Btrfs: fix wrong disk size when writing super blocks
[cascardo/linux.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61                                     int read_only);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64                                       struct btrfs_root *root);
65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67                                         struct extent_io_tree *dirty_pages,
68                                         int mark);
69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70                                        struct extent_io_tree *pinned_extents);
71 static int btrfs_cleanup_transaction(struct btrfs_root *root);
72 static void btrfs_error_commit_super(struct btrfs_root *root);
73
74 /*
75  * end_io_wq structs are used to do processing in task context when an IO is
76  * complete.  This is used during reads to verify checksums, and it is used
77  * by writes to insert metadata for new file extents after IO is complete.
78  */
79 struct end_io_wq {
80         struct bio *bio;
81         bio_end_io_t *end_io;
82         void *private;
83         struct btrfs_fs_info *info;
84         int error;
85         int metadata;
86         struct list_head list;
87         struct btrfs_work work;
88 };
89
90 /*
91  * async submit bios are used to offload expensive checksumming
92  * onto the worker threads.  They checksum file and metadata bios
93  * just before they are sent down the IO stack.
94  */
95 struct async_submit_bio {
96         struct inode *inode;
97         struct bio *bio;
98         struct list_head list;
99         extent_submit_bio_hook_t *submit_bio_start;
100         extent_submit_bio_hook_t *submit_bio_done;
101         int rw;
102         int mirror_num;
103         unsigned long bio_flags;
104         /*
105          * bio_offset is optional, can be used if the pages in the bio
106          * can't tell us where in the file the bio should go
107          */
108         u64 bio_offset;
109         struct btrfs_work work;
110         int error;
111 };
112
113 /*
114  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
115  * eb, the lockdep key is determined by the btrfs_root it belongs to and
116  * the level the eb occupies in the tree.
117  *
118  * Different roots are used for different purposes and may nest inside each
119  * other and they require separate keysets.  As lockdep keys should be
120  * static, assign keysets according to the purpose of the root as indicated
121  * by btrfs_root->objectid.  This ensures that all special purpose roots
122  * have separate keysets.
123  *
124  * Lock-nesting across peer nodes is always done with the immediate parent
125  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
126  * subclass to avoid triggering lockdep warning in such cases.
127  *
128  * The key is set by the readpage_end_io_hook after the buffer has passed
129  * csum validation but before the pages are unlocked.  It is also set by
130  * btrfs_init_new_buffer on freshly allocated blocks.
131  *
132  * We also add a check to make sure the highest level of the tree is the
133  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
134  * needs update as well.
135  */
136 #ifdef CONFIG_DEBUG_LOCK_ALLOC
137 # if BTRFS_MAX_LEVEL != 8
138 #  error
139 # endif
140
141 static struct btrfs_lockdep_keyset {
142         u64                     id;             /* root objectid */
143         const char              *name_stem;     /* lock name stem */
144         char                    names[BTRFS_MAX_LEVEL + 1][20];
145         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
146 } btrfs_lockdep_keysets[] = {
147         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
148         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
149         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
150         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
151         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
152         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
153         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
154         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
155         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
156         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
157         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
158         { .id = 0,                              .name_stem = "tree"     },
159 };
160
161 void __init btrfs_init_lockdep(void)
162 {
163         int i, j;
164
165         /* initialize lockdep class names */
166         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
167                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
168
169                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
170                         snprintf(ks->names[j], sizeof(ks->names[j]),
171                                  "btrfs-%s-%02d", ks->name_stem, j);
172         }
173 }
174
175 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
176                                     int level)
177 {
178         struct btrfs_lockdep_keyset *ks;
179
180         BUG_ON(level >= ARRAY_SIZE(ks->keys));
181
182         /* find the matching keyset, id 0 is the default entry */
183         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
184                 if (ks->id == objectid)
185                         break;
186
187         lockdep_set_class_and_name(&eb->lock,
188                                    &ks->keys[level], ks->names[level]);
189 }
190
191 #endif
192
193 /*
194  * extents on the btree inode are pretty simple, there's one extent
195  * that covers the entire device
196  */
197 static struct extent_map *btree_get_extent(struct inode *inode,
198                 struct page *page, size_t pg_offset, u64 start, u64 len,
199                 int create)
200 {
201         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
202         struct extent_map *em;
203         int ret;
204
205         read_lock(&em_tree->lock);
206         em = lookup_extent_mapping(em_tree, start, len);
207         if (em) {
208                 em->bdev =
209                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
210                 read_unlock(&em_tree->lock);
211                 goto out;
212         }
213         read_unlock(&em_tree->lock);
214
215         em = alloc_extent_map();
216         if (!em) {
217                 em = ERR_PTR(-ENOMEM);
218                 goto out;
219         }
220         em->start = 0;
221         em->len = (u64)-1;
222         em->block_len = (u64)-1;
223         em->block_start = 0;
224         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
225
226         write_lock(&em_tree->lock);
227         ret = add_extent_mapping(em_tree, em, 0);
228         if (ret == -EEXIST) {
229                 free_extent_map(em);
230                 em = lookup_extent_mapping(em_tree, start, len);
231                 if (!em)
232                         em = ERR_PTR(-EIO);
233         } else if (ret) {
234                 free_extent_map(em);
235                 em = ERR_PTR(ret);
236         }
237         write_unlock(&em_tree->lock);
238
239 out:
240         return em;
241 }
242
243 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
244 {
245         return btrfs_crc32c(seed, data, len);
246 }
247
248 void btrfs_csum_final(u32 crc, char *result)
249 {
250         put_unaligned_le32(~crc, result);
251 }
252
253 /*
254  * compute the csum for a btree block, and either verify it or write it
255  * into the csum field of the block.
256  */
257 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
258                            int verify)
259 {
260         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
261         char *result = NULL;
262         unsigned long len;
263         unsigned long cur_len;
264         unsigned long offset = BTRFS_CSUM_SIZE;
265         char *kaddr;
266         unsigned long map_start;
267         unsigned long map_len;
268         int err;
269         u32 crc = ~(u32)0;
270         unsigned long inline_result;
271
272         len = buf->len - offset;
273         while (len > 0) {
274                 err = map_private_extent_buffer(buf, offset, 32,
275                                         &kaddr, &map_start, &map_len);
276                 if (err)
277                         return 1;
278                 cur_len = min(len, map_len - (offset - map_start));
279                 crc = btrfs_csum_data(kaddr + offset - map_start,
280                                       crc, cur_len);
281                 len -= cur_len;
282                 offset += cur_len;
283         }
284         if (csum_size > sizeof(inline_result)) {
285                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286                 if (!result)
287                         return 1;
288         } else {
289                 result = (char *)&inline_result;
290         }
291
292         btrfs_csum_final(crc, result);
293
294         if (verify) {
295                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
296                         u32 val;
297                         u32 found = 0;
298                         memcpy(&found, result, csum_size);
299
300                         read_extent_buffer(buf, &val, 0, csum_size);
301                         printk_ratelimited(KERN_INFO
302                                 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
303                                 "level %d\n",
304                                 root->fs_info->sb->s_id, buf->start,
305                                 val, found, btrfs_header_level(buf));
306                         if (result != (char *)&inline_result)
307                                 kfree(result);
308                         return 1;
309                 }
310         } else {
311                 write_extent_buffer(buf, result, 0, csum_size);
312         }
313         if (result != (char *)&inline_result)
314                 kfree(result);
315         return 0;
316 }
317
318 /*
319  * we can't consider a given block up to date unless the transid of the
320  * block matches the transid in the parent node's pointer.  This is how we
321  * detect blocks that either didn't get written at all or got written
322  * in the wrong place.
323  */
324 static int verify_parent_transid(struct extent_io_tree *io_tree,
325                                  struct extent_buffer *eb, u64 parent_transid,
326                                  int atomic)
327 {
328         struct extent_state *cached_state = NULL;
329         int ret;
330         bool need_lock = (current->journal_info ==
331                           (void *)BTRFS_SEND_TRANS_STUB);
332
333         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334                 return 0;
335
336         if (atomic)
337                 return -EAGAIN;
338
339         if (need_lock) {
340                 btrfs_tree_read_lock(eb);
341                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
342         }
343
344         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
345                          0, &cached_state);
346         if (extent_buffer_uptodate(eb) &&
347             btrfs_header_generation(eb) == parent_transid) {
348                 ret = 0;
349                 goto out;
350         }
351         printk_ratelimited(KERN_INFO "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
352                         eb->fs_info->sb->s_id, eb->start,
353                         parent_transid, btrfs_header_generation(eb));
354         ret = 1;
355
356         /*
357          * Things reading via commit roots that don't have normal protection,
358          * like send, can have a really old block in cache that may point at a
359          * block that has been free'd and re-allocated.  So don't clear uptodate
360          * if we find an eb that is under IO (dirty/writeback) because we could
361          * end up reading in the stale data and then writing it back out and
362          * making everybody very sad.
363          */
364         if (!extent_buffer_under_io(eb))
365                 clear_extent_buffer_uptodate(eb);
366 out:
367         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
368                              &cached_state, GFP_NOFS);
369         if (need_lock)
370                 btrfs_tree_read_unlock_blocking(eb);
371         return ret;
372 }
373
374 /*
375  * Return 0 if the superblock checksum type matches the checksum value of that
376  * algorithm. Pass the raw disk superblock data.
377  */
378 static int btrfs_check_super_csum(char *raw_disk_sb)
379 {
380         struct btrfs_super_block *disk_sb =
381                 (struct btrfs_super_block *)raw_disk_sb;
382         u16 csum_type = btrfs_super_csum_type(disk_sb);
383         int ret = 0;
384
385         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
386                 u32 crc = ~(u32)0;
387                 const int csum_size = sizeof(crc);
388                 char result[csum_size];
389
390                 /*
391                  * The super_block structure does not span the whole
392                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
393                  * is filled with zeros and is included in the checkum.
394                  */
395                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
396                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
397                 btrfs_csum_final(crc, result);
398
399                 if (memcmp(raw_disk_sb, result, csum_size))
400                         ret = 1;
401
402                 if (ret && btrfs_super_generation(disk_sb) < 10) {
403                         printk(KERN_WARNING
404                                 "BTRFS: super block crcs don't match, older mkfs detected\n");
405                         ret = 0;
406                 }
407         }
408
409         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
410                 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
411                                 csum_type);
412                 ret = 1;
413         }
414
415         return ret;
416 }
417
418 /*
419  * helper to read a given tree block, doing retries as required when
420  * the checksums don't match and we have alternate mirrors to try.
421  */
422 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
423                                           struct extent_buffer *eb,
424                                           u64 start, u64 parent_transid)
425 {
426         struct extent_io_tree *io_tree;
427         int failed = 0;
428         int ret;
429         int num_copies = 0;
430         int mirror_num = 0;
431         int failed_mirror = 0;
432
433         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
434         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
435         while (1) {
436                 ret = read_extent_buffer_pages(io_tree, eb, start,
437                                                WAIT_COMPLETE,
438                                                btree_get_extent, mirror_num);
439                 if (!ret) {
440                         if (!verify_parent_transid(io_tree, eb,
441                                                    parent_transid, 0))
442                                 break;
443                         else
444                                 ret = -EIO;
445                 }
446
447                 /*
448                  * This buffer's crc is fine, but its contents are corrupted, so
449                  * there is no reason to read the other copies, they won't be
450                  * any less wrong.
451                  */
452                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
453                         break;
454
455                 num_copies = btrfs_num_copies(root->fs_info,
456                                               eb->start, eb->len);
457                 if (num_copies == 1)
458                         break;
459
460                 if (!failed_mirror) {
461                         failed = 1;
462                         failed_mirror = eb->read_mirror;
463                 }
464
465                 mirror_num++;
466                 if (mirror_num == failed_mirror)
467                         mirror_num++;
468
469                 if (mirror_num > num_copies)
470                         break;
471         }
472
473         if (failed && !ret && failed_mirror)
474                 repair_eb_io_failure(root, eb, failed_mirror);
475
476         return ret;
477 }
478
479 /*
480  * checksum a dirty tree block before IO.  This has extra checks to make sure
481  * we only fill in the checksum field in the first page of a multi-page block
482  */
483
484 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
485 {
486         u64 start = page_offset(page);
487         u64 found_start;
488         struct extent_buffer *eb;
489
490         eb = (struct extent_buffer *)page->private;
491         if (page != eb->pages[0])
492                 return 0;
493         found_start = btrfs_header_bytenr(eb);
494         if (WARN_ON(found_start != start || !PageUptodate(page)))
495                 return 0;
496         csum_tree_block(root, eb, 0);
497         return 0;
498 }
499
500 static int check_tree_block_fsid(struct btrfs_root *root,
501                                  struct extent_buffer *eb)
502 {
503         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
504         u8 fsid[BTRFS_UUID_SIZE];
505         int ret = 1;
506
507         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
508         while (fs_devices) {
509                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
510                         ret = 0;
511                         break;
512                 }
513                 fs_devices = fs_devices->seed;
514         }
515         return ret;
516 }
517
518 #define CORRUPT(reason, eb, root, slot)                         \
519         btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
520                    "root=%llu, slot=%d", reason,                        \
521                btrfs_header_bytenr(eb), root->objectid, slot)
522
523 static noinline int check_leaf(struct btrfs_root *root,
524                                struct extent_buffer *leaf)
525 {
526         struct btrfs_key key;
527         struct btrfs_key leaf_key;
528         u32 nritems = btrfs_header_nritems(leaf);
529         int slot;
530
531         if (nritems == 0)
532                 return 0;
533
534         /* Check the 0 item */
535         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
536             BTRFS_LEAF_DATA_SIZE(root)) {
537                 CORRUPT("invalid item offset size pair", leaf, root, 0);
538                 return -EIO;
539         }
540
541         /*
542          * Check to make sure each items keys are in the correct order and their
543          * offsets make sense.  We only have to loop through nritems-1 because
544          * we check the current slot against the next slot, which verifies the
545          * next slot's offset+size makes sense and that the current's slot
546          * offset is correct.
547          */
548         for (slot = 0; slot < nritems - 1; slot++) {
549                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
550                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
551
552                 /* Make sure the keys are in the right order */
553                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
554                         CORRUPT("bad key order", leaf, root, slot);
555                         return -EIO;
556                 }
557
558                 /*
559                  * Make sure the offset and ends are right, remember that the
560                  * item data starts at the end of the leaf and grows towards the
561                  * front.
562                  */
563                 if (btrfs_item_offset_nr(leaf, slot) !=
564                         btrfs_item_end_nr(leaf, slot + 1)) {
565                         CORRUPT("slot offset bad", leaf, root, slot);
566                         return -EIO;
567                 }
568
569                 /*
570                  * Check to make sure that we don't point outside of the leaf,
571                  * just incase all the items are consistent to eachother, but
572                  * all point outside of the leaf.
