dd52146035b3a183b3fcd3e7943a51c5217c3ae7
[cascardo/linux.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61                                     int read_only);
62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63                                              struct btrfs_root *root);
64 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66                                       struct btrfs_root *root);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69                                         struct extent_io_tree *dirty_pages,
70                                         int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72                                        struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
75
76 /*
77  * end_io_wq structs are used to do processing in task context when an IO is
78  * complete.  This is used during reads to verify checksums, and it is used
79  * by writes to insert metadata for new file extents after IO is complete.
80  */
81 struct end_io_wq {
82         struct bio *bio;
83         bio_end_io_t *end_io;
84         void *private;
85         struct btrfs_fs_info *info;
86         int error;
87         int metadata;
88         struct list_head list;
89         struct btrfs_work work;
90 };
91
92 /*
93  * async submit bios are used to offload expensive checksumming
94  * onto the worker threads.  They checksum file and metadata bios
95  * just before they are sent down the IO stack.
96  */
97 struct async_submit_bio {
98         struct inode *inode;
99         struct bio *bio;
100         struct list_head list;
101         extent_submit_bio_hook_t *submit_bio_start;
102         extent_submit_bio_hook_t *submit_bio_done;
103         int rw;
104         int mirror_num;
105         unsigned long bio_flags;
106         /*
107          * bio_offset is optional, can be used if the pages in the bio
108          * can't tell us where in the file the bio should go
109          */
110         u64 bio_offset;
111         struct btrfs_work work;
112         int error;
113 };
114
115 /*
116  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
117  * eb, the lockdep key is determined by the btrfs_root it belongs to and
118  * the level the eb occupies in the tree.
119  *
120  * Different roots are used for different purposes and may nest inside each
121  * other and they require separate keysets.  As lockdep keys should be
122  * static, assign keysets according to the purpose of the root as indicated
123  * by btrfs_root->objectid.  This ensures that all special purpose roots
124  * have separate keysets.
125  *
126  * Lock-nesting across peer nodes is always done with the immediate parent
127  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
128  * subclass to avoid triggering lockdep warning in such cases.
129  *
130  * The key is set by the readpage_end_io_hook after the buffer has passed
131  * csum validation but before the pages are unlocked.  It is also set by
132  * btrfs_init_new_buffer on freshly allocated blocks.
133  *
134  * We also add a check to make sure the highest level of the tree is the
135  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
136  * needs update as well.
137  */
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 #  error
141 # endif
142
143 static struct btrfs_lockdep_keyset {
144         u64                     id;             /* root objectid */
145         const char              *name_stem;     /* lock name stem */
146         char                    names[BTRFS_MAX_LEVEL + 1][20];
147         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
150         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
151         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
152         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
153         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
154         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
155         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
156         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
157         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
158         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
159         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
160         { .id = 0,                              .name_stem = "tree"     },
161 };
162
163 void __init btrfs_init_lockdep(void)
164 {
165         int i, j;
166
167         /* initialize lockdep class names */
168         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
170
171                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172                         snprintf(ks->names[j], sizeof(ks->names[j]),
173                                  "btrfs-%s-%02d", ks->name_stem, j);
174         }
175 }
176
177 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178                                     int level)
179 {
180         struct btrfs_lockdep_keyset *ks;
181
182         BUG_ON(level >= ARRAY_SIZE(ks->keys));
183
184         /* find the matching keyset, id 0 is the default entry */
185         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186                 if (ks->id == objectid)
187                         break;
188
189         lockdep_set_class_and_name(&eb->lock,
190                                    &ks->keys[level], ks->names[level]);
191 }
192
193 #endif
194
195 /*
196  * extents on the btree inode are pretty simple, there's one extent
197  * that covers the entire device
198  */
199 static struct extent_map *btree_get_extent(struct inode *inode,
200                 struct page *page, size_t pg_offset, u64 start, u64 len,
201                 int create)
202 {
203         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204         struct extent_map *em;
205         int ret;
206
207         read_lock(&em_tree->lock);
208         em = lookup_extent_mapping(em_tree, start, len);
209         if (em) {
210                 em->bdev =
211                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
212                 read_unlock(&em_tree->lock);
213                 goto out;
214         }
215         read_unlock(&em_tree->lock);
216
217         em = alloc_extent_map();
218         if (!em) {
219                 em = ERR_PTR(-ENOMEM);
220                 goto out;
221         }
222         em->start = 0;
223         em->len = (u64)-1;
224         em->block_len = (u64)-1;
225         em->block_start = 0;
226         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
227
228         write_lock(&em_tree->lock);
229         ret = add_extent_mapping(em_tree, em, 0);
230         if (ret == -EEXIST) {
231                 free_extent_map(em);
232                 em = lookup_extent_mapping(em_tree, start, len);
233                 if (!em)
234                         em = ERR_PTR(-EIO);
235         } else if (ret) {
236                 free_extent_map(em);
237                 em = ERR_PTR(ret);
238         }
239         write_unlock(&em_tree->lock);
240
241 out:
242         return em;
243 }
244
245 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
246 {
247         return btrfs_crc32c(seed, data, len);
248 }
249
250 void btrfs_csum_final(u32 crc, char *result)
251 {
252         put_unaligned_le32(~crc, result);
253 }
254
255 /*
256  * compute the csum for a btree block, and either verify it or write it
257  * into the csum field of the block.
258  */
259 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260                            int verify)
261 {
262         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
263         char *result = NULL;
264         unsigned long len;
265         unsigned long cur_len;
266         unsigned long offset = BTRFS_CSUM_SIZE;
267         char *kaddr;
268         unsigned long map_start;
269         unsigned long map_len;
270         int err;
271         u32 crc = ~(u32)0;
272         unsigned long inline_result;
273
274         len = buf->len - offset;
275         while (len > 0) {
276                 err = map_private_extent_buffer(buf, offset, 32,
277                                         &kaddr, &map_start, &map_len);
278                 if (err)
279                         return 1;
280                 cur_len = min(len, map_len - (offset - map_start));
281                 crc = btrfs_csum_data(kaddr + offset - map_start,
282                                       crc, cur_len);
283                 len -= cur_len;
284                 offset += cur_len;
285         }
286         if (csum_size > sizeof(inline_result)) {
287                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
288                 if (!result)
289                         return 1;
290         } else {
291                 result = (char *)&inline_result;
292         }
293
294         btrfs_csum_final(crc, result);
295
296         if (verify) {
297                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
298                         u32 val;
299                         u32 found = 0;
300                         memcpy(&found, result, csum_size);
301
302                         read_extent_buffer(buf, &val, 0, csum_size);
303                         printk_ratelimited(KERN_INFO
304                                 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
305                                 "level %d\n",
306                                 root->fs_info->sb->s_id, buf->start,
307                                 val, found, btrfs_header_level(buf));
308                         if (result != (char *)&inline_result)
309                                 kfree(result);
310                         return 1;
311                 }
312         } else {
313                 write_extent_buffer(buf, result, 0, csum_size);
314         }
315         if (result != (char *)&inline_result)
316                 kfree(result);
317         return 0;
318 }
319
320 /*
321  * we can't consider a given block up to date unless the transid of the
322  * block matches the transid in the parent node's pointer.  This is how we
323  * detect blocks that either didn't get written at all or got written
324  * in the wrong place.
