked(path->nodes[level]);
3191         lower = path->nodes[level];
3192         nritems = btrfs_header_nritems(lower);
3193         BUG_ON(slot > nritems);
3194         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3195         if (slot != nritems) {
3196                 if (level)
3197                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3198                                              slot, nritems - slot);
3199                 memmove_extent_buffer(lower,
3200                               btrfs_node_key_ptr_offset(slot + 1),
3201                               btrfs_node_key_ptr_offset(slot),
3202                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3203         }
3204         if (level) {
3205                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3206                                               MOD_LOG_KEY_ADD);
3207                 BUG_ON(ret < 0);
3208         }
3209         btrfs_set_node_key(lower, key, slot);
3210         btrfs_set_node_blockptr(lower, slot, bytenr);
3211         WARN_ON(trans->transid == 0);
3212         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3213         btrfs_set_header_nritems(lower, nritems + 1);
3214         btrfs_mark_buffer_dirty(lower);
3215 }
3216
3217 /*
3218  * split the node at the specified level in path in two.
3219  * The path is corrected to point to the appropriate node after the split
3220  *
3221  * Before splitting this tries to make some room in the node by pushing
3222  * left and right, if either one works, it returns right away.
3223  *
3224  * returns 0 on success and < 0 on failure
3225  */
3226 static noinline int split_node(struct btrfs_trans_handle *trans,
3227                                struct btrfs_root *root,
3228                                struct btrfs_path *path, int level)
3229 {
3230         struct extent_buffer *c;
3231         struct extent_buffer *split;
3232         struct btrfs_disk_key disk_key;
3233         int mid;
3234         int ret;
3235         u32 c_nritems;
3236
3237         c = path->nodes[level];
3238         WARN_ON(btrfs_header_generation(c) != trans->transid);
3239         if (c == root->node) {
3240                 /*
3241                  * trying to split the root, lets make a new one
3242                  *
3243                  * tree mod log: We pass 0 as log_removal parameter to
3244                  * insert_new_root, because that root buffer will be kept as a
3245                  * normal node. We are going to log removal of half of the
3246                  * elements below with tree_mod_log_eb_copy. We're holding a
3247                  * tree lock on the buffer, which is why we cannot race with
3248                  * other tree_mod_log users.
3249                  */
3250                 ret = insert_new_root(trans, root, path, level + 1, 0);
3251                 if (ret)
3252                         return ret;
3253         } else {
3254                 ret = push_nodes_for_insert(trans, root, path, level);
3255                 c = path->nodes[level];
3256                 if (!ret && btrfs_header_nritems(c) <
3257                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3258                         return 0;
3259                 if (ret < 0)
3260                         return ret;
3261         }
3262
3263         c_nritems = btrfs_header_nritems(c);
3264         mid = (c_nritems + 1) / 2;
3265         btrfs_node_key(c, &disk_key, mid);
3266
3267         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3268                                         root->root_key.objectid,
3269                                         &disk_key, level, c->start, 0);
3270         if (IS_ERR(split))
3271                 return PTR_ERR(split);
3272
3273         root_add_used(root, root->nodesize);
3274
3275         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3276         btrfs_set_header_level(split, btrfs_header_level(c));
3277         btrfs_set_header_bytenr(split, split->start);
3278         btrfs_set_header_generation(split, trans->transid);
3279         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3280         btrfs_set_header_owner(split, root->root_key.objectid);
3281         write_extent_buffer(split, root->fs_info->fsid,
3282                             (unsigned long)btrfs_header_fsid(split),
3283                             BTRFS_FSID_SIZE);
3284         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3285                             (unsigned long)btrfs_header_chunk_tree_uuid(split),
3286                             BTRFS_UUID_SIZE);
3287
3288         tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3289         copy_extent_buffer(split, c,
3290                            btrfs_node_key_ptr_offset(0),
3291                            btrfs_node_key_ptr_offset(mid),
3292                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3293         btrfs_set_header_nritems(split, c_nritems - mid);
3294         btrfs_set_header_nritems(c, mid);
3295         ret = 0;
3296
3297         btrfs_mark_buffer_dirty(c);
3298         btrfs_mark_buffer_dirty(split);
3299
3300         insert_ptr(trans, root, path, &disk_key, split->start,
3301                    path->slots[level + 1] + 1, level + 1);
3302
3303         if (path->slots[level] >= mid) {
3304                 path->slots[level] -= mid;
3305                 btrfs_tree_unlock(c);
3306                 free_extent_buffer(c);
3307                 path->nodes[level] = split;
3308                 path->slots[level + 1] += 1;
3309         } else {
3310                 btrfs_tree_unlock(split);
3311                 free_extent_buffer(split);
3312         }
3313         return ret;
3314 }
3315
3316 /*
3317  * how many bytes are required to store the items in a leaf.  start
3318  * and nr indicate which items in the leaf to check.  This totals up the
3319  * space used both by the item structs and the item data
3320  */
3321 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3322 {
3323         struct btrfs_item *start_item;
3324         struct btrfs_item *end_item;
3325         struct btrfs_map_token token;
3326         int data_len;
3327         int nritems = btrfs_header_nritems(l);
3328         int end = min(nritems, start + nr) - 1;
3329
3330         if (!nr)
3331                 return 0;
3332         btrfs_init_map_token(&token);
3333         start_item = btrfs_item_nr(l, start);
3334         end_item = btrfs_item_nr(l, end);
3335         data_len = btrfs_token_item_offset(l, start_item, &token) +
3336                 btrfs_token_item_size(l, start_item, &token);
3337         data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3338         data_len += sizeof(struct btrfs_item) * nr;
3339         WARN_ON(data_len < 0);
3340         return data_len;
3341 }
3342
3343 /*
3344  * The space between the end of the leaf items and
3345  * the start of the leaf data.  IOW, how much room
3346  * the leaf has left for both items and data
3347  */
3348 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3349                                    struct extent_buffer *leaf)
3350 {
3351         int nritems = btrfs_header_nritems(leaf);
3352         int ret;
3353         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3354         if (ret < 0) {
3355                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3356                        "used %d nritems %d\n",
3357                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3358                        leaf_space_used(leaf, 0, nritems), nritems);
3359         }
3360         return ret;
3361 }
3362
3363 /*
3364  * min slot controls the lowest index we're willing to push to the
3365  * right.  We'll push up to and including min_slot, but no lower
3366  */
3367 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3368                                       struct btrfs_root *root,
3369                                       struct btrfs_path *path,
3370                                       int data_size, int empty,
3371                                       struct extent_buffer *right,
3372                                       int free_space, u32 left_nritems,
3373                                       u32 min_slot)
3374 {
3375         struct extent_buffer *left = path->nodes[0];
3376         struct extent_buffer *upper = path->nodes[1];
3377         struct btrfs_map_token token;
3378         struct btrfs_disk_key disk_key;
3379         int slot;
3380         u32 i;
3381         int push_space = 0;
3382         int push_items = 0;
3383         struct btrfs_item *item;
3384         u32 nr;
3385         u32 right_nritems;
3386         u32 data_end;
3387         u32 this_item_size;
3388
3389         btrfs_init_map_token(&token);
3390
3391         if (empty)
3392                 nr = 0;
3393         else
3394                 nr = max_t(u32, 1, min_slot);
3395
3396         if (path->slots[0] >= left_nritems)
3397                 push_space += data_size;
3398
3399         slot = path->slots[1];
3400         i = left_nritems - 1;
3401         while (i >= nr) {
3402                 item = btrfs_item_nr(left, i);
3403
3404                 if (!empty && push_items > 0) {
3405                         if (path->slots[0] > i)
3406                                 break;
3407                         if (path->slots[0] == i) {
3408                                 int space = btrfs_leaf_free_space(root, left);
3409                                 if (space + push_space * 2 > free_space)
3410                                         break;
3411                         }
3412                 }
3413
3414                 if (path->slots[0] == i)
3415                         push_space += data_size;
3416
3417                 this_item_size = btrfs_item_size(left, item);
3418                 if (this_item_size + sizeof(*item) + push_space > free_space)
3419                         break;
3420
3421                 push_items++;
3422                 push_space += this_item_size + sizeof(*item);
3423                 if (i == 0)
3424                         break;
3425                 i--;
3426         }
3427
3428         if (push_items == 0)
3429                 goto out_unlock;
3430
3431         WARN_ON(!empty && push_items == left_nritems);
3432
3433         /* push left to right */
3434         right_nritems = btrfs_header_nritems(right);
3435
3436         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3437         push_space -= leaf_data_end(root, left);
3438
3439         /* make room in the right data area */
3440         data_end = leaf_data_end(root, right);
3441         memmove_extent_buffer(right,
3442                               btrfs_leaf_data(right) + data_end - push_space,
3443                               btrfs_leaf_data(right) + data_end,
3444                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3445
3446         /* copy from the left data area */
3447         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3448                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3449                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3450                      push_space);
3451
3452         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3453                               btrfs_item_nr_offset(0),
3454                               right_nritems * sizeof(struct btrfs_item));
3455
3456         /* copy the items from left to right */
3457         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3458                    btrfs_item_nr_offset(left_nritems - push_items),
3459                    push_items * sizeof(struct btrfs_item));
3460
3461         /* update the item pointers */
3462         right_nritems += push_items;
3463         btrfs_set_header_nritems(right, right_nritems);
3464         push_space = BTRFS_LEAF_DATA_SIZE(root);
3465         for (i = 0; i < right_nritems; i++) {
3466                 item = btrfs_item_nr(right, i);
3467                 push_space -= btrfs_token_item_size(right, item, &token);
3468                 btrfs_set_token_item_offset(right, item, push_space, &token);
3469         }
3470
3471         left_nritems -= push_items;
3472         btrfs_set_header_nritems(left, left_nritems);
3473
3474         if (left_nritems)
3475                 btrfs_mark_buffer_dirty(left);
3476         else
3477                 clean_tree_block(trans, root, left);
3478
3479         btrfs_mark_buffer_dirty(right);
3480
3481         btrfs_item_key(right, &disk_key, 0);
3482         btrfs_set_node_key(upper, &disk_key, slot + 1);
3483         btrfs_mark_buffer_dirty(upper);
3484
3485         /* then fixup the leaf pointer in the path */
3486         if (path->slots[0] >= left_nritems) {
3487                 path->slots[0] -= left_nritems;
3488                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3489                         clean_tree_block(trans, root, path->nodes[0]);
3490                 btrfs_tree_unlock(path->nodes[0]);
3491                 free_extent_buffer(path->nodes[0]);
3492                 path->nodes[0] = right;
3493                 path->slots[1] += 1;
3494         } else {
3495                 btrfs_tree_unlock(right);
3496                 free_extent_buffer(right);
3497         }
3498         return 0;
3499
3500 out_unlock:
3501         btrfs_tree_unlock(right);
3502         free_extent_buffer(right);
3503         return 1;
3504 }
3505
3506 /*
3507  * push some data in the path leaf to the right, trying to free up at
3508  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3509  *
3510  * returns 1 if the push failed because the other node didn't have enough
3511  * room, 0 if everything worked out and < 0 if there were major errors.
