bcbb596d9695d60ac13f0a51d92cd0457ac36045
[cascardo/linux.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static const struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61                                     int read_only);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64                                       struct btrfs_root *root);
65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67                                         struct extent_io_tree *dirty_pages,
68                                         int mark);
69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70                                        struct extent_io_tree *pinned_extents);
71 static int btrfs_cleanup_transaction(struct btrfs_root *root);
72 static void btrfs_error_commit_super(struct btrfs_root *root);
73
74 /*
75  * btrfs_end_io_wq structs are used to do processing in task context when an IO
76  * is complete.  This is used during reads to verify checksums, and it is used
77  * by writes to insert metadata for new file extents after IO is complete.
78  */
79 struct btrfs_end_io_wq {
80         struct bio *bio;
81         bio_end_io_t *end_io;
82         void *private;
83         struct btrfs_fs_info *info;
84         int error;
85         enum btrfs_wq_endio_type metadata;
86         struct list_head list;
87         struct btrfs_work work;
88 };
89
90 static struct kmem_cache *btrfs_end_io_wq_cache;
91
92 int __init btrfs_end_io_wq_init(void)
93 {
94         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95                                         sizeof(struct btrfs_end_io_wq),
96                                         0,
97                                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98                                         NULL);
99         if (!btrfs_end_io_wq_cache)
100                 return -ENOMEM;
101         return 0;
102 }
103
104 void btrfs_end_io_wq_exit(void)
105 {
106         if (btrfs_end_io_wq_cache)
107                 kmem_cache_destroy(btrfs_end_io_wq_cache);
108 }
109
110 /*
111  * async submit bios are used to offload expensive checksumming
112  * onto the worker threads.  They checksum file and metadata bios
113  * just before they are sent down the IO stack.
114  */
115 struct async_submit_bio {
116         struct inode *inode;
117         struct bio *bio;
118         struct list_head list;
119         extent_submit_bio_hook_t *submit_bio_start;
120         extent_submit_bio_hook_t *submit_bio_done;
121         int rw;
122         int mirror_num;
123         unsigned long bio_flags;
124         /*
125          * bio_offset is optional, can be used if the pages in the bio
126          * can't tell us where in the file the bio should go
127          */
128         u64 bio_offset;
129         struct btrfs_work work;
130         int error;
131 };
132
133 /*
134  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
135  * eb, the lockdep key is determined by the btrfs_root it belongs to and
136  * the level the eb occupies in the tree.
137  *
138  * Different roots are used for different purposes and may nest inside each
139  * other and they require separate keysets.  As lockdep keys should be
140  * static, assign keysets according to the purpose of the root as indicated
141  * by btrfs_root->objectid.  This ensures that all special purpose roots
142  * have separate keysets.
143  *
144  * Lock-nesting across peer nodes is always done with the immediate parent
145  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
146  * subclass to avoid triggering lockdep warning in such cases.
147  *
148  * The key is set by the readpage_end_io_hook after the buffer has passed
149  * csum validation but before the pages are unlocked.  It is also set by
150  * btrfs_init_new_buffer on freshly allocated blocks.
151  *
152  * We also add a check to make sure the highest level of the tree is the
153  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
154  * needs update as well.
155  */
156 #ifdef CONFIG_DEBUG_LOCK_ALLOC
157 # if BTRFS_MAX_LEVEL != 8
158 #  error
159 # endif
160
161 static struct btrfs_lockdep_keyset {
162         u64                     id;             /* root objectid */
163         const char              *name_stem;     /* lock name stem */
164         char                    names[BTRFS_MAX_LEVEL + 1][20];
165         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
166 } btrfs_lockdep_keysets[] = {
167         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
168         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
169         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
170         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
171         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
172         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
173         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
174         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
175         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
176         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
177         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
178         { .id = 0,                              .name_stem = "tree"     },
179 };
180
181 void __init btrfs_init_lockdep(void)
182 {
183         int i, j;
184
185         /* initialize lockdep class names */
186         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
188
189                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190                         snprintf(ks->names[j], sizeof(ks->names[j]),
191                                  "btrfs-%s-%02d", ks->name_stem, j);
192         }
193 }
194
195 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196                                     int level)
197 {
198         struct btrfs_lockdep_keyset *ks;
199
200         BUG_ON(level >= ARRAY_SIZE(ks->keys));
201
202         /* find the matching keyset, id 0 is the default entry */
203         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204                 if (ks->id == objectid)
205                         break;
206
207         lockdep_set_class_and_name(&eb->lock,
208                                    &ks->keys[level], ks->names[level]);
209 }
210
211 #endif
212
213 /*
214  * extents on the btree inode are pretty simple, there's one extent
215  * that covers the entire device
216  */
217 static struct extent_map *btree_get_extent(struct inode *inode,
218                 struct page *page, size_t pg_offset, u64 start, u64 len,
219                 int create)
220 {
221         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222         struct extent_map *em;
223         int ret;
224
225         read_lock(&em_tree->lock);
226         em = lookup_extent_mapping(em_tree, start, len);
227         if (em) {
228                 em->bdev =
229                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
230                 read_unlock(&em_tree->lock);
231                 goto out;
232         }
233         read_unlock(&em_tree->lock);
234
235         em = alloc_extent_map();
236         if (!em) {
237                 em = ERR_PTR(-ENOMEM);
238                 goto out;
239         }
240         em->start = 0;
241         em->len = (u64)-1;
242         em->block_len = (u64)-1;
243         em->block_start = 0;
244         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
245
246         write_lock(&em_tree->lock);
247         ret = add_extent_mapping(em_tree, em, 0);
248         if (ret == -EEXIST) {
249                 free_extent_map(em);
250                 em = lookup_extent_mapping(em_tree, start, len);
251                 if (!em)
252                         em = ERR_PTR(-EIO);
253         } else if (ret) {
254                 free_extent_map(em);
255                 em = ERR_PTR(ret);
256         }
257         write_unlock(&em_tree->lock);
258
259 out:
260         return em;
261 }
262
263 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
264 {
265         return btrfs_crc32c(seed, data, len);
266 }
267
268 void btrfs_csum_final(u32 crc, char *result)
269 {
270         put_unaligned_le32(~crc, result);
271 }
272
273 /*
274  * compute the csum for a btree block, and either verify it or write it
275  * into the csum field of the block.
276  */
277 static int csum_tree_block(struct btrfs_fs_info *fs_info,
278                            struct extent_buffer *buf,
279                            int verify)
280 {
281         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
282         char *result = NULL;
283         unsigned long len;
284         unsigned long cur_len;
285         unsigned long offset = BTRFS_CSUM_SIZE;
286         char *kaddr;
287         unsigned long map_start;
288         unsigned long map_len;
289         int err;
290         u32 crc = ~(u32)0;
291         unsigned long inline_result;
292
293         len = buf->len - offset;
294         while (len > 0) {
295                 err = map_private_extent_buffer(buf, offset, 32,
296                                         &kaddr, &map_start, &map_len);
297                 if (err)
298                         return 1;
299                 cur_len = min(len, map_len - (offset - map_start));
300                 crc = btrfs_csum_data(kaddr + offset - map_start,
301                                       crc, cur_len);
302                 len -= cur_len;
303                 offset += cur_len;
304         }
305         if (csum_size > sizeof(inline_result)) {
306                 result = kzalloc(csum_size, GFP_NOFS);
307                 if (!result)
308                         return 1;
309         } else {
310                 result = (char *)&inline_result;
311         }
312
313         btrfs_csum_final(crc, result);
314
315         if (verify) {
316                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
317                         u32 val;
318                         u32 found = 0;
319                         memcpy(&found, result, csum_size);
320
321                         read_extent_buffer(buf, &val, 0, csum_size);
322                         btrfs_warn_rl(fs_info,
323                                 "%s checksum verify failed on %llu wanted %X found %X "
324                                 "level %d",
325                                 fs_info->sb->s_id, buf->start,
326                                 val, found, btrfs_header_level(buf));
327                         if (result != (char *)&inline_result)
328                                 kfree(result);
329                         return 1;
330                 }
331         } else {
332                 write_extent_buffer(buf, result, 0, csum_size);
333         }
334         if (result != (char *)&inline_result)
335                 kfree(result);
336         return 0;
337 }
338
339 /*
340  * we can't consider a given block up to date unless the transid of the
341  * block matches the transid in the parent node's pointer.  This is how we
342  * detect blocks that either didn't get written at all or got written
343  * in the wrong place.
344  */
345 static int verify_parent_transid(struct extent_io_tree *io_tree,
346                                  struct extent_buffer *eb, u64 parent_transid,
347                                  int atomic)
348 {
349         struct extent_state *cached_state = NULL;
350         int ret;
351         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
352
353         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
354                 return 0;
355
356         if (atomic)
357                 return -EAGAIN;
358
359         if (need_lock) {
360                 btrfs_tree_read_lock(eb);
361                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
362         }
363
364         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
365                          0, &cached_state);
366         if (extent_buffer_uptodate(eb) &&
367             btrfs_header_generation(eb) == parent_transid) {
368                 ret = 0;
369                 goto out;
370         }
371         btrfs_err_rl(eb->fs_info,
372                 "parent transid verify failed on %llu wanted %llu found %llu",
373                         eb->start,
374                         parent_transid, btrfs_header_generation(eb));
375         ret = 1;
376
377         /*
378          * Things reading via commit roots that don't have normal protection,
379          * like send, can have a really old block in cache that may point at a
380          * block that has been free'd and re-allocated.  So don't clear uptodate
381          * if we find an eb that is under IO (dirty/writeback) because we could
382          * end up reading in the stale data and then writing it back out and
383          * making everybody very sad.
384          */
385         if (!extent_buffer_under_io(eb))
386                 clear_extent_buffer_uptodate(eb);
387 out:
388         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
389                              &cached_state, GFP_NOFS);
390         if (need_lock)
391                 btrfs_tree_read_unlock_blocking(eb);
392         return ret;
393 }
394
395 /*
396  * Return 0 if the superblock checksum type matches the checksum value of that
397  * algorithm. Pass the raw disk superblock data.
398  */
399 static int btrfs_check_super_csum(char *raw_disk_sb)
400 {
401         struct btrfs_super_block *disk_sb =
402                 (struct btrfs_super_block *)raw_disk_sb;
403         u16 csum_type = btrfs_super_csum_type(disk_sb);
404         int ret = 0;
405
406         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
407                 u32 crc = ~(u32)0;
408                 const int csum_size = sizeof(crc);
409                 char result[csum_size];
410
411                 /*
412                  * The super_block structure does not span the whole
413                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
414                  * is filled with zeros and is included in the checkum.
415                  */
416                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
417                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
418                 btrfs_csum_final(crc, result);
419
420                 if (memcmp(raw_disk_sb, result, csum_size))
421                         ret = 1;
422         }
423
424         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
425                 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
426                                 csum_type);
427                 ret = 1;
428         }
429
430         return ret;
431 }
432
433 /*
434  * helper to read a given tree block, doing retries as required when
435  * the checksums don't match and we have alternate mirrors to try.
436  */
437 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
438                                           struct extent_buffer *eb,
439                                           u64 start, u64 parent_transid)
440 {
441         struct extent_io_tree *io_tree;
442         int failed = 0;
443         int ret;
444         int num_copies = 0;
445         int mirror_num = 0;
446         int failed_mirror = 0;
447
448         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
449         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
450         while (1) {
451                 ret = read_extent_buffer_pages(io_tree, eb, start,
452                                                WAIT_COMPLETE,
453                                                btree_get_extent, mirror_num);
454                 if (!ret) {
455                         if (!verify_parent_transid(io_tree, eb,
456                                                    parent_transid, 0))
457                                 break;
458                         else
459                                 ret = -EIO;
460                 }
461
462                 /*
463                  * This buffer's crc is fine, but its contents are corrupted, so
464                  * there is no reason to read the other copies, they won't be
465                  * any less wrong.
466                  */
467                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
468                         break;
469
470                 num_copies = btrfs_num_copies(root->fs_info,
471                                               eb->start, eb->len);
472                 if (num_copies == 1)
473                         break;
474
475                 if (!failed_mirror) {
476                         failed = 1;
477                         failed_mirror = eb->read_mirror;
478                 }
479
480                 mirror_num++;
481                 if (mirror_num == failed_mirror)
482                         mirror_num++;
483
484                 if (mirror_num > num_copies)
485                         break;
486         }
487
488         if (failed && !ret && failed_mirror)
489                 repair_eb_io_failure(root, eb, failed_mirror);
490
491         return ret;
492 }
493
494 /*
495  * checksum a dirty tree block before IO.  This has extra checks to make sure
496  * we only fill in the checksum field in the first page of a multi-page block
497  */
498
499 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
500 {
501         u64 start = page_offset(page);
502         u64 found_start;
503         struct extent_buffer *eb;
504
505         eb = (struct extent_buffer *)page->private;
506         if (page != eb->pages[0])
507                 return 0;
508         found_start = btrfs_header_bytenr(eb);
509         if (WARN_ON(found_start != start || !PageUptodate(page)))
510                 return 0;
511         csum_tree_block(fs_info, eb, 0);
512         return 0;
513 }
514
515 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
516                                  struct extent_buffer *eb)
517 {
518         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
519         u8 fsid[BTRFS_UUID_SIZE];
520         int ret = 1;
521
522         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
523         while (fs_devices) {
524                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
525                         ret = 0;
526                         break;
527                 }
528                 fs_devices = fs_devices->seed;
529         }
530         return ret;
531 }
532
533 #define CORRUPT(reason, eb, root, slot)                         \
534         btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
535                    "root=%llu, slot=%d", reason,                        \
536                btrfs_header_bytenr(eb), root->objectid, slot)
537
538 static noinline int check_leaf(struct btrfs_root *root,
539                                struct extent_buffer *leaf)
540 {
541         struct btrfs_key key;
542         struct btrfs_key leaf_key;
543         u32 nritems = btrfs_header_nritems(leaf);
544         int slot;
545
546         if (nritems == 0)
547                 return 0;
548
549         /* Check the 0 item */
550         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
551             BTRFS_LEAF_DATA_SIZE(root)) {
552                 CORRUPT("invalid item offset size pair", leaf, root, 0);
553                 return -EIO;
554         }
555
556         /*
557          * Check to make sure each items keys are in the correct order and their
558          * offsets make sense.  We only have to loop through nritems-1 because
559          * we check the current slot against the next slot, which verifies the
560          * next slot's offset+size makes sense and that the current's slot
561          * offset is correct.
562          */
563         for (slot = 0; slot < nritems - 1; slot++) {
564                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
565                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
566
567                 /* Make sure the keys are in the right order */
568                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
569                         CORRUPT("bad key order", leaf, root, slot);
570                         return -EIO;
571                 }
572
573                 /*
574                  * Make sure the offset and ends are right, remember that the
575                  * item data starts at the end of the leaf and grows towards the
576                  * front.
577                  */
578                 if (btrfs_item_offset_nr(leaf, slot) !=
579                         btrfs_item_end_nr(leaf, slot + 1)) {
580                         CORRUPT("slot offset bad", leaf, root, slot);
581                         return -EIO;
582                 }
583
584                 /*
585                  * Check to make sure that we don't point outside of the leaf,
586                  * just incase all the items are consistent to eachother, but
587                  * all point outside of the leaf.
588                  */
589                 if (btrfs_item_end_nr(leaf, slot) >
590                     BTRFS_LEAF_DATA_SIZE(root)) {
591                         CORRUPT("slot end outside of leaf", leaf, root, slot);
592                         return -EIO;
593                 }
594         }
595
596         return 0;
597 }
598
599 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
600                                       u64 phy_offset, struct page *page,
601                                       u64 start, u64 end, int mirror)
602 {
603         u64 found_start;
604         int found_level;
605         struct extent_buffer *eb;
606         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
607         int ret = 0;
608         int reads_done;
609
610         if (!page->private)
611                 goto out;
612
613         eb = (struct extent_buffer *)page->private;
614
615         /* the pending IO might have been the only thing that kept this buffer
616          * in memory.  Make sure we have a ref for all this other checks
617          */
618         extent_buffer_get(eb);
619
620         reads_done = atomic_dec_and_test(&eb->io_pages);
621         if (!reads_done)
622                 goto err;
623
624         eb->read_mirror = mirror;
625         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
626                 ret = -EIO;
627                 goto err;
628         }
629
630         found_start = btrfs_header_bytenr(eb);
631         if (found_start != eb->start) {
632                 btrfs_err_rl(eb->fs_info, "bad tree block start %llu %llu",
633                                found_start, eb->start);
634                 ret = -EIO;
635                 goto err;
636         }
637         if (check_tree_block_fsid(root->fs_info, eb)) {
638                 btrfs_err_rl(eb->fs_info, "bad fsid on block %llu",
639                                eb->start);
640                 ret = -EIO;
641                 goto err;
642         }
643         found_level = btrfs_header_level(eb);
644         if (found_level >= BTRFS_MAX_LEVEL) {
645                 btrfs_err(root->fs_info, "bad tree block level %d",
646                            (int)btrfs_header_level(eb));
647                 ret = -EIO;
648                 goto err;
649         }
650
651         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
652                                        eb, found_level);
653
654         ret = csum_tree_block(root->fs_info, eb, 1);
655         if (ret) {
656                 ret = -EIO;
657                 goto err;
658         }
659
660         /*
661          * If this is a leaf block and it is corrupt, set the corrupt bit so
662          * that we don't try and read the other copies of this block, just
663          * return -EIO.