325  */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327                                  struct extent_buffer *eb, u64 parent_transid,
328                                  int atomic)
329 {
330         struct extent_state *cached_state = NULL;
331         int ret;
332
333         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334                 return 0;
335
336         if (atomic)
337                 return -EAGAIN;
338
339         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340                          0, &cached_state);
341         if (extent_buffer_uptodate(eb) &&
342             btrfs_header_generation(eb) == parent_transid) {
343                 ret = 0;
344                 goto out;
345         }
346         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347                        "found %llu\n",
348                        eb->start, parent_transid, btrfs_header_generation(eb));
349         ret = 1;
350         clear_extent_buffer_uptodate(eb);
351 out:
352         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
353                              &cached_state, GFP_NOFS);
354         return ret;
355 }
356
357 /*
358  * Return 0 if the superblock checksum type matches the checksum value of that
359  * algorithm. Pass the raw disk superblock data.
360  */
361 static int btrfs_check_super_csum(char *raw_disk_sb)
362 {
363         struct btrfs_super_block *disk_sb =
364                 (struct btrfs_super_block *)raw_disk_sb;
365         u16 csum_type = btrfs_super_csum_type(disk_sb);
366         int ret = 0;
367
368         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
369                 u32 crc = ~(u32)0;
370                 const int csum_size = sizeof(crc);
371                 char result[csum_size];
372
373                 /*
374                  * The super_block structure does not span the whole
375                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
376                  * is filled with zeros and is included in the checkum.
377                  */
378                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
379                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
380                 btrfs_csum_final(crc, result);
381
382                 if (memcmp(raw_disk_sb, result, csum_size))
383                         ret = 1;
384
385                 if (ret && btrfs_super_generation(disk_sb) < 10) {
386                         printk(KERN_WARNING
387                                 "BTRFS: super block crcs don't match, older mkfs detected\n");
388                         ret = 0;
389                 }
390         }
391
392         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
393                 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
394                                 csum_type);
395                 ret = 1;
396         }
397
398         return ret;
399 }
400
401 /*
402  * helper to read a given tree block, doing retries as required when
403  * the checksums don't match and we have alternate mirrors to try.
404  */
405 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
406                                           struct extent_buffer *eb,
407                                           u64 start, u64 parent_transid)
408 {
409         struct extent_io_tree *io_tree;
410         int failed = 0;
411         int ret;
412         int num_copies = 0;
413         int mirror_num = 0;
414         int failed_mirror = 0;
415
416         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
417         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
418         while (1) {
419                 ret = read_extent_buffer_pages(io_tree, eb, start,
420                                                WAIT_COMPLETE,
421                                                btree_get_extent, mirror_num);
422                 if (!ret) {
423                         if (!verify_parent_transid(io_tree, eb,
424                                                    parent_transid, 0))
425                                 break;
426                         else
427                                 ret = -EIO;
428                 }
429
430                 /*
431                  * This buffer's crc is fine, but its contents are corrupted, so
432                  * there is no reason to read the other copies, they won't be
433                  * any less wrong.
434                  */
435                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
436                         break;
437
438                 num_copies = btrfs_num_copies(root->fs_info,
439                                               eb->start, eb->len);
440                 if (num_copies == 1)
441                         break;
442
443                 if (!failed_mirror) {
444                         failed = 1;
445                         failed_mirror = eb->read_mirror;
446                 }
447
448                 mirror_num++;
449                 if (mirror_num == failed_mirror)
450                         mirror_num++;
451
452                 if (mirror_num > num_copies)
453                         break;
454         }
455
456         if (failed && !ret && failed_mirror)
457                 repair_eb_io_failure(root, eb, failed_mirror);
458
459         return ret;
460 }
461
462 /*
463  * checksum a dirty tree block before IO.  This has extra checks to make sure
464  * we only fill in the checksum field in the first page of a multi-page block
465  */
466
467 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
468 {
469         u64 start = page_offset(page);
470         u64 found_start;
471         struct extent_buffer *eb;
472
473         eb = (struct extent_buffer *)page->private;
474         if (page != eb->pages[0])
475                 return 0;
476         found_start = btrfs_header_bytenr(eb);
477         if (WARN_ON(found_start != start || !PageUptodate(page)))
478                 return 0;
479         csum_tree_block(root, eb, 0);
480         return 0;
481 }
482
483 static int check_tree_block_fsid(struct btrfs_root *root,
484                                  struct extent_buffer *eb)
485 {
486         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
487         u8 fsid[BTRFS_UUID_SIZE];
488         int ret = 1;
489
490         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
491         while (fs_devices) {
492                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
493                         ret = 0;
494                         break;
495                 }
496                 fs_devices = fs_devices->seed;
497         }
498         return ret;
499 }
500
501 #define CORRUPT(reason, eb, root, slot)                         \
502         btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
503                    "root=%llu, slot=%d", reason,                        \
504                btrfs_header_bytenr(eb), root->objectid, slot)
505
506 static noinline int check_leaf(struct btrfs_root *root,
507                                struct extent_buffer *leaf)
508 {
509         struct btrfs_key key;
510         struct btrfs_key leaf_key;
511         u32 nritems = btrfs_header_nritems(leaf);
512         int slot;
513
514         if (nritems == 0)
515                 return 0;
516
517         /* Check the 0 item */
518         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
519             BTRFS_LEAF_DATA_SIZE(root)) {
520                 CORRUPT("invalid item offset size pair", leaf, root, 0);
521                 return -EIO;
522         }
523
524         /*
525          * Check to make sure each items keys are in the correct order and their
526          * offsets make sense.  We only have to loop through nritems-1 because
527          * we check the current slot against the next slot, which verifies the
528          * next slot's offset+size makes sense and that the current's slot
529          * offset is correct.
530          */
531         for (slot = 0; slot < nritems - 1; slot++) {
532                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
533                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
534
535                 /* Make sure the keys are in the right order */
536                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
537                         CORRUPT("bad key order", leaf, root, slot);
538                         return -EIO;
539                 }
540
541                 /*
542                  * Make sure the offset and ends are right, remember that the
543                  * item data starts at the end of the leaf and grows towards the
544                  * front.