3512  *
3513  * this will push starting from min_slot to the end of the leaf.  It won't
3514  * push any slot lower than min_slot
3515  */
3516 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3517                            *root, struct btrfs_path *path,
3518                            int min_data_size, int data_size,
3519                            int empty, u32 min_slot)
3520 {
3521         struct extent_buffer *left = path->nodes[0];
3522         struct extent_buffer *right;
3523         struct extent_buffer *upper;
3524         int slot;
3525         int free_space;
3526         u32 left_nritems;
3527         int ret;
3528
3529         if (!path->nodes[1])
3530                 return 1;
3531
3532         slot = path->slots[1];
3533         upper = path->nodes[1];
3534         if (slot >= btrfs_header_nritems(upper) - 1)
3535                 return 1;
3536
3537         btrfs_assert_tree_locked(path->nodes[1]);
3538
3539         right = read_node_slot(root, upper, slot + 1);
3540         if (right == NULL)
3541                 return 1;
3542
3543         btrfs_tree_lock(right);
3544         btrfs_set_lock_blocking(right);
3545
3546         free_space = btrfs_leaf_free_space(root, right);
3547         if (free_space < data_size)
3548                 goto out_unlock;
3549
3550         /* cow and double check */
3551         ret = btrfs_cow_block(trans, root, right, upper,
3552                               slot + 1, &right);
3553         if (ret)
3554                 goto out_unlock;
3555
3556         free_space = btrfs_leaf_free_space(root, right);
3557         if (free_space < data_size)
3558                 goto out_unlock;
3559
3560         left_nritems = btrfs_header_nritems(left);
3561         if (left_nritems == 0)
3562                 goto out_unlock;
3563
3564         return __push_leaf_right(trans, root, path, min_data_size, empty,
3565                                 right, free_space, left_nritems, min_slot);
3566 out_unlock:
3567         btrfs_tree_unlock(right);
3568         free_extent_buffer(right);
3569         return 1;
3570 }
3571
3572 /*
3573  * push some data in the path leaf to the left, trying to free up at
3574  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3575  *
3576  * max_slot can put a limit on how far into the leaf we'll push items.  The
3577  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3578  * items
3579  */
3580 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3581                                      struct btrfs_root *root,
3582                                      struct btrfs_path *path, int data_size,
3583                                      int empty, struct extent_buffer *left,
3584                                      int free_space, u32 right_nritems,
3585                                      u32 max_slot)
3586 {
3587         struct btrfs_disk_key disk_key;
3588         struct extent_buffer *right = path->nodes[0];
3589         int i;
3590         int push_space = 0;
3591         int push_items = 0;
3592         struct btrfs_item *item;
3593         u32 old_left_nritems;
3594         u32 nr;
3595         int ret = 0;
3596         u32 this_item_size;
3597         u32 old_left_item_size;
3598         struct btrfs_map_token token;
3599
3600         btrfs_init_map_token(&token);
3601
3602         if (empty)
3603                 nr = min(right_nritems, max_slot);
3604         else
3605                 nr = min(right_nritems - 1, max_slot);
3606
3607         for (i = 0; i < nr; i++) {
3608                 item = btrfs_item_nr(right, i);
3609
3610                 if (!empty && push_items > 0) {
3611                         if (path->slots[0] < i)
3612                                 break;
3613                         if (path->slots[0] == i) {
3614                                 int space = btrfs_leaf_free_space(root, right);
3615                                 if (space + push_space * 2 > free_space)
3616                                         break;
3617                         }
3618                 }
3619
3620                 if (path->slots[0] == i)
3621                         push_space += data_size;
3622
3623                 this_item_size = btrfs_item_size(right, item);
3624                 if (this_item_size + sizeof(*item) + push_space > free_space)
3625                         break;
3626
3627                 push_items++;
3628                 push_space += this_item_size + sizeof(*item);
3629         }
3630
3631         if (push_items == 0) {
3632                 ret = 1;
3633                 goto out;
3634         }
3635         if (!empty && push_items == btrfs_header_nritems(right))
3636                 WARN_ON(1);
3637
3638         /* push data from right to left */
3639         copy_extent_buffer(left, right,
3640                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3641                            btrfs_item_nr_offset(0),
3642                            push_items * sizeof(struct btrfs_item));
3643
3644         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3645                      btrfs_item_offset_nr(right, push_items - 1);
3646
3647         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3648                      leaf_data_end(root, left) - push_space,
3649                      btrfs_leaf_data(right) +
3650                      btrfs_item_offset_nr(right, push_items - 1),
3651                      push_space);
3652         old_left_nritems = btrfs_header_nritems(left);
3653         BUG_ON(old_left_nritems <= 0);
3654
3655         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3656         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3657                 u32 ioff;
3658
3659                 item = btrfs_item_nr(left, i);
3660
3661                 ioff = btrfs_token_item_offset(left, item, &token);
3662                 btrfs_set_token_item_offset(left, item,
3663                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3664                       &token);
3665         }
3666         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3667
3668         /* fixup right node */
3669         if (push_items > right_nritems)
3670                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3671                        right_nritems);
3672
3673         if (push_items < right_nritems) {
3674                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3675                                                   leaf_data_end(root, right);
3676                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3677                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3678                                       btrfs_leaf_data(right) +
3679                                       leaf_data_end(root, right), push_space);
3680
3681                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3682                               btrfs_item_nr_offset(push_items),
3683                              (btrfs_header_nritems(right) - push_items) *
3684                              sizeof(struct btrfs_item));
3685         }
3686         right_nritems -= push_items;
3687         btrfs_set_header_nritems(right, right_nritems);
3688         push_space = BTRFS_LEAF_DATA_SIZE(root);
3689         for (i = 0; i < right_nritems; i++) {
3690                 item = btrfs_item_nr(right, i);
3691
3692                 push_space = push_space - btrfs_token_item_size(right,
3693                                                                 item, &token);
3694                 btrfs_set_token_item_offset(right, item, push_space, &token);
3695         }
3696
3697         btrfs_mark_buffer_dirty(left);
3698         if (right_nritems)
3699                 btrfs_mark_buffer_dirty(right);
3700         else
3701                 clean_tree_block(trans, root, right);
3702
3703         btrfs_item_key(right, &disk_key, 0);
3704         fixup_low_keys(root, path, &disk_key, 1);
3705
3706         /* then fixup the leaf pointer in the path */
3707         if (path->slots[0] < push_items) {
3708                 path->slots[0] += old_left_nritems;
3709                 btrfs_tree_unlock(path->nodes[0]);
3710                 free_extent_buffer(path->nodes[0]);
3711                 path->nodes[0] = left;
3712                 path->slots[1] -= 1;
3713         } else {
3714                 btrfs_tree_unlock(left);
3715                 free_extent_buffer(left);
3716                 path->slots[0] -= push_items;
3717         }
3718         BUG_ON(path->slots[0] < 0);
3719         return ret;
3720 out:
3721         btrfs_tree_unlock(left);
3722         free_extent_buffer(left);
3723         return ret;
3724 }
3725
3726 /*
3727  * push some data in the path leaf to the left, trying to free up at
3728  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3729  *
3730  * max_slot can put a limit on how far into the leaf we'll push items.  The
3731  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3732  * items
3733  */
3734 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3735                           *root, struct btrfs_path *path, int min_data_size,
3736                           int data_size, int empty, u32 max_slot)
3737 {
3738         struct extent_buffer *right = path->nodes[0];
3739         struct extent_buffer *left;
3740         int slot;
3741         int free_space;
3742         u32 right_nritems;
3743         int ret = 0;
3744
3745         slot = path->slots[1];
3746         if (slot == 0)
3747                 return 1;
3748         if (!path->nodes[1])
3749                 return 1;
3750
3751         right_nritems = btrfs_header_nritems(right);
3752         if (right_nritems == 0)
3753                 return 1;
3754
3755         btrfs_assert_tree_locked(path->nodes[1]);
3756
3757         left = read_node_slot(root, path->nodes[1], slot - 1);
3758         if (left == NULL)
3759                 return 1;
3760
3761         btrfs_tree_lock(left);
3762         btrfs_set_lock_blocking(left);
3763
3764         free_space = btrfs_leaf_free_space(root, left);
3765         if (free_space < data_size) {
3766                 ret = 1;
3767                 goto out;
3768         }
3769
3770         /* cow and double check */
3771         ret = btrfs_cow_block(trans, root, left,
3772                               path->nodes[1], slot - 1, &left);
3773         if (ret) {
3774                 /* we hit -ENOSPC, but it isn't fatal here */
3775                 if (ret == -ENOSPC)
3776                         ret = 1;
3777                 goto out;
3778         }
3779
3780         free_space = btrfs_leaf_free_space(root, left);
3781         if (free_space < data_size) {
3782                 ret = 1;
3783                 goto out;
3784         }
3785
3786         return __push_leaf_left(trans, root, path, min_data_size,
3787                                empty, left, free_space, right_nritems,
3788                                max_slot);
3789 out:
3790         btrfs_tree_unlock(left);
3791         free_extent_buffer(left);
3792         return ret;
3793 }
3794
3795 /*
3796  * split the path's leaf in two, making sure there is at least data_size
3797  * available for the resulting leaf level of the path.
