Btrfs: record first logical byte in memory
[cascardo/linux.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49
50 #ifdef CONFIG_X86
51 #include <asm/cpufeature.h>
52 #endif
53
54 static struct extent_io_ops btree_extent_io_ops;
55 static void end_workqueue_fn(struct btrfs_work *work);
56 static void free_fs_root(struct btrfs_root *root);
57 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
58                                     int read_only);
59 static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
60 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
61 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
62                                       struct btrfs_root *root);
63 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
64 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
65 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
66                                         struct extent_io_tree *dirty_pages,
67                                         int mark);
68 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
69                                        struct extent_io_tree *pinned_extents);
70
71 /*
72  * end_io_wq structs are used to do processing in task context when an IO is
73  * complete.  This is used during reads to verify checksums, and it is used
74  * by writes to insert metadata for new file extents after IO is complete.
75  */
76 struct end_io_wq {
77         struct bio *bio;
78         bio_end_io_t *end_io;
79         void *private;
80         struct btrfs_fs_info *info;
81         int error;
82         int metadata;
83         struct list_head list;
84         struct btrfs_work work;
85 };
86
87 /*
88  * async submit bios are used to offload expensive checksumming
89  * onto the worker threads.  They checksum file and metadata bios
90  * just before they are sent down the IO stack.
91  */
92 struct async_submit_bio {
93         struct inode *inode;
94         struct bio *bio;
95         struct list_head list;
96         extent_submit_bio_hook_t *submit_bio_start;
97         extent_submit_bio_hook_t *submit_bio_done;
98         int rw;
99         int mirror_num;
100         unsigned long bio_flags;
101         /*
102          * bio_offset is optional, can be used if the pages in the bio
103          * can't tell us where in the file the bio should go
104          */
105         u64 bio_offset;
106         struct btrfs_work work;
107         int error;
108 };
109
110 /*
111  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
112  * eb, the lockdep key is determined by the btrfs_root it belongs to and
113  * the level the eb occupies in the tree.
114  *
115  * Different roots are used for different purposes and may nest inside each
116  * other and they require separate keysets.  As lockdep keys should be
117  * static, assign keysets according to the purpose of the root as indicated
118  * by btrfs_root->objectid.  This ensures that all special purpose roots
119  * have separate keysets.
120  *
121  * Lock-nesting across peer nodes is always done with the immediate parent
122  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
123  * subclass to avoid triggering lockdep warning in such cases.
124  *
125  * The key is set by the readpage_end_io_hook after the buffer has passed
126  * csum validation but before the pages are unlocked.  It is also set by
127  * btrfs_init_new_buffer on freshly allocated blocks.
128  *
129  * We also add a check to make sure the highest level of the tree is the
130  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
131  * needs update as well.
132  */
133 #ifdef CONFIG_DEBUG_LOCK_ALLOC
134 # if BTRFS_MAX_LEVEL != 8
135 #  error
136 # endif
137
138 static struct btrfs_lockdep_keyset {
139         u64                     id;             /* root objectid */
140         const char              *name_stem;     /* lock name stem */
141         char                    names[BTRFS_MAX_LEVEL + 1][20];
142         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
143 } btrfs_lockdep_keysets[] = {
144         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
145         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
146         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
147         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
148         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
149         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
150         { .id = BTRFS_ORPHAN_OBJECTID,          .name_stem = "orphan"   },
151         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
152         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
153         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
154         { .id = 0,                              .name_stem = "tree"     },
155 };
156
157 void __init btrfs_init_lockdep(void)
158 {
159         int i, j;
160
161         /* initialize lockdep class names */
162         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
163                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
164
165                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
166                         snprintf(ks->names[j], sizeof(ks->names[j]),
167                                  "btrfs-%s-%02d", ks->name_stem, j);
168         }
169 }
170
171 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
172                                     int level)
173 {
174         struct btrfs_lockdep_keyset *ks;
175
176         BUG_ON(level >= ARRAY_SIZE(ks->keys));
177
178         /* find the matching keyset, id 0 is the default entry */
179         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
180                 if (ks->id == objectid)
181                         break;
182
183         lockdep_set_class_and_name(&eb->lock,
184                                    &ks->keys[level], ks->names[level]);
185 }
186
187 #endif
188
189 /*
190  * extents on the btree inode are pretty simple, there's one extent
191  * that covers the entire device
192  */
193 static struct extent_map *btree_get_extent(struct inode *inode,
194                 struct page *page, size_t pg_offset, u64 start, u64 len,
195                 int create)
196 {
197         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
198         struct extent_map *em;
199         int ret;
200
201         read_lock(&em_tree->lock);
202         em = lookup_extent_mapping(em_tree, start, len);
203         if (em) {
204                 em->bdev =
205                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
206                 read_unlock(&em_tree->lock);
207                 goto out;
208         }
209         read_unlock(&em_tree->lock);
210
211         em = alloc_extent_map();
212         if (!em) {
213                 em = ERR_PTR(-ENOMEM);
214                 goto out;
215         }
216         em->start = 0;
217         em->len = (u64)-1;
218         em->block_len = (u64)-1;
219         em->block_start = 0;
220         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
221
222         write_lock(&em_tree->lock);
223         ret = add_extent_mapping(em_tree, em);
224         if (ret == -EEXIST) {
225                 free_extent_map(em);
226                 em = lookup_extent_mapping(em_tree, start, len);
227                 if (!em)
228                         em = ERR_PTR(-EIO);
229         } else if (ret) {
230                 free_extent_map(em);
231                 em = ERR_PTR(ret);
232         }
233         write_unlock(&em_tree->lock);
234
235 out:
236         return em;
237 }
238
239 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
240 {
241         return crc32c(seed, data, len);
242 }
243
244 void btrfs_csum_final(u32 crc, char *result)
245 {
246         put_unaligned_le32(~crc, result);
247 }
248
249 /*
250  * compute the csum for a btree block, and either verify it or write it
251  * into the csum field of the block.
252  */
253 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
254                            int verify)
255 {
256         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
257         char *result = NULL;
258         unsigned long len;
259         unsigned long cur_len;
260         unsigned long offset = BTRFS_CSUM_SIZE;
261         char *kaddr;
262         unsigned long map_start;
263         unsigned long map_len;
264         int err;
265         u32 crc = ~(u32)0;
266         unsigned long inline_result;
267
268         len = buf->len - offset;
269         while (len > 0) {
270                 err = map_private_extent_buffer(buf, offset, 32,
271                                         &kaddr, &map_start, &map_len);
272                 if (err)
273                         return 1;
274                 cur_len = min(len, map_len - (offset - map_start));
275                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
276                                       crc, cur_len);
277                 len -= cur_len;
278                 offset += cur_len;
279         }
280         if (csum_size > sizeof(inline_result)) {
281                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
282                 if (!result)
283                         return 1;
284         } else {
285                 result = (char *)&inline_result;
286         }
287
288         btrfs_csum_final(crc, result);
289
290         if (verify) {
291                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
292                         u32 val;
293                         u32 found = 0;
294                         memcpy(&found, result, csum_size);
295
296                         read_extent_buffer(buf, &val, 0, csum_size);
297                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
298                                        "failed on %llu wanted %X found %X "
299                                        "level %d\n",
300                                        root->fs_info->sb->s_id,
301                                        (unsigned long long)buf->start, val, found,
302                                        btrfs_header_level(buf));
303                         if (result != (char *)&inline_result)
304                                 kfree(result);
305                         return 1;
306                 }
307         } else {
308                 write_extent_buffer(buf, result, 0, csum_size);
309         }
310         if (result != (char *)&inline_result)
311                 kfree(result);
312         return 0;
313 }
314
315 /*
316  * we can't consider a given block up to date unless the transid of the
317  * block matches the transid in the parent node's pointer.  This is how we
318  * detect blocks that either didn't get written at all or got written
319  * in the wrong place.
320  */
321 static int verify_parent_transid(struct extent_io_tree *io_tree,
322                                  struct extent_buffer *eb, u64 parent_transid,
323                                  int atomic)
324 {
325         struct extent_state *cached_state = NULL;
326         int ret;
327
328         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
329                 return 0;
330
331         if (atomic)
332                 return -EAGAIN;
333
334         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
335                          0, &cached_state);
336         if (extent_buffer_uptodate(eb) &&
337             btrfs_header_generation(eb) == parent_transid) {
338                 ret = 0;
339                 goto out;
340         }
341         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
342                        "found %llu\n",
343                        (unsigned long long)eb->start,
344                        (unsigned long long)parent_transid,
345                        (unsigned long long)btrfs_header_generation(eb));
346         ret = 1;
347         clear_extent_buffer_uptodate(eb);
348 out:
349         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
350                              &cached_state, GFP_NOFS);
351         return ret;
352 }
353
354 /*
355  * helper to read a given tree block, doing retries as required when
356  * the checksums don't match and we have alternate mirrors to try.
357  */
358 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
359                                           struct extent_buffer *eb,
360                                           u64 start, u64 parent_transid)
361 {
362         struct extent_io_tree *io_tree;
363         int failed = 0;
364         int ret;
365         int num_copies = 0;
366         int mirror_num = 0;
367         int failed_mirror = 0;
368
369         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
370         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
371         while (1) {
372                 ret = read_extent_buffer_pages(io_tree, eb, start,
373                                                WAIT_COMPLETE,
374                                                btree_get_extent, mirror_num);
375                 if (!ret) {
376                         if (!verify_parent_transid(io_tree, eb,
377                                                    parent_transid, 0))
378                                 break;
379                         else
380                                 ret = -EIO;
381                 }
382
383                 /*
384                  * This buffer's crc is fine, but its contents are corrupted, so
385                  * there is no reason to read the other copies, they won't be
386                  * any less wrong.
387                  */
388                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
389                         break;
390
391                 num_copies = btrfs_num_copies(root->fs_info,
392                                               eb->start, eb->len);
393                 if (num_copies == 1)
394                         break;
395
396                 if (!failed_mirror) {
397                         failed = 1;
398                         failed_mirror = eb->read_mirror;
399                 }
400
401                 mirror_num++;
402                 if (mirror_num == failed_mirror)
403                         mirror_num++;
404
405                 if (mirror_num > num_copies)
406                         break;
407         }
408
409         if (failed && !ret && failed_mirror)
410                 repair_eb_io_failure(root, eb, failed_mirror);
411
412         return ret;
413 }
414
415 /*
416  * checksum a dirty tree block before IO.  This has extra checks to make sure
417  * we only fill in the checksum field in the first page of a multi-page block
418  */
419
420 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
421 {
422         struct extent_io_tree *tree;
423         u64 start = page_offset(page);
424         u64 found_start;
425         struct extent_buffer *eb;
426
427         tree = &BTRFS_I(page->mapping->host)->io_tree;
428
429         eb = (struct extent_buffer *)page->private;
430         if (page != eb->pages[0])
431                 return 0;
432         found_start = btrfs_header_bytenr(eb);
433         if (found_start != start) {
434                 WARN_ON(1);
435                 return 0;
436         }
437         if (!PageUptodate(page)) {
438                 WARN_ON(1);
439                 return 0;
440         }
441         csum_tree_block(root, eb, 0);
442         return 0;
443 }
444
445 static int check_tree_block_fsid(struct btrfs_root *root,
446                                  struct extent_buffer *eb)
447 {
448         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
449         u8 fsid[BTRFS_UUID_SIZE];
450         int ret = 1;
451
452         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
453                            BTRFS_FSID_SIZE);
454         while (fs_devices) {
455                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
456                         ret = 0;
457                         break;
458                 }
459                 fs_devices = fs_devices->seed;
460         }
461         return ret;
462 }
463
464 #define CORRUPT(reason, eb, root, slot)                         \
465         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
466                "root=%llu, slot=%d\n", reason,                  \
467                (unsigned long long)btrfs_header_bytenr(eb),     \
468                (unsigned long long)root->objectid, slot)
469
470 static noinline int check_leaf(struct btrfs_root *root,
471                                struct extent_buffer *leaf)
472 {
473         struct btrfs_key key;
474         struct btrfs_key leaf_key;
475         u32 nritems = btrfs_header_nritems(leaf);
476         int slot;
477
478         if (nritems == 0)
479                 return 0;
480
481         /* Check the 0 item */
482         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
483             BTRFS_LEAF_DATA_SIZE(root)) {
484                 CORRUPT("invalid item offset size pair", leaf, root, 0);
485                 return -EIO;
486         }
487
488         /*
489          * Check to make sure each items keys are in the correct order and their
490          * offsets make sense.  We only have to loop through nritems-1 because
491          * we check the current slot against the next slot, which verifies the
492          * next slot's offset+size makes sense and that the current's slot
493          * offset is correct.
494          */
495         for (slot = 0; slot < nritems - 1; slot++) {
496                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
497                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
498
499                 /* Make sure the keys are in the right order */
500                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
501                         CORRUPT("bad key order", leaf, root, slot);
502                         return -EIO;
503                 }
504
505                 /*
506                  * Make sure the offset and ends are right, remember that the
507                  * item data starts at the end of the leaf and grows towards the
508                  * front.
509                  */
510                 if (btrfs_item_offset_nr(leaf, slot) !=
511                         btrfs_item_end_nr(leaf, slot + 1)) {
512                         CORRUPT("slot offset bad", leaf, root, slot);
513                         return -EIO;
514                 }
515
516                 /*
517                  * Check to make sure that we don't point outside of the leaf,
518                  * just incase all the items are consistent to eachother, but
519                  * all point outside of the leaf.
520                  */
521                 if (btrfs_item_end_nr(leaf, slot) >
522                     BTRFS_LEAF_DATA_SIZE(root)) {
523                         CORRUPT("slot end outside of leaf", leaf, root, slot);
524                         return -EIO;
525                 }
526         }
527
528         return 0;
529 }
530
531 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
532                                        struct page *page, int max_walk)
533 {
534         struct extent_buffer *eb;
535         u64 start = page_offset(page);
536         u64 target = start;
537         u64 min_start;
538
539         if (start < max_walk)
540                 min_start = 0;
541         else
542                 min_start = start - max_walk;
543
544         while (start >= min_start) {
545                 eb = find_extent_buffer(tree, start, 0);
546                 if (eb) {
547                         /*
548                          * we found an extent buffer and it contains our page
549                          * horray!