545                  */
546                 if (btrfs_item_offset_nr(leaf, slot) !=
547                         btrfs_item_end_nr(leaf, slot + 1)) {
548                         CORRUPT("slot offset bad", leaf, root, slot);
549                         return -EIO;
550                 }
551
552                 /*
553                  * Check to make sure that we don't point outside of the leaf,
554                  * just incase all the items are consistent to eachother, but
555                  * all point outside of the leaf.
556                  */
557                 if (btrfs_item_end_nr(leaf, slot) >
558                     BTRFS_LEAF_DATA_SIZE(root)) {
559                         CORRUPT("slot end outside of leaf", leaf, root, slot);
560                         return -EIO;
561                 }
562         }
563
564         return 0;
565 }
566
567 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
568                                       u64 phy_offset, struct page *page,
569                                       u64 start, u64 end, int mirror)
570 {
571         u64 found_start;
572         int found_level;
573         struct extent_buffer *eb;
574         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
575         int ret = 0;
576         int reads_done;
577
578         if (!page->private)
579                 goto out;
580
581         eb = (struct extent_buffer *)page->private;
582
583         /* the pending IO might have been the only thing that kept this buffer
584          * in memory.  Make sure we have a ref for all this other checks
585          */
586         extent_buffer_get(eb);
587
588         reads_done = atomic_dec_and_test(&eb->io_pages);
589         if (!reads_done)
590                 goto err;
591
592         eb->read_mirror = mirror;
593         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
594                 ret = -EIO;
595                 goto err;
596         }
597
598         found_start = btrfs_header_bytenr(eb);
599         if (found_start != eb->start) {
600                 printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
601                                "%llu %llu\n",
602                                found_start, eb->start);
603                 ret = -EIO;
604                 goto err;
605         }
606         if (check_tree_block_fsid(root, eb)) {
607                 printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
608                                eb->start);
609                 ret = -EIO;
610                 goto err;
611         }
612         found_level = btrfs_header_level(eb);
613         if (found_level >= BTRFS_MAX_LEVEL) {
614                 btrfs_info(root->fs_info, "bad tree block level %d",
615                            (int)btrfs_header_level(eb));
616                 ret = -EIO;
617                 goto err;
618         }
619
620         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
621                                        eb, found_level);
622
623         ret = csum_tree_block(root, eb, 1);
624         if (ret) {
625                 ret = -EIO;
626                 goto err;
627         }
628
629         /*
630          * If this is a leaf block and it is corrupt, set the corrupt bit so
631          * that we don't try and read the other copies of this block, just
632          * return -EIO.
633          */
634         if (found_level == 0 && check_leaf(root, eb)) {
635                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
636                 ret = -EIO;
637         }
638
639         if (!ret)
640                 set_extent_buffer_uptodate(eb);
641 err:
642         if (reads_done &&
643             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
644                 btree_readahead_hook(root, eb, eb->start, ret);
645
646         if (ret) {
647                 /*
648                  * our io error hook is going to dec the io pages
649                  * again, we have to make sure it has something
650                  * to decrement
651                  */
652                 atomic_inc(&eb->io_pages);
653                 clear_extent_buffer_uptodate(eb);
654         }
655         free_extent_buffer(eb);
656 out:
657         return ret;
658 }
659
660 static int btree_io_failed_hook(struct page *page, int failed_mirror)
661 {
662         struct extent_buffer *eb;
663         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
664
665         eb = (struct extent_buffer *)page->private;
666         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
667         eb->read_mirror = failed_mirror;
668         atomic_dec(&eb->io_pages);
669         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
670                 btree_readahead_hook(root, eb, eb->start, -EIO);
671         return -EIO;    /* we fixed nothing */
672 }
673
674 static void end_workqueue_bio(struct bio *bio, int err)
675 {
676         struct end_io_wq *end_io_wq = bio->bi_private;
677         struct btrfs_fs_info *fs_info;
678
679         fs_info = end_io_wq->info;
680         end_io_wq->error = err;
681         end_io_wq->work.func = end_workqueue_fn;
682         end_io_wq->work.flags = 0;
683
684         if (bio->bi_rw & REQ_WRITE) {
685                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
686                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
687                                            &end_io_wq->work);
688                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
689                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
690                                            &end_io_wq->work);
691                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
692                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
693                                            &end_io_wq->work);
694                 else
695                         btrfs_queue_worker(&fs_info->endio_write_workers,
696                                            &end_io_wq->work);
697         } else {
698                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
699                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
700                                            &end_io_wq->work);
701                 else if (end_io_wq->metadata)
702                         btrfs_queue_worker(&fs_info->endio_meta_workers,
703                                            &end_io_wq->work);
704                 else
705                         btrfs_queue_worker(&fs_info->endio_workers,
706                                            &end_io_wq->work);
707         }
708 }
709
710 /*
711  * For the metadata arg you want
712  *
713  * 0 - if data
714  * 1 - if normal metadta
715  * 2 - if writing to the free space cache area
716  * 3 - raid parity work
717  */
718 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
719                         int metadata)
720 {
721         struct end_io_wq *end_io_wq;
722         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
723         if (!end_io_wq)
724                 return -ENOMEM;
725
726         end_io_wq->private = bio->bi_private;
727         end_io_wq->end_io = bio->bi_end_io;
728         end_io_wq->info = info;
729         end_io_wq->error = 0;
730         end_io_wq->bio = bio;
731         end_io_wq->metadata = metadata;
732
733         bio->bi_private = end_io_wq;
734         bio->bi_end_io = end_workqueue_bio;
735         return 0;
736 }
737
738 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
739 {
740         unsigned long limit = min_t(unsigned long,
741                                     info->workers.max_workers,
742                                     info->fs_devices->open_devices);
743         return 256 * limit;