573                  */
574                 if (btrfs_item_end_nr(leaf, slot) >
575                     BTRFS_LEAF_DATA_SIZE(root)) {
576                         CORRUPT("slot end outside of leaf", leaf, root, slot);
577                         return -EIO;
578                 }
579         }
580
581         return 0;
582 }
583
584 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
585                                       u64 phy_offset, struct page *page,
586                                       u64 start, u64 end, int mirror)
587 {
588         u64 found_start;
589         int found_level;
590         struct extent_buffer *eb;
591         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
592         int ret = 0;
593         int reads_done;
594
595         if (!page->private)
596                 goto out;
597
598         eb = (struct extent_buffer *)page->private;
599
600         /* the pending IO might have been the only thing that kept this buffer
601          * in memory.  Make sure we have a ref for all this other checks
602          */
603         extent_buffer_get(eb);
604
605         reads_done = atomic_dec_and_test(&eb->io_pages);
606         if (!reads_done)
607                 goto err;
608
609         eb->read_mirror = mirror;
610         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
611                 ret = -EIO;
612                 goto err;
613         }
614
615         found_start = btrfs_header_bytenr(eb);
616         if (found_start != eb->start) {
617                 printk_ratelimited(KERN_INFO "BTRFS (device %s): bad tree block start "
618                                "%llu %llu\n",
619                                eb->fs_info->sb->s_id, found_start, eb->start);
620                 ret = -EIO;
621                 goto err;
622         }
623         if (check_tree_block_fsid(root, eb)) {
624                 printk_ratelimited(KERN_INFO "BTRFS (device %s): bad fsid on block %llu\n",
625                                eb->fs_info->sb->s_id, eb->start);
626                 ret = -EIO;
627                 goto err;
628         }
629         found_level = btrfs_header_level(eb);
630         if (found_level >= BTRFS_MAX_LEVEL) {
631                 btrfs_info(root->fs_info, "bad tree block level %d",
632                            (int)btrfs_header_level(eb));
633                 ret = -EIO;
634                 goto err;
635         }
636
637         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
638                                        eb, found_level);
639
640         ret = csum_tree_block(root, eb, 1);
641         if (ret) {
642                 ret = -EIO;
643                 goto err;
644         }
645
646         /*
647          * If this is a leaf block and it is corrupt, set the corrupt bit so
648          * that we don't try and read the other copies of this block, just
649          * return -EIO.
650          */
651         if (found_level == 0 && check_leaf(root, eb)) {
652                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
653                 ret = -EIO;
654         }
655
656         if (!ret)
657                 set_extent_buffer_uptodate(eb);
658 err:
659         if (reads_done &&
660             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
661                 btree_readahead_hook(root, eb, eb->start, ret);
662
663         if (ret) {
664                 /*
665                  * our io error hook is going to dec the io pages
666                  * again, we have to make sure it has something
667                  * to decrement
668                  */
669                 atomic_inc(&eb->io_pages);
670                 clear_extent_buffer_uptodate(eb);
671         }
672         free_extent_buffer(eb);
673 out:
674         return ret;
675 }
676
677 static int btree_io_failed_hook(struct page *page, int failed_mirror)
678 {
679         struct extent_buffer *eb;
680         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
681
682         eb = (struct extent_buffer *)page->private;
683         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
684         eb->read_mirror = failed_mirror;
685         atomic_dec(&eb->io_pages);
686         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
687                 btree_readahead_hook(root, eb, eb->start, -EIO);
688         return -EIO;    /* we fixed nothing */
689 }
690
691 static void end_workqueue_bio(struct bio *bio, int err)
692 {
693         struct end_io_wq *end_io_wq = bio->bi_private;
694         struct btrfs_fs_info *fs_info;
695         struct btrfs_workqueue *wq;
696         btrfs_work_func_t func;
697
698         fs_info = end_io_wq->info;
699         end_io_wq->error = err;
700
701         if (bio->bi_rw & REQ_WRITE) {
702                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
703                         wq = fs_info->endio_meta_write_workers;
704                         func = btrfs_endio_meta_write_helper;
705                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
706                         wq = fs_info->endio_freespace_worker;
707                         func = btrfs_freespace_write_helper;
708                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
709                         wq = fs_info->endio_raid56_workers;
710                         func = btrfs_endio_raid56_helper;
711                 } else {
712                         wq = fs_info->endio_write_workers;
713                         func = btrfs_endio_write_helper;
714                 }
715         } else {
716                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
717                         wq = fs_info->endio_raid56_workers;
718                         func = btrfs_endio_raid56_helper;
719                 } else if (end_io_wq->metadata) {
720                         wq = fs_info->endio_meta_workers;
721                         func = btrfs_endio_meta_helper;
722                 } else {
723                         wq = fs_info->endio_workers;
724                         func = btrfs_endio_helper;
725                 }
726         }
727
728         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
729         btrfs_queue_work(wq, &end_io_wq->work);
730 }
731
732 /*
733  * For the metadata arg you want
734  *
735  * 0 - if data
736  * 1 - if normal metadta
737  * 2 - if writing to the free space cache area
738  * 3 - raid parity work
739  */
740 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
741                         int metadata)
742 {
743         struct end_io_wq *end_io_wq;
744         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
745         if (!end_io_wq)
746                 return -ENOMEM;
747
748         end_io_wq->private = bio->bi_private;
749         end_io_wq->end_io = bio->bi_end_io;
750         end_io_wq->info = info;
751         end_io_wq->error = 0;
752         end_io_wq->bio = bio;
753         end_io_wq->metadata = metadata;
754
755         bio->bi_private = end_io_wq;
756         bio->bi_end_io = end_workqueue_bio;
757         return 0;
758 }
759
760 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
761 {
762         unsigned long limit = min_t(unsigned long,
763                                     info->thread_pool_size,
764                                     info->fs_devices->open_devices);
765         return 256 * limit;
766 }
767
768 static void run_one_async_start(struct btrfs_work *work)
769 {
770         struct async_submit_bio *async;
771         int ret;
772
773         async = container_of(work, struct  async_submit_bio, work);
774         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
775                                       async->mirror_num, async->bio_flags,
776                                       async->bio_offset);
777         if (ret)
778                 async->error = ret;
779 }
780
781 static void run_one_async_done(struct btrfs_work *work)
782 {
783         struct btrfs_fs_info *fs_info;
784         struct async_submit_bio *async;
785         int limit;
786
787         async = container_of(work, struct  async_submit_bio, work);
788         fs_info = BTRFS_I(async->inode)->root->fs_info;
789
790         limit = btrfs_async_submit_limit(fs_info);
791         limit = limit * 2 / 3;
792
793         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
794             waitqueue_active(&fs_info->async_submit_wait))
795                 wake_up(&fs_info->async_submit_wait);
796
797         /* If an error occured we just want to clean up the bio and move on */
798         if (async->error) {
799                 bio_endio(async->bio, async->error);
800                 return;
801         }
802
803         async->submit_bio_done(async->inode, async->rw, async->bio,
804                                async->mirror_num, async->bio_flags,
805                                async->bio_offset);
806 }
807
808 static void run_one_async_free(struct btrfs_work *work)
809 {
810         struct async_submit_bio *async;
811
812         async = container_of(work, struct  async_submit_bio, work);
813         kfree(async);
814 }
815
816 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
817                         int rw, struct bio *bio, int mirror_num,
818                         unsigned long bio_flags,
819                         u64 bio_offset,
820                         extent_submit_bio_hook_t *submit_bio_start,
821                         extent_submit_bio_hook_t *submit_bio_done)
822 {
823         struct async_submit_bio *async;
824
825         async = kmalloc(sizeof(*async), GFP_NOFS);
826         if (!async)
827                 return -ENOMEM;
828
829         async->inode = inode;
830         async->rw = rw;
831         async->bio = bio;
832         async->mirror_num = mirror_num;
833         async->submit_bio_start = submit_bio_start;
834         async->submit_bio_done = submit_bio_done;
835
836         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
837                         run_one_async_done, run_one_async_free);
838
839         async->bio_flags = bio_flags;
840         async->bio_offset = bio_offset;
841
842         async->error = 0;
843
844         atomic_inc(&fs_info->nr_async_submits);
845
846         if (rw & REQ_SYNC)
847                 btrfs_set_work_high_priority(&async->work);
848
849         btrfs_queue_work(fs_info->workers, &async->work);
850
851         while (atomic_read(&fs_info->async_submit_draining) &&
852               atomic_read(&fs_info->nr_async_submits)) {
853                 wait_event(fs_info->async_submit_wait,
854                            (atomic_read(&fs_info->nr_async_submits) == 0));
855         }
856
857         return 0;
858 }
859
860 static int btree_csum_one_bio(struct bio *bio)
861 {
862         struct bio_vec *bvec;
863         struct btrfs_root *root;
864         int i, ret = 0;
865
866         bio_for_each_segment_all(bvec, bio, i) {
867                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
868                 ret = csum_dirty_buffer(root, bvec->bv_page);
869                 if (ret)
870                         break;
871         }
872
873         return ret;
874 }
875
876 static int __btree_submit_bio_start(struct inode *inode, int rw,
877                                     struct bio *bio, int mirror_num,
878                                     unsigned long bio_flags,
879                                     u64 bio_offset)
880 {
881         /*
882          * when we're called for a write, we're already in the async
883          * submission context.  Just jump into btrfs_map_bio
884          */
885         return btree_csum_one_bio(bio);
886 }
887
888 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
889                                  int mirror_num, unsigned long bio_flags,
890                                  u64 bio_offset)
891 {
892         int ret;
893
894         /*
895          * when we're called for a write, we're already in the async
896          * submission context.  Just jump into btrfs_map_bio
897          */
898         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
899         if (ret)
900                 bio_endio(bio, ret);
901         return ret;
902 }
903
904 static int check_async_write(struct inode *inode, unsigned long bio_flags)
905 {
906         if (bio_flags & EXTENT_BIO_TREE_LOG)
907                 return 0;
908 #ifdef CONFIG_X86
909         if (cpu_has_xmm4_2)
910                 return 0;
911 #endif
912         return 1;
913 }
914
915 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
916                                  int mirror_num, unsigned long bio_flags,
917                                  u64 bio_offset)
918 {
919         int async = check_async_write(inode, bio_flags);
920         int ret;
921
922         if (!(rw & REQ_WRITE)) {
923                 /*
924                  * called for a read, do the setup so that checksum validation
925                  * can happen in the async kernel threads
926                  */
927                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
928                                           bio, 1);
929                 if (ret)
930                         goto out_w_error;
931                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
932                                     mirror_num, 0);
933         } else if (!async) {
934                 ret = btree_csum_one_bio(bio);
935                 if (ret)
936                         goto out_w_error;
937                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
938                                     mirror_num, 0);
939         } else {
940                 /*
941                  * kthread helpers are used to submit writes so that
942                  * checksumming can happen in parallel across all CPUs
943                  */
944                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
945                                           inode, rw, bio, mirror_num, 0,
946                                           bio_offset,
947                                           __btree_submit_bio_start,
948                                           __btree_submit_bio_done);
949         }
950
951         if (ret) {
952 out_w_error:
953                 bio_endio(bio, ret);
954         }
955         return ret;
956 }
957
958 #ifdef CONFIG_MIGRATION
959 static int btree_migratepage(struct address_space *mapping,
960                         struct page *newpage, struct page *page,
961                         enum migrate_mode mode)
962 {
963         /*
964          * we can't safely write a btree page from here,
965          * we haven't done the locking hook
966          */
967         if (PageDirty(page))
968                 return -EAGAIN;
969         /*
970          * Buffers may be managed in a filesystem specific way.
971          * We must have no buffers or drop them.
972          */
973         if (page_has_private(page) &&
974             !try_to_release_page(page, GFP_KERNEL))
975                 return -EAGAIN;
976         return migrate_page(mapping, newpage, page, mode);
977 }
978 #endif
979
980
981 static int btree_writepages(struct address_space *mapping,
982                             struct writeback_control *wbc)
983 {
984         struct btrfs_fs_info *fs_info;
985         int ret;
986
987         if (wbc->sync_mode == WB_SYNC_NONE) {
988
989                 if (wbc->for_kupdate)
990                         return 0;
991
992                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
993                 /* this is a bit racy, but that's ok */
994                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
995                                              BTRFS_DIRTY_METADATA_THRESH);
996                 if (ret < 0)
997                         return 0;
998         }
999         return btree_write_cache_pages(mapping, wbc);
1000 }
1001
1002 static int btree_readpage(struct file *file, struct page *page)
1003 {
1004         struct extent_io_tree *tree;
1005         tree = &BTRFS_I(page->mapping->host)->io_tree;
1006         return extent_read_full_page(tree, page, btree_get_extent, 0);
1007 }
1008
1009 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1010 {
1011         if (PageWriteback(page) || PageDirty(page))
1012                 return 0;
1013
1014         return try_release_extent_buffer(page);
1015 }
1016
1017 static void btree_invalidatepage(struct page *page, unsigned int offset,
1018                                  unsigned int length)
1019 {
1020         struct extent_io_tree *tree;
1021         tree = &BTRFS_I(page->mapping->host)->io_tree;
1022         extent_invalidatepage(tree, page, offset);
1023         btree_releasepage(page, GFP_NOFS);
1024         if (PagePrivate(page)) {
1025                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1026                            "page private not zero on page %llu",
1027                            (unsigned long long)page_offset(page));
1028                 ClearPagePrivate(page);
1029                 set_page_private(page, 0);
1030                 page_cache_release(page);
1031         }
1032 }
1033
1034 static int btree_set_page_dirty(struct page *page)
1035 {
1036 #ifdef DEBUG
1037         struct extent_buffer *eb;
1038
1039         BUG_ON(!PagePrivate(page));
1040         eb = (struct extent_buffer *)page->private;
1041         BUG_ON(!eb);
1042         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1043         BUG_ON(!atomic_read(&eb->refs));
1044         btrfs_assert_tree_locked(eb);
1045 #endif
1046         return __set_page_dirty_nobuffers(page);
1047 }
1048
1049 static const struct address_space_operations btree_aops = {
1050         .readpage       = btree_readpage,
1051         .writepages     = btree_writepages,
1052         .releasepage    = btree_releasepage,
1053         .invalidatepage = btree_invalidatepage,
1054 #ifdef CONFIG_MIGRATION
1055         .migratepage    = btree_migratepage,
1056 #endif
1057         .set_page_dirty = btree_set_page_dirty,
1058 };
1059
1060 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1061                          u64 parent_transid)
1062 {
1063         struct extent_buffer *buf = NULL;
1064         struct inode *btree_inode = root->fs_info->btree_inode;
1065         int ret = 0;
1066
1067         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1068         if (!buf)
1069                 return 0;
1070         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1071                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1072         free_extent_buffer(buf);
1073         return ret;
1074 }
1075
1076 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1077                          int mirror_num, struct extent_buffer **eb)
1078 {
1079         struct extent_buffer *buf = NULL;
1080         struct inode *btree_inode = root->fs_info->btree_inode;
1081         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1082         int ret;
1083
1084         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1085         if (!buf)
1086                 return 0;
1087
1088         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1089
1090         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1091                                        btree_get_extent, mirror_num);
1092         if (ret) {
1093                 free_extent_buffer(buf);
1094                 return ret;
1095         }
1096
1097         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1098                 free_extent_buffer(buf);
1099                 return -EIO;
1100         } else if (extent_buffer_uptodate(buf)) {
1101                 *eb = buf;
1102         } else {
1103                 free_extent_buffer(buf);
1104         }
1105         return 0;
1106 }
1107
1108 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1109                                             u64 bytenr, u32 blocksize)
1110 {
1111         return find_extent_buffer(root->fs_info, bytenr);
1112 }
1113
1114 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1115                                                  u64 bytenr, u32 blocksize)
1116 {
1117 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1118         if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
1119                 return alloc_test_extent_buffer(root->fs_info, bytenr,
1120                                                 blocksize);
1121 #endif
1122         return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1123 }
1124
1125
1126 int btrfs_write_tree_block(struct extent_buffer *buf)
1127 {
1128         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1129                                         buf->start + buf->len - 1);
1130 }
1131
1132 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1133 {
1134         return filemap_fdatawait_range(buf->pages[0]->mapping,
1135                                        buf->start, buf->start + buf->len - 1);
1136 }
1137
1138 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1139                                       u32 blocksize, u64 parent_transid)
1140 {
1141         struct extent_buffer *buf = NULL;
1142         int ret;
1143
1144         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1145         if (!buf)
1146                 return NULL;
1147
1148         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1149         if (ret) {
1150                 free_extent_buffer(buf);
1151                 return NULL;
1152         }
1153         return buf;
1154
1155 }
1156
1157 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1158                       struct extent_buffer *buf)
1159 {
1160         struct btrfs_fs_info *fs_info = root->fs_info;
1161
1162         if (btrfs_header_generation(buf) ==
1163             fs_info->running_transaction->transid) {
1164                 btrfs_assert_tree_locked(buf);
1165
1166                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1167                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1168                                              -buf->len,
1169                                              fs_info->dirty_metadata_batch);