664          */
665         if (found_level == 0 && check_leaf(root, eb)) {
666                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
667                 ret = -EIO;
668         }
669
670         if (!ret)
671                 set_extent_buffer_uptodate(eb);
672 err:
673         if (reads_done &&
674             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
675                 btree_readahead_hook(root, eb, eb->start, ret);
676
677         if (ret) {
678                 /*
679                  * our io error hook is going to dec the io pages
680                  * again, we have to make sure it has something
681                  * to decrement
682                  */
683                 atomic_inc(&eb->io_pages);
684                 clear_extent_buffer_uptodate(eb);
685         }
686         free_extent_buffer(eb);
687 out:
688         return ret;
689 }
690
691 static int btree_io_failed_hook(struct page *page, int failed_mirror)
692 {
693         struct extent_buffer *eb;
694         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
695
696         eb = (struct extent_buffer *)page->private;
697         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
698         eb->read_mirror = failed_mirror;
699         atomic_dec(&eb->io_pages);
700         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
701                 btree_readahead_hook(root, eb, eb->start, -EIO);
702         return -EIO;    /* we fixed nothing */
703 }
704
705 static void end_workqueue_bio(struct bio *bio)
706 {
707         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
708         struct btrfs_fs_info *fs_info;
709         struct btrfs_workqueue *wq;
710         btrfs_work_func_t func;
711
712         fs_info = end_io_wq->info;
713         end_io_wq->error = bio->bi_error;
714
715         if (bio->bi_rw & REQ_WRITE) {
716                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
717                         wq = fs_info->endio_meta_write_workers;
718                         func = btrfs_endio_meta_write_helper;
719                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
720                         wq = fs_info->endio_freespace_worker;
721                         func = btrfs_freespace_write_helper;
722                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
723                         wq = fs_info->endio_raid56_workers;
724                         func = btrfs_endio_raid56_helper;
725                 } else {
726                         wq = fs_info->endio_write_workers;
727                         func = btrfs_endio_write_helper;
728                 }
729         } else {
730                 if (unlikely(end_io_wq->metadata ==
731                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
732                         wq = fs_info->endio_repair_workers;
733                         func = btrfs_endio_repair_helper;
734                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
735                         wq = fs_info->endio_raid56_workers;
736                         func = btrfs_endio_raid56_helper;
737                 } else if (end_io_wq->metadata) {
738                         wq = fs_info->endio_meta_workers;
739                         func = btrfs_endio_meta_helper;
740                 } else {
741                         wq = fs_info->endio_workers;
742                         func = btrfs_endio_helper;
743                 }
744         }
745
746         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
747         btrfs_queue_work(wq, &end_io_wq->work);
748 }
749
750 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
751                         enum btrfs_wq_endio_type metadata)
752 {
753         struct btrfs_end_io_wq *end_io_wq;
754
755         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
756         if (!end_io_wq)
757                 return -ENOMEM;
758
759         end_io_wq->private = bio->bi_private;
760         end_io_wq->end_io = bio->bi_end_io;
761         end_io_wq->info = info;
762         end_io_wq->error = 0;
763         end_io_wq->bio = bio;
764         end_io_wq->metadata = metadata;
765
766         bio->bi_private = end_io_wq;
767         bio->bi_end_io = end_workqueue_bio;
768         return 0;
769 }
770
771 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
772 {
773         unsigned long limit = min_t(unsigned long,
774                                     info->thread_pool_size,
775                                     info->fs_devices->open_devices);
776         return 256 * limit;
777 }
778
779 static void run_one_async_start(struct btrfs_work *work)
780 {
781         struct async_submit_bio *async;
782         int ret;
783
784         async = container_of(work, struct  async_submit_bio, work);
785         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
786                                       async->mirror_num, async->bio_flags,
787                                       async->bio_offset);
788         if (ret)
789                 async->error = ret;
790 }
791
792 static void run_one_async_done(struct btrfs_work *work)
793 {
794         struct btrfs_fs_info *fs_info;
795         struct async_submit_bio *async;
796         int limit;
797
798         async = container_of(work, struct  async_submit_bio, work);
799         fs_info = BTRFS_I(async->inode)->root->fs_info;
800
801         limit = btrfs_async_submit_limit(fs_info);
802         limit = limit * 2 / 3;
803
804         /*
805          * atomic_dec_return implies a barrier for waitqueue_active
806          */
807         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
808             waitqueue_active(&fs_info->async_submit_wait))
809                 wake_up(&fs_info->async_submit_wait);
810
811         /* If an error occured we just want to clean up the bio and move on */
812         if (async->error) {
813                 async->bio->bi_error = async->error;
814                 bio_endio(async->bio);
815                 return;
816         }
817
818         async->submit_bio_done(async->inode, async->rw, async->bio,
819                                async->mirror_num, async->bio_flags,
820                                async->bio_offset);
821 }
822
823 static void run_one_async_free(struct btrfs_work *work)
824 {
825         struct async_submit_bio *async;
826
827         async = container_of(work, struct  async_submit_bio, work);
828         kfree(async);
829 }
830
831 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
832                         int rw, struct bio *bio, int mirror_num,
833                         unsigned long bio_flags,
834                         u64 bio_offset,
835                         extent_submit_bio_hook_t *submit_bio_start,
836                         extent_submit_bio_hook_t *submit_bio_done)
837 {
838         struct async_submit_bio *async;
839
840         async = kmalloc(sizeof(*async), GFP_NOFS);
841         if (!async)
842                 return -ENOMEM;
843
844         async->inode = inode;
845         async->rw = rw;
846         async->bio = bio;
847         async->mirror_num = mirror_num;
848         async->submit_bio_start = submit_bio_start;
849         async->submit_bio_done = submit_bio_done;
850
851         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
852                         run_one_async_done, run_one_async_free);
853
854         async->bio_flags = bio_flags;
855         async->bio_offset = bio_offset;
856
857         async->error = 0;
858
859         atomic_inc(&fs_info->nr_async_submits);
860
861         if (rw & REQ_SYNC)
862                 btrfs_set_work_high_priority(&async->work);
863
864         btrfs_queue_work(fs_info->workers, &async->work);
865
866         while (atomic_read(&fs_info->async_submit_draining) &&
867               atomic_read(&fs_info->nr_async_submits)) {
868                 wait_event(fs_info->async_submit_wait,
869                            (atomic_read(&fs_info->nr_async_submits) == 0));
870         }
871
872         return 0;
873 }
874
875 static int btree_csum_one_bio(struct bio *bio)
876 {
877         struct bio_vec *bvec;
878         struct btrfs_root *root;
879         int i, ret = 0;
880
881         bio_for_each_segment_all(bvec, bio, i) {
882                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
883                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
884                 if (ret)
885                         break;
886         }
887
888         return ret;
889 }
890
891 static int __btree_submit_bio_start(struct inode *inode, int rw,
892                                     struct bio *bio, int mirror_num,
893                                     unsigned long bio_flags,
894                                     u64 bio_offset)
895 {
896         /*
897          * when we're called for a write, we're already in the async
898          * submission context.  Just jump into btrfs_map_bio
899          */
900         return btree_csum_one_bio(bio);
901 }
902
903 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
904                                  int mirror_num, unsigned long bio_flags,
905                                  u64 bio_offset)
906 {
907         int ret;
908
909         /*
910          * when we're called for a write, we're already in the async
911          * submission context.  Just jump into btrfs_map_bio
912          */
913         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
914         if (ret) {
915                 bio->bi_error = ret;
916                 bio_endio(bio);
917         }
918         return ret;
919 }
920
921 static int check_async_write(struct inode *inode, unsigned long bio_flags)
922 {
923         if (bio_flags & EXTENT_BIO_TREE_LOG)
924                 return 0;
925 #ifdef CONFIG_X86
926         if (cpu_has_xmm4_2)
927                 return 0;
928 #endif
929         return 1;
930 }
931
932 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
933                                  int mirror_num, unsigned long bio_flags,
934                                  u64 bio_offset)
935 {
936         int async = check_async_write(inode, bio_flags);
937         int ret;
938
939         if (!(rw & REQ_WRITE)) {
940                 /*
941                  * called for a read, do the setup so that checksum validation
942                  * can happen in the async kernel threads
943                  */
944                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
945                                           bio, BTRFS_WQ_ENDIO_METADATA);
946                 if (ret)
947                         goto out_w_error;
948                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
949                                     mirror_num, 0);
950         } else if (!async) {
951                 ret = btree_csum_one_bio(bio);
952                 if (ret)
953                         goto out_w_error;
954                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
955                                     mirror_num, 0);
956         } else {
957                 /*
958                  * kthread helpers are used to submit writes so that
959                  * checksumming can happen in parallel across all CPUs
960                  */
961                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
962                                           inode, rw, bio, mirror_num, 0,
963                                           bio_offset,
964                                           __btree_submit_bio_start,
965                                           __btree_submit_bio_done);
966         }
967
968         if (ret)
969                 goto out_w_error;
970         return 0;
971
972 out_w_error:
973         bio->bi_error = ret;
974         bio_endio(bio);
975         return ret;
976 }
977
978 #ifdef CONFIG_MIGRATION
979 static int btree_migratepage(struct address_space *mapping,
980                         struct page *newpage, struct page *page,
981                         enum migrate_mode mode)
982 {
983         /*
984          * we can't safely write a btree page from here,
985          * we haven't done the locking hook
986          */
987         if (PageDirty(page))
988                 return -EAGAIN;
989         /*
990          * Buffers may be managed in a filesystem specific way.
991          * We must have no buffers or drop them.
992          */
993         if (page_has_private(page) &&
994             !try_to_release_page(page, GFP_KERNEL))
995                 return -EAGAIN;
996         return migrate_page(mapping, newpage, page, mode);
997 }
998 #endif
999
1000
1001 static int btree_writepages(struct address_space *mapping,
1002                             struct writeback_control *wbc)
1003 {
1004         struct btrfs_fs_info *fs_info;
1005         int ret;
1006
1007         if (wbc->sync_mode == WB_SYNC_NONE) {
1008
1009                 if (wbc->for_kupdate)
1010                         return 0;
1011
1012                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1013                 /* this is a bit racy, but that's ok */
1014                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1015                                              BTRFS_DIRTY_METADATA_THRESH);
1016                 if (ret < 0)
1017                         return 0;
1018         }
1019         return btree_write_cache_pages(mapping, wbc);
1020 }
1021
1022 static int btree_readpage(struct file *file, struct page *page)
1023 {
1024         struct extent_io_tree *tree;
1025         tree = &BTRFS_I(page->mapping->host)->io_tree;
1026         return extent_read_full_page(tree, page, btree_get_extent, 0);
1027 }
1028
1029 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1030 {
1031         if (PageWriteback(page) || PageDirty(page))
1032                 return 0;
1033
1034         return try_release_extent_buffer(page);
1035 }
1036
1037 static void btree_invalidatepage(struct page *page, unsigned int offset,
1038                                  unsigned int length)
1039 {
1040         struct extent_io_tree *tree;
1041         tree = &BTRFS_I(page->mapping->host)->io_tree;
1042         extent_invalidatepage(tree, page, offset);
1043         btree_releasepage(page, GFP_NOFS);
1044         if (PagePrivate(page)) {
1045                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1046                            "page private not zero on page %llu",
1047                            (unsigned long long)page_offset(page));
1048                 ClearPagePrivate(page);
1049                 set_page_private(page, 0);
1050                 page_cache_release(page);
1051         }
1052 }
1053
1054 static int btree_set_page_dirty(struct page *page)
1055 {
1056 #ifdef DEBUG
1057         struct extent_buffer *eb;
1058
1059         BUG_ON(!PagePrivate(page));
1060         eb = (struct extent_buffer *)page->private;
1061         BUG_ON(!eb);
1062         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1063         BUG_ON(!atomic_read(&eb->refs));
1064         btrfs_assert_tree_locked(eb);
1065 #endif
1066         return __set_page_dirty_nobuffers(page);
1067 }
1068
1069 static const struct address_space_operations btree_aops = {
1070         .readpage       = btree_readpage,
1071         .writepages     = btree_writepages,
1072         .releasepage    = btree_releasepage,
1073         .invalidatepage = btree_invalidatepage,
1074 #ifdef CONFIG_MIGRATION
1075         .migratepage    = btree_migratepage,
1076 #endif
1077         .set_page_dirty = btree_set_page_dirty,
1078 };
1079
1080 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1081 {
1082         struct extent_buffer *buf = NULL;
1083         struct inode *btree_inode = root->fs_info->btree_inode;
1084
1085         buf = btrfs_find_create_tree_block(root, bytenr);
1086         if (!buf)
1087                 return;
1088         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1089                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1090         free_extent_buffer(buf);
1091 }
1092
1093 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1094                          int mirror_num, struct extent_buffer **eb)
1095 {
1096         struct extent_buffer *buf = NULL;
1097         struct inode *btree_inode = root->fs_info->btree_inode;
1098         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1099         int ret;
1100
1101         buf = btrfs_find_create_tree_block(root, bytenr);
1102         if (!buf)
1103                 return 0;
1104
1105         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1106
1107         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1108                                        btree_get_extent, mirror_num);
1109         if (ret) {
1110                 free_extent_buffer(buf);
1111                 return ret;
1112         }
1113
1114         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1115                 free_extent_buffer(buf);
1116                 return -EIO;
1117         } else if (extent_buffer_uptodate(buf)) {
1118                 *eb = buf;
1119         } else {
1120                 free_extent_buffer(buf);
1121         }
1122         return 0;
1123 }
1124
1125 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1126                                             u64 bytenr)
1127 {
1128         return find_extent_buffer(fs_info, bytenr);
1129 }
1130
1131 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1132                                                  u64 bytenr)
1133 {
1134         if (btrfs_test_is_dummy_root(root))
1135                 return alloc_test_extent_buffer(root->fs_info, bytenr);
1136         return alloc_extent_buffer(root->fs_info, bytenr);
1137 }
1138
1139
1140 int btrfs_write_tree_block(struct extent_buffer *buf)
1141 {
1142         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1143                                         buf->start + buf->len - 1);
1144 }
1145
1146 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1147 {
1148         return filemap_fdatawait_range(buf->pages[0]->mapping,
1149                                        buf->start, buf->start + buf->len - 1);
1150 }
1151
1152 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1153                                       u64 parent_transid)
1154 {
1155         struct extent_buffer *buf = NULL;
1156         int ret;
1157
1158         buf = btrfs_find_create_tree_block(root, bytenr);
1159         if (!buf)
1160                 return ERR_PTR(-ENOMEM);
1161
1162         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1163         if (ret) {
1164                 free_extent_buffer(buf);
1165                 return ERR_PTR(ret);
1166         }
1167         return buf;
1168
1169 }
1170
1171 void clean_tree_block(struct btrfs_trans_handle *trans,
1172                       struct btrfs_fs_info *fs_info,
1173                       struct extent_buffer *buf)
1174 {
1175         if (btrfs_header_generation(buf) ==
1176             fs_info->running_transaction->transid) {
1177                 btrfs_assert_tree_locked(buf);
1178
1179                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1180                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1181                                              -buf->len,
1182                                              fs_info->dirty_metadata_batch);
1183                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1184                         btrfs_set_lock_blocking(buf);
1185                         clear_extent_buffer_dirty(buf);
1186                 }
1187         }
1188 }
1189
1190 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1191 {
1192         struct btrfs_subvolume_writers *writers;
1193         int ret;
1194
1195         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1196         if (!writers)
1197                 return ERR_PTR(-ENOMEM);
1198
1199         ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1200         if (ret < 0) {
1201                 kfree(writers);
1202                 return ERR_PTR(ret);
1203         }
1204
1205         init_waitqueue_head(&writers->wait);
1206         return writers;
1207 }
1208
1209 static void
1210 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1211 {
1212         percpu_counter_destroy(&writers->counter);
1213         kfree(writers);
1214 }
1215
1216 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1217                          struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1218                          u64 objectid)
1219 {
1220         root->node = NULL;
1221         root->commit_root = NULL;
1222         root->sectorsize = sectorsize;
1223         root->nodesize = nodesize;
1224         root->stripesize = stripesize;
1225         root->state = 0;
1226         root->orphan_cleanup_state = 0;
1227
1228         root->objectid = objectid;
1229         root->last_trans = 0;
1230         root->highest_objectid = 0;
1231         root->nr_delalloc_inodes = 0;
1232         root->nr_ordered_extents = 0;
1233         root->name = NULL;