744 }
745
746 static void run_one_async_start(struct btrfs_work *work)
747 {
748         struct async_submit_bio *async;
749         int ret;
750
751         async = container_of(work, struct  async_submit_bio, work);
752         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
753                                       async->mirror_num, async->bio_flags,
754                                       async->bio_offset);
755         if (ret)
756                 async->error = ret;
757 }
758
759 static void run_one_async_done(struct btrfs_work *work)
760 {
761         struct btrfs_fs_info *fs_info;
762         struct async_submit_bio *async;
763         int limit;
764
765         async = container_of(work, struct  async_submit_bio, work);
766         fs_info = BTRFS_I(async->inode)->root->fs_info;
767
768         limit = btrfs_async_submit_limit(fs_info);
769         limit = limit * 2 / 3;
770
771         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
772             waitqueue_active(&fs_info->async_submit_wait))
773                 wake_up(&fs_info->async_submit_wait);
774
775         /* If an error occured we just want to clean up the bio and move on */
776         if (async->error) {
777                 bio_endio(async->bio, async->error);
778                 return;
779         }
780
781         async->submit_bio_done(async->inode, async->rw, async->bio,
782                                async->mirror_num, async->bio_flags,
783                                async->bio_offset);
784 }
785
786 static void run_one_async_free(struct btrfs_work *work)
787 {
788         struct async_submit_bio *async;
789
790         async = container_of(work, struct  async_submit_bio, work);
791         kfree(async);
792 }
793
794 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
795                         int rw, struct bio *bio, int mirror_num,
796                         unsigned long bio_flags,
797                         u64 bio_offset,
798                         extent_submit_bio_hook_t *submit_bio_start,
799                         extent_submit_bio_hook_t *submit_bio_done)
800 {
801         struct async_submit_bio *async;
802
803         async = kmalloc(sizeof(*async), GFP_NOFS);
804         if (!async)
805                 return -ENOMEM;
806
807         async->inode = inode;
808         async->rw = rw;
809         async->bio = bio;
810         async->mirror_num = mirror_num;
811         async->submit_bio_start = submit_bio_start;
812         async->submit_bio_done = submit_bio_done;
813
814         async->work.func = run_one_async_start;
815         async->work.ordered_func = run_one_async_done;
816         async->work.ordered_free = run_one_async_free;
817
818         async->work.flags = 0;
819         async->bio_flags = bio_flags;
820         async->bio_offset = bio_offset;
821
822         async->error = 0;
823
824         atomic_inc(&fs_info->nr_async_submits);
825
826         if (rw & REQ_SYNC)
827                 btrfs_set_work_high_prio(&async->work);
828
829         btrfs_queue_worker(&fs_info->workers, &async->work);
830
831         while (atomic_read(&fs_info->async_submit_draining) &&
832               atomic_read(&fs_info->nr_async_submits)) {
833                 wait_event(fs_info->async_submit_wait,
834                            (atomic_read(&fs_info->nr_async_submits) == 0));
835         }
836
837         return 0;
838 }
839
840 static int btree_csum_one_bio(struct bio *bio)
841 {
842         struct bio_vec *bvec = bio->bi_io_vec;
843         int bio_index = 0;
844         struct btrfs_root *root;
845         int ret = 0;
846
847         WARN_ON(bio->bi_vcnt <= 0);
848         while (bio_index < bio->bi_vcnt) {
849                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
850                 ret = csum_dirty_buffer(root, bvec->bv_page);
851                 if (ret)
852                         break;
853                 bio_index++;
854                 bvec++;
855         }
856         return ret;
857 }
858
859 static int __btree_submit_bio_start(struct inode *inode, int rw,
860                                     struct bio *bio, int mirror_num,
861                                     unsigned long bio_flags,
862                                     u64 bio_offset)
863 {
864         /*
865          * when we're called for a write, we're already in the async
866          * submission context.  Just jump into btrfs_map_bio
867          */
868         return btree_csum_one_bio(bio);
869 }
870
871 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
872                                  int mirror_num, unsigned long bio_flags,
873                                  u64 bio_offset)
874 {
875         int ret;
876
877         /*
878          * when we're called for a write, we're already in the async
879          * submission context.  Just jump into btrfs_map_bio
880          */
881         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
882         if (ret)
883                 bio_endio(bio, ret);
884         return ret;
885 }
886
887 static int check_async_write(struct inode *inode, unsigned long bio_flags)
888 {
889         if (bio_flags & EXTENT_BIO_TREE_LOG)
890                 return 0;
891 #ifdef CONFIG_X86
892         if (cpu_has_xmm4_2)
893                 return 0;
894 #endif
895         return 1;
896 }
897
898 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
899                                  int mirror_num, unsigned long bio_flags,
900                                  u64 bio_offset)
901 {
902         int async = check_async_write(inode, bio_flags);
903         int ret;
904
905         if (!(rw & REQ_WRITE)) {
906                 /*
907                  * called for a read, do the setup so that checksum validation
908                  * can happen in the async kernel threads
909                  */
910                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
911                                           bio, 1);
912                 if (ret)
913                         goto out_w_error;
914                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
915                                     mirror_num, 0);
916         } else if (!async) {
917                 ret = btree_csum_one_bio(bio);
918                 if (ret)
919                         goto out_w_error;
920                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
921                                     mirror_num, 0);
922         } else {
923                 /*
924                  * kthread helpers are used to submit writes so that
925                  * checksumming can happen in parallel across all CPUs
926                  */
927                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
928                                           inode, rw, bio, mirror_num, 0,
929                                           bio_offset,
930                                           __btree_submit_bio_start,
931                                           __btree_submit_bio_done);
932         }
933
934         if (ret) {
935 out_w_error:
936                 bio_endio(bio, ret);
937         }
938         return ret;
939 }
940
941 #ifdef CONFIG_MIGRATION
942 static int btree_migratepage(struct address_space *mapping,
943                         struct page *newpage, struct page *page,
944                         enum migrate_mode mode)
945 {
946         /*
947          * we can't safely write a btree page from here,
948          * we haven't done the locking hook
949          */
950         if (PageDirty(page))
951                 return -EAGAIN;
952         /*
953          * Buffers may be managed in a filesystem specific way.
954          * We must have no buffers or drop them.
