Btrfs: share stop worker code
[cascardo/linux.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50
51 #ifdef CONFIG_X86
52 #include <asm/cpufeature.h>
53 #endif
54
55 static struct extent_io_ops btree_extent_io_ops;
56 static void end_workqueue_fn(struct btrfs_work *work);
57 static void free_fs_root(struct btrfs_root *root);
58 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
59                                     int read_only);
60 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
61                                              struct btrfs_root *root);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64                                       struct btrfs_root *root);
65 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
67 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
68                                         struct extent_io_tree *dirty_pages,
69                                         int mark);
70 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
71                                        struct extent_io_tree *pinned_extents);
72
73 /*
74  * end_io_wq structs are used to do processing in task context when an IO is
75  * complete.  This is used during reads to verify checksums, and it is used
76  * by writes to insert metadata for new file extents after IO is complete.
77  */
78 struct end_io_wq {
79         struct bio *bio;
80         bio_end_io_t *end_io;
81         void *private;
82         struct btrfs_fs_info *info;
83         int error;
84         int metadata;
85         struct list_head list;
86         struct btrfs_work work;
87 };
88
89 /*
90  * async submit bios are used to offload expensive checksumming
91  * onto the worker threads.  They checksum file and metadata bios
92  * just before they are sent down the IO stack.
93  */
94 struct async_submit_bio {
95         struct inode *inode;
96         struct bio *bio;
97         struct list_head list;
98         extent_submit_bio_hook_t *submit_bio_start;
99         extent_submit_bio_hook_t *submit_bio_done;
100         int rw;
101         int mirror_num;
102         unsigned long bio_flags;
103         /*
104          * bio_offset is optional, can be used if the pages in the bio
105          * can't tell us where in the file the bio should go
106          */
107         u64 bio_offset;
108         struct btrfs_work work;
109         int error;
110 };
111
112 /*
113  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
114  * eb, the lockdep key is determined by the btrfs_root it belongs to and
115  * the level the eb occupies in the tree.
116  *
117  * Different roots are used for different purposes and may nest inside each
118  * other and they require separate keysets.  As lockdep keys should be
119  * static, assign keysets according to the purpose of the root as indicated
120  * by btrfs_root->objectid.  This ensures that all special purpose roots
121  * have separate keysets.
122  *
123  * Lock-nesting across peer nodes is always done with the immediate parent
124  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
125  * subclass to avoid triggering lockdep warning in such cases.
126  *
127  * The key is set by the readpage_end_io_hook after the buffer has passed
128  * csum validation but before the pages are unlocked.  It is also set by
129  * btrfs_init_new_buffer on freshly allocated blocks.
130  *
131  * We also add a check to make sure the highest level of the tree is the
132  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
133  * needs update as well.
134  */
135 #ifdef CONFIG_DEBUG_LOCK_ALLOC
136 # if BTRFS_MAX_LEVEL != 8
137 #  error
138 # endif
139
140 static struct btrfs_lockdep_keyset {
141         u64                     id;             /* root objectid */
142         const char              *name_stem;     /* lock name stem */
143         char                    names[BTRFS_MAX_LEVEL + 1][20];
144         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
145 } btrfs_lockdep_keysets[] = {
146         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
147         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
148         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
149         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
150         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
151         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
152         { .id = BTRFS_ORPHAN_OBJECTID,          .name_stem = "orphan"   },
153         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
154         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
155         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
156         { .id = 0,                              .name_stem = "tree"     },
157 };
158
159 void __init btrfs_init_lockdep(void)
160 {
161         int i, j;
162
163         /* initialize lockdep class names */
164         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
165                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
166
167                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
168                         snprintf(ks->names[j], sizeof(ks->names[j]),
169                                  "btrfs-%s-%02d", ks->name_stem, j);
170         }
171 }
172
173 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
174                                     int level)
175 {
176         struct btrfs_lockdep_keyset *ks;
177
178         BUG_ON(level >= ARRAY_SIZE(ks->keys));
179
180         /* find the matching keyset, id 0 is the default entry */
181         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
182                 if (ks->id == objectid)
183                         break;
184
185         lockdep_set_class_and_name(&eb->lock,
186                                    &ks->keys[level], ks->names[level]);
187 }
188
189 #endif
190
191 /*
192  * extents on the btree inode are pretty simple, there's one extent
193  * that covers the entire device
194  */
195 static struct extent_map *btree_get_extent(struct inode *inode,
196                 struct page *page, size_t pg_offset, u64 start, u64 len,
197                 int create)
198 {
199         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
200         struct extent_map *em;
201         int ret;
202
203         read_lock(&em_tree->lock);
204         em = lookup_extent_mapping(em_tree, start, len);
205         if (em) {
206                 em->bdev =
207                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
208                 read_unlock(&em_tree->lock);
209                 goto out;
210         }
211         read_unlock(&em_tree->lock);
212
213         em = alloc_extent_map();
214         if (!em) {
215                 em = ERR_PTR(-ENOMEM);
216                 goto out;
217         }
218         em->start = 0;
219         em->len = (u64)-1;
220         em->block_len = (u64)-1;
221         em->block_start = 0;
222         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
223
224         write_lock(&em_tree->lock);
225         ret = add_extent_mapping(em_tree, em);
226         if (ret == -EEXIST) {
227                 free_extent_map(em);
228                 em = lookup_extent_mapping(em_tree, start, len);
229                 if (!em)
230                         em = ERR_PTR(-EIO);
231         } else if (ret) {
232                 free_extent_map(em);
233                 em = ERR_PTR(ret);
234         }
235         write_unlock(&em_tree->lock);
236
237 out:
238         return em;
239 }
240
241 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
242 {
243         return crc32c(seed, data, len);
244 }
245
246 void btrfs_csum_final(u32 crc, char *result)
247 {
248         put_unaligned_le32(~crc, result);
249 }
250
251 /*
252  * compute the csum for a btree block, and either verify it or write it
253  * into the csum field of the block.
254  */
255 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
256                            int verify)
257 {
258         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
259         char *result = NULL;
260         unsigned long len;
261         unsigned long cur_len;
262         unsigned long offset = BTRFS_CSUM_SIZE;
263         char *kaddr;
264         unsigned long map_start;
265         unsigned long map_len;
266         int err;
267         u32 crc = ~(u32)0;
268         unsigned long inline_result;
269
270         len = buf->len - offset;
271         while (len > 0) {
272                 err = map_private_extent_buffer(buf, offset, 32,
273                                         &kaddr, &map_start, &map_len);
274                 if (err)
275                         return 1;
276                 cur_len = min(len, map_len - (offset - map_start));
277                 crc = btrfs_csum_data(kaddr + offset - map_start,
278                                       crc, cur_len);
279                 len -= cur_len;
280                 offset += cur_len;
281         }
282         if (csum_size > sizeof(inline_result)) {
283                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
284                 if (!result)
285                         return 1;
286         } else {
287                 result = (char *)&inline_result;
288         }
289
290         btrfs_csum_final(crc, result);
291
292         if (verify) {
293                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
294                         u32 val;
295                         u32 found = 0;
296                         memcpy(&found, result, csum_size);
297
298                         read_extent_buffer(buf, &val, 0, csum_size);
299                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
300                                        "failed on %llu wanted %X found %X "
301                                        "level %d\n",
302                                        root->fs_info->sb->s_id,
303                                        (unsigned long long)buf->start, val, found,
304                                        btrfs_header_level(buf));
305                         if (result != (char *)&inline_result)
306                                 kfree(result);
307                         return 1;
308                 }
309         } else {
310                 write_extent_buffer(buf, result, 0, csum_size);
311         }
312         if (result != (char *)&inline_result)
313                 kfree(result);
314         return 0;
315 }
316
317 /*
318  * we can't consider a given block up to date unless the transid of the
319  * block matches the transid in the parent node's pointer.  This is how we
320  * detect blocks that either didn't get written at all or got written
321  * in the wrong place.
322  */
323 static int verify_parent_transid(struct extent_io_tree *io_tree,
324                                  struct extent_buffer *eb, u64 parent_transid,
325                                  int atomic)
326 {
327         struct extent_state *cached_state = NULL;
328         int ret;
329
330         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
331                 return 0;
332
333         if (atomic)
334                 return -EAGAIN;
335
336         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
337                          0, &cached_state);
338         if (extent_buffer_uptodate(eb) &&
339             btrfs_header_generation(eb) == parent_transid) {
340                 ret = 0;
341                 goto out;
342         }
343         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
344                        "found %llu\n",
345                        (unsigned long long)eb->start,
346                        (unsigned long long)parent_transid,
347                        (unsigned long long)btrfs_header_generation(eb));
348         ret = 1;
349         clear_extent_buffer_uptodate(eb);
350 out:
351         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
352                              &cached_state, GFP_NOFS);
353         return ret;
354 }
355
356 /*
357  * helper to read a given tree block, doing retries as required when
358  * the checksums don't match and we have alternate mirrors to try.
359  */
360 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
361                                           struct extent_buffer *eb,
362                                           u64 start, u64 parent_transid)
363 {
364         struct extent_io_tree *io_tree;
365         int failed = 0;
366         int ret;
367         int num_copies = 0;
368         int mirror_num = 0;
369         int failed_mirror = 0;
370
371         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
372         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
373         while (1) {
374                 ret = read_extent_buffer_pages(io_tree, eb, start,
375                                                WAIT_COMPLETE,
376                                                btree_get_extent, mirror_num);
377                 if (!ret) {
378                         if (!verify_parent_transid(io_tree, eb,
379                                                    parent_transid, 0))
380                                 break;
381                         else
382                                 ret = -EIO;
383                 }
384
385                 /*
386                  * This buffer's crc is fine, but its contents are corrupted, so
387                  * there is no reason to read the other copies, they won't be
388                  * any less wrong.
389                  */
390                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
391                         break;
392
393                 num_copies = btrfs_num_copies(root->fs_info,
394                                               eb->start, eb->len);
395                 if (num_copies == 1)
396                         break;
397
398                 if (!failed_mirror) {
399                         failed = 1;
400                         failed_mirror = eb->read_mirror;
401                 }
402
403                 mirror_num++;
404                 if (mirror_num == failed_mirror)
405                         mirror_num++;
406
407                 if (mirror_num > num_copies)
408                         break;
409         }
410
411         if (failed && !ret && failed_mirror)
412                 repair_eb_io_failure(root, eb, failed_mirror);
413
414         return ret;
415 }
416
417 /*
418  * checksum a dirty tree block before IO.  This has extra checks to make sure
419  * we only fill in the checksum field in the first page of a multi-page block
420  */
421
422 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
423 {
424         struct extent_io_tree *tree;
425         u64 start = page_offset(page);
426         u64 found_start;
427         struct extent_buffer *eb;
428
429         tree = &BTRFS_I(page->mapping->host)->io_tree;
430
431         eb = (struct extent_buffer *)page->private;
432         if (page != eb->pages[0])
433                 return 0;
434         found_start = btrfs_header_bytenr(eb);
435         if (found_start != start) {
436                 WARN_ON(1);
437                 return 0;
438         }
439         if (!PageUptodate(page)) {
440                 WARN_ON(1);
441                 return 0;
442         }
443         csum_tree_block(root, eb, 0);
444         return 0;
445 }
446
447 static int check_tree_block_fsid(struct btrfs_root *root,
448                                  struct extent_buffer *eb)
449 {
450         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
451         u8 fsid[BTRFS_UUID_SIZE];
452         int ret = 1;
453
454         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
455                            BTRFS_FSID_SIZE);
456         while (fs_devices) {
457                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
458                         ret = 0;
459                         break;
460                 }
461                 fs_devices = fs_devices->seed;
462         }
463         return ret;
464 }
465
466 #define CORRUPT(reason, eb, root, slot)                         \
467         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
468                "root=%llu, slot=%d\n", reason,                  \
469                (unsigned long long)btrfs_header_bytenr(eb),     \
470                (unsigned long long)root->objectid, slot)
471
472 static noinline int check_leaf(struct btrfs_root *root,
473                                struct extent_buffer *leaf)
474 {
475         struct btrfs_key key;
476         struct btrfs_key leaf_key;
477         u32 nritems = btrfs_header_nritems(leaf);
478         int slot;
479
480         if (nritems == 0)
481                 return 0;
482
483         /* Check the 0 item */
484         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
485             BTRFS_LEAF_DATA_SIZE(root)) {
486                 CORRUPT("invalid item offset size pair", leaf, root, 0);
487                 return -EIO;
488         }
489
490         /*
491          * Check to make sure each items keys are in the correct order and their
492          * offsets make sense.  We only have to loop through nritems-1 because
493          * we check the current slot against the next slot, which verifies the
494          * next slot's offset+size makes sense and that the current's slot
495          * offset is correct.
496          */
497         for (slot = 0; slot < nritems - 1; slot++) {
498                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
499                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
500
501                 /* Make sure the keys are in the right order */
502                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
503                         CORRUPT("bad key order", leaf, root, slot);
504                         return -EIO;
505                 }
506
507                 /*
508                  * Make sure the offset and ends are right, remember that the
509                  * item data starts at the end of the leaf and grows towards the
510                  * front.
511                  */
512                 if (btrfs_item_offset_nr(leaf, slot) !=
513                         btrfs_item_end_nr(leaf, slot + 1)) {
514                         CORRUPT("slot offset bad", leaf, root, slot);
515                         return -EIO;
516                 }
517
518                 /*
519                  * Check to make sure that we don't point outside of the leaf,
520                  * just incase all the items are consistent to eachother, but
521                  * all point outside of the leaf.
522                  */
523                 if (btrfs_item_end_nr(leaf, slot) >
524                     BTRFS_LEAF_DATA_SIZE(root)) {
525                         CORRUPT("slot end outside of leaf", leaf, root, slot);
526                         return -EIO;
527                 }
528         }
529
530         return 0;
531 }
532
533 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
534                                        struct page *page, int max_walk)
535 {
536         struct extent_buffer *eb;
537         u64 start = page_offset(page);
538         u64 target = start;
539         u64 min_start;
540
541         if (start < max_walk)
542                 min_start = 0;
543         else
544                 min_start = start - max_walk;
545
546         while (start >= min_start) {
547                 eb = find_extent_buffer(tree, start, 0);
548                 if (eb) {
549                         /*
550                          * we found an extent buffer and it contains our page
551                          * horray!