3798  */
3799 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3800                                     struct btrfs_root *root,
3801                                     struct btrfs_path *path,
3802                                     struct extent_buffer *l,
3803                                     struct extent_buffer *right,
3804                                     int slot, int mid, int nritems)
3805 {
3806         int data_copy_size;
3807         int rt_data_off;
3808         int i;
3809         struct btrfs_disk_key disk_key;
3810         struct btrfs_map_token token;
3811
3812         btrfs_init_map_token(&token);
3813
3814         nritems = nritems - mid;
3815         btrfs_set_header_nritems(right, nritems);
3816         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3817
3818         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3819                            btrfs_item_nr_offset(mid),
3820                            nritems * sizeof(struct btrfs_item));
3821
3822         copy_extent_buffer(right, l,
3823                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3824                      data_copy_size, btrfs_leaf_data(l) +
3825                      leaf_data_end(root, l), data_copy_size);
3826
3827         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3828                       btrfs_item_end_nr(l, mid);
3829
3830         for (i = 0; i < nritems; i++) {
3831                 struct btrfs_item *item = btrfs_item_nr(right, i);
3832                 u32 ioff;
3833
3834                 ioff = btrfs_token_item_offset(right, item, &token);
3835                 btrfs_set_token_item_offset(right, item,
3836                                             ioff + rt_data_off, &token);
3837         }
3838
3839         btrfs_set_header_nritems(l, mid);
3840         btrfs_item_key(right, &disk_key, 0);
3841         insert_ptr(trans, root, path, &disk_key, right->start,
3842                    path->slots[1] + 1, 1);
3843
3844         btrfs_mark_buffer_dirty(right);
3845         btrfs_mark_buffer_dirty(l);
3846         BUG_ON(path->slots[0] != slot);
3847
3848         if (mid <= slot) {
3849                 btrfs_tree_unlock(path->nodes[0]);
3850                 free_extent_buffer(path->nodes[0]);
3851                 path->nodes[0] = right;
3852                 path->slots[0] -= mid;
3853                 path->slots[1] += 1;
3854         } else {
3855                 btrfs_tree_unlock(right);
3856                 free_extent_buffer(right);
3857         }
3858
3859         BUG_ON(path->slots[0] < 0);
3860 }
3861
3862 /*
3863  * double splits happen when we need to insert a big item in the middle
3864  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3865  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3866  *          A                 B                 C
3867  *
3868  * We avoid this by trying to push the items on either side of our target
3869  * into the adjacent leaves.  If all goes well we can avoid the double split
3870  * completely.
3871  */
3872 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3873                                           struct btrfs_root *root,
3874                                           struct btrfs_path *path,
3875                                           int data_size)
3876 {
3877         int ret;
3878         int progress = 0;
3879         int slot;
3880         u32 nritems;
3881
3882         slot = path->slots[0];
3883
3884         /*
3885          * try to push all the items after our slot into the
3886          * right leaf
3887          */
3888         ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3889         if (ret < 0)
3890                 return ret;
3891
3892         if (ret == 0)
3893                 progress++;
3894
3895         nritems = btrfs_header_nritems(path->nodes[0]);
3896         /*
3897          * our goal is to get our slot at the start or end of a leaf.  If
3898          * we've done so we're done
3899          */
3900         if (path->slots[0] == 0 || path->slots[0] == nritems)
3901                 return 0;
3902
3903         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3904                 return 0;
3905
3906         /* try to push all the items before our slot into the next leaf */
3907         slot = path->slots[0];
3908         ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3909         if (ret < 0)
3910                 return ret;
3911
3912         if (ret == 0)
3913                 progress++;
3914
3915         if (progress)
3916                 return 0;
3917         return 1;
3918 }
3919
3920 /*
3921  * split the path's leaf in two, making sure there is at least data_size
3922  * available for the resulting leaf level of the path.
3923  *
3924  * returns 0 if all went well and < 0 on failure.
3925  */
3926 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3927                                struct btrfs_root *root,
3928                                struct btrfs_key *ins_key,
3929                                struct btrfs_path *path, int data_size,
3930                                int extend)
3931 {
3932         struct btrfs_disk_key disk_key;
3933         struct extent_buffer *l;
3934         u32 nritems;
3935         int mid;
3936         int slot;
3937         struct extent_buffer *right;
3938         int ret = 0;
3939         int wret;
3940         int split;
3941         int num_doubles = 0;
3942         int tried_avoid_double = 0;
3943
3944         l = path->nodes[0];
3945         slot = path->slots[0];
3946         if (extend && data_size + btrfs_item_size_nr(l, slot) +
3947             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3948                 return -EOVERFLOW;
3949
3950         /* first try to make some room by pushing left and right */
3951         if (data_size) {
3952                 wret = push_leaf_right(trans, root, path, data_size,
3953                                        data_size, 0, 0);
3954                 if (wret < 0)
3955                         return wret;
3956                 if (wret) {
3957                         wret = push_leaf_left(trans, root, path, data_size,
3958                                               data_size, 0, (u32)-1);
3959                         if (wret < 0)
3960                                 return wret;
3961                 }
3962                 l = path->nodes[0];
3963
3964                 /* did the pushes work? */
3965                 if (btrfs_leaf_free_space(root, l) >= data_size)
3966                         return 0;
3967         }
3968
3969         if (!path->nodes[1]) {
3970                 ret = insert_new_root(trans, root, path, 1, 1);
3971                 if (ret)
3972                         return ret;
3973         }
3974 again:
3975         split = 1;
3976         l = path->nodes[0];
3977         slot = path->slots[0];
3978         nritems = btrfs_header_nritems(l);
3979         mid = (nritems + 1) / 2;
3980
3981         if (mid <= slot) {
3982                 if (nritems == 1 ||
3983                     leaf_space_used(l, mid, nritems - mid) + data_size >
3984                         BTRFS_LEAF_DATA_SIZE(root)) {
3985                         if (slot >= nritems) {
3986                                 split = 0;
3987                         } else {
3988                                 mid = slot;
3989                                 if (mid != nritems &&
3990                                     leaf_space_used(l, mid, nritems - mid) +
3991                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3992                                         if (data_size && !tried_avoid_double)
3993                                                 goto push_for_double;
3994                                         split = 2;
3995                                 }
3996                         }
3997                 }
3998         } else {
3999                 if (leaf_space_used(l, 0, mid) + data_size >
4000                         BTRFS_LEAF_DATA_SIZE(root)) {
4001                         if (!extend && data_size && slot == 0) {
4002                                 split = 0;
4003                         } else if ((extend || !data_size) && slot == 0) {
4004                                 mid = 1;
4005                         } else {
4006                                 mid = slot;
4007                                 if (mid != nritems &&
4008                                     leaf_space_used(l, mid, nritems - mid) +
4009                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4010                                         if (data_size && !tried_avoid_double)
4011                                                 goto push_for_double;
4012                                         split = 2 ;
4013                                 }
4014                         }
4015                 }
4016         }
4017
4018         if (split == 0)
4019                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4020         else
4021                 btrfs_item_key(l, &disk_key, mid);
4022
4023         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4024                                         root->root_key.objectid,
4025                                         &disk_key, 0, l->start, 0);
4026         if (IS_ERR(right))
4027                 return PTR_ERR(right);
4028
4029         root_add_used(root, root->leafsize);
4030
4031         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4032         btrfs_set_header_bytenr(right, right->start);
4033         btrfs_set_header_generation(right, trans->transid);
4034         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4035         btrfs_set_header_owner(right, root->root_key.objectid);
4036         btrfs_set_header_level(right, 0);
4037         write_extent_buffer(right, root->fs_info->fsid,
4038                             (unsigned long)btrfs_header_fsid(right),
4039                             BTRFS_FSID_SIZE);
4040
4041         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4042                             (unsigned long)btrfs_header_chunk_tree_uuid(right),
4043                             BTRFS_UUID_SIZE);
4044
4045         if (split == 0) {
4046                 if (mid <= slot) {
4047                         btrfs_set_header_nritems(right, 0);
4048                         insert_ptr(trans, root, path, &disk_key, right->start,
4049                                    path->slots[1] + 1, 1);
4050                         btrfs_tree_unlock(path->nodes[0]);
4051                         free_extent_buffer(path->nodes[0]);
4052                         path->nodes[0] = right;
4053                         path->slots[0] = 0;
4054                         path->slots[1] += 1;
4055                 } else {
4056                         btrfs_set_header_nritems(right, 0);
4057                         insert_ptr(trans, root, path, &disk_key, right->start,
4058                                           path->slots[1], 1);
4059                         btrfs_tree_unlock(path->nodes[0]);
4060                         free_extent_buffer(path->nodes[0]);
4061                         path->nodes[0] = right;
4062                         path->slots[0] = 0;
4063                         if (path->slots[1] == 0)
4064                                 fixup_low_keys(root, path, &disk_key, 1);
4065                 }
4066                 btrfs_mark_buffer_dirty(right);
4067                 return ret;
4068         }
4069
4070         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4071
4072         if (split == 2) {
4073                 BUG_ON(num_doubles != 0);
4074                 num_doubles++;
4075                 goto again;
4076         }
4077
4078         return 0;
4079
4080 push_for_double:
4081         push_for_double_split(trans, root, path, data_size);
4082         tried_avoid_double = 1;
4083         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4084                 return 0;
4085         goto again;
4086 }
4087
4088 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4089                                          struct btrfs_root *root,