955          */
956         if (page_has_private(page) &&
957             !try_to_release_page(page, GFP_KERNEL))
958                 return -EAGAIN;
959         return migrate_page(mapping, newpage, page, mode);
960 }
961 #endif
962
963
964 static int btree_writepages(struct address_space *mapping,
965                             struct writeback_control *wbc)
966 {
967         struct btrfs_fs_info *fs_info;
968         int ret;
969
970         if (wbc->sync_mode == WB_SYNC_NONE) {
971
972                 if (wbc->for_kupdate)
973                         return 0;
974
975                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
976                 /* this is a bit racy, but that's ok */
977                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
978                                              BTRFS_DIRTY_METADATA_THRESH);
979                 if (ret < 0)
980                         return 0;
981         }
982         return btree_write_cache_pages(mapping, wbc);
983 }
984
985 static int btree_readpage(struct file *file, struct page *page)
986 {
987         struct extent_io_tree *tree;
988         tree = &BTRFS_I(page->mapping->host)->io_tree;
989         return extent_read_full_page(tree, page, btree_get_extent, 0);
990 }
991
992 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
993 {
994         if (PageWriteback(page) || PageDirty(page))
995                 return 0;
996
997         return try_release_extent_buffer(page);
998 }
999
1000 static void btree_invalidatepage(struct page *page, unsigned int offset,
1001                                  unsigned int length)
1002 {
1003         struct extent_io_tree *tree;
1004         tree = &BTRFS_I(page->mapping->host)->io_tree;
1005         extent_invalidatepage(tree, page, offset);
1006         btree_releasepage(page, GFP_NOFS);
1007         if (PagePrivate(page)) {
1008                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1009                            "page private not zero on page %llu",
1010                            (unsigned long long)page_offset(page));
1011                 ClearPagePrivate(page);
1012                 set_page_private(page, 0);
1013                 page_cache_release(page);
1014         }
1015 }
1016
1017 static int btree_set_page_dirty(struct page *page)
1018 {
1019 #ifdef DEBUG
1020         struct extent_buffer *eb;
1021
1022         BUG_ON(!PagePrivate(page));
1023         eb = (struct extent_buffer *)page->private;
1024         BUG_ON(!eb);
1025         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1026         BUG_ON(!atomic_read(&eb->refs));
1027         btrfs_assert_tree_locked(eb);
1028 #endif
1029         return __set_page_dirty_nobuffers(page);
1030 }
1031
1032 static const struct address_space_operations btree_aops = {
1033         .readpage       = btree_readpage,
1034         .writepages     = btree_writepages,
1035         .releasepage    = btree_releasepage,
1036         .invalidatepage = btree_invalidatepage,
1037 #ifdef CONFIG_MIGRATION
1038         .migratepage    = btree_migratepage,
1039 #endif
1040         .set_page_dirty = btree_set_page_dirty,
1041 };
1042
1043 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1044                          u64 parent_transid)
1045 {
1046         struct extent_buffer *buf = NULL;
1047         struct inode *btree_inode = root->fs_info->btree_inode;
1048         int ret = 0;
1049
1050         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1051         if (!buf)
1052                 return 0;
1053         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1054                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1055         free_extent_buffer(buf);
1056         return ret;
1057 }
1058
1059 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1060                          int mirror_num, struct extent_buffer **eb)
1061 {
1062         struct extent_buffer *buf = NULL;
1063         struct inode *btree_inode = root->fs_info->btree_inode;
1064         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1065         int ret;
1066
1067         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1068         if (!buf)
1069                 return 0;
1070
1071         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1072
1073         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1074                                        btree_get_extent, mirror_num);
1075         if (ret) {
1076                 free_extent_buffer(buf);
1077                 return ret;
1078         }
1079
1080         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1081                 free_extent_buffer(buf);
1082                 return -EIO;
1083         } else if (extent_buffer_uptodate(buf)) {
1084                 *eb = buf;
1085         } else {
1086                 free_extent_buffer(buf);
1087         }
1088         return 0;
1089 }
1090
1091 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1092                                             u64 bytenr, u32 blocksize)
1093 {
1094         return find_extent_buffer(root->fs_info, bytenr);
1095 }
1096
1097 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1098                                                  u64 bytenr, u32 blocksize)
1099 {
1100         return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1101 }
1102
1103
1104 int btrfs_write_tree_block(struct extent_buffer *buf)
1105 {
1106         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1107                                         buf->start + buf->len - 1);
1108 }
1109
1110 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1111 {
1112         return filemap_fdatawait_range(buf->pages[0]->mapping,
1113                                        buf->start, buf->start + buf->len - 1);
1114 }
1115
1116 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1117                                       u32 blocksize, u64 parent_transid)
1118 {
1119         struct extent_buffer *buf = NULL;
1120         int ret;
1121
1122         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1123         if (!buf)
1124                 return NULL;
1125
1126         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1127         if (ret) {
1128                 free_extent_buffer(buf);
1129                 return NULL;
1130         }
1131         return buf;
1132
1133 }
1134
1135 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1136                       struct extent_buffer *buf)
1137 {
1138         struct btrfs_fs_info *fs_info = root->fs_info;
1139
1140         if (btrfs_header_generation(buf) ==
1141             fs_info->running_transaction->transid) {
1142                 btrfs_assert_tree_locked(buf);
1143
1144                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1145                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1146                                              -buf->len,
1147                                              fs_info->dirty_metadata_batch);
1148                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1149                         btrfs_set_lock_blocking(buf);
1150                         clear_extent_buffer_dirty(buf);
1151                 }
1152         }
1153 }
1154
1155 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1156                          u32 stripesize, struct btrfs_root *root,
1157                          struct btrfs_fs_info *fs_info,
1158                          u64 objectid)
1159 {
1160         root->node = NULL;
1161         root->commit_root = NULL;
1162         root->sectorsize = sectorsize;
1163         root->nodesize = nodesize;
1164         root->leafsize = leafsize;
1165         root->stripesize = stripesize;
1166         root->ref_cows = 0;
1167         root->track_dirty = 0;
1168         root->in_radix = 0;
1169         root->orphan_item_inserted = 0;
1170         root->orphan_cleanup_state = 0;