1234         root->inode_tree = RB_ROOT;
1235         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1236         root->block_rsv = NULL;
1237         root->orphan_block_rsv = NULL;
1238
1239         INIT_LIST_HEAD(&root->dirty_list);
1240         INIT_LIST_HEAD(&root->root_list);
1241         INIT_LIST_HEAD(&root->delalloc_inodes);
1242         INIT_LIST_HEAD(&root->delalloc_root);
1243         INIT_LIST_HEAD(&root->ordered_extents);
1244         INIT_LIST_HEAD(&root->ordered_root);
1245         INIT_LIST_HEAD(&root->logged_list[0]);
1246         INIT_LIST_HEAD(&root->logged_list[1]);
1247         spin_lock_init(&root->orphan_lock);
1248         spin_lock_init(&root->inode_lock);
1249         spin_lock_init(&root->delalloc_lock);
1250         spin_lock_init(&root->ordered_extent_lock);
1251         spin_lock_init(&root->accounting_lock);
1252         spin_lock_init(&root->log_extents_lock[0]);
1253         spin_lock_init(&root->log_extents_lock[1]);
1254         mutex_init(&root->objectid_mutex);
1255         mutex_init(&root->log_mutex);
1256         mutex_init(&root->ordered_extent_mutex);
1257         mutex_init(&root->delalloc_mutex);
1258         init_waitqueue_head(&root->log_writer_wait);
1259         init_waitqueue_head(&root->log_commit_wait[0]);
1260         init_waitqueue_head(&root->log_commit_wait[1]);
1261         INIT_LIST_HEAD(&root->log_ctxs[0]);
1262         INIT_LIST_HEAD(&root->log_ctxs[1]);
1263         atomic_set(&root->log_commit[0], 0);
1264         atomic_set(&root->log_commit[1], 0);
1265         atomic_set(&root->log_writers, 0);
1266         atomic_set(&root->log_batch, 0);
1267         atomic_set(&root->orphan_inodes, 0);
1268         atomic_set(&root->refs, 1);
1269         atomic_set(&root->will_be_snapshoted, 0);
1270         root->log_transid = 0;
1271         root->log_transid_committed = -1;
1272         root->last_log_commit = 0;
1273         if (fs_info)
1274                 extent_io_tree_init(&root->dirty_log_pages,
1275                                      fs_info->btree_inode->i_mapping);
1276
1277         memset(&root->root_key, 0, sizeof(root->root_key));
1278         memset(&root->root_item, 0, sizeof(root->root_item));
1279         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1280         if (fs_info)
1281                 root->defrag_trans_start = fs_info->generation;
1282         else
1283                 root->defrag_trans_start = 0;
1284         root->root_key.objectid = objectid;
1285         root->anon_dev = 0;
1286
1287         spin_lock_init(&root->root_item_lock);
1288 }
1289
1290 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1291 {
1292         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1293         if (root)
1294                 root->fs_info = fs_info;
1295         return root;
1296 }
1297
1298 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1299 /* Should only be used by the testing infrastructure */
1300 struct btrfs_root *btrfs_alloc_dummy_root(void)
1301 {
1302         struct btrfs_root *root;
1303
1304         root = btrfs_alloc_root(NULL);
1305         if (!root)
1306                 return ERR_PTR(-ENOMEM);
1307         __setup_root(4096, 4096, 4096, root, NULL, 1);
1308         set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1309         root->alloc_bytenr = 0;
1310
1311         return root;
1312 }
1313 #endif
1314
1315 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1316                                      struct btrfs_fs_info *fs_info,
1317                                      u64 objectid)
1318 {
1319         struct extent_buffer *leaf;
1320         struct btrfs_root *tree_root = fs_info->tree_root;
1321         struct btrfs_root *root;
1322         struct btrfs_key key;
1323         int ret = 0;
1324         uuid_le uuid;
1325
1326         root = btrfs_alloc_root(fs_info);
1327         if (!root)
1328                 return ERR_PTR(-ENOMEM);
1329
1330         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1331                 tree_root->stripesize, root, fs_info, objectid);
1332         root->root_key.objectid = objectid;
1333         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1334         root->root_key.offset = 0;
1335
1336         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1337         if (IS_ERR(leaf)) {
1338                 ret = PTR_ERR(leaf);
1339                 leaf = NULL;
1340                 goto fail;
1341         }
1342
1343         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1344         btrfs_set_header_bytenr(leaf, leaf->start);
1345         btrfs_set_header_generation(leaf, trans->transid);
1346         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1347         btrfs_set_header_owner(leaf, objectid);
1348         root->node = leaf;
1349
1350         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1351                             BTRFS_FSID_SIZE);
1352         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1353                             btrfs_header_chunk_tree_uuid(leaf),
1354                             BTRFS_UUID_SIZE);
1355         btrfs_mark_buffer_dirty(leaf);
1356
1357         root->commit_root = btrfs_root_node(root);
1358         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1359
1360         root->root_item.flags = 0;
1361         root->root_item.byte_limit = 0;
1362         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1363         btrfs_set_root_generation(&root->root_item, trans->transid);
1364         btrfs_set_root_level(&root->root_item, 0);
1365         btrfs_set_root_refs(&root->root_item, 1);
1366         btrfs_set_root_used(&root->root_item, leaf->len);
1367         btrfs_set_root_last_snapshot(&root->root_item, 0);
1368         btrfs_set_root_dirid(&root->root_item, 0);
1369         uuid_le_gen(&uuid);
1370         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1371         root->root_item.drop_level = 0;
1372
1373         key.objectid = objectid;
1374         key.type = BTRFS_ROOT_ITEM_KEY;
1375         key.offset = 0;
1376         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1377         if (ret)
1378                 goto fail;
1379
1380         btrfs_tree_unlock(leaf);
1381
1382         return root;
1383
1384 fail:
1385         if (leaf) {
1386                 btrfs_tree_unlock(leaf);
1387                 free_extent_buffer(root->commit_root);
1388                 free_extent_buffer(leaf);
1389         }
1390         kfree(root);
1391
1392         return ERR_PTR(ret);
1393 }
1394
1395 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1396                                          struct btrfs_fs_info *fs_info)
1397 {
1398         struct btrfs_root *root;
1399         struct btrfs_root *tree_root = fs_info->tree_root;
1400         struct extent_buffer *leaf;
1401
1402         root = btrfs_alloc_root(fs_info);
1403         if (!root)
1404                 return ERR_PTR(-ENOMEM);
1405
1406         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1407                      tree_root->stripesize, root, fs_info,
1408                      BTRFS_TREE_LOG_OBJECTID);
1409
1410         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1411         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1412         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1413
1414         /*
1415          * DON'T set REF_COWS for log trees
1416          *
1417          * log trees do not get reference counted because they go away
1418          * before a real commit is actually done.  They do store pointers
1419          * to file data extents, and those reference counts still get
1420          * updated (along with back refs to the log tree).
1421          */
1422
1423         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1424                         NULL, 0, 0, 0);
1425         if (IS_ERR(leaf)) {
1426                 kfree(root);
1427                 return ERR_CAST(leaf);
1428         }
1429
1430         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1431         btrfs_set_header_bytenr(leaf, leaf->start);
1432         btrfs_set_header_generation(leaf, trans->transid);
1433         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1434         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1435         root->node = leaf;
1436
1437         write_extent_buffer(root->node, root->fs_info->fsid,
1438                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1439         btrfs_mark_buffer_dirty(root->node);
1440         btrfs_tree_unlock(root->node);
1441         return root;
1442 }
1443
1444 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1445                              struct btrfs_fs_info *fs_info)
1446 {
1447         struct btrfs_root *log_root;
1448
1449         log_root = alloc_log_tree(trans, fs_info);
1450         if (IS_ERR(log_root))
1451                 return PTR_ERR(log_root);
1452         WARN_ON(fs_info->log_root_tree);
1453         fs_info->log_root_tree = log_root;
1454         return 0;
1455 }
1456
1457 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1458                        struct btrfs_root *root)
1459 {
1460         struct btrfs_root *log_root;
1461         struct btrfs_inode_item *inode_item;
1462
1463         log_root = alloc_log_tree(trans, root->fs_info);
1464         if (IS_ERR(log_root))
1465                 return PTR_ERR(log_root);
1466
1467         log_root->last_trans = trans->transid;
1468         log_root->root_key.offset = root->root_key.objectid;
1469
1470         inode_item = &log_root->root_item.inode;
1471         btrfs_set_stack_inode_generation(inode_item, 1);
1472         btrfs_set_stack_inode_size(inode_item, 3);
1473         btrfs_set_stack_inode_nlink(inode_item, 1);
1474         btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1475         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1476
1477         btrfs_set_root_node(&log_root->root_item, log_root->node);
1478
1479         WARN_ON(root->log_root);
1480         root->log_root = log_root;
1481         root->log_transid = 0;
1482         root->log_transid_committed = -1;
1483         root->last_log_commit = 0;
1484         return 0;
1485 }
1486
1487 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1488                                                struct btrfs_key *key)
1489 {
1490         struct btrfs_root *root;
1491         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1492         struct btrfs_path *path;
1493         u64 generation;
1494         int ret;
1495
1496         path = btrfs_alloc_path();
1497         if (!path)
1498                 return ERR_PTR(-ENOMEM);
1499
1500         root = btrfs_alloc_root(fs_info);
1501         if (!root) {
1502                 ret = -ENOMEM;
1503                 goto alloc_fail;
1504         }
1505
1506         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1507                 tree_root->stripesize, root, fs_info, key->objectid);
1508
1509         ret = btrfs_find_root(tree_root, key, path,
1510                               &root->root_item, &root->root_key);
1511         if (ret) {
1512                 if (ret > 0)
1513                         ret = -ENOENT;
1514                 goto find_fail;
1515         }
1516
1517         generation = btrfs_root_generation(&root->root_item);
1518         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1519                                      generation);
1520         if (IS_ERR(root->node)) {
1521                 ret = PTR_ERR(root->node);
1522                 goto find_fail;
1523         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1524                 ret = -EIO;
1525                 free_extent_buffer(root->node);
1526                 goto find_fail;
1527         }
1528         root->commit_root = btrfs_root_node(root);
1529 out:
1530         btrfs_free_path(path);
1531         return root;
1532
1533 find_fail:
1534         kfree(root);
1535 alloc_fail:
1536         root = ERR_PTR(ret);
1537         goto out;
1538 }
1539
1540 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1541                                       struct btrfs_key *location)
1542 {
1543         struct btrfs_root *root;
1544
1545         root = btrfs_read_tree_root(tree_root, location);
1546         if (IS_ERR(root))
1547                 return root;
1548
1549         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1550                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1551                 btrfs_check_and_init_root_item(&root->root_item);
1552         }
1553
1554         return root;
1555 }
1556
1557 int btrfs_init_fs_root(struct btrfs_root *root)
1558 {
1559         int ret;
1560         struct btrfs_subvolume_writers *writers;
1561
1562         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1563         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1564                                         GFP_NOFS);
1565         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1566                 ret = -ENOMEM;
1567                 goto fail;
1568         }
1569
1570         writers = btrfs_alloc_subvolume_writers();
1571         if (IS_ERR(writers)) {
1572                 ret = PTR_ERR(writers);
1573                 goto fail;
1574         }
1575         root->subv_writers = writers;
1576
1577         btrfs_init_free_ino_ctl(root);
1578         spin_lock_init(&root->ino_cache_lock);
1579         init_waitqueue_head(&root->ino_cache_wait);
1580
1581         ret = get_anon_bdev(&root->anon_dev);
1582         if (ret)
1583                 goto free_writers;
1584         return 0;
1585
1586 free_writers:
1587         btrfs_free_subvolume_writers(root->subv_writers);
1588 fail:
1589         kfree(root->free_ino_ctl);
1590         kfree(root->free_ino_pinned);
1591         return ret;
1592 }
1593
1594 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1595                                                u64 root_id)
1596 {
1597         struct btrfs_root *root;
1598
1599         spin_lock(&fs_info->fs_roots_radix_lock);
1600         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1601                                  (unsigned long)root_id);
1602         spin_unlock(&fs_info->fs_roots_radix_lock);
1603         return root;
1604 }
1605
1606 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1607                          struct btrfs_root *root)
1608 {
1609         int ret;
1610
1611         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1612         if (ret)
1613                 return ret;
1614
1615         spin_lock(&fs_info->fs_roots_radix_lock);
1616         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1617                                 (unsigned long)root->root_key.objectid,
1618                                 root);
1619         if (ret == 0)
1620                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1621         spin_unlock(&fs_info->fs_roots_radix_lock);
1622         radix_tree_preload_end();
1623
1624         return ret;
1625 }
1626
1627 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1628                                      struct btrfs_key *location,
1629                                      bool check_ref)
1630 {
1631         struct btrfs_root *root;
1632         struct btrfs_path *path;
1633         struct btrfs_key key;
1634         int ret;
1635
1636         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1637                 return fs_info->tree_root;
1638         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1639                 return fs_info->extent_root;
1640         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1641                 return fs_info->chunk_root;
1642         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1643                 return fs_info->dev_root;
1644         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1645                 return fs_info->csum_root;
1646         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1647                 return fs_info->quota_root ? fs_info->quota_root :
1648                                              ERR_PTR(-ENOENT);
1649         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1650                 return fs_info->uuid_root ? fs_info->uuid_root :
1651                                             ERR_PTR(-ENOENT);
1652 again:
1653         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1654         if (root) {
1655                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1656                         return ERR_PTR(-ENOENT);
1657                 return root;
1658         }
1659
1660         root = btrfs_read_fs_root(fs_info->tree_root, location);
1661         if (IS_ERR(root))
1662                 return root;
1663
1664         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1665                 ret = -ENOENT;
1666                 goto fail;
1667         }
1668
1669         ret = btrfs_init_fs_root(root);
1670         if (ret)
1671                 goto fail;
1672
1673         path = btrfs_alloc_path();
1674         if (!path) {
1675                 ret = -ENOMEM;
1676                 goto fail;
1677         }
1678         key.objectid = BTRFS_ORPHAN_OBJECTID;
1679         key.type = BTRFS_ORPHAN_ITEM_KEY;
1680         key.offset = location->objectid;
1681
1682         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1683         btrfs_free_path(path);
1684         if (ret < 0)
1685                 goto fail;
1686         if (ret == 0)
1687                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1688
1689         ret = btrfs_insert_fs_root(fs_info, root);
1690         if (ret) {
1691                 if (ret == -EEXIST) {
1692                         free_fs_root(root);
1693                         goto again;
1694                 }
1695                 goto fail;
1696         }
1697         return root;
1698 fail:
1699         free_fs_root(root);
1700         return ERR_PTR(ret);
1701 }
1702
1703 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1704 {
1705         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1706         int ret = 0;
1707         struct btrfs_device *device;
1708         struct backing_dev_info *bdi;
1709
1710         rcu_read_lock();
1711         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1712                 if (!device->bdev)
1713                         continue;
1714                 bdi = blk_get_backing_dev_info(device->bdev);
1715                 if (bdi_congested(bdi, bdi_bits)) {
1716                         ret = 1;
1717                         break;
1718                 }
1719         }
1720         rcu_read_unlock();
1721         return ret;
1722 }
1723
1724 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1725 {
1726         int err;
1727
1728         err = bdi_setup_and_register(bdi, "btrfs");
1729         if (err)
1730                 return err;
1731
1732         bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
1733         bdi->congested_fn       = btrfs_congested_fn;
1734         bdi->congested_data     = info;
1735         bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1736         return 0;
1737 }
1738
1739 /*
1740  * called by the kthread helper functions to finally call the bio end_io
1741  * functions.  This is where read checksum verification actually happens
1742  */
1743 static void end_workqueue_fn(struct btrfs_work *work)
1744 {
1745         struct bio *bio;
1746         struct btrfs_end_io_wq *end_io_wq;
1747
1748         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1749         bio = end_io_wq->bio;
1750
1751         bio->bi_error = end_io_wq->error;
1752         bio->bi_private = end_io_wq->private;
1753         bio->bi_end_io = end_io_wq->end_io;
1754         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1755         bio_endio(bio);
1756 }
1757
1758 static int cleaner_kthread(void *arg)
1759 {
1760         struct btrfs_root *root = arg;
1761         int again;
1762         struct btrfs_trans_handle *trans;
1763
1764         do {
1765                 again = 0;
1766
1767                 /* Make the cleaner go to sleep early. */
1768                 if (btrfs_need_cleaner_sleep(root))
1769                         goto sleep;
1770
1771                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1772                         goto sleep;
1773
1774                 /*
1775                  * Avoid the problem that we change the status of the fs
1776                  * during the above check and trylock.
1777                  */
1778                 if (btrfs_need_cleaner_sleep(root)) {
1779                         mutex_unlock(&root->fs_info->cleaner_mutex);
1780                         goto sleep;
1781                 }
1782
1783                 btrfs_run_delayed_iputs(root);
1784                 again = btrfs_clean_one_deleted_snapshot(root);
1785                 mutex_unlock(&root->fs_info->cleaner_mutex);
1786
1787                 /*
1788                  * The defragger has dealt with the R/O remount and umount,
1789                  * needn't do anything special here.