552                          */
553                         if (eb->start <= target &&
554                             eb->start + eb->len > target)
555                                 return eb;
556
557                         /* we found an extent buffer that wasn't for us */
558                         free_extent_buffer(eb);
559                         return NULL;
560                 }
561                 if (start == 0)
562                         break;
563                 start -= PAGE_CACHE_SIZE;
564         }
565         return NULL;
566 }
567
568 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
569                                struct extent_state *state, int mirror)
570 {
571         struct extent_io_tree *tree;
572         u64 found_start;
573         int found_level;
574         struct extent_buffer *eb;
575         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
576         int ret = 0;
577         int reads_done;
578
579         if (!page->private)
580                 goto out;
581
582         tree = &BTRFS_I(page->mapping->host)->io_tree;
583         eb = (struct extent_buffer *)page->private;
584
585         /* the pending IO might have been the only thing that kept this buffer
586          * in memory.  Make sure we have a ref for all this other checks
587          */
588         extent_buffer_get(eb);
589
590         reads_done = atomic_dec_and_test(&eb->io_pages);
591         if (!reads_done)
592                 goto err;
593
594         eb->read_mirror = mirror;
595         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
596                 ret = -EIO;
597                 goto err;
598         }
599
600         found_start = btrfs_header_bytenr(eb);
601         if (found_start != eb->start) {
602                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
603                                "%llu %llu\n",
604                                (unsigned long long)found_start,
605                                (unsigned long long)eb->start);
606                 ret = -EIO;
607                 goto err;
608         }
609         if (check_tree_block_fsid(root, eb)) {
610                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
611                                (unsigned long long)eb->start);
612                 ret = -EIO;
613                 goto err;
614         }
615         found_level = btrfs_header_level(eb);
616
617         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
618                                        eb, found_level);
619
620         ret = csum_tree_block(root, eb, 1);
621         if (ret) {
622                 ret = -EIO;
623                 goto err;
624         }
625
626         /*
627          * If this is a leaf block and it is corrupt, set the corrupt bit so
628          * that we don't try and read the other copies of this block, just
629          * return -EIO.
630          */
631         if (found_level == 0 && check_leaf(root, eb)) {
632                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
633                 ret = -EIO;
634         }
635
636         if (!ret)
637                 set_extent_buffer_uptodate(eb);
638 err:
639         if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
640                 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
641                 btree_readahead_hook(root, eb, eb->start, ret);
642         }
643
644         if (ret) {
645                 /*
646                  * our io error hook is going to dec the io pages
647                  * again, we have to make sure it has something
648                  * to decrement
649                  */
650                 atomic_inc(&eb->io_pages);
651                 clear_extent_buffer_uptodate(eb);
652         }
653         free_extent_buffer(eb);
654 out:
655         return ret;
656 }
657
658 static int btree_io_failed_hook(struct page *page, int failed_mirror)
659 {
660         struct extent_buffer *eb;
661         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
662
663         eb = (struct extent_buffer *)page->private;
664         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
665         eb->read_mirror = failed_mirror;
666         atomic_dec(&eb->io_pages);
667         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
668                 btree_readahead_hook(root, eb, eb->start, -EIO);
669         return -EIO;    /* we fixed nothing */
670 }
671
672 static void end_workqueue_bio(struct bio *bio, int err)
673 {
674         struct end_io_wq *end_io_wq = bio->bi_private;
675         struct btrfs_fs_info *fs_info;
676
677         fs_info = end_io_wq->info;
678         end_io_wq->error = err;
679         end_io_wq->work.func = end_workqueue_fn;
680         end_io_wq->work.flags = 0;
681
682         if (bio->bi_rw & REQ_WRITE) {
683                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
684                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
685                                            &end_io_wq->work);
686                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
687                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
688                                            &end_io_wq->work);
689                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
690                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
691                                            &end_io_wq->work);
692                 else
693                         btrfs_queue_worker(&fs_info->endio_write_workers,
694                                            &end_io_wq->work);
695         } else {
696                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
697                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
698                                            &end_io_wq->work);
699                 else if (end_io_wq->metadata)
700                         btrfs_queue_worker(&fs_info->endio_meta_workers,
701                                            &end_io_wq->work);
702                 else
703                         btrfs_queue_worker(&fs_info->endio_workers,
704                                            &end_io_wq->work);
705         }
706 }
707
708 /*
709  * For the metadata arg you want
710  *
711  * 0 - if data
712  * 1 - if normal metadta
713  * 2 - if writing to the free space cache area
714  * 3 - raid parity work
715  */
716 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
717                         int metadata)
718 {
719         struct end_io_wq *end_io_wq;
720         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
721         if (!end_io_wq)
722                 return -ENOMEM;
723
724         end_io_wq->private = bio->bi_private;
725         end_io_wq->end_io = bio->bi_end_io;
726         end_io_wq->info = info;
727         end_io_wq->error = 0;
728         end_io_wq->bio = bio;
729         end_io_wq->metadata = metadata;
730
731         bio->bi_private = end_io_wq;
732         bio->bi_end_io = end_workqueue_bio;
733         return 0;
734 }
735
736 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
737 {
738         unsigned long limit = min_t(unsigned long,
739                                     info->workers.max_workers,
740                                     info->fs_devices->open_devices);
741         return 256 * limit;
742 }
743
744 static void run_one_async_start(struct btrfs_work *work)
745 {
746         struct async_submit_bio *async;
747         int ret;
748
749         async = container_of(work, struct  async_submit_bio, work);
750         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
751                                       async->mirror_num, async->bio_flags,
752                                       async->bio_offset);
753         if (ret)
754                 async->error = ret;
755 }
756
757 static void run_one_async_done(struct btrfs_work *work)
758 {
759         struct btrfs_fs_info *fs_info;
760         struct async_submit_bio *async;
761         int limit;
762
763         async = container_of(work, struct  async_submit_bio, work);
764         fs_info = BTRFS_I(async->inode)->root->fs_info;
765
766         limit = btrfs_async_submit_limit(fs_info);
767         limit = limit * 2 / 3;
768
769         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
770             waitqueue_active(&fs_info->async_submit_wait))
771                 wake_up(&fs_info->async_submit_wait);
772
773         /* If an error occured we just want to clean up the bio and move on */
774         if (async->error) {
775                 bio_endio(async->bio, async->error);
776                 return;
777         }
778
779         async->submit_bio_done(async->inode, async->rw, async->bio,
780                                async->mirror_num, async->bio_flags,
781                                async->bio_offset);
782 }
783
784 static void run_one_async_free(struct btrfs_work *work)
785 {
786         struct async_submit_bio *async;
787
788         async = container_of(work, struct  async_submit_bio, work);
789         kfree(async);
790 }
791
792 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
793                         int rw, struct bio *bio, int mirror_num,
794                         unsigned long bio_flags,
795                         u64 bio_offset,
796                         extent_submit_bio_hook_t *submit_bio_start,
797                         extent_submit_bio_hook_t *submit_bio_done)
798 {
799         struct async_submit_bio *async;
800
801         async = kmalloc(sizeof(*async), GFP_NOFS);
802         if (!async)
803                 return -ENOMEM;
804
805         async->inode = inode;
806         async->rw = rw;
807         async->bio = bio;
808         async->mirror_num = mirror_num;
809         async->submit_bio_start = submit_bio_start;
810         async->submit_bio_done = submit_bio_done;
811
812         async->work.func = run_one_async_start;
813         async->work.ordered_func = run_one_async_done;
814         async->work.ordered_free = run_one_async_free;
815
816         async->work.flags = 0;
817         async->bio_flags = bio_flags;
818         async->bio_offset = bio_offset;
819
820         async->error = 0;
821
822         atomic_inc(&fs_info->nr_async_submits);
823
824         if (rw & REQ_SYNC)
825                 btrfs_set_work_high_prio(&async->work);
826
827         btrfs_queue_worker(&fs_info->workers, &async->work);
828
829         while (atomic_read(&fs_info->async_submit_draining) &&
830               atomic_read(&fs_info->nr_async_submits)) {
831                 wait_event(fs_info->async_submit_wait,
832                            (atomic_read(&fs_info->nr_async_submits) == 0));
833         }
834
835         return 0;
836 }
837
838 static int btree_csum_one_bio(struct bio *bio)
839 {
840         struct bio_vec *bvec = bio->bi_io_vec;
841         int bio_index = 0;
842         struct btrfs_root *root;
843         int ret = 0;
844
845         WARN_ON(bio->bi_vcnt <= 0);
846         while (bio_index < bio->bi_vcnt) {
847                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
848                 ret = csum_dirty_buffer(root, bvec->bv_page);
849                 if (ret)
850                         break;
851                 bio_index++;
852                 bvec++;
853         }
854         return ret;
855 }
856
857 static int __btree_submit_bio_start(struct inode *inode, int rw,
858                                     struct bio *bio, int mirror_num,
859                                     unsigned long bio_flags,
860                                     u64 bio_offset)
861 {
862         /*
863          * when we're called for a write, we're already in the async
864          * submission context.  Just jump into btrfs_map_bio
865          */
866         return btree_csum_one_bio(bio);
867 }
868
869 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
870                                  int mirror_num, unsigned long bio_flags,
871                                  u64 bio_offset)
872 {
873         int ret;
874
875         /*
876          * when we're called for a write, we're already in the async
877          * submission context.  Just jump into btrfs_map_bio
878          */
879         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
880         if (ret)
881                 bio_endio(bio, ret);
882         return ret;
883 }
884
885 static int check_async_write(struct inode *inode, unsigned long bio_flags)
886 {
887         if (bio_flags & EXTENT_BIO_TREE_LOG)
888                 return 0;
889 #ifdef CONFIG_X86
890         if (cpu_has_xmm4_2)
891                 return 0;
892 #endif
893         return 1;
894 }
895
896 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
897                                  int mirror_num, unsigned long bio_flags,
898                                  u64 bio_offset)
899 {
900         int async = check_async_write(inode, bio_flags);
901         int ret;
902
903         if (!(rw & REQ_WRITE)) {
904                 /*
905                  * called for a read, do the setup so that checksum validation
906                  * can happen in the async kernel threads
907                  */
908                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
909                                           bio, 1);
910                 if (ret)
911                         goto out_w_error;
912                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
913                                     mirror_num, 0);
914         } else if (!async) {
915                 ret = btree_csum_one_bio(bio);
916                 if (ret)
917                         goto out_w_error;
918                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
919                                     mirror_num, 0);
920         } else {
921                 /*
922                  * kthread helpers are used to submit writes so that
923                  * checksumming can happen in parallel across all CPUs
924                  */
925                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
926                                           inode, rw, bio, mirror_num, 0,
927                                           bio_offset,
928                                           __btree_submit_bio_start,
929                                           __btree_submit_bio_done);
930         }
931
932         if (ret) {
933 out_w_error:
934                 bio_endio(bio, ret);
935         }
936         return ret;
937 }
938
939 #ifdef CONFIG_MIGRATION
940 static int btree_migratepage(struct address_space *mapping,
941                         struct page *newpage, struct page *page,
942                         enum migrate_mode mode)
943 {
944         /*
945          * we can't safely write a btree page from here,
946          * we haven't done the locking hook
947          */
948         if (PageDirty(page))
949                 return -EAGAIN;
950         /*
951          * Buffers may be managed in a filesystem specific way.
952          * We must have no buffers or drop them.
953          */
954         if (page_has_private(page) &&
955             !try_to_release_page(page, GFP_KERNEL))
956                 return -EAGAIN;
957         return migrate_page(mapping, newpage, page, mode);
958 }
959 #endif
960
961
962 static int btree_writepages(struct address_space *mapping,
963                             struct writeback_control *wbc)
964 {
965         struct extent_io_tree *tree;
966         struct btrfs_fs_info *fs_info;
967         int ret;
968
969         tree = &BTRFS_I(mapping->host)->io_tree;
970         if (wbc->sync_mode == WB_SYNC_NONE) {
971
972                 if (wbc->for_kupdate)
973                         return 0;
974
975                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
976                 /* this is a bit racy, but that's ok */
977                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
978                                              BTRFS_DIRTY_METADATA_THRESH);
979                 if (ret < 0)
980                         return 0;
981         }
982         return btree_write_cache_pages(mapping, wbc);
983 }
984
985 static int btree_readpage(struct file *file, struct page *page)
986 {
987         struct extent_io_tree *tree;
988         tree = &BTRFS_I(page->mapping->host)->io_tree;
989         return extent_read_full_page(tree, page, btree_get_extent, 0);
990 }
991
992 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
993 {
994         if (PageWriteback(page) || PageDirty(page))
995                 return 0;
996         /*
997          * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
998          * slab allocation from alloc_extent_state down the callchain where
999          * it'd hit a BUG_ON as those flags are not allowed.