1170                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1171                         btrfs_set_lock_blocking(buf);
1172                         clear_extent_buffer_dirty(buf);
1173                 }
1174         }
1175 }
1176
1177 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1178 {
1179         struct btrfs_subvolume_writers *writers;
1180         int ret;
1181
1182         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1183         if (!writers)
1184                 return ERR_PTR(-ENOMEM);
1185
1186         ret = percpu_counter_init(&writers->counter, 0);
1187         if (ret < 0) {
1188                 kfree(writers);
1189                 return ERR_PTR(ret);
1190         }
1191
1192         init_waitqueue_head(&writers->wait);
1193         return writers;
1194 }
1195
1196 static void
1197 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1198 {
1199         percpu_counter_destroy(&writers->counter);
1200         kfree(writers);
1201 }
1202
1203 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1204                          struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1205                          u64 objectid)
1206 {
1207         root->node = NULL;
1208         root->commit_root = NULL;
1209         root->sectorsize = sectorsize;
1210         root->nodesize = nodesize;
1211         root->stripesize = stripesize;
1212         root->state = 0;
1213         root->orphan_cleanup_state = 0;
1214
1215         root->objectid = objectid;
1216         root->last_trans = 0;
1217         root->highest_objectid = 0;
1218         root->nr_delalloc_inodes = 0;
1219         root->nr_ordered_extents = 0;
1220         root->name = NULL;
1221         root->inode_tree = RB_ROOT;
1222         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1223         root->block_rsv = NULL;
1224         root->orphan_block_rsv = NULL;
1225
1226         INIT_LIST_HEAD(&root->dirty_list);
1227         INIT_LIST_HEAD(&root->root_list);
1228         INIT_LIST_HEAD(&root->delalloc_inodes);
1229         INIT_LIST_HEAD(&root->delalloc_root);
1230         INIT_LIST_HEAD(&root->ordered_extents);
1231         INIT_LIST_HEAD(&root->ordered_root);
1232         INIT_LIST_HEAD(&root->logged_list[0]);
1233         INIT_LIST_HEAD(&root->logged_list[1]);
1234         spin_lock_init(&root->orphan_lock);
1235         spin_lock_init(&root->inode_lock);
1236         spin_lock_init(&root->delalloc_lock);
1237         spin_lock_init(&root->ordered_extent_lock);
1238         spin_lock_init(&root->accounting_lock);
1239         spin_lock_init(&root->log_extents_lock[0]);
1240         spin_lock_init(&root->log_extents_lock[1]);
1241         mutex_init(&root->objectid_mutex);
1242         mutex_init(&root->log_mutex);
1243         mutex_init(&root->ordered_extent_mutex);
1244         mutex_init(&root->delalloc_mutex);
1245         init_waitqueue_head(&root->log_writer_wait);
1246         init_waitqueue_head(&root->log_commit_wait[0]);
1247         init_waitqueue_head(&root->log_commit_wait[1]);
1248         INIT_LIST_HEAD(&root->log_ctxs[0]);
1249         INIT_LIST_HEAD(&root->log_ctxs[1]);
1250         atomic_set(&root->log_commit[0], 0);
1251         atomic_set(&root->log_commit[1], 0);
1252         atomic_set(&root->log_writers, 0);
1253         atomic_set(&root->log_batch, 0);
1254         atomic_set(&root->orphan_inodes, 0);
1255         atomic_set(&root->refs, 1);
1256         atomic_set(&root->will_be_snapshoted, 0);
1257         root->log_transid = 0;
1258         root->log_transid_committed = -1;
1259         root->last_log_commit = 0;
1260         if (fs_info)
1261                 extent_io_tree_init(&root->dirty_log_pages,
1262                                      fs_info->btree_inode->i_mapping);
1263
1264         memset(&root->root_key, 0, sizeof(root->root_key));
1265         memset(&root->root_item, 0, sizeof(root->root_item));
1266         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1267         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1268         if (fs_info)
1269                 root->defrag_trans_start = fs_info->generation;
1270         else
1271                 root->defrag_trans_start = 0;
1272         init_completion(&root->kobj_unregister);
1273         root->root_key.objectid = objectid;
1274         root->anon_dev = 0;
1275
1276         spin_lock_init(&root->root_item_lock);
1277 }
1278
1279 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1280 {
1281         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1282         if (root)
1283                 root->fs_info = fs_info;
1284         return root;
1285 }
1286
1287 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1288 /* Should only be used by the testing infrastructure */
1289 struct btrfs_root *btrfs_alloc_dummy_root(void)
1290 {
1291         struct btrfs_root *root;
1292
1293         root = btrfs_alloc_root(NULL);
1294         if (!root)
1295                 return ERR_PTR(-ENOMEM);
1296         __setup_root(4096, 4096, 4096, root, NULL, 1);
1297         set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1298         root->alloc_bytenr = 0;
1299
1300         return root;
1301 }
1302 #endif
1303
1304 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1305                                      struct btrfs_fs_info *fs_info,
1306                                      u64 objectid)
1307 {
1308         struct extent_buffer *leaf;
1309         struct btrfs_root *tree_root = fs_info->tree_root;
1310         struct btrfs_root *root;
1311         struct btrfs_key key;
1312         int ret = 0;
1313         uuid_le uuid;
1314
1315         root = btrfs_alloc_root(fs_info);
1316         if (!root)
1317                 return ERR_PTR(-ENOMEM);
1318
1319         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1320                 tree_root->stripesize, root, fs_info, objectid);
1321         root->root_key.objectid = objectid;
1322         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1323         root->root_key.offset = 0;
1324
1325         leaf = btrfs_alloc_free_block(trans, root, root->nodesize,
1326                                       0, objectid, NULL, 0, 0, 0);
1327         if (IS_ERR(leaf)) {
1328                 ret = PTR_ERR(leaf);
1329                 leaf = NULL;
1330                 goto fail;
1331         }
1332
1333         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1334         btrfs_set_header_bytenr(leaf, leaf->start);
1335         btrfs_set_header_generation(leaf, trans->transid);
1336         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1337         btrfs_set_header_owner(leaf, objectid);
1338         root->node = leaf;
1339
1340         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1341                             BTRFS_FSID_SIZE);
1342         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1343                             btrfs_header_chunk_tree_uuid(leaf),
1344                             BTRFS_UUID_SIZE);
1345         btrfs_mark_buffer_dirty(leaf);
1346
1347         root->commit_root = btrfs_root_node(root);
1348         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1349
1350         root->root_item.flags = 0;
1351         root->root_item.byte_limit = 0;
1352         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1353         btrfs_set_root_generation(&root->root_item, trans->transid);
1354         btrfs_set_root_level(&root->root_item, 0);
1355         btrfs_set_root_refs(&root->root_item, 1);
1356         btrfs_set_root_used(&root->root_item, leaf->len);
1357         btrfs_set_root_last_snapshot(&root->root_item, 0);
1358         btrfs_set_root_dirid(&root->root_item, 0);
1359         uuid_le_gen(&uuid);
1360         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1361         root->root_item.drop_level = 0;
1362
1363         key.objectid = objectid;
1364         key.type = BTRFS_ROOT_ITEM_KEY;
1365         key.offset = 0;
1366         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1367         if (ret)
1368                 goto fail;
1369
1370         btrfs_tree_unlock(leaf);
1371
1372         return root;
1373
1374 fail:
1375         if (leaf) {
1376                 btrfs_tree_unlock(leaf);
1377                 free_extent_buffer(root->commit_root);
1378                 free_extent_buffer(leaf);
1379         }
1380         kfree(root);
1381
1382         return ERR_PTR(ret);
1383 }
1384
1385 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1386                                          struct btrfs_fs_info *fs_info)
1387 {
1388         struct btrfs_root *root;
1389         struct btrfs_root *tree_root = fs_info->tree_root;
1390         struct extent_buffer *leaf;
1391
1392         root = btrfs_alloc_root(fs_info);
1393         if (!root)
1394                 return ERR_PTR(-ENOMEM);
1395
1396         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1397                      tree_root->stripesize, root, fs_info,
1398                      BTRFS_TREE_LOG_OBJECTID);
1399
1400         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1401         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1402         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1403
1404         /*
1405          * DON'T set REF_COWS for log trees
1406          *
1407          * log trees do not get reference counted because they go away
1408          * before a real commit is actually done.  They do store pointers
1409          * to file data extents, and those reference counts still get
1410          * updated (along with back refs to the log tree).
1411          */
1412
1413         leaf = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
1414                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1415                                       0, 0, 0);
1416         if (IS_ERR(leaf)) {
1417                 kfree(root);
1418                 return ERR_CAST(leaf);
1419         }
1420
1421         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1422         btrfs_set_header_bytenr(leaf, leaf->start);
1423         btrfs_set_header_generation(leaf, trans->transid);
1424         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1425         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1426         root->node = leaf;
1427
1428         write_extent_buffer(root->node, root->fs_info->fsid,
1429                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1430         btrfs_mark_buffer_dirty(root->node);
1431         btrfs_tree_unlock(root->node);
1432         return root;
1433 }
1434
1435 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1436                              struct btrfs_fs_info *fs_info)
1437 {
1438         struct btrfs_root *log_root;
1439
1440         log_root = alloc_log_tree(trans, fs_info);
1441         if (IS_ERR(log_root))
1442                 return PTR_ERR(log_root);
1443         WARN_ON(fs_info->log_root_tree);
1444         fs_info->log_root_tree = log_root;
1445         return 0;
1446 }
1447
1448 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1449                        struct btrfs_root *root)
1450 {
1451         struct btrfs_root *log_root;
1452         struct btrfs_inode_item *inode_item;
1453
1454         log_root = alloc_log_tree(trans, root->fs_info);
1455         if (IS_ERR(log_root))
1456                 return PTR_ERR(log_root);
1457
1458         log_root->last_trans = trans->transid;
1459         log_root->root_key.offset = root->root_key.objectid;
1460
1461         inode_item = &log_root->root_item.inode;
1462         btrfs_set_stack_inode_generation(inode_item, 1);
1463         btrfs_set_stack_inode_size(inode_item, 3);
1464         btrfs_set_stack_inode_nlink(inode_item, 1);
1465         btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1466         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1467
1468         btrfs_set_root_node(&log_root->root_item, log_root->node);
1469
1470         WARN_ON(root->log_root);
1471         root->log_root = log_root;
1472         root->log_transid = 0;
1473         root->log_transid_committed = -1;
1474         root->last_log_commit = 0;
1475         return 0;
1476 }
1477
1478 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1479                                                struct btrfs_key *key)
1480 {
1481         struct btrfs_root *root;
1482         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1483         struct btrfs_path *path;
1484         u64 generation;
1485         u32 blocksize;
1486         int ret;
1487
1488         path = btrfs_alloc_path();
1489         if (!path)
1490                 return ERR_PTR(-ENOMEM);
1491
1492         root = btrfs_alloc_root(fs_info);
1493         if (!root) {
1494                 ret = -ENOMEM;
1495                 goto alloc_fail;
1496         }
1497
1498         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1499                 tree_root->stripesize, root, fs_info, key->objectid);
1500
1501         ret = btrfs_find_root(tree_root, key, path,
1502                               &root->root_item, &root->root_key);
1503         if (ret) {
1504                 if (ret > 0)
1505                         ret = -ENOENT;
1506                 goto find_fail;
1507         }
1508
1509         generation = btrfs_root_generation(&root->root_item);
1510         blocksize = root->nodesize;
1511         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1512                                      blocksize, generation);
1513         if (!root->node) {
1514                 ret = -ENOMEM;
1515                 goto find_fail;
1516         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1517                 ret = -EIO;
1518                 goto read_fail;
1519         }
1520         root->commit_root = btrfs_root_node(root);
1521 out:
1522         btrfs_free_path(path);
1523         return root;
1524
1525 read_fail:
1526         free_extent_buffer(root->node);
1527 find_fail:
1528         kfree(root);
1529 alloc_fail:
1530         root = ERR_PTR(ret);
1531         goto out;
1532 }
1533
1534 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1535                                       struct btrfs_key *location)
1536 {
1537         struct btrfs_root *root;
1538
1539         root = btrfs_read_tree_root(tree_root, location);
1540         if (IS_ERR(root))
1541                 return root;
1542
1543         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1544                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1545                 btrfs_check_and_init_root_item(&root->root_item);
1546         }
1547
1548         return root;
1549 }
1550
1551 int btrfs_init_fs_root(struct btrfs_root *root)
1552 {
1553         int ret;
1554         struct btrfs_subvolume_writers *writers;
1555
1556         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1557         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1558                                         GFP_NOFS);
1559         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1560                 ret = -ENOMEM;
1561                 goto fail;
1562         }
1563
1564         writers = btrfs_alloc_subvolume_writers();
1565         if (IS_ERR(writers)) {
1566                 ret = PTR_ERR(writers);
1567                 goto fail;
1568         }
1569         root->subv_writers = writers;
1570
1571         btrfs_init_free_ino_ctl(root);
1572         spin_lock_init(&root->ino_cache_lock);
1573         init_waitqueue_head(&root->ino_cache_wait);
1574
1575         ret = get_anon_bdev(&root->anon_dev);
1576         if (ret)
1577                 goto free_writers;
1578         return 0;
1579
1580 free_writers:
1581         btrfs_free_subvolume_writers(root->subv_writers);
1582 fail:
1583         kfree(root->free_ino_ctl);
1584         kfree(root->free_ino_pinned);
1585         return ret;
1586 }
1587
1588 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1589                                                u64 root_id)
1590 {
1591         struct btrfs_root *root;
1592
1593         spin_lock(&fs_info->fs_roots_radix_lock);
1594         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1595                                  (unsigned long)root_id);
1596         spin_unlock(&fs_info->fs_roots_radix_lock);
1597         return root;
1598 }
1599
1600 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1601                          struct btrfs_root *root)
1602 {
1603         int ret;
1604
1605         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1606         if (ret)
1607                 return ret;
1608
1609         spin_lock(&fs_info->fs_roots_radix_lock);
1610         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1611                                 (unsigned long)root->root_key.objectid,
1612                                 root);
1613         if (ret == 0)
1614                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1615         spin_unlock(&fs_info->fs_roots_radix_lock);
1616         radix_tree_preload_end();
1617
1618         return ret;
1619 }
1620
1621 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1622                                      struct btrfs_key *location,
1623                                      bool check_ref)
1624 {
1625         struct btrfs_root *root;
1626         int ret;
1627
1628         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1629                 return fs_info->tree_root;
1630         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1631                 return fs_info->extent_root;
1632         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1633                 return fs_info->chunk_root;
1634         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1635                 return fs_info->dev_root;
1636         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1637                 return fs_info->csum_root;
1638         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1639                 return fs_info->quota_root ? fs_info->quota_root :
1640                                              ERR_PTR(-ENOENT);
1641         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1642                 return fs_info->uuid_root ? fs_info->uuid_root :
1643                                             ERR_PTR(-ENOENT);
1644 again:
1645         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1646         if (root) {
1647                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1648                         return ERR_PTR(-ENOENT);
1649                 return root;
1650         }
1651
1652         root = btrfs_read_fs_root(fs_info->tree_root, location);
1653         if (IS_ERR(root))
1654                 return root;
1655
1656         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1657                 ret = -ENOENT;
1658                 goto fail;
1659         }
1660
1661         ret = btrfs_init_fs_root(root);
1662         if (ret)
1663                 goto fail;
1664
1665         ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1666                         location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1667         if (ret < 0)
1668                 goto fail;
1669         if (ret == 0)
1670                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1671
1672         ret = btrfs_insert_fs_root(fs_info, root);
1673         if (ret) {
1674                 if (ret == -EEXIST) {
1675                         free_fs_root(root);
1676                         goto again;
1677                 }
1678                 goto fail;
1679         }
1680         return root;
1681 fail:
1682         free_fs_root(root);
1683         return ERR_PTR(ret);
1684 }
1685
1686 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1687 {
1688         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1689         int ret = 0;
1690         struct btrfs_device *device;
1691         struct backing_dev_info *bdi;
1692
1693         rcu_read_lock();
1694         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1695                 if (!device->bdev)
1696                         continue;
1697                 bdi = blk_get_backing_dev_info(device->bdev);
1698                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1699                         ret = 1;
1700                         break;
1701                 }
1702         }
1703         rcu_read_unlock();
1704         return ret;
1705 }
1706
1707 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1708 {
1709         int err;
1710
1711         bdi->capabilities = BDI_CAP_MAP_COPY;
1712         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1713         if (err)
1714                 return err;
1715
1716         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1717         bdi->congested_fn       = btrfs_congested_fn;
1718         bdi->congested_data     = info;
1719         return 0;
1720 }
1721
1722 /*
1723  * called by the kthread helper functions to finally call the bio end_io
1724  * functions.  This is where read checksum verification actually happens
1725  */
1726 static void end_workqueue_fn(struct btrfs_work *work)
1727 {
1728         struct bio *bio;
1729         struct end_io_wq *end_io_wq;
1730         int error;
1731
1732         end_io_wq = container_of(work, struct end_io_wq, work);
1733         bio = end_io_wq->bio;
1734
1735         error = end_io_wq->error;
1736         bio->bi_private = end_io_wq->private;
1737         bio->bi_end_io = end_io_wq->end_io;
1738         kfree(end_io_wq);
1739         bio_endio_nodec(bio, error);
1740 }
1741
1742 static int cleaner_kthread(void *arg)
1743 {
1744         struct btrfs_root *root = arg;
1745         int again;
1746
1747         do {
1748                 again = 0;
1749
1750                 /* Make the cleaner go to sleep early. */
1751                 if (btrfs_need_cleaner_sleep(root))
1752                         goto sleep;
1753
1754                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1755                         goto sleep;
1756
1757                 /*
1758                  * Avoid the problem that we change the status of the fs
1759                  * during the above check and trylock.