4090                                          struct btrfs_path *path, int ins_len)
4091 {
4092         struct btrfs_key key;
4093         struct extent_buffer *leaf;
4094         struct btrfs_file_extent_item *fi;
4095         u64 extent_len = 0;
4096         u32 item_size;
4097         int ret;
4098
4099         leaf = path->nodes[0];
4100         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4101
4102         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4103                key.type != BTRFS_EXTENT_CSUM_KEY);
4104
4105         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4106                 return 0;
4107
4108         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4109         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4110                 fi = btrfs_item_ptr(leaf, path->slots[0],
4111                                     struct btrfs_file_extent_item);
4112                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4113         }
4114         btrfs_release_path(path);
4115
4116         path->keep_locks = 1;
4117         path->search_for_split = 1;
4118         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4119         path->search_for_split = 0;
4120         if (ret < 0)
4121                 goto err;
4122
4123         ret = -EAGAIN;
4124         leaf = path->nodes[0];
4125         /* if our item isn't there or got smaller, return now */
4126         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4127                 goto err;
4128
4129         /* the leaf has  changed, it now has room.  return now */
4130         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4131                 goto err;
4132
4133         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4134                 fi = btrfs_item_ptr(leaf, path->slots[0],
4135                                     struct btrfs_file_extent_item);
4136                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4137                         goto err;
4138         }
4139
4140         btrfs_set_path_blocking(path);
4141         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4142         if (ret)
4143                 goto err;
4144
4145         path->keep_locks = 0;
4146         btrfs_unlock_up_safe(path, 1);
4147         return 0;
4148 err:
4149         path->keep_locks = 0;
4150         return ret;
4151 }
4152
4153 static noinline int split_item(struct btrfs_trans_handle *trans,
4154                                struct btrfs_root *root,
4155                                struct btrfs_path *path,
4156                                struct btrfs_key *new_key,
4157                                unsigned long split_offset)
4158 {
4159         struct extent_buffer *leaf;
4160         struct btrfs_item *item;
4161         struct btrfs_item *new_item;
4162         int slot;
4163         char *buf;
4164         u32 nritems;
4165         u32 item_size;
4166         u32 orig_offset;
4167         struct btrfs_disk_key disk_key;
4168
4169         leaf = path->nodes[0];
4170         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4171
4172         btrfs_set_path_blocking(path);
4173
4174         item = btrfs_item_nr(leaf, path->slots[0]);
4175         orig_offset = btrfs_item_offset(leaf, item);
4176         item_size = btrfs_item_size(leaf, item);
4177
4178         buf = kmalloc(item_size, GFP_NOFS);
4179         if (!buf)
4180                 return -ENOMEM;
4181
4182         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4183                             path->slots[0]), item_size);
4184
4185         slot = path->slots[0] + 1;
4186         nritems = btrfs_header_nritems(leaf);
4187         if (slot != nritems) {
4188                 /* shift the items */
4189                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4190                                 btrfs_item_nr_offset(slot),
4191                                 (nritems - slot) * sizeof(struct btrfs_item));
4192         }
4193
4194         btrfs_cpu_key_to_disk(&disk_key, new_key);
4195         btrfs_set_item_key(leaf, &disk_key, slot);
4196
4197         new_item = btrfs_item_nr(leaf, slot);
4198
4199         btrfs_set_item_offset(leaf, new_item, orig_offset);
4200         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4201
4202         btrfs_set_item_offset(leaf, item,
4203                               orig_offset + item_size - split_offset);
4204         btrfs_set_item_size(leaf, item, split_offset);
4205
4206         btrfs_set_header_nritems(leaf, nritems + 1);
4207
4208         /* write the data for the start of the original item */
4209         write_extent_buffer(leaf, buf,
4210                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4211                             split_offset);
4212
4213         /* write the data for the new item */
4214         write_extent_buffer(leaf, buf + split_offset,
4215                             btrfs_item_ptr_offset(leaf, slot),
4216                             item_size - split_offset);
4217         btrfs_mark_buffer_dirty(leaf);
4218
4219         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4220         kfree(buf);
4221         return 0;
4222 }
4223
4224 /*
4225  * This function splits a single item into two items,
4226  * giving 'new_key' to the new item and splitting the
4227  * old one at split_offset (from the start of the item).
4228  *
4229  * The path may be released by this operation.  After
4230  * the split, the path is pointing to the old item.  The
4231  * new item is going to be in the same node as the old one.
4232  *
4233  * Note, the item being split must be smaller enough to live alone on
4234  * a tree block with room for one extra struct btrfs_item
4235  *
4236  * This allows us to split the item in place, keeping a lock on the
4237  * leaf the entire time.
4238  */
4239 int btrfs_split_item(struct btrfs_trans_handle *trans,
4240                      struct btrfs_root *root,
4241                      struct btrfs_path *path,
4242                      struct btrfs_key *new_key,
4243                      unsigned long split_offset)
4244 {
4245         int ret;
4246         ret = setup_leaf_for_split(trans, root, path,
4247                                    sizeof(struct btrfs_item));
4248         if (ret)
4249                 return ret;
4250
4251         ret = split_item(trans, root, path, new_key, split_offset);
4252         return ret;
4253 }
4254
4255 /*
4256  * This function duplicate a item, giving 'new_key' to the new item.
4257  * It guarantees both items live in the same tree leaf and the new item
4258  * is contiguous with the original item.
4259  *
4260  * This allows us to split file extent in place, keeping a lock on the
4261  * leaf the entire time.
4262  */
4263 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4264                          struct btrfs_root *root,
4265                          struct btrfs_path *path,
4266                          struct btrfs_key *new_key)
4267 {
4268         struct extent_buffer *leaf;
4269         int ret;
4270         u32 item_size;
4271
4272         leaf = path->nodes[0];
4273         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4274         ret = setup_leaf_for_split(trans, root, path,
4275                                    item_size + sizeof(struct btrfs_item));
4276         if (ret)
4277                 return ret;
4278
4279         path->slots[0]++;
4280         setup_items_for_insert(root, path, new_key, &item_size,
4281                                item_size, item_size +
4282                                sizeof(struct btrfs_item), 1);
4283         leaf = path->nodes[0];
4284         memcpy_extent_buffer(leaf,
4285                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4286                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4287                              item_size);
4288         return 0;
4289 }
4290
4291 /*
4292  * make the item pointed to by the path smaller.  new_size indicates
4293  * how small to make it, and from_end tells us if we just chop bytes
4294  * off the end of the item or if we shift the item to chop bytes off
4295  * the front.
4296  */
4297 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4298                          u32 new_size, int from_end)
4299 {
4300         int slot;
4301         struct extent_buffer *leaf;
4302         struct btrfs_item *item;
4303         u32 nritems;
4304         unsigned int data_end;
4305         unsigned int old_data_start;
4306         unsigned int old_size;
4307         unsigned int size_diff;
4308         int i;
4309         struct btrfs_map_token token;
4310
4311         btrfs_init_map_token(&token);
4312
4313         leaf = path->nodes[0];
4314         slot = path->slots[0];
4315
4316         old_size = btrfs_item_size_nr(leaf, slot);
4317         if (old_size == new_size)
4318                 return;
4319
4320         nritems = btrfs_header_nritems(leaf);
4321         data_end = leaf_data_end(root, leaf);
4322
4323         old_data_start = btrfs_item_offset_nr(leaf, slot);
4324
4325         size_diff = old_size - new_size;
4326
4327         BUG_ON(slot < 0);
4328         BUG_ON(slot >= nritems);
4329
4330         /*
4331          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4332          */
4333         /* first correct the data pointers */
4334         for (i = slot; i < nritems; i++) {
4335                 u32 ioff;
4336                 item = btrfs_item_nr(leaf, i);
4337
4338                 ioff = btrfs_token_item_offset(leaf, item, &token);
4339                 btrfs_set_token_item_offset(leaf, item,
4340                                             ioff + size_diff, &token);
4341         }
4342
4343         /* shift the data */
4344         if (from_end) {
4345                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4346                               data_end + size_diff, btrfs_leaf_data(leaf) +
4347                               data_end, old_data_start + new_size - data_end);
4348         } else {
4349                 struct btrfs_disk_key disk_key;
4350                 u64 offset;
4351
4352                 btrfs_item_key(leaf, &disk_key, slot);
4353
4354                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4355                         unsigned long ptr;
4356                         struct btrfs_file_extent_item *fi;
4357
4358                         fi = btrfs_item_ptr(leaf, slot,
4359                                             struct btrfs_file_extent_item);
4360                         fi = (struct btrfs_file_extent_item *)(
4361                              (unsigned long)fi - size_diff);
4362
4363                         if (btrfs_file_extent_type(leaf, fi) ==
4364                             BTRFS_FILE_EXTENT_INLINE) {
4365                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4366                                 memmove_extent_buffer(leaf, ptr,
4367                                       (unsigned long)fi,
4368                                       offsetof(struct btrfs_file_extent_item,
4369                                                  disk_bytenr));
4370                         }
4371                 }
4372
4373                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4374                               data_end + size_diff, btrfs_leaf_data(leaf) +
4375                               data_end, old_data_start - data_end);
4376
4377                 offset = btrfs_disk_key_offset(&disk_key);
4378                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4379                 btrfs_set_item_key(leaf, &disk_key, slot);
4380                 if (slot == 0)
4381                         fixup_low_keys(root, path, &disk_key, 1);
4382         }
4383
4384         item = btrfs_item_nr(leaf, slot);
4385         btrfs_set_item_size(leaf, item, new_size);
4386         btrfs_mark_buffer_dirty(leaf);
4387
4388         if (btrfs_leaf_free_space(root, leaf) < 0) {
4389                 btrfs_print_leaf(root, leaf);
4390                 BUG();
4391         }
4392 }
4393
4394 /*
4395  * make the item pointed to by the path bigger, data_size is the new size.