1000          */
1001         gfp_flags &= ~GFP_SLAB_BUG_MASK;
1002
1003         return try_release_extent_buffer(page, gfp_flags);
1004 }
1005
1006 static void btree_invalidatepage(struct page *page, unsigned long offset)
1007 {
1008         struct extent_io_tree *tree;
1009         tree = &BTRFS_I(page->mapping->host)->io_tree;
1010         extent_invalidatepage(tree, page, offset);
1011         btree_releasepage(page, GFP_NOFS);
1012         if (PagePrivate(page)) {
1013                 printk(KERN_WARNING "btrfs warning page private not zero "
1014                        "on page %llu\n", (unsigned long long)page_offset(page));
1015                 ClearPagePrivate(page);
1016                 set_page_private(page, 0);
1017                 page_cache_release(page);
1018         }
1019 }
1020
1021 static int btree_set_page_dirty(struct page *page)
1022 {
1023 #ifdef DEBUG
1024         struct extent_buffer *eb;
1025
1026         BUG_ON(!PagePrivate(page));
1027         eb = (struct extent_buffer *)page->private;
1028         BUG_ON(!eb);
1029         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1030         BUG_ON(!atomic_read(&eb->refs));
1031         btrfs_assert_tree_locked(eb);
1032 #endif
1033         return __set_page_dirty_nobuffers(page);
1034 }
1035
1036 static const struct address_space_operations btree_aops = {
1037         .readpage       = btree_readpage,
1038         .writepages     = btree_writepages,
1039         .releasepage    = btree_releasepage,
1040         .invalidatepage = btree_invalidatepage,
1041 #ifdef CONFIG_MIGRATION
1042         .migratepage    = btree_migratepage,
1043 #endif
1044         .set_page_dirty = btree_set_page_dirty,
1045 };
1046
1047 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1048                          u64 parent_transid)
1049 {
1050         struct extent_buffer *buf = NULL;
1051         struct inode *btree_inode = root->fs_info->btree_inode;
1052         int ret = 0;
1053
1054         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1055         if (!buf)
1056                 return 0;
1057         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1058                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1059         free_extent_buffer(buf);
1060         return ret;
1061 }
1062
1063 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1064                          int mirror_num, struct extent_buffer **eb)
1065 {
1066         struct extent_buffer *buf = NULL;
1067         struct inode *btree_inode = root->fs_info->btree_inode;
1068         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1069         int ret;
1070
1071         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1072         if (!buf)
1073                 return 0;
1074
1075         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1076
1077         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1078                                        btree_get_extent, mirror_num);
1079         if (ret) {
1080                 free_extent_buffer(buf);
1081                 return ret;
1082         }
1083
1084         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1085                 free_extent_buffer(buf);
1086                 return -EIO;
1087         } else if (extent_buffer_uptodate(buf)) {
1088                 *eb = buf;
1089         } else {
1090                 free_extent_buffer(buf);
1091         }
1092         return 0;
1093 }
1094
1095 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1096                                             u64 bytenr, u32 blocksize)
1097 {
1098         struct inode *btree_inode = root->fs_info->btree_inode;
1099         struct extent_buffer *eb;
1100         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1101                                 bytenr, blocksize);
1102         return eb;
1103 }
1104
1105 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1106                                                  u64 bytenr, u32 blocksize)
1107 {
1108         struct inode *btree_inode = root->fs_info->btree_inode;
1109         struct extent_buffer *eb;
1110
1111         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1112                                  bytenr, blocksize);
1113         return eb;
1114 }
1115
1116
1117 int btrfs_write_tree_block(struct extent_buffer *buf)
1118 {
1119         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1120                                         buf->start + buf->len - 1);
1121 }
1122
1123 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1124 {
1125         return filemap_fdatawait_range(buf->pages[0]->mapping,
1126                                        buf->start, buf->start + buf->len - 1);
1127 }
1128
1129 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1130                                       u32 blocksize, u64 parent_transid)
1131 {
1132         struct extent_buffer *buf = NULL;
1133         int ret;
1134
1135         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1136         if (!buf)
1137                 return NULL;
1138
1139         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1140         return buf;
1141
1142 }
1143
1144 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1145                       struct extent_buffer *buf)
1146 {
1147         struct btrfs_fs_info *fs_info = root->fs_info;
1148
1149         if (btrfs_header_generation(buf) ==
1150             fs_info->running_transaction->transid) {
1151                 btrfs_assert_tree_locked(buf);
1152
1153                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1154                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1155                                              -buf->len,
1156                                              fs_info->dirty_metadata_batch);
1157                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1158                         btrfs_set_lock_blocking(buf);
1159                         clear_extent_buffer_dirty(buf);
1160                 }
1161         }
1162 }
1163
1164 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1165                          u32 stripesize, struct btrfs_root *root,
1166                          struct btrfs_fs_info *fs_info,
1167                          u64 objectid)
1168 {
1169         root->node = NULL;
1170         root->commit_root = NULL;
1171         root->sectorsize = sectorsize;
1172         root->nodesize = nodesize;
1173         root->leafsize = leafsize;
1174         root->stripesize = stripesize;
1175         root->ref_cows = 0;
1176         root->track_dirty = 0;
1177         root->in_radix = 0;
1178         root->orphan_item_inserted = 0;
1179         root->orphan_cleanup_state = 0;
1180
1181         root->objectid = objectid;
1182         root->last_trans = 0;
1183         root->highest_objectid = 0;
1184         root->name = NULL;
1185         root->inode_tree = RB_ROOT;
1186         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1187         root->block_rsv = NULL;
1188         root->orphan_block_rsv = NULL;
1189
1190         INIT_LIST_HEAD(&root->dirty_list);
1191         INIT_LIST_HEAD(&root->root_list);
1192         INIT_LIST_HEAD(&root->logged_list[0]);
1193         INIT_LIST_HEAD(&root->logged_list[1]);
1194         spin_lock_init(&root->orphan_lock);
1195         spin_lock_init(&root->inode_lock);
1196         spin_lock_init(&root->accounting_lock);
1197         spin_lock_init(&root->log_extents_lock[0]);
1198         spin_lock_init(&root->log_extents_lock[1]);
1199         mutex_init(&root->objectid_mutex);
1200         mutex_init(&root->log_mutex);
1201         init_waitqueue_head(&root->log_writer_wait);
1202         init_waitqueue_head(&root->log_commit_wait[0]);
1203         init_waitqueue_head(&root->log_commit_wait[1]);
1204         atomic_set(&root->log_commit[0], 0);
1205         atomic_set(&root->log_commit[1], 0);
1206         atomic_set(&root->log_writers, 0);
1207         atomic_set(&root->log_batch, 0);
1208         atomic_set(&root->orphan_inodes, 0);
1209         root->log_transid = 0;
1210         root->last_log_commit = 0;
1211         extent_io_tree_init(&root->dirty_log_pages,
1212                              fs_info->btree_inode->i_mapping);
1213
1214         memset(&root->root_key, 0, sizeof(root->root_key));
1215         memset(&root->root_item, 0, sizeof(root->root_item));
1216         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1217         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1218         root->defrag_trans_start = fs_info->generation;
1219         init_completion(&root->kobj_unregister);
1220         root->defrag_running = 0;
1221         root->root_key.objectid = objectid;
1222         root->anon_dev = 0;
1223
1224         spin_lock_init(&root->root_item_lock);
1225 }
1226
1227 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1228                                             struct btrfs_fs_info *fs_info,
1229                                             u64 objectid,
1230                                             struct btrfs_root *root)
1231 {
1232         int ret;
1233         u32 blocksize;
1234         u64 generation;
1235
1236         __setup_root(tree_root->nodesize, tree_root->leafsize,
1237                      tree_root->sectorsize, tree_root->stripesize,
1238                      root, fs_info, objectid);
1239         ret = btrfs_find_last_root(tree_root, objectid,
1240                                    &root->root_item, &root->root_key);
1241         if (ret > 0)
1242                 return -ENOENT;
1243         else if (ret < 0)
1244                 return ret;
1245
1246         generation = btrfs_root_generation(&root->root_item);
1247         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1248         root->commit_root = NULL;
1249         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1250                                      blocksize, generation);
1251         if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1252                 free_extent_buffer(root->node);
1253                 root->node = NULL;
1254                 return -EIO;
1255         }
1256         root->commit_root = btrfs_root_node(root);
1257         return 0;
1258 }
1259
1260 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1261 {
1262         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1263         if (root)
1264                 root->fs_info = fs_info;
1265         return root;
1266 }
1267
1268 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1269                                      struct btrfs_fs_info *fs_info,
1270                                      u64 objectid)
1271 {
1272         struct extent_buffer *leaf;
1273         struct btrfs_root *tree_root = fs_info->tree_root;
1274         struct btrfs_root *root;
1275         struct btrfs_key key;
1276         int ret = 0;
1277         u64 bytenr;
1278
1279         root = btrfs_alloc_root(fs_info);
1280         if (!root)
1281                 return ERR_PTR(-ENOMEM);
1282
1283         __setup_root(tree_root->nodesize, tree_root->leafsize,
1284                      tree_root->sectorsize, tree_root->stripesize,
1285                      root, fs_info, objectid);
1286         root->root_key.objectid = objectid;
1287         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1288         root->root_key.offset = 0;
1289
1290         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1291                                       0, objectid, NULL, 0, 0, 0);
1292         if (IS_ERR(leaf)) {
1293                 ret = PTR_ERR(leaf);
1294                 leaf = NULL;
1295                 goto fail;
1296         }
1297
1298         bytenr = leaf->start;
1299         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1300         btrfs_set_header_bytenr(leaf, leaf->start);
1301         btrfs_set_header_generation(leaf, trans->transid);
1302         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1303         btrfs_set_header_owner(leaf, objectid);
1304         root->node = leaf;
1305
1306         write_extent_buffer(leaf, fs_info->fsid,
1307                             (unsigned long)btrfs_header_fsid(leaf),
1308                             BTRFS_FSID_SIZE);
1309         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1310                             (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1311                             BTRFS_UUID_SIZE);
1312         btrfs_mark_buffer_dirty(leaf);
1313
1314         root->commit_root = btrfs_root_node(root);
1315         root->track_dirty = 1;
1316
1317
1318         root->root_item.flags = 0;
1319         root->root_item.byte_limit = 0;
1320         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1321         btrfs_set_root_generation(&root->root_item, trans->transid);
1322         btrfs_set_root_level(&root->root_item, 0);
1323         btrfs_set_root_refs(&root->root_item, 1);
1324         btrfs_set_root_used(&root->root_item, leaf->len);
1325         btrfs_set_root_last_snapshot(&root->root_item, 0);
1326         btrfs_set_root_dirid(&root->root_item, 0);
1327         root->root_item.drop_level = 0;
1328
1329         key.objectid = objectid;
1330         key.type = BTRFS_ROOT_ITEM_KEY;
1331         key.offset = 0;
1332         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1333         if (ret)
1334                 goto fail;
1335
1336         btrfs_tree_unlock(leaf);
1337
1338         return root;
1339
1340 fail:
1341         if (leaf) {
1342                 btrfs_tree_unlock(leaf);
1343                 free_extent_buffer(leaf);
1344         }
1345         kfree(root);
1346
1347         return ERR_PTR(ret);
1348 }
1349
1350 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1351                                          struct btrfs_fs_info *fs_info)
1352 {
1353         struct btrfs_root *root;
1354         struct btrfs_root *tree_root = fs_info->tree_root;
1355         struct extent_buffer *leaf;
1356
1357         root = btrfs_alloc_root(fs_info);
1358         if (!root)
1359                 return ERR_PTR(-ENOMEM);
1360
1361         __setup_root(tree_root->nodesize, tree_root->leafsize,
1362                      tree_root->sectorsize, tree_root->stripesize,
1363                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1364
1365         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1366         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1367         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1368         /*
1369          * log trees do not get reference counted because they go away
1370          * before a real commit is actually done.  They do store pointers
1371          * to file data extents, and those reference counts still get
1372          * updated (along with back refs to the log tree).
1373          */
1374         root->ref_cows = 0;
1375
1376         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1377                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1378                                       0, 0, 0);
1379         if (IS_ERR(leaf)) {
1380                 kfree(root);
1381                 return ERR_CAST(leaf);
1382         }
1383
1384         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1385         btrfs_set_header_bytenr(leaf, leaf->start);
1386         btrfs_set_header_generation(leaf, trans->transid);
1387         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1388         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1389         root->node = leaf;
1390
1391         write_extent_buffer(root->node, root->fs_info->fsid,
1392                             (unsigned long)btrfs_header_fsid(root->node),
1393                             BTRFS_FSID_SIZE);
1394         btrfs_mark_buffer_dirty(root->node);
1395         btrfs_tree_unlock(root->node);
1396         return root;
1397 }
1398
1399 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1400                              struct btrfs_fs_info *fs_info)
1401 {
1402         struct btrfs_root *log_root;
1403
1404         log_root = alloc_log_tree(trans, fs_info);
1405         if (IS_ERR(log_root))
1406                 return PTR_ERR(log_root);
1407         WARN_ON(fs_info->log_root_tree);
1408         fs_info->log_root_tree = log_root;
1409         return 0;
1410 }
1411
1412 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1413                        struct btrfs_root *root)
1414 {
1415         struct btrfs_root *log_root;
1416         struct btrfs_inode_item *inode_item;
1417
1418         log_root = alloc_log_tree(trans, root->fs_info);
1419         if (IS_ERR(log_root))
1420                 return PTR_ERR(log_root);
1421
1422         log_root->last_trans = trans->transid;
1423         log_root->root_key.offset = root->root_key.objectid;
1424
1425         inode_item = &log_root->root_item.inode;
1426         inode_item->generation = cpu_to_le64(1);
1427         inode_item->size = cpu_to_le64(3);
1428         inode_item->nlink = cpu_to_le32(1);
1429         inode_item->nbytes = cpu_to_le64(root->leafsize);
1430         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1431
1432         btrfs_set_root_node(&log_root->root_item, log_root->node);
1433
1434         WARN_ON(root->log_root);
1435         root->log_root = log_root;
1436         root->log_transid = 0;
1437         root->last_log_commit = 0;
1438         return 0;
1439 }
1440
1441 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1442                                                struct btrfs_key *location)
1443 {
1444         struct btrfs_root *root;
1445         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1446         struct btrfs_path *path;
1447         struct extent_buffer *l;
1448         u64 generation;
1449         u32 blocksize;
1450         int ret = 0;
1451         int slot;
1452
1453         root = btrfs_alloc_root(fs_info);
1454         if (!root)
1455                 return ERR_PTR(-ENOMEM);
1456         if (location->offset == (u64)-1) {
1457                 ret = find_and_setup_root(tree_root, fs_info,
1458                                           location->objectid, root);
1459                 if (ret) {
1460                         kfree(root);
1461                         return ERR_PTR(ret);
1462                 }
1463                 goto out;
1464         }
1465
1466         __setup_root(tree_root->nodesize, tree_root->leafsize,
1467                      tree_root->sectorsize, tree_root->stripesize,
1468                      root, fs_info, location->objectid);
1469
1470         path = btrfs_alloc_path();
1471         if (!path) {
1472                 kfree(root);
1473                 return ERR_PTR(-ENOMEM);
1474         }
1475         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1476         if (ret == 0) {
1477                 l = path->nodes[0];
1478                 slot = path->slots[0];
1479                 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1480                 memcpy(&root->root_key, location, sizeof(*location));
1481         }
1482         btrfs_free_path(path);
1483         if (ret) {
1484                 kfree(root);
1485                 if (ret > 0)
1486                         ret = -ENOENT;
1487                 return ERR_PTR(ret);
1488         }
1489
1490         generation = btrfs_root_generation(&root->root_item);
1491         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1492         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1493                                      blocksize, generation);
1494         root->commit_root = btrfs_root_node(root);
1495         BUG_ON(!root->node); /* -ENOMEM */
1496 out:
1497         if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1498                 root->ref_cows = 1;
1499                 btrfs_check_and_init_root_item(&root->root_item);
1500         }
1501
1502         return root;
1503 }
1504
1505 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1506                                               struct btrfs_key *location)
1507 {
1508         struct btrfs_root *root;
1509         int ret;
1510
1511         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1512                 return fs_info->tree_root;
1513         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1514                 return fs_info->extent_root;
1515         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1516                 return fs_info->chunk_root;
1517         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1518                 return fs_info->dev_root;
1519         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1520                 return fs_info->csum_root;
1521         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1522                 return fs_info->quota_root ? fs_info->quota_root :
1523                                              ERR_PTR(-ENOENT);
1524 again:
1525         spin_lock(&fs_info->fs_roots_radix_lock);
1526         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1527                                  (unsigned long)location->objectid);
1528         spin_unlock(&fs_info->fs_roots_radix_lock);
1529         if (root)
1530                 return root;
1531
1532         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1533         if (IS_ERR(root))
1534                 return root;
1535
1536         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1537         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1538                                         GFP_NOFS);
1539         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1540                 ret = -ENOMEM;
1541                 goto fail;
1542         }
1543
1544         btrfs_init_free_ino_ctl(root);
1545         mutex_init(&root->fs_commit_mutex);
1546         spin_lock_init(&root->cache_lock);
1547         init_waitqueue_head(&root->cache_wait);
1548
1549         ret = get_anon_bdev(&root->anon_dev);
1550         if (ret)
1551                 goto fail;
1552
1553         if (btrfs_root_refs(&root->root_item) == 0) {
1554                 ret = -ENOENT;
1555                 goto fail;
1556         }
1557
1558         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1559         if (ret < 0)
1560                 goto fail;
1561         if (ret == 0)
1562                 root->orphan_item_inserted = 1;
1563
1564         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1565         if (ret)
1566                 goto fail;
1567
1568         spin_lock(&fs_info->fs_roots_radix_lock);
1569         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1570                                 (unsigned long)root->root_key.objectid,
1571                                 root);
1572         if (ret == 0)
1573                 root->in_radix = 1;
1574
1575         spin_unlock(&fs_info->fs_roots_radix_lock);
1576         radix_tree_preload_end();
1577         if (ret) {
1578                 if (ret == -EEXIST) {
1579                         free_fs_root(root);
1580                         goto again;
1581                 }
1582                 goto fail;
1583         }
1584
1585         ret = btrfs_find_dead_roots(fs_info->tree_root,
1586                                     root->root_key.objectid);
1587         WARN_ON(ret);
1588         return root;
1589 fail:
1590         free_fs_root(root);
1591         return ERR_PTR(ret);
1592 }
1593
1594 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1595 {
1596         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1597         int ret = 0;
1598         struct btrfs_device *device;
1599         struct backing_dev_info *bdi;
1600
1601         rcu_read_lock();
1602         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1603                 if (!device->bdev)
1604                         continue;
1605                 bdi = blk_get_backing_dev_info(device->bdev);
1606                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1607                         ret = 1;
1608                         break;
1609                 }
1610         }
1611         rcu_read_unlock();
1612         return ret;
1613 }
1614
1615 /*
1616  * If this fails, caller must call bdi_destroy() to get rid of the
1617  * bdi again.