1760                  */
1761                 if (btrfs_need_cleaner_sleep(root)) {
1762                         mutex_unlock(&root->fs_info->cleaner_mutex);
1763                         goto sleep;
1764                 }
1765
1766                 btrfs_run_delayed_iputs(root);
1767                 again = btrfs_clean_one_deleted_snapshot(root);
1768                 mutex_unlock(&root->fs_info->cleaner_mutex);
1769
1770                 /*
1771                  * The defragger has dealt with the R/O remount and umount,
1772                  * needn't do anything special here.
1773                  */
1774                 btrfs_run_defrag_inodes(root->fs_info);
1775 sleep:
1776                 if (!try_to_freeze() && !again) {
1777                         set_current_state(TASK_INTERRUPTIBLE);
1778                         if (!kthread_should_stop())
1779                                 schedule();
1780                         __set_current_state(TASK_RUNNING);
1781                 }
1782         } while (!kthread_should_stop());
1783         return 0;
1784 }
1785
1786 static int transaction_kthread(void *arg)
1787 {
1788         struct btrfs_root *root = arg;
1789         struct btrfs_trans_handle *trans;
1790         struct btrfs_transaction *cur;
1791         u64 transid;
1792         unsigned long now;
1793         unsigned long delay;
1794         bool cannot_commit;
1795
1796         do {
1797                 cannot_commit = false;
1798                 delay = HZ * root->fs_info->commit_interval;
1799                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1800
1801                 spin_lock(&root->fs_info->trans_lock);
1802                 cur = root->fs_info->running_transaction;
1803                 if (!cur) {
1804                         spin_unlock(&root->fs_info->trans_lock);
1805                         goto sleep;
1806                 }
1807
1808                 now = get_seconds();
1809                 if (cur->state < TRANS_STATE_BLOCKED &&
1810                     (now < cur->start_time ||
1811                      now - cur->start_time < root->fs_info->commit_interval)) {
1812                         spin_unlock(&root->fs_info->trans_lock);
1813                         delay = HZ * 5;
1814                         goto sleep;
1815                 }
1816                 transid = cur->transid;
1817                 spin_unlock(&root->fs_info->trans_lock);
1818
1819                 /* If the file system is aborted, this will always fail. */
1820                 trans = btrfs_attach_transaction(root);
1821                 if (IS_ERR(trans)) {
1822                         if (PTR_ERR(trans) != -ENOENT)
1823                                 cannot_commit = true;
1824                         goto sleep;
1825                 }
1826                 if (transid == trans->transid) {
1827                         btrfs_commit_transaction(trans, root);
1828                 } else {
1829                         btrfs_end_transaction(trans, root);
1830                 }
1831 sleep:
1832                 wake_up_process(root->fs_info->cleaner_kthread);
1833                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1834
1835                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1836                                       &root->fs_info->fs_state)))
1837                         btrfs_cleanup_transaction(root);
1838                 if (!try_to_freeze()) {
1839                         set_current_state(TASK_INTERRUPTIBLE);
1840                         if (!kthread_should_stop() &&
1841                             (!btrfs_transaction_blocked(root->fs_info) ||
1842                              cannot_commit))
1843                                 schedule_timeout(delay);
1844                         __set_current_state(TASK_RUNNING);
1845                 }
1846         } while (!kthread_should_stop());
1847         return 0;
1848 }
1849
1850 /*
1851  * this will find the highest generation in the array of
1852  * root backups.  The index of the highest array is returned,
1853  * or -1 if we can't find anything.
1854  *
1855  * We check to make sure the array is valid by comparing the
1856  * generation of the latest  root in the array with the generation
1857  * in the super block.  If they don't match we pitch it.
1858  */
1859 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1860 {
1861         u64 cur;
1862         int newest_index = -1;
1863         struct btrfs_root_backup *root_backup;
1864         int i;
1865
1866         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1867                 root_backup = info->super_copy->super_roots + i;
1868                 cur = btrfs_backup_tree_root_gen(root_backup);
1869                 if (cur == newest_gen)
1870                         newest_index = i;
1871         }
1872
1873         /* check to see if we actually wrapped around */
1874         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1875                 root_backup = info->super_copy->super_roots;
1876                 cur = btrfs_backup_tree_root_gen(root_backup);
1877                 if (cur == newest_gen)
1878                         newest_index = 0;
1879         }
1880         return newest_index;
1881 }
1882
1883
1884 /*
1885  * find the oldest backup so we know where to store new entries
1886  * in the backup array.  This will set the backup_root_index
1887  * field in the fs_info struct
1888  */
1889 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1890                                      u64 newest_gen)
1891 {
1892         int newest_index = -1;
1893
1894         newest_index = find_newest_super_backup(info, newest_gen);
1895         /* if there was garbage in there, just move along */
1896         if (newest_index == -1) {
1897                 info->backup_root_index = 0;
1898         } else {
1899                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1900         }
1901 }
1902
1903 /*
1904  * copy all the root pointers into the super backup array.
1905  * this will bump the backup pointer by one when it is
1906  * done
1907  */
1908 static void backup_super_roots(struct btrfs_fs_info *info)
1909 {
1910         int next_backup;
1911         struct btrfs_root_backup *root_backup;
1912         int last_backup;
1913
1914         next_backup = info->backup_root_index;
1915         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1916                 BTRFS_NUM_BACKUP_ROOTS;
1917
1918         /*
1919          * just overwrite the last backup if we're at the same generation
1920          * this happens only at umount
1921          */
1922         root_backup = info->super_for_commit->super_roots + last_backup;
1923         if (btrfs_backup_tree_root_gen(root_backup) ==
1924             btrfs_header_generation(info->tree_root->node))
1925                 next_backup = last_backup;
1926
1927         root_backup = info->super_for_commit->super_roots + next_backup;
1928
1929         /*
1930          * make sure all of our padding and empty slots get zero filled
1931          * regardless of which ones we use today
1932          */
1933         memset(root_backup, 0, sizeof(*root_backup));
1934
1935         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1936
1937         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1938         btrfs_set_backup_tree_root_gen(root_backup,
1939                                btrfs_header_generation(info->tree_root->node));
1940
1941         btrfs_set_backup_tree_root_level(root_backup,
1942                                btrfs_header_level(info->tree_root->node));
1943
1944         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1945         btrfs_set_backup_chunk_root_gen(root_backup,
1946                                btrfs_header_generation(info->chunk_root->node));
1947         btrfs_set_backup_chunk_root_level(root_backup,
1948                                btrfs_header_level(info->chunk_root->node));
1949
1950         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1951         btrfs_set_backup_extent_root_gen(root_backup,
1952                                btrfs_header_generation(info->extent_root->node));
1953         btrfs_set_backup_extent_root_level(root_backup,
1954                                btrfs_header_level(info->extent_root->node));
1955
1956         /*
1957          * we might commit during log recovery, which happens before we set
1958          * the fs_root.  Make sure it is valid before we fill it in.
1959          */
1960         if (info->fs_root && info->fs_root->node) {
1961                 btrfs_set_backup_fs_root(root_backup,
1962                                          info->fs_root->node->start);
1963                 btrfs_set_backup_fs_root_gen(root_backup,
1964                                btrfs_header_generation(info->fs_root->node));
1965                 btrfs_set_backup_fs_root_level(root_backup,
1966                                btrfs_header_level(info->fs_root->node));
1967         }
1968
1969         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1970         btrfs_set_backup_dev_root_gen(root_backup,
1971                                btrfs_header_generation(info->dev_root->node));
1972         btrfs_set_backup_dev_root_level(root_backup,
1973                                        btrfs_header_level(info->dev_root->node));
1974
1975         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1976         btrfs_set_backup_csum_root_gen(root_backup,
1977                                btrfs_header_generation(info->csum_root->node));
1978         btrfs_set_backup_csum_root_level(root_backup,
1979                                btrfs_header_level(info->csum_root->node));
1980
1981         btrfs_set_backup_total_bytes(root_backup,
1982                              btrfs_super_total_bytes(info->super_copy));
1983         btrfs_set_backup_bytes_used(root_backup,
1984                              btrfs_super_bytes_used(info->super_copy));
1985         btrfs_set_backup_num_devices(root_backup,
1986                              btrfs_super_num_devices(info->super_copy));
1987
1988         /*
1989          * if we don't copy this out to the super_copy, it won't get remembered
1990          * for the next commit
1991          */
1992         memcpy(&info->super_copy->super_roots,
1993                &info->super_for_commit->super_roots,
1994                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1995 }
1996
1997 /*
1998  * this copies info out of the root backup array and back into
1999  * the in-memory super block.  It is meant to help iterate through
2000  * the array, so you send it the number of backups you've already
2001  * tried and the last backup index you used.
2002  *
2003  * this returns -1 when it has tried all the backups
2004  */
2005 static noinline int next_root_backup(struct btrfs_fs_info *info,
2006                                      struct btrfs_super_block *super,
2007                                      int *num_backups_tried, int *backup_index)
2008 {
2009         struct btrfs_root_backup *root_backup;
2010         int newest = *backup_index;
2011
2012         if (*num_backups_tried == 0) {
2013                 u64 gen = btrfs_super_generation(super);
2014
2015                 newest = find_newest_super_backup(info, gen);
2016                 if (newest == -1)
2017                         return -1;
2018
2019                 *backup_index = newest;
2020                 *num_backups_tried = 1;
2021         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2022                 /* we've tried all the backups, all done */
2023                 return -1;
2024         } else {
2025                 /* jump to the next oldest backup */
2026                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2027                         BTRFS_NUM_BACKUP_ROOTS;
2028                 *backup_index = newest;
2029                 *num_backups_tried += 1;
2030         }
2031         root_backup = super->super_roots + newest;
2032
2033         btrfs_set_super_generation(super,
2034                                    btrfs_backup_tree_root_gen(root_backup));
2035         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2036         btrfs_set_super_root_level(super,
2037                                    btrfs_backup_tree_root_level(root_backup));
2038         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2039
2040         /*
2041          * fixme: the total bytes and num_devices need to match or we should
2042          * need a fsck
2043          */
2044         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2045         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2046         return 0;
2047 }
2048
2049 /* helper to cleanup workers */
2050 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2051 {
2052         btrfs_destroy_workqueue(fs_info->fixup_workers);
2053         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2054         btrfs_destroy_workqueue(fs_info->workers);
2055         btrfs_destroy_workqueue(fs_info->endio_workers);
2056         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2057         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2058         btrfs_destroy_workqueue(fs_info->rmw_workers);
2059         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2060         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2061         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2062         btrfs_destroy_workqueue(fs_info->submit_workers);
2063         btrfs_destroy_workqueue(fs_info->delayed_workers);
2064         btrfs_destroy_workqueue(fs_info->caching_workers);
2065         btrfs_destroy_workqueue(fs_info->readahead_workers);
2066         btrfs_destroy_workqueue(fs_info->flush_workers);
2067         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2068         btrfs_destroy_workqueue(fs_info->extent_workers);
2069 }
2070
2071 static void free_root_extent_buffers(struct btrfs_root *root)
2072 {
2073         if (root) {
2074                 free_extent_buffer(root->node);
2075                 free_extent_buffer(root->commit_root);
2076                 root->node = NULL;
2077                 root->commit_root = NULL;
2078         }
2079 }
2080
2081 /* helper to cleanup tree roots */
2082 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2083 {
2084         free_root_extent_buffers(info->tree_root);
2085
2086         free_root_extent_buffers(info->dev_root);
2087         free_root_extent_buffers(info->extent_root);
2088         free_root_extent_buffers(info->csum_root);
2089         free_root_extent_buffers(info->quota_root);
2090         free_root_extent_buffers(info->uuid_root);
2091         if (chunk_root)
2092                 free_root_extent_buffers(info->chunk_root);
2093 }
2094
2095 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2096 {
2097         int ret;
2098         struct btrfs_root *gang[8];
2099         int i;
2100
2101         while (!list_empty(&fs_info->dead_roots)) {
2102                 gang[0] = list_entry(fs_info->dead_roots.next,
2103                                      struct btrfs_root, root_list);
2104                 list_del(&gang[0]->root_list);
2105
2106                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2107                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2108                 } else {
2109                         free_extent_buffer(gang[0]->node);
2110                         free_extent_buffer(gang[0]->commit_root);
2111                         btrfs_put_fs_root(gang[0]);
2112                 }
2113         }
2114
2115         while (1) {
2116                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2117                                              (void **)gang, 0,
2118                                              ARRAY_SIZE(gang));
2119                 if (!ret)
2120                         break;
2121                 for (i = 0; i < ret; i++)
2122                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2123         }
2124
2125         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2126                 btrfs_free_log_root_tree(NULL, fs_info);
2127                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2128                                             fs_info->pinned_extents);
2129         }
2130 }
2131
2132 int open_ctree(struct super_block *sb,
2133                struct btrfs_fs_devices *fs_devices,
2134                char *options)
2135 {
2136         u32 sectorsize;
2137         u32 nodesize;
2138         u32 blocksize;
2139         u32 stripesize;
2140         u64 generation;
2141         u64 features;
2142         struct btrfs_key location;
2143         struct buffer_head *bh;
2144         struct btrfs_super_block *disk_super;