4396  */
4397 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4398                        u32 data_size)
4399 {
4400         int slot;
4401         struct extent_buffer *leaf;
4402         struct btrfs_item *item;
4403         u32 nritems;
4404         unsigned int data_end;
4405         unsigned int old_data;
4406         unsigned int old_size;
4407         int i;
4408         struct btrfs_map_token token;
4409
4410         btrfs_init_map_token(&token);
4411
4412         leaf = path->nodes[0];
4413
4414         nritems = btrfs_header_nritems(leaf);
4415         data_end = leaf_data_end(root, leaf);
4416
4417         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4418                 btrfs_print_leaf(root, leaf);
4419                 BUG();
4420         }
4421         slot = path->slots[0];
4422         old_data = btrfs_item_end_nr(leaf, slot);
4423
4424         BUG_ON(slot < 0);
4425         if (slot >= nritems) {
4426                 btrfs_print_leaf(root, leaf);
4427                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4428                        slot, nritems);
4429                 BUG_ON(1);
4430         }
4431
4432         /*
4433          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4434          */
4435         /* first correct the data pointers */
4436         for (i = slot; i < nritems; i++) {
4437                 u32 ioff;
4438                 item = btrfs_item_nr(leaf, i);
4439
4440                 ioff = btrfs_token_item_offset(leaf, item, &token);
4441                 btrfs_set_token_item_offset(leaf, item,
4442                                             ioff - data_size, &token);
4443         }
4444
4445         /* shift the data */
4446         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4447                       data_end - data_size, btrfs_leaf_data(leaf) +
4448                       data_end, old_data - data_end);
4449
4450         data_end = old_data;
4451         old_size = btrfs_item_size_nr(leaf, slot);
4452         item = btrfs_item_nr(leaf, slot);
4453         btrfs_set_item_size(leaf, item, old_size + data_size);
4454         btrfs_mark_buffer_dirty(leaf);
4455
4456         if (btrfs_leaf_free_space(root, leaf) < 0) {
4457                 btrfs_print_leaf(root, leaf);
4458                 BUG();
4459         }
4460 }
4461
4462 /*
4463  * this is a helper for btrfs_insert_empty_items, the main goal here is
4464  * to save stack depth by doing the bulk of the work in a function
4465  * that doesn't call btrfs_search_slot
4466  */
4467 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4468                             struct btrfs_key *cpu_key, u32 *data_size,
4469                             u32 total_data, u32 total_size, int nr)
4470 {
4471         struct btrfs_item *item;
4472         int i;
4473         u32 nritems;
4474         unsigned int data_end;
4475         struct btrfs_disk_key disk_key;
4476         struct extent_buffer *leaf;
4477         int slot;
4478         struct btrfs_map_token token;
4479
4480         btrfs_init_map_token(&token);
4481
4482         leaf = path->nodes[0];
4483         slot = path->slots[0];
4484
4485         nritems = btrfs_header_nritems(leaf);
4486         data_end = leaf_data_end(root, leaf);
4487
4488         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4489                 btrfs_print_leaf(root, leaf);
4490                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4491                        total_size, btrfs_leaf_free_space(root, leaf));
4492                 BUG();
4493         }
4494
4495         if (slot != nritems) {
4496                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4497
4498                 if (old_data < data_end) {
4499                         btrfs_print_leaf(root, leaf);
4500                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4501                                slot, old_data, data_end);
4502                         BUG_ON(1);
4503                 }
4504                 /*
4505                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4506                  */
4507                 /* first correct the data pointers */
4508                 for (i = slot; i < nritems; i++) {
4509                         u32 ioff;
4510
4511                         item = btrfs_item_nr(leaf, i);
4512                         ioff = btrfs_token_item_offset(leaf, item, &token);
4513                         btrfs_set_token_item_offset(leaf, item,
4514                                                     ioff - total_data, &token);
4515                 }
4516                 /* shift the items */
4517                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4518                               btrfs_item_nr_offset(slot),
4519                               (nritems - slot) * sizeof(struct btrfs_item));
4520
4521                 /* shift the data */
4522                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4523                               data_end - total_data, btrfs_leaf_data(leaf) +
4524                               data_end, old_data - data_end);
4525                 data_end = old_data;
4526         }
4527
4528         /* setup the item for the new data */
4529         for (i = 0; i < nr; i++) {
4530                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4531                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4532                 item = btrfs_item_nr(leaf, slot + i);
4533                 btrfs_set_token_item_offset(leaf, item,
4534                                             data_end - data_size[i], &token);
4535                 data_end -= data_size[i];
4536                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4537         }
4538
4539         btrfs_set_header_nritems(leaf, nritems + nr);
4540
4541         if (slot == 0) {
4542                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4543                 fixup_low_keys(root, path, &disk_key, 1);
4544         }
4545         btrfs_unlock_up_safe(path, 1);
4546         btrfs_mark_buffer_dirty(leaf);
4547
4548         if (btrfs_leaf_free_space(root, leaf) < 0) {
4549                 btrfs_print_leaf(root, leaf);
4550                 BUG();
4551         }
4552 }
4553
4554 /*
4555  * Given a key and some data, insert items into the tree.
4556  * This does all the path init required, making room in the tree if needed.
4557  */
4558 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4559                             struct btrfs_root *root,
4560                             struct btrfs_path *path,
4561                             struct btrfs_key *cpu_key, u32 *data_size,
4562                             int nr)
4563 {
4564         int ret = 0;
4565         int slot;
4566         int i;
4567         u32 total_size = 0;
4568         u32 total_data = 0;
4569
4570         for (i = 0; i < nr; i++)
4571                 total_data += data_size[i];
4572
4573         total_size = total_data + (nr * sizeof(struct btrfs_item));
4574         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4575         if (ret == 0)
4576                 return -EEXIST;
4577         if (ret < 0)
4578                 return ret;
4579
4580         slot = path->slots[0];
4581         BUG_ON(slot < 0);
4582
4583         setup_items_for_insert(root, path, cpu_key, data_size,
4584                                total_data, total_size, nr);
4585         return 0;
4586 }
4587
4588 /*
4589  * Given a key and some data, insert an item into the tree.
4590  * This does all the path init required, making room in the tree if needed.
4591  */
4592 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4593                       *root, struct btrfs_key *cpu_key, void *data, u32
4594                       data_size)
4595 {
4596         int ret = 0;
4597         struct btrfs_path *path;
4598         struct extent_buffer *leaf;
4599         unsigned long ptr;
4600
4601         path = btrfs_alloc_path();
4602         if (!path)
4603                 return -ENOMEM;
4604         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4605         if (!ret) {
4606                 leaf = path->nodes[0];
4607                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4608                 write_extent_buffer(leaf, data, ptr, data_size);
4609                 btrfs_mark_buffer_dirty(leaf);
4610         }
4611         btrfs_free_path(path);
4612         return ret;
4613 }
4614
4615 /*
4616  * delete the pointer from a given node.
4617  *
4618  * the tree should have been previously balanced so the deletion does not
4619  * empty a node.
4620  */
4621 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4622                     int level, int slot)
4623 {
4624         struct extent_buffer *parent = path->nodes[level];
4625         u32 nritems;
4626         int ret;
4627
4628         nritems = btrfs_header_nritems(parent);
4629         if (slot != nritems - 1) {
4630                 if (level)
4631                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4632                                              slot + 1, nritems - slot - 1);
4633                 memmove_extent_buffer(parent,
4634                               btrfs_node_key_ptr_offset(slot),
4635                               btrfs_node_key_ptr_offset(slot + 1),
4636                               sizeof(struct btrfs_key_ptr) *
4637                               (nritems - slot - 1));
4638         } else if (level) {
4639                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4640                                               MOD_LOG_KEY_REMOVE);
4641                 BUG_ON(ret < 0);
4642         }
4643
4644         nritems--;
4645         btrfs_set_header_nritems(parent, nritems);
4646         if (nritems == 0 && parent == root->node) {
4647                 BUG_ON(btrfs_header_level(root->node) != 1);
4648                 /* just turn the root into a leaf and break */
4649                 btrfs_set_header_level(root->node, 0);
4650         } else if (slot == 0) {
4651                 struct btrfs_disk_key disk_key;
4652
4653                 btrfs_node_key(parent, &disk_key, 0);
4654                 fixup_low_keys(root, path, &disk_key, level + 1);
4655         }
4656         btrfs_mark_buffer_dirty(parent);
4657 }
4658
4659 /*
4660  * a helper function to delete the leaf pointed to by path->slots[1] and
4661  * path->nodes[1].
4662  *
4663  * This deletes the pointer in path->nodes[1] and frees the leaf
4664  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4665  *
4666  * The path must have already been setup for deleting the leaf, including
4667  * all the proper balancing.  path->nodes[1] must be locked.
4668  */
4669 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4670                                     struct btrfs_root *root,
4671                                     struct btrfs_path *path,
4672                                     struct extent_buffer *leaf)
4673 {
4674         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4675         del_ptr(root, path, 1, path->slots[1]);
4676
4677         /*
4678          * btrfs_free_extent is expensive, we want to make sure we
4679          * aren't holding any locks when we call it
4680          */
4681         btrfs_unlock_up_safe(path, 0);
4682
4683         root_sub_used(root, leaf->len);
4684
4685         extent_buffer_get(leaf);
4686         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4687         free_extent_buffer_stale(leaf);
4688 }
4689 /*
4690  * delete the item at the leaf level in path.  If that empties
4691  * the leaf, remove it from the tree
4692  */
4693 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4694                     struct btrfs_path *path, int slot, int nr)
4695 {
4696         struct extent_buffer *leaf;
4697         struct btrfs_item *item;
4698         int last_off;
4699         int dsize = 0;
4700         int ret = 0;
4701         int wret;
4702         int i;
4703         u32 nritems;
4704         struct btrfs_map_token token;
4705
4706         btrfs_init_map_token(&token);
4707
4708         leaf = path->nodes[0];
4709         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4710
4711         for (i = 0; i < nr; i++)
4712                 dsize += btrfs_item_size_nr(leaf, slot + i);
4713
4714         nritems = btrfs_header_nritems(leaf);
4715
4716         if (slot + nr != nritems) {
4717                 int data_end = leaf_data_end(root, leaf);
4718
4719                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4720                               data_end + dsize,
4721                               btrfs_leaf_data(leaf) + data_end,
4722                               last_off - data_end);
4723
4724                 for (i = slot + nr; i < nritems; i++) {
4725                         u32 ioff;
4726
4727                         item = btrfs_item_nr(leaf, i);
4728                         ioff = btrfs_token_item_offset(leaf, item, &token);
4729                         btrfs_set_token_item_offset(leaf, item,
4730                                                     ioff + dsize, &token);
4731                 }
4732
4733                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4734                               btrfs_item_nr_offset(slot + nr),
4735                               sizeof(struct btrfs_item) *
4736                               (nritems - slot - nr));
4737         }
4738         btrfs_set_header_nritems(leaf, nritems - nr);
4739         nritems -= nr;
4740
4741         /* delete the leaf if we've emptied it */
4742         if (nritems == 0) {
4743                 if (leaf == root->node) {
4744                         btrfs_set_header_level(leaf, 0);
4745                 } else {
4746                         btrfs_set_path_blocking(path);
4747                         clean_tree_block(trans, root, leaf);
4748                         btrfs_del_leaf(trans, root, path, leaf);
4749                 }
4750         } else {
4751                 int used = leaf_space_used(leaf, 0, nritems);
4752                 if (slot == 0) {
4753                         struct btrfs_disk_key disk_key;
4754
4755                         btrfs_item_key(leaf, &disk_key, 0);
4756                         fixup_low_keys(root, path, &disk_key, 1);
4757                 }
4758
4759                 /* delete the leaf if it is mostly empty */
4760                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4761                         /* push_leaf_left fixes the path.