1618  */
1619 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1620 {
1621         int err;
1622
1623         bdi->capabilities = BDI_CAP_MAP_COPY;
1624         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1625         if (err)
1626                 return err;
1627
1628         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1629         bdi->congested_fn       = btrfs_congested_fn;
1630         bdi->congested_data     = info;
1631         return 0;
1632 }
1633
1634 /*
1635  * called by the kthread helper functions to finally call the bio end_io
1636  * functions.  This is where read checksum verification actually happens
1637  */
1638 static void end_workqueue_fn(struct btrfs_work *work)
1639 {
1640         struct bio *bio;
1641         struct end_io_wq *end_io_wq;
1642         struct btrfs_fs_info *fs_info;
1643         int error;
1644
1645         end_io_wq = container_of(work, struct end_io_wq, work);
1646         bio = end_io_wq->bio;
1647         fs_info = end_io_wq->info;
1648
1649         error = end_io_wq->error;
1650         bio->bi_private = end_io_wq->private;
1651         bio->bi_end_io = end_io_wq->end_io;
1652         kfree(end_io_wq);
1653         bio_endio(bio, error);
1654 }
1655
1656 static int cleaner_kthread(void *arg)
1657 {
1658         struct btrfs_root *root = arg;
1659
1660         do {
1661                 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1662                     mutex_trylock(&root->fs_info->cleaner_mutex)) {
1663                         btrfs_run_delayed_iputs(root);
1664                         btrfs_clean_old_snapshots(root);
1665                         mutex_unlock(&root->fs_info->cleaner_mutex);
1666                         btrfs_run_defrag_inodes(root->fs_info);
1667                 }
1668
1669                 if (!try_to_freeze()) {
1670                         set_current_state(TASK_INTERRUPTIBLE);
1671                         if (!kthread_should_stop())
1672                                 schedule();
1673                         __set_current_state(TASK_RUNNING);
1674                 }
1675         } while (!kthread_should_stop());
1676         return 0;
1677 }
1678
1679 static int transaction_kthread(void *arg)
1680 {
1681         struct btrfs_root *root = arg;
1682         struct btrfs_trans_handle *trans;
1683         struct btrfs_transaction *cur;
1684         u64 transid;
1685         unsigned long now;
1686         unsigned long delay;
1687         bool cannot_commit;
1688
1689         do {
1690                 cannot_commit = false;
1691                 delay = HZ * 30;
1692                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1693
1694                 spin_lock(&root->fs_info->trans_lock);
1695                 cur = root->fs_info->running_transaction;
1696                 if (!cur) {
1697                         spin_unlock(&root->fs_info->trans_lock);
1698                         goto sleep;
1699                 }
1700
1701                 now = get_seconds();
1702                 if (!cur->blocked &&
1703                     (now < cur->start_time || now - cur->start_time < 30)) {
1704                         spin_unlock(&root->fs_info->trans_lock);
1705                         delay = HZ * 5;
1706                         goto sleep;
1707                 }
1708                 transid = cur->transid;
1709                 spin_unlock(&root->fs_info->trans_lock);
1710
1711                 /* If the file system is aborted, this will always fail. */
1712                 trans = btrfs_attach_transaction(root);
1713                 if (IS_ERR(trans)) {
1714                         if (PTR_ERR(trans) != -ENOENT)
1715                                 cannot_commit = true;
1716                         goto sleep;
1717                 }
1718                 if (transid == trans->transid) {
1719                         btrfs_commit_transaction(trans, root);
1720                 } else {
1721                         btrfs_end_transaction(trans, root);
1722                 }
1723 sleep:
1724                 wake_up_process(root->fs_info->cleaner_kthread);
1725                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1726
1727                 if (!try_to_freeze()) {
1728                         set_current_state(TASK_INTERRUPTIBLE);
1729                         if (!kthread_should_stop() &&
1730                             (!btrfs_transaction_blocked(root->fs_info) ||
1731                              cannot_commit))
1732                                 schedule_timeout(delay);
1733                         __set_current_state(TASK_RUNNING);
1734                 }
1735         } while (!kthread_should_stop());
1736         return 0;
1737 }
1738
1739 /*
1740  * this will find the highest generation in the array of
1741  * root backups.  The index of the highest array is returned,
1742  * or -1 if we can't find anything.
1743  *
1744  * We check to make sure the array is valid by comparing the
1745  * generation of the latest  root in the array with the generation
1746  * in the super block.  If they don't match we pitch it.
1747  */
1748 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1749 {
1750         u64 cur;
1751         int newest_index = -1;
1752         struct btrfs_root_backup *root_backup;
1753         int i;
1754
1755         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1756                 root_backup = info->super_copy->super_roots + i;
1757                 cur = btrfs_backup_tree_root_gen(root_backup);
1758                 if (cur == newest_gen)
1759                         newest_index = i;
1760         }
1761
1762         /* check to see if we actually wrapped around */
1763         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1764                 root_backup = info->super_copy->super_roots;
1765                 cur = btrfs_backup_tree_root_gen(root_backup);
1766                 if (cur == newest_gen)
1767                         newest_index = 0;
1768         }
1769         return newest_index;
1770 }
1771
1772
1773 /*
1774  * find the oldest backup so we know where to store new entries
1775  * in the backup array.  This will set the backup_root_index
1776  * field in the fs_info struct
1777  */
1778 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1779                                      u64 newest_gen)
1780 {
1781         int newest_index = -1;
1782
1783         newest_index = find_newest_super_backup(info, newest_gen);
1784         /* if there was garbage in there, just move along */
1785         if (newest_index == -1) {
1786                 info->backup_root_index = 0;
1787         } else {
1788                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1789         }
1790 }
1791
1792 /*
1793  * copy all the root pointers into the super backup array.
1794  * this will bump the backup pointer by one when it is
1795  * done
1796  */
1797 static void backup_super_roots(struct btrfs_fs_info *info)
1798 {
1799         int next_backup;
1800         struct btrfs_root_backup *root_backup;
1801         int last_backup;
1802
1803         next_backup = info->backup_root_index;
1804         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1805                 BTRFS_NUM_BACKUP_ROOTS;
1806
1807         /*
1808          * just overwrite the last backup if we're at the same generation
1809          * this happens only at umount
1810          */
1811         root_backup = info->super_for_commit->super_roots + last_backup;
1812         if (btrfs_backup_tree_root_gen(root_backup) ==
1813             btrfs_header_generation(info->tree_root->node))
1814                 next_backup = last_backup;
1815
1816         root_backup = info->super_for_commit->super_roots + next_backup;
1817
1818         /*
1819          * make sure all of our padding and empty slots get zero filled
1820          * regardless of which ones we use today
1821          */
1822         memset(root_backup, 0, sizeof(*root_backup));
1823
1824         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1825
1826         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1827         btrfs_set_backup_tree_root_gen(root_backup,
1828                                btrfs_header_generation(info->tree_root->node));
1829
1830         btrfs_set_backup_tree_root_level(root_backup,
1831                                btrfs_header_level(info->tree_root->node));
1832
1833         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1834         btrfs_set_backup_chunk_root_gen(root_backup,
1835                                btrfs_header_generation(info->chunk_root->node));
1836         btrfs_set_backup_chunk_root_level(root_backup,
1837                                btrfs_header_level(info->chunk_root->node));
1838
1839         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1840         btrfs_set_backup_extent_root_gen(root_backup,
1841                                btrfs_header_generation(info->extent_root->node));
1842         btrfs_set_backup_extent_root_level(root_backup,
1843                                btrfs_header_level(info->extent_root->node));
1844
1845         /*
1846          * we might commit during log recovery, which happens before we set
1847          * the fs_root.  Make sure it is valid before we fill it in.
1848          */
1849         if (info->fs_root && info->fs_root->node) {
1850                 btrfs_set_backup_fs_root(root_backup,
1851                                          info->fs_root->node->start);
1852                 btrfs_set_backup_fs_root_gen(root_backup,
1853                                btrfs_header_generation(info->fs_root->node));
1854                 btrfs_set_backup_fs_root_level(root_backup,
1855                                btrfs_header_level(info->fs_root->node));
1856         }
1857
1858         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1859         btrfs_set_backup_dev_root_gen(root_backup,
1860                                btrfs_header_generation(info->dev_root->node));
1861         btrfs_set_backup_dev_root_level(root_backup,
1862                                        btrfs_header_level(info->dev_root->node));
1863
1864         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1865         btrfs_set_backup_csum_root_gen(root_backup,
1866                                btrfs_header_generation(info->csum_root->node));
1867         btrfs_set_backup_csum_root_level(root_backup,
1868                                btrfs_header_level(info->csum_root->node));
1869
1870         btrfs_set_backup_total_bytes(root_backup,
1871                              btrfs_super_total_bytes(info->super_copy));
1872         btrfs_set_backup_bytes_used(root_backup,
1873                              btrfs_super_bytes_used(info->super_copy));
1874         btrfs_set_backup_num_devices(root_backup,
1875                              btrfs_super_num_devices(info->super_copy));
1876
1877         /*
1878          * if we don't copy this out to the super_copy, it won't get remembered
1879          * for the next commit
1880          */
1881         memcpy(&info->super_copy->super_roots,
1882                &info->super_for_commit->super_roots,
1883                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1884 }
1885
1886 /*
1887  * this copies info out of the root backup array and back into
1888  * the in-memory super block.  It is meant to help iterate through
1889  * the array, so you send it the number of backups you've already
1890  * tried and the last backup index you used.
1891  *
1892  * this returns -1 when it has tried all the backups
1893  */
1894 static noinline int next_root_backup(struct btrfs_fs_info *info,
1895                                      struct btrfs_super_block *super,
1896                                      int *num_backups_tried, int *backup_index)
1897 {
1898         struct btrfs_root_backup *root_backup;
1899         int newest = *backup_index;
1900
1901         if (*num_backups_tried == 0) {
1902                 u64 gen = btrfs_super_generation(super);
1903
1904                 newest = find_newest_super_backup(info, gen);
1905                 if (newest == -1)
1906                         return -1;
1907
1908                 *backup_index = newest;
1909                 *num_backups_tried = 1;
1910         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1911                 /* we've tried all the backups, all done */
1912                 return -1;
1913         } else {
1914                 /* jump to the next oldest backup */
1915                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1916                         BTRFS_NUM_BACKUP_ROOTS;
1917                 *backup_index = newest;
1918                 *num_backups_tried += 1;
1919         }
1920         root_backup = super->super_roots + newest;
1921
1922         btrfs_set_super_generation(super,
1923                                    btrfs_backup_tree_root_gen(root_backup));
1924         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1925         btrfs_set_super_root_level(super,
1926                                    btrfs_backup_tree_root_level(root_backup));
1927         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1928
1929         /*
1930          * fixme: the total bytes and num_devices need to match or we should
1931          * need a fsck
1932          */
1933         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1934         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1935         return 0;
1936 }
1937
1938 /* helper to cleanup workers */
1939 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1940 {
1941         btrfs_stop_workers(&fs_info->generic_worker);
1942         btrfs_stop_workers(&fs_info->fixup_workers);
1943         btrfs_stop_workers(&fs_info->delalloc_workers);
1944         btrfs_stop_workers(&fs_info->workers);
1945         btrfs_stop_workers(&fs_info->endio_workers);
1946         btrfs_stop_workers(&fs_info->endio_meta_workers);
1947         btrfs_stop_workers(&fs_info->endio_raid56_workers);
1948         btrfs_stop_workers(&fs_info->rmw_workers);
1949         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1950         btrfs_stop_workers(&fs_info->endio_write_workers);
1951         btrfs_stop_workers(&fs_info->endio_freespace_worker);
1952         btrfs_stop_workers(&fs_info->submit_workers);
1953         btrfs_stop_workers(&fs_info->delayed_workers);
1954         btrfs_stop_workers(&fs_info->caching_workers);
1955         btrfs_stop_workers(&fs_info->readahead_workers);
1956         btrfs_stop_workers(&fs_info->flush_workers);
1957 }
1958
1959 /* helper to cleanup tree roots */
1960 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1961 {
1962         free_extent_buffer(info->tree_root->node);
1963         free_extent_buffer(info->tree_root->commit_root);
1964         free_extent_buffer(info->dev_root->node);
1965         free_extent_buffer(info->dev_root->commit_root);
1966         free_extent_buffer(info->extent_root->node);
1967         free_extent_buffer(info->extent_root->commit_root);
1968         free_extent_buffer(info->csum_root->node);
1969         free_extent_buffer(info->csum_root->commit_root);
1970         if (info->quota_root) {
1971                 free_extent_buffer(info->quota_root->node);
1972                 free_extent_buffer(info->quota_root->commit_root);
1973         }
1974
1975         info->tree_root->node = NULL;
1976         info->tree_root->commit_root = NULL;
1977         info->dev_root->node = NULL;
1978         info->dev_root->commit_root = NULL;
1979         info->extent_root->node = NULL;
1980         info->extent_root->commit_root = NULL;
1981         info->csum_root->node = NULL;
1982         info->csum_root->commit_root = NULL;
1983         if (info->quota_root) {
1984                 info->quota_root->node = NULL;
1985                 info->quota_root->commit_root = NULL;
1986         }
1987
1988         if (chunk_root) {
1989                 free_extent_buffer(info->chunk_root->node);
1990                 free_extent_buffer(info->chunk_root->commit_root);
1991                 info->chunk_root->node = NULL;
1992                 info->chunk_root->commit_root = NULL;
1993         }
1994 }
1995
1996
1997 int open_ctree(struct super_block *sb,
1998                struct btrfs_fs_devices *fs_devices,
1999                char *options)
2000 {
2001         u32 sectorsize;
2002         u32 nodesize;
2003         u32 leafsize;
2004         u32 blocksize;
2005         u32 stripesize;
2006         u64 generation;
2007         u64 features;
2008         struct btrfs_key location;
2009         struct buffer_head *bh;
2010         struct btrfs_super_block *disk_super;
2011         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2012         struct btrfs_root *tree_root;
2013         struct btrfs_root *extent_root;
2014         struct btrfs_root *csum_root;
2015         struct btrfs_root *chunk_root;
2016         struct btrfs_root *dev_root;
2017         struct btrfs_root *quota_root;
2018         struct btrfs_root *log_tree_root;
2019         int ret;
2020         int err = -EINVAL;
2021         int num_backups_tried = 0;
2022         int backup_index = 0;
2023
2024         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2025         extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
2026         csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
2027         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2028         dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
2029         quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
2030
2031         if (!tree_root || !extent_root || !csum_root ||
2032             !chunk_root || !dev_root || !quota_root) {
2033                 err = -ENOMEM;
2034                 goto fail;
2035         }
2036
2037         ret = init_srcu_struct(&fs_info->subvol_srcu);
2038         if (ret) {
2039                 err = ret;
2040                 goto fail;
2041         }
2042
2043         ret = setup_bdi(fs_info, &fs_info->bdi);
2044         if (ret) {
2045                 err = ret;
2046                 goto fail_srcu;