550                          */
551                         if (eb->start <= target &&
552                             eb->start + eb->len > target)
553                                 return eb;
554
555                         /* we found an extent buffer that wasn't for us */
556                         free_extent_buffer(eb);
557                         return NULL;
558                 }
559                 if (start == 0)
560                         break;
561                 start -= PAGE_CACHE_SIZE;
562         }
563         return NULL;
564 }
565
566 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
567                                struct extent_state *state, int mirror)
568 {
569         struct extent_io_tree *tree;
570         u64 found_start;
571         int found_level;
572         struct extent_buffer *eb;
573         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
574         int ret = 0;
575         int reads_done;
576
577         if (!page->private)
578                 goto out;
579
580         tree = &BTRFS_I(page->mapping->host)->io_tree;
581         eb = (struct extent_buffer *)page->private;
582
583         /* the pending IO might have been the only thing that kept this buffer
584          * in memory.  Make sure we have a ref for all this other checks
585          */
586         extent_buffer_get(eb);
587
588         reads_done = atomic_dec_and_test(&eb->io_pages);
589         if (!reads_done)
590                 goto err;
591
592         eb->read_mirror = mirror;
593         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
594                 ret = -EIO;
595                 goto err;
596         }
597
598         found_start = btrfs_header_bytenr(eb);
599         if (found_start != eb->start) {
600                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
601                                "%llu %llu\n",
602                                (unsigned long long)found_start,
603                                (unsigned long long)eb->start);
604                 ret = -EIO;
605                 goto err;
606         }
607         if (check_tree_block_fsid(root, eb)) {
608                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
609                                (unsigned long long)eb->start);
610                 ret = -EIO;
611                 goto err;
612         }
613         found_level = btrfs_header_level(eb);
614
615         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
616                                        eb, found_level);
617
618         ret = csum_tree_block(root, eb, 1);
619         if (ret) {
620                 ret = -EIO;
621                 goto err;
622         }
623
624         /*
625          * If this is a leaf block and it is corrupt, set the corrupt bit so
626          * that we don't try and read the other copies of this block, just
627          * return -EIO.
628          */
629         if (found_level == 0 && check_leaf(root, eb)) {
630                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
631                 ret = -EIO;
632         }
633
634         if (!ret)
635                 set_extent_buffer_uptodate(eb);
636 err:
637         if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
638                 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
639                 btree_readahead_hook(root, eb, eb->start, ret);
640         }
641
642         if (ret)
643                 clear_extent_buffer_uptodate(eb);
644         free_extent_buffer(eb);
645 out:
646         return ret;
647 }
648
649 static int btree_io_failed_hook(struct page *page, int failed_mirror)
650 {
651         struct extent_buffer *eb;
652         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
653
654         eb = (struct extent_buffer *)page->private;
655         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
656         eb->read_mirror = failed_mirror;
657         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
658                 btree_readahead_hook(root, eb, eb->start, -EIO);
659         return -EIO;    /* we fixed nothing */
660 }
661
662 static void end_workqueue_bio(struct bio *bio, int err)
663 {
664         struct end_io_wq *end_io_wq = bio->bi_private;
665         struct btrfs_fs_info *fs_info;
666
667         fs_info = end_io_wq->info;
668         end_io_wq->error = err;
669         end_io_wq->work.func = end_workqueue_fn;
670         end_io_wq->work.flags = 0;
671
672         if (bio->bi_rw & REQ_WRITE) {
673                 if (end_io_wq->metadata == 1)
674                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
675                                            &end_io_wq->work);
676                 else if (end_io_wq->metadata == 2)
677                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
678                                            &end_io_wq->work);
679                 else
680                         btrfs_queue_worker(&fs_info->endio_write_workers,
681                                            &end_io_wq->work);
682         } else {
683                 if (end_io_wq->metadata)
684                         btrfs_queue_worker(&fs_info->endio_meta_workers,
685                                            &end_io_wq->work);
686                 else
687                         btrfs_queue_worker(&fs_info->endio_workers,
688                                            &end_io_wq->work);
689         }
690 }
691
692 /*
693  * For the metadata arg you want
694  *
695  * 0 - if data
696  * 1 - if normal metadta
697  * 2 - if writing to the free space cache area
698  */
699 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
700                         int metadata)
701 {
702         struct end_io_wq *end_io_wq;
703         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
704         if (!end_io_wq)
705                 return -ENOMEM;
706
707         end_io_wq->private = bio->bi_private;
708         end_io_wq->end_io = bio->bi_end_io;
709         end_io_wq->info = info;
710         end_io_wq->error = 0;
711         end_io_wq->bio = bio;
712         end_io_wq->metadata = metadata;
713
714         bio->bi_private = end_io_wq;
715         bio->bi_end_io = end_workqueue_bio;
716         return 0;
717 }
718
719 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
720 {
721         unsigned long limit = min_t(unsigned long,
722                                     info->workers.max_workers,
723                                     info->fs_devices->open_devices);
724         return 256 * limit;
725 }
726
727 static void run_one_async_start(struct btrfs_work *work)
728 {
729         struct async_submit_bio *async;
730         int ret;
731
732         async = container_of(work, struct  async_submit_bio, work);
733         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
734                                       async->mirror_num, async->bio_flags,
735                                       async->bio_offset);
736         if (ret)
737                 async->error = ret;
738 }
739
740 static void run_one_async_done(struct btrfs_work *work)
741 {
742         struct btrfs_fs_info *fs_info;
743         struct async_submit_bio *async;
744         int limit;
745
746         async = container_of(work, struct  async_submit_bio, work);
747         fs_info = BTRFS_I(async->inode)->root->fs_info;
748
749         limit = btrfs_async_submit_limit(fs_info);
750         limit = limit * 2 / 3;
751
752         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
753             waitqueue_active(&fs_info->async_submit_wait))
754                 wake_up(&fs_info->async_submit_wait);
755
756         /* If an error occured we just want to clean up the bio and move on */
757         if (async->error) {
758                 bio_endio(async->bio, async->error);
759                 return;
760         }
761
762         async->submit_bio_done(async->inode, async->rw, async->bio,
763                                async->mirror_num, async->bio_flags,
764                                async->bio_offset);
765 }
766
767 static void run_one_async_free(struct btrfs_work *work)
768 {
769         struct async_submit_bio *async;
770
771         async = container_of(work, struct  async_submit_bio, work);
772         kfree(async);
773 }
774
775 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
776                         int rw, struct bio *bio, int mirror_num,
777                         unsigned long bio_flags,
778                         u64 bio_offset,
779                         extent_submit_bio_hook_t *submit_bio_start,
780                         extent_submit_bio_hook_t *submit_bio_done)
781 {
782         struct async_submit_bio *async;
783
784         async = kmalloc(sizeof(*async), GFP_NOFS);
785         if (!async)
786                 return -ENOMEM;
787
788         async->inode = inode;
789         async->rw = rw;
790         async->bio = bio;
791         async->mirror_num = mirror_num;
792         async->submit_bio_start = submit_bio_start;
793         async->submit_bio_done = submit_bio_done;
794
795         async->work.func = run_one_async_start;
796         async->work.ordered_func = run_one_async_done;
797         async->work.ordered_free = run_one_async_free;
798
799         async->work.flags = 0;
800         async->bio_flags = bio_flags;
801         async->bio_offset = bio_offset;
802
803         async->error = 0;
804
805         atomic_inc(&fs_info->nr_async_submits);
806
807         if (rw & REQ_SYNC)
808                 btrfs_set_work_high_prio(&async->work);
809
810         btrfs_queue_worker(&fs_info->workers, &async->work);
811
812         while (atomic_read(&fs_info->async_submit_draining) &&
813               atomic_read(&fs_info->nr_async_submits)) {
814                 wait_event(fs_info->async_submit_wait,
815                            (atomic_read(&fs_info->nr_async_submits) == 0));
816         }
817
818         return 0;
819 }
820
821 static int btree_csum_one_bio(struct bio *bio)
822 {
823         struct bio_vec *bvec = bio->bi_io_vec;
824         int bio_index = 0;
825         struct btrfs_root *root;
826         int ret = 0;
827
828         WARN_ON(bio->bi_vcnt <= 0);
829         while (bio_index < bio->bi_vcnt) {
830                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
831                 ret = csum_dirty_buffer(root, bvec->bv_page);
832                 if (ret)
833                         break;
834                 bio_index++;
835                 bvec++;
836         }
837         return ret;
838 }
839
840 static int __btree_submit_bio_start(struct inode *inode, int rw,
841                                     struct bio *bio, int mirror_num,
842                                     unsigned long bio_flags,
843                                     u64 bio_offset)
844 {
845         /*
846          * when we're called for a write, we're already in the async
847          * submission context.  Just jump into btrfs_map_bio
848          */
849         return btree_csum_one_bio(bio);
850 }
851
852 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
853                                  int mirror_num, unsigned long bio_flags,
854                                  u64 bio_offset)
855 {
856         int ret;
857
858         /*
859          * when we're called for a write, we're already in the async
860          * submission context.  Just jump into btrfs_map_bio
861          */
862         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
863         if (ret)
864                 bio_endio(bio, ret);
865         return ret;
866 }
867
868 static int check_async_write(struct inode *inode, unsigned long bio_flags)
869 {
870         if (bio_flags & EXTENT_BIO_TREE_LOG)
871                 return 0;
872 #ifdef CONFIG_X86
873         if (cpu_has_xmm4_2)
874                 return 0;
875 #endif
876         return 1;
877 }
878
879 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
880                                  int mirror_num, unsigned long bio_flags,
881                                  u64 bio_offset)
882 {
883         int async = check_async_write(inode, bio_flags);
884         int ret;
885
886         if (!(rw & REQ_WRITE)) {
887                 /*
888                  * called for a read, do the setup so that checksum validation
889                  * can happen in the async kernel threads
890                  */
891                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
892                                           bio, 1);
893                 if (ret)
894                         goto out_w_error;
895                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
896                                     mirror_num, 0);
897         } else if (!async) {
898                 ret = btree_csum_one_bio(bio);
899                 if (ret)
900                         goto out_w_error;
901                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
902                                     mirror_num, 0);
903         } else {
904                 /*
905                  * kthread helpers are used to submit writes so that
906                  * checksumming can happen in parallel across all CPUs
907                  */
908                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
909                                           inode, rw, bio, mirror_num, 0,
910                                           bio_offset,
911                                           __btree_submit_bio_start,
912                                           __btree_submit_bio_done);
913         }
914
915         if (ret) {
916 out_w_error:
917                 bio_endio(bio, ret);
918         }
919         return ret;
920 }
921
922 #ifdef CONFIG_MIGRATION
923 static int btree_migratepage(struct address_space *mapping,
924                         struct page *newpage, struct page *page,
925                         enum migrate_mode mode)
926 {
927         /*
928          * we can't safely write a btree page from here,
929          * we haven't done the locking hook
930          */
931         if (PageDirty(page))
932                 return -EAGAIN;
933         /*
934          * Buffers may be managed in a filesystem specific way.
935          * We must have no buffers or drop them.
936          */
937         if (page_has_private(page) &&
938             !try_to_release_page(page, GFP_KERNEL))
939                 return -EAGAIN;
940         return migrate_page(mapping, newpage, page, mode);
941 }
942 #endif
943
944
945 static int btree_writepages(struct address_space *mapping,
946                             struct writeback_control *wbc)
947 {
948         struct extent_io_tree *tree;
949         tree = &BTRFS_I(mapping->host)->io_tree;
950         if (wbc->sync_mode == WB_SYNC_NONE) {
951                 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
952                 u64 num_dirty;
953                 unsigned long thresh = 32 * 1024 * 1024;
954
955                 if (wbc->for_kupdate)
956                         return 0;
957
958                 /* this is a bit racy, but that's ok */
959                 num_dirty = root->fs_info->dirty_metadata_bytes;
960                 if (num_dirty < thresh)
961                         return 0;
962         }
963         return btree_write_cache_pages(mapping, wbc);
964 }
965
966 static int btree_readpage(struct file *file, struct page *page)
967 {
968         struct extent_io_tree *tree;
969         tree = &BTRFS_I(page->mapping->host)->io_tree;
970         return extent_read_full_page(tree, page, btree_get_extent, 0);
971 }
972
973 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
974 {
975         if (PageWriteback(page) || PageDirty(page))
976                 return 0;
977         /*
978          * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
979          * slab allocation from alloc_extent_state down the callchain where
980          * it'd hit a BUG_ON as those flags are not allowed.