4762                          * make sure the path still points to our leaf
4763                          * for possible call to del_ptr below
4764                          */
4765                         slot = path->slots[1];
4766                         extent_buffer_get(leaf);
4767
4768                         btrfs_set_path_blocking(path);
4769                         wret = push_leaf_left(trans, root, path, 1, 1,
4770                                               1, (u32)-1);
4771                         if (wret < 0 && wret != -ENOSPC)
4772                                 ret = wret;
4773
4774                         if (path->nodes[0] == leaf &&
4775                             btrfs_header_nritems(leaf)) {
4776                                 wret = push_leaf_right(trans, root, path, 1,
4777                                                        1, 1, 0);
4778                                 if (wret < 0 && wret != -ENOSPC)
4779                                         ret = wret;
4780                         }
4781
4782                         if (btrfs_header_nritems(leaf) == 0) {
4783                                 path->slots[1] = slot;
4784                                 btrfs_del_leaf(trans, root, path, leaf);
4785                                 free_extent_buffer(leaf);
4786                                 ret = 0;
4787                         } else {
4788                                 /* if we're still in the path, make sure
4789                                  * we're dirty.  Otherwise, one of the
4790                                  * push_leaf functions must have already
4791                                  * dirtied this buffer
4792                                  */
4793                                 if (path->nodes[0] == leaf)
4794                                         btrfs_mark_buffer_dirty(leaf);
4795                                 free_extent_buffer(leaf);
4796                         }
4797                 } else {
4798                         btrfs_mark_buffer_dirty(leaf);
4799                 }
4800         }
4801         return ret;
4802 }
4803
4804 /*
4805  * search the tree again to find a leaf with lesser keys
4806  * returns 0 if it found something or 1 if there are no lesser leaves.
4807  * returns < 0 on io errors.
4808  *
4809  * This may release the path, and so you may lose any locks held at the
4810  * time you call it.
4811  */
4812 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4813 {
4814         struct btrfs_key key;
4815         struct btrfs_disk_key found_key;
4816         int ret;
4817
4818         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4819
4820         if (key.offset > 0)
4821                 key.offset--;
4822         else if (key.type > 0)
4823                 key.type--;
4824         else if (key.objectid > 0)
4825                 key.objectid--;
4826         else
4827                 return 1;
4828
4829         btrfs_release_path(path);
4830         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4831         if (ret < 0)
4832                 return ret;
4833         btrfs_item_key(path->nodes[0], &found_key, 0);
4834         ret = comp_keys(&found_key, &key);
4835         if (ret < 0)
4836                 return 0;
4837         return 1;
4838 }
4839
4840 /*
4841  * A helper function to walk down the tree starting at min_key, and looking
4842  * for nodes or leaves that are have a minimum transaction id.
4843  * This is used by the btree defrag code, and tree logging
4844  *
4845  * This does not cow, but it does stuff the starting key it finds back
4846  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4847  * key and get a writable path.
4848  *
4849  * This does lock as it descends, and path->keep_locks should be set
4850  * to 1 by the caller.
4851  *
4852  * This honors path->lowest_level to prevent descent past a given level
4853  * of the tree.
4854  *
4855  * min_trans indicates the oldest transaction that you are interested
4856  * in walking through.  Any nodes or leaves older than min_trans are
4857  * skipped over (without reading them).
4858  *
4859  * returns zero if something useful was found, < 0 on error and 1 if there
4860  * was nothing in the tree that matched the search criteria.
4861  */
4862 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4863                          struct btrfs_key *max_key,
4864                          struct btrfs_path *path,
4865                          u64 min_trans)
4866 {
4867         struct extent_buffer *cur;
4868         struct btrfs_key found_key;
4869         int slot;
4870         int sret;
4871         u32 nritems;
4872         int level;
4873         int ret = 1;
4874
4875         WARN_ON(!path->keep_locks);
4876 again:
4877         cur = btrfs_read_lock_root_node(root);
4878         level = btrfs_header_level(cur);
4879         WARN_ON(path->nodes[level]);
4880         path->nodes[level] = cur;
4881         path->locks[level] = BTRFS_READ_LOCK;
4882
4883         if (btrfs_header_generation(cur) < min_trans) {
4884                 ret = 1;
4885                 goto out;
4886         }
4887         while (1) {
4888                 nritems = btrfs_header_nritems(cur);
4889                 level = btrfs_header_level(cur);
4890                 sret = bin_search(cur, min_key, level, &slot);
4891
4892                 /* at the lowest level, we're done, setup the path and exit */
4893                 if (level == path->lowest_level) {
4894                         if (slot >= nritems)
4895                                 goto find_next_key;
4896                         ret = 0;
4897                         path->slots[level] = slot;
4898                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4899                         goto out;
4900                 }
4901                 if (sret && slot > 0)
4902                         slot--;
4903                 /*
4904                  * check this node pointer against the min_trans parameters.
4905                  * If it is too old, old, skip to the next one.
4906                  */
4907                 while (slot < nritems) {
4908                         u64 blockptr;
4909                         u64 gen;
4910
4911                         blockptr = btrfs_node_blockptr(cur, slot);
4912                         gen = btrfs_node_ptr_generation(cur, slot);
4913                         if (gen < min_trans) {
4914                                 slot++;
4915                                 continue;
4916                         }
4917                         break;
4918                 }
4919 find_next_key:
4920                 /*
4921                  * we didn't find a candidate key in this node, walk forward
4922                  * and find another one
4923                  */
4924                 if (slot >= nritems) {
4925                         path->slots[level] = slot;
4926                         btrfs_set_path_blocking(path);
4927                         sret = btrfs_find_next_key(root, path, min_key, level,
4928                                                   min_trans);
4929                         if (sret == 0) {
4930                                 btrfs_release_path(path);
4931                                 goto again;
4932                         } else {
4933                                 goto out;
4934                         }
4935                 }
4936                 /* save our key for returning back */
4937                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4938                 path->slots[level] = slot;
4939                 if (level == path->lowest_level) {
4940                         ret = 0;
4941                         unlock_up(path, level, 1, 0, NULL);
4942                         goto out;
4943                 }
4944                 btrfs_set_path_blocking(path);
4945                 cur = read_node_slot(root, cur, slot);
4946                 BUG_ON(!cur); /* -ENOMEM */
4947
4948                 btrfs_tree_read_lock(cur);
4949
4950                 path->locks[level - 1] = BTRFS_READ_LOCK;
4951                 path->nodes[level - 1] = cur;
4952                 unlock_up(path, level, 1, 0, NULL);
4953                 btrfs_clear_path_blocking(path, NULL, 0);
4954         }
4955 out:
4956         if (ret == 0)
4957                 memcpy(min_key, &found_key, sizeof(found_key));
4958         btrfs_set_path_blocking(path);
4959         return ret;
4960 }
4961
4962 static void tree_move_down(struct btrfs_root *root,
4963                            struct btrfs_path *path,
4964                            int *level, int root_level)
4965 {
4966         BUG_ON(*level == 0);
4967         path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4968                                         path->slots[*level]);
4969         path->slots[*level - 1] = 0;
4970         (*level)--;
4971 }
4972
4973 static int tree_move_next_or_upnext(struct btrfs_root *root,
4974                                     struct btrfs_path *path,
4975                                     int *level, int root_level)
4976 {
4977         int ret = 0;
4978         int nritems;
4979         nritems = btrfs_header_nritems(path->nodes[*level]);
4980
4981         path->slots[*level]++;
4982
4983         while (path->slots[*level] >= nritems) {
4984                 if (*level == root_level)
4985                         return -1;
4986
4987                 /* move upnext */
4988                 path->slots[*level] = 0;
4989                 free_extent_buffer(path->nodes[*level]);
4990                 path->nodes[*level] = NULL;
4991                 (*level)++;
4992                 path->slots[*level]++;
4993
4994                 nritems = btrfs_header_nritems(path->nodes[*level]);
4995                 ret = 1;
4996         }
4997         return ret;
4998 }
4999
5000 /*
5001  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5002  * or down.
5003  */
5004 static int tree_advance(struct btrfs_root *root,
5005                         struct btrfs_path *path,
5006                         int *level, int root_level,
5007                         int allow_down,
5008                         struct btrfs_key *key)
5009 {
5010         int ret;
5011
5012         if (*level == 0 || !allow_down) {
5013                 ret = tree_move_next_or_upnext(root, path, level, root_level);
5014         } else {
5015                 tree_move_down(root, path, level, root_level);
5016                 ret = 0;
5017         }
5018         if (ret >= 0) {
5019                 if (*level == 0)
5020                         btrfs_item_key_to_cpu(path->nodes[*level], key,
5021                                         path->slots[*level]);
5022                 else
5023                         btrfs_node_key_to_cpu(path->nodes[*level], key,
5024                                         path->slots[*level]);
5025         }
5026         return ret;
5027 }
5028
5029 static int tree_compare_item(struct btrfs_root *left_root,
5030                              struct btrfs_path *left_path,
5031                              struct btrfs_path *right_path,
5032                              char *tmp_buf)
5033 {
5034         int cmp;
5035         int len1, len2;
5036         unsigned long off1, off2;
5037
5038         len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5039         len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5040         if (len1 != len2)
5041                 return 1;
5042
5043         off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5044         off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5045                                 right_path->slots[0]);
5046
5047         read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5048
5049         cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5050         if (cmp)
5051                 return 1;
5052         return 0;
5053 }
5054
5055 #define ADVANCE 1
5056 #define ADVANCE_ONLY_NEXT -1
5057
5058 /*
5059  * This function compares two trees and calls the provided callback for
5060  * every changed/new/deleted item it finds.
5061  * If shared tree blocks are encountered, whole subtrees are skipped, making
5062  * the compare pretty fast on snapshotted subvolumes.
5063  *
5064  * This currently works on commit roots only. As commit roots are read only,
5065  * we don't do any locking. The commit roots are protected with transactions.