2047         }
2048
2049         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2050         if (ret) {
2051                 err = ret;
2052                 goto fail_bdi;
2053         }
2054         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2055                                         (1 + ilog2(nr_cpu_ids));
2056
2057         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2058         if (ret) {
2059                 err = ret;
2060                 goto fail_dirty_metadata_bytes;
2061         }
2062
2063         fs_info->btree_inode = new_inode(sb);
2064         if (!fs_info->btree_inode) {
2065                 err = -ENOMEM;
2066                 goto fail_delalloc_bytes;
2067         }
2068
2069         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2070
2071         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2072         INIT_LIST_HEAD(&fs_info->trans_list);
2073         INIT_LIST_HEAD(&fs_info->dead_roots);
2074         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2075         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2076         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2077         spin_lock_init(&fs_info->delalloc_lock);
2078         spin_lock_init(&fs_info->trans_lock);
2079         spin_lock_init(&fs_info->fs_roots_radix_lock);
2080         spin_lock_init(&fs_info->delayed_iput_lock);
2081         spin_lock_init(&fs_info->defrag_inodes_lock);
2082         spin_lock_init(&fs_info->free_chunk_lock);
2083         spin_lock_init(&fs_info->tree_mod_seq_lock);
2084         rwlock_init(&fs_info->tree_mod_log_lock);
2085         mutex_init(&fs_info->reloc_mutex);
2086         seqlock_init(&fs_info->profiles_lock);
2087
2088         init_completion(&fs_info->kobj_unregister);
2089         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2090         INIT_LIST_HEAD(&fs_info->space_info);
2091         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2092         btrfs_mapping_init(&fs_info->mapping_tree);
2093         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2094                              BTRFS_BLOCK_RSV_GLOBAL);
2095         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2096                              BTRFS_BLOCK_RSV_DELALLOC);
2097         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2098         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2099         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2100         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2101                              BTRFS_BLOCK_RSV_DELOPS);
2102         atomic_set(&fs_info->nr_async_submits, 0);
2103         atomic_set(&fs_info->async_delalloc_pages, 0);
2104         atomic_set(&fs_info->async_submit_draining, 0);
2105         atomic_set(&fs_info->nr_async_bios, 0);
2106         atomic_set(&fs_info->defrag_running, 0);
2107         atomic_set(&fs_info->tree_mod_seq, 0);
2108         fs_info->sb = sb;
2109         fs_info->max_inline = 8192 * 1024;
2110         fs_info->metadata_ratio = 0;
2111         fs_info->defrag_inodes = RB_ROOT;
2112         fs_info->trans_no_join = 0;
2113         fs_info->free_chunk_space = 0;
2114         fs_info->tree_mod_log = RB_ROOT;
2115
2116         /* readahead state */
2117         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2118         spin_lock_init(&fs_info->reada_lock);
2119
2120         fs_info->thread_pool_size = min_t(unsigned long,
2121                                           num_online_cpus() + 2, 8);
2122
2123         INIT_LIST_HEAD(&fs_info->ordered_extents);
2124         spin_lock_init(&fs_info->ordered_extent_lock);
2125         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2126                                         GFP_NOFS);
2127         if (!fs_info->delayed_root) {
2128                 err = -ENOMEM;
2129                 goto fail_iput;
2130         }
2131         btrfs_init_delayed_root(fs_info->delayed_root);
2132
2133         mutex_init(&fs_info->scrub_lock);
2134         atomic_set(&fs_info->scrubs_running, 0);
2135         atomic_set(&fs_info->scrub_pause_req, 0);
2136         atomic_set(&fs_info->scrubs_paused, 0);
2137         atomic_set(&fs_info->scrub_cancel_req, 0);
2138         init_waitqueue_head(&fs_info->scrub_pause_wait);
2139         init_rwsem(&fs_info->scrub_super_lock);
2140         fs_info->scrub_workers_refcnt = 0;
2141 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2142         fs_info->check_integrity_print_mask = 0;
2143 #endif
2144
2145         spin_lock_init(&fs_info->balance_lock);
2146         mutex_init(&fs_info->balance_mutex);
2147         atomic_set(&fs_info->balance_running, 0);
2148         atomic_set(&fs_info->balance_pause_req, 0);
2149         atomic_set(&fs_info->balance_cancel_req, 0);
2150         fs_info->balance_ctl = NULL;
2151         init_waitqueue_head(&fs_info->balance_wait_q);
2152
2153         sb->s_blocksize = 4096;
2154         sb->s_blocksize_bits = blksize_bits(4096);
2155         sb->s_bdi = &fs_info->bdi;
2156
2157         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2158         set_nlink(fs_info->btree_inode, 1);
2159         /*
2160          * we set the i_size on the btree inode to the max possible int.
2161          * the real end of the address space is determined by all of
2162          * the devices in the system
2163          */
2164         fs_info->btree_inode->i_size = OFFSET_MAX;
2165         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2166         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2167
2168         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2169         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2170                              fs_info->btree_inode->i_mapping);
2171         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2172         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2173
2174         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2175
2176         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2177         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2178                sizeof(struct btrfs_key));
2179         set_bit(BTRFS_INODE_DUMMY,
2180                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2181         insert_inode_hash(fs_info->btree_inode);
2182
2183         spin_lock_init(&fs_info->block_group_cache_lock);
2184         fs_info->block_group_cache_tree = RB_ROOT;
2185         fs_info->first_logical_byte = (u64)-1;
2186
2187         extent_io_tree_init(&fs_info->freed_extents[0],
2188                              fs_info->btree_inode->i_mapping);
2189         extent_io_tree_init(&fs_info->freed_extents[1],
2190                              fs_info->btree_inode->i_mapping);
2191         fs_info->pinned_extents = &fs_info->freed_extents[0];
2192         fs_info->do_barriers = 1;
2193
2194
2195         mutex_init(&fs_info->ordered_operations_mutex);
2196         mutex_init(&fs_info->tree_log_mutex);
2197         mutex_init(&fs_info->chunk_mutex);
2198         mutex_init(&fs_info->transaction_kthread_mutex);
2199         mutex_init(&fs_info->cleaner_mutex);
2200         mutex_init(&fs_info->volume_mutex);
2201         init_rwsem(&fs_info->extent_commit_sem);
2202         init_rwsem(&fs_info->cleanup_work_sem);
2203         init_rwsem(&fs_info->subvol_sem);
2204         fs_info->dev_replace.lock_owner = 0;
2205         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2206         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2207         mutex_init(&fs_info->dev_replace.lock_management_lock);
2208         mutex_init(&fs_info->dev_replace.lock);
2209
2210         spin_lock_init(&fs_info->qgroup_lock);
2211         fs_info->qgroup_tree = RB_ROOT;
2212         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2213         fs_info->qgroup_seq = 1;
2214         fs_info->quota_enabled = 0;
2215         fs_info->pending_quota_state = 0;
2216
2217         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2218         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2219
2220         init_waitqueue_head(&fs_info->transaction_throttle);
2221         init_waitqueue_head(&fs_info->transaction_wait);
2222         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2223         init_waitqueue_head(&fs_info->async_submit_wait);
2224
2225         ret = btrfs_alloc_stripe_hash_table(fs_info);
2226         if (ret) {
2227                 err = ret;
2228                 goto fail_alloc;
2229         }
2230
2231         __setup_root(4096, 4096, 4096, 4096, tree_root,
2232                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2233
2234         invalidate_bdev(fs_devices->latest_bdev);
2235         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2236         if (!bh) {
2237                 err = -EINVAL;
2238                 goto fail_alloc;
2239         }
2240
2241         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2242         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2243                sizeof(*fs_info->super_for_commit));
2244         brelse(bh);
2245
2246         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2247
2248         disk_super = fs_info->super_copy;
2249         if (!btrfs_super_root(disk_super))
2250                 goto fail_alloc;
2251
2252         /* check FS state, whether FS is broken. */
2253         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2254                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2255
2256         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2257         if (ret) {
2258                 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2259                 err = ret;
2260                 goto fail_alloc;
2261         }
2262
2263         /*
2264          * run through our array of backup supers and setup
2265          * our ring pointer to the oldest one
2266          */
2267         generation = btrfs_super_generation(disk_super);
2268         find_oldest_super_backup(fs_info, generation);
2269
2270         /*
2271          * In the long term, we'll store the compression type in the super
2272          * block, and it'll be used for per file compression control.
2273          */
2274         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2275
2276         ret = btrfs_parse_options(tree_root, options);
2277         if (ret) {
2278                 err = ret;
2279                 goto fail_alloc;
2280         }
2281
2282         features = btrfs_super_incompat_flags(disk_super) &
2283                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2284         if (features) {
2285                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2286                        "unsupported optional features (%Lx).\n",
2287                        (unsigned long long)features);
2288                 err = -EINVAL;
2289                 goto fail_alloc;
2290         }
2291
2292         if (btrfs_super_leafsize(disk_super) !=
2293             btrfs_super_nodesize(disk_super)) {
2294                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2295                        "blocksizes don't match.  node %d leaf %d\n",
2296                        btrfs_super_nodesize(disk_super),
2297                        btrfs_super_leafsize(disk_super));
2298                 err = -EINVAL;
2299                 goto fail_alloc;
2300         }
2301         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2302                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2303                        "blocksize (%d) was too large\n",
2304                        btrfs_super_leafsize(disk_super));
2305                 err = -EINVAL;
2306                 goto fail_alloc;
2307         }
2308
2309         features = btrfs_super_incompat_flags(disk_super);
2310         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2311         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2312                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2313
2314         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2315                 printk(KERN_ERR "btrfs: has skinny extents\n");
2316
2317         /*
2318          * flag our filesystem as having big metadata blocks if
2319          * they are bigger than the page size
2320          */
2321         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2322                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2323                         printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2324                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2325         }
2326
2327         nodesize = btrfs_super_nodesize(disk_super);
2328         leafsize = btrfs_super_leafsize(disk_super);
2329         sectorsize = btrfs_super_sectorsize(disk_super);
2330         stripesize = btrfs_super_stripesize(disk_super);
2331         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2332         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2333
2334         /*
2335          * mixed block groups end up with duplicate but slightly offset
2336          * extent buffers for the same range.  It leads to corruptions
2337          */
2338         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2339             (sectorsize != leafsize)) {
2340                 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2341                                 "are not allowed for mixed block groups on %s\n",
2342                                 sb->s_id);
2343                 goto fail_alloc;
2344         }
2345
2346         btrfs_set_super_incompat_flags(disk_super, features);
2347
2348         features = btrfs_super_compat_ro_flags(disk_super) &
2349                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2350         if (!(sb->s_flags & MS_RDONLY) && features) {
2351                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2352                        "unsupported option features (%Lx).\n",
2353                        (unsigned long long)features);
2354                 err = -EINVAL;
2355                 goto fail_alloc;
2356         }
2357
2358         btrfs_init_workers(&fs_info->generic_worker,
2359                            "genwork", 1, NULL);
2360
2361         btrfs_init_workers(&fs_info->workers, "worker",
2362                            fs_info->thread_pool_size,
2363                            &fs_info->generic_worker);
2364
2365         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2366                            fs_info->thread_pool_size,
2367                            &fs_info->generic_worker);
2368
2369         btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2370                            fs_info->thread_pool_size,
2371                            &fs_info->generic_worker);
2372
2373         btrfs_init_workers(&fs_info->submit_workers, "submit",
2374                            min_t(u64, fs_devices->num_devices,
2375                            fs_info->thread_pool_size),
2376                            &fs_info->generic_worker);
2377
2378         btrfs_init_workers(&fs_info->caching_workers, "cache",
2379                            2, &fs_info->generic_worker);
2380
2381         /* a higher idle thresh on the submit workers makes it much more
2382          * likely that bios will be send down in a sane order to the
2383          * devices
2384          */
2385         fs_info->submit_workers.idle_thresh = 64;
2386
2387         fs_info->workers.idle_thresh = 16;
2388         fs_info->workers.ordered = 1;
2389
2390         fs_info->delalloc_workers.idle_thresh = 2;
2391         fs_info->delalloc_workers.ordered = 1;
2392
2393         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2394                            &fs_info->generic_worker);
2395         btrfs_init_workers(&fs_info->endio_workers, "endio",
2396                            fs_info->thread_pool_size,
2397                            &fs_info->generic_worker);
2398         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2399                            fs_info->thread_pool_size,
2400                            &fs_info->generic_worker);
2401         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2402                            "endio-meta-write", fs_info->thread_pool_size,
2403                            &fs_info->generic_worker);
2404         btrfs_init_workers(&fs_info->endio_raid56_workers,
2405                            "endio-raid56", fs_info->thread_pool_size,
2406                            &fs_info->generic_worker);
2407         btrfs_init_workers(&fs_info->rmw_workers,
2408                            "rmw", fs_info->thread_pool_size,
2409                            &fs_info->generic_worker);
2410         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2411                            fs_info->thread_pool_size,
2412                            &fs_info->generic_worker);
2413         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2414                            1, &fs_info->generic_worker);
2415         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2416                            fs_info->thread_pool_size,
2417                            &fs_info->generic_worker);
2418         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2419                            fs_info->thread_pool_size,
2420                            &fs_info->generic_worker);
2421
2422         /*
2423          * endios are largely parallel and should have a very
2424          * low idle thresh
2425          */
2426         fs_info->endio_workers.idle_thresh = 4;
2427         fs_info->endio_meta_workers.idle_thresh = 4;
2428         fs_info->endio_raid56_workers.idle_thresh = 4;
2429         fs_info->rmw_workers.idle_thresh = 2;
2430
2431         fs_info->endio_write_workers.idle_thresh = 2;
2432         fs_info->endio_meta_write_workers.idle_thresh = 2;
2433         fs_info->readahead_workers.idle_thresh = 2;
2434
2435         /*
2436          * btrfs_start_workers can really only fail because of ENOMEM so just
2437          * return -ENOMEM if any of these fail.