1790                  */
1791                 btrfs_run_defrag_inodes(root->fs_info);
1792
1793                 /*
1794                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1795                  * with relocation (btrfs_relocate_chunk) and relocation
1796                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1797                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1798                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1799                  * unused block groups.
1800                  */
1801                 btrfs_delete_unused_bgs(root->fs_info);
1802 sleep:
1803                 if (!try_to_freeze() && !again) {
1804                         set_current_state(TASK_INTERRUPTIBLE);
1805                         if (!kthread_should_stop())
1806                                 schedule();
1807                         __set_current_state(TASK_RUNNING);
1808                 }
1809         } while (!kthread_should_stop());
1810
1811         /*
1812          * Transaction kthread is stopped before us and wakes us up.
1813          * However we might have started a new transaction and COWed some
1814          * tree blocks when deleting unused block groups for example. So
1815          * make sure we commit the transaction we started to have a clean
1816          * shutdown when evicting the btree inode - if it has dirty pages
1817          * when we do the final iput() on it, eviction will trigger a
1818          * writeback for it which will fail with null pointer dereferences
1819          * since work queues and other resources were already released and
1820          * destroyed by the time the iput/eviction/writeback is made.
1821          */
1822         trans = btrfs_attach_transaction(root);
1823         if (IS_ERR(trans)) {
1824                 if (PTR_ERR(trans) != -ENOENT)
1825                         btrfs_err(root->fs_info,
1826                                   "cleaner transaction attach returned %ld",
1827                                   PTR_ERR(trans));
1828         } else {
1829                 int ret;
1830
1831                 ret = btrfs_commit_transaction(trans, root);
1832                 if (ret)
1833                         btrfs_err(root->fs_info,
1834                                   "cleaner open transaction commit returned %d",
1835                                   ret);
1836         }
1837
1838         return 0;
1839 }
1840
1841 static int transaction_kthread(void *arg)
1842 {
1843         struct btrfs_root *root = arg;
1844         struct btrfs_trans_handle *trans;
1845         struct btrfs_transaction *cur;
1846         u64 transid;
1847         unsigned long now;
1848         unsigned long delay;
1849         bool cannot_commit;
1850
1851         do {
1852                 cannot_commit = false;
1853                 delay = HZ * root->fs_info->commit_interval;
1854                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1855
1856                 spin_lock(&root->fs_info->trans_lock);
1857                 cur = root->fs_info->running_transaction;
1858                 if (!cur) {
1859                         spin_unlock(&root->fs_info->trans_lock);
1860                         goto sleep;
1861                 }
1862
1863                 now = get_seconds();
1864                 if (cur->state < TRANS_STATE_BLOCKED &&
1865                     (now < cur->start_time ||
1866                      now - cur->start_time < root->fs_info->commit_interval)) {
1867                         spin_unlock(&root->fs_info->trans_lock);
1868                         delay = HZ * 5;
1869                         goto sleep;
1870                 }
1871                 transid = cur->transid;
1872                 spin_unlock(&root->fs_info->trans_lock);
1873
1874                 /* If the file system is aborted, this will always fail. */
1875                 trans = btrfs_attach_transaction(root);
1876                 if (IS_ERR(trans)) {
1877                         if (PTR_ERR(trans) != -ENOENT)
1878                                 cannot_commit = true;
1879                         goto sleep;
1880                 }
1881                 if (transid == trans->transid) {
1882                         btrfs_commit_transaction(trans, root);
1883                 } else {
1884                         btrfs_end_transaction(trans, root);
1885                 }
1886 sleep:
1887                 wake_up_process(root->fs_info->cleaner_kthread);
1888                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1889
1890                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1891                                       &root->fs_info->fs_state)))
1892                         btrfs_cleanup_transaction(root);
1893                 if (!try_to_freeze()) {
1894                         set_current_state(TASK_INTERRUPTIBLE);
1895                         if (!kthread_should_stop() &&
1896                             (!btrfs_transaction_blocked(root->fs_info) ||
1897                              cannot_commit))
1898                                 schedule_timeout(delay);
1899                         __set_current_state(TASK_RUNNING);
1900                 }
1901         } while (!kthread_should_stop());
1902         return 0;
1903 }
1904
1905 /*
1906  * this will find the highest generation in the array of
1907  * root backups.  The index of the highest array is returned,
1908  * or -1 if we can't find anything.
1909  *
1910  * We check to make sure the array is valid by comparing the
1911  * generation of the latest  root in the array with the generation
1912  * in the super block.  If they don't match we pitch it.
1913  */
1914 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1915 {
1916         u64 cur;
1917         int newest_index = -1;
1918         struct btrfs_root_backup *root_backup;
1919         int i;
1920
1921         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1922                 root_backup = info->super_copy->super_roots + i;
1923                 cur = btrfs_backup_tree_root_gen(root_backup);
1924                 if (cur == newest_gen)
1925                         newest_index = i;
1926         }
1927
1928         /* check to see if we actually wrapped around */
1929         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1930                 root_backup = info->super_copy->super_roots;
1931                 cur = btrfs_backup_tree_root_gen(root_backup);
1932                 if (cur == newest_gen)
1933                         newest_index = 0;
1934         }
1935         return newest_index;
1936 }
1937
1938
1939 /*
1940  * find the oldest backup so we know where to store new entries
1941  * in the backup array.  This will set the backup_root_index
1942  * field in the fs_info struct
1943  */
1944 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1945                                      u64 newest_gen)
1946 {
1947         int newest_index = -1;
1948
1949         newest_index = find_newest_super_backup(info, newest_gen);
1950         /* if there was garbage in there, just move along */
1951         if (newest_index == -1) {
1952                 info->backup_root_index = 0;
1953         } else {
1954                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1955         }
1956 }
1957
1958 /*
1959  * copy all the root pointers into the super backup array.
1960  * this will bump the backup pointer by one when it is
1961  * done
1962  */
1963 static void backup_super_roots(struct btrfs_fs_info *info)
1964 {
1965         int next_backup;
1966         struct btrfs_root_backup *root_backup;
1967         int last_backup;
1968
1969         next_backup = info->backup_root_index;
1970         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1971                 BTRFS_NUM_BACKUP_ROOTS;
1972
1973         /*
1974          * just overwrite the last backup if we're at the same generation
1975          * this happens only at umount
1976          */
1977         root_backup = info->super_for_commit->super_roots + last_backup;
1978         if (btrfs_backup_tree_root_gen(root_backup) ==
1979             btrfs_header_generation(info->tree_root->node))
1980                 next_backup = last_backup;
1981
1982         root_backup = info->super_for_commit->super_roots + next_backup;
1983
1984         /*
1985          * make sure all of our padding and empty slots get zero filled
1986          * regardless of which ones we use today
1987          */
1988         memset(root_backup, 0, sizeof(*root_backup));
1989
1990         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1991
1992         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1993         btrfs_set_backup_tree_root_gen(root_backup,
1994                                btrfs_header_generation(info->tree_root->node));
1995
1996         btrfs_set_backup_tree_root_level(root_backup,
1997                                btrfs_header_level(info->tree_root->node));
1998
1999         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2000         btrfs_set_backup_chunk_root_gen(root_backup,
2001                                btrfs_header_generation(info->chunk_root->node));
2002         btrfs_set_backup_chunk_root_level(root_backup,
2003                                btrfs_header_level(info->chunk_root->node));
2004
2005         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2006         btrfs_set_backup_extent_root_gen(root_backup,
2007                                btrfs_header_generation(info->extent_root->node));
2008         btrfs_set_backup_extent_root_level(root_backup,
2009                                btrfs_header_level(info->extent_root->node));
2010
2011         /*
2012          * we might commit during log recovery, which happens before we set
2013          * the fs_root.  Make sure it is valid before we fill it in.
2014          */
2015         if (info->fs_root && info->fs_root->node) {
2016                 btrfs_set_backup_fs_root(root_backup,
2017                                          info->fs_root->node->start);
2018                 btrfs_set_backup_fs_root_gen(root_backup,
2019                                btrfs_header_generation(info->fs_root->node));
2020                 btrfs_set_backup_fs_root_level(root_backup,
2021                                btrfs_header_level(info->fs_root->node));
2022         }
2023
2024         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2025         btrfs_set_backup_dev_root_gen(root_backup,
2026                                btrfs_header_generation(info->dev_root->node));
2027         btrfs_set_backup_dev_root_level(root_backup,
2028                                        btrfs_header_level(info->dev_root->node));
2029
2030         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2031         btrfs_set_backup_csum_root_gen(root_backup,
2032                                btrfs_header_generation(info->csum_root->node));
2033         btrfs_set_backup_csum_root_level(root_backup,
2034                                btrfs_header_level(info->csum_root->node));
2035
2036         btrfs_set_backup_total_bytes(root_backup,
2037                              btrfs_super_total_bytes(info->super_copy));
2038         btrfs_set_backup_bytes_used(root_backup,
2039                              btrfs_super_bytes_used(info->super_copy));
2040         btrfs_set_backup_num_devices(root_backup,
2041                              btrfs_super_num_devices(info->super_copy));
2042
2043         /*
2044          * if we don't copy this out to the super_copy, it won't get remembered
2045          * for the next commit
2046          */
2047         memcpy(&info->super_copy->super_roots,
2048                &info->super_for_commit->super_roots,
2049                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2050 }
2051
2052 /*
2053  * this copies info out of the root backup array and back into
2054  * the in-memory super block.  It is meant to help iterate through
2055  * the array, so you send it the number of backups you've already
2056  * tried and the last backup index you used.
2057  *
2058  * this returns -1 when it has tried all the backups
2059  */
2060 static noinline int next_root_backup(struct btrfs_fs_info *info,
2061                                      struct btrfs_super_block *super,
2062                                      int *num_backups_tried, int *backup_index)
2063 {
2064         struct btrfs_root_backup *root_backup;
2065         int newest = *backup_index;
2066
2067         if (*num_backups_tried == 0) {
2068                 u64 gen = btrfs_super_generation(super);
2069
2070                 newest = find_newest_super_backup(info, gen);
2071                 if (newest == -1)
2072                         return -1;
2073
2074                 *backup_index = newest;
2075                 *num_backups_tried = 1;
2076         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2077                 /* we've tried all the backups, all done */
2078                 return -1;
2079         } else {
2080                 /* jump to the next oldest backup */
2081                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2082                         BTRFS_NUM_BACKUP_ROOTS;
2083                 *backup_index = newest;
2084                 *num_backups_tried += 1;
2085         }
2086         root_backup = super->super_roots + newest;
2087
2088         btrfs_set_super_generation(super,
2089                                    btrfs_backup_tree_root_gen(root_backup));
2090         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2091         btrfs_set_super_root_level(super,
2092                                    btrfs_backup_tree_root_level(root_backup));
2093         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2094
2095         /*
2096          * fixme: the total bytes and num_devices need to match or we should
2097          * need a fsck
2098          */
2099         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2100         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2101         return 0;
2102 }
2103
2104 /* helper to cleanup workers */
2105 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2106 {
2107         btrfs_destroy_workqueue(fs_info->fixup_workers);
2108         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2109         btrfs_destroy_workqueue(fs_info->workers);
2110         btrfs_destroy_workqueue(fs_info->endio_workers);
2111         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2112         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2113         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2114         btrfs_destroy_workqueue(fs_info->rmw_workers);
2115         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2116         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2117         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2118         btrfs_destroy_workqueue(fs_info->submit_workers);
2119         btrfs_destroy_workqueue(fs_info->delayed_workers);
2120         btrfs_destroy_workqueue(fs_info->caching_workers);
2121         btrfs_destroy_workqueue(fs_info->readahead_workers);
2122         btrfs_destroy_workqueue(fs_info->flush_workers);
2123         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2124         btrfs_destroy_workqueue(fs_info->extent_workers);
2125 }
2126
2127 static void free_root_extent_buffers(struct btrfs_root *root)
2128 {
2129         if (root) {
2130                 free_extent_buffer(root->node);
2131                 free_extent_buffer(root->commit_root);
2132                 root->node = NULL;
2133                 root->commit_root = NULL;
2134         }
2135 }
2136
2137 /* helper to cleanup tree roots */
2138 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2139 {
2140         free_root_extent_buffers(info->tree_root);
2141
2142         free_root_extent_buffers(info->dev_root);
2143         free_root_extent_buffers(info->extent_root);
2144         free_root_extent_buffers(info->csum_root);
2145         free_root_extent_buffers(info->quota_root);
2146         free_root_extent_buffers(info->uuid_root);
2147         if (chunk_root)
2148                 free_root_extent_buffers(info->chunk_root);
2149 }
2150
2151 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2152 {
2153         int ret;
2154         struct btrfs_root *gang[8];
2155         int i;
2156
2157         while (!list_empty(&fs_info->dead_roots)) {
2158                 gang[0] = list_entry(fs_info->dead_roots.next,
2159                                      struct btrfs_root, root_list);
2160                 list_del(&gang[0]->root_list);
2161
2162                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2163                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2164                 } else {
2165                         free_extent_buffer(gang[0]->node);
2166                         free_extent_buffer(gang[0]->commit_root);
2167                         btrfs_put_fs_root(gang[0]);
2168                 }
2169         }
2170
2171         while (1) {
2172                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2173                                              (void **)gang, 0,
2174                                              ARRAY_SIZE(gang));
2175                 if (!ret)
2176                         break;
2177                 for (i = 0; i < ret; i++)
2178                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2179         }
2180
2181         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2182                 btrfs_free_log_root_tree(NULL, fs_info);
2183                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2184                                             fs_info->pinned_extents);
2185         }
2186 }
2187
2188 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2189 {
2190         mutex_init(&fs_info->scrub_lock);
2191         atomic_set(&fs_info->scrubs_running, 0);
2192         atomic_set(&fs_info->scrub_pause_req, 0);
2193         atomic_set(&fs_info->scrubs_paused, 0);
2194         atomic_set(&fs_info->scrub_cancel_req, 0);
2195         init_waitqueue_head(&fs_info->scrub_pause_wait);
2196         fs_info->scrub_workers_refcnt = 0;
2197 }
2198
2199 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2200 {
2201         spin_lock_init(&fs_info->balance_lock);
2202         mutex_init(&fs_info->balance_mutex);
2203         atomic_set(&fs_info->balance_running, 0);
2204         atomic_set(&fs_info->balance_pause_req, 0);
2205         atomic_set(&fs_info->balance_cancel_req, 0);
2206         fs_info->balance_ctl = NULL;
2207         init_waitqueue_head(&fs_info->balance_wait_q);
2208 }
2209
2210 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2211                                    struct btrfs_root *tree_root)
2212 {
2213         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2214         set_nlink(fs_info->btree_inode, 1);
2215         /*
2216          * we set the i_size on the btree inode to the max possible int.