981          */
982         gfp_flags &= ~GFP_SLAB_BUG_MASK;
983
984         return try_release_extent_buffer(page, gfp_flags);
985 }
986
987 static void btree_invalidatepage(struct page *page, unsigned long offset)
988 {
989         struct extent_io_tree *tree;
990         tree = &BTRFS_I(page->mapping->host)->io_tree;
991         extent_invalidatepage(tree, page, offset);
992         btree_releasepage(page, GFP_NOFS);
993         if (PagePrivate(page)) {
994                 printk(KERN_WARNING "btrfs warning page private not zero "
995                        "on page %llu\n", (unsigned long long)page_offset(page));
996                 ClearPagePrivate(page);
997                 set_page_private(page, 0);
998                 page_cache_release(page);
999         }
1000 }
1001
1002 static int btree_set_page_dirty(struct page *page)
1003 {
1004 #ifdef DEBUG
1005         struct extent_buffer *eb;
1006
1007         BUG_ON(!PagePrivate(page));
1008         eb = (struct extent_buffer *)page->private;
1009         BUG_ON(!eb);
1010         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1011         BUG_ON(!atomic_read(&eb->refs));
1012         btrfs_assert_tree_locked(eb);
1013 #endif
1014         return __set_page_dirty_nobuffers(page);
1015 }
1016
1017 static const struct address_space_operations btree_aops = {
1018         .readpage       = btree_readpage,
1019         .writepages     = btree_writepages,
1020         .releasepage    = btree_releasepage,
1021         .invalidatepage = btree_invalidatepage,
1022 #ifdef CONFIG_MIGRATION
1023         .migratepage    = btree_migratepage,
1024 #endif
1025         .set_page_dirty = btree_set_page_dirty,
1026 };
1027
1028 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1029                          u64 parent_transid)
1030 {
1031         struct extent_buffer *buf = NULL;
1032         struct inode *btree_inode = root->fs_info->btree_inode;
1033         int ret = 0;
1034
1035         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1036         if (!buf)
1037                 return 0;
1038         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1039                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1040         free_extent_buffer(buf);
1041         return ret;
1042 }
1043
1044 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1045                          int mirror_num, struct extent_buffer **eb)
1046 {
1047         struct extent_buffer *buf = NULL;
1048         struct inode *btree_inode = root->fs_info->btree_inode;
1049         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1050         int ret;
1051
1052         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1053         if (!buf)
1054                 return 0;
1055
1056         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1057
1058         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1059                                        btree_get_extent, mirror_num);
1060         if (ret) {
1061                 free_extent_buffer(buf);
1062                 return ret;
1063         }
1064
1065         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1066                 free_extent_buffer(buf);
1067                 return -EIO;
1068         } else if (extent_buffer_uptodate(buf)) {
1069                 *eb = buf;
1070         } else {
1071                 free_extent_buffer(buf);
1072         }
1073         return 0;
1074 }
1075
1076 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1077                                             u64 bytenr, u32 blocksize)
1078 {
1079         struct inode *btree_inode = root->fs_info->btree_inode;
1080         struct extent_buffer *eb;
1081         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1082                                 bytenr, blocksize);
1083         return eb;
1084 }
1085
1086 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1087                                                  u64 bytenr, u32 blocksize)
1088 {
1089         struct inode *btree_inode = root->fs_info->btree_inode;
1090         struct extent_buffer *eb;
1091
1092         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1093                                  bytenr, blocksize);
1094         return eb;
1095 }
1096
1097
1098 int btrfs_write_tree_block(struct extent_buffer *buf)
1099 {
1100         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1101                                         buf->start + buf->len - 1);
1102 }
1103
1104 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1105 {
1106         return filemap_fdatawait_range(buf->pages[0]->mapping,
1107                                        buf->start, buf->start + buf->len - 1);
1108 }
1109
1110 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1111                                       u32 blocksize, u64 parent_transid)
1112 {
1113         struct extent_buffer *buf = NULL;
1114         int ret;
1115
1116         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1117         if (!buf)
1118                 return NULL;
1119
1120         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1121         return buf;
1122
1123 }
1124
1125 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1126                       struct extent_buffer *buf)
1127 {
1128         if (btrfs_header_generation(buf) ==
1129             root->fs_info->running_transaction->transid) {
1130                 btrfs_assert_tree_locked(buf);
1131
1132                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1133                         spin_lock(&root->fs_info->delalloc_lock);
1134                         if (root->fs_info->dirty_metadata_bytes >= buf->len)
1135                                 root->fs_info->dirty_metadata_bytes -= buf->len;
1136                         else {
1137                                 spin_unlock(&root->fs_info->delalloc_lock);
1138                                 btrfs_panic(root->fs_info, -EOVERFLOW,
1139                                           "Can't clear %lu bytes from "
1140                                           " dirty_mdatadata_bytes (%llu)",
1141                                           buf->len,
1142                                           root->fs_info->dirty_metadata_bytes);
1143                         }
1144                         spin_unlock(&root->fs_info->delalloc_lock);
1145
1146                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1147                         btrfs_set_lock_blocking(buf);
1148                         clear_extent_buffer_dirty(buf);
1149                 }
1150         }
1151 }
1152
1153 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1154                          u32 stripesize, struct btrfs_root *root,
1155                          struct btrfs_fs_info *fs_info,
1156                          u64 objectid)
1157 {
1158         root->node = NULL;
1159         root->commit_root = NULL;
1160         root->sectorsize = sectorsize;
1161         root->nodesize = nodesize;
1162         root->leafsize = leafsize;
1163         root->stripesize = stripesize;
1164         root->ref_cows = 0;
1165         root->track_dirty = 0;
1166         root->in_radix = 0;
1167         root->orphan_item_inserted = 0;
1168         root->orphan_cleanup_state = 0;
1169
1170         root->objectid = objectid;
1171         root->last_trans = 0;
1172         root->highest_objectid = 0;
1173         root->name = NULL;
1174         root->inode_tree = RB_ROOT;
1175         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1176         root->block_rsv = NULL;
1177         root->orphan_block_rsv = NULL;
1178
1179         INIT_LIST_HEAD(&root->dirty_list);
1180         INIT_LIST_HEAD(&root->root_list);
1181         INIT_LIST_HEAD(&root->logged_list[0]);
1182         INIT_LIST_HEAD(&root->logged_list[1]);
1183         spin_lock_init(&root->orphan_lock);
1184         spin_lock_init(&root->inode_lock);
1185         spin_lock_init(&root->accounting_lock);
1186         spin_lock_init(&root->log_extents_lock[0]);
1187         spin_lock_init(&root->log_extents_lock[1]);
1188         mutex_init(&root->objectid_mutex);
1189         mutex_init(&root->log_mutex);
1190         init_waitqueue_head(&root->log_writer_wait);
1191         init_waitqueue_head(&root->log_commit_wait[0]);
1192         init_waitqueue_head(&root->log_commit_wait[1]);
1193         atomic_set(&root->log_commit[0], 0);
1194         atomic_set(&root->log_commit[1], 0);
1195         atomic_set(&root->log_writers, 0);
1196         atomic_set(&root->log_batch, 0);
1197         atomic_set(&root->orphan_inodes, 0);
1198         root->log_transid = 0;
1199         root->last_log_commit = 0;
1200         extent_io_tree_init(&root->dirty_log_pages,
1201                              fs_info->btree_inode->i_mapping);
1202
1203         memset(&root->root_key, 0, sizeof(root->root_key));
1204         memset(&root->root_item, 0, sizeof(root->root_item));
1205         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1206         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1207         root->defrag_trans_start = fs_info->generation;
1208         init_completion(&root->kobj_unregister);
1209         root->defrag_running = 0;
1210         root->root_key.objectid = objectid;
1211         root->anon_dev = 0;
1212
1213         spin_lock_init(&root->root_item_lock);
1214 }
1215
1216 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1217                                             struct btrfs_fs_info *fs_info,
1218                                             u64 objectid,
1219                                             struct btrfs_root *root)
1220 {
1221         int ret;
1222         u32 blocksize;
1223         u64 generation;
1224
1225         __setup_root(tree_root->nodesize, tree_root->leafsize,
1226                      tree_root->sectorsize, tree_root->stripesize,
1227                      root, fs_info, objectid);
1228         ret = btrfs_find_last_root(tree_root, objectid,
1229                                    &root->root_item, &root->root_key);
1230         if (ret > 0)
1231                 return -ENOENT;
1232         else if (ret < 0)
1233                 return ret;
1234
1235         generation = btrfs_root_generation(&root->root_item);
1236         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1237         root->commit_root = NULL;
1238         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1239                                      blocksize, generation);
1240         if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1241                 free_extent_buffer(root->node);
1242                 root->node = NULL;
1243                 return -EIO;
1244         }
1245         root->commit_root = btrfs_root_node(root);
1246         return 0;
1247 }
1248
1249 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1250 {
1251         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1252         if (root)
1253                 root->fs_info = fs_info;
1254         return root;
1255 }
1256
1257 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1258                                      struct btrfs_fs_info *fs_info,
1259                                      u64 objectid)
1260 {
1261         struct extent_buffer *leaf;
1262         struct btrfs_root *tree_root = fs_info->tree_root;
1263         struct btrfs_root *root;
1264         struct btrfs_key key;
1265         int ret = 0;
1266         u64 bytenr;
1267
1268         root = btrfs_alloc_root(fs_info);
1269         if (!root)
1270                 return ERR_PTR(-ENOMEM);
1271
1272         __setup_root(tree_root->nodesize, tree_root->leafsize,
1273                      tree_root->sectorsize, tree_root->stripesize,
1274                      root, fs_info, objectid);
1275         root->root_key.objectid = objectid;
1276         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1277         root->root_key.offset = 0;
1278
1279         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1280                                       0, objectid, NULL, 0, 0, 0);
1281         if (IS_ERR(leaf)) {
1282                 ret = PTR_ERR(leaf);
1283                 goto fail;
1284         }
1285
1286         bytenr = leaf->start;
1287         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1288         btrfs_set_header_bytenr(leaf, leaf->start);
1289         btrfs_set_header_generation(leaf, trans->transid);
1290         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1291         btrfs_set_header_owner(leaf, objectid);
1292         root->node = leaf;
1293
1294         write_extent_buffer(leaf, fs_info->fsid,
1295                             (unsigned long)btrfs_header_fsid(leaf),
1296                             BTRFS_FSID_SIZE);
1297         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1298                             (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1299                             BTRFS_UUID_SIZE);
1300         btrfs_mark_buffer_dirty(leaf);
1301
1302         root->commit_root = btrfs_root_node(root);
1303         root->track_dirty = 1;
1304
1305
1306         root->root_item.flags = 0;
1307         root->root_item.byte_limit = 0;
1308         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1309         btrfs_set_root_generation(&root->root_item, trans->transid);
1310         btrfs_set_root_level(&root->root_item, 0);
1311         btrfs_set_root_refs(&root->root_item, 1);
1312         btrfs_set_root_used(&root->root_item, leaf->len);
1313         btrfs_set_root_last_snapshot(&root->root_item, 0);
1314         btrfs_set_root_dirid(&root->root_item, 0);
1315         root->root_item.drop_level = 0;
1316
1317         key.objectid = objectid;
1318         key.type = BTRFS_ROOT_ITEM_KEY;
1319         key.offset = 0;
1320         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1321         if (ret)
1322                 goto fail;
1323
1324         btrfs_tree_unlock(leaf);
1325
1326 fail:
1327         if (ret)
1328                 return ERR_PTR(ret);
1329
1330         return root;
1331 }
1332
1333 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1334                                          struct btrfs_fs_info *fs_info)
1335 {
1336         struct btrfs_root *root;
1337         struct btrfs_root *tree_root = fs_info->tree_root;
1338         struct extent_buffer *leaf;
1339
1340         root = btrfs_alloc_root(fs_info);
1341         if (!root)
1342                 return ERR_PTR(-ENOMEM);
1343
1344         __setup_root(tree_root->nodesize, tree_root->leafsize,
1345                      tree_root->sectorsize, tree_root->stripesize,
1346                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1347
1348         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1349         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1350         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1351         /*
1352          * log trees do not get reference counted because they go away
1353          * before a real commit is actually done.  They do store pointers
1354          * to file data extents, and those reference counts still get
1355          * updated (along with back refs to the log tree).
1356          */
1357         root->ref_cows = 0;
1358
1359         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1360                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1361                                       0, 0, 0);
1362         if (IS_ERR(leaf)) {
1363                 kfree(root);
1364                 return ERR_CAST(leaf);
1365         }
1366
1367         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1368         btrfs_set_header_bytenr(leaf, leaf->start);
1369         btrfs_set_header_generation(leaf, trans->transid);
1370         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1371         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1372         root->node = leaf;
1373
1374         write_extent_buffer(root->node, root->fs_info->fsid,
1375                             (unsigned long)btrfs_header_fsid(root->node),
1376                             BTRFS_FSID_SIZE);
1377         btrfs_mark_buffer_dirty(root->node);
1378         btrfs_tree_unlock(root->node);
1379         return root;
1380 }
1381
1382 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1383                              struct btrfs_fs_info *fs_info)
1384 {
1385         struct btrfs_root *log_root;
1386
1387         log_root = alloc_log_tree(trans, fs_info);
1388         if (IS_ERR(log_root))
1389                 return PTR_ERR(log_root);
1390         WARN_ON(fs_info->log_root_tree);
1391         fs_info->log_root_tree = log_root;
1392         return 0;
1393 }
1394
1395 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1396                        struct btrfs_root *root)
1397 {
1398         struct btrfs_root *log_root;
1399         struct btrfs_inode_item *inode_item;
1400
1401         log_root = alloc_log_tree(trans, root->fs_info);
1402         if (IS_ERR(log_root))
1403                 return PTR_ERR(log_root);
1404
1405         log_root->last_trans = trans->transid;
1406         log_root->root_key.offset = root->root_key.objectid;
1407
1408         inode_item = &log_root->root_item.inode;
1409         inode_item->generation = cpu_to_le64(1);
1410         inode_item->size = cpu_to_le64(3);
1411         inode_item->nlink = cpu_to_le32(1);
1412         inode_item->nbytes = cpu_to_le64(root->leafsize);
1413         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1414
1415         btrfs_set_root_node(&log_root->root_item, log_root->node);
1416
1417         WARN_ON(root->log_root);
1418         root->log_root = log_root;
1419         root->log_transid = 0;
1420         root->last_log_commit = 0;
1421         return 0;
1422 }
1423
1424 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1425                                                struct btrfs_key *location)
1426 {
1427         struct btrfs_root *root;
1428         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1429         struct btrfs_path *path;
1430         struct extent_buffer *l;
1431         u64 generation;
1432         u32 blocksize;
1433         int ret = 0;
1434         int slot;
1435
1436         root = btrfs_alloc_root(fs_info);
1437         if (!root)
1438                 return ERR_PTR(-ENOMEM);
1439         if (location->offset == (u64)-1) {
1440                 ret = find_and_setup_root(tree_root, fs_info,
1441                                           location->objectid, root);
1442                 if (ret) {
1443                         kfree(root);
1444                         return ERR_PTR(ret);
1445                 }
1446                 goto out;
1447         }
1448
1449         __setup_root(tree_root->nodesize, tree_root->leafsize,
1450                      tree_root->sectorsize, tree_root->stripesize,
1451                      root, fs_info, location->objectid);
1452
1453         path = btrfs_alloc_path();
1454         if (!path) {
1455                 kfree(root);
1456                 return ERR_PTR(-ENOMEM);
1457         }
1458         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1459         if (ret == 0) {
1460                 l = path->nodes[0];
1461                 slot = path->slots[0];
1462                 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1463                 memcpy(&root->root_key, location, sizeof(*location));
1464         }
1465         btrfs_free_path(path);
1466         if (ret) {
1467                 kfree(root);
1468                 if (ret > 0)
1469                         ret = -ENOENT;
1470                 return ERR_PTR(ret);
1471         }
1472
1473         generation = btrfs_root_generation(&root->root_item);
1474         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1475         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1476                                      blocksize, generation);
1477         root->commit_root = btrfs_root_node(root);
1478         BUG_ON(!root->node); /* -ENOMEM */
1479 out:
1480         if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1481                 root->ref_cows = 1;
1482                 btrfs_check_and_init_root_item(&root->root_item);
1483         }
1484
1485         return root;
1486 }
1487
1488 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1489                                               struct btrfs_key *location)
1490 {
1491         struct btrfs_root *root;
1492         int ret;
1493
1494         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1495                 return fs_info->tree_root;
1496         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1497                 return fs_info->extent_root;
1498         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1499                 return fs_info->chunk_root;
1500         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1501                 return fs_info->dev_root;
1502         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1503                 return fs_info->csum_root;
1504         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1505                 return fs_info->quota_root ? fs_info->quota_root :
1506                                              ERR_PTR(-ENOENT);
1507 again:
1508         spin_lock(&fs_info->fs_roots_radix_lock);
1509         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1510                                  (unsigned long)location->objectid);
1511         spin_unlock(&fs_info->fs_roots_radix_lock);
1512         if (root)
1513                 return root;
1514
1515         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1516         if (IS_ERR(root))
1517                 return root;
1518
1519         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1520         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1521                                         GFP_NOFS);
1522         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1523                 ret = -ENOMEM;
1524                 goto fail;
1525         }
1526
1527         btrfs_init_free_ino_ctl(root);
1528         mutex_init(&root->fs_commit_mutex);
1529         spin_lock_init(&root->cache_lock);
1530         init_waitqueue_head(&root->cache_wait);
1531
1532         ret = get_anon_bdev(&root->anon_dev);
1533         if (ret)
1534                 goto fail;
1535
1536         if (btrfs_root_refs(&root->root_item) == 0) {
1537                 ret = -ENOENT;
1538                 goto fail;
1539         }
1540
1541         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1542         if (ret < 0)
1543                 goto fail;
1544         if (ret == 0)
1545                 root->orphan_item_inserted = 1;
1546
1547         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1548         if (ret)
1549                 goto fail;
1550
1551         spin_lock(&fs_info->fs_roots_radix_lock);
1552         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1553                                 (unsigned long)root->root_key.objectid,
1554                                 root);
1555         if (ret == 0)
1556                 root->in_radix = 1;
1557
1558         spin_unlock(&fs_info->fs_roots_radix_lock);
1559         radix_tree_preload_end();
1560         if (ret) {
1561                 if (ret == -EEXIST) {
1562                         free_fs_root(root);
1563                         goto again;
1564                 }
1565                 goto fail;
1566         }
1567
1568         ret = btrfs_find_dead_roots(fs_info->tree_root,
1569                                     root->root_key.objectid);
1570         WARN_ON(ret);
1571         return root;
1572 fail:
1573         free_fs_root(root);
1574         return ERR_PTR(ret);
1575 }
1576
1577 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1578 {
1579         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1580         int ret = 0;
1581         struct btrfs_device *device;
1582         struct backing_dev_info *bdi;
1583
1584         rcu_read_lock();
1585         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1586                 if (!device->bdev)
1587                         continue;
1588                 bdi = blk_get_backing_dev_info(device->bdev);
1589                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1590                         ret = 1;
1591                         break;
1592                 }
1593         }
1594         rcu_read_unlock();
1595         return ret;
1596 }
1597
1598 /*
1599  * If this fails, caller must call bdi_destroy() to get rid of the
1600  * bdi again.