5066  * Transactions are ended and rejoined when a commit is tried in between.
5067  *
5068  * This function checks for modifications done to the trees while comparing.
5069  * If it detects a change, it aborts immediately.
5070  */
5071 int btrfs_compare_trees(struct btrfs_root *left_root,
5072                         struct btrfs_root *right_root,
5073                         btrfs_changed_cb_t changed_cb, void *ctx)
5074 {
5075         int ret;
5076         int cmp;
5077         struct btrfs_trans_handle *trans = NULL;
5078         struct btrfs_path *left_path = NULL;
5079         struct btrfs_path *right_path = NULL;
5080         struct btrfs_key left_key;
5081         struct btrfs_key right_key;
5082         char *tmp_buf = NULL;
5083         int left_root_level;
5084         int right_root_level;
5085         int left_level;
5086         int right_level;
5087         int left_end_reached;
5088         int right_end_reached;
5089         int advance_left;
5090         int advance_right;
5091         u64 left_blockptr;
5092         u64 right_blockptr;
5093         u64 left_start_ctransid;
5094         u64 right_start_ctransid;
5095         u64 ctransid;
5096
5097         left_path = btrfs_alloc_path();
5098         if (!left_path) {
5099                 ret = -ENOMEM;
5100                 goto out;
5101         }
5102         right_path = btrfs_alloc_path();
5103         if (!right_path) {
5104                 ret = -ENOMEM;
5105                 goto out;
5106         }
5107
5108         tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5109         if (!tmp_buf) {
5110                 ret = -ENOMEM;
5111                 goto out;
5112         }
5113
5114         left_path->search_commit_root = 1;
5115         left_path->skip_locking = 1;
5116         right_path->search_commit_root = 1;
5117         right_path->skip_locking = 1;
5118
5119         spin_lock(&left_root->root_item_lock);
5120         left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5121         spin_unlock(&left_root->root_item_lock);
5122
5123         spin_lock(&right_root->root_item_lock);
5124         right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5125         spin_unlock(&right_root->root_item_lock);
5126
5127         trans = btrfs_join_transaction(left_root);
5128         if (IS_ERR(trans)) {
5129                 ret = PTR_ERR(trans);
5130                 trans = NULL;
5131                 goto out;
5132         }
5133
5134         /*
5135          * Strategy: Go to the first items of both trees. Then do
5136          *
5137          * If both trees are at level 0
5138          *   Compare keys of current items
5139          *     If left < right treat left item as new, advance left tree
5140          *       and repeat
5141          *     If left > right treat right item as deleted, advance right tree
5142          *       and repeat
5143          *     If left == right do deep compare of items, treat as changed if
5144          *       needed, advance both trees and repeat
5145          * If both trees are at the same level but not at level 0
5146          *   Compare keys of current nodes/leafs
5147          *     If left < right advance left tree and repeat
5148          *     If left > right advance right tree and repeat
5149          *     If left == right compare blockptrs of the next nodes/leafs
5150          *       If they match advance both trees but stay at the same level
5151          *         and repeat
5152          *       If they don't match advance both trees while allowing to go
5153          *         deeper and repeat
5154          * If tree levels are different
5155          *   Advance the tree that needs it and repeat
5156          *
5157          * Advancing a tree means:
5158          *   If we are at level 0, try to go to the next slot. If that's not
5159          *   possible, go one level up and repeat. Stop when we found a level
5160          *   where we could go to the next slot. We may at this point be on a
5161          *   node or a leaf.
5162          *
5163          *   If we are not at level 0 and not on shared tree blocks, go one
5164          *   level deeper.
5165          *
5166          *   If we are not at level 0 and on shared tree blocks, go one slot to
5167          *   the right if possible or go up and right.
5168          */
5169
5170         left_level = btrfs_header_level(left_root->commit_root);
5171         left_root_level = left_level;
5172         left_path->nodes[left_level] = left_root->commit_root;
5173         extent_buffer_get(left_path->nodes[left_level]);
5174
5175         right_level = btrfs_header_level(right_root->commit_root);
5176         right_root_level = right_level;
5177         right_path->nodes[right_level] = right_root->commit_root;
5178         extent_buffer_get(right_path->nodes[right_level]);
5179
5180         if (left_level == 0)
5181                 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5182                                 &left_key, left_path->slots[left_level]);
5183         else
5184                 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5185                                 &left_key, left_path->slots[left_level]);
5186         if (right_level == 0)
5187                 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5188                                 &right_key, right_path->slots[right_level]);
5189         else
5190                 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5191                                 &right_key, right_path->slots[right_level]);
5192
5193         left_end_reached = right_end_reached = 0;
5194         advance_left = advance_right = 0;
5195
5196         while (1) {
5197                 /*
5198                  * We need to make sure the transaction does not get committed
5199                  * while we do anything on commit roots. This means, we need to
5200                  * join and leave transactions for every item that we process.
5201                  */
5202                 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5203                         btrfs_release_path(left_path);
5204                         btrfs_release_path(right_path);
5205
5206                         ret = btrfs_end_transaction(trans, left_root);
5207                         trans = NULL;
5208                         if (ret < 0)
5209                                 goto out;
5210                 }
5211                 /* now rejoin the transaction */
5212                 if (!trans) {
5213                         trans = btrfs_join_transaction(left_root);
5214                         if (IS_ERR(trans)) {
5215                                 ret = PTR_ERR(trans);
5216                                 trans = NULL;
5217                                 goto out;
5218                         }
5219
5220                         spin_lock(&left_root->root_item_lock);
5221                         ctransid = btrfs_root_ctransid(&left_root->root_item);
5222                         spin_unlock(&left_root->root_item_lock);
5223                         if (ctransid != left_start_ctransid)
5224                                 left_start_ctransid = 0;
5225
5226                         spin_lock(&right_root->root_item_lock);
5227                         ctransid = btrfs_root_ctransid(&right_root->root_item);
5228                         spin_unlock(&right_root->root_item_lock);
5229                         if (ctransid != right_start_ctransid)
5230                                 right_start_ctransid = 0;
5231
5232                         if (!left_start_ctransid || !right_start_ctransid) {
5233                                 WARN(1, KERN_WARNING
5234                                         "btrfs: btrfs_compare_tree detected "
5235                                         "a change in one of the trees while "
5236                                         "iterating. This is probably a "
5237                                         "bug.\n");
5238                                 ret = -EIO;
5239                                 goto out;
5240                         }
5241
5242                         /*
5243                          * the commit root may have changed, so start again
5244                          * where we stopped
5245                          */
5246                         left_path->lowest_level = left_level;
5247                         right_path->lowest_level = right_level;
5248                         ret = btrfs_search_slot(NULL, left_root,
5249                                         &left_key, left_path, 0, 0);
5250                         if (ret < 0)
5251                                 goto out;
5252                         ret = btrfs_search_slot(NULL, right_root,
5253                                         &right_key, right_path, 0, 0);
5254                         if (ret < 0)
5255                                 goto out;
5256                 }
5257
5258                 if (advance_left && !left_end_reached) {
5259                         ret = tree_advance(left_root, left_path, &left_level,
5260                                         left_root_level,
5261                                         advance_left != ADVANCE_ONLY_NEXT,
5262                                         &left_key);
5263                         if (ret < 0)
5264                                 left_end_reached = ADVANCE;
5265                         advance_left = 0;
5266                 }
5267                 if (advance_right && !right_end_reached) {
5268                         ret = tree_advance(right_root, right_path, &right_level,
5269                                         right_root_level,
5270                                         advance_right != ADVANCE_ONLY_NEXT,
5271                                         &right_key);
5272                         if (ret < 0)
5273                                 right_end_reached = ADVANCE;
5274                         advance_right = 0;
5275                 }
5276
5277                 if (left_end_reached && right_end_reached) {
5278                         ret = 0;
5279                         goto out;
5280                 } else if (left_end_reached) {
5281                         if (right_level == 0) {
5282                                 ret = changed_cb(left_root, right_root,
5283                                                 left_path, right_path,
5284                                                 &right_key,
5285                                                 BTRFS_COMPARE_TREE_DELETED,
5286                                                 ctx);
5287                                 if (ret < 0)
5288                                         goto out;
5289                         }
5290                         advance_right = ADVANCE;
5291                         continue;
5292                 } else if (right_end_reached) {
5293                         if (left_level == 0) {
5294                                 ret = changed_cb(left_root, right_root,
5295                                                 left_path, right_path,
5296                                                 &left_key,
5297                                                 BTRFS_COMPARE_TREE_NEW,
5298                                                 ctx);
5299                                 if (ret < 0)
5300                                         goto out;
5301                         }
5302                         advance_left = ADVANCE;
5303                         continue;
5304                 }
5305
5306                 if (left_level == 0 && right_level == 0) {
5307                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5308                         if (cmp < 0) {
5309                                 ret = changed_cb(left_root, right_root,
5310                                                 left_path, right_path,
5311                                                 &left_key,
5312                                                 BTRFS_COMPARE_TREE_NEW,
5313                                                 ctx);
5314                                 if (ret < 0)
5315                                         goto out;
5316                                 advance_left = ADVANCE;
5317                         } else if (cmp > 0) {
5318                                 ret = changed_cb(left_root, right_root,
5319                                                 left_path, right_path,
5320                                                 &right_key,
5321                                                 BTRFS_COMPARE_TREE_DELETED,
5322                                                 ctx);
5323                                 if (ret < 0)
5324                                         goto out;
5325                                 advance_right = ADVANCE;
5326                         } else {
5327                                 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5328                                 ret = tree_compare_item(left_root, left_path,
5329                                                 right_path, tmp_buf);
5330                                 if (ret) {
5331                                         WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5332                                         ret = changed_cb(left_root, right_root,
5333                                                 left_path, right_path,
5334                                                 &left_key,
5335                                                 BTRFS_COMPARE_TREE_CHANGED,
5336                                                 ctx);
5337                                         if (ret < 0)
5338                                                 goto out;
5339                                 }
5340                                 advance_left = ADVANCE;
5341                                 advance_right = ADVANCE;
5342                         }
5343                 } else if (left_level == right_level) {
5344                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5345                         if (cmp < 0) {
5346                                 advance_left = ADVANCE;
5347                         } else if (cmp > 0) {
5348                                 advance_right = ADVANCE;
5349                         } else {
5350                                 left_blockptr = btrfs_node_blockptr(
5351                                                 left_path->nodes[left_level],
5352                                                 left_path->slots[left_level]);
5353                                 right_blockptr = btrfs_node_blockptr(
5354                                                 right_path->nodes[right_level],
5355                                                 right_path->slots[right_level]);
5356                                 if (left_blockptr == right_blockptr) {
5357                                         /*
5358                                          * As we're on a shared block, don't
5359                                          * allow to go deeper.