2217          * the real end of the address space is determined by all of
2218          * the devices in the system
2219          */
2220         fs_info->btree_inode->i_size = OFFSET_MAX;
2221         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2222
2223         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2224         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2225                              fs_info->btree_inode->i_mapping);
2226         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2227         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2228
2229         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2230
2231         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2232         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2233                sizeof(struct btrfs_key));
2234         set_bit(BTRFS_INODE_DUMMY,
2235                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2236         btrfs_insert_inode_hash(fs_info->btree_inode);
2237 }
2238
2239 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2240 {
2241         fs_info->dev_replace.lock_owner = 0;
2242         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2243         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2244         mutex_init(&fs_info->dev_replace.lock_management_lock);
2245         mutex_init(&fs_info->dev_replace.lock);
2246         init_waitqueue_head(&fs_info->replace_wait);
2247 }
2248
2249 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2250 {
2251         spin_lock_init(&fs_info->qgroup_lock);
2252         mutex_init(&fs_info->qgroup_ioctl_lock);
2253         fs_info->qgroup_tree = RB_ROOT;
2254         fs_info->qgroup_op_tree = RB_ROOT;
2255         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2256         fs_info->qgroup_seq = 1;
2257         fs_info->quota_enabled = 0;
2258         fs_info->pending_quota_state = 0;
2259         fs_info->qgroup_ulist = NULL;
2260         mutex_init(&fs_info->qgroup_rescan_lock);
2261 }
2262
2263 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2264                 struct btrfs_fs_devices *fs_devices)
2265 {
2266         int max_active = fs_info->thread_pool_size;
2267         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2268
2269         fs_info->workers =
2270                 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2271                                       max_active, 16);
2272
2273         fs_info->delalloc_workers =
2274                 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2275
2276         fs_info->flush_workers =
2277                 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2278
2279         fs_info->caching_workers =
2280                 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2281
2282         /*
2283          * a higher idle thresh on the submit workers makes it much more
2284          * likely that bios will be send down in a sane order to the
2285          * devices
2286          */
2287         fs_info->submit_workers =
2288                 btrfs_alloc_workqueue("submit", flags,
2289                                       min_t(u64, fs_devices->num_devices,
2290                                             max_active), 64);
2291
2292         fs_info->fixup_workers =
2293                 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2294
2295         /*
2296          * endios are largely parallel and should have a very
2297          * low idle thresh
2298          */
2299         fs_info->endio_workers =
2300                 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2301         fs_info->endio_meta_workers =
2302                 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2303         fs_info->endio_meta_write_workers =
2304                 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2305         fs_info->endio_raid56_workers =
2306                 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2307         fs_info->endio_repair_workers =
2308                 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2309         fs_info->rmw_workers =
2310                 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2311         fs_info->endio_write_workers =
2312                 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2313         fs_info->endio_freespace_worker =
2314                 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2315         fs_info->delayed_workers =
2316                 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2317         fs_info->readahead_workers =
2318                 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2319         fs_info->qgroup_rescan_workers =
2320                 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2321         fs_info->extent_workers =
2322                 btrfs_alloc_workqueue("extent-refs", flags,
2323                                       min_t(u64, fs_devices->num_devices,
2324                                             max_active), 8);
2325
2326         if (!(fs_info->workers && fs_info->delalloc_workers &&
2327               fs_info->submit_workers && fs_info->flush_workers &&
2328               fs_info->endio_workers && fs_info->endio_meta_workers &&
2329               fs_info->endio_meta_write_workers &&
2330               fs_info->endio_repair_workers &&
2331               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2332               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2333               fs_info->caching_workers && fs_info->readahead_workers &&
2334               fs_info->fixup_workers && fs_info->delayed_workers &&
2335               fs_info->extent_workers &&
2336               fs_info->qgroup_rescan_workers)) {
2337                 return -ENOMEM;
2338         }
2339
2340         return 0;
2341 }
2342
2343 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2344                             struct btrfs_fs_devices *fs_devices)
2345 {
2346         int ret;
2347         struct btrfs_root *tree_root = fs_info->tree_root;
2348         struct btrfs_root *log_tree_root;
2349         struct btrfs_super_block *disk_super = fs_info->super_copy;
2350         u64 bytenr = btrfs_super_log_root(disk_super);
2351
2352         if (fs_devices->rw_devices == 0) {
2353                 btrfs_warn(fs_info, "log replay required on RO media");
2354                 return -EIO;
2355         }
2356
2357         log_tree_root = btrfs_alloc_root(fs_info);
2358         if (!log_tree_root)
2359                 return -ENOMEM;
2360
2361         __setup_root(tree_root->nodesize, tree_root->sectorsize,
2362                         tree_root->stripesize, log_tree_root, fs_info,
2363                         BTRFS_TREE_LOG_OBJECTID);
2364
2365         log_tree_root->node = read_tree_block(tree_root, bytenr,
2366                         fs_info->generation + 1);
2367         if (IS_ERR(log_tree_root->node)) {
2368                 btrfs_warn(fs_info, "failed to read log tree");
2369                 ret = PTR_ERR(log_tree_root->node);
2370                 kfree(log_tree_root);
2371                 return ret;
2372         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2373                 btrfs_err(fs_info, "failed to read log tree");
2374                 free_extent_buffer(log_tree_root->node);
2375                 kfree(log_tree_root);
2376                 return -EIO;
2377         }
2378         /* returns with log_tree_root freed on success */
2379         ret = btrfs_recover_log_trees(log_tree_root);
2380         if (ret) {
2381                 btrfs_std_error(tree_root->fs_info, ret,
2382                             "Failed to recover log tree");
2383                 free_extent_buffer(log_tree_root->node);
2384                 kfree(log_tree_root);
2385                 return ret;
2386         }
2387
2388         if (fs_info->sb->s_flags & MS_RDONLY) {
2389                 ret = btrfs_commit_super(tree_root);
2390                 if (ret)
2391                         return ret;
2392         }
2393
2394         return 0;
2395 }
2396
2397 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2398                             struct btrfs_root *tree_root)
2399 {
2400         struct btrfs_root *root;
2401         struct btrfs_key location;
2402         int ret;
2403
2404         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2405         location.type = BTRFS_ROOT_ITEM_KEY;
2406         location.offset = 0;
2407
2408         root = btrfs_read_tree_root(tree_root, &location);
2409         if (IS_ERR(root))
2410                 return PTR_ERR(root);
2411         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2412         fs_info->extent_root = root;
2413
2414         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2415         root = btrfs_read_tree_root(tree_root, &location);
2416         if (IS_ERR(root))
2417                 return PTR_ERR(root);
2418         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2419         fs_info->dev_root = root;
2420         btrfs_init_devices_late(fs_info);
2421
2422         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2423         root = btrfs_read_tree_root(tree_root, &location);
2424         if (IS_ERR(root))
2425                 return PTR_ERR(root);
2426         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2427         fs_info->csum_root = root;
2428
2429         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2430         root = btrfs_read_tree_root(tree_root, &location);
2431         if (!IS_ERR(root)) {
2432                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2433                 fs_info->quota_enabled = 1;
2434                 fs_info->pending_quota_state = 1;
2435                 fs_info->quota_root = root;
2436         }
2437
2438         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2439         root = btrfs_read_tree_root(tree_root, &location);
2440         if (IS_ERR(root)) {
2441                 ret = PTR_ERR(root);
2442                 if (ret != -ENOENT)
2443                         return ret;
2444         } else {
2445                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2446                 fs_info->uuid_root = root;
2447         }
2448
2449         return 0;
2450 }
2451
2452 int open_ctree(struct super_block *sb,
2453                struct btrfs_fs_devices *fs_devices,
2454                char *options)
2455 {
2456         u32 sectorsize;
2457         u32 nodesize;
2458         u32 stripesize;
2459         u64 generation;
2460         u64 features;
2461         struct btrfs_key location;
2462         struct buffer_head *bh;
2463         struct btrfs_super_block *disk_super;
2464         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2465         struct btrfs_root *tree_root;
2466         struct btrfs_root *chunk_root;
2467         int ret;
2468         int err = -EINVAL;
2469         int num_backups_tried = 0;
2470         int backup_index = 0;
2471         int max_active;
2472
2473         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2474         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2475         if (!tree_root || !chunk_root) {
2476                 err = -ENOMEM;
2477                 goto fail;
2478         }
2479
2480         ret = init_srcu_struct(&fs_info->subvol_srcu);
2481         if (ret) {
2482                 err = ret;
2483                 goto fail;
2484         }
2485
2486         ret = setup_bdi(fs_info, &fs_info->bdi);
2487         if (ret) {
2488                 err = ret;
2489                 goto fail_srcu;
2490         }
2491
2492         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2493         if (ret) {
2494                 err = ret;
2495                 goto fail_bdi;
2496         }
2497         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2498                                         (1 + ilog2(nr_cpu_ids));
2499
2500         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2501         if (ret) {
2502                 err = ret;
2503                 goto fail_dirty_metadata_bytes;
2504         }
2505
2506         ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2507         if (ret) {
2508                 err = ret;
2509                 goto fail_delalloc_bytes;
2510         }
2511
2512         fs_info->btree_inode = new_inode(sb);
2513         if (!fs_info->btree_inode) {
2514                 err = -ENOMEM;
2515                 goto fail_bio_counter;
2516         }
2517
2518         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2519
2520         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2521         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2522         INIT_LIST_HEAD(&fs_info->trans_list);
2523         INIT_LIST_HEAD(&fs_info->dead_roots);
2524         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2525         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2526         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2527         spin_lock_init(&fs_info->delalloc_root_lock);
2528         spin_lock_init(&fs_info->trans_lock);
2529         spin_lock_init(&fs_info->fs_roots_radix_lock);
2530         spin_lock_init(&fs_info->delayed_iput_lock);
2531         spin_lock_init(&fs_info->defrag_inodes_lock);
2532         spin_lock_init(&fs_info->free_chunk_lock);
2533         spin_lock_init(&fs_info->tree_mod_seq_lock);
2534         spin_lock_init(&fs_info->super_lock);
2535         spin_lock_init(&fs_info->qgroup_op_lock);
2536         spin_lock_init(&fs_info->buffer_lock);
2537         spin_lock_init(&fs_info->unused_bgs_lock);
2538         rwlock_init(&fs_info->tree_mod_log_lock);
2539         mutex_init(&fs_info->unused_bg_unpin_mutex);
2540         mutex_init(&fs_info->delete_unused_bgs_mutex);
2541         mutex_init(&fs_info->reloc_mutex);
2542         mutex_init(&fs_info->delalloc_root_mutex);
2543         seqlock_init(&fs_info->profiles_lock);
2544         init_rwsem(&fs_info->delayed_iput_sem);
2545
2546         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2547         INIT_LIST_HEAD(&fs_info->space_info);
2548         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2549         INIT_LIST_HEAD(&fs_info->unused_bgs);
2550         btrfs_mapping_init(&fs_info->mapping_tree);
2551         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2552                              BTRFS_BLOCK_RSV_GLOBAL);
2553         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2554                              BTRFS_BLOCK_RSV_DELALLOC);
2555         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2556         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2557         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2558         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2559                              BTRFS_BLOCK_RSV_DELOPS);
2560         atomic_set(&fs_info->nr_async_submits, 0);
2561         atomic_set(&fs_info->async_delalloc_pages, 0);
2562         atomic_set(&fs_info->async_submit_draining, 0);
2563         atomic_set(&fs_info->nr_async_bios, 0);
2564         atomic_set(&fs_info->defrag_running, 0);
2565         atomic_set(&fs_info->qgroup_op_seq, 0);
2566         atomic64_set(&fs_info->tree_mod_seq, 0);
2567         fs_info->sb = sb;
2568         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2569         fs_info->metadata_ratio = 0;
2570         fs_info->defrag_inodes = RB_ROOT;
2571         fs_info->free_chunk_space = 0;
2572         fs_info->tree_mod_log = RB_ROOT;
2573         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2574         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2575         /* readahead state */
2576         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2577         spin_lock_init(&fs_info->reada_lock);
2578
2579         fs_info->thread_pool_size = min_t(unsigned long,
2580                                           num_online_cpus() + 2, 8);
2581
2582         INIT_LIST_HEAD(&fs_info->ordered_roots);
2583         spin_lock_init(&fs_info->ordered_root_lock);
2584         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2585                                         GFP_NOFS);
2586         if (!fs_info->delayed_root) {
2587                 err = -ENOMEM;
2588                 goto fail_iput;
2589         }
2590         btrfs_init_delayed_root(fs_info->delayed_root);
2591
2592         btrfs_init_scrub(fs_info);
2593 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2594         fs_info->check_integrity_print_mask = 0;
2595 #endif
2596         btrfs_init_balance(fs_info);
2597         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2598
2599         sb->s_blocksize = 4096;
2600         sb->s_blocksize_bits = blksize_bits(4096);
2601         sb->s_bdi = &fs_info->bdi;
2602
2603         btrfs_init_btree_inode(fs_info, tree_root);
2604
2605         spin_lock_init(&fs_info->block_group_cache_lock);
2606         fs_info->block_group_cache_tree = RB_ROOT;
2607         fs_info->first_logical_byte = (u64)-1;
2608
2609         extent_io_tree_init(&fs_info->freed_extents[0],
2610                              fs_info->btree_inode->i_mapping);
2611         extent_io_tree_init(&fs_info->freed_extents[1],
2612                              fs_info->btree_inode->i_mapping);
2613         fs_info->pinned_extents = &fs_info->freed_extents[0];
2614         fs_info->do_barriers = 1;
2615
2616
2617         mutex_init(&fs_info->ordered_operations_mutex);
2618         mutex_init(&fs_info->tree_log_mutex);
2619         mutex_init(&fs_info->chunk_mutex);
2620         mutex_init(&fs_info->transaction_kthread_mutex);
2621         mutex_init(&fs_info->cleaner_mutex);
2622         mutex_init(&fs_info->volume_mutex);
2623         mutex_init(&fs_info->ro_block_group_mutex);
2624         init_rwsem(&fs_info->commit_root_sem);
2625         init_rwsem(&fs_info->cleanup_work_sem);
2626         init_rwsem(&fs_info->subvol_sem);
2627         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2628
2629         btrfs_init_dev_replace_locks(fs_info);
2630         btrfs_init_qgroup(fs_info);
2631
2632         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2633         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2634
2635         init_waitqueue_head(&fs_info->transaction_throttle);
2636         init_waitqueue_head(&fs_info->transaction_wait);
2637         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2638         init_waitqueue_head(&fs_info->async_submit_wait);
2639
2640         INIT_LIST_HEAD(&fs_info->pinned_chunks);
2641
2642         ret = btrfs_alloc_stripe_hash_table(fs_info);
2643         if (ret) {
2644                 err = ret;
2645                 goto fail_alloc;
2646         }
2647
2648         __setup_root(4096, 4096, 4096, tree_root,
2649                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2650
2651         invalidate_bdev(fs_devices->latest_bdev);
2652
2653         /*
2654          * Read super block and check the signature bytes only
2655          */
2656         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2657         if (IS_ERR(bh)) {
2658                 err = PTR_ERR(bh);
2659                 goto fail_alloc;
2660         }
2661
2662         /*
2663          * We want to check superblock checksum, the type is stored inside.
2664          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2665          */
2666         if (btrfs_check_super_csum(bh->b_data)) {
2667                 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2668                 err = -EINVAL;
2669                 goto fail_alloc;
2670         }
2671
2672         /*
2673          * super_copy is zeroed at allocation time and we never touch the
2674          * following bytes up to INFO_SIZE, the checksum is calculated from
2675          * the whole block of INFO_SIZE
2676          */
2677         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2678         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2679                sizeof(*fs_info->super_for_commit));
2680         brelse(bh);
2681
2682         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2683
2684         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2685         if (ret) {
2686                 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2687                 err = -EINVAL;
2688                 goto fail_alloc;
2689         }
2690
2691         disk_super = fs_info->super_copy;
2692         if (!btrfs_super_root(disk_super))
2693                 goto fail_alloc;
2694
2695         /* check FS state, whether FS is broken. */
2696         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2697                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2698
2699         /*
2700          * run through our array of backup supers and setup
2701          * our ring pointer to the oldest one
2702          */
2703         generation = btrfs_super_generation(disk_super);
2704         find_oldest_super_backup(fs_info, generation);
2705
2706         /*
2707          * In the long term, we'll store the compression type in the super
2708          * block, and it'll be used for per file compression control.
2709          */
2710         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2711
2712         ret = btrfs_parse_options(tree_root, options);
2713         if (ret) {
2714                 err = ret;
2715                 goto fail_alloc;
2716         }
2717
2718         features = btrfs_super_incompat_flags(disk_super) &
2719                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2720         if (features) {
2721                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2722                        "unsupported optional features (%Lx).\n",
2723                        features);
2724                 err = -EINVAL;
2725                 goto fail_alloc;
2726         }
2727
2728         /*
2729          * Leafsize and nodesize were always equal, this is only a sanity check.
2730          */
2731         if (le32_to_cpu(disk_super->__unused_leafsize) !=
2732             btrfs_super_nodesize(disk_super)) {
2733                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2734                        "blocksizes don't match.  node %d leaf %d\n",
2735                        btrfs_super_nodesize(disk_super),
2736                        le32_to_cpu(disk_super->__unused_leafsize));
2737                 err = -EINVAL;
2738                 goto fail_alloc;
2739         }
2740         if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2741                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2742                        "blocksize (%d) was too large\n",
2743                        btrfs_super_nodesize(disk_super));
2744                 err = -EINVAL;
2745                 goto fail_alloc;
2746         }
2747
2748         features = btrfs_super_incompat_flags(disk_super);
2749         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2750         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2751                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2752
2753         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2754                 printk(KERN_INFO "BTRFS: has skinny extents\n");
2755
2756         /*
2757          * flag our filesystem as having big metadata blocks if
2758          * they are bigger than the page size
2759          */
2760         if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2761                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2762                         printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2763                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2764         }
2765
2766         nodesize = btrfs_super_nodesize(disk_super);
2767         sectorsize = btrfs_super_sectorsize(disk_super);
2768         stripesize = btrfs_super_stripesize(disk_super);
2769         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2770         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2771
2772         /*
2773          * mixed block groups end up with duplicate but slightly offset
2774          * extent buffers for the same range.  It leads to corruptions
2775          */
2776         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2777             (sectorsize != nodesize)) {
2778                 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2779                                 "are not allowed for mixed block groups on %s\n",
2780                                 sb->s_id);
2781                 goto fail_alloc;
2782         }
2783
2784         /*
2785          * Needn't use the lock because there is no other task which will
2786          * update the flag.