1601  */
1602 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1603 {
1604         int err;
1605
1606         bdi->capabilities = BDI_CAP_MAP_COPY;
1607         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1608         if (err)
1609                 return err;
1610
1611         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1612         bdi->congested_fn       = btrfs_congested_fn;
1613         bdi->congested_data     = info;
1614         return 0;
1615 }
1616
1617 /*
1618  * called by the kthread helper functions to finally call the bio end_io
1619  * functions.  This is where read checksum verification actually happens
1620  */
1621 static void end_workqueue_fn(struct btrfs_work *work)
1622 {
1623         struct bio *bio;
1624         struct end_io_wq *end_io_wq;
1625         struct btrfs_fs_info *fs_info;
1626         int error;
1627
1628         end_io_wq = container_of(work, struct end_io_wq, work);
1629         bio = end_io_wq->bio;
1630         fs_info = end_io_wq->info;
1631
1632         error = end_io_wq->error;
1633         bio->bi_private = end_io_wq->private;
1634         bio->bi_end_io = end_io_wq->end_io;
1635         kfree(end_io_wq);
1636         bio_endio(bio, error);
1637 }
1638
1639 static int cleaner_kthread(void *arg)
1640 {
1641         struct btrfs_root *root = arg;
1642
1643         do {
1644                 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1645                     mutex_trylock(&root->fs_info->cleaner_mutex)) {
1646                         btrfs_run_delayed_iputs(root);
1647                         btrfs_clean_old_snapshots(root);
1648                         mutex_unlock(&root->fs_info->cleaner_mutex);
1649                         btrfs_run_defrag_inodes(root->fs_info);
1650                 }
1651
1652                 if (!try_to_freeze()) {
1653                         set_current_state(TASK_INTERRUPTIBLE);
1654                         if (!kthread_should_stop())
1655                                 schedule();
1656                         __set_current_state(TASK_RUNNING);
1657                 }
1658         } while (!kthread_should_stop());
1659         return 0;
1660 }
1661
1662 static int transaction_kthread(void *arg)
1663 {
1664         struct btrfs_root *root = arg;
1665         struct btrfs_trans_handle *trans;
1666         struct btrfs_transaction *cur;
1667         u64 transid;
1668         unsigned long now;
1669         unsigned long delay;
1670         bool cannot_commit;
1671
1672         do {
1673                 cannot_commit = false;
1674                 delay = HZ * 30;
1675                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1676
1677                 spin_lock(&root->fs_info->trans_lock);
1678                 cur = root->fs_info->running_transaction;
1679                 if (!cur) {
1680                         spin_unlock(&root->fs_info->trans_lock);
1681                         goto sleep;
1682                 }
1683
1684                 now = get_seconds();
1685                 if (!cur->blocked &&
1686                     (now < cur->start_time || now - cur->start_time < 30)) {
1687                         spin_unlock(&root->fs_info->trans_lock);
1688                         delay = HZ * 5;
1689                         goto sleep;
1690                 }
1691                 transid = cur->transid;
1692                 spin_unlock(&root->fs_info->trans_lock);
1693
1694                 /* If the file system is aborted, this will always fail. */
1695                 trans = btrfs_attach_transaction(root);
1696                 if (IS_ERR(trans)) {
1697                         if (PTR_ERR(trans) != -ENOENT)
1698                                 cannot_commit = true;
1699                         goto sleep;
1700                 }
1701                 if (transid == trans->transid) {
1702                         btrfs_commit_transaction(trans, root);
1703                 } else {
1704                         btrfs_end_transaction(trans, root);
1705                 }
1706 sleep:
1707                 wake_up_process(root->fs_info->cleaner_kthread);
1708                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1709
1710                 if (!try_to_freeze()) {
1711                         set_current_state(TASK_INTERRUPTIBLE);
1712                         if (!kthread_should_stop() &&
1713                             (!btrfs_transaction_blocked(root->fs_info) ||
1714                              cannot_commit))
1715                                 schedule_timeout(delay);
1716                         __set_current_state(TASK_RUNNING);
1717                 }
1718         } while (!kthread_should_stop());
1719         return 0;
1720 }
1721
1722 /*
1723  * this will find the highest generation in the array of
1724  * root backups.  The index of the highest array is returned,
1725  * or -1 if we can't find anything.
1726  *
1727  * We check to make sure the array is valid by comparing the
1728  * generation of the latest  root in the array with the generation
1729  * in the super block.  If they don't match we pitch it.
1730  */
1731 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1732 {
1733         u64 cur;
1734         int newest_index = -1;
1735         struct btrfs_root_backup *root_backup;
1736         int i;
1737
1738         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1739                 root_backup = info->super_copy->super_roots + i;
1740                 cur = btrfs_backup_tree_root_gen(root_backup);
1741                 if (cur == newest_gen)
1742                         newest_index = i;
1743         }
1744
1745         /* check to see if we actually wrapped around */
1746         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1747                 root_backup = info->super_copy->super_roots;
1748                 cur = btrfs_backup_tree_root_gen(root_backup);
1749                 if (cur == newest_gen)
1750                         newest_index = 0;
1751         }
1752         return newest_index;
1753 }
1754
1755
1756 /*
1757  * find the oldest backup so we know where to store new entries
1758  * in the backup array.  This will set the backup_root_index
1759  * field in the fs_info struct
1760  */
1761 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1762                                      u64 newest_gen)
1763 {
1764         int newest_index = -1;
1765
1766         newest_index = find_newest_super_backup(info, newest_gen);
1767         /* if there was garbage in there, just move along */
1768         if (newest_index == -1) {
1769                 info->backup_root_index = 0;
1770         } else {
1771                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1772         }
1773 }
1774
1775 /*
1776  * copy all the root pointers into the super backup array.
1777  * this will bump the backup pointer by one when it is
1778  * done
1779  */
1780 static void backup_super_roots(struct btrfs_fs_info *info)
1781 {
1782         int next_backup;
1783         struct btrfs_root_backup *root_backup;
1784         int last_backup;
1785
1786         next_backup = info->backup_root_index;
1787         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1788                 BTRFS_NUM_BACKUP_ROOTS;
1789
1790         /*
1791          * just overwrite the last backup if we're at the same generation
1792          * this happens only at umount
1793          */
1794         root_backup = info->super_for_commit->super_roots + last_backup;
1795         if (btrfs_backup_tree_root_gen(root_backup) ==
1796             btrfs_header_generation(info->tree_root->node))
1797                 next_backup = last_backup;
1798
1799         root_backup = info->super_for_commit->super_roots + next_backup;
1800
1801         /*
1802          * make sure all of our padding and empty slots get zero filled
1803          * regardless of which ones we use today
1804          */
1805         memset(root_backup, 0, sizeof(*root_backup));
1806
1807         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1808
1809         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1810         btrfs_set_backup_tree_root_gen(root_backup,
1811                                btrfs_header_generation(info->tree_root->node));
1812
1813         btrfs_set_backup_tree_root_level(root_backup,
1814                                btrfs_header_level(info->tree_root->node));
1815
1816         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1817         btrfs_set_backup_chunk_root_gen(root_backup,
1818                                btrfs_header_generation(info->chunk_root->node));
1819         btrfs_set_backup_chunk_root_level(root_backup,
1820                                btrfs_header_level(info->chunk_root->node));
1821
1822         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1823         btrfs_set_backup_extent_root_gen(root_backup,
1824                                btrfs_header_generation(info->extent_root->node));
1825         btrfs_set_backup_extent_root_level(root_backup,
1826                                btrfs_header_level(info->extent_root->node));
1827
1828         /*
1829          * we might commit during log recovery, which happens before we set
1830          * the fs_root.  Make sure it is valid before we fill it in.
1831          */
1832         if (info->fs_root && info->fs_root->node) {
1833                 btrfs_set_backup_fs_root(root_backup,
1834                                          info->fs_root->node->start);
1835                 btrfs_set_backup_fs_root_gen(root_backup,
1836                                btrfs_header_generation(info->fs_root->node));
1837                 btrfs_set_backup_fs_root_level(root_backup,
1838                                btrfs_header_level(info->fs_root->node));
1839         }
1840
1841         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1842         btrfs_set_backup_dev_root_gen(root_backup,
1843                                btrfs_header_generation(info->dev_root->node));
1844         btrfs_set_backup_dev_root_level(root_backup,
1845                                        btrfs_header_level(info->dev_root->node));
1846
1847         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1848         btrfs_set_backup_csum_root_gen(root_backup,
1849                                btrfs_header_generation(info->csum_root->node));
1850         btrfs_set_backup_csum_root_level(root_backup,
1851                                btrfs_header_level(info->csum_root->node));
1852
1853         btrfs_set_backup_total_bytes(root_backup,
1854                              btrfs_super_total_bytes(info->super_copy));
1855         btrfs_set_backup_bytes_used(root_backup,
1856                              btrfs_super_bytes_used(info->super_copy));
1857         btrfs_set_backup_num_devices(root_backup,
1858                              btrfs_super_num_devices(info->super_copy));
1859
1860         /*
1861          * if we don't copy this out to the super_copy, it won't get remembered
1862          * for the next commit
1863          */
1864         memcpy(&info->super_copy->super_roots,
1865                &info->super_for_commit->super_roots,
1866                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1867 }
1868
1869 /*
1870  * this copies info out of the root backup array and back into
1871  * the in-memory super block.  It is meant to help iterate through
1872  * the array, so you send it the number of backups you've already
1873  * tried and the last backup index you used.
1874  *
1875  * this returns -1 when it has tried all the backups
1876  */
1877 static noinline int next_root_backup(struct btrfs_fs_info *info,
1878                                      struct btrfs_super_block *super,
1879                                      int *num_backups_tried, int *backup_index)
1880 {
1881         struct btrfs_root_backup *root_backup;
1882         int newest = *backup_index;
1883
1884         if (*num_backups_tried == 0) {
1885                 u64 gen = btrfs_super_generation(super);
1886
1887                 newest = find_newest_super_backup(info, gen);
1888                 if (newest == -1)
1889                         return -1;
1890
1891                 *backup_index = newest;
1892                 *num_backups_tried = 1;
1893         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1894                 /* we've tried all the backups, all done */
1895                 return -1;
1896         } else {
1897                 /* jump to the next oldest backup */
1898                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1899                         BTRFS_NUM_BACKUP_ROOTS;
1900                 *backup_index = newest;
1901                 *num_backups_tried += 1;
1902         }
1903         root_backup = super->super_roots + newest;
1904
1905         btrfs_set_super_generation(super,
1906                                    btrfs_backup_tree_root_gen(root_backup));
1907         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1908         btrfs_set_super_root_level(super,
1909                                    btrfs_backup_tree_root_level(root_backup));
1910         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1911
1912         /*
1913          * fixme: the total bytes and num_devices need to match or we should
1914          * need a fsck
1915          */
1916         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1917         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1918         return 0;
1919 }
1920
1921 /* helper to cleanup tree roots */
1922 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1923 {
1924         free_extent_buffer(info->tree_root->node);
1925         free_extent_buffer(info->tree_root->commit_root);
1926         free_extent_buffer(info->dev_root->node);
1927         free_extent_buffer(info->dev_root->commit_root);
1928         free_extent_buffer(info->extent_root->node);
1929         free_extent_buffer(info->extent_root->commit_root);
1930         free_extent_buffer(info->csum_root->node);
1931         free_extent_buffer(info->csum_root->commit_root);
1932         if (info->quota_root) {
1933                 free_extent_buffer(info->quota_root->node);
1934                 free_extent_buffer(info->quota_root->commit_root);
1935         }
1936
1937         info->tree_root->node = NULL;
1938         info->tree_root->commit_root = NULL;
1939         info->dev_root->node = NULL;
1940         info->dev_root->commit_root = NULL;
1941         info->extent_root->node = NULL;
1942         info->extent_root->commit_root = NULL;
1943         info->csum_root->node = NULL;
1944         info->csum_root->commit_root = NULL;
1945         if (info->quota_root) {
1946                 info->quota_root->node = NULL;
1947                 info->quota_root->commit_root = NULL;
1948         }
1949
1950         if (chunk_root) {
1951                 free_extent_buffer(info->chunk_root->node);
1952                 free_extent_buffer(info->chunk_root->commit_root);
1953                 info->chunk_root->node = NULL;
1954                 info->chunk_root->commit_root = NULL;
1955         }
1956 }
1957
1958
1959 int open_ctree(struct super_block *sb,
1960                struct btrfs_fs_devices *fs_devices,
1961                char *options)
1962 {
1963         u32 sectorsize;
1964         u32 nodesize;
1965         u32 leafsize;
1966         u32 blocksize;
1967         u32 stripesize;
1968         u64 generation;
1969         u64 features;
1970         struct btrfs_key location;
1971         struct buffer_head *bh;
1972         struct btrfs_super_block *disk_super;
1973         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1974         struct btrfs_root *tree_root;
1975         struct btrfs_root *extent_root;
1976         struct btrfs_root *csum_root;
1977         struct btrfs_root *chunk_root;
1978         struct btrfs_root *dev_root;
1979         struct btrfs_root *quota_root;
1980         struct btrfs_root *log_tree_root;
1981         int ret;
1982         int err = -EINVAL;
1983         int num_backups_tried = 0;
1984         int backup_index = 0;
1985
1986         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1987         extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1988         csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1989         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1990         dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1991         quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
1992
1993         if (!tree_root || !extent_root || !csum_root ||
1994             !chunk_root || !dev_root || !quota_root) {
1995                 err = -ENOMEM;
1996                 goto fail;
1997         }
1998
1999         ret = init_srcu_struct(&fs_info->subvol_srcu);
2000         if (ret) {
2001                 err = ret;
2002                 goto fail;
2003         }
2004
2005         ret = setup_bdi(fs_info, &fs_info->bdi);
2006         if (ret) {
2007                 err = ret;
2008                 goto fail_srcu;
2009         }
2010
2011         fs_info->btree_inode = new_inode(sb);
2012         if (!fs_info->btree_inode) {
2013                 err = -ENOMEM;
2014                 goto fail_bdi;
2015         }
2016
2017         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2018
2019         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2020         INIT_LIST_HEAD(&fs_info->trans_list);
2021         INIT_LIST_HEAD(&fs_info->dead_roots);
2022         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2023         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2024         INIT_LIST_HEAD(&fs_info->ordered_operations);
2025         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2026         spin_lock_init(&fs_info->delalloc_lock);
2027         spin_lock_init(&fs_info->trans_lock);
2028         spin_lock_init(&fs_info->fs_roots_radix_lock);
2029         spin_lock_init(&fs_info->delayed_iput_lock);
2030         spin_lock_init(&fs_info->defrag_inodes_lock);
2031         spin_lock_init(&fs_info->free_chunk_lock);
2032         spin_lock_init(&fs_info->tree_mod_seq_lock);
2033         rwlock_init(&fs_info->tree_mod_log_lock);
2034         mutex_init(&fs_info->reloc_mutex);
2035
2036         init_completion(&fs_info->kobj_unregister);
2037         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2038         INIT_LIST_HEAD(&fs_info->space_info);
2039         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2040         btrfs_mapping_init(&fs_info->mapping_tree);
2041         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2042                              BTRFS_BLOCK_RSV_GLOBAL);
2043         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2044                              BTRFS_BLOCK_RSV_DELALLOC);
2045         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2046         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2047         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2048         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2049                              BTRFS_BLOCK_RSV_DELOPS);
2050         atomic_set(&fs_info->nr_async_submits, 0);
2051         atomic_set(&fs_info->async_delalloc_pages, 0);
2052         atomic_set(&fs_info->async_submit_draining, 0);
2053         atomic_set(&fs_info->nr_async_bios, 0);
2054         atomic_set(&fs_info->defrag_running, 0);
2055         atomic_set(&fs_info->tree_mod_seq, 0);
2056         fs_info->sb = sb;
2057         fs_info->max_inline = 8192 * 1024;
2058         fs_info->metadata_ratio = 0;
2059         fs_info->defrag_inodes = RB_ROOT;
2060         fs_info->trans_no_join = 0;
2061         fs_info->free_chunk_space = 0;
2062         fs_info->tree_mod_log = RB_ROOT;
2063
2064         /* readahead state */
2065         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2066         spin_lock_init(&fs_info->reada_lock);
2067
2068         fs_info->thread_pool_size = min_t(unsigned long,
2069                                           num_online_cpus() + 2, 8);
2070
2071         INIT_LIST_HEAD(&fs_info->ordered_extents);
2072         spin_lock_init(&fs_info->ordered_extent_lock);
2073         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2074                                         GFP_NOFS);
2075         if (!fs_info->delayed_root) {
2076                 err = -ENOMEM;
2077                 goto fail_iput;
2078         }
2079         btrfs_init_delayed_root(fs_info->delayed_root);
2080
2081         mutex_init(&fs_info->scrub_lock);
2082         atomic_set(&fs_info->scrubs_running, 0);
2083         atomic_set(&fs_info->scrub_pause_req, 0);
2084         atomic_set(&fs_info->scrubs_paused, 0);
2085         atomic_set(&fs_info->scrub_cancel_req, 0);
2086         init_waitqueue_head(&fs_info->scrub_pause_wait);
2087         init_rwsem(&fs_info->scrub_super_lock);
2088         fs_info->scrub_workers_refcnt = 0;
2089 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2090         fs_info->check_integrity_print_mask = 0;
2091 #endif
2092
2093         spin_lock_init(&fs_info->balance_lock);
2094         mutex_init(&fs_info->balance_mutex);
2095         atomic_set(&fs_info->balance_running, 0);
2096         atomic_set(&fs_info->balance_pause_req, 0);
2097         atomic_set(&fs_info->balance_cancel_req, 0);
2098         fs_info->balance_ctl = NULL;
2099         init_waitqueue_head(&fs_info->balance_wait_q);
2100
2101         sb->s_blocksize = 4096;
2102         sb->s_blocksize_bits = blksize_bits(4096);
2103         sb->s_bdi = &fs_info->bdi;
2104
2105         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2106         set_nlink(fs_info->btree_inode, 1);
2107         /*
2108          * we set the i_size on the btree inode to the max possible int.