2145         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2146         struct btrfs_root *tree_root;
2147         struct btrfs_root *extent_root;
2148         struct btrfs_root *csum_root;
2149         struct btrfs_root *chunk_root;
2150         struct btrfs_root *dev_root;
2151         struct btrfs_root *quota_root;
2152         struct btrfs_root *uuid_root;
2153         struct btrfs_root *log_tree_root;
2154         int ret;
2155         int err = -EINVAL;
2156         int num_backups_tried = 0;
2157         int backup_index = 0;
2158         int max_active;
2159         int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2160         bool create_uuid_tree;
2161         bool check_uuid_tree;
2162
2163         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2164         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2165         if (!tree_root || !chunk_root) {
2166                 err = -ENOMEM;
2167                 goto fail;
2168         }
2169
2170         ret = init_srcu_struct(&fs_info->subvol_srcu);
2171         if (ret) {
2172                 err = ret;
2173                 goto fail;
2174         }
2175
2176         ret = setup_bdi(fs_info, &fs_info->bdi);
2177         if (ret) {
2178                 err = ret;
2179                 goto fail_srcu;
2180         }
2181
2182         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2183         if (ret) {
2184                 err = ret;
2185                 goto fail_bdi;
2186         }
2187         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2188                                         (1 + ilog2(nr_cpu_ids));
2189
2190         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2191         if (ret) {
2192                 err = ret;
2193                 goto fail_dirty_metadata_bytes;
2194         }
2195
2196         ret = percpu_counter_init(&fs_info->bio_counter, 0);
2197         if (ret) {
2198                 err = ret;
2199                 goto fail_delalloc_bytes;
2200         }
2201
2202         fs_info->btree_inode = new_inode(sb);
2203         if (!fs_info->btree_inode) {
2204                 err = -ENOMEM;
2205                 goto fail_bio_counter;
2206         }
2207
2208         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2209
2210         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2211         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2212         INIT_LIST_HEAD(&fs_info->trans_list);
2213         INIT_LIST_HEAD(&fs_info->dead_roots);
2214         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2215         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2216         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2217         spin_lock_init(&fs_info->delalloc_root_lock);
2218         spin_lock_init(&fs_info->trans_lock);
2219         spin_lock_init(&fs_info->fs_roots_radix_lock);
2220         spin_lock_init(&fs_info->delayed_iput_lock);
2221         spin_lock_init(&fs_info->defrag_inodes_lock);
2222         spin_lock_init(&fs_info->free_chunk_lock);
2223         spin_lock_init(&fs_info->tree_mod_seq_lock);
2224         spin_lock_init(&fs_info->super_lock);
2225         spin_lock_init(&fs_info->qgroup_op_lock);
2226         spin_lock_init(&fs_info->buffer_lock);
2227         rwlock_init(&fs_info->tree_mod_log_lock);
2228         mutex_init(&fs_info->reloc_mutex);
2229         mutex_init(&fs_info->delalloc_root_mutex);
2230         seqlock_init(&fs_info->profiles_lock);
2231
2232         init_completion(&fs_info->kobj_unregister);
2233         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2234         INIT_LIST_HEAD(&fs_info->space_info);
2235         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2236         btrfs_mapping_init(&fs_info->mapping_tree);
2237         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2238                              BTRFS_BLOCK_RSV_GLOBAL);
2239         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2240                              BTRFS_BLOCK_RSV_DELALLOC);
2241         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2242         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2243         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2244         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2245                              BTRFS_BLOCK_RSV_DELOPS);
2246         atomic_set(&fs_info->nr_async_submits, 0);
2247         atomic_set(&fs_info->async_delalloc_pages, 0);
2248         atomic_set(&fs_info->async_submit_draining, 0);
2249         atomic_set(&fs_info->nr_async_bios, 0);
2250         atomic_set(&fs_info->defrag_running, 0);
2251         atomic_set(&fs_info->qgroup_op_seq, 0);
2252         atomic64_set(&fs_info->tree_mod_seq, 0);
2253         fs_info->sb = sb;
2254         fs_info->max_inline = 8192 * 1024;
2255         fs_info->metadata_ratio = 0;
2256         fs_info->defrag_inodes = RB_ROOT;
2257         fs_info->free_chunk_space = 0;
2258         fs_info->tree_mod_log = RB_ROOT;
2259         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2260         fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2261         /* readahead state */
2262         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2263         spin_lock_init(&fs_info->reada_lock);
2264
2265         fs_info->thread_pool_size = min_t(unsigned long,
2266                                           num_online_cpus() + 2, 8);
2267
2268         INIT_LIST_HEAD(&fs_info->ordered_roots);
2269         spin_lock_init(&fs_info->ordered_root_lock);
2270         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2271                                         GFP_NOFS);
2272         if (!fs_info->delayed_root) {
2273                 err = -ENOMEM;
2274                 goto fail_iput;
2275         }
2276         btrfs_init_delayed_root(fs_info->delayed_root);
2277
2278         mutex_init(&fs_info->scrub_lock);
2279         atomic_set(&fs_info->scrubs_running, 0);
2280         atomic_set(&fs_info->scrub_pause_req, 0);
2281         atomic_set(&fs_info->scrubs_paused, 0);
2282         atomic_set(&fs_info->scrub_cancel_req, 0);
2283         init_waitqueue_head(&fs_info->replace_wait);
2284         init_waitqueue_head(&fs_info->scrub_pause_wait);
2285         fs_info->scrub_workers_refcnt = 0;
2286 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2287         fs_info->check_integrity_print_mask = 0;
2288 #endif
2289
2290         spin_lock_init(&fs_info->balance_lock);
2291         mutex_init(&fs_info->balance_mutex);
2292         atomic_set(&fs_info->balance_running, 0);
2293         atomic_set(&fs_info->balance_pause_req, 0);
2294         atomic_set(&fs_info->balance_cancel_req, 0);
2295         fs_info->balance_ctl = NULL;
2296         init_waitqueue_head(&fs_info->balance_wait_q);
2297         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2298
2299         sb->s_blocksize = 4096;
2300         sb->s_blocksize_bits = blksize_bits(4096);
2301         sb->s_bdi = &fs_info->bdi;
2302
2303         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2304         set_nlink(fs_info->btree_inode, 1);
2305         /*
2306          * we set the i_size on the btree inode to the max possible int.
2307          * the real end of the address space is determined by all of
2308          * the devices in the system
2309          */
2310         fs_info->btree_inode->i_size = OFFSET_MAX;
2311         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2312         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2313
2314         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2315         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2316                              fs_info->btree_inode->i_mapping);
2317         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2318         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2319
2320         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2321
2322         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2323         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2324                sizeof(struct btrfs_key));
2325         set_bit(BTRFS_INODE_DUMMY,
2326                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2327         btrfs_insert_inode_hash(fs_info->btree_inode);
2328
2329         spin_lock_init(&fs_info->block_group_cache_lock);
2330         fs_info->block_group_cache_tree = RB_ROOT;
2331         fs_info->first_logical_byte = (u64)-1;
2332
2333         extent_io_tree_init(&fs_info->freed_extents[0],
2334                              fs_info->btree_inode->i_mapping);
2335         extent_io_tree_init(&fs_info->freed_extents[1],
2336                              fs_info->btree_inode->i_mapping);
2337         fs_info->pinned_extents = &fs_info->freed_extents[0];
2338         fs_info->do_barriers = 1;
2339
2340
2341         mutex_init(&fs_info->ordered_operations_mutex);
2342         mutex_init(&fs_info->ordered_extent_flush_mutex);
2343         mutex_init(&fs_info->tree_log_mutex);
2344         mutex_init(&fs_info->chunk_mutex);
2345         mutex_init(&fs_info->transaction_kthread_mutex);
2346         mutex_init(&fs_info->cleaner_mutex);
2347         mutex_init(&fs_info->volume_mutex);
2348         init_rwsem(&fs_info->commit_root_sem);
2349         init_rwsem(&fs_info->cleanup_work_sem);
2350         init_rwsem(&fs_info->subvol_sem);
2351         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2352         fs_info->dev_replace.lock_owner = 0;
2353         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2354         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2355         mutex_init(&fs_info->dev_replace.lock_management_lock);
2356         mutex_init(&fs_info->dev_replace.lock);
2357
2358         spin_lock_init(&fs_info->qgroup_lock);
2359         mutex_init(&fs_info->qgroup_ioctl_lock);
2360         fs_info->qgroup_tree = RB_ROOT;
2361         fs_info->qgroup_op_tree = RB_ROOT;
2362         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2363         fs_info->qgroup_seq = 1;
2364         fs_info->quota_enabled = 0;
2365         fs_info->pending_quota_state = 0;
2366         fs_info->qgroup_ulist = NULL;
2367         mutex_init(&fs_info->qgroup_rescan_lock);
2368
2369         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2370         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2371
2372         init_waitqueue_head(&fs_info->transaction_throttle);
2373         init_waitqueue_head(&fs_info->transaction_wait);
2374         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2375         init_waitqueue_head(&fs_info->async_submit_wait);
2376
2377         ret = btrfs_alloc_stripe_hash_table(fs_info);
2378         if (ret) {
2379                 err = ret;
2380                 goto fail_alloc;
2381         }
2382
2383         __setup_root(4096, 4096, 4096, tree_root,
2384                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2385
2386         invalidate_bdev(fs_devices->latest_bdev);
2387
2388         /*
2389          * Read super block and check the signature bytes only
2390          */
2391         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2392         if (!bh) {
2393                 err = -EINVAL;
2394                 goto fail_alloc;
2395         }
2396
2397         /*
2398          * We want to check superblock checksum, the type is stored inside.
2399          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2400          */
2401         if (btrfs_check_super_csum(bh->b_data)) {
2402                 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2403                 err = -EINVAL;
2404                 goto fail_alloc;
2405         }
2406
2407         /*
2408          * super_copy is zeroed at allocation time and we never touch the
2409          * following bytes up to INFO_SIZE, the checksum is calculated from
2410          * the whole block of INFO_SIZE
2411          */
2412         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2413         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2414                sizeof(*fs_info->super_for_commit));
2415         brelse(bh);
2416
2417         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2418
2419         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2420         if (ret) {
2421                 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2422                 err = -EINVAL;
2423                 goto fail_alloc;
2424         }
2425
2426         disk_super = fs_info->super_copy;
2427         if (!btrfs_super_root(disk_super))
2428                 goto fail_alloc;
2429
2430         /* check FS state, whether FS is broken. */
2431         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2432                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2433
2434         /*
2435          * run through our array of backup supers and setup
2436          * our ring pointer to the oldest one
2437          */
2438         generation = btrfs_super_generation(disk_super);
2439         find_oldest_super_backup(fs_info, generation);
2440
2441         /*
2442          * In the long term, we'll store the compression type in the super
2443          * block, and it'll be used for per file compression control.
2444          */
2445         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2446
2447         ret = btrfs_parse_options(tree_root, options);
2448         if (ret) {
2449                 err = ret;
2450                 goto fail_alloc;
2451         }
2452
2453         features = btrfs_super_incompat_flags(disk_super) &
2454                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2455         if (features) {
2456                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2457                        "unsupported optional features (%Lx).\n",
2458                        features);
2459                 err = -EINVAL;
2460                 goto fail_alloc;
2461         }
2462
2463         /*
2464          * Leafsize and nodesize were always equal, this is only a sanity check.
2465          */
2466         if (le32_to_cpu(disk_super->__unused_leafsize) !=
2467             btrfs_super_nodesize(disk_super)) {
2468                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2469                        "blocksizes don't match.  node %d leaf %d\n",
2470                        btrfs_super_nodesize(disk_super),
2471                        le32_to_cpu(disk_super->__unused_leafsize));
2472                 err = -EINVAL;
2473                 goto fail_alloc;
2474         }
2475         if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2476                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2477                        "blocksize (%d) was too large\n",
2478                        btrfs_super_nodesize(disk_super));
2479                 err = -EINVAL;
2480                 goto fail_alloc;
2481         }
2482
2483         features = btrfs_super_incompat_flags(disk_super);
2484         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2485         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2486                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2487
2488         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2489                 printk(KERN_ERR "BTRFS: has skinny extents\n");
2490
2491         /*
2492          * flag our filesystem as having big metadata blocks if
2493          * they are bigger than the page size
2494          */
2495         if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2496                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2497                         printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2498                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2499         }
2500
2501         nodesize = btrfs_super_nodesize(disk_super);
2502         sectorsize = btrfs_super_sectorsize(disk_super);
2503         stripesize = btrfs_super_stripesize(disk_super);
2504         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2505         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2506
2507         /*
2508          * mixed block groups end up with duplicate but slightly offset
2509          * extent buffers for the same range.  It leads to corruptions
2510          */
2511         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2512             (sectorsize != nodesize)) {
2513                 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2514                                 "are not allowed for mixed block groups on %s\n",
2515                                 sb->s_id);
2516                 goto fail_alloc;
2517         }
2518
2519         /*
2520          * Needn't use the lock because there is no other task which will
2521          * update the flag.