1171
1172         root->objectid = objectid;
1173         root->last_trans = 0;
1174         root->highest_objectid = 0;
1175         root->nr_delalloc_inodes = 0;
1176         root->nr_ordered_extents = 0;
1177         root->name = NULL;
1178         root->inode_tree = RB_ROOT;
1179         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1180         root->block_rsv = NULL;
1181         root->orphan_block_rsv = NULL;
1182
1183         INIT_LIST_HEAD(&root->dirty_list);
1184         INIT_LIST_HEAD(&root->root_list);
1185         INIT_LIST_HEAD(&root->delalloc_inodes);
1186         INIT_LIST_HEAD(&root->delalloc_root);
1187         INIT_LIST_HEAD(&root->ordered_extents);
1188         INIT_LIST_HEAD(&root->ordered_root);
1189         INIT_LIST_HEAD(&root->logged_list[0]);
1190         INIT_LIST_HEAD(&root->logged_list[1]);
1191         spin_lock_init(&root->orphan_lock);
1192         spin_lock_init(&root->inode_lock);
1193         spin_lock_init(&root->delalloc_lock);
1194         spin_lock_init(&root->ordered_extent_lock);
1195         spin_lock_init(&root->accounting_lock);
1196         spin_lock_init(&root->log_extents_lock[0]);
1197         spin_lock_init(&root->log_extents_lock[1]);
1198         mutex_init(&root->objectid_mutex);
1199         mutex_init(&root->log_mutex);
1200         init_waitqueue_head(&root->log_writer_wait);
1201         init_waitqueue_head(&root->log_commit_wait[0]);
1202         init_waitqueue_head(&root->log_commit_wait[1]);
1203         INIT_LIST_HEAD(&root->log_ctxs[0]);
1204         INIT_LIST_HEAD(&root->log_ctxs[1]);
1205         atomic_set(&root->log_commit[0], 0);
1206         atomic_set(&root->log_commit[1], 0);
1207         atomic_set(&root->log_writers, 0);
1208         atomic_set(&root->log_batch, 0);
1209         atomic_set(&root->orphan_inodes, 0);
1210         atomic_set(&root->refs, 1);
1211         root->log_transid = 0;
1212         root->log_transid_committed = -1;
1213         root->last_log_commit = 0;
1214         if (fs_info)
1215                 extent_io_tree_init(&root->dirty_log_pages,
1216                                      fs_info->btree_inode->i_mapping);
1217
1218         memset(&root->root_key, 0, sizeof(root->root_key));
1219         memset(&root->root_item, 0, sizeof(root->root_item));
1220         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1221         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1222         if (fs_info)
1223                 root->defrag_trans_start = fs_info->generation;
1224         else
1225                 root->defrag_trans_start = 0;
1226         init_completion(&root->kobj_unregister);
1227         root->defrag_running = 0;
1228         root->root_key.objectid = objectid;
1229         root->anon_dev = 0;
1230
1231         spin_lock_init(&root->root_item_lock);
1232 }
1233
1234 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1235 {
1236         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1237         if (root)
1238                 root->fs_info = fs_info;
1239         return root;
1240 }
1241
1242 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1243 /* Should only be used by the testing infrastructure */
1244 struct btrfs_root *btrfs_alloc_dummy_root(void)
1245 {
1246         struct btrfs_root *root;
1247
1248         root = btrfs_alloc_root(NULL);
1249         if (!root)
1250                 return ERR_PTR(-ENOMEM);
1251         __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1252         root->dummy_root = 1;
1253
1254         return root;
1255 }
1256 #endif
1257
1258 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1259                                      struct btrfs_fs_info *fs_info,
1260                                      u64 objectid)
1261 {
1262         struct extent_buffer *leaf;
1263         struct btrfs_root *tree_root = fs_info->tree_root;
1264         struct btrfs_root *root;
1265         struct btrfs_key key;
1266         int ret = 0;
1267         uuid_le uuid;
1268
1269         root = btrfs_alloc_root(fs_info);
1270         if (!root)
1271                 return ERR_PTR(-ENOMEM);
1272
1273         __setup_root(tree_root->nodesize, tree_root->leafsize,
1274                      tree_root->sectorsize, tree_root->stripesize,
1275                      root, fs_info, objectid);
1276         root->root_key.objectid = objectid;
1277         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1278         root->root_key.offset = 0;
1279
1280         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1281                                       0, objectid, NULL, 0, 0, 0);
1282         if (IS_ERR(leaf)) {
1283                 ret = PTR_ERR(leaf);
1284                 leaf = NULL;
1285                 goto fail;
1286         }
1287
1288         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1289         btrfs_set_header_bytenr(leaf, leaf->start);
1290         btrfs_set_header_generation(leaf, trans->transid);
1291         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1292         btrfs_set_header_owner(leaf, objectid);
1293         root->node = leaf;
1294
1295         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1296                             BTRFS_FSID_SIZE);
1297         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1298                             btrfs_header_chunk_tree_uuid(leaf),
1299                             BTRFS_UUID_SIZE);
1300         btrfs_mark_buffer_dirty(leaf);
1301
1302         root->commit_root = btrfs_root_node(root);
1303         root->track_dirty = 1;
1304
1305
1306         root->root_item.flags = 0;
1307         root->root_item.byte_limit = 0;
1308         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1309         btrfs_set_root_generation(&root->root_item, trans->transid);
1310         btrfs_set_root_level(&root->root_item, 0);
1311         btrfs_set_root_refs(&root->root_item, 1);
1312         btrfs_set_root_used(&root->root_item, leaf->len);
1313         btrfs_set_root_last_snapshot(&root->root_item, 0);
1314         btrfs_set_root_dirid(&root->root_item, 0);
1315         uuid_le_gen(&uuid);
1316         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1317         root->root_item.drop_level = 0;
1318
1319         key.objectid = objectid;
1320         key.type = BTRFS_ROOT_ITEM_KEY;
1321         key.offset = 0;
1322         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1323         if (ret)
1324                 goto fail;
1325
1326         btrfs_tree_unlock(leaf);
1327
1328         return root;
1329
1330 fail:
1331         if (leaf) {
1332                 btrfs_tree_unlock(leaf);
1333                 free_extent_buffer(leaf);
1334         }
1335         kfree(root);
1336
1337         return ERR_PTR(ret);
1338 }
1339
1340 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1341                                          struct btrfs_fs_info *fs_info)
1342 {
1343         struct btrfs_root *root;
1344         struct btrfs_root *tree_root = fs_info->tree_root;
1345         struct extent_buffer *leaf;
1346
1347         root = btrfs_alloc_root(fs_info);
1348         if (!root)
1349                 return ERR_PTR(-ENOMEM);
1350
1351         __setup_root(tree_root->nodesize, tree_root->leafsize,
1352                      tree_root->sectorsize, tree_root->stripesize,
1353                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1354
1355         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1356         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1357         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1358         /*
1359          * log trees do not get reference counted because they go away
1360          * before a real commit is actually done.  They do store pointers
1361          * to file data extents, and those reference counts still get
1362          * updated (along with back refs to the log tree).