2109          * the real end of the address space is determined by all of
2110          * the devices in the system
2111          */
2112         fs_info->btree_inode->i_size = OFFSET_MAX;
2113         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2114         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2115
2116         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2117         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2118                              fs_info->btree_inode->i_mapping);
2119         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2120         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2121
2122         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2123
2124         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2125         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2126                sizeof(struct btrfs_key));
2127         set_bit(BTRFS_INODE_DUMMY,
2128                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2129         insert_inode_hash(fs_info->btree_inode);
2130
2131         spin_lock_init(&fs_info->block_group_cache_lock);
2132         fs_info->block_group_cache_tree = RB_ROOT;
2133         fs_info->first_logical_byte = (u64)-1;
2134
2135         extent_io_tree_init(&fs_info->freed_extents[0],
2136                              fs_info->btree_inode->i_mapping);
2137         extent_io_tree_init(&fs_info->freed_extents[1],
2138                              fs_info->btree_inode->i_mapping);
2139         fs_info->pinned_extents = &fs_info->freed_extents[0];
2140         fs_info->do_barriers = 1;
2141
2142
2143         mutex_init(&fs_info->ordered_operations_mutex);
2144         mutex_init(&fs_info->tree_log_mutex);
2145         mutex_init(&fs_info->chunk_mutex);
2146         mutex_init(&fs_info->transaction_kthread_mutex);
2147         mutex_init(&fs_info->cleaner_mutex);
2148         mutex_init(&fs_info->volume_mutex);
2149         init_rwsem(&fs_info->extent_commit_sem);
2150         init_rwsem(&fs_info->cleanup_work_sem);
2151         init_rwsem(&fs_info->subvol_sem);
2152         fs_info->dev_replace.lock_owner = 0;
2153         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2154         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2155         mutex_init(&fs_info->dev_replace.lock_management_lock);
2156         mutex_init(&fs_info->dev_replace.lock);
2157
2158         spin_lock_init(&fs_info->qgroup_lock);
2159         fs_info->qgroup_tree = RB_ROOT;
2160         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2161         fs_info->qgroup_seq = 1;
2162         fs_info->quota_enabled = 0;
2163         fs_info->pending_quota_state = 0;
2164
2165         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2166         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2167
2168         init_waitqueue_head(&fs_info->transaction_throttle);
2169         init_waitqueue_head(&fs_info->transaction_wait);
2170         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2171         init_waitqueue_head(&fs_info->async_submit_wait);
2172
2173         __setup_root(4096, 4096, 4096, 4096, tree_root,
2174                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2175
2176         invalidate_bdev(fs_devices->latest_bdev);
2177         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2178         if (!bh) {
2179                 err = -EINVAL;
2180                 goto fail_alloc;
2181         }
2182
2183         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2184         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2185                sizeof(*fs_info->super_for_commit));
2186         brelse(bh);
2187
2188         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2189
2190         disk_super = fs_info->super_copy;
2191         if (!btrfs_super_root(disk_super))
2192                 goto fail_alloc;
2193
2194         /* check FS state, whether FS is broken. */
2195         fs_info->fs_state |= btrfs_super_flags(disk_super);
2196
2197         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2198         if (ret) {
2199                 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2200                 err = ret;
2201                 goto fail_alloc;
2202         }
2203
2204         /*
2205          * run through our array of backup supers and setup
2206          * our ring pointer to the oldest one
2207          */
2208         generation = btrfs_super_generation(disk_super);
2209         find_oldest_super_backup(fs_info, generation);
2210
2211         /*
2212          * In the long term, we'll store the compression type in the super
2213          * block, and it'll be used for per file compression control.
2214          */
2215         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2216
2217         ret = btrfs_parse_options(tree_root, options);
2218         if (ret) {
2219                 err = ret;
2220                 goto fail_alloc;
2221         }
2222
2223         features = btrfs_super_incompat_flags(disk_super) &
2224                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2225         if (features) {
2226                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2227                        "unsupported optional features (%Lx).\n",
2228                        (unsigned long long)features);
2229                 err = -EINVAL;
2230                 goto fail_alloc;
2231         }
2232
2233         if (btrfs_super_leafsize(disk_super) !=
2234             btrfs_super_nodesize(disk_super)) {
2235                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2236                        "blocksizes don't match.  node %d leaf %d\n",
2237                        btrfs_super_nodesize(disk_super),
2238                        btrfs_super_leafsize(disk_super));
2239                 err = -EINVAL;
2240                 goto fail_alloc;
2241         }
2242         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2243                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2244                        "blocksize (%d) was too large\n",
2245                        btrfs_super_leafsize(disk_super));
2246                 err = -EINVAL;
2247                 goto fail_alloc;
2248         }
2249
2250         features = btrfs_super_incompat_flags(disk_super);
2251         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2252         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2253                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2254
2255         /*
2256          * flag our filesystem as having big metadata blocks if
2257          * they are bigger than the page size
2258          */
2259         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2260                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2261                         printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2262                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2263         }
2264
2265         nodesize = btrfs_super_nodesize(disk_super);
2266         leafsize = btrfs_super_leafsize(disk_super);
2267         sectorsize = btrfs_super_sectorsize(disk_super);
2268         stripesize = btrfs_super_stripesize(disk_super);
2269
2270         /*
2271          * mixed block groups end up with duplicate but slightly offset
2272          * extent buffers for the same range.  It leads to corruptions
2273          */
2274         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2275             (sectorsize != leafsize)) {
2276                 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2277                                 "are not allowed for mixed block groups on %s\n",
2278                                 sb->s_id);
2279                 goto fail_alloc;
2280         }
2281
2282         btrfs_set_super_incompat_flags(disk_super, features);
2283
2284         features = btrfs_super_compat_ro_flags(disk_super) &
2285                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2286         if (!(sb->s_flags & MS_RDONLY) && features) {
2287                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2288                        "unsupported option features (%Lx).\n",
2289                        (unsigned long long)features);
2290                 err = -EINVAL;
2291                 goto fail_alloc;
2292         }
2293
2294         btrfs_init_workers(&fs_info->generic_worker,
2295                            "genwork", 1, NULL);
2296
2297         btrfs_init_workers(&fs_info->workers, "worker",
2298                            fs_info->thread_pool_size,
2299                            &fs_info->generic_worker);
2300
2301         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2302                            fs_info->thread_pool_size,
2303                            &fs_info->generic_worker);
2304
2305         btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2306                            fs_info->thread_pool_size,
2307                            &fs_info->generic_worker);
2308
2309         btrfs_init_workers(&fs_info->submit_workers, "submit",
2310                            min_t(u64, fs_devices->num_devices,
2311                            fs_info->thread_pool_size),
2312                            &fs_info->generic_worker);
2313
2314         btrfs_init_workers(&fs_info->caching_workers, "cache",
2315                            2, &fs_info->generic_worker);
2316
2317         /* a higher idle thresh on the submit workers makes it much more
2318          * likely that bios will be send down in a sane order to the
2319          * devices
2320          */
2321         fs_info->submit_workers.idle_thresh = 64;
2322
2323         fs_info->workers.idle_thresh = 16;
2324         fs_info->workers.ordered = 1;
2325
2326         fs_info->delalloc_workers.idle_thresh = 2;
2327         fs_info->delalloc_workers.ordered = 1;
2328
2329         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2330                            &fs_info->generic_worker);
2331         btrfs_init_workers(&fs_info->endio_workers, "endio",
2332                            fs_info->thread_pool_size,
2333                            &fs_info->generic_worker);
2334         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2335                            fs_info->thread_pool_size,
2336                            &fs_info->generic_worker);
2337         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2338                            "endio-meta-write", fs_info->thread_pool_size,
2339                            &fs_info->generic_worker);
2340         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2341                            fs_info->thread_pool_size,
2342                            &fs_info->generic_worker);
2343         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2344                            1, &fs_info->generic_worker);
2345         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2346                            fs_info->thread_pool_size,
2347                            &fs_info->generic_worker);
2348         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2349                            fs_info->thread_pool_size,
2350                            &fs_info->generic_worker);
2351
2352         /*
2353          * endios are largely parallel and should have a very
2354          * low idle thresh
2355          */
2356         fs_info->endio_workers.idle_thresh = 4;
2357         fs_info->endio_meta_workers.idle_thresh = 4;
2358
2359         fs_info->endio_write_workers.idle_thresh = 2;
2360         fs_info->endio_meta_write_workers.idle_thresh = 2;
2361         fs_info->readahead_workers.idle_thresh = 2;
2362
2363         /*
2364          * btrfs_start_workers can really only fail because of ENOMEM so just
2365          * return -ENOMEM if any of these fail.