2522          */
2523         btrfs_set_super_incompat_flags(disk_super, features);
2524
2525         features = btrfs_super_compat_ro_flags(disk_super) &
2526                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2527         if (!(sb->s_flags & MS_RDONLY) && features) {
2528                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2529                        "unsupported option features (%Lx).\n",
2530                        features);
2531                 err = -EINVAL;
2532                 goto fail_alloc;
2533         }
2534
2535         max_active = fs_info->thread_pool_size;
2536
2537         fs_info->workers =
2538                 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2539                                       max_active, 16);
2540
2541         fs_info->delalloc_workers =
2542                 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2543
2544         fs_info->flush_workers =
2545                 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2546
2547         fs_info->caching_workers =
2548                 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2549
2550         /*
2551          * a higher idle thresh on the submit workers makes it much more
2552          * likely that bios will be send down in a sane order to the
2553          * devices
2554          */
2555         fs_info->submit_workers =
2556                 btrfs_alloc_workqueue("submit", flags,
2557                                       min_t(u64, fs_devices->num_devices,
2558                                             max_active), 64);
2559
2560         fs_info->fixup_workers =
2561                 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2562
2563         /*
2564          * endios are largely parallel and should have a very
2565          * low idle thresh
2566          */
2567         fs_info->endio_workers =
2568                 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2569         fs_info->endio_meta_workers =
2570                 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2571         fs_info->endio_meta_write_workers =
2572                 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2573         fs_info->endio_raid56_workers =
2574                 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2575         fs_info->rmw_workers =
2576                 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2577         fs_info->endio_write_workers =
2578                 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2579         fs_info->endio_freespace_worker =
2580                 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2581         fs_info->delayed_workers =
2582                 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2583         fs_info->readahead_workers =
2584                 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2585         fs_info->qgroup_rescan_workers =
2586                 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2587         fs_info->extent_workers =
2588                 btrfs_alloc_workqueue("extent-refs", flags,
2589                                       min_t(u64, fs_devices->num_devices,
2590                                             max_active), 8);
2591
2592         if (!(fs_info->workers && fs_info->delalloc_workers &&
2593               fs_info->submit_workers && fs_info->flush_workers &&
2594               fs_info->endio_workers && fs_info->endio_meta_workers &&
2595               fs_info->endio_meta_write_workers &&
2596               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2597               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2598               fs_info->caching_workers && fs_info->readahead_workers &&
2599               fs_info->fixup_workers && fs_info->delayed_workers &&
2600               fs_info->extent_workers &&
2601               fs_info->qgroup_rescan_workers)) {
2602                 err = -ENOMEM;
2603                 goto fail_sb_buffer;
2604         }
2605
2606         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2607         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2608                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2609
2610         tree_root->nodesize = nodesize;
2611         tree_root->sectorsize = sectorsize;
2612         tree_root->stripesize = stripesize;
2613
2614         sb->s_blocksize = sectorsize;
2615         sb->s_blocksize_bits = blksize_bits(sectorsize);
2616
2617         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2618                 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2619                 goto fail_sb_buffer;
2620         }
2621
2622         if (sectorsize != PAGE_SIZE) {
2623                 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2624                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2625                 goto fail_sb_buffer;
2626         }
2627
2628         mutex_lock(&fs_info->chunk_mutex);
2629         ret = btrfs_read_sys_array(tree_root);
2630         mutex_unlock(&fs_info->chunk_mutex);
2631         if (ret) {
2632                 printk(KERN_WARNING "BTRFS: failed to read the system "
2633                        "array on %s\n", sb->s_id);
2634                 goto fail_sb_buffer;
2635         }
2636
2637         blocksize = tree_root->nodesize;
2638         generation = btrfs_super_chunk_root_generation(disk_super);
2639
2640         __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2641                      fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2642
2643         chunk_root->node = read_tree_block(chunk_root,
2644                                            btrfs_super_chunk_root(disk_super),
2645                                            blocksize, generation);
2646         if (!chunk_root->node ||
2647             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2648                 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2649                        sb->s_id);
2650                 goto fail_tree_roots;
2651         }
2652         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2653         chunk_root->commit_root = btrfs_root_node(chunk_root);
2654
2655         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2656            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2657
2658         ret = btrfs_read_chunk_tree(chunk_root);
2659         if (ret) {
2660                 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2661                        sb->s_id);
2662                 goto fail_tree_roots;
2663         }
2664
2665         /*
2666          * keep the device that is marked to be the target device for the
2667          * dev_replace procedure
2668          */
2669         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2670
2671         if (!fs_devices->latest_bdev) {
2672                 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2673                        sb->s_id);
2674                 goto fail_tree_roots;
2675         }
2676
2677 retry_root_backup:
2678         blocksize = tree_root->nodesize;
2679         generation = btrfs_super_generation(disk_super);
2680
2681         tree_root->node = read_tree_block(tree_root,
2682                                           btrfs_super_root(disk_super),
2683                                           blocksize, generation);
2684         if (!tree_root->node ||
2685             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2686                 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2687                        sb->s_id);
2688
2689                 goto recovery_tree_root;
2690         }
2691
2692         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2693         tree_root->commit_root = btrfs_root_node(tree_root);
2694         btrfs_set_root_refs(&tree_root->root_item, 1);
2695
2696         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2697         location.type = BTRFS_ROOT_ITEM_KEY;
2698         location.offset = 0;
2699
2700         extent_root = btrfs_read_tree_root(tree_root, &location);
2701         if (IS_ERR(extent_root)) {
2702                 ret = PTR_ERR(extent_root);
2703                 goto recovery_tree_root;
2704         }
2705         set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
2706         fs_info->extent_root = extent_root;
2707
2708         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2709         dev_root = btrfs_read_tree_root(tree_root, &location);
2710         if (IS_ERR(dev_root)) {
2711                 ret = PTR_ERR(dev_root);
2712                 goto recovery_tree_root;
2713         }
2714         set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
2715         fs_info->dev_root = dev_root;
2716         btrfs_init_devices_late(fs_info);
2717
2718         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2719         csum_root = btrfs_read_tree_root(tree_root, &location);
2720         if (IS_ERR(csum_root)) {
2721                 ret = PTR_ERR(csum_root);
2722                 goto recovery_tree_root;
2723         }
2724         set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
2725         fs_info->csum_root = csum_root;
2726
2727         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2728         quota_root = btrfs_read_tree_root(tree_root, &location);
2729         if (!IS_ERR(quota_root)) {
2730                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
2731                 fs_info->quota_enabled = 1;
2732                 fs_info->pending_quota_state = 1;
2733                 fs_info->quota_root = quota_root;
2734         }
2735
2736         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2737         uuid_root = btrfs_read_tree_root(tree_root, &location);
2738         if (IS_ERR(uuid_root)) {
2739                 ret = PTR_ERR(uuid_root);
2740                 if (ret != -ENOENT)
2741                         goto recovery_tree_root;
2742                 create_uuid_tree = true;
2743                 check_uuid_tree = false;
2744         } else {
2745                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
2746                 fs_info->uuid_root = uuid_root;
2747                 create_uuid_tree = false;
2748                 check_uuid_tree =
2749                     generation != btrfs_super_uuid_tree_generation(disk_super);
2750         }
2751
2752         fs_info->generation = generation;
2753         fs_info->last_trans_committed = generation;
2754
2755         ret = btrfs_recover_balance(fs_info);
2756         if (ret) {
2757                 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2758                 goto fail_block_groups;
2759         }
2760
2761         ret = btrfs_init_dev_stats(fs_info);
2762         if (ret) {
2763                 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2764                        ret);
2765                 goto fail_block_groups;
2766         }
2767
2768         ret = btrfs_init_dev_replace(fs_info);
2769         if (ret) {
2770                 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2771                 goto fail_block_groups;
2772         }
2773
2774         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2775
2776         ret = btrfs_sysfs_add_one(fs_info);
2777         if (ret) {
2778                 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2779                 goto fail_block_groups;
2780         }
2781
2782         ret = btrfs_init_space_info(fs_info);
2783         if (ret) {
2784                 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2785                 goto fail_sysfs;
2786         }
2787
2788         ret = btrfs_read_block_groups(extent_root);
2789         if (ret) {
2790                 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2791                 goto fail_sysfs;
2792         }
2793         fs_info->num_tolerated_disk_barrier_failures =
2794                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2795         if (fs_info->fs_devices->missing_devices >
2796              fs_info->num_tolerated_disk_barrier_failures &&
2797             !(sb->s_flags & MS_RDONLY)) {
2798                 printk(KERN_WARNING "BTRFS: "
2799                         "too many missing devices, writeable mount is not allowed\n");
2800                 goto fail_sysfs;
2801         }
2802
2803         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2804                                                "btrfs-cleaner");
2805         if (IS_ERR(fs_info->cleaner_kthread))
2806                 goto fail_sysfs;
2807
2808         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2809                                                    tree_root,
2810                                                    "btrfs-transaction");
2811         if (IS_ERR(fs_info->transaction_kthread))
2812                 goto fail_cleaner;
2813
2814         if (!btrfs_test_opt(tree_root, SSD) &&
2815             !btrfs_test_opt(tree_root, NOSSD) &&
2816             !fs_info->fs_devices->rotating) {
2817                 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2818                        "mode\n");
2819                 btrfs_set_opt(fs_info->mount_opt, SSD);
2820         }
2821
2822         /* Set the real inode map cache flag */
2823         if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2824                 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2825
2826 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2827         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2828                 ret = btrfsic_mount(tree_root, fs_devices,
2829                                     btrfs_test_opt(tree_root,
2830                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2831                                     1 : 0,
2832                                     fs_info->check_integrity_print_mask);
2833                 if (ret)
2834                         printk(KERN_WARNING "BTRFS: failed to initialize"
2835                                " integrity check module %s\n", sb->s_id);
2836         }
2837 #endif
2838         ret = btrfs_read_qgroup_config(fs_info);
2839         if (ret)
2840                 goto fail_trans_kthread;
2841
2842         /* do not make disk changes in broken FS */
2843         if (btrfs_super_log_root(disk_super) != 0) {
2844                 u64 bytenr = btrfs_super_log_root(disk_super);
2845
2846                 if (fs_devices->rw_devices == 0) {
2847                         printk(KERN_WARNING "BTRFS: log replay required "
2848                                "on RO media\n");
2849                         err = -EIO;
2850                         goto fail_qgroup;
2851                 }
2852                 blocksize = tree_root->nodesize;
2853
2854                 log_tree_root = btrfs_alloc_root(fs_info);
2855                 if (!log_tree_root) {
2856                         err = -ENOMEM;
2857                         goto fail_qgroup;
2858                 }
2859
2860                 __setup_root(nodesize, sectorsize, stripesize,
2861                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2862
2863                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2864                                                       blocksize,
2865                                                       generation + 1);
2866                 if (!log_tree_root->node ||
2867                     !extent_buffer_uptodate(log_tree_root->node)) {
2868                         printk(KERN_ERR "BTRFS: failed to read log tree\n");
2869                         free_extent_buffer(log_tree_root->node);
2870                         kfree(log_tree_root);
2871                         goto fail_qgroup;
2872                 }
2873                 /* returns with log_tree_root freed on success */
2874                 ret = btrfs_recover_log_trees(log_tree_root);
2875                 if (ret) {
2876                         btrfs_error(tree_root->fs_info, ret,
2877                                     "Failed to recover log tree");
2878                         free_extent_buffer(log_tree_root->node);
2879                         kfree(log_tree_root);
2880                         goto fail_qgroup;
2881                 }
2882
2883                 if (sb->s_flags & MS_RDONLY) {
2884                         ret = btrfs_commit_super(tree_root);
2885                         if (ret)
2886                                 goto fail_qgroup;
2887                 }
2888         }
2889
2890         ret = btrfs_find_orphan_roots(tree_root);
2891         if (ret)
2892                 goto fail_qgroup;
2893
2894         if (!(sb->s_flags & MS_RDONLY)) {
2895                 ret = btrfs_cleanup_fs_roots(fs_info);
2896                 if (ret)
2897                         goto fail_qgroup;
2898
2899                 mutex_lock(&fs_info->cleaner_mutex);
2900                 ret = btrfs_recover_relocation(tree_root);
2901                 mutex_unlock(&fs_info->cleaner_mutex);
2902                 if (ret < 0) {
2903                         printk(KERN_WARNING
2904                                "BTRFS: failed to recover relocation\n");
2905                         err = -EINVAL;
2906                         goto fail_qgroup;
2907                 }
2908         }
2909
2910         location.objectid = BTRFS_FS_TREE_OBJECTID;
2911         location.type = BTRFS_ROOT_ITEM_KEY;
2912         location.offset = 0;
2913
2914         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2915         if (IS_ERR(fs_info->fs_root)) {
2916                 err = PTR_ERR(fs_info->fs_root);
2917                 goto fail_qgroup;
2918         }
2919
2920         if (sb->s_flags & MS_RDONLY)
2921                 return 0;
2922
2923         down_read(&fs_info->cleanup_work_sem);
2924         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2925             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2926                 up_read(&fs_info->cleanup_work_sem);
2927                 close_ctree(tree_root);
2928                 return ret;
2929         }
2930         up_read(&fs_info->cleanup_work_sem);
2931
2932         ret = btrfs_resume_balance_async(fs_info);
2933         if (ret) {
2934                 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2935                 close_ctree(tree_root);
2936                 return ret;
2937         }
2938
2939         ret = btrfs_resume_dev_replace_async(fs_info);
2940         if (ret) {
2941                 pr_warn("BTRFS: failed to resume dev_replace\n");
2942                 close_ctree(tree_root);
2943                 return ret;
2944         }
2945
2946         btrfs_qgroup_rescan_resume(fs_info);
2947
2948         if (create_uuid_tree) {
2949                 pr_info("BTRFS: creating UUID tree\n");
2950                 ret = btrfs_create_uuid_tree(fs_info);
2951                 if (ret) {
2952                         pr_warn("BTRFS: failed to create the UUID tree %d\n",
2953                                 ret);
2954                         close_ctree(tree_root);
2955                         return ret;
2956                 }
2957         } else if (check_uuid_tree ||
2958                    btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2959                 pr_info("BTRFS: checking UUID tree\n");
2960                 ret = btrfs_check_uuid_tree(fs_info);
2961                 if (ret) {
2962                         pr_warn("BTRFS: failed to check the UUID tree %d\n",
2963                                 ret);
2964                         close_ctree(tree_root);
2965                         return ret;
2966                 }
2967         } else {
2968                 fs_info->update_uuid_tree_gen = 1;
2969         }
2970
2971         return 0;
2972
2973 fail_qgroup:
2974         btrfs_free_qgroup_config(fs_info);
2975 fail_trans_kthread:
2976         kthread_stop(fs_info->transaction_kthread);
2977         btrfs_cleanup_transaction(fs_info->tree_root);
2978         btrfs_free_fs_roots(fs_info);
2979 fail_cleaner:
2980         kthread_stop(fs_info->cleaner_kthread);
2981
2982         /*
2983          * make sure we're done with the btree inode before we stop our
2984          * kthreads
2985          */
2986         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2987
2988 fail_sysfs:
2989         btrfs_sysfs_remove_one(fs_info);
2990
2991 fail_block_groups:
2992         btrfs_put_block_group_cache(fs_info);
2993         btrfs_free_block_groups(fs_info);
2994
2995 fail_tree_roots:
2996         free_root_pointers(fs_info, 1);
2997         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2998
2999 fail_sb_buffer:
3000         btrfs_stop_all_workers(fs_info);
3001 fail_alloc:
3002 fail_iput:
3003         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3004
3005         iput(fs_info->btree_inode);
3006 fail_bio_counter:
3007         percpu_counter_destroy(&fs_info->bio_counter);
3008 fail_delalloc_bytes:
3009         percpu_counter_destroy(&fs_info->delalloc_bytes);
3010 fail_dirty_metadata_bytes:
3011         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3012 fail_bdi:
3013         bdi_destroy(&fs_info->bdi);
3014 fail_srcu:
3015         cleanup_srcu_struct(&fs_info->subvol_srcu);
3016 fail:
3017         btrfs_free_stripe_hash_table(fs_info);
3018         btrfs_close_devices(fs_info->fs_devices);
3019         return err;
3020
3021 recovery_tree_root:
3022         if (!btrfs_test_opt(tree_root, RECOVERY))
3023                 goto fail_tree_roots;
3024
3025         free_root_pointers(fs_info, 0);
3026
3027         /* don't use the log in recovery mode, it won't be valid */
3028         btrfs_set_super_log_root(disk_super, 0);
3029
3030         /* we can't trust the free space cache either */
3031         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3032
3033         ret = next_root_backup(fs_info, fs_info->super_copy,
3034                                &num_backups_tried, &backup_index);
3035         if (ret == -1)
3036                 goto fail_block_groups;
3037         goto retry_root_backup;
3038 }
3039
3040 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3041 {
3042         if (uptodate) {
3043                 set_buffer_uptodate(bh);
3044         } else {
3045                 struct btrfs_device *device = (struct btrfs_device *)
3046                         bh->b_private;
3047
3048                 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3049                                           "I/O error on %s\n",
3050                                           rcu_str_deref(device->name));
3051                 /* note, we dont' set_buffer_write_io_error because we have
3052                  * our own ways of dealing with the IO errors
3053                  */
3054                 clear_buffer_uptodate(bh);
3055                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3056         }
3057         unlock_buffer(bh);
3058         put_bh(bh);
3059 }
3060
3061 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3062 {
3063         struct buffer_head *bh;
3064         struct buffer_head *latest = NULL;
3065         struct btrfs_super_block *super;
3066         int i;
3067         u64 transid = 0;
3068         u64 bytenr;
3069
3070         /* we would like to check all the supers, but that would make
3071          * a btrfs mount succeed after a mkfs from a different FS.
3072          * So, we need to add a special mount option to scan for
3073          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3074          */
3075         for (i = 0; i < 1; i++) {
3076                 bytenr = btrfs_sb_offset(i);
3077                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3078                                         i_size_read(bdev->bd_inode))
3079                         break;
3080                 bh = __bread(bdev, bytenr / 4096,
3081                                         BTRFS_SUPER_INFO_SIZE);
3082                 if (!bh)
3083                         continue;
3084
3085                 super = (struct btrfs_super_block *)bh->b_data;
3086                 if (btrfs_super_bytenr(super) != bytenr ||
3087                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3088                         brelse(bh);
3089                         continue;
3090                 }
3091
3092                 if (!latest || btrfs_super_generation(super) > transid) {
3093                         brelse(latest);
3094                         latest = bh;
3095                         transid = btrfs_super_generation(super);
3096                 } else {
3097                         brelse(bh);
3098                 }
3099         }
3100         return latest;
3101 }
3102
3103 /*
3104  * this should be called twice, once with wait == 0 and
3105  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3106  * we write are pinned.
3107  *
3108  * They are released when wait == 1 is done.
3109  * max_mirrors must be the same for both runs, and it indicates how
3110  * many supers on this one device should be written.
3111  *
3112  * max_mirrors == 0 means to write them all.