2787          */
2788         btrfs_set_super_incompat_flags(disk_super, features);
2789
2790         features = btrfs_super_compat_ro_flags(disk_super) &
2791                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2792         if (!(sb->s_flags & MS_RDONLY) && features) {
2793                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2794                        "unsupported option features (%Lx).\n",
2795                        features);
2796                 err = -EINVAL;
2797                 goto fail_alloc;
2798         }
2799
2800         max_active = fs_info->thread_pool_size;
2801
2802         ret = btrfs_init_workqueues(fs_info, fs_devices);
2803         if (ret) {
2804                 err = ret;
2805                 goto fail_sb_buffer;
2806         }
2807
2808         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2809         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2810                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2811
2812         tree_root->nodesize = nodesize;
2813         tree_root->sectorsize = sectorsize;
2814         tree_root->stripesize = stripesize;
2815
2816         sb->s_blocksize = sectorsize;
2817         sb->s_blocksize_bits = blksize_bits(sectorsize);
2818
2819         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2820                 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
2821                 goto fail_sb_buffer;
2822         }
2823
2824         if (sectorsize != PAGE_SIZE) {
2825                 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
2826                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2827                 goto fail_sb_buffer;
2828         }
2829
2830         mutex_lock(&fs_info->chunk_mutex);
2831         ret = btrfs_read_sys_array(tree_root);
2832         mutex_unlock(&fs_info->chunk_mutex);
2833         if (ret) {
2834                 printk(KERN_ERR "BTRFS: failed to read the system "
2835                        "array on %s\n", sb->s_id);
2836                 goto fail_sb_buffer;
2837         }
2838
2839         generation = btrfs_super_chunk_root_generation(disk_super);
2840
2841         __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2842                      fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2843
2844         chunk_root->node = read_tree_block(chunk_root,
2845                                            btrfs_super_chunk_root(disk_super),
2846                                            generation);
2847         if (IS_ERR(chunk_root->node) ||
2848             !extent_buffer_uptodate(chunk_root->node)) {
2849                 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2850                        sb->s_id);
2851                 if (!IS_ERR(chunk_root->node))
2852                         free_extent_buffer(chunk_root->node);
2853                 chunk_root->node = NULL;
2854                 goto fail_tree_roots;
2855         }
2856         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2857         chunk_root->commit_root = btrfs_root_node(chunk_root);
2858
2859         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2860            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2861
2862         ret = btrfs_read_chunk_tree(chunk_root);
2863         if (ret) {
2864                 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2865                        sb->s_id);
2866                 goto fail_tree_roots;
2867         }
2868
2869         /*
2870          * keep the device that is marked to be the target device for the
2871          * dev_replace procedure
2872          */
2873         btrfs_close_extra_devices(fs_devices, 0);
2874
2875         if (!fs_devices->latest_bdev) {
2876                 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2877                        sb->s_id);
2878                 goto fail_tree_roots;
2879         }
2880
2881 retry_root_backup:
2882         generation = btrfs_super_generation(disk_super);
2883
2884         tree_root->node = read_tree_block(tree_root,
2885                                           btrfs_super_root(disk_super),
2886                                           generation);
2887         if (IS_ERR(tree_root->node) ||
2888             !extent_buffer_uptodate(tree_root->node)) {
2889                 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2890                        sb->s_id);
2891                 if (!IS_ERR(tree_root->node))
2892                         free_extent_buffer(tree_root->node);
2893                 tree_root->node = NULL;
2894                 goto recovery_tree_root;
2895         }
2896
2897         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2898         tree_root->commit_root = btrfs_root_node(tree_root);
2899         btrfs_set_root_refs(&tree_root->root_item, 1);
2900
2901         ret = btrfs_read_roots(fs_info, tree_root);
2902         if (ret)
2903                 goto recovery_tree_root;
2904
2905         fs_info->generation = generation;
2906         fs_info->last_trans_committed = generation;
2907
2908         ret = btrfs_recover_balance(fs_info);
2909         if (ret) {
2910                 printk(KERN_ERR "BTRFS: failed to recover balance\n");
2911                 goto fail_block_groups;
2912         }
2913
2914         ret = btrfs_init_dev_stats(fs_info);
2915         if (ret) {
2916                 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2917                        ret);
2918                 goto fail_block_groups;
2919         }
2920
2921         ret = btrfs_init_dev_replace(fs_info);
2922         if (ret) {
2923                 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2924                 goto fail_block_groups;
2925         }
2926
2927         btrfs_close_extra_devices(fs_devices, 1);
2928
2929         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2930         if (ret) {
2931                 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2932                 goto fail_block_groups;
2933         }
2934
2935         ret = btrfs_sysfs_add_device(fs_devices);
2936         if (ret) {
2937                 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2938                 goto fail_fsdev_sysfs;
2939         }
2940
2941         ret = btrfs_sysfs_add_mounted(fs_info);
2942         if (ret) {
2943                 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2944                 goto fail_fsdev_sysfs;
2945         }
2946
2947         ret = btrfs_init_space_info(fs_info);
2948         if (ret) {
2949                 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2950                 goto fail_sysfs;
2951         }
2952
2953         ret = btrfs_read_block_groups(fs_info->extent_root);
2954         if (ret) {
2955                 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2956                 goto fail_sysfs;
2957         }
2958         fs_info->num_tolerated_disk_barrier_failures =
2959                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2960         if (fs_info->fs_devices->missing_devices >
2961              fs_info->num_tolerated_disk_barrier_failures &&
2962             !(sb->s_flags & MS_RDONLY)) {
2963                 pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
2964                         fs_info->fs_devices->missing_devices,
2965                         fs_info->num_tolerated_disk_barrier_failures);
2966                 goto fail_sysfs;
2967         }
2968
2969         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2970                                                "btrfs-cleaner");
2971         if (IS_ERR(fs_info->cleaner_kthread))
2972                 goto fail_sysfs;
2973
2974         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2975                                                    tree_root,
2976                                                    "btrfs-transaction");
2977         if (IS_ERR(fs_info->transaction_kthread))
2978                 goto fail_cleaner;
2979
2980         if (!btrfs_test_opt(tree_root, SSD) &&
2981             !btrfs_test_opt(tree_root, NOSSD) &&
2982             !fs_info->fs_devices->rotating) {
2983                 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2984                        "mode\n");
2985                 btrfs_set_opt(fs_info->mount_opt, SSD);
2986         }
2987
2988         /*
2989          * Mount does not set all options immediatelly, we can do it now and do
2990          * not have to wait for transaction commit
2991          */
2992         btrfs_apply_pending_changes(fs_info);
2993
2994 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2995         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2996                 ret = btrfsic_mount(tree_root, fs_devices,
2997                                     btrfs_test_opt(tree_root,
2998                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2999                                     1 : 0,
3000                                     fs_info->check_integrity_print_mask);
3001                 if (ret)
3002                         printk(KERN_WARNING "BTRFS: failed to initialize"
3003                                " integrity check module %s\n", sb->s_id);
3004         }
3005 #endif
3006         ret = btrfs_read_qgroup_config(fs_info);
3007         if (ret)
3008                 goto fail_trans_kthread;
3009
3010         /* do not make disk changes in broken FS */
3011         if (btrfs_super_log_root(disk_super) != 0) {
3012                 ret = btrfs_replay_log(fs_info, fs_devices);
3013                 if (ret) {
3014                         err = ret;
3015                         goto fail_qgroup;
3016                 }
3017         }
3018
3019         ret = btrfs_find_orphan_roots(tree_root);
3020         if (ret)
3021                 goto fail_qgroup;
3022
3023         if (!(sb->s_flags & MS_RDONLY)) {
3024                 ret = btrfs_cleanup_fs_roots(fs_info);
3025                 if (ret)
3026                         goto fail_qgroup;
3027
3028                 mutex_lock(&fs_info->cleaner_mutex);
3029                 ret = btrfs_recover_relocation(tree_root);
3030                 mutex_unlock(&fs_info->cleaner_mutex);
3031                 if (ret < 0) {
3032                         printk(KERN_WARNING
3033                                "BTRFS: failed to recover relocation\n");
3034                         err = -EINVAL;
3035                         goto fail_qgroup;
3036                 }
3037         }
3038
3039         location.objectid = BTRFS_FS_TREE_OBJECTID;
3040         location.type = BTRFS_ROOT_ITEM_KEY;
3041         location.offset = 0;
3042
3043         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3044         if (IS_ERR(fs_info->fs_root)) {
3045                 err = PTR_ERR(fs_info->fs_root);
3046                 goto fail_qgroup;
3047         }
3048
3049         if (sb->s_flags & MS_RDONLY)
3050                 return 0;
3051
3052         down_read(&fs_info->cleanup_work_sem);
3053         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3054             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3055                 up_read(&fs_info->cleanup_work_sem);
3056                 close_ctree(tree_root);
3057                 return ret;
3058         }
3059         up_read(&fs_info->cleanup_work_sem);
3060
3061         ret = btrfs_resume_balance_async(fs_info);
3062         if (ret) {
3063                 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3064                 close_ctree(tree_root);
3065                 return ret;
3066         }
3067
3068         ret = btrfs_resume_dev_replace_async(fs_info);
3069         if (ret) {
3070                 pr_warn("BTRFS: failed to resume dev_replace\n");
3071                 close_ctree(tree_root);
3072                 return ret;
3073         }
3074
3075         btrfs_qgroup_rescan_resume(fs_info);
3076
3077         if (!fs_info->uuid_root) {
3078                 pr_info("BTRFS: creating UUID tree\n");
3079                 ret = btrfs_create_uuid_tree(fs_info);
3080                 if (ret) {
3081                         pr_warn("BTRFS: failed to create the UUID tree %d\n",
3082                                 ret);
3083                         close_ctree(tree_root);
3084                         return ret;
3085                 }
3086         } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3087                    fs_info->generation !=
3088                                 btrfs_super_uuid_tree_generation(disk_super)) {
3089                 pr_info("BTRFS: checking UUID tree\n");
3090                 ret = btrfs_check_uuid_tree(fs_info);
3091                 if (ret) {
3092                         pr_warn("BTRFS: failed to check the UUID tree %d\n",
3093                                 ret);
3094                         close_ctree(tree_root);
3095                         return ret;
3096                 }
3097         } else {
3098                 fs_info->update_uuid_tree_gen = 1;
3099         }
3100
3101         fs_info->open = 1;
3102
3103         return 0;
3104
3105 fail_qgroup:
3106         btrfs_free_qgroup_config(fs_info);
3107 fail_trans_kthread:
3108         kthread_stop(fs_info->transaction_kthread);
3109         btrfs_cleanup_transaction(fs_info->tree_root);
3110         btrfs_free_fs_roots(fs_info);
3111 fail_cleaner:
3112         kthread_stop(fs_info->cleaner_kthread);
3113
3114         /*
3115          * make sure we're done with the btree inode before we stop our
3116          * kthreads
3117          */
3118         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3119
3120 fail_sysfs:
3121         btrfs_sysfs_remove_mounted(fs_info);
3122
3123 fail_fsdev_sysfs:
3124         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3125
3126 fail_block_groups:
3127         btrfs_put_block_group_cache(fs_info);
3128         btrfs_free_block_groups(fs_info);
3129
3130 fail_tree_roots:
3131         free_root_pointers(fs_info, 1);
3132         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3133
3134 fail_sb_buffer:
3135         btrfs_stop_all_workers(fs_info);
3136 fail_alloc:
3137 fail_iput:
3138         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3139
3140         iput(fs_info->btree_inode);
3141 fail_bio_counter:
3142         percpu_counter_destroy(&fs_info->bio_counter);
3143 fail_delalloc_bytes:
3144         percpu_counter_destroy(&fs_info->delalloc_bytes);
3145 fail_dirty_metadata_bytes:
3146         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3147 fail_bdi:
3148         bdi_destroy(&fs_info->bdi);
3149 fail_srcu:
3150         cleanup_srcu_struct(&fs_info->subvol_srcu);
3151 fail:
3152         btrfs_free_stripe_hash_table(fs_info);
3153         btrfs_close_devices(fs_info->fs_devices);
3154         return err;
3155
3156 recovery_tree_root:
3157         if (!btrfs_test_opt(tree_root, RECOVERY))
3158                 goto fail_tree_roots;
3159
3160         free_root_pointers(fs_info, 0);
3161
3162         /* don't use the log in recovery mode, it won't be valid */
3163         btrfs_set_super_log_root(disk_super, 0);
3164
3165         /* we can't trust the free space cache either */
3166         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3167
3168         ret = next_root_backup(fs_info, fs_info->super_copy,
3169                                &num_backups_tried, &backup_index);
3170         if (ret == -1)
3171                 goto fail_block_groups;
3172         goto retry_root_backup;
3173 }
3174
3175 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3176 {
3177         if (uptodate) {
3178                 set_buffer_uptodate(bh);
3179         } else {
3180                 struct btrfs_device *device = (struct btrfs_device *)
3181                         bh->b_private;
3182
3183                 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3184                                 "lost page write due to IO error on %s",
3185                                           rcu_str_deref(device->name));
3186                 /* note, we dont' set_buffer_write_io_error because we have
3187                  * our own ways of dealing with the IO errors
3188                  */
3189                 clear_buffer_uptodate(bh);
3190                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3191         }
3192         unlock_buffer(bh);
3193         put_bh(bh);
3194 }
3195
3196 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3197                         struct buffer_head **bh_ret)
3198 {
3199         struct buffer_head *bh;
3200         struct btrfs_super_block *super;
3201         u64 bytenr;
3202
3203         bytenr = btrfs_sb_offset(copy_num);
3204         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3205                 return -EINVAL;
3206
3207         bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3208         /*
3209          * If we fail to read from the underlying devices, as of now
3210          * the best option we have is to mark it EIO.
3211          */
3212         if (!bh)
3213                 return -EIO;
3214
3215         super = (struct btrfs_super_block *)bh->b_data;
3216         if (btrfs_super_bytenr(super) != bytenr ||
3217                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3218                 brelse(bh);
3219                 return -EINVAL;
3220         }
3221
3222         *bh_ret = bh;
3223         return 0;
3224 }
3225
3226
3227 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3228 {
3229         struct buffer_head *bh;
3230         struct buffer_head *latest = NULL;
3231         struct btrfs_super_block *super;
3232         int i;
3233         u64 transid = 0;
3234         int ret = -EINVAL;
3235
3236         /* we would like to check all the supers, but that would make
3237          * a btrfs mount succeed after a mkfs from a different FS.
3238          * So, we need to add a special mount option to scan for
3239          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3240          */
3241         for (i = 0; i < 1; i++) {
3242                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3243                 if (ret)
3244                         continue;
3245
3246                 super = (struct btrfs_super_block *)bh->b_data;
3247
3248                 if (!latest || btrfs_super_generation(super) > transid) {
3249                         brelse(latest);
3250                         latest = bh;
3251                         transid = btrfs_super_generation(super);
3252                 } else {
3253                         brelse(bh);
3254                 }
3255         }
3256
3257         if (!latest)
3258                 return ERR_PTR(ret);
3259
3260         return latest;
3261 }
3262
3263 /*
3264  * this should be called twice, once with wait == 0 and
3265  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3266  * we write are pinned.
3267  *
3268  * They are released when wait == 1 is done.
3269  * max_mirrors must be the same for both runs, and it indicates how
3270  * many supers on this one device should be written.
3271  *
3272  * max_mirrors == 0 means to write them all.
3273  */
3274 static int write_dev_supers(struct btrfs_device *device,
3275                             struct btrfs_super_block *sb,
3276                             int do_barriers, int wait, int max_mirrors)
3277 {
3278         struct buffer_head *bh;
3279         int i;
3280         int ret;
3281         int errors = 0;
3282         u32 crc;
3283         u64 bytenr;
3284
3285         if (max_mirrors == 0)
3286                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3287
3288         for (i = 0; i < max_mirrors; i++) {
3289                 bytenr = btrfs_sb_offset(i);
3290                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3291                     device->commit_total_bytes)
3292                         break;
3293
3294                 if (wait) {
3295                         bh = __find_get_block(device->bdev, bytenr / 4096,
3296                                               BTRFS_SUPER_INFO_SIZE);
3297                         if (!bh) {
3298                                 errors++;
3299                                 continue;
3300                         }
3301                         wait_on_buffer(bh);
3302                         if (!buffer_uptodate(bh))
3303                                 errors++;
3304
3305                         /* drop our reference */
3306                         brelse(bh);
3307
3308                         /* drop the reference from the wait == 0 run */
3309                         brelse(bh);
3310                         continue;
3311                 } else {
3312                         btrfs_set_super_bytenr(sb, bytenr);
3313
3314                         crc = ~(u32)0;
3315                         crc = btrfs_csum_data((char *)sb +
3316                                               BTRFS_CSUM_SIZE, crc,
3317                                               BTRFS_SUPER_INFO_SIZE -
3318                                               BTRFS_CSUM_SIZE);
3319                         btrfs_csum_final(crc, sb->csum);
3320
3321                         /*
3322                          * one reference for us, and we leave it for the
3323                          * caller
3324                          */
3325                         bh = __getblk(device->bdev, bytenr / 4096,
3326                                       BTRFS_SUPER_INFO_SIZE);
3327                         if (!bh) {
3328                                 btrfs_err(device->dev_root->fs_info,
3329                                     "couldn't get super buffer head for bytenr %llu",
3330                                     bytenr);
3331                                 errors++;
3332                                 continue;
3333                         }
3334
3335                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3336
3337                         /* one reference for submit_bh */
3338                         get_bh(bh);
3339
3340                         set_buffer_uptodate(bh);
3341                         lock_buffer(bh);
3342                         bh->b_end_io = btrfs_end_buffer_write_sync;
3343                         bh->b_private = device;
3344                 }
3345
3346                 /*
3347                  * we fua the first super.  The others we allow
3348                  * to go down lazy.