2366          */
2367         ret = btrfs_start_workers(&fs_info->workers);
2368         ret |= btrfs_start_workers(&fs_info->generic_worker);
2369         ret |= btrfs_start_workers(&fs_info->submit_workers);
2370         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2371         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2372         ret |= btrfs_start_workers(&fs_info->endio_workers);
2373         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2374         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2375         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2376         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2377         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2378         ret |= btrfs_start_workers(&fs_info->caching_workers);
2379         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2380         ret |= btrfs_start_workers(&fs_info->flush_workers);
2381         if (ret) {
2382                 err = -ENOMEM;
2383                 goto fail_sb_buffer;
2384         }
2385
2386         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2387         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2388                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2389
2390         tree_root->nodesize = nodesize;
2391         tree_root->leafsize = leafsize;
2392         tree_root->sectorsize = sectorsize;
2393         tree_root->stripesize = stripesize;
2394
2395         sb->s_blocksize = sectorsize;
2396         sb->s_blocksize_bits = blksize_bits(sectorsize);
2397
2398         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2399                     sizeof(disk_super->magic))) {
2400                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2401                 goto fail_sb_buffer;
2402         }
2403
2404         if (sectorsize != PAGE_SIZE) {
2405                 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2406                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2407                 goto fail_sb_buffer;
2408         }
2409
2410         mutex_lock(&fs_info->chunk_mutex);
2411         ret = btrfs_read_sys_array(tree_root);
2412         mutex_unlock(&fs_info->chunk_mutex);
2413         if (ret) {
2414                 printk(KERN_WARNING "btrfs: failed to read the system "
2415                        "array on %s\n", sb->s_id);
2416                 goto fail_sb_buffer;
2417         }
2418
2419         blocksize = btrfs_level_size(tree_root,
2420                                      btrfs_super_chunk_root_level(disk_super));
2421         generation = btrfs_super_chunk_root_generation(disk_super);
2422
2423         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2424                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2425
2426         chunk_root->node = read_tree_block(chunk_root,
2427                                            btrfs_super_chunk_root(disk_super),
2428                                            blocksize, generation);
2429         BUG_ON(!chunk_root->node); /* -ENOMEM */
2430         if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2431                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2432                        sb->s_id);
2433                 goto fail_tree_roots;
2434         }
2435         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2436         chunk_root->commit_root = btrfs_root_node(chunk_root);
2437
2438         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2439            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2440            BTRFS_UUID_SIZE);
2441
2442         ret = btrfs_read_chunk_tree(chunk_root);
2443         if (ret) {
2444                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2445                        sb->s_id);
2446                 goto fail_tree_roots;
2447         }
2448
2449         /*
2450          * keep the device that is marked to be the target device for the
2451          * dev_replace procedure
2452          */
2453         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2454
2455         if (!fs_devices->latest_bdev) {
2456                 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2457                        sb->s_id);
2458                 goto fail_tree_roots;
2459         }
2460
2461 retry_root_backup:
2462         blocksize = btrfs_level_size(tree_root,
2463                                      btrfs_super_root_level(disk_super));
2464         generation = btrfs_super_generation(disk_super);
2465
2466         tree_root->node = read_tree_block(tree_root,
2467                                           btrfs_super_root(disk_super),
2468                                           blocksize, generation);
2469         if (!tree_root->node ||
2470             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2471                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2472                        sb->s_id);
2473
2474                 goto recovery_tree_root;
2475         }
2476
2477         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2478         tree_root->commit_root = btrfs_root_node(tree_root);
2479
2480         ret = find_and_setup_root(tree_root, fs_info,
2481                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2482         if (ret)
2483                 goto recovery_tree_root;
2484         extent_root->track_dirty = 1;
2485
2486         ret = find_and_setup_root(tree_root, fs_info,
2487                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
2488         if (ret)
2489                 goto recovery_tree_root;
2490         dev_root->track_dirty = 1;
2491
2492         ret = find_and_setup_root(tree_root, fs_info,
2493                                   BTRFS_CSUM_TREE_OBJECTID, csum_root);
2494         if (ret)
2495                 goto recovery_tree_root;
2496         csum_root->track_dirty = 1;
2497
2498         ret = find_and_setup_root(tree_root, fs_info,
2499                                   BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2500         if (ret) {
2501                 kfree(quota_root);
2502                 quota_root = fs_info->quota_root = NULL;
2503         } else {
2504                 quota_root->track_dirty = 1;
2505                 fs_info->quota_enabled = 1;
2506                 fs_info->pending_quota_state = 1;
2507         }
2508
2509         fs_info->generation = generation;
2510         fs_info->last_trans_committed = generation;
2511
2512         ret = btrfs_recover_balance(fs_info);
2513         if (ret) {
2514                 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2515                 goto fail_block_groups;
2516         }
2517
2518         ret = btrfs_init_dev_stats(fs_info);
2519         if (ret) {
2520                 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2521                        ret);
2522                 goto fail_block_groups;
2523         }
2524
2525         ret = btrfs_init_dev_replace(fs_info);
2526         if (ret) {
2527                 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2528                 goto fail_block_groups;
2529         }
2530
2531         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2532
2533         ret = btrfs_init_space_info(fs_info);
2534         if (ret) {
2535                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2536                 goto fail_block_groups;
2537         }
2538
2539         ret = btrfs_read_block_groups(extent_root);
2540         if (ret) {
2541                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2542                 goto fail_block_groups;
2543         }
2544         fs_info->num_tolerated_disk_barrier_failures =
2545                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2546         if (fs_info->fs_devices->missing_devices >
2547              fs_info->num_tolerated_disk_barrier_failures &&
2548             !(sb->s_flags & MS_RDONLY)) {
2549                 printk(KERN_WARNING
2550                        "Btrfs: too many missing devices, writeable mount is not allowed\n");
2551                 goto fail_block_groups;
2552         }
2553
2554         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2555                                                "btrfs-cleaner");
2556         if (IS_ERR(fs_info->cleaner_kthread))
2557                 goto fail_block_groups;
2558
2559         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2560                                                    tree_root,
2561                                                    "btrfs-transaction");
2562         if (IS_ERR(fs_info->transaction_kthread))
2563                 goto fail_cleaner;
2564
2565         if (!btrfs_test_opt(tree_root, SSD) &&
2566             !btrfs_test_opt(tree_root, NOSSD) &&
2567             !fs_info->fs_devices->rotating) {
2568                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2569                        "mode\n");
2570                 btrfs_set_opt(fs_info->mount_opt, SSD);
2571         }
2572
2573 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2574         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2575                 ret = btrfsic_mount(tree_root, fs_devices,
2576                                     btrfs_test_opt(tree_root,
2577                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2578                                     1 : 0,
2579                                     fs_info->check_integrity_print_mask);
2580                 if (ret)
2581                         printk(KERN_WARNING "btrfs: failed to initialize"
2582                                " integrity check module %s\n", sb->s_id);
2583         }
2584 #endif
2585         ret = btrfs_read_qgroup_config(fs_info);
2586         if (ret)
2587                 goto fail_trans_kthread;
2588
2589         /* do not make disk changes in broken FS */
2590         if (btrfs_super_log_root(disk_super) != 0) {
2591                 u64 bytenr = btrfs_super_log_root(disk_super);
2592
2593                 if (fs_devices->rw_devices == 0) {
2594                         printk(KERN_WARNING "Btrfs log replay required "
2595                                "on RO media\n");
2596                         err = -EIO;
2597                         goto fail_qgroup;
2598                 }
2599                 blocksize =
2600                      btrfs_level_size(tree_root,
2601                                       btrfs_super_log_root_level(disk_super));
2602
2603                 log_tree_root = btrfs_alloc_root(fs_info);
2604                 if (!log_tree_root) {
2605                         err = -ENOMEM;
2606                         goto fail_qgroup;
2607                 }
2608
2609                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2610                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2611
2612                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2613                                                       blocksize,
2614                                                       generation + 1);
2615                 /* returns with log_tree_root freed on success */
2616                 ret = btrfs_recover_log_trees(log_tree_root);
2617                 if (ret) {
2618                         btrfs_error(tree_root->fs_info, ret,
2619                                     "Failed to recover log tree");
2620                         free_extent_buffer(log_tree_root->node);
2621                         kfree(log_tree_root);
2622                         goto fail_trans_kthread;
2623                 }
2624
2625                 if (sb->s_flags & MS_RDONLY) {
2626                         ret = btrfs_commit_super(tree_root);
2627                         if (ret)
2628                                 goto fail_trans_kthread;
2629                 }
2630         }
2631
2632         ret = btrfs_find_orphan_roots(tree_root);
2633         if (ret)
2634                 goto fail_trans_kthread;
2635
2636         if (!(sb->s_flags & MS_RDONLY)) {
2637                 ret = btrfs_cleanup_fs_roots(fs_info);
2638                 if (ret)
2639                         goto fail_trans_kthread;
2640
2641                 ret = btrfs_recover_relocation(tree_root);
2642                 if (ret < 0) {
2643                         printk(KERN_WARNING
2644                                "btrfs: failed to recover relocation\n");
2645                         err = -EINVAL;
2646                         goto fail_qgroup;
2647                 }
2648         }
2649
2650         location.objectid = BTRFS_FS_TREE_OBJECTID;
2651         location.type = BTRFS_ROOT_ITEM_KEY;
2652         location.offset = (u64)-1;
2653
2654         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2655         if (!fs_info->fs_root)
2656                 goto fail_qgroup;
2657         if (IS_ERR(fs_info->fs_root)) {
2658                 err = PTR_ERR(fs_info->fs_root);
2659                 goto fail_qgroup;
2660         }
2661
2662         if (sb->s_flags & MS_RDONLY)
2663                 return 0;
2664
2665         down_read(&fs_info->cleanup_work_sem);
2666         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2667             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2668                 up_read(&fs_info->cleanup_work_sem);
2669                 close_ctree(tree_root);
2670                 return ret;
2671         }
2672         up_read(&fs_info->cleanup_work_sem);
2673
2674         ret = btrfs_resume_balance_async(fs_info);
2675         if (ret) {
2676                 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2677                 close_ctree(tree_root);
2678                 return ret;
2679         }
2680
2681         ret = btrfs_resume_dev_replace_async(fs_info);
2682         if (ret) {
2683                 pr_warn("btrfs: failed to resume dev_replace\n");
2684                 close_ctree(tree_root);
2685                 return ret;
2686         }
2687
2688         return 0;
2689
2690 fail_qgroup:
2691         btrfs_free_qgroup_config(fs_info);
2692 fail_trans_kthread:
2693         kthread_stop(fs_info->transaction_kthread);
2694 fail_cleaner:
2695         kthread_stop(fs_info->cleaner_kthread);
2696
2697         /*
2698          * make sure we're done with the btree inode before we stop our
2699          * kthreads
2700          */
2701         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2702         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2703
2704 fail_block_groups:
2705         btrfs_free_block_groups(fs_info);
2706
2707 fail_tree_roots:
2708         free_root_pointers(fs_info, 1);
2709
2710 fail_sb_buffer:
2711         btrfs_stop_workers(&fs_info->generic_worker);
2712         btrfs_stop_workers(&fs_info->readahead_workers);
2713         btrfs_stop_workers(&fs_info->fixup_workers);
2714         btrfs_stop_workers(&fs_info->delalloc_workers);
2715         btrfs_stop_workers(&fs_info->workers);
2716         btrfs_stop_workers(&fs_info->endio_workers);
2717         btrfs_stop_workers(&fs_info->endio_meta_workers);
2718         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2719         btrfs_stop_workers(&fs_info->endio_write_workers);
2720         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2721         btrfs_stop_workers(&fs_info->submit_workers);
2722         btrfs_stop_workers(&fs_info->delayed_workers);
2723         btrfs_stop_workers(&fs_info->caching_workers);
2724         btrfs_stop_workers(&fs_info->flush_workers);
2725 fail_alloc:
2726 fail_iput:
2727         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2728
2729         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2730         iput(fs_info->btree_inode);
2731 fail_bdi:
2732         bdi_destroy(&fs_info->bdi);
2733 fail_srcu:
2734         cleanup_srcu_struct(&fs_info->subvol_srcu);
2735 fail:
2736         btrfs_close_devices(fs_info->fs_devices);
2737         return err;
2738
2739 recovery_tree_root:
2740         if (!btrfs_test_opt(tree_root, RECOVERY))
2741                 goto fail_tree_roots;
2742
2743         free_root_pointers(fs_info, 0);
2744
2745         /* don't use the log in recovery mode, it won't be valid */
2746         btrfs_set_super_log_root(disk_super, 0);
2747
2748         /* we can't trust the free space cache either */
2749         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2750
2751         ret = next_root_backup(fs_info, fs_info->super_copy,
2752                                &num_backups_tried, &backup_index);
2753         if (ret == -1)
2754                 goto fail_block_groups;
2755         goto retry_root_backup;
2756 }
2757
2758 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2759 {
2760         if (uptodate) {
2761                 set_buffer_uptodate(bh);
2762         } else {
2763                 struct btrfs_device *device = (struct btrfs_device *)
2764                         bh->b_private;
2765
2766                 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2767                                           "I/O error on %s\n",
2768                                           rcu_str_deref(device->name));
2769                 /* note, we dont' set_buffer_write_io_error because we have
2770                  * our own ways of dealing with the IO errors
2771                  */
2772                 clear_buffer_uptodate(bh);
2773                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2774         }
2775         unlock_buffer(bh);
2776         put_bh(bh);
2777 }
2778
2779 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2780 {
2781         struct buffer_head *bh;
2782         struct buffer_head *latest = NULL;
2783         struct btrfs_super_block *super;
2784         int i;
2785         u64 transid = 0;
2786         u64 bytenr;
2787
2788         /* we would like to check all the supers, but that would make
2789          * a btrfs mount succeed after a mkfs from a different FS.
2790          * So, we need to add a special mount option to scan for
2791          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2792          */
2793         for (i = 0; i < 1; i++) {
2794                 bytenr = btrfs_sb_offset(i);
2795                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2796                         break;
2797                 bh = __bread(bdev, bytenr / 4096, 4096);
2798                 if (!bh)
2799                         continue;
2800
2801                 super = (struct btrfs_super_block *)bh->b_data;
2802                 if (btrfs_super_bytenr(super) != bytenr ||
2803                     strncmp((char *)(&super->magic), BTRFS_MAGIC,
2804                             sizeof(super->magic))) {
2805                         brelse(bh);
2806                         continue;
2807                 }
2808
2809                 if (!latest || btrfs_super_generation(super) > transid) {
2810                         brelse(latest);
2811                         latest = bh;
2812                         transid = btrfs_super_generation(super);
2813                 } else {
2814                         brelse(bh);
2815                 }
2816         }
2817         return latest;
2818 }
2819
2820 /*
2821  * this should be called twice, once with wait == 0 and
2822  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2823  * we write are pinned.
2824  *
2825  * They are released when wait == 1 is done.
2826  * max_mirrors must be the same for both runs, and it indicates how
2827  * many supers on this one device should be written.
2828  *
2829  * max_mirrors == 0 means to write them all.
2830  */
2831 static int write_dev_supers(struct btrfs_device *device,
2832                             struct btrfs_super_block *sb,
2833                             int do_barriers, int wait, int max_mirrors)
2834 {
2835         struct buffer_head *bh;
2836         int i;
2837         int ret;
2838         int errors = 0;
2839         u32 crc;
2840         u64 bytenr;
2841
2842         if (max_mirrors == 0)
2843                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2844
2845         for (i = 0; i < max_mirrors; i++) {
2846                 bytenr = btrfs_sb_offset(i);
2847                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2848                         break;
2849
2850                 if (wait) {
2851                         bh = __find_get_block(device->bdev, bytenr / 4096,
2852                                               BTRFS_SUPER_INFO_SIZE);
2853                         BUG_ON(!bh);
2854                         wait_on_buffer(bh);
2855                         if (!buffer_uptodate(bh))
2856                                 errors++;
2857
2858                         /* drop our reference */
2859                         brelse(bh);
2860
2861                         /* drop the reference from the wait == 0 run */
2862                         brelse(bh);
2863                         continue;
2864                 } else {
2865                         btrfs_set_super_bytenr(sb, bytenr);
2866
2867                         crc = ~(u32)0;
2868                         crc = btrfs_csum_data(NULL, (char *)sb +
2869                                               BTRFS_CSUM_SIZE, crc,
2870                                               BTRFS_SUPER_INFO_SIZE -
2871                                               BTRFS_CSUM_SIZE);
2872                         btrfs_csum_final(crc, sb->csum);
2873
2874                         /*
2875                          * one reference for us, and we leave it for the
2876                          * caller
2877                          */
2878                         bh = __getblk(device->bdev, bytenr / 4096,
2879                                       BTRFS_SUPER_INFO_SIZE);
2880                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2881
2882                         /* one reference for submit_bh */
2883                         get_bh(bh);
2884
2885                         set_buffer_uptodate(bh);
2886                         lock_buffer(bh);
2887                         bh->b_end_io = btrfs_end_buffer_write_sync;
2888                         bh->b_private = device;
2889                 }
2890
2891                 /*
2892                  * we fua the first super.  The others we allow
2893                  * to go down lazy.
2894                  */
2895                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2896                 if (ret)
2897                         errors++;
2898         }
2899         return errors < i ? 0 : -1;
2900 }
2901
2902 /*
2903  * endio for the write_dev_flush, this will wake anyone waiting
2904  * for the barrier when it is done
2905  */
2906 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2907 {
2908         if (err) {
2909                 if (err == -EOPNOTSUPP)
2910                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2911                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2912         }
2913         if (bio->bi_private)
2914                 complete(bio->bi_private);
2915         bio_put(bio);
2916 }
2917
2918 /*
2919  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2920  * sent down.  With wait == 1, it waits for the previous flush.