3113  */
3114 static int write_dev_supers(struct btrfs_device *device,
3115                             struct btrfs_super_block *sb,
3116                             int do_barriers, int wait, int max_mirrors)
3117 {
3118         struct buffer_head *bh;
3119         int i;
3120         int ret;
3121         int errors = 0;
3122         u32 crc;
3123         u64 bytenr;
3124
3125         if (max_mirrors == 0)
3126                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3127
3128         for (i = 0; i < max_mirrors; i++) {
3129                 bytenr = btrfs_sb_offset(i);
3130                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3131                     device->commit_total_bytes)
3132                         break;
3133
3134                 if (wait) {
3135                         bh = __find_get_block(device->bdev, bytenr / 4096,
3136                                               BTRFS_SUPER_INFO_SIZE);
3137                         if (!bh) {
3138                                 errors++;
3139                                 continue;
3140                         }
3141                         wait_on_buffer(bh);
3142                         if (!buffer_uptodate(bh))
3143                                 errors++;
3144
3145                         /* drop our reference */
3146                         brelse(bh);
3147
3148                         /* drop the reference from the wait == 0 run */
3149                         brelse(bh);
3150                         continue;
3151                 } else {
3152                         btrfs_set_super_bytenr(sb, bytenr);
3153
3154                         crc = ~(u32)0;
3155                         crc = btrfs_csum_data((char *)sb +
3156                                               BTRFS_CSUM_SIZE, crc,
3157                                               BTRFS_SUPER_INFO_SIZE -
3158                                               BTRFS_CSUM_SIZE);
3159                         btrfs_csum_final(crc, sb->csum);
3160
3161                         /*
3162                          * one reference for us, and we leave it for the
3163                          * caller
3164                          */
3165                         bh = __getblk(device->bdev, bytenr / 4096,
3166                                       BTRFS_SUPER_INFO_SIZE);
3167                         if (!bh) {
3168                                 printk(KERN_ERR "BTRFS: couldn't get super "
3169                                        "buffer head for bytenr %Lu\n", bytenr);
3170                                 errors++;
3171                                 continue;
3172                         }
3173
3174                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3175
3176                         /* one reference for submit_bh */
3177                         get_bh(bh);
3178
3179                         set_buffer_uptodate(bh);
3180                         lock_buffer(bh);
3181                         bh->b_end_io = btrfs_end_buffer_write_sync;
3182                         bh->b_private = device;
3183                 }
3184
3185                 /*
3186                  * we fua the first super.  The others we allow
3187                  * to go down lazy.
3188                  */
3189                 if (i == 0)
3190                         ret = btrfsic_submit_bh(WRITE_FUA, bh);
3191                 else
3192                         ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3193                 if (ret)
3194                         errors++;
3195         }
3196         return errors < i ? 0 : -1;
3197 }
3198
3199 /*
3200  * endio for the write_dev_flush, this will wake anyone waiting
3201  * for the barrier when it is done
3202  */
3203 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3204 {
3205         if (err) {
3206                 if (err == -EOPNOTSUPP)
3207                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3208                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3209         }
3210         if (bio->bi_private)
3211                 complete(bio->bi_private);
3212         bio_put(bio);
3213 }
3214
3215 /*
3216  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3217  * sent down.  With wait == 1, it waits for the previous flush.
3218  *
3219  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3220  * capable
3221  */
3222 static int write_dev_flush(struct btrfs_device *device, int wait)
3223 {
3224         struct bio *bio;
3225         int ret = 0;
3226
3227         if (device->nobarriers)
3228                 return 0;
3229
3230         if (wait) {
3231                 bio = device->flush_bio;
3232                 if (!bio)
3233                         return 0;
3234
3235                 wait_for_completion(&device->flush_wait);
3236
3237                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3238                         printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3239                                       rcu_str_deref(device->name));
3240                         device->nobarriers = 1;
3241                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3242                         ret = -EIO;
3243                         btrfs_dev_stat_inc_and_print(device,
3244                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3245                 }
3246
3247                 /* drop the reference from the wait == 0 run */
3248                 bio_put(bio);
3249                 device->flush_bio = NULL;
3250
3251                 return ret;
3252         }
3253
3254         /*
3255          * one reference for us, and we leave it for the
3256          * caller
3257          */
3258         device->flush_bio = NULL;
3259         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3260         if (!bio)
3261                 return -ENOMEM;
3262
3263         bio->bi_end_io = btrfs_end_empty_barrier;
3264         bio->bi_bdev = device->bdev;
3265         init_completion(&device->flush_wait);
3266         bio->bi_private = &device->flush_wait;
3267         device->flush_bio = bio;
3268
3269         bio_get(bio);
3270         btrfsic_submit_bio(WRITE_FLUSH, bio);
3271
3272         return 0;
3273 }
3274
3275 /*
3276  * send an empty flush down to each device in parallel,
3277  * then wait for them
3278  */
3279 static int barrier_all_devices(struct btrfs_fs_info *info)
3280 {
3281         struct list_head *head;
3282         struct btrfs_device *dev;
3283         int errors_send = 0;
3284         int errors_wait = 0;
3285         int ret;
3286
3287         /* send down all the barriers */
3288         head = &info->fs_devices->devices;
3289         list_for_each_entry_rcu(dev, head, dev_list) {
3290                 if (dev->missing)
3291                         continue;
3292                 if (!dev->bdev) {
3293                         errors_send++;
3294                         continue;
3295                 }
3296                 if (!dev->in_fs_metadata || !dev->writeable)
3297                         continue;
3298
3299                 ret = write_dev_flush(dev, 0);
3300                 if (ret)
3301                         errors_send++;
3302         }
3303
3304         /* wait for all the barriers */
3305         list_for_each_entry_rcu(dev, head, dev_list) {
3306                 if (dev->missing)
3307                         continue;
3308                 if (!dev->bdev) {
3309                         errors_wait++;
3310                         continue;
3311                 }
3312                 if (!dev->in_fs_metadata || !dev->writeable)
3313                         continue;
3314
3315                 ret = write_dev_flush(dev, 1);
3316                 if (ret)
3317                         errors_wait++;
3318         }
3319         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3320             errors_wait > info->num_tolerated_disk_barrier_failures)
3321                 return -EIO;
3322         return 0;
3323 }
3324
3325 int btrfs_calc_num_tolerated_disk_barrier_failures(
3326         struct btrfs_fs_info *fs_info)
3327 {
3328         struct btrfs_ioctl_space_info space;
3329         struct btrfs_space_info *sinfo;
3330         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3331                        BTRFS_BLOCK_GROUP_SYSTEM,
3332                        BTRFS_BLOCK_GROUP_METADATA,
3333                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3334         int num_types = 4;
3335         int i;
3336         int c;
3337         int num_tolerated_disk_barrier_failures =
3338                 (int)fs_info->fs_devices->num_devices;
3339
3340         for (i = 0; i < num_types; i++) {
3341                 struct btrfs_space_info *tmp;
3342
3343                 sinfo = NULL;
3344                 rcu_read_lock();
3345                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3346                         if (tmp->flags == types[i]) {
3347                                 sinfo = tmp;
3348                                 break;
3349                         }
3350                 }
3351                 rcu_read_unlock();
3352
3353                 if (!sinfo)
3354                         continue;
3355
3356                 down_read(&sinfo->groups_sem);
3357                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3358                         if (!list_empty(&sinfo->block_groups[c])) {
3359                                 u64 flags;
3360
3361                                 btrfs_get_block_group_info(
3362                                         &sinfo->block_groups[c], &space);
3363                                 if (space.total_bytes == 0 ||
3364                                     space.used_bytes == 0)
3365                                         continue;
3366                                 flags = space.flags;
3367                                 /*
3368                                  * return
3369                                  * 0: if dup, single or RAID0 is configured for
3370                                  *    any of metadata, system or data, else
3371                                  * 1: if RAID5 is configured, or if RAID1 or
3372                                  *    RAID10 is configured and only two mirrors
3373                                  *    are used, else
3374                                  * 2: if RAID6 is configured, else
3375                                  * num_mirrors - 1: if RAID1 or RAID10 is
3376                                  *                  configured and more than
3377                                  *                  2 mirrors are used.
3378                                  */
3379                                 if (num_tolerated_disk_barrier_failures > 0 &&
3380                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3381                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3382                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3383                                       == 0)))
3384                                         num_tolerated_disk_barrier_failures = 0;
3385                                 else if (num_tolerated_disk_barrier_failures > 1) {
3386                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3387                                             BTRFS_BLOCK_GROUP_RAID5 |
3388                                             BTRFS_BLOCK_GROUP_RAID10)) {
3389                                                 num_tolerated_disk_barrier_failures = 1;
3390                                         } else if (flags &
3391                                                    BTRFS_BLOCK_GROUP_RAID6) {
3392                                                 num_tolerated_disk_barrier_failures = 2;
3393                                         }
3394                                 }
3395                         }
3396                 }
3397                 up_read(&sinfo->groups_sem);
3398         }
3399
3400         return num_tolerated_disk_barrier_failures;
3401 }
3402
3403 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3404 {
3405         struct list_head *head;
3406         struct btrfs_device *dev;
3407         struct btrfs_super_block *sb;
3408         struct btrfs_dev_item *dev_item;
3409         int ret;
3410         int do_barriers;
3411         int max_errors;
3412         int total_errors = 0;
3413         u64 flags;
3414
3415         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3416         backup_super_roots(root->fs_info);
3417
3418         sb = root->fs_info->super_for_commit;
3419         dev_item = &sb->dev_item;
3420
3421         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3422         head = &root->fs_info->fs_devices->devices;
3423         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3424
3425         if (do_barriers) {
3426                 ret = barrier_all_devices(root->fs_info);
3427                 if (ret) {
3428                         mutex_unlock(
3429                                 &root->fs_info->fs_devices->device_list_mutex);
3430                         btrfs_error(root->fs_info, ret,
3431                                     "errors while submitting device barriers.");
3432                         return ret;
3433                 }
3434         }
3435
3436         list_for_each_entry_rcu(dev, head, dev_list) {
3437                 if (!dev->bdev) {
3438                         total_errors++;
3439                         continue;
3440                 }
3441                 if (!dev->in_fs_metadata || !dev->writeable)
3442                         continue;
3443
3444                 btrfs_set_stack_device_generation(dev_item, 0);
3445                 btrfs_set_stack_device_type(dev_item, dev->type);
3446                 btrfs_set_stack_device_id(dev_item, dev->devid);
3447                 btrfs_set_stack_device_total_bytes(dev_item,
3448                                                    dev->commit_total_bytes);
3449                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3450                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3451                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3452                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3453                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3454                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3455
3456                 flags = btrfs_super_flags(sb);
3457                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3458
3459                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3460                 if (ret)
3461                         total_errors++;
3462         }
3463         if (total_errors > max_errors) {
3464                 btrfs_err(root->fs_info, "%d errors while writing supers",
3465                        total_errors);
3466                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3467
3468                 /* FUA is masked off if unsupported and can't be the reason */
3469                 btrfs_error(root->fs_info, -EIO,
3470                             "%d errors while writing supers", total_errors);
3471                 return -EIO;
3472         }
3473
3474         total_errors = 0;
3475         list_for_each_entry_rcu(dev, head, dev_list) {
3476                 if (!dev->bdev)
3477                         continue;
3478                 if (!dev->in_fs_metadata || !dev->writeable)
3479                         continue;
3480
3481                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3482                 if (ret)
3483                         total_errors++;
3484         }
3485         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3486         if (total_errors > max_errors) {
3487                 btrfs_error(root->fs_info, -EIO,
3488                             "%d errors while writing supers", total_errors);
3489                 return -EIO;
3490         }
3491         return 0;
3492 }
3493
3494 int write_ctree_super(struct btrfs_trans_handle *trans,
3495                       struct btrfs_root *root, int max_mirrors)
3496 {
3497         return write_all_supers(root, max_mirrors);
3498 }
3499
3500 /* Drop a fs root from the radix tree and free it. */
3501 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3502                                   struct btrfs_root *root)
3503 {
3504         spin_lock(&fs_info->fs_roots_radix_lock);
3505         radix_tree_delete(&fs_info->fs_roots_radix,
3506                           (unsigned long)root->root_key.objectid);
3507         spin_unlock(&fs_info->fs_roots_radix_lock);
3508
3509         if (btrfs_root_refs(&root->root_item) == 0)
3510                 synchronize_srcu(&fs_info->subvol_srcu);
3511
3512         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3513                 btrfs_free_log(NULL, root);
3514
3515         if (root->free_ino_pinned)
3516                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3517         if (root->free_ino_ctl)
3518                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3519         free_fs_root(root);
3520 }
3521
3522 static void free_fs_root(struct btrfs_root *root)
3523 {
3524         iput(root->ino_cache_inode);
3525         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3526         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3527         root->orphan_block_rsv = NULL;
3528         if (root->anon_dev)
3529                 free_anon_bdev(root->anon_dev);
3530         if (root->subv_writers)
3531                 btrfs_free_subvolume_writers(root->subv_writers);
3532         free_extent_buffer(root->node);
3533         free_extent_buffer(root->commit_root);
3534         kfree(root->free_ino_ctl);
3535         kfree(root->free_ino_pinned);
3536         kfree(root->name);
3537         btrfs_put_fs_root(root);
3538 }
3539
3540 void btrfs_free_fs_root(struct btrfs_root *root)
3541 {
3542         free_fs_root(root);
3543 }
3544
3545 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3546 {
3547         u64 root_objectid = 0;
3548         struct btrfs_root *gang[8];
3549         int i = 0;
3550         int err = 0;
3551         unsigned int ret = 0;
3552         int index;
3553
3554         while (1) {
3555                 index = srcu_read_lock(&fs_info->subvol_srcu);
3556                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3557                                              (void **)gang, root_objectid,
3558                                              ARRAY_SIZE(gang));
3559                 if (!ret) {
3560                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3561                         break;
3562                 }
3563                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3564
3565                 for (i = 0; i < ret; i++) {
3566                         /* Avoid to grab roots in dead_roots */
3567                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3568                                 gang[i] = NULL;
3569                                 continue;
3570                         }
3571                         /* grab all the search result for later use */
3572                         gang[i] = btrfs_grab_fs_root(gang[i]);
3573                 }
3574                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3575
3576                 for (i = 0; i < ret; i++) {
3577                         if (!gang[i])
3578                                 continue;
3579                         root_objectid = gang[i]->root_key.objectid;
3580                         err = btrfs_orphan_cleanup(gang[i]);
3581                         if (err)
3582                                 break;
3583                         btrfs_put_fs_root(gang[i]);
3584                 }
3585                 root_objectid++;
3586         }
3587
3588         /* release the uncleaned roots due to error */
3589         for (; i < ret; i++) {
3590                 if (gang[i])
3591                         btrfs_put_fs_root(gang[i]);
3592         }
3593         return err;
3594 }
3595
3596 int btrfs_commit_super(struct btrfs_root *root)
3597 {
3598         struct btrfs_trans_handle *trans;
3599
3600         mutex_lock(&root->fs_info->cleaner_mutex);
3601         btrfs_run_delayed_iputs(root);
3602         mutex_unlock(&root->fs_info->cleaner_mutex);
3603         wake_up_process(root->fs_info->cleaner_kthread);
3604
3605         /* wait until ongoing cleanup work done */
3606         down_write(&root->fs_info->cleanup_work_sem);
3607         up_write(&root->fs_info->cleanup_work_sem);
3608
3609         trans = btrfs_join_transaction(root);
3610         if (IS_ERR(trans))
3611                 return PTR_ERR(trans);
3612         return btrfs_commit_transaction(trans, root);
3613 }
3614
3615 void close_ctree(struct btrfs_root *root)
3616 {
3617         struct btrfs_fs_info *fs_info = root->fs_info;
3618         int ret;
3619
3620         fs_info->closing = 1;
3621         smp_mb();
3622
3623         /* wait for the uuid_scan task to finish */
3624         down(&fs_info->uuid_tree_rescan_sem);
3625         /* avoid complains from lockdep et al., set sem back to initial state */
3626         up(&fs_info->uuid_tree_rescan_sem);
3627
3628         /* pause restriper - we want to resume on mount */
3629         btrfs_pause_balance(fs_info);
3630
3631         btrfs_dev_replace_suspend_for_unmount(fs_info);
3632
3633         btrfs_scrub_cancel(fs_info);
3634
3635         /* wait for any defraggers to finish */
3636         wait_event(fs_info->transaction_wait,
3637                    (atomic_read(&fs_info->defrag_running) == 0));
3638
3639         /* clear out the rbtree of defraggable inodes */
3640         btrfs_cleanup_defrag_inodes(fs_info);
3641
3642         cancel_work_sync(&fs_info->async_reclaim_work);
3643
3644         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3645                 ret = btrfs_commit_super(root);
3646                 if (ret)
3647                         btrfs_err(root->fs_info, "commit super ret %d", ret);
3648         }
3649
3650         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3651                 btrfs_error_commit_super(root);
3652
3653         kthread_stop(fs_info->transaction_kthread);
3654         kthread_stop(fs_info->cleaner_kthread);
3655
3656         fs_info->closing = 2;
3657         smp_mb();
3658
3659         btrfs_free_qgroup_config(root->fs_info);
3660
3661         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3662                 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3663                        percpu_counter_sum(&fs_info->delalloc_bytes));
3664         }
3665
3666         btrfs_sysfs_remove_one(fs_info);
3667
3668         btrfs_free_fs_roots(fs_info);
3669
3670         btrfs_put_block_group_cache(fs_info);
3671
3672         btrfs_free_block_groups(fs_info);
3673
3674         /*
3675          * we must make sure there is not any read request to
3676          * submit after we stopping all workers.