3349                  */
3350                 if (i == 0)
3351                         ret = btrfsic_submit_bh(WRITE_FUA, bh);
3352                 else
3353                         ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3354                 if (ret)
3355                         errors++;
3356         }
3357         return errors < i ? 0 : -1;
3358 }
3359
3360 /*
3361  * endio for the write_dev_flush, this will wake anyone waiting
3362  * for the barrier when it is done
3363  */
3364 static void btrfs_end_empty_barrier(struct bio *bio)
3365 {
3366         if (bio->bi_private)
3367                 complete(bio->bi_private);
3368         bio_put(bio);
3369 }
3370
3371 /*
3372  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3373  * sent down.  With wait == 1, it waits for the previous flush.
3374  *
3375  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3376  * capable
3377  */
3378 static int write_dev_flush(struct btrfs_device *device, int wait)
3379 {
3380         struct bio *bio;
3381         int ret = 0;
3382
3383         if (device->nobarriers)
3384                 return 0;
3385
3386         if (wait) {
3387                 bio = device->flush_bio;
3388                 if (!bio)
3389                         return 0;
3390
3391                 wait_for_completion(&device->flush_wait);
3392
3393                 if (bio->bi_error) {
3394                         ret = bio->bi_error;
3395                         btrfs_dev_stat_inc_and_print(device,
3396                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3397                 }
3398
3399                 /* drop the reference from the wait == 0 run */
3400                 bio_put(bio);
3401                 device->flush_bio = NULL;
3402
3403                 return ret;
3404         }
3405
3406         /*
3407          * one reference for us, and we leave it for the
3408          * caller
3409          */
3410         device->flush_bio = NULL;
3411         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3412         if (!bio)
3413                 return -ENOMEM;
3414
3415         bio->bi_end_io = btrfs_end_empty_barrier;
3416         bio->bi_bdev = device->bdev;
3417         init_completion(&device->flush_wait);
3418         bio->bi_private = &device->flush_wait;
3419         device->flush_bio = bio;
3420
3421         bio_get(bio);
3422         btrfsic_submit_bio(WRITE_FLUSH, bio);
3423
3424         return 0;
3425 }
3426
3427 /*
3428  * send an empty flush down to each device in parallel,
3429  * then wait for them
3430  */
3431 static int barrier_all_devices(struct btrfs_fs_info *info)
3432 {
3433         struct list_head *head;
3434         struct btrfs_device *dev;
3435         int errors_send = 0;
3436         int errors_wait = 0;
3437         int ret;
3438
3439         /* send down all the barriers */
3440         head = &info->fs_devices->devices;
3441         list_for_each_entry_rcu(dev, head, dev_list) {
3442                 if (dev->missing)
3443                         continue;
3444                 if (!dev->bdev) {
3445                         errors_send++;
3446                         continue;
3447                 }
3448                 if (!dev->in_fs_metadata || !dev->writeable)
3449                         continue;
3450
3451                 ret = write_dev_flush(dev, 0);
3452                 if (ret)
3453                         errors_send++;
3454         }
3455
3456         /* wait for all the barriers */
3457         list_for_each_entry_rcu(dev, head, dev_list) {
3458                 if (dev->missing)
3459                         continue;
3460                 if (!dev->bdev) {
3461                         errors_wait++;
3462                         continue;
3463                 }
3464                 if (!dev->in_fs_metadata || !dev->writeable)
3465                         continue;
3466
3467                 ret = write_dev_flush(dev, 1);
3468                 if (ret)
3469                         errors_wait++;
3470         }
3471         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3472             errors_wait > info->num_tolerated_disk_barrier_failures)
3473                 return -EIO;
3474         return 0;
3475 }
3476
3477 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3478 {
3479         int raid_type;
3480         int min_tolerated = INT_MAX;
3481
3482         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3483             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3484                 min_tolerated = min(min_tolerated,
3485                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3486                                     tolerated_failures);
3487
3488         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3489                 if (raid_type == BTRFS_RAID_SINGLE)
3490                         continue;
3491                 if (!(flags & btrfs_raid_group[raid_type]))
3492                         continue;
3493                 min_tolerated = min(min_tolerated,
3494                                     btrfs_raid_array[raid_type].
3495                                     tolerated_failures);
3496         }
3497
3498         if (min_tolerated == INT_MAX) {
3499                 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3500                 min_tolerated = 0;
3501         }
3502
3503         return min_tolerated;
3504 }
3505
3506 int btrfs_calc_num_tolerated_disk_barrier_failures(
3507         struct btrfs_fs_info *fs_info)
3508 {
3509         struct btrfs_ioctl_space_info space;
3510         struct btrfs_space_info *sinfo;
3511         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3512                        BTRFS_BLOCK_GROUP_SYSTEM,
3513                        BTRFS_BLOCK_GROUP_METADATA,
3514                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3515         int i;
3516         int c;
3517         int num_tolerated_disk_barrier_failures =
3518                 (int)fs_info->fs_devices->num_devices;
3519
3520         for (i = 0; i < ARRAY_SIZE(types); i++) {
3521                 struct btrfs_space_info *tmp;
3522
3523                 sinfo = NULL;
3524                 rcu_read_lock();
3525                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3526                         if (tmp->flags == types[i]) {
3527                                 sinfo = tmp;
3528                                 break;
3529                         }
3530                 }
3531                 rcu_read_unlock();
3532
3533                 if (!sinfo)
3534                         continue;
3535
3536                 down_read(&sinfo->groups_sem);
3537                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3538                         u64 flags;
3539
3540                         if (list_empty(&sinfo->block_groups[c]))
3541                                 continue;
3542
3543                         btrfs_get_block_group_info(&sinfo->block_groups[c],
3544                                                    &space);
3545                         if (space.total_bytes == 0 || space.used_bytes == 0)
3546                                 continue;
3547                         flags = space.flags;
3548
3549                         num_tolerated_disk_barrier_failures = min(
3550                                 num_tolerated_disk_barrier_failures,
3551                                 btrfs_get_num_tolerated_disk_barrier_failures(
3552                                         flags));
3553                 }
3554                 up_read(&sinfo->groups_sem);
3555         }
3556
3557         return num_tolerated_disk_barrier_failures;
3558 }
3559
3560 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3561 {
3562         struct list_head *head;
3563         struct btrfs_device *dev;
3564         struct btrfs_super_block *sb;
3565         struct btrfs_dev_item *dev_item;
3566         int ret;
3567         int do_barriers;
3568         int max_errors;
3569         int total_errors = 0;
3570         u64 flags;
3571
3572         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3573         backup_super_roots(root->fs_info);
3574
3575         sb = root->fs_info->super_for_commit;
3576         dev_item = &sb->dev_item;
3577
3578         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3579         head = &root->fs_info->fs_devices->devices;
3580         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3581
3582         if (do_barriers) {
3583                 ret = barrier_all_devices(root->fs_info);
3584                 if (ret) {
3585                         mutex_unlock(
3586                                 &root->fs_info->fs_devices->device_list_mutex);
3587                         btrfs_std_error(root->fs_info, ret,
3588                                     "errors while submitting device barriers.");
3589                         return ret;
3590                 }
3591         }
3592
3593         list_for_each_entry_rcu(dev, head, dev_list) {
3594                 if (!dev->bdev) {
3595                         total_errors++;
3596                         continue;
3597                 }
3598                 if (!dev->in_fs_metadata || !dev->writeable)
3599                         continue;
3600
3601                 btrfs_set_stack_device_generation(dev_item, 0);
3602                 btrfs_set_stack_device_type(dev_item, dev->type);
3603                 btrfs_set_stack_device_id(dev_item, dev->devid);
3604                 btrfs_set_stack_device_total_bytes(dev_item,
3605                                                    dev->commit_total_bytes);
3606                 btrfs_set_stack_device_bytes_used(dev_item,
3607                                                   dev->commit_bytes_used);
3608                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3609                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3610                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3611                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3612                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3613
3614                 flags = btrfs_super_flags(sb);
3615                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3616
3617                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3618                 if (ret)
3619                         total_errors++;
3620         }
3621         if (total_errors > max_errors) {
3622                 btrfs_err(root->fs_info, "%d errors while writing supers",
3623                        total_errors);
3624                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3625
3626                 /* FUA is masked off if unsupported and can't be the reason */
3627                 btrfs_std_error(root->fs_info, -EIO,
3628                             "%d errors while writing supers", total_errors);
3629                 return -EIO;
3630         }
3631
3632         total_errors = 0;
3633         list_for_each_entry_rcu(dev, head, dev_list) {
3634                 if (!dev->bdev)
3635                         continue;
3636                 if (!dev->in_fs_metadata || !dev->writeable)
3637                         continue;
3638
3639                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3640                 if (ret)
3641                         total_errors++;
3642         }
3643         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3644         if (total_errors > max_errors) {
3645                 btrfs_std_error(root->fs_info, -EIO,
3646                             "%d errors while writing supers", total_errors);
3647                 return -EIO;
3648         }
3649         return 0;
3650 }
3651
3652 int write_ctree_super(struct btrfs_trans_handle *trans,
3653                       struct btrfs_root *root, int max_mirrors)
3654 {
3655         return write_all_supers(root, max_mirrors);
3656 }
3657
3658 /* Drop a fs root from the radix tree and free it. */
3659 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3660                                   struct btrfs_root *root)
3661 {
3662         spin_lock(&fs_info->fs_roots_radix_lock);
3663         radix_tree_delete(&fs_info->fs_roots_radix,
3664                           (unsigned long)root->root_key.objectid);
3665         spin_unlock(&fs_info->fs_roots_radix_lock);
3666
3667         if (btrfs_root_refs(&root->root_item) == 0)
3668                 synchronize_srcu(&fs_info->subvol_srcu);
3669
3670         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3671                 btrfs_free_log(NULL, root);
3672
3673         if (root->free_ino_pinned)
3674                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3675         if (root->free_ino_ctl)
3676                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3677         free_fs_root(root);
3678 }
3679
3680 static void free_fs_root(struct btrfs_root *root)
3681 {
3682         iput(root->ino_cache_inode);
3683         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3684         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3685         root->orphan_block_rsv = NULL;
3686         if (root->anon_dev)
3687                 free_anon_bdev(root->anon_dev);
3688         if (root->subv_writers)
3689                 btrfs_free_subvolume_writers(root->subv_writers);
3690         free_extent_buffer(root->node);
3691         free_extent_buffer(root->commit_root);
3692         kfree(root->free_ino_ctl);
3693         kfree(root->free_ino_pinned);
3694         kfree(root->name);
3695         btrfs_put_fs_root(root);
3696 }
3697
3698 void btrfs_free_fs_root(struct btrfs_root *root)
3699 {
3700         free_fs_root(root);
3701 }
3702
3703 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3704 {
3705         u64 root_objectid = 0;
3706         struct btrfs_root *gang[8];
3707         int i = 0;
3708         int err = 0;
3709         unsigned int ret = 0;
3710         int index;
3711
3712         while (1) {
3713                 index = srcu_read_lock(&fs_info->subvol_srcu);
3714                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3715                                              (void **)gang, root_objectid,
3716                                              ARRAY_SIZE(gang));
3717                 if (!ret) {
3718                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3719                         break;
3720                 }
3721                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3722
3723                 for (i = 0; i < ret; i++) {
3724                         /* Avoid to grab roots in dead_roots */
3725                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3726                                 gang[i] = NULL;
3727                                 continue;
3728                         }
3729                         /* grab all the search result for later use */
3730                         gang[i] = btrfs_grab_fs_root(gang[i]);
3731                 }
3732                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3733
3734                 for (i = 0; i < ret; i++) {
3735                         if (!gang[i])
3736                                 continue;
3737                         root_objectid = gang[i]->root_key.objectid;
3738                         err = btrfs_orphan_cleanup(gang[i]);
3739                         if (err)
3740                                 break;
3741                         btrfs_put_fs_root(gang[i]);
3742                 }
3743                 root_objectid++;
3744         }
3745
3746         /* release the uncleaned roots due to error */
3747         for (; i < ret; i++) {
3748                 if (gang[i])
3749                         btrfs_put_fs_root(gang[i]);
3750         }
3751         return err;
3752 }
3753
3754 int btrfs_commit_super(struct btrfs_root *root)
3755 {
3756         struct btrfs_trans_handle *trans;
3757
3758         mutex_lock(&root->fs_info->cleaner_mutex);
3759         btrfs_run_delayed_iputs(root);
3760         mutex_unlock(&root->fs_info->cleaner_mutex);
3761         wake_up_process(root->fs_info->cleaner_kthread);
3762
3763         /* wait until ongoing cleanup work done */
3764         down_write(&root->fs_info->cleanup_work_sem);
3765         up_write(&root->fs_info->cleanup_work_sem);
3766
3767         trans = btrfs_join_transaction(root);
3768         if (IS_ERR(trans))
3769                 return PTR_ERR(trans);
3770         return btrfs_commit_transaction(trans, root);
3771 }
3772
3773 void close_ctree(struct btrfs_root *root)
3774 {
3775         struct btrfs_fs_info *fs_info = root->fs_info;
3776         int ret;
3777
3778         fs_info->closing = 1;
3779         smp_mb();
3780
3781         /* wait for the uuid_scan task to finish */
3782         down(&fs_info->uuid_tree_rescan_sem);
3783         /* avoid complains from lockdep et al., set sem back to initial state */
3784         up(&fs_info->uuid_tree_rescan_sem);
3785
3786         /* pause restriper - we want to resume on mount */
3787         btrfs_pause_balance(fs_info);
3788
3789         btrfs_dev_replace_suspend_for_unmount(fs_info);
3790
3791         btrfs_scrub_cancel(fs_info);
3792
3793         /* wait for any defraggers to finish */
3794         wait_event(fs_info->transaction_wait,
3795                    (atomic_read(&fs_info->defrag_running) == 0));
3796
3797         /* clear out the rbtree of defraggable inodes */
3798         btrfs_cleanup_defrag_inodes(fs_info);
3799
3800         cancel_work_sync(&fs_info->async_reclaim_work);
3801
3802         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3803                 /*
3804                  * If the cleaner thread is stopped and there are
3805                  * block groups queued for removal, the deletion will be
3806                  * skipped when we quit the cleaner thread.
3807                  */
3808                 btrfs_delete_unused_bgs(root->fs_info);
3809
3810                 ret = btrfs_commit_super(root);
3811                 if (ret)
3812                         btrfs_err(fs_info, "commit super ret %d", ret);
3813         }
3814
3815         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3816                 btrfs_error_commit_super(root);
3817
3818         kthread_stop(fs_info->transaction_kthread);
3819         kthread_stop(fs_info->cleaner_kthread);
3820
3821         fs_info->closing = 2;
3822         smp_mb();
3823
3824         btrfs_free_qgroup_config(fs_info);
3825
3826         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3827                 btrfs_info(fs_info, "at unmount delalloc count %lld",
3828                        percpu_counter_sum(&fs_info->delalloc_bytes));
3829         }
3830
3831         btrfs_sysfs_remove_mounted(fs_info);
3832         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3833
3834         btrfs_free_fs_roots(fs_info);
3835
3836         btrfs_put_block_group_cache(fs_info);
3837
3838         btrfs_free_block_groups(fs_info);
3839
3840         /*
3841          * we must make sure there is not any read request to
3842          * submit after we stopping all workers.
3843          */
3844         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3845         btrfs_stop_all_workers(fs_info);
3846
3847         fs_info->open = 0;
3848         free_root_pointers(fs_info, 1);
3849
3850         iput(fs_info->btree_inode);
3851
3852 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3853         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3854                 btrfsic_unmount(root, fs_info->fs_devices);
3855 #endif
3856
3857         btrfs_close_devices(fs_info->fs_devices);
3858         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3859
3860         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3861         percpu_counter_destroy(&fs_info->delalloc_bytes);
3862         percpu_counter_destroy(&fs_info->bio_counter);
3863         bdi_destroy(&fs_info->bdi);
3864         cleanup_srcu_struct(&fs_info->subvol_srcu);
3865
3866         btrfs_free_stripe_hash_table(fs_info);
3867
3868         __btrfs_free_block_rsv(root->orphan_block_rsv);
3869         root->orphan_block_rsv = NULL;
3870
3871         lock_chunks(root);
3872         while (!list_empty(&fs_info->pinned_chunks)) {
3873                 struct extent_map *em;
3874
3875                 em = list_first_entry(&fs_info->pinned_chunks,
3876                                       struct extent_map, list);
3877                 list_del_init(&em->list);
3878                 free_extent_map(em);
3879         }
3880         unlock_chunks(root);
3881 }
3882
3883 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3884                           int atomic)
3885 {
3886         int ret;
3887         struct inode *btree_inode = buf->pages[0]->mapping->host;
3888
3889         ret = extent_buffer_uptodate(buf);
3890         if (!ret)
3891                 return ret;
3892
3893         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3894                                     parent_transid, atomic);
3895         if (ret == -EAGAIN)
3896                 return ret;
3897         return !ret;
3898 }
3899
3900 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3901 {
3902         return set_extent_buffer_uptodate(buf);
3903 }
3904
3905 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3906 {
3907         struct btrfs_root *root;
3908         u64 transid = btrfs_header_generation(buf);
3909         int was_dirty;
3910
3911 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3912         /*
3913          * This is a fast path so only do this check if we have sanity tests
3914          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3915          * outside of the sanity tests.