2921  *
2922  * any device where the flush fails with eopnotsupp are flagged as not-barrier
2923  * capable
2924  */
2925 static int write_dev_flush(struct btrfs_device *device, int wait)
2926 {
2927         struct bio *bio;
2928         int ret = 0;
2929
2930         if (device->nobarriers)
2931                 return 0;
2932
2933         if (wait) {
2934                 bio = device->flush_bio;
2935                 if (!bio)
2936                         return 0;
2937
2938                 wait_for_completion(&device->flush_wait);
2939
2940                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2941                         printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2942                                       rcu_str_deref(device->name));
2943                         device->nobarriers = 1;
2944                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
2945                         ret = -EIO;
2946                         btrfs_dev_stat_inc_and_print(device,
2947                                 BTRFS_DEV_STAT_FLUSH_ERRS);
2948                 }
2949
2950                 /* drop the reference from the wait == 0 run */
2951                 bio_put(bio);
2952                 device->flush_bio = NULL;
2953
2954                 return ret;
2955         }
2956
2957         /*
2958          * one reference for us, and we leave it for the
2959          * caller
2960          */
2961         device->flush_bio = NULL;
2962         bio = bio_alloc(GFP_NOFS, 0);
2963         if (!bio)
2964                 return -ENOMEM;
2965
2966         bio->bi_end_io = btrfs_end_empty_barrier;
2967         bio->bi_bdev = device->bdev;
2968         init_completion(&device->flush_wait);
2969         bio->bi_private = &device->flush_wait;
2970         device->flush_bio = bio;
2971
2972         bio_get(bio);
2973         btrfsic_submit_bio(WRITE_FLUSH, bio);
2974
2975         return 0;
2976 }
2977
2978 /*
2979  * send an empty flush down to each device in parallel,
2980  * then wait for them
2981  */
2982 static int barrier_all_devices(struct btrfs_fs_info *info)
2983 {
2984         struct list_head *head;
2985         struct btrfs_device *dev;
2986         int errors_send = 0;
2987         int errors_wait = 0;
2988         int ret;
2989
2990         /* send down all the barriers */
2991         head = &info->fs_devices->devices;
2992         list_for_each_entry_rcu(dev, head, dev_list) {
2993                 if (!dev->bdev) {
2994                         errors_send++;
2995                         continue;
2996                 }
2997                 if (!dev->in_fs_metadata || !dev->writeable)
2998                         continue;
2999
3000                 ret = write_dev_flush(dev, 0);
3001                 if (ret)
3002                         errors_send++;
3003         }
3004
3005         /* wait for all the barriers */
3006         list_for_each_entry_rcu(dev, head, dev_list) {
3007                 if (!dev->bdev) {
3008                         errors_wait++;
3009                         continue;
3010                 }
3011                 if (!dev->in_fs_metadata || !dev->writeable)
3012                         continue;
3013
3014                 ret = write_dev_flush(dev, 1);
3015                 if (ret)
3016                         errors_wait++;
3017         }
3018         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3019             errors_wait > info->num_tolerated_disk_barrier_failures)
3020                 return -EIO;
3021         return 0;
3022 }
3023
3024 int btrfs_calc_num_tolerated_disk_barrier_failures(
3025         struct btrfs_fs_info *fs_info)
3026 {
3027         struct btrfs_ioctl_space_info space;
3028         struct btrfs_space_info *sinfo;
3029         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3030                        BTRFS_BLOCK_GROUP_SYSTEM,
3031                        BTRFS_BLOCK_GROUP_METADATA,
3032                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3033         int num_types = 4;
3034         int i;
3035         int c;
3036         int num_tolerated_disk_barrier_failures =
3037                 (int)fs_info->fs_devices->num_devices;
3038
3039         for (i = 0; i < num_types; i++) {
3040                 struct btrfs_space_info *tmp;
3041
3042                 sinfo = NULL;
3043                 rcu_read_lock();
3044                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3045                         if (tmp->flags == types[i]) {
3046                                 sinfo = tmp;
3047                                 break;
3048                         }
3049                 }
3050                 rcu_read_unlock();
3051
3052                 if (!sinfo)
3053                         continue;
3054
3055                 down_read(&sinfo->groups_sem);
3056                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3057                         if (!list_empty(&sinfo->block_groups[c])) {
3058                                 u64 flags;
3059
3060                                 btrfs_get_block_group_info(
3061                                         &sinfo->block_groups[c], &space);
3062                                 if (space.total_bytes == 0 ||
3063                                     space.used_bytes == 0)
3064                                         continue;
3065                                 flags = space.flags;
3066                                 /*
3067                                  * return
3068                                  * 0: if dup, single or RAID0 is configured for
3069                                  *    any of metadata, system or data, else
3070                                  * 1: if RAID5 is configured, or if RAID1 or
3071                                  *    RAID10 is configured and only two mirrors
3072                                  *    are used, else
3073                                  * 2: if RAID6 is configured, else
3074                                  * num_mirrors - 1: if RAID1 or RAID10 is
3075                                  *                  configured and more than
3076                                  *                  2 mirrors are used.
3077                                  */
3078                                 if (num_tolerated_disk_barrier_failures > 0 &&
3079                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3080                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3081                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3082                                       == 0)))
3083                                         num_tolerated_disk_barrier_failures = 0;
3084                                 else if (num_tolerated_disk_barrier_failures > 1
3085                                          &&
3086                                          (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3087                                                    BTRFS_BLOCK_GROUP_RAID10)))
3088                                         num_tolerated_disk_barrier_failures = 1;
3089                         }
3090                 }
3091                 up_read(&sinfo->groups_sem);
3092         }
3093
3094         return num_tolerated_disk_barrier_failures;
3095 }
3096
3097 int write_all_supers(struct btrfs_root *root, int max_mirrors)
3098 {
3099         struct list_head *head;
3100         struct btrfs_device *dev;
3101         struct btrfs_super_block *sb;
3102         struct btrfs_dev_item *dev_item;
3103         int ret;
3104         int do_barriers;
3105         int max_errors;
3106         int total_errors = 0;
3107         u64 flags;
3108
3109         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3110         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3111         backup_super_roots(root->fs_info);
3112
3113         sb = root->fs_info->super_for_commit;
3114         dev_item = &sb->dev_item;
3115
3116         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3117         head = &root->fs_info->fs_devices->devices;
3118
3119         if (do_barriers) {
3120                 ret = barrier_all_devices(root->fs_info);
3121                 if (ret) {
3122                         mutex_unlock(
3123                                 &root->fs_info->fs_devices->device_list_mutex);
3124                         btrfs_error(root->fs_info, ret,
3125                                     "errors while submitting device barriers.");
3126                         return ret;
3127                 }
3128         }
3129
3130         list_for_each_entry_rcu(dev, head, dev_list) {
3131                 if (!dev->bdev) {
3132                         total_errors++;
3133                         continue;
3134                 }
3135                 if (!dev->in_fs_metadata || !dev->writeable)
3136                         continue;
3137
3138                 btrfs_set_stack_device_generation(dev_item, 0);
3139                 btrfs_set_stack_device_type(dev_item, dev->type);
3140                 btrfs_set_stack_device_id(dev_item, dev->devid);
3141                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3142                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3143                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3144                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3145                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3146                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3147                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3148
3149                 flags = btrfs_super_flags(sb);
3150                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3151
3152                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3153                 if (ret)
3154                         total_errors++;
3155         }
3156         if (total_errors > max_errors) {
3157                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3158                        total_errors);
3159
3160                 /* This shouldn't happen. FUA is masked off if unsupported */
3161                 BUG();
3162         }
3163
3164         total_errors = 0;
3165         list_for_each_entry_rcu(dev, head, dev_list) {
3166                 if (!dev->bdev)
3167                         continue;
3168                 if (!dev->in_fs_metadata || !dev->writeable)
3169                         continue;
3170
3171                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3172                 if (ret)
3173                         total_errors++;
3174         }
3175         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3176         if (total_errors > max_errors) {
3177                 btrfs_error(root->fs_info, -EIO,
3178                             "%d errors while writing supers", total_errors);
3179                 return -EIO;
3180         }
3181         return 0;
3182 }
3183
3184 int write_ctree_super(struct btrfs_trans_handle *trans,
3185                       struct btrfs_root *root, int max_mirrors)
3186 {
3187         int ret;
3188
3189         ret = write_all_supers(root, max_mirrors);
3190         return ret;
3191 }
3192
3193 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3194 {
3195         spin_lock(&fs_info->fs_roots_radix_lock);
3196         radix_tree_delete(&fs_info->fs_roots_radix,
3197                           (unsigned long)root->root_key.objectid);
3198         spin_unlock(&fs_info->fs_roots_radix_lock);
3199
3200         if (btrfs_root_refs(&root->root_item) == 0)
3201                 synchronize_srcu(&fs_info->subvol_srcu);
3202
3203         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3204         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3205         free_fs_root(root);
3206 }
3207
3208 static void free_fs_root(struct btrfs_root *root)
3209 {
3210         iput(root->cache_inode);
3211         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3212         if (root->anon_dev)
3213                 free_anon_bdev(root->anon_dev);
3214         free_extent_buffer(root->node);
3215         free_extent_buffer(root->commit_root);
3216         kfree(root->free_ino_ctl);
3217         kfree(root->free_ino_pinned);
3218         kfree(root->name);
3219         kfree(root);
3220 }
3221
3222 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3223 {
3224         int ret;
3225         struct btrfs_root *gang[8];
3226         int i;
3227
3228         while (!list_empty(&fs_info->dead_roots)) {
3229                 gang[0] = list_entry(fs_info->dead_roots.next,
3230                                      struct btrfs_root, root_list);
3231                 list_del(&gang[0]->root_list);
3232
3233                 if (gang[0]->in_radix) {
3234                         btrfs_free_fs_root(fs_info, gang[0]);
3235                 } else {
3236                         free_extent_buffer(gang[0]->node);
3237                         free_extent_buffer(gang[0]->commit_root);
3238                         kfree(gang[0]);
3239                 }
3240         }
3241
3242         while (1) {
3243                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3244                                              (void **)gang, 0,
3245                                              ARRAY_SIZE(gang));
3246                 if (!ret)
3247                         break;
3248                 for (i = 0; i < ret; i++)
3249                         btrfs_free_fs_root(fs_info, gang[i]);
3250         }
3251 }
3252
3253 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3254 {
3255         u64 root_objectid = 0;
3256         struct btrfs_root *gang[8];
3257         int i;
3258         int ret;
3259
3260         while (1) {
3261                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3262                                              (void **)gang, root_objectid,
3263                                              ARRAY_SIZE(gang));
3264                 if (!ret)
3265                         break;
3266
3267                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3268                 for (i = 0; i < ret; i++) {
3269                         int err;
3270
3271                         root_objectid = gang[i]->root_key.objectid;
3272                         err = btrfs_orphan_cleanup(gang[i]);
3273                         if (err)
3274                                 return err;
3275                 }
3276                 root_objectid++;
3277         }
3278         return 0;
3279 }
3280
3281 int btrfs_commit_super(struct btrfs_root *root)
3282 {
3283         struct btrfs_trans_handle *trans;
3284         int ret;
3285
3286         mutex_lock(&root->fs_info->cleaner_mutex);
3287         btrfs_run_delayed_iputs(root);
3288         btrfs_clean_old_snapshots(root);
3289         mutex_unlock(&root->fs_info->cleaner_mutex);
3290
3291         /* wait until ongoing cleanup work done */
3292         down_write(&root->fs_info->cleanup_work_sem);
3293         up_write(&root->fs_info->cleanup_work_sem);
3294
3295         trans = btrfs_join_transaction(root);
3296         if (IS_ERR(trans))
3297                 return PTR_ERR(trans);
3298         ret = btrfs_commit_transaction(trans, root);
3299         if (ret)
3300                 return ret;
3301         /* run commit again to drop the original snapshot */
3302         trans = btrfs_join_transaction(root);
3303         if (IS_ERR(trans))
3304                 return PTR_ERR(trans);
3305         ret = btrfs_commit_transaction(trans, root);
3306         if (ret)
3307                 return ret;
3308         ret = btrfs_write_and_wait_transaction(NULL, root);
3309         if (ret) {
3310                 btrfs_error(root->fs_info, ret,
3311                             "Failed to sync btree inode to disk.");
3312                 return ret;
3313         }
3314
3315         ret = write_ctree_super(NULL, root, 0);
3316         return ret;
3317 }
3318
3319 int close_ctree(struct btrfs_root *root)
3320 {
3321         struct btrfs_fs_info *fs_info = root->fs_info;
3322         int ret;
3323
3324         fs_info->closing = 1;
3325         smp_mb();
3326
3327         /* pause restriper - we want to resume on mount */
3328         btrfs_pause_balance(fs_info);
3329
3330         btrfs_dev_replace_suspend_for_unmount(fs_info);
3331
3332         btrfs_scrub_cancel(fs_info);
3333
3334         /* wait for any defraggers to finish */
3335         wait_event(fs_info->transaction_wait,
3336                    (atomic_read(&fs_info->defrag_running) == 0));
3337
3338         /* clear out the rbtree of defraggable inodes */
3339         btrfs_cleanup_defrag_inodes(fs_info);
3340
3341         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3342                 ret = btrfs_commit_super(root);
3343                 if (ret)
3344                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3345         }
3346
3347         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3348                 btrfs_error_commit_super(root);
3349
3350         btrfs_put_block_group_cache(fs_info);
3351
3352         kthread_stop(fs_info->transaction_kthread);
3353         kthread_stop(fs_info->cleaner_kthread);
3354
3355         fs_info->closing = 2;
3356         smp_mb();
3357
3358         btrfs_free_qgroup_config(root->fs_info);
3359
3360         if (fs_info->delalloc_bytes) {
3361                 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3362                        (unsigned long long)fs_info->delalloc_bytes);
3363         }
3364
3365         free_extent_buffer(fs_info->extent_root->node);
3366         free_extent_buffer(fs_info->extent_root->commit_root);
3367         free_extent_buffer(fs_info->tree_root->node);
3368         free_extent_buffer(fs_info->tree_root->commit_root);
3369         free_extent_buffer(fs_info->chunk_root->node);
3370         free_extent_buffer(fs_info->chunk_root->commit_root);
3371         free_extent_buffer(fs_info->dev_root->node);
3372         free_extent_buffer(fs_info->dev_root->commit_root);
3373         free_extent_buffer(fs_info->csum_root->node);
3374         free_extent_buffer(fs_info->csum_root->commit_root);
3375         if (fs_info->quota_root) {
3376                 free_extent_buffer(fs_info->quota_root->node);
3377                 free_extent_buffer(fs_info->quota_root->commit_root);
3378         }
3379
3380         btrfs_free_block_groups(fs_info);
3381
3382         del_fs_roots(fs_info);
3383
3384         iput(fs_info->btree_inode);
3385
3386         btrfs_stop_workers(&fs_info->generic_worker);
3387         btrfs_stop_workers(&fs_info->fixup_workers);
3388         btrfs_stop_workers(&fs_info->delalloc_workers);
3389         btrfs_stop_workers(&fs_info->workers);
3390         btrfs_stop_workers(&fs_info->endio_workers);
3391         btrfs_stop_workers(&fs_info->endio_meta_workers);
3392         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3393         btrfs_stop_workers(&fs_info->endio_write_workers);
3394         btrfs_stop_workers(&fs_info->endio_freespace_worker);
3395         btrfs_stop_workers(&fs_info->submit_workers);
3396         btrfs_stop_workers(&fs_info->delayed_workers);
3397         btrfs_stop_workers(&fs_info->caching_workers);