1363          */
1364         root->ref_cows = 0;
1365
1366         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1367                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1368                                       0, 0, 0);
1369         if (IS_ERR(leaf)) {
1370                 kfree(root);
1371                 return ERR_CAST(leaf);
1372         }
1373
1374         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1375         btrfs_set_header_bytenr(leaf, leaf->start);
1376         btrfs_set_header_generation(leaf, trans->transid);
1377         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1378         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1379         root->node = leaf;
1380
1381         write_extent_buffer(root->node, root->fs_info->fsid,
1382                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1383         btrfs_mark_buffer_dirty(root->node);
1384         btrfs_tree_unlock(root->node);
1385         return root;
1386 }
1387
1388 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1389                              struct btrfs_fs_info *fs_info)
1390 {
1391         struct btrfs_root *log_root;
1392
1393         log_root = alloc_log_tree(trans, fs_info);
1394         if (IS_ERR(log_root))
1395                 return PTR_ERR(log_root);
1396         WARN_ON(fs_info->log_root_tree);
1397         fs_info->log_root_tree = log_root;
1398         return 0;
1399 }
1400
1401 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1402                        struct btrfs_root *root)
1403 {
1404         struct btrfs_root *log_root;
1405         struct btrfs_inode_item *inode_item;
1406
1407         log_root = alloc_log_tree(trans, root->fs_info);
1408         if (IS_ERR(log_root))
1409                 return PTR_ERR(log_root);
1410
1411         log_root->last_trans = trans->transid;
1412         log_root->root_key.offset = root->root_key.objectid;
1413
1414         inode_item = &log_root->root_item.inode;
1415         btrfs_set_stack_inode_generation(inode_item, 1);
1416         btrfs_set_stack_inode_size(inode_item, 3);
1417         btrfs_set_stack_inode_nlink(inode_item, 1);
1418         btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1419         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1420
1421         btrfs_set_root_node(&log_root->root_item, log_root->node);
1422
1423         WARN_ON(root->log_root);
1424         root->log_root = log_root;
1425         root->log_transid = 0;
1426         root->log_transid_committed = -1;
1427         root->last_log_commit = 0;
1428         return 0;
1429 }
1430
1431 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1432                                                struct btrfs_key *key)
1433 {
1434         struct btrfs_root *root;
1435         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1436         struct btrfs_path *path;
1437         u64 generation;
1438         u32 blocksize;
1439         int ret;
1440
1441         path = btrfs_alloc_path();
1442         if (!path)
1443                 return ERR_PTR(-ENOMEM);
1444
1445         root = btrfs_alloc_root(fs_info);
1446         if (!root) {
1447                 ret = -ENOMEM;
1448                 goto alloc_fail;
1449         }
1450
1451         __setup_root(tree_root->nodesize, tree_root->leafsize,
1452                      tree_root->sectorsize, tree_root->stripesize,
1453                      root, fs_info, key->objectid);
1454
1455         ret = btrfs_find_root(tree_root, key, path,
1456                               &root->root_item, &root->root_key);
1457         if (ret) {
1458                 if (ret > 0)
1459                         ret = -ENOENT;
1460                 goto find_fail;
1461         }
1462
1463         generation = btrfs_root_generation(&root->root_item);
1464         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1465         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1466                                      blocksize, generation);
1467         if (!root->node) {
1468                 ret = -ENOMEM;
1469                 goto find_fail;
1470         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1471                 ret = -EIO;
1472                 goto read_fail;
1473         }
1474         root->commit_root = btrfs_root_node(root);
1475 out:
1476         btrfs_free_path(path);
1477         return root;
1478
1479 read_fail:
1480         free_extent_buffer(root->node);
1481 find_fail:
1482         kfree(root);
1483 alloc_fail:
1484         root = ERR_PTR(ret);
1485         goto out;
1486 }
1487
1488 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1489                                       struct btrfs_key *location)
1490 {
1491         struct btrfs_root *root;
1492
1493         root = btrfs_read_tree_root(tree_root, location);
1494         if (IS_ERR(root))
1495                 return root;
1496
1497         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1498                 root->ref_cows = 1;
1499                 btrfs_check_and_init_root_item(&root->root_item);
1500         }
1501
1502         return root;
1503 }
1504
1505 int btrfs_init_fs_root(struct btrfs_root *root)
1506 {
1507         int ret;
1508
1509         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1510         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1511                                         GFP_NOFS);
1512         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1513                 ret = -ENOMEM;
1514                 goto fail;
1515         }
1516
1517         btrfs_init_free_ino_ctl(root);
1518         mutex_init(&root->fs_commit_mutex);
1519         spin_lock_init(&root->cache_lock);
1520         init_waitqueue_head(&root->cache_wait);
1521
1522         ret = get_anon_bdev(&root->anon_dev);
1523         if (ret)
1524                 goto fail;
1525         return 0;
1526 fail:
1527         kfree(root->free_ino_ctl);
1528         kfree(root->free_ino_pinned);
1529         return ret;
1530 }
1531
1532 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1533                                                u64 root_id)
1534 {
1535         struct btrfs_root *root;
1536
1537         spin_lock(&fs_info->fs_roots_radix_lock);
1538         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1539                                  (unsigned long)root_id);
1540         spin_unlock(&fs_info->fs_roots_radix_lock);
1541         return root;
1542 }
1543
1544 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1545                          struct btrfs_root *root)
1546 {
1547         int ret;
1548
1549         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1550         if (ret)
1551                 return ret;
1552
1553         spin_lock(&fs_info->fs_roots_radix_lock);
1554         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1555                                 (unsigned long)root->root_key.objectid,
1556                                 root);
1557         if (ret == 0)
1558                 root->in_radix = 1;
1559         spin_unlock(&fs_info->fs_roots_radix_lock);
1560         radix_tree_preload_end();
1561
1562         return ret;
1563 }
1564
1565 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1566                                      struct btrfs_key *location,
1567                                      bool check_ref)
1568 {
1569         struct btrfs_root *root;
1570         int ret;
1571
1572         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1573                 return fs_info->tree_root;
1574         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1575                 return fs_info->extent_root;
1576         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1577                 return fs_info->chunk_root;
1578         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1579                 return fs_info->dev_root;
1580         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1581                 return fs_info->csum_root;
1582         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1583                 return fs_info->quota_root ? fs_info->quota_root :
1584                                              ERR_PTR(-ENOENT);
1585         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1586                 return fs_info->uuid_root ? fs_info->uuid_root :
1587                                             ERR_PTR(-ENOENT);
1588 again:
1589         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1590         if (root) {
1591                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1592                         return ERR_PTR(-ENOENT);
1593                 return root;
1594         }
1595
1596         root = btrfs_read_fs_root(fs_info->tree_root, location);
1597         if (IS_ERR(root))
1598                 return root;
1599
1600         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1601                 ret = -ENOENT;
1602                 goto fail;
1603         }
1604
1605         ret = btrfs_init_fs_root(root);
1606         if (ret)
1607                 goto fail;
1608
1609         ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1610                         location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1611         if (ret < 0)
1612                 goto fail;
1613         if (ret == 0)
1614                 root->orphan_item_inserted = 1;
1615
1616         ret = btrfs_insert_fs_root(fs_info, root);
1617         if (ret) {
1618                 if (ret == -EEXIST) {
1619                         free_fs_root(root);
1620                         goto again;
1621                 }
1622                 goto fail;
1623         }
1624         return root;
1625 fail:
1626         free_fs_root(root);
1627         return ERR_PTR(ret);
1628 }
1629
1630 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1631 {
1632         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1633         int ret = 0;
1634         struct btrfs_device *device;
1635         struct backing_dev_info *bdi;
1636
1637         rcu_read_lock();
1638         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1639                 if (!device->bdev)
1640                         continue;
1641                 bdi = blk_get_backing_dev_info(device->bdev);
1642                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1643                         ret = 1;
1644                         break;
1645                 }
1646         }
1647         rcu_read_unlock();
1648         return ret;
1649 }
1650
1651 /*
1652  * If this fails, caller must call bdi_destroy() to get rid of the
1653  * bdi again.