2438          */
2439         ret = btrfs_start_workers(&fs_info->workers);
2440         ret |= btrfs_start_workers(&fs_info->generic_worker);
2441         ret |= btrfs_start_workers(&fs_info->submit_workers);
2442         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2443         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2444         ret |= btrfs_start_workers(&fs_info->endio_workers);
2445         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2446         ret |= btrfs_start_workers(&fs_info->rmw_workers);
2447         ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2448         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2449         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2450         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2451         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2452         ret |= btrfs_start_workers(&fs_info->caching_workers);
2453         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2454         ret |= btrfs_start_workers(&fs_info->flush_workers);
2455         if (ret) {
2456                 err = -ENOMEM;
2457                 goto fail_sb_buffer;
2458         }
2459
2460         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2461         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2462                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2463
2464         tree_root->nodesize = nodesize;
2465         tree_root->leafsize = leafsize;
2466         tree_root->sectorsize = sectorsize;
2467         tree_root->stripesize = stripesize;
2468
2469         sb->s_blocksize = sectorsize;
2470         sb->s_blocksize_bits = blksize_bits(sectorsize);
2471
2472         if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2473                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2474                 goto fail_sb_buffer;
2475         }
2476
2477         if (sectorsize != PAGE_SIZE) {
2478                 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2479                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2480                 goto fail_sb_buffer;
2481         }
2482
2483         mutex_lock(&fs_info->chunk_mutex);
2484         ret = btrfs_read_sys_array(tree_root);
2485         mutex_unlock(&fs_info->chunk_mutex);
2486         if (ret) {
2487                 printk(KERN_WARNING "btrfs: failed to read the system "
2488                        "array on %s\n", sb->s_id);
2489                 goto fail_sb_buffer;
2490         }
2491
2492         blocksize = btrfs_level_size(tree_root,
2493                                      btrfs_super_chunk_root_level(disk_super));
2494         generation = btrfs_super_chunk_root_generation(disk_super);
2495
2496         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2497                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2498
2499         chunk_root->node = read_tree_block(chunk_root,
2500                                            btrfs_super_chunk_root(disk_super),
2501                                            blocksize, generation);
2502         BUG_ON(!chunk_root->node); /* -ENOMEM */
2503         if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2504                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2505                        sb->s_id);
2506                 goto fail_tree_roots;
2507         }
2508         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2509         chunk_root->commit_root = btrfs_root_node(chunk_root);
2510
2511         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2512            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2513            BTRFS_UUID_SIZE);
2514
2515         ret = btrfs_read_chunk_tree(chunk_root);
2516         if (ret) {
2517                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2518                        sb->s_id);
2519                 goto fail_tree_roots;
2520         }
2521
2522         /*
2523          * keep the device that is marked to be the target device for the
2524          * dev_replace procedure
2525          */
2526         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2527
2528         if (!fs_devices->latest_bdev) {
2529                 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2530                        sb->s_id);
2531                 goto fail_tree_roots;
2532         }
2533
2534 retry_root_backup:
2535         blocksize = btrfs_level_size(tree_root,
2536                                      btrfs_super_root_level(disk_super));
2537         generation = btrfs_super_generation(disk_super);
2538
2539         tree_root->node = read_tree_block(tree_root,
2540                                           btrfs_super_root(disk_super),
2541                                           blocksize, generation);
2542         if (!tree_root->node ||
2543             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2544                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2545                        sb->s_id);
2546
2547                 goto recovery_tree_root;
2548         }
2549
2550         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2551         tree_root->commit_root = btrfs_root_node(tree_root);
2552
2553         ret = find_and_setup_root(tree_root, fs_info,
2554                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2555         if (ret)
2556                 goto recovery_tree_root;
2557         extent_root->track_dirty = 1;
2558
2559         ret = find_and_setup_root(tree_root, fs_info,
2560                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
2561         if (ret)
2562                 goto recovery_tree_root;
2563         dev_root->track_dirty = 1;
2564
2565         ret = find_and_setup_root(tree_root, fs_info,
2566                                   BTRFS_CSUM_TREE_OBJECTID, csum_root);
2567         if (ret)
2568                 goto recovery_tree_root;
2569         csum_root->track_dirty = 1;
2570
2571         ret = find_and_setup_root(tree_root, fs_info,
2572                                   BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2573         if (ret) {
2574                 kfree(quota_root);
2575                 quota_root = fs_info->quota_root = NULL;
2576         } else {
2577                 quota_root->track_dirty = 1;
2578                 fs_info->quota_enabled = 1;
2579                 fs_info->pending_quota_state = 1;
2580         }
2581
2582         fs_info->generation = generation;
2583         fs_info->last_trans_committed = generation;
2584
2585         ret = btrfs_recover_balance(fs_info);
2586         if (ret) {
2587                 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2588                 goto fail_block_groups;
2589         }
2590
2591         ret = btrfs_init_dev_stats(fs_info);
2592         if (ret) {
2593                 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2594                        ret);
2595                 goto fail_block_groups;
2596         }
2597
2598         ret = btrfs_init_dev_replace(fs_info);
2599         if (ret) {
2600                 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2601                 goto fail_block_groups;
2602         }
2603
2604         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2605
2606         ret = btrfs_init_space_info(fs_info);
2607         if (ret) {
2608                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2609                 goto fail_block_groups;
2610         }
2611
2612         ret = btrfs_read_block_groups(extent_root);
2613         if (ret) {
2614                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2615                 goto fail_block_groups;
2616         }
2617         fs_info->num_tolerated_disk_barrier_failures =
2618                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2619         if (fs_info->fs_devices->missing_devices >
2620              fs_info->num_tolerated_disk_barrier_failures &&
2621             !(sb->s_flags & MS_RDONLY)) {
2622                 printk(KERN_WARNING
2623                        "Btrfs: too many missing devices, writeable mount is not allowed\n");
2624                 goto fail_block_groups;
2625         }
2626
2627         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2628                                                "btrfs-cleaner");
2629         if (IS_ERR(fs_info->cleaner_kthread))
2630                 goto fail_block_groups;
2631
2632         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2633                                                    tree_root,
2634                                                    "btrfs-transaction");
2635         if (IS_ERR(fs_info->transaction_kthread))
2636                 goto fail_cleaner;
2637
2638         if (!btrfs_test_opt(tree_root, SSD) &&
2639             !btrfs_test_opt(tree_root, NOSSD) &&
2640             !fs_info->fs_devices->rotating) {
2641                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2642                        "mode\n");
2643                 btrfs_set_opt(fs_info->mount_opt, SSD);
2644         }
2645
2646 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2647         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2648                 ret = btrfsic_mount(tree_root, fs_devices,
2649                                     btrfs_test_opt(tree_root,
2650                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2651                                     1 : 0,
2652                                     fs_info->check_integrity_print_mask);
2653                 if (ret)
2654                         printk(KERN_WARNING "btrfs: failed to initialize"
2655                                " integrity check module %s\n", sb->s_id);
2656         }
2657 #endif
2658         ret = btrfs_read_qgroup_config(fs_info);
2659         if (ret)
2660                 goto fail_trans_kthread;
2661
2662         /* do not make disk changes in broken FS */
2663         if (btrfs_super_log_root(disk_super) != 0) {
2664                 u64 bytenr = btrfs_super_log_root(disk_super);
2665
2666                 if (fs_devices->rw_devices == 0) {
2667                         printk(KERN_WARNING "Btrfs log replay required "
2668                                "on RO media\n");
2669                         err = -EIO;
2670                         goto fail_qgroup;
2671                 }
2672                 blocksize =
2673                      btrfs_level_size(tree_root,
2674                                       btrfs_super_log_root_level(disk_super));
2675
2676                 log_tree_root = btrfs_alloc_root(fs_info);
2677                 if (!log_tree_root) {
2678                         err = -ENOMEM;
2679                         goto fail_qgroup;
2680                 }
2681
2682                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2683                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2684
2685                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2686                                                       blocksize,
2687                                                       generation + 1);
2688                 /* returns with log_tree_root freed on success */
2689                 ret = btrfs_recover_log_trees(log_tree_root);
2690                 if (ret) {
2691                         btrfs_error(tree_root->fs_info, ret,
2692                                     "Failed to recover log tree");
2693                         free_extent_buffer(log_tree_root->node);
2694                         kfree(log_tree_root);
2695                         goto fail_trans_kthread;
2696                 }
2697
2698                 if (sb->s_flags & MS_RDONLY) {
2699                         ret = btrfs_commit_super(tree_root);
2700                         if (ret)
2701                                 goto fail_trans_kthread;
2702                 }
2703         }
2704
2705         ret = btrfs_find_orphan_roots(tree_root);
2706         if (ret)
2707                 goto fail_trans_kthread;
2708
2709         if (!(sb->s_flags & MS_RDONLY)) {
2710                 ret = btrfs_cleanup_fs_roots(fs_info);
2711                 if (ret)
2712                         goto fail_trans_kthread;
2713
2714                 ret = btrfs_recover_relocation(tree_root);
2715                 if (ret < 0) {
2716                         printk(KERN_WARNING
2717                                "btrfs: failed to recover relocation\n");
2718                         err = -EINVAL;
2719                         goto fail_qgroup;
2720                 }
2721         }
2722
2723         location.objectid = BTRFS_FS_TREE_OBJECTID;
2724         location.type = BTRFS_ROOT_ITEM_KEY;
2725         location.offset = (u64)-1;
2726
2727         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2728         if (!fs_info->fs_root)
2729                 goto fail_qgroup;
2730         if (IS_ERR(fs_info->fs_root)) {
2731                 err = PTR_ERR(fs_info->fs_root);
2732                 goto fail_qgroup;
2733         }
2734
2735         if (sb->s_flags & MS_RDONLY)
2736                 return 0;
2737
2738         down_read(&fs_info->cleanup_work_sem);
2739         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2740             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2741                 up_read(&fs_info->cleanup_work_sem);
2742                 close_ctree(tree_root);
2743                 return ret;
2744         }
2745         up_read(&fs_info->cleanup_work_sem);
2746
2747         ret = btrfs_resume_balance_async(fs_info);
2748         if (ret) {
2749                 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2750                 close_ctree(tree_root);
2751                 return ret;
2752         }
2753
2754         ret = btrfs_resume_dev_replace_async(fs_info);
2755         if (ret) {
2756                 pr_warn("btrfs: failed to resume dev_replace\n");
2757                 close_ctree(tree_root);
2758                 return ret;
2759         }
2760
2761         return 0;
2762
2763 fail_qgroup:
2764         btrfs_free_qgroup_config(fs_info);
2765 fail_trans_kthread:
2766         kthread_stop(fs_info->transaction_kthread);
2767 fail_cleaner:
2768         kthread_stop(fs_info->cleaner_kthread);
2769
2770         /*
2771          * make sure we're done with the btree inode before we stop our
2772          * kthreads
2773          */
2774         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2775
2776 fail_block_groups:
2777         btrfs_free_block_groups(fs_info);
2778
2779 fail_tree_roots:
2780         free_root_pointers(fs_info, 1);
2781         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2782
2783 fail_sb_buffer:
2784         btrfs_stop_all_workers(fs_info);
2785 fail_alloc:
2786 fail_iput:
2787         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2788
2789         iput(fs_info->btree_inode);
2790 fail_delalloc_bytes:
2791         percpu_counter_destroy(&fs_info->delalloc_bytes);
2792 fail_dirty_metadata_bytes:
2793         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2794 fail_bdi:
2795         bdi_destroy(&fs_info->bdi);
2796 fail_srcu:
2797         cleanup_srcu_struct(&fs_info->subvol_srcu);
2798 fail:
2799         btrfs_free_stripe_hash_table(fs_info);
2800         btrfs_close_devices(fs_info->fs_devices);
2801         return err;
2802
2803 recovery_tree_root:
2804         if (!btrfs_test_opt(tree_root, RECOVERY))
2805                 goto fail_tree_roots;
2806
2807         free_root_pointers(fs_info, 0);
2808
2809         /* don't use the log in recovery mode, it won't be valid */
2810         btrfs_set_super_log_root(disk_super, 0);
2811
2812         /* we can't trust the free space cache either */
2813         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2814
2815         ret = next_root_backup(fs_info, fs_info->super_copy,
2816                                &num_backups_tried, &backup_index);
2817         if (ret == -1)
2818                 goto fail_block_groups;
2819         goto retry_root_backup;
2820 }
2821
2822 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2823 {
2824         if (uptodate) {
2825                 set_buffer_uptodate(bh);
2826         } else {
2827                 struct btrfs_device *device = (struct btrfs_device *)
2828                         bh->b_private;
2829
2830                 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2831                                           "I/O error on %s\n",
2832                                           rcu_str_deref(device->name));
2833                 /* note, we dont' set_buffer_write_io_error because we have
2834                  * our own ways of dealing with the IO errors
2835                  */
2836                 clear_buffer_uptodate(bh);
2837                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2838         }
2839         unlock_buffer(bh);
2840         put_bh(bh);
2841 }
2842
2843 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2844 {
2845         struct buffer_head *bh;
2846         struct buffer_head *latest = NULL;
2847         struct btrfs_super_block *super;
2848         int i;
2849         u64 transid = 0;
2850         u64 bytenr;
2851
2852         /* we would like to check all the supers, but that would make
2853          * a btrfs mount succeed after a mkfs from a different FS.
2854          * So, we need to add a special mount option to scan for
2855          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2856          */
2857         for (i = 0; i < 1; i++) {
2858                 bytenr = btrfs_sb_offset(i);
2859                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2860                         break;
2861                 bh = __bread(bdev, bytenr / 4096, 4096);
2862                 if (!bh)
2863                         continue;
2864
2865                 super = (struct btrfs_super_block *)bh->b_data;
2866                 if (btrfs_super_bytenr(super) != bytenr ||
2867                     super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2868                         brelse(bh);
2869                         continue;
2870                 }
2871
2872                 if (!latest || btrfs_super_generation(super) > transid) {
2873                         brelse(latest);
2874                         latest = bh;
2875                         transid = btrfs_super_generation(super);
2876                 } else {
2877                         brelse(bh);
2878                 }
2879         }
2880         return latest;
2881 }
2882
2883 /*
2884  * this should be called twice, once with wait == 0 and
2885  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2886  * we write are pinned.
2887  *
2888  * They are released when wait == 1 is done.
2889  * max_mirrors must be the same for both runs, and it indicates how
2890  * many supers on this one device should be written.
2891  *
2892  * max_mirrors == 0 means to write them all.
2893  */
2894 static int write_dev_supers(struct btrfs_device *device,
2895                             struct btrfs_super_block *sb,
2896                             int do_barriers, int wait, int max_mirrors)
2897 {
2898         struct buffer_head *bh;
2899         int i;
2900         int ret;
2901         int errors = 0;
2902         u32 crc;
2903         u64 bytenr;
2904
2905         if (max_mirrors == 0)
2906                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2907
2908         for (i = 0; i < max_mirrors; i++) {
2909                 bytenr = btrfs_sb_offset(i);
2910                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2911                         break;
2912
2913                 if (wait) {
2914                         bh = __find_get_block(device->bdev, bytenr / 4096,
2915                                               BTRFS_SUPER_INFO_SIZE);
2916                         BUG_ON(!bh);
2917                         wait_on_buffer(bh);
2918                         if (!buffer_uptodate(bh))
2919                                 errors++;
2920
2921                         /* drop our reference */
2922                         brelse(bh);
2923
2924                         /* drop the reference from the wait == 0 run */
2925                         brelse(bh);
2926                         continue;
2927                 } else {
2928                         btrfs_set_super_bytenr(sb, bytenr);
2929
2930                         crc = ~(u32)0;
2931                         crc = btrfs_csum_data((char *)sb +
2932                                               BTRFS_CSUM_SIZE, crc,
2933                                               BTRFS_SUPER_INFO_SIZE -
2934                                               BTRFS_CSUM_SIZE);
2935                         btrfs_csum_final(crc, sb->csum);
2936
2937                         /*
2938                          * one reference for us, and we leave it for the
2939                          * caller
2940                          */
2941                         bh = __getblk(device->bdev, bytenr / 4096,
2942                                       BTRFS_SUPER_INFO_SIZE);
2943                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2944
2945                         /* one reference for submit_bh */
2946                         get_bh(bh);
2947
2948                         set_buffer_uptodate(bh);
2949                         lock_buffer(bh);
2950                         bh->b_end_io = btrfs_end_buffer_write_sync;
2951                         bh->b_private = device;
2952                 }
2953
2954                 /*
2955                  * we fua the first super.  The others we allow
2956                  * to go down lazy.