3916          */
3917         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3918                 return;
3919 #endif
3920         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3921         btrfs_assert_tree_locked(buf);
3922         if (transid != root->fs_info->generation)
3923                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3924                        "found %llu running %llu\n",
3925                         buf->start, transid, root->fs_info->generation);
3926         was_dirty = set_extent_buffer_dirty(buf);
3927         if (!was_dirty)
3928                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3929                                      buf->len,
3930                                      root->fs_info->dirty_metadata_batch);
3931 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3932         if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3933                 btrfs_print_leaf(root, buf);
3934                 ASSERT(0);
3935         }
3936 #endif
3937 }
3938
3939 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3940                                         int flush_delayed)
3941 {
3942         /*
3943          * looks as though older kernels can get into trouble with
3944          * this code, they end up stuck in balance_dirty_pages forever
3945          */
3946         int ret;
3947
3948         if (current->flags & PF_MEMALLOC)
3949                 return;
3950
3951         if (flush_delayed)
3952                 btrfs_balance_delayed_items(root);
3953
3954         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3955                                      BTRFS_DIRTY_METADATA_THRESH);
3956         if (ret > 0) {
3957                 balance_dirty_pages_ratelimited(
3958                                    root->fs_info->btree_inode->i_mapping);
3959         }
3960         return;
3961 }
3962
3963 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3964 {
3965         __btrfs_btree_balance_dirty(root, 1);
3966 }
3967
3968 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3969 {
3970         __btrfs_btree_balance_dirty(root, 0);
3971 }
3972
3973 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3974 {
3975         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3976         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3977 }
3978
3979 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3980                               int read_only)
3981 {
3982         struct btrfs_super_block *sb = fs_info->super_copy;
3983         int ret = 0;
3984
3985         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3986                 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
3987                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3988                 ret = -EINVAL;
3989         }
3990         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3991                 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
3992                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3993                 ret = -EINVAL;
3994         }
3995         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3996                 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
3997                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
3998                 ret = -EINVAL;
3999         }
4000
4001         /*
4002          * The common minimum, we don't know if we can trust the nodesize/sectorsize
4003          * items yet, they'll be verified later. Issue just a warning.
4004          */
4005         if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
4006                 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4007                                 btrfs_super_root(sb));
4008         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
4009                 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4010                                 btrfs_super_chunk_root(sb));
4011         if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
4012                 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4013                                 btrfs_super_log_root(sb));
4014
4015         /*
4016          * Check the lower bound, the alignment and other constraints are
4017          * checked later.
4018          */
4019         if (btrfs_super_nodesize(sb) < 4096) {
4020                 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
4021                                 btrfs_super_nodesize(sb));
4022                 ret = -EINVAL;
4023         }
4024         if (btrfs_super_sectorsize(sb) < 4096) {
4025                 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
4026                                 btrfs_super_sectorsize(sb));
4027                 ret = -EINVAL;
4028         }
4029
4030         if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4031                 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4032                                 fs_info->fsid, sb->dev_item.fsid);
4033                 ret = -EINVAL;
4034         }
4035
4036         /*
4037          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4038          * done later
4039          */
4040         if (btrfs_super_num_devices(sb) > (1UL << 31))
4041                 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4042                                 btrfs_super_num_devices(sb));
4043         if (btrfs_super_num_devices(sb) == 0) {
4044                 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4045                 ret = -EINVAL;
4046         }
4047
4048         if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4049                 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4050                                 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4051                 ret = -EINVAL;
4052         }
4053
4054         /*
4055          * Obvious sys_chunk_array corruptions, it must hold at least one key
4056          * and one chunk
4057          */
4058         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4059                 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4060                                 btrfs_super_sys_array_size(sb),
4061                                 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4062                 ret = -EINVAL;
4063         }
4064         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4065                         + sizeof(struct btrfs_chunk)) {
4066                 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4067                                 btrfs_super_sys_array_size(sb),
4068                                 sizeof(struct btrfs_disk_key)
4069                                 + sizeof(struct btrfs_chunk));
4070                 ret = -EINVAL;
4071         }
4072
4073         /*
4074          * The generation is a global counter, we'll trust it more than the others
4075          * but it's still possible that it's the one that's wrong.
4076          */
4077         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4078                 printk(KERN_WARNING
4079                         "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4080                         btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4081         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4082             && btrfs_super_cache_generation(sb) != (u64)-1)
4083                 printk(KERN_WARNING
4084                         "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4085                         btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4086
4087         return ret;
4088 }
4089
4090 static void btrfs_error_commit_super(struct btrfs_root *root)
4091 {
4092         mutex_lock(&root->fs_info->cleaner_mutex);
4093         btrfs_run_delayed_iputs(root);
4094         mutex_unlock(&root->fs_info->cleaner_mutex);
4095
4096         down_write(&root->fs_info->cleanup_work_sem);
4097         up_write(&root->fs_info->cleanup_work_sem);
4098
4099         /* cleanup FS via transaction */
4100         btrfs_cleanup_transaction(root);
4101 }
4102
4103 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4104 {
4105         struct btrfs_ordered_extent *ordered;
4106
4107         spin_lock(&root->ordered_extent_lock);
4108         /*
4109          * This will just short circuit the ordered completion stuff which will
4110          * make sure the ordered extent gets properly cleaned up.
4111          */
4112         list_for_each_entry(ordered, &root->ordered_extents,
4113                             root_extent_list)
4114                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4115         spin_unlock(&root->ordered_extent_lock);
4116 }
4117
4118 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4119 {
4120         struct btrfs_root *root;
4121         struct list_head splice;
4122
4123         INIT_LIST_HEAD(&splice);
4124
4125         spin_lock(&fs_info->ordered_root_lock);
4126         list_splice_init(&fs_info->ordered_roots, &splice);
4127         while (!list_empty(&splice)) {
4128                 root = list_first_entry(&splice, struct btrfs_root,
4129                                         ordered_root);
4130                 list_move_tail(&root->ordered_root,
4131                                &fs_info->ordered_roots);
4132
4133                 spin_unlock(&fs_info->ordered_root_lock);
4134                 btrfs_destroy_ordered_extents(root);
4135
4136                 cond_resched();
4137                 spin_lock(&fs_info->ordered_root_lock);
4138         }
4139         spin_unlock(&fs_info->ordered_root_lock);
4140 }
4141
4142 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4143                                       struct btrfs_root *root)
4144 {
4145         struct rb_node *node;
4146         struct btrfs_delayed_ref_root *delayed_refs;
4147         struct btrfs_delayed_ref_node *ref;
4148         int ret = 0;
4149
4150         delayed_refs = &trans->delayed_refs;
4151
4152         spin_lock(&delayed_refs->lock);
4153         if (atomic_read(&delayed_refs->num_entries) == 0) {
4154                 spin_unlock(&delayed_refs->lock);
4155                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4156                 return ret;
4157         }
4158
4159         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4160                 struct btrfs_delayed_ref_head *head;
4161                 struct btrfs_delayed_ref_node *tmp;
4162                 bool pin_bytes = false;
4163
4164                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4165                                 href_node);
4166                 if (!mutex_trylock(&head->mutex)) {
4167                         atomic_inc(&head->node.refs);
4168                         spin_unlock(&delayed_refs->lock);
4169
4170                         mutex_lock(&head->mutex);
4171                         mutex_unlock(&head->mutex);
4172                         btrfs_put_delayed_ref(&head->node);
4173                         spin_lock(&delayed_refs->lock);
4174                         continue;
4175                 }
4176                 spin_lock(&head->lock);
4177                 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4178                                                  list) {
4179                         ref->in_tree = 0;
4180                         list_del(&ref->list);
4181                         atomic_dec(&delayed_refs->num_entries);
4182                         btrfs_put_delayed_ref(ref);
4183                 }
4184                 if (head->must_insert_reserved)
4185                         pin_bytes = true;
4186                 btrfs_free_delayed_extent_op(head->extent_op);
4187                 delayed_refs->num_heads--;
4188                 if (head->processing == 0)
4189                         delayed_refs->num_heads_ready--;
4190                 atomic_dec(&delayed_refs->num_entries);
4191                 head->node.in_tree = 0;
4192                 rb_erase(&head->href_node, &delayed_refs->href_root);
4193                 spin_unlock(&head->lock);
4194                 spin_unlock(&delayed_refs->lock);
4195                 mutex_unlock(&head->mutex);
4196
4197                 if (pin_bytes)
4198                         btrfs_pin_extent(root, head->node.bytenr,
4199                                          head->node.num_bytes, 1);
4200                 btrfs_put_delayed_ref(&head->node);
4201                 cond_resched();
4202                 spin_lock(&delayed_refs->lock);
4203         }
4204
4205         spin_unlock(&delayed_refs->lock);
4206
4207         return ret;
4208 }
4209
4210 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4211 {
4212         struct btrfs_inode *btrfs_inode;
4213         struct list_head splice;
4214
4215         INIT_LIST_HEAD(&splice);
4216
4217         spin_lock(&root->delalloc_lock);
4218         list_splice_init(&root->delalloc_inodes, &splice);
4219
4220         while (!list_empty(&splice)) {
4221                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4222                                                delalloc_inodes);
4223
4224                 list_del_init(&btrfs_inode->delalloc_inodes);
4225                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4226                           &btrfs_inode->runtime_flags);
4227                 spin_unlock(&root->delalloc_lock);
4228
4229                 btrfs_invalidate_inodes(btrfs_inode->root);
4230
4231                 spin_lock(&root->delalloc_lock);
4232         }
4233
4234         spin_unlock(&root->delalloc_lock);
4235 }
4236
4237 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4238 {
4239         struct btrfs_root *root;
4240         struct list_head splice;
4241
4242         INIT_LIST_HEAD(&splice);
4243
4244         spin_lock(&fs_info->delalloc_root_lock);
4245         list_splice_init(&fs_info->delalloc_roots, &splice);
4246         while (!list_empty(&splice)) {
4247                 root = list_first_entry(&splice, struct btrfs_root,
4248                                          delalloc_root);
4249                 list_del_init(&root->delalloc_root);
4250                 root = btrfs_grab_fs_root(root);
4251                 BUG_ON(!root);
4252                 spin_unlock(&fs_info->delalloc_root_lock);
4253
4254                 btrfs_destroy_delalloc_inodes(root);
4255                 btrfs_put_fs_root(root);
4256
4257                 spin_lock(&fs_info->delalloc_root_lock);
4258         }
4259         spin_unlock(&fs_info->delalloc_root_lock);
4260 }
4261
4262 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4263                                         struct extent_io_tree *dirty_pages,
4264                                         int mark)
4265 {
4266         int ret;
4267         struct extent_buffer *eb;
4268         u64 start = 0;
4269         u64 end;
4270
4271         while (1) {
4272                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4273                                             mark, NULL);
4274                 if (ret)
4275                         break;
4276
4277                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4278                 while (start <= end) {
4279                         eb = btrfs_find_tree_block(root->fs_info, start);
4280                         start += root->nodesize;
4281                         if (!eb)
4282                                 continue;
4283                         wait_on_extent_buffer_writeback(eb);
4284
4285                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4286                                                &eb->bflags))
4287                                 clear_extent_buffer_dirty(eb);
4288                         free_extent_buffer_stale(eb);
4289                 }
4290         }
4291
4292         return ret;
4293 }
4294
4295 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4296                                        struct extent_io_tree *pinned_extents)
4297 {
4298         struct extent_io_tree *unpin;
4299         u64 start;
4300         u64 end;
4301         int ret;
4302         bool loop = true;
4303
4304         unpin = pinned_extents;
4305 again:
4306         while (1) {
4307                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4308                                             EXTENT_DIRTY, NULL);
4309                 if (ret)
4310                         break;
4311
4312                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4313                 btrfs_error_unpin_extent_range(root, start, end);
4314                 cond_resched();
4315         }
4316
4317         if (loop) {
4318                 if (unpin == &root->fs_info->freed_extents[0])
4319                         unpin = &root->fs_info->freed_extents[1];
4320                 else
4321                         unpin = &root->fs_info->freed_extents[0];
4322                 loop = false;
4323                 goto again;
4324         }
4325
4326         return 0;
4327 }
4328
4329 static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans,
4330                                        struct btrfs_fs_info *fs_info)
4331 {
4332         struct btrfs_ordered_extent *ordered;
4333
4334         spin_lock(&fs_info->trans_lock);
4335         while (!list_empty(&cur_trans->pending_ordered)) {
4336                 ordered = list_first_entry(&cur_trans->pending_ordered,
4337                                            struct btrfs_ordered_extent,
4338                                            trans_list);
4339                 list_del_init(&ordered->trans_list);
4340                 spin_unlock(&fs_info->trans_lock);
4341
4342                 btrfs_put_ordered_extent(ordered);
4343                 spin_lock(&fs_info->trans_lock);
4344         }
4345         spin_unlock(&fs_info->trans_lock);
4346 }
4347
4348 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4349                                    struct btrfs_root *root)
4350 {
4351         btrfs_destroy_delayed_refs(cur_trans, root);
4352
4353         cur_trans->state = TRANS_STATE_COMMIT_START;
4354         wake_up(&root->fs_info->transaction_blocked_wait);
4355
4356         cur_trans->state = TRANS_STATE_UNBLOCKED;
4357         wake_up(&root->fs_info->transaction_wait);
4358
4359         btrfs_free_pending_ordered(cur_trans, root->fs_info);
4360         btrfs_destroy_delayed_inodes(root);
4361         btrfs_assert_delayed_root_empty(root);
4362
4363         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4364                                      EXTENT_DIRTY);
4365         btrfs_destroy_pinned_extent(root,
4366                                     root->fs_info->pinned_extents);
4367
4368         cur_trans->state =TRANS_STATE_COMPLETED;
4369         wake_up(&cur_trans->commit_wait);
4370
4371         /*
4372         memset(cur_trans, 0, sizeof(*cur_trans));
4373         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4374         */
4375 }
4376
4377 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4378 {
4379         struct btrfs_transaction *t;
4380
4381         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4382
4383         spin_lock(&root->fs_info->trans_lock);
4384         while (!list_empty(&root->fs_info->trans_list)) {
4385                 t = list_first_entry(&root->fs_info->trans_list,
4386                                      struct btrfs_transaction, list);
4387                 if (t->state >= TRANS_STATE_COMMIT_START) {
4388                         atomic_inc(&t->use_count);
4389                         spin_unlock(&root->fs_info->trans_lock);
4390                         btrfs_wait_for_commit(root, t->transid);
4391                         btrfs_put_transaction(t);
4392                         spin_lock(&root->fs_info->trans_lock);
4393                         continue;
4394                 }
4395                 if (t == root->fs_info->running_transaction) {
4396                         t->state = TRANS_STATE_COMMIT_DOING;
4397                         spin_unlock(&root->fs_info->trans_lock);
4398                         /*
4399                          * We wait for 0 num_writers since we don't hold a trans
4400                          * handle open currently for this transaction.
4401                          */
4402                         wait_event(t->writer_wait,
4403                                    atomic_read(&t->num_writers) == 0);
4404                 } else {
4405                         spin_unlock(&root->fs_info->trans_lock);
4406                 }
4407                 btrfs_cleanup_one_transaction(t, root);
4408
4409                 spin_lock(&root->fs_info->trans_lock);
4410                 if (t == root->fs_info->running_transaction)
4411                         root->fs_info->running_transaction = NULL;
4412                 list_del_init(&t->list);
4413                 spin_unlock(&root->fs_info->trans_lock);
4414
4415                 btrfs_put_transaction(t);
4416                 trace_btrfs_transaction_commit(root);
4417                 spin_lock(&root->fs_info->trans_lock);
4418         }
4419         spin_unlock(&root->fs_info->trans_lock);
4420         btrfs_destroy_all_ordered_extents(root->fs_info);
4421         btrfs_destroy_delayed_inodes(root);
4422         btrfs_assert_delayed_root_empty(root);
4423         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4424         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4425         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4426
4427         return 0;
4428 }
4429
4430 static const struct extent_io_ops btree_extent_io_ops = {
4431         .readpage_end_io_hook = btree_readpage_end_io_hook,
4432         .readpage_io_failed_hook = btree_io_failed_hook,
4433         .submit_bio_hook = btree_submit_bio_hook,
4434         /* note we're sharing with inode.c for the merge bio hook */
4435         .merge_bio_hook = btrfs_merge_bio_hook,
4436 };