3398         btrfs_stop_workers(&fs_info->readahead_workers);
3399         btrfs_stop_workers(&fs_info->flush_workers);
3400
3401 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3402         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3403                 btrfsic_unmount(root, fs_info->fs_devices);
3404 #endif
3405
3406         btrfs_close_devices(fs_info->fs_devices);
3407         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3408
3409         bdi_destroy(&fs_info->bdi);
3410         cleanup_srcu_struct(&fs_info->subvol_srcu);
3411
3412         return 0;
3413 }
3414
3415 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3416                           int atomic)
3417 {
3418         int ret;
3419         struct inode *btree_inode = buf->pages[0]->mapping->host;
3420
3421         ret = extent_buffer_uptodate(buf);
3422         if (!ret)
3423                 return ret;
3424
3425         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3426                                     parent_transid, atomic);
3427         if (ret == -EAGAIN)
3428                 return ret;
3429         return !ret;
3430 }
3431
3432 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3433 {
3434         return set_extent_buffer_uptodate(buf);
3435 }
3436
3437 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3438 {
3439         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3440         u64 transid = btrfs_header_generation(buf);
3441         int was_dirty;
3442
3443         btrfs_assert_tree_locked(buf);
3444         if (transid != root->fs_info->generation)
3445                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3446                        "found %llu running %llu\n",
3447                         (unsigned long long)buf->start,
3448                         (unsigned long long)transid,
3449                         (unsigned long long)root->fs_info->generation);
3450         was_dirty = set_extent_buffer_dirty(buf);
3451         if (!was_dirty) {
3452                 spin_lock(&root->fs_info->delalloc_lock);
3453                 root->fs_info->dirty_metadata_bytes += buf->len;
3454                 spin_unlock(&root->fs_info->delalloc_lock);
3455         }
3456 }
3457
3458 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3459                                         int flush_delayed)
3460 {
3461         /*
3462          * looks as though older kernels can get into trouble with
3463          * this code, they end up stuck in balance_dirty_pages forever
3464          */
3465         u64 num_dirty;
3466         unsigned long thresh = 32 * 1024 * 1024;
3467
3468         if (current->flags & PF_MEMALLOC)
3469                 return;
3470
3471         if (flush_delayed)
3472                 btrfs_balance_delayed_items(root);
3473
3474         num_dirty = root->fs_info->dirty_metadata_bytes;
3475
3476         if (num_dirty > thresh) {
3477                 balance_dirty_pages_ratelimited_nr(
3478                                    root->fs_info->btree_inode->i_mapping, 1);
3479         }
3480         return;
3481 }
3482
3483 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3484 {
3485         __btrfs_btree_balance_dirty(root, 1);
3486 }
3487
3488 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3489 {
3490         __btrfs_btree_balance_dirty(root, 0);
3491 }
3492
3493 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3494 {
3495         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3496         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3497 }
3498
3499 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3500                               int read_only)
3501 {
3502         if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3503                 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3504                 return -EINVAL;
3505         }
3506
3507         if (read_only)
3508                 return 0;
3509
3510         return 0;
3511 }
3512
3513 void btrfs_error_commit_super(struct btrfs_root *root)
3514 {
3515         mutex_lock(&root->fs_info->cleaner_mutex);
3516         btrfs_run_delayed_iputs(root);
3517         mutex_unlock(&root->fs_info->cleaner_mutex);
3518
3519         down_write(&root->fs_info->cleanup_work_sem);
3520         up_write(&root->fs_info->cleanup_work_sem);
3521
3522         /* cleanup FS via transaction */
3523         btrfs_cleanup_transaction(root);
3524 }
3525
3526 static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3527 {
3528         struct btrfs_inode *btrfs_inode;
3529         struct list_head splice;
3530
3531         INIT_LIST_HEAD(&splice);
3532
3533         mutex_lock(&root->fs_info->ordered_operations_mutex);
3534         spin_lock(&root->fs_info->ordered_extent_lock);
3535
3536         list_splice_init(&root->fs_info->ordered_operations, &splice);
3537         while (!list_empty(&splice)) {
3538                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3539                                          ordered_operations);
3540
3541                 list_del_init(&btrfs_inode->ordered_operations);
3542
3543                 btrfs_invalidate_inodes(btrfs_inode->root);
3544         }
3545
3546         spin_unlock(&root->fs_info->ordered_extent_lock);
3547         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3548 }
3549
3550 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3551 {
3552         struct list_head splice;
3553         struct btrfs_ordered_extent *ordered;
3554         struct inode *inode;
3555
3556         INIT_LIST_HEAD(&splice);
3557
3558         spin_lock(&root->fs_info->ordered_extent_lock);
3559
3560         list_splice_init(&root->fs_info->ordered_extents, &splice);
3561         while (!list_empty(&splice)) {
3562                 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3563                                      root_extent_list);
3564
3565                 list_del_init(&ordered->root_extent_list);
3566                 atomic_inc(&ordered->refs);
3567
3568                 /* the inode may be getting freed (in sys_unlink path). */
3569                 inode = igrab(ordered->inode);
3570
3571                 spin_unlock(&root->fs_info->ordered_extent_lock);
3572                 if (inode)
3573                         iput(inode);
3574
3575                 atomic_set(&ordered->refs, 1);
3576                 btrfs_put_ordered_extent(ordered);
3577
3578                 spin_lock(&root->fs_info->ordered_extent_lock);
3579         }
3580
3581         spin_unlock(&root->fs_info->ordered_extent_lock);
3582 }
3583
3584 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3585                                struct btrfs_root *root)
3586 {
3587         struct rb_node *node;
3588         struct btrfs_delayed_ref_root *delayed_refs;
3589         struct btrfs_delayed_ref_node *ref;
3590         int ret = 0;
3591
3592         delayed_refs = &trans->delayed_refs;
3593
3594         spin_lock(&delayed_refs->lock);
3595         if (delayed_refs->num_entries == 0) {
3596                 spin_unlock(&delayed_refs->lock);
3597                 printk(KERN_INFO "delayed_refs has NO entry\n");
3598                 return ret;
3599         }
3600
3601         while ((node = rb_first(&delayed_refs->root)) != NULL) {
3602                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3603
3604                 atomic_set(&ref->refs, 1);
3605                 if (btrfs_delayed_ref_is_head(ref)) {
3606                         struct btrfs_delayed_ref_head *head;
3607
3608                         head = btrfs_delayed_node_to_head(ref);
3609                         if (!mutex_trylock(&head->mutex)) {
3610                                 atomic_inc(&ref->refs);
3611                                 spin_unlock(&delayed_refs->lock);
3612
3613                                 /* Need to wait for the delayed ref to run */
3614                                 mutex_lock(&head->mutex);
3615                                 mutex_unlock(&head->mutex);
3616                                 btrfs_put_delayed_ref(ref);
3617
3618                                 spin_lock(&delayed_refs->lock);
3619                                 continue;
3620                         }
3621
3622                         btrfs_free_delayed_extent_op(head->extent_op);
3623                         delayed_refs->num_heads--;
3624                         if (list_empty(&head->cluster))
3625                                 delayed_refs->num_heads_ready--;
3626                         list_del_init(&head->cluster);
3627                 }
3628                 ref->in_tree = 0;
3629                 rb_erase(&ref->rb_node, &delayed_refs->root);
3630                 delayed_refs->num_entries--;
3631
3632                 spin_unlock(&delayed_refs->lock);
3633                 btrfs_put_delayed_ref(ref);
3634
3635                 cond_resched();
3636                 spin_lock(&delayed_refs->lock);
3637         }
3638
3639         spin_unlock(&delayed_refs->lock);
3640
3641         return ret;
3642 }
3643
3644 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3645 {
3646         struct btrfs_pending_snapshot *snapshot;
3647         struct list_head splice;
3648
3649         INIT_LIST_HEAD(&splice);
3650
3651         list_splice_init(&t->pending_snapshots, &splice);
3652
3653         while (!list_empty(&splice)) {
3654                 snapshot = list_entry(splice.next,
3655                                       struct btrfs_pending_snapshot,
3656                                       list);
3657
3658                 list_del_init(&snapshot->list);
3659
3660                 kfree(snapshot);
3661         }
3662 }
3663
3664 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3665 {
3666         struct btrfs_inode *btrfs_inode;
3667         struct list_head splice;
3668
3669         INIT_LIST_HEAD(&splice);
3670
3671         spin_lock(&root->fs_info->delalloc_lock);
3672         list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3673
3674         while (!list_empty(&splice)) {
3675                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3676                                     delalloc_inodes);
3677
3678                 list_del_init(&btrfs_inode->delalloc_inodes);
3679
3680                 btrfs_invalidate_inodes(btrfs_inode->root);
3681         }
3682
3683         spin_unlock(&root->fs_info->delalloc_lock);
3684 }
3685
3686 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3687                                         struct extent_io_tree *dirty_pages,
3688                                         int mark)
3689 {
3690         int ret;
3691         struct page *page;
3692         struct inode *btree_inode = root->fs_info->btree_inode;
3693         struct extent_buffer *eb;
3694         u64 start = 0;
3695         u64 end;
3696         u64 offset;
3697         unsigned long index;
3698
3699         while (1) {
3700                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3701                                             mark, NULL);
3702                 if (ret)
3703                         break;
3704
3705                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3706                 while (start <= end) {
3707                         index = start >> PAGE_CACHE_SHIFT;
3708                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3709                         page = find_get_page(btree_inode->i_mapping, index);
3710                         if (!page)
3711                                 continue;
3712                         offset = page_offset(page);
3713
3714                         spin_lock(&dirty_pages->buffer_lock);
3715                         eb = radix_tree_lookup(
3716                              &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3717                                                offset >> PAGE_CACHE_SHIFT);
3718                         spin_unlock(&dirty_pages->buffer_lock);
3719                         if (eb)
3720                                 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3721                                                          &eb->bflags);
3722                         if (PageWriteback(page))
3723                                 end_page_writeback(page);
3724
3725                         lock_page(page);
3726                         if (PageDirty(page)) {
3727                                 clear_page_dirty_for_io(page);
3728                                 spin_lock_irq(&page->mapping->tree_lock);
3729                                 radix_tree_tag_clear(&page->mapping->page_tree,
3730                                                         page_index(page),
3731                                                         PAGECACHE_TAG_DIRTY);
3732                                 spin_unlock_irq(&page->mapping->tree_lock);
3733                         }
3734
3735                         unlock_page(page);
3736                         page_cache_release(page);
3737                 }
3738         }
3739
3740         return ret;
3741 }
3742
3743 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3744                                        struct extent_io_tree *pinned_extents)
3745 {
3746         struct extent_io_tree *unpin;
3747         u64 start;
3748         u64 end;
3749         int ret;
3750         bool loop = true;
3751
3752         unpin = pinned_extents;
3753 again:
3754         while (1) {
3755                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3756                                             EXTENT_DIRTY, NULL);
3757                 if (ret)
3758                         break;
3759
3760                 /* opt_discard */
3761                 if (btrfs_test_opt(root, DISCARD))
3762                         ret = btrfs_error_discard_extent(root, start,
3763                                                          end + 1 - start,
3764                                                          NULL);
3765
3766                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3767                 btrfs_error_unpin_extent_range(root, start, end);
3768                 cond_resched();
3769         }
3770
3771         if (loop) {
3772                 if (unpin == &root->fs_info->freed_extents[0])
3773                         unpin = &root->fs_info->freed_extents[1];
3774                 else
3775                         unpin = &root->fs_info->freed_extents[0];
3776                 loop = false;
3777                 goto again;
3778         }
3779
3780         return 0;
3781 }
3782
3783 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3784                                    struct btrfs_root *root)
3785 {
3786         btrfs_destroy_delayed_refs(cur_trans, root);
3787         btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3788                                 cur_trans->dirty_pages.dirty_bytes);
3789
3790         /* FIXME: cleanup wait for commit */
3791         cur_trans->in_commit = 1;
3792         cur_trans->blocked = 1;
3793         wake_up(&root->fs_info->transaction_blocked_wait);
3794
3795         cur_trans->blocked = 0;
3796         wake_up(&root->fs_info->transaction_wait);
3797
3798         cur_trans->commit_done = 1;
3799         wake_up(&cur_trans->commit_wait);
3800
3801         btrfs_destroy_delayed_inodes(root);
3802         btrfs_assert_delayed_root_empty(root);
3803
3804         btrfs_destroy_pending_snapshots(cur_trans);
3805
3806         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3807                                      EXTENT_DIRTY);
3808         btrfs_destroy_pinned_extent(root,
3809                                     root->fs_info->pinned_extents);
3810
3811         /*
3812         memset(cur_trans, 0, sizeof(*cur_trans));
3813         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3814         */
3815 }
3816
3817 int btrfs_cleanup_transaction(struct btrfs_root *root)
3818 {
3819         struct btrfs_transaction *t;
3820         LIST_HEAD(list);
3821
3822         mutex_lock(&root->fs_info->transaction_kthread_mutex);
3823
3824         spin_lock(&root->fs_info->trans_lock);
3825         list_splice_init(&root->fs_info->trans_list, &list);
3826         root->fs_info->trans_no_join = 1;
3827         spin_unlock(&root->fs_info->trans_lock);
3828
3829         while (!list_empty(&list)) {
3830                 t = list_entry(list.next, struct btrfs_transaction, list);
3831                 if (!t)
3832                         break;
3833
3834                 btrfs_destroy_ordered_operations(root);
3835
3836                 btrfs_destroy_ordered_extents(root);
3837
3838                 btrfs_destroy_delayed_refs(t, root);
3839
3840                 btrfs_block_rsv_release(root,
3841                                         &root->fs_info->trans_block_rsv,
3842                                         t->dirty_pages.dirty_bytes);
3843
3844                 /* FIXME: cleanup wait for commit */
3845                 t->in_commit = 1;
3846                 t->blocked = 1;
3847                 smp_mb();
3848                 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3849                         wake_up(&root->fs_info->transaction_blocked_wait);
3850
3851                 t->blocked = 0;
3852                 smp_mb();
3853                 if (waitqueue_active(&root->fs_info->transaction_wait))
3854                         wake_up(&root->fs_info->transaction_wait);
3855
3856                 t->commit_done = 1;
3857                 smp_mb();
3858                 if (waitqueue_active(&t->commit_wait))
3859                         wake_up(&t->commit_wait);
3860
3861                 btrfs_destroy_delayed_inodes(root);
3862                 btrfs_assert_delayed_root_empty(root);
3863
3864                 btrfs_destroy_pending_snapshots(t);
3865
3866                 btrfs_destroy_delalloc_inodes(root);
3867
3868                 spin_lock(&root->fs_info->trans_lock);
3869                 root->fs_info->running_transaction = NULL;
3870                 spin_unlock(&root->fs_info->trans_lock);
3871
3872                 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3873                                              EXTENT_DIRTY);
3874
3875                 btrfs_destroy_pinned_extent(root,
3876                                             root->fs_info->pinned_extents);
3877
3878                 atomic_set(&t->use_count, 0);
3879                 list_del_init(&t->list);
3880                 memset(t, 0, sizeof(*t));
3881                 kmem_cache_free(btrfs_transaction_cachep, t);
3882         }
3883
3884         spin_lock(&root->fs_info->trans_lock);
3885         root->fs_info->trans_no_join = 0;
3886         spin_unlock(&root->fs_info->trans_lock);
3887         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3888
3889         return 0;
3890 }
3891
3892 static struct extent_io_ops btree_extent_io_ops = {
3893         .readpage_end_io_hook = btree_readpage_end_io_hook,
3894         .readpage_io_failed_hook = btree_io_failed_hook,
3895         .submit_bio_hook = btree_submit_bio_hook,
3896         /* note we're sharing with inode.c for the merge bio hook */
3897         .merge_bio_hook = btrfs_merge_bio_hook,
3898 };