2957                  */
2958                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2959                 if (ret)
2960                         errors++;
2961         }
2962         return errors < i ? 0 : -1;
2963 }
2964
2965 /*
2966  * endio for the write_dev_flush, this will wake anyone waiting
2967  * for the barrier when it is done
2968  */
2969 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2970 {
2971         if (err) {
2972                 if (err == -EOPNOTSUPP)
2973                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2974                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2975         }
2976         if (bio->bi_private)
2977                 complete(bio->bi_private);
2978         bio_put(bio);
2979 }
2980
2981 /*
2982  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2983  * sent down.  With wait == 1, it waits for the previous flush.
2984  *
2985  * any device where the flush fails with eopnotsupp are flagged as not-barrier
2986  * capable
2987  */
2988 static int write_dev_flush(struct btrfs_device *device, int wait)
2989 {
2990         struct bio *bio;
2991         int ret = 0;
2992
2993         if (device->nobarriers)
2994                 return 0;
2995
2996         if (wait) {
2997                 bio = device->flush_bio;
2998                 if (!bio)
2999                         return 0;
3000
3001                 wait_for_completion(&device->flush_wait);
3002
3003                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3004                         printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3005                                       rcu_str_deref(device->name));
3006                         device->nobarriers = 1;
3007                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3008                         ret = -EIO;
3009                         btrfs_dev_stat_inc_and_print(device,
3010                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3011                 }
3012
3013                 /* drop the reference from the wait == 0 run */
3014                 bio_put(bio);
3015                 device->flush_bio = NULL;
3016
3017                 return ret;
3018         }
3019
3020         /*
3021          * one reference for us, and we leave it for the
3022          * caller
3023          */
3024         device->flush_bio = NULL;
3025         bio = bio_alloc(GFP_NOFS, 0);
3026         if (!bio)
3027                 return -ENOMEM;
3028
3029         bio->bi_end_io = btrfs_end_empty_barrier;
3030         bio->bi_bdev = device->bdev;
3031         init_completion(&device->flush_wait);
3032         bio->bi_private = &device->flush_wait;
3033         device->flush_bio = bio;
3034
3035         bio_get(bio);
3036         btrfsic_submit_bio(WRITE_FLUSH, bio);
3037
3038         return 0;
3039 }
3040
3041 /*
3042  * send an empty flush down to each device in parallel,
3043  * then wait for them
3044  */
3045 static int barrier_all_devices(struct btrfs_fs_info *info)
3046 {
3047         struct list_head *head;
3048         struct btrfs_device *dev;
3049         int errors_send = 0;
3050         int errors_wait = 0;
3051         int ret;
3052
3053         /* send down all the barriers */
3054         head = &info->fs_devices->devices;
3055         list_for_each_entry_rcu(dev, head, dev_list) {
3056                 if (!dev->bdev) {
3057                         errors_send++;
3058                         continue;
3059                 }
3060                 if (!dev->in_fs_metadata || !dev->writeable)
3061                         continue;
3062
3063                 ret = write_dev_flush(dev, 0);
3064                 if (ret)
3065                         errors_send++;
3066         }
3067
3068         /* wait for all the barriers */
3069         list_for_each_entry_rcu(dev, head, dev_list) {
3070                 if (!dev->bdev) {
3071                         errors_wait++;
3072                         continue;
3073                 }
3074                 if (!dev->in_fs_metadata || !dev->writeable)
3075                         continue;
3076
3077                 ret = write_dev_flush(dev, 1);
3078                 if (ret)
3079                         errors_wait++;
3080         }
3081         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3082             errors_wait > info->num_tolerated_disk_barrier_failures)
3083                 return -EIO;
3084         return 0;
3085 }
3086
3087 int btrfs_calc_num_tolerated_disk_barrier_failures(
3088         struct btrfs_fs_info *fs_info)
3089 {
3090         struct btrfs_ioctl_space_info space;
3091         struct btrfs_space_info *sinfo;
3092         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3093                        BTRFS_BLOCK_GROUP_SYSTEM,
3094                        BTRFS_BLOCK_GROUP_METADATA,
3095                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3096         int num_types = 4;
3097         int i;
3098         int c;
3099         int num_tolerated_disk_barrier_failures =
3100                 (int)fs_info->fs_devices->num_devices;
3101
3102         for (i = 0; i < num_types; i++) {
3103                 struct btrfs_space_info *tmp;
3104
3105                 sinfo = NULL;
3106                 rcu_read_lock();
3107                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3108                         if (tmp->flags == types[i]) {
3109                                 sinfo = tmp;
3110                                 break;
3111                         }
3112                 }
3113                 rcu_read_unlock();
3114
3115                 if (!sinfo)
3116                         continue;
3117
3118                 down_read(&sinfo->groups_sem);
3119                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3120                         if (!list_empty(&sinfo->block_groups[c])) {
3121                                 u64 flags;
3122
3123                                 btrfs_get_block_group_info(
3124                                         &sinfo->block_groups[c], &space);
3125                                 if (space.total_bytes == 0 ||
3126                                     space.used_bytes == 0)
3127                                         continue;
3128                                 flags = space.flags;
3129                                 /*
3130                                  * return
3131                                  * 0: if dup, single or RAID0 is configured for
3132                                  *    any of metadata, system or data, else
3133                                  * 1: if RAID5 is configured, or if RAID1 or
3134                                  *    RAID10 is configured and only two mirrors
3135                                  *    are used, else
3136                                  * 2: if RAID6 is configured, else
3137                                  * num_mirrors - 1: if RAID1 or RAID10 is
3138                                  *                  configured and more than
3139                                  *                  2 mirrors are used.
3140                                  */
3141                                 if (num_tolerated_disk_barrier_failures > 0 &&
3142                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3143                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3144                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3145                                       == 0)))
3146                                         num_tolerated_disk_barrier_failures = 0;
3147                                 else if (num_tolerated_disk_barrier_failures > 1) {
3148                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3149                                             BTRFS_BLOCK_GROUP_RAID5 |
3150                                             BTRFS_BLOCK_GROUP_RAID10)) {
3151                                                 num_tolerated_disk_barrier_failures = 1;
3152                                         } else if (flags &
3153                                                    BTRFS_BLOCK_GROUP_RAID5) {
3154                                                 num_tolerated_disk_barrier_failures = 2;
3155                                         }
3156                                 }
3157                         }
3158                 }
3159                 up_read(&sinfo->groups_sem);
3160         }
3161
3162         return num_tolerated_disk_barrier_failures;
3163 }
3164
3165 int write_all_supers(struct btrfs_root *root, int max_mirrors)
3166 {
3167         struct list_head *head;
3168         struct btrfs_device *dev;
3169         struct btrfs_super_block *sb;
3170         struct btrfs_dev_item *dev_item;
3171         int ret;
3172         int do_barriers;
3173         int max_errors;
3174         int total_errors = 0;
3175         u64 flags;
3176
3177         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3178         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3179         backup_super_roots(root->fs_info);
3180
3181         sb = root->fs_info->super_for_commit;
3182         dev_item = &sb->dev_item;
3183
3184         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3185         head = &root->fs_info->fs_devices->devices;
3186
3187         if (do_barriers) {
3188                 ret = barrier_all_devices(root->fs_info);
3189                 if (ret) {
3190                         mutex_unlock(
3191                                 &root->fs_info->fs_devices->device_list_mutex);
3192                         btrfs_error(root->fs_info, ret,
3193                                     "errors while submitting device barriers.");
3194                         return ret;
3195                 }
3196         }
3197
3198         list_for_each_entry_rcu(dev, head, dev_list) {
3199                 if (!dev->bdev) {
3200                         total_errors++;
3201                         continue;
3202                 }
3203                 if (!dev->in_fs_metadata || !dev->writeable)
3204                         continue;
3205
3206                 btrfs_set_stack_device_generation(dev_item, 0);
3207                 btrfs_set_stack_device_type(dev_item, dev->type);
3208                 btrfs_set_stack_device_id(dev_item, dev->devid);
3209                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3210                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3211                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3212                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3213                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3214                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3215                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3216
3217                 flags = btrfs_super_flags(sb);
3218                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3219
3220                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3221                 if (ret)
3222                         total_errors++;
3223         }
3224         if (total_errors > max_errors) {
3225                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3226                        total_errors);
3227
3228                 /* This shouldn't happen. FUA is masked off if unsupported */
3229                 BUG();
3230         }
3231
3232         total_errors = 0;
3233         list_for_each_entry_rcu(dev, head, dev_list) {
3234                 if (!dev->bdev)
3235                         continue;
3236                 if (!dev->in_fs_metadata || !dev->writeable)
3237                         continue;
3238
3239                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3240                 if (ret)
3241                         total_errors++;
3242         }
3243         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3244         if (total_errors > max_errors) {
3245                 btrfs_error(root->fs_info, -EIO,
3246                             "%d errors while writing supers", total_errors);
3247                 return -EIO;
3248         }
3249         return 0;
3250 }
3251
3252 int write_ctree_super(struct btrfs_trans_handle *trans,
3253                       struct btrfs_root *root, int max_mirrors)
3254 {
3255         int ret;
3256
3257         ret = write_all_supers(root, max_mirrors);
3258         return ret;
3259 }
3260
3261 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3262 {
3263         spin_lock(&fs_info->fs_roots_radix_lock);
3264         radix_tree_delete(&fs_info->fs_roots_radix,
3265                           (unsigned long)root->root_key.objectid);
3266         spin_unlock(&fs_info->fs_roots_radix_lock);
3267
3268         if (btrfs_root_refs(&root->root_item) == 0)
3269                 synchronize_srcu(&fs_info->subvol_srcu);
3270
3271         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3272                 btrfs_free_log(NULL, root);
3273                 btrfs_free_log_root_tree(NULL, fs_info);
3274         }
3275
3276         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3277         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3278         free_fs_root(root);
3279 }
3280
3281 static void free_fs_root(struct btrfs_root *root)
3282 {
3283         iput(root->cache_inode);
3284         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3285         if (root->anon_dev)
3286                 free_anon_bdev(root->anon_dev);
3287         free_extent_buffer(root->node);
3288         free_extent_buffer(root->commit_root);
3289         kfree(root->free_ino_ctl);
3290         kfree(root->free_ino_pinned);
3291         kfree(root->name);
3292         kfree(root);
3293 }
3294
3295 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3296 {
3297         int ret;
3298         struct btrfs_root *gang[8];
3299         int i;
3300
3301         while (!list_empty(&fs_info->dead_roots)) {
3302                 gang[0] = list_entry(fs_info->dead_roots.next,
3303                                      struct btrfs_root, root_list);
3304                 list_del(&gang[0]->root_list);
3305
3306                 if (gang[0]->in_radix) {
3307                         btrfs_free_fs_root(fs_info, gang[0]);
3308                 } else {
3309                         free_extent_buffer(gang[0]->node);
3310                         free_extent_buffer(gang[0]->commit_root);
3311                         kfree(gang[0]);
3312                 }
3313         }
3314
3315         while (1) {
3316                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3317                                              (void **)gang, 0,
3318                                              ARRAY_SIZE(gang));
3319                 if (!ret)
3320                         break;
3321                 for (i = 0; i < ret; i++)
3322                         btrfs_free_fs_root(fs_info, gang[i]);
3323         }
3324 }
3325
3326 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3327 {
3328         u64 root_objectid = 0;
3329         struct btrfs_root *gang[8];
3330         int i;
3331         int ret;
3332
3333         while (1) {
3334                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3335                                              (void **)gang, root_objectid,
3336                                              ARRAY_SIZE(gang));
3337                 if (!ret)
3338                         break;
3339
3340                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3341                 for (i = 0; i < ret; i++) {
3342                         int err;
3343
3344                         root_objectid = gang[i]->root_key.objectid;
3345                         err = btrfs_orphan_cleanup(gang[i]);
3346                         if (err)
3347                                 return err;
3348                 }
3349                 root_objectid++;
3350         }
3351         return 0;
3352 }
3353
3354 int btrfs_commit_super(struct btrfs_root *root)
3355 {
3356         struct btrfs_trans_handle *trans;
3357         int ret;
3358
3359         mutex_lock(&root->fs_info->cleaner_mutex);
3360         btrfs_run_delayed_iputs(root);
3361         btrfs_clean_old_snapshots(root);
3362         mutex_unlock(&root->fs_info->cleaner_mutex);
3363
3364         /* wait until ongoing cleanup work done */
3365         down_write(&root->fs_info->cleanup_work_sem);
3366         up_write(&root->fs_info->cleanup_work_sem);
3367
3368         trans = btrfs_join_transaction(root);
3369         if (IS_ERR(trans))
3370                 return PTR_ERR(trans);
3371         ret = btrfs_commit_transaction(trans, root);
3372         if (ret)
3373                 return ret;
3374         /* run commit again to drop the original snapshot */
3375         trans = btrfs_join_transaction(root);
3376         if (IS_ERR(trans))
3377                 return PTR_ERR(trans);
3378         ret = btrfs_commit_transaction(trans, root);
3379         if (ret)
3380                 return ret;
3381         ret = btrfs_write_and_wait_transaction(NULL, root);
3382         if (ret) {
3383                 btrfs_error(root->fs_info, ret,
3384                             "Failed to sync btree inode to disk.");
3385                 return ret;
3386         }
3387
3388         ret = write_ctree_super(NULL, root, 0);
3389         return ret;
3390 }
3391
3392 int close_ctree(struct btrfs_root *root)
3393 {
3394         struct btrfs_fs_info *fs_info = root->fs_info;
3395         int ret;
3396
3397         fs_info->closing = 1;
3398         smp_mb();
3399
3400         /* pause restriper - we want to resume on mount */
3401         btrfs_pause_balance(fs_info);
3402
3403         btrfs_dev_replace_suspend_for_unmount(fs_info);
3404
3405         btrfs_scrub_cancel(fs_info);
3406
3407         /* wait for any defraggers to finish */
3408         wait_event(fs_info->transaction_wait,
3409                    (atomic_read(&fs_info->defrag_running) == 0));
3410
3411         /* clear out the rbtree of defraggable inodes */
3412         btrfs_cleanup_defrag_inodes(fs_info);
3413
3414         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3415                 ret = btrfs_commit_super(root);
3416                 if (ret)
3417                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3418         }
3419
3420         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3421                 btrfs_error_commit_super(root);
3422
3423         btrfs_put_block_group_cache(fs_info);
3424
3425         kthread_stop(fs_info->transaction_kthread);
3426         kthread_stop(fs_info->cleaner_kthread);
3427
3428         fs_info->closing = 2;
3429         smp_mb();
3430
3431         btrfs_free_qgroup_config(root->fs_info);
3432
3433         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3434                 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3435                        percpu_counter_sum(&fs_info->delalloc_bytes));
3436         }
3437
3438         free_root_pointers(fs_info, 1);
3439
3440         btrfs_free_block_groups(fs_info);
3441
3442         del_fs_roots(fs_info);
3443
3444         iput(fs_info->btree_inode);
3445
3446         btrfs_stop_all_workers(fs_info);
3447
3448 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3449         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3450                 btrfsic_unmount(root, fs_info->fs_devices);
3451 #endif
3452
3453         btrfs_close_devices(fs_info->fs_devices);
3454         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3455
3456         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3457         percpu_counter_destroy(&fs_info->delalloc_bytes);
3458         bdi_destroy(&fs_info->bdi);
3459         cleanup_srcu_struct(&fs_info->subvol_srcu);
3460
3461         btrfs_free_stripe_hash_table(fs_info);
3462
3463         return 0;
3464 }
3465
3466 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3467                           int atomic)
3468 {
3469         int ret;
3470         struct inode *btree_inode = buf->pages[0]->mapping->host;
3471
3472         ret = extent_buffer_uptodate(buf);
3473         if (!ret)
3474                 return ret;
3475
3476         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3477                                     parent_transid, atomic);
3478         if (ret == -EAGAIN)
3479                 return ret;
3480         return !ret;
3481 }
3482
3483 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3484 {
3485         return set_extent_buffer_uptodate(buf);
3486 }
3487
3488 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3489 {
3490         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3491         u64 transid = btrfs_header_generation(buf);
3492         int was_dirty;
3493
3494         btrfs_assert_tree_locked(buf);
3495         if (transid != root->fs_info->generation)
3496                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3497                        "found %llu running %llu\n",
3498                         (unsigned long long)buf->start,
3499                         (unsigned long long)transid,
3500                         (unsigned long long)root->fs_info->generation);
3501         was_dirty = set_extent_buffer_dirty(buf);
3502         if (!was_dirty)
3503                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3504                                      buf->len,
3505                                      root->fs_info->dirty_metadata_batch);
3506 }
3507
3508 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3509                                         int flush_delayed)
3510 {
3511         /*
3512          * looks as though older kernels can get into trouble with
3513          * this code, they end up stuck in balance_dirty_pages forever
3514          */
3515         int ret;
3516
3517         if (current->flags & PF_MEMALLOC)
3518                 return;
3519
3520         if (flush_delayed)
3521                 btrfs_balance_delayed_items(root);
3522
3523         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3524                                      BTRFS_DIRTY_METADATA_THRESH);
3525         if (ret > 0) {
3526                 balance_dirty_pages_ratelimited(
3527                                    root->fs_info->btree_inode->i_mapping);
3528         }
3529         return;
3530 }
3531
3532 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3533 {
3534         __btrfs_btree_balance_dirty(root, 1);
3535 }
3536
3537 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3538 {
3539         __btrfs_btree_balance_dirty(root, 0);
3540 }
3541
3542 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3543 {
3544         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3545         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3546 }
3547
3548 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3549                               int read_only)
3550 {
3551         if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3552                 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3553                 return -EINVAL;
3554         }
3555
3556         if (read_only)
3557                 return 0;
3558
3559         return 0;
3560 }
3561
3562 void btrfs_error_commit_super(struct btrfs_root *root)
3563 {
3564         mutex_lock(&root->fs_info->cleaner_mutex);
3565         btrfs_run_delayed_iputs(root);
3566         mutex_unlock(&root->fs_info->cleaner_mutex);
3567
3568         down_write(&root->fs_info->cleanup_work_sem);
3569         up_write(&root->fs_info->cleanup_work_sem);
3570
3571         /* cleanup FS via transaction */
3572         btrfs_cleanup_transaction(root);
3573 }
3574
3575 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3576                                              struct btrfs_root *root)
3577 {
3578         struct btrfs_inode *btrfs_inode;
3579         struct list_head splice;
3580
3581         INIT_LIST_HEAD(&splice);
3582
3583         mutex_lock(&root->fs_info->ordered_operations_mutex);
3584         spin_lock(&root->fs_info->ordered_extent_lock);
3585
3586         list_splice_init(&t->ordered_operations, &splice);
3587         while (!list_empty(&splice)) {
3588                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3589                                          ordered_operations);
3590
3591                 list_del_init(&btrfs_inode->ordered_operations);
3592
3593                 btrfs_invalidate_inodes(btrfs_inode->root);
3594         }
3595
3596         spin_unlock(&root->fs_info->ordered_extent_lock);
3597         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3598 }
3599
3600 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3601 {
3602         struct btrfs_ordered_extent *ordered;
3603
3604         spin_lock(&root->fs_info->ordered_extent_lock);
3605         /*
3606          * This will just short circuit the ordered completion stuff which will
3607          * make sure the ordered extent gets properly cleaned up.