3677          */
3678         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3679         btrfs_stop_all_workers(fs_info);
3680
3681         free_root_pointers(fs_info, 1);
3682
3683         iput(fs_info->btree_inode);
3684
3685 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3686         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3687                 btrfsic_unmount(root, fs_info->fs_devices);
3688 #endif
3689
3690         btrfs_close_devices(fs_info->fs_devices);
3691         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3692
3693         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3694         percpu_counter_destroy(&fs_info->delalloc_bytes);
3695         percpu_counter_destroy(&fs_info->bio_counter);
3696         bdi_destroy(&fs_info->bdi);
3697         cleanup_srcu_struct(&fs_info->subvol_srcu);
3698
3699         btrfs_free_stripe_hash_table(fs_info);
3700
3701         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3702         root->orphan_block_rsv = NULL;
3703 }
3704
3705 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3706                           int atomic)
3707 {
3708         int ret;
3709         struct inode *btree_inode = buf->pages[0]->mapping->host;
3710
3711         ret = extent_buffer_uptodate(buf);
3712         if (!ret)
3713                 return ret;
3714
3715         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3716                                     parent_transid, atomic);
3717         if (ret == -EAGAIN)
3718                 return ret;
3719         return !ret;
3720 }
3721
3722 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3723 {
3724         return set_extent_buffer_uptodate(buf);
3725 }
3726
3727 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3728 {
3729         struct btrfs_root *root;
3730         u64 transid = btrfs_header_generation(buf);
3731         int was_dirty;
3732
3733 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3734         /*
3735          * This is a fast path so only do this check if we have sanity tests
3736          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3737          * outside of the sanity tests.
3738          */
3739         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3740                 return;
3741 #endif
3742         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3743         btrfs_assert_tree_locked(buf);
3744         if (transid != root->fs_info->generation)
3745                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3746                        "found %llu running %llu\n",
3747                         buf->start, transid, root->fs_info->generation);
3748         was_dirty = set_extent_buffer_dirty(buf);
3749         if (!was_dirty)
3750                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3751                                      buf->len,
3752                                      root->fs_info->dirty_metadata_batch);
3753 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3754         if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3755                 btrfs_print_leaf(root, buf);
3756                 ASSERT(0);
3757         }
3758 #endif
3759 }
3760
3761 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3762                                         int flush_delayed)
3763 {
3764         /*
3765          * looks as though older kernels can get into trouble with
3766          * this code, they end up stuck in balance_dirty_pages forever
3767          */
3768         int ret;
3769
3770         if (current->flags & PF_MEMALLOC)
3771                 return;
3772
3773         if (flush_delayed)
3774                 btrfs_balance_delayed_items(root);
3775
3776         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3777                                      BTRFS_DIRTY_METADATA_THRESH);
3778         if (ret > 0) {
3779                 balance_dirty_pages_ratelimited(
3780                                    root->fs_info->btree_inode->i_mapping);
3781         }
3782         return;
3783 }
3784
3785 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3786 {
3787         __btrfs_btree_balance_dirty(root, 1);
3788 }
3789
3790 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3791 {
3792         __btrfs_btree_balance_dirty(root, 0);
3793 }
3794
3795 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3796 {
3797         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3798         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3799 }
3800
3801 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3802                               int read_only)
3803 {
3804         /*
3805          * Placeholder for checks
3806          */
3807         return 0;
3808 }
3809
3810 static void btrfs_error_commit_super(struct btrfs_root *root)
3811 {
3812         mutex_lock(&root->fs_info->cleaner_mutex);
3813         btrfs_run_delayed_iputs(root);
3814         mutex_unlock(&root->fs_info->cleaner_mutex);
3815
3816         down_write(&root->fs_info->cleanup_work_sem);
3817         up_write(&root->fs_info->cleanup_work_sem);
3818
3819         /* cleanup FS via transaction */
3820         btrfs_cleanup_transaction(root);
3821 }
3822
3823 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3824 {
3825         struct btrfs_ordered_extent *ordered;
3826
3827         spin_lock(&root->ordered_extent_lock);
3828         /*
3829          * This will just short circuit the ordered completion stuff which will
3830          * make sure the ordered extent gets properly cleaned up.
3831          */
3832         list_for_each_entry(ordered, &root->ordered_extents,
3833                             root_extent_list)
3834                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3835         spin_unlock(&root->ordered_extent_lock);
3836 }
3837
3838 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3839 {
3840         struct btrfs_root *root;
3841         struct list_head splice;
3842
3843         INIT_LIST_HEAD(&splice);
3844
3845         spin_lock(&fs_info->ordered_root_lock);
3846         list_splice_init(&fs_info->ordered_roots, &splice);
3847         while (!list_empty(&splice)) {
3848                 root = list_first_entry(&splice, struct btrfs_root,
3849                                         ordered_root);
3850                 list_move_tail(&root->ordered_root,
3851                                &fs_info->ordered_roots);
3852
3853                 spin_unlock(&fs_info->ordered_root_lock);
3854                 btrfs_destroy_ordered_extents(root);
3855
3856                 cond_resched();
3857                 spin_lock(&fs_info->ordered_root_lock);
3858         }
3859         spin_unlock(&fs_info->ordered_root_lock);
3860 }
3861
3862 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3863                                       struct btrfs_root *root)
3864 {
3865         struct rb_node *node;
3866         struct btrfs_delayed_ref_root *delayed_refs;
3867         struct btrfs_delayed_ref_node *ref;
3868         int ret = 0;
3869
3870         delayed_refs = &trans->delayed_refs;
3871
3872         spin_lock(&delayed_refs->lock);
3873         if (atomic_read(&delayed_refs->num_entries) == 0) {
3874                 spin_unlock(&delayed_refs->lock);
3875                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
3876                 return ret;
3877         }
3878
3879         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3880                 struct btrfs_delayed_ref_head *head;
3881                 bool pin_bytes = false;
3882
3883                 head = rb_entry(node, struct btrfs_delayed_ref_head,
3884                                 href_node);
3885                 if (!mutex_trylock(&head->mutex)) {
3886                         atomic_inc(&head->node.refs);
3887                         spin_unlock(&delayed_refs->lock);
3888
3889                         mutex_lock(&head->mutex);
3890                         mutex_unlock(&head->mutex);
3891                         btrfs_put_delayed_ref(&head->node);
3892                         spin_lock(&delayed_refs->lock);
3893                         continue;
3894                 }
3895                 spin_lock(&head->lock);
3896                 while ((node = rb_first(&head->ref_root)) != NULL) {
3897                         ref = rb_entry(node, struct btrfs_delayed_ref_node,
3898                                        rb_node);
3899                         ref->in_tree = 0;
3900                         rb_erase(&ref->rb_node, &head->ref_root);
3901                         atomic_dec(&delayed_refs->num_entries);
3902                         btrfs_put_delayed_ref(ref);
3903                 }
3904                 if (head->must_insert_reserved)
3905                         pin_bytes = true;
3906                 btrfs_free_delayed_extent_op(head->extent_op);
3907                 delayed_refs->num_heads--;
3908                 if (head->processing == 0)
3909                         delayed_refs->num_heads_ready--;
3910                 atomic_dec(&delayed_refs->num_entries);
3911                 head->node.in_tree = 0;
3912                 rb_erase(&head->href_node, &delayed_refs->href_root);
3913                 spin_unlock(&head->lock);
3914                 spin_unlock(&delayed_refs->lock);
3915                 mutex_unlock(&head->mutex);
3916
3917                 if (pin_bytes)
3918                         btrfs_pin_extent(root, head->node.bytenr,
3919                                          head->node.num_bytes, 1);
3920                 btrfs_put_delayed_ref(&head->node);
3921                 cond_resched();
3922                 spin_lock(&delayed_refs->lock);
3923         }
3924
3925         spin_unlock(&delayed_refs->lock);
3926
3927         return ret;
3928 }
3929
3930 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3931 {
3932         struct btrfs_inode *btrfs_inode;
3933         struct list_head splice;
3934
3935         INIT_LIST_HEAD(&splice);
3936
3937         spin_lock(&root->delalloc_lock);
3938         list_splice_init(&root->delalloc_inodes, &splice);
3939
3940         while (!list_empty(&splice)) {
3941                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3942                                                delalloc_inodes);
3943
3944                 list_del_init(&btrfs_inode->delalloc_inodes);
3945                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3946                           &btrfs_inode->runtime_flags);
3947                 spin_unlock(&root->delalloc_lock);
3948
3949                 btrfs_invalidate_inodes(btrfs_inode->root);
3950
3951                 spin_lock(&root->delalloc_lock);
3952         }
3953
3954         spin_unlock(&root->delalloc_lock);
3955 }
3956
3957 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3958 {
3959         struct btrfs_root *root;
3960         struct list_head splice;
3961
3962         INIT_LIST_HEAD(&splice);
3963
3964         spin_lock(&fs_info->delalloc_root_lock);
3965         list_splice_init(&fs_info->delalloc_roots, &splice);
3966         while (!list_empty(&splice)) {
3967                 root = list_first_entry(&splice, struct btrfs_root,
3968                                          delalloc_root);
3969                 list_del_init(&root->delalloc_root);
3970                 root = btrfs_grab_fs_root(root);
3971                 BUG_ON(!root);
3972                 spin_unlock(&fs_info->delalloc_root_lock);
3973
3974                 btrfs_destroy_delalloc_inodes(root);
3975                 btrfs_put_fs_root(root);
3976
3977                 spin_lock(&fs_info->delalloc_root_lock);
3978         }
3979         spin_unlock(&fs_info->delalloc_root_lock);
3980 }
3981
3982 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3983                                         struct extent_io_tree *dirty_pages,
3984                                         int mark)
3985 {
3986         int ret;
3987         struct extent_buffer *eb;
3988         u64 start = 0;
3989         u64 end;
3990
3991         while (1) {
3992                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3993                                             mark, NULL);
3994                 if (ret)
3995                         break;
3996
3997                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3998                 while (start <= end) {
3999                         eb = btrfs_find_tree_block(root, start,
4000                                                    root->nodesize);
4001                         start += root->nodesize;
4002                         if (!eb)
4003                                 continue;
4004                         wait_on_extent_buffer_writeback(eb);
4005
4006                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4007                                                &eb->bflags))
4008                                 clear_extent_buffer_dirty(eb);
4009                         free_extent_buffer_stale(eb);
4010                 }
4011         }
4012
4013         return ret;
4014 }
4015
4016 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4017                                        struct extent_io_tree *pinned_extents)
4018 {
4019         struct extent_io_tree *unpin;
4020         u64 start;
4021         u64 end;
4022         int ret;
4023         bool loop = true;
4024
4025         unpin = pinned_extents;
4026 again:
4027         while (1) {
4028                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4029                                             EXTENT_DIRTY, NULL);
4030                 if (ret)
4031                         break;
4032
4033                 /* opt_discard */
4034                 if (btrfs_test_opt(root, DISCARD))
4035                         ret = btrfs_error_discard_extent(root, start,
4036                                                          end + 1 - start,
4037                                                          NULL);
4038
4039                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4040                 btrfs_error_unpin_extent_range(root, start, end);
4041                 cond_resched();
4042         }
4043
4044         if (loop) {
4045                 if (unpin == &root->fs_info->freed_extents[0])
4046                         unpin = &root->fs_info->freed_extents[1];
4047                 else
4048                         unpin = &root->fs_info->freed_extents[0];
4049                 loop = false;
4050                 goto again;
4051         }
4052
4053         return 0;
4054 }
4055
4056 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4057                                    struct btrfs_root *root)
4058 {
4059         btrfs_destroy_delayed_refs(cur_trans, root);
4060
4061         cur_trans->state = TRANS_STATE_COMMIT_START;
4062         wake_up(&root->fs_info->transaction_blocked_wait);
4063
4064         cur_trans->state = TRANS_STATE_UNBLOCKED;
4065         wake_up(&root->fs_info->transaction_wait);
4066
4067         btrfs_destroy_delayed_inodes(root);
4068         btrfs_assert_delayed_root_empty(root);
4069
4070         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4071                                      EXTENT_DIRTY);
4072         btrfs_destroy_pinned_extent(root,
4073                                     root->fs_info->pinned_extents);
4074
4075         cur_trans->state =TRANS_STATE_COMPLETED;
4076         wake_up(&cur_trans->commit_wait);
4077
4078         /*
4079         memset(cur_trans, 0, sizeof(*cur_trans));
4080         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4081         */
4082 }
4083
4084 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4085 {
4086         struct btrfs_transaction *t;
4087
4088         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4089
4090         spin_lock(&root->fs_info->trans_lock);
4091         while (!list_empty(&root->fs_info->trans_list)) {
4092                 t = list_first_entry(&root->fs_info->trans_list,
4093                                      struct btrfs_transaction, list);
4094                 if (t->state >= TRANS_STATE_COMMIT_START) {
4095                         atomic_inc(&t->use_count);
4096                         spin_unlock(&root->fs_info->trans_lock);
4097                         btrfs_wait_for_commit(root, t->transid);
4098                         btrfs_put_transaction(t);
4099                         spin_lock(&root->fs_info->trans_lock);
4100                         continue;
4101                 }
4102                 if (t == root->fs_info->running_transaction) {
4103                         t->state = TRANS_STATE_COMMIT_DOING;
4104                         spin_unlock(&root->fs_info->trans_lock);
4105                         /*
4106                          * We wait for 0 num_writers since we don't hold a trans
4107                          * handle open currently for this transaction.
4108                          */
4109                         wait_event(t->writer_wait,
4110                                    atomic_read(&t->num_writers) == 0);
4111                 } else {
4112                         spin_unlock(&root->fs_info->trans_lock);
4113                 }
4114                 btrfs_cleanup_one_transaction(t, root);
4115
4116                 spin_lock(&root->fs_info->trans_lock);
4117                 if (t == root->fs_info->running_transaction)
4118                         root->fs_info->running_transaction = NULL;
4119                 list_del_init(&t->list);
4120                 spin_unlock(&root->fs_info->trans_lock);
4121
4122                 btrfs_put_transaction(t);
4123                 trace_btrfs_transaction_commit(root);
4124                 spin_lock(&root->fs_info->trans_lock);
4125         }
4126         spin_unlock(&root->fs_info->trans_lock);
4127         btrfs_destroy_all_ordered_extents(root->fs_info);
4128         btrfs_destroy_delayed_inodes(root);
4129         btrfs_assert_delayed_root_empty(root);
4130         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4131         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4132         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4133
4134         return 0;
4135 }
4136
4137 static struct extent_io_ops btree_extent_io_ops = {
4138         .readpage_end_io_hook = btree_readpage_end_io_hook,
4139         .readpage_io_failed_hook = btree_io_failed_hook,
4140         .submit_bio_hook = btree_submit_bio_hook,
4141         /* note we're sharing with inode.c for the merge bio hook */
4142         .merge_bio_hook = btrfs_merge_bio_hook,
4143 };