5360                                          */
5361                                         advance_left = ADVANCE_ONLY_NEXT;
5362                                         advance_right = ADVANCE_ONLY_NEXT;
5363                                 } else {
5364                                         advance_left = ADVANCE;
5365                                         advance_right = ADVANCE;
5366                                 }
5367                         }
5368                 } else if (left_level < right_level) {
5369                         advance_right = ADVANCE;
5370                 } else {
5371                         advance_left = ADVANCE;
5372                 }
5373         }
5374
5375 out:
5376         btrfs_free_path(left_path);
5377         btrfs_free_path(right_path);
5378         kfree(tmp_buf);
5379
5380         if (trans) {
5381                 if (!ret)
5382                         ret = btrfs_end_transaction(trans, left_root);
5383                 else
5384                         btrfs_end_transaction(trans, left_root);
5385         }
5386
5387         return ret;
5388 }
5389
5390 /*
5391  * this is similar to btrfs_next_leaf, but does not try to preserve
5392  * and fixup the path.  It looks for and returns the next key in the
5393  * tree based on the current path and the min_trans parameters.
5394  *
5395  * 0 is returned if another key is found, < 0 if there are any errors
5396  * and 1 is returned if there are no higher keys in the tree
5397  *
5398  * path->keep_locks should be set to 1 on the search made before
5399  * calling this function.
5400  */
5401 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5402                         struct btrfs_key *key, int level, u64 min_trans)
5403 {
5404         int slot;
5405         struct extent_buffer *c;
5406
5407         WARN_ON(!path->keep_locks);
5408         while (level < BTRFS_MAX_LEVEL) {
5409                 if (!path->nodes[level])
5410                         return 1;
5411
5412                 slot = path->slots[level] + 1;
5413                 c = path->nodes[level];
5414 next:
5415                 if (slot >= btrfs_header_nritems(c)) {
5416                         int ret;
5417                         int orig_lowest;
5418                         struct btrfs_key cur_key;
5419                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5420                             !path->nodes[level + 1])
5421                                 return 1;
5422
5423                         if (path->locks[level + 1]) {
5424                                 level++;
5425                                 continue;
5426                         }
5427
5428                         slot = btrfs_header_nritems(c) - 1;
5429                         if (level == 0)
5430                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5431                         else
5432                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5433
5434                         orig_lowest = path->lowest_level;
5435                         btrfs_release_path(path);
5436                         path->lowest_level = level;
5437                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5438                                                 0, 0);
5439                         path->lowest_level = orig_lowest;
5440                         if (ret < 0)
5441                                 return ret;
5442
5443                         c = path->nodes[level];
5444                         slot = path->slots[level];
5445                         if (ret == 0)
5446                                 slot++;
5447                         goto next;
5448                 }
5449
5450                 if (level == 0)
5451                         btrfs_item_key_to_cpu(c, key, slot);
5452                 else {
5453                         u64 gen = btrfs_node_ptr_generation(c, slot);
5454
5455                         if (gen < min_trans) {
5456                                 slot++;
5457                                 goto next;
5458                         }
5459                         btrfs_node_key_to_cpu(c, key, slot);
5460                 }
5461                 return 0;
5462         }
5463         return 1;
5464 }
5465
5466 /*
5467  * search the tree again to find a leaf with greater keys
5468  * returns 0 if it found something or 1 if there are no greater leaves.
5469  * returns < 0 on io errors.
5470  */
5471 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5472 {
5473         return btrfs_next_old_leaf(root, path, 0);
5474 }
5475
5476 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5477                         u64 time_seq)
5478 {
5479         int slot;
5480         int level;
5481         struct extent_buffer *c;
5482         struct extent_buffer *next;
5483         struct btrfs_key key;
5484         u32 nritems;
5485         int ret;
5486         int old_spinning = path->leave_spinning;
5487         int next_rw_lock = 0;
5488
5489         nritems = btrfs_header_nritems(path->nodes[0]);
5490         if (nritems == 0)
5491                 return 1;
5492
5493         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5494 again:
5495         level = 1;
5496         next = NULL;
5497         next_rw_lock = 0;
5498         btrfs_release_path(path);
5499
5500         path->keep_locks = 1;
5501         path->leave_spinning = 1;
5502
5503         if (time_seq)
5504                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5505         else
5506                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5507         path->keep_locks = 0;
5508
5509         if (ret < 0)
5510                 return ret;
5511
5512         nritems = btrfs_header_nritems(path->nodes[0]);
5513         /*
5514          * by releasing the path above we dropped all our locks.  A balance
5515          * could have added more items next to the key that used to be
5516          * at the very end of the block.  So, check again here and
5517          * advance the path if there are now more items available.
5518          */
5519         if (nritems > 0 && path->slots[0] < nritems - 1) {
5520                 if (ret == 0)
5521                         path->slots[0]++;
5522                 ret = 0;
5523                 goto done;
5524         }
5525
5526         while (level < BTRFS_MAX_LEVEL) {
5527                 if (!path->nodes[level]) {
5528                         ret = 1;
5529                         goto done;
5530                 }
5531
5532                 slot = path->slots[level] + 1;
5533                 c = path->nodes[level];
5534                 if (slot >= btrfs_header_nritems(c)) {
5535                         level++;
5536                         if (level == BTRFS_MAX_LEVEL) {
5537                                 ret = 1;
5538                                 goto done;
5539                         }
5540                         continue;
5541                 }
5542
5543                 if (next) {
5544                         btrfs_tree_unlock_rw(next, next_rw_lock);
5545                         free_extent_buffer(next);
5546                 }
5547
5548                 next = c;
5549                 next_rw_lock = path->locks[level];
5550                 ret = read_block_for_search(NULL, root, path, &next, level,
5551                                             slot, &key, 0);
5552                 if (ret == -EAGAIN)
5553                         goto again;
5554
5555                 if (ret < 0) {
5556                         btrfs_release_path(path);
5557                         goto done;
5558                 }
5559
5560                 if (!path->skip_locking) {
5561                         ret = btrfs_try_tree_read_lock(next);
5562                         if (!ret && time_seq) {
5563                                 /*
5564                                  * If we don't get the lock, we may be racing
5565                                  * with push_leaf_left, holding that lock while
5566                                  * itself waiting for the leaf we've currently
5567                                  * locked. To solve this situation, we give up
5568                                  * on our lock and cycle.
5569                                  */
5570                                 free_extent_buffer(next);
5571                                 btrfs_release_path(path);
5572                                 cond_resched();
5573                                 goto again;
5574                         }
5575                         if (!ret) {
5576                                 btrfs_set_path_blocking(path);
5577                                 btrfs_tree_read_lock(next);
5578                                 btrfs_clear_path_blocking(path, next,
5579                                                           BTRFS_READ_LOCK);
5580                         }
5581                         next_rw_lock = BTRFS_READ_LOCK;
5582                 }
5583                 break;
5584         }
5585         path->slots[level] = slot;
5586         while (1) {
5587                 level--;
5588                 c = path->nodes[level];
5589                 if (path->locks[level])
5590                         btrfs_tree_unlock_rw(c, path->locks[level]);
5591
5592                 free_extent_buffer(c);
5593                 path->nodes[level] = next;
5594                 path->slots[level] = 0;
5595                 if (!path->skip_locking)
5596                         path->locks[level] = next_rw_lock;
5597                 if (!level)
5598                         break;
5599
5600                 ret = read_block_for_search(NULL, root, path, &next, level,
5601                                             0, &key, 0);
5602                 if (ret == -EAGAIN)
5603                         goto again;
5604
5605                 if (ret < 0) {
5606                         btrfs_release_path(path);
5607                         goto done;
5608                 }
5609
5610                 if (!path->skip_locking) {
5611                         ret = btrfs_try_tree_read_lock(next);
5612                         if (!ret) {
5613                                 btrfs_set_path_blocking(path);
5614                                 btrfs_tree_read_lock(next);
5615                                 btrfs_clear_path_blocking(path, next,
5616                                                           BTRFS_READ_LOCK);
5617                         }
5618                         next_rw_lock = BTRFS_READ_LOCK;
5619                 }
5620         }
5621         ret = 0;
5622 done:
5623         unlock_up(path, 0, 1, 0, NULL);
5624         path->leave_spinning = old_spinning;
5625         if (!old_spinning)
5626                 btrfs_set_path_blocking(path);
5627
5628         return ret;
5629 }
5630
5631 /*
5632  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5633  * searching until it gets past min_objectid or finds an item of 'type'
5634  *
5635  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5636  */
5637 int btrfs_previous_item(struct btrfs_root *root,
5638                         struct btrfs_path *path, u64 min_objectid,
5639                         int type)
5640 {
5641         struct btrfs_key found_key;
5642         struct extent_buffer *leaf;
5643         u32 nritems;
5644         int ret;
5645
5646         while (1) {
5647                 if (path->slots[0] == 0) {
5648                         btrfs_set_path_blocking(path);
5649                         ret = btrfs_prev_leaf(root, path);
5650                         if (ret != 0)
5651                                 return ret;
5652                 } else {
5653                         path->slots[0]--;
5654                 }
5655                 leaf = path->nodes[0];
5656                 nritems = btrfs_header_nritems(leaf);
5657                 if (nritems == 0)
5658                         return 1;
5659                 if (path->slots[0] == nritems)
5660                         path->slots[0]--;
5661
5662                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5663                 if (found_key.objectid < min_objectid)
5664                         break;
5665                 if (found_key.type == type)
5666                         return 0;
5667                 if (found_key.objectid == min_objectid &&
5668                     found_key.type < type)
5669                         break;
5670         }
5671         return 1;
5672 }