3608          */
3609         list_for_each_entry(ordered, &root->fs_info->ordered_extents,
3610                             root_extent_list)
3611                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3612         spin_unlock(&root->fs_info->ordered_extent_lock);
3613 }
3614
3615 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3616                                struct btrfs_root *root)
3617 {
3618         struct rb_node *node;
3619         struct btrfs_delayed_ref_root *delayed_refs;
3620         struct btrfs_delayed_ref_node *ref;
3621         int ret = 0;
3622
3623         delayed_refs = &trans->delayed_refs;
3624
3625         spin_lock(&delayed_refs->lock);
3626         if (delayed_refs->num_entries == 0) {
3627                 spin_unlock(&delayed_refs->lock);
3628                 printk(KERN_INFO "delayed_refs has NO entry\n");
3629                 return ret;
3630         }
3631
3632         while ((node = rb_first(&delayed_refs->root)) != NULL) {
3633                 struct btrfs_delayed_ref_head *head = NULL;
3634
3635                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3636                 atomic_set(&ref->refs, 1);
3637                 if (btrfs_delayed_ref_is_head(ref)) {
3638
3639                         head = btrfs_delayed_node_to_head(ref);
3640                         if (!mutex_trylock(&head->mutex)) {
3641                                 atomic_inc(&ref->refs);
3642                                 spin_unlock(&delayed_refs->lock);
3643
3644                                 /* Need to wait for the delayed ref to run */
3645                                 mutex_lock(&head->mutex);
3646                                 mutex_unlock(&head->mutex);
3647                                 btrfs_put_delayed_ref(ref);
3648
3649                                 spin_lock(&delayed_refs->lock);
3650                                 continue;
3651                         }
3652
3653                         btrfs_free_delayed_extent_op(head->extent_op);
3654                         delayed_refs->num_heads--;
3655                         if (list_empty(&head->cluster))
3656                                 delayed_refs->num_heads_ready--;
3657                         list_del_init(&head->cluster);
3658                 }
3659
3660                 ref->in_tree = 0;
3661                 rb_erase(&ref->rb_node, &delayed_refs->root);
3662                 delayed_refs->num_entries--;
3663                 if (head)
3664                         mutex_unlock(&head->mutex);
3665                 spin_unlock(&delayed_refs->lock);
3666                 btrfs_put_delayed_ref(ref);
3667
3668                 cond_resched();
3669                 spin_lock(&delayed_refs->lock);
3670         }
3671
3672         spin_unlock(&delayed_refs->lock);
3673
3674         return ret;
3675 }
3676
3677 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3678 {
3679         struct btrfs_pending_snapshot *snapshot;
3680         struct list_head splice;
3681
3682         INIT_LIST_HEAD(&splice);
3683
3684         list_splice_init(&t->pending_snapshots, &splice);
3685
3686         while (!list_empty(&splice)) {
3687                 snapshot = list_entry(splice.next,
3688                                       struct btrfs_pending_snapshot,
3689                                       list);
3690                 snapshot->error = -ECANCELED;
3691                 list_del_init(&snapshot->list);
3692         }
3693 }
3694
3695 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3696 {
3697         struct btrfs_inode *btrfs_inode;
3698         struct list_head splice;
3699
3700         INIT_LIST_HEAD(&splice);
3701
3702         spin_lock(&root->fs_info->delalloc_lock);
3703         list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3704
3705         while (!list_empty(&splice)) {
3706                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3707                                     delalloc_inodes);
3708
3709                 list_del_init(&btrfs_inode->delalloc_inodes);
3710                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3711                           &btrfs_inode->runtime_flags);
3712
3713                 btrfs_invalidate_inodes(btrfs_inode->root);
3714         }
3715
3716         spin_unlock(&root->fs_info->delalloc_lock);
3717 }
3718
3719 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3720                                         struct extent_io_tree *dirty_pages,
3721                                         int mark)
3722 {
3723         int ret;
3724         struct page *page;
3725         struct inode *btree_inode = root->fs_info->btree_inode;
3726         struct extent_buffer *eb;
3727         u64 start = 0;
3728         u64 end;
3729         u64 offset;
3730         unsigned long index;
3731
3732         while (1) {
3733                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3734                                             mark, NULL);
3735                 if (ret)
3736                         break;
3737
3738                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3739                 while (start <= end) {
3740                         index = start >> PAGE_CACHE_SHIFT;
3741                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3742                         page = find_get_page(btree_inode->i_mapping, index);
3743                         if (!page)
3744                                 continue;
3745                         offset = page_offset(page);
3746
3747                         spin_lock(&dirty_pages->buffer_lock);
3748                         eb = radix_tree_lookup(
3749                              &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3750                                                offset >> PAGE_CACHE_SHIFT);
3751                         spin_unlock(&dirty_pages->buffer_lock);
3752                         if (eb)
3753                                 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3754                                                          &eb->bflags);
3755                         if (PageWriteback(page))
3756                                 end_page_writeback(page);
3757
3758                         lock_page(page);
3759                         if (PageDirty(page)) {
3760                                 clear_page_dirty_for_io(page);
3761                                 spin_lock_irq(&page->mapping->tree_lock);
3762                                 radix_tree_tag_clear(&page->mapping->page_tree,
3763                                                         page_index(page),
3764                                                         PAGECACHE_TAG_DIRTY);
3765                                 spin_unlock_irq(&page->mapping->tree_lock);
3766                         }
3767
3768                         unlock_page(page);
3769                         page_cache_release(page);
3770                 }
3771         }
3772
3773         return ret;
3774 }
3775
3776 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3777                                        struct extent_io_tree *pinned_extents)
3778 {
3779         struct extent_io_tree *unpin;
3780         u64 start;
3781         u64 end;
3782         int ret;
3783         bool loop = true;
3784
3785         unpin = pinned_extents;
3786 again:
3787         while (1) {
3788                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3789                                             EXTENT_DIRTY, NULL);
3790                 if (ret)
3791                         break;
3792
3793                 /* opt_discard */
3794                 if (btrfs_test_opt(root, DISCARD))
3795                         ret = btrfs_error_discard_extent(root, start,
3796                                                          end + 1 - start,
3797                                                          NULL);
3798
3799                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3800                 btrfs_error_unpin_extent_range(root, start, end);
3801                 cond_resched();
3802         }
3803
3804         if (loop) {
3805                 if (unpin == &root->fs_info->freed_extents[0])
3806                         unpin = &root->fs_info->freed_extents[1];
3807                 else
3808                         unpin = &root->fs_info->freed_extents[0];
3809                 loop = false;
3810                 goto again;
3811         }
3812
3813         return 0;
3814 }
3815
3816 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3817                                    struct btrfs_root *root)
3818 {
3819         btrfs_destroy_delayed_refs(cur_trans, root);
3820         btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3821                                 cur_trans->dirty_pages.dirty_bytes);
3822
3823         /* FIXME: cleanup wait for commit */
3824         cur_trans->in_commit = 1;
3825         cur_trans->blocked = 1;
3826         wake_up(&root->fs_info->transaction_blocked_wait);
3827
3828         btrfs_evict_pending_snapshots(cur_trans);
3829
3830         cur_trans->blocked = 0;
3831         wake_up(&root->fs_info->transaction_wait);
3832
3833         cur_trans->commit_done = 1;
3834         wake_up(&cur_trans->commit_wait);
3835
3836         btrfs_destroy_delayed_inodes(root);
3837         btrfs_assert_delayed_root_empty(root);
3838
3839         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3840                                      EXTENT_DIRTY);
3841         btrfs_destroy_pinned_extent(root,
3842                                     root->fs_info->pinned_extents);
3843
3844         /*
3845         memset(cur_trans, 0, sizeof(*cur_trans));
3846         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3847         */
3848 }
3849
3850 int btrfs_cleanup_transaction(struct btrfs_root *root)
3851 {
3852         struct btrfs_transaction *t;
3853         LIST_HEAD(list);
3854
3855         mutex_lock(&root->fs_info->transaction_kthread_mutex);
3856
3857         spin_lock(&root->fs_info->trans_lock);
3858         list_splice_init(&root->fs_info->trans_list, &list);
3859         root->fs_info->trans_no_join = 1;
3860         spin_unlock(&root->fs_info->trans_lock);
3861
3862         while (!list_empty(&list)) {
3863                 t = list_entry(list.next, struct btrfs_transaction, list);
3864
3865                 btrfs_destroy_ordered_operations(t, root);
3866
3867                 btrfs_destroy_ordered_extents(root);
3868
3869                 btrfs_destroy_delayed_refs(t, root);
3870
3871                 btrfs_block_rsv_release(root,
3872                                         &root->fs_info->trans_block_rsv,
3873                                         t->dirty_pages.dirty_bytes);
3874
3875                 /* FIXME: cleanup wait for commit */
3876                 t->in_commit = 1;
3877                 t->blocked = 1;
3878                 smp_mb();
3879                 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3880                         wake_up(&root->fs_info->transaction_blocked_wait);
3881
3882                 btrfs_evict_pending_snapshots(t);
3883
3884                 t->blocked = 0;
3885                 smp_mb();
3886                 if (waitqueue_active(&root->fs_info->transaction_wait))
3887                         wake_up(&root->fs_info->transaction_wait);
3888
3889                 t->commit_done = 1;
3890                 smp_mb();
3891                 if (waitqueue_active(&t->commit_wait))
3892                         wake_up(&t->commit_wait);
3893
3894                 btrfs_destroy_delayed_inodes(root);
3895                 btrfs_assert_delayed_root_empty(root);
3896
3897                 btrfs_destroy_delalloc_inodes(root);
3898
3899                 spin_lock(&root->fs_info->trans_lock);
3900                 root->fs_info->running_transaction = NULL;
3901                 spin_unlock(&root->fs_info->trans_lock);
3902
3903                 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3904                                              EXTENT_DIRTY);
3905
3906                 btrfs_destroy_pinned_extent(root,
3907                                             root->fs_info->pinned_extents);
3908
3909                 atomic_set(&t->use_count, 0);
3910                 list_del_init(&t->list);
3911                 memset(t, 0, sizeof(*t));
3912                 kmem_cache_free(btrfs_transaction_cachep, t);
3913         }
3914
3915         spin_lock(&root->fs_info->trans_lock);
3916         root->fs_info->trans_no_join = 0;
3917         spin_unlock(&root->fs_info->trans_lock);
3918         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3919
3920         return 0;
3921 }
3922
3923 static struct extent_io_ops btree_extent_io_ops = {
3924         .readpage_end_io_hook = btree_readpage_end_io_hook,
3925         .readpage_io_failed_hook = btree_io_failed_hook,
3926         .submit_bio_hook = btree_submit_bio_hook,
3927         /* note we're sharing with inode.c for the merge bio hook */
3928         .merge_bio_hook = btrfs_merge_bio_hook,
3929 };