1654  */
1655 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1656 {
1657         int err;
1658
1659         bdi->capabilities = BDI_CAP_MAP_COPY;
1660         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1661         if (err)
1662                 return err;
1663
1664         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1665         bdi->congested_fn       = btrfs_congested_fn;
1666         bdi->congested_data     = info;
1667         return 0;
1668 }
1669
1670 /*
1671  * called by the kthread helper functions to finally call the bio end_io
1672  * functions.  This is where read checksum verification actually happens
1673  */
1674 static void end_workqueue_fn(struct btrfs_work *work)
1675 {
1676         struct bio *bio;
1677         struct end_io_wq *end_io_wq;
1678         int error;
1679
1680         end_io_wq = container_of(work, struct end_io_wq, work);
1681         bio = end_io_wq->bio;
1682
1683         error = end_io_wq->error;
1684         bio->bi_private = end_io_wq->private;
1685         bio->bi_end_io = end_io_wq->end_io;
1686         kfree(end_io_wq);
1687         bio_endio(bio, error);
1688 }
1689
1690 static int cleaner_kthread(void *arg)
1691 {
1692         struct btrfs_root *root = arg;
1693         int again;
1694
1695         do {
1696                 again = 0;
1697
1698                 /* Make the cleaner go to sleep early. */
1699                 if (btrfs_need_cleaner_sleep(root))
1700                         goto sleep;
1701
1702                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1703                         goto sleep;
1704
1705                 /*
1706                  * Avoid the problem that we change the status of the fs
1707                  * during the above check and trylock.
1708                  */
1709                 if (btrfs_need_cleaner_sleep(root)) {
1710                         mutex_unlock(&root->fs_info->cleaner_mutex);
1711                         goto sleep;
1712                 }
1713
1714                 btrfs_run_delayed_iputs(root);
1715                 again = btrfs_clean_one_deleted_snapshot(root);
1716                 mutex_unlock(&root->fs_info->cleaner_mutex);
1717
1718                 /*
1719                  * The defragger has dealt with the R/O remount and umount,
1720                  * needn't do anything special here.
1721                  */
1722                 btrfs_run_defrag_inodes(root->fs_info);
1723 sleep:
1724                 if (!try_to_freeze() && !again) {
1725                         set_current_state(TASK_INTERRUPTIBLE);
1726                         if (!kthread_should_stop())
1727                                 schedule();
1728                         __set_current_state(TASK_RUNNING);
1729                 }
1730         } while (!kthread_should_stop());
1731         return 0;
1732 }
1733
1734 static int transaction_kthread(void *arg)
1735 {
1736         struct btrfs_root *root = arg;
1737         struct btrfs_trans_handle *trans;
1738         struct btrfs_transaction *cur;
1739         u64 transid;
1740         unsigned long now;
1741         unsigned long delay;
1742         bool cannot_commit;
1743
1744         do {
1745                 cannot_commit = false;
1746                 delay = HZ * root->fs_info->commit_interval;
1747                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1748
1749                 spin_lock(&root->fs_info->trans_lock);
1750                 cur = root->fs_info->running_transaction;
1751                 if (!cur) {
1752                         spin_unlock(&root->fs_info->trans_lock);
1753                         goto sleep;
1754                 }
1755
1756                 now = get_seconds();
1757                 if (cur->state < TRANS_STATE_BLOCKED &&
1758                     (now < cur->start_time ||
1759                      now - cur->start_time < root->fs_info->commit_interval)) {
1760                         spin_unlock(&root->fs_info->trans_lock);
1761                         delay = HZ * 5;
1762                         goto sleep;
1763                 }
1764                 transid = cur->transid;
1765                 spin_unlock(&root->fs_info->trans_lock);
1766
1767                 /* If the file system is aborted, this will always fail. */
1768                 trans = btrfs_attach_transaction(root);
1769                 if (IS_ERR(trans)) {
1770                         if (PTR_ERR(trans) != -ENOENT)
1771                                 cannot_commit = true;
1772                         goto sleep;
1773                 }
1774                 if (transid == trans->transid) {
1775                         btrfs_commit_transaction(trans, root);
1776                 } else {
1777                         btrfs_end_transaction(trans, root);
1778                 }
1779 sleep:
1780                 wake_up_process(root->fs_info->cleaner_kthread);
1781                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1782
1783                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1784                                       &root->fs_info->fs_state)))
1785                         btrfs_cleanup_transaction(root);
1786                 if (!try_to_freeze()) {
1787                         set_current_state(TASK_INTERRUPTIBLE);
1788                         if (!kthread_should_stop() &&
1789                             (!btrfs_transaction_blocked(root->fs_info) ||
1790                              cannot_commit))
1791                                 schedule_timeout(delay);
1792                         __set_current_state(TASK_RUNNING);
1793                 }
1794         } while (!kthread_should_stop());
1795         return 0;
1796 }
1797
1798 /*
1799  * this will find the highest generation in the array of
1800  * root backups.  The index of the highest array is returned,
1801  * or -1 if we can't find anything.
1802  *
1803  * We check to make sure the array is valid by comparing the
1804  * generation of the latest  root in the array with the generation
1805  * in the super block.  If they don't match we pitch it.
1806  */
1807 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1808 {
1809         u64 cur;
1810         int newest_index = -1;
1811         struct btrfs_root_backup *root_backup;
1812         int i;
1813
1814         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1815                 root_backup = info->super_copy->super_roots + i;
1816                 cur = btrfs_backup_tree_root_gen(root_backup);
1817                 if (cur == newest_gen)
1818                         newest_index = i;
1819         }
1820
1821         /* check to see if we actually wrapped around */
1822         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1823                 root_backup = info->super_copy->super_roots;
1824                 cur = btrfs_backup_tree_root_gen(root_backup);
1825                 if (cur == newest_gen)
1826                         newest_index = 0;
1827         }
1828         return newest_index;
1829 }
1830
1831
1832 /*
1833  * find the oldest backup so we know where to store new entries
1834  * in the backup array.  This will set the backup_root_index
1835  * field in the fs_info struct
1836  */
1837 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1838                                      u64 newest_gen)
1839 {
1840         int newest_index = -1;
1841
1842         newest_index = find_newest_super_backup(info, newest_gen);
1843         /* if there was garbage in there, just move along */
1844         if (newest_index == -1) {
1845                 info->backup_root_index = 0;
1846         } else {
1847                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1848         }
1849 }
1850
1851 /*
1852  * copy all the root pointers into the super backup array.
1853  * this will bump the backup pointer by one when it is
1854  * done
1855  */
1856 static void backup_super_roots(struct btrfs_fs_info *info)
1857 {
1858         int next_backup;
1859         struct btrfs_root_backup *root_backup;
1860         int last_backup;
1861
1862         next_backup = info->backup_root_index;
1863         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1864                 BTRFS_NUM_BACKUP_ROOTS;
1865
1866         /*
1867          * just overwrite the last backup if we're at the same generation
1868          * this happens only at umount
1869          */
1870         root_backup = info->super_for_commit->super_roots + last_backup;
1871         if (btrfs_backup_tree_root_gen(root_backup) ==
1872             btrfs_header_generation(info->tree_root->node))
1873                 next_backup = last_backup;
1874
1875         root_backup = info->super_for_commit->super_roots + next_backup;
1876
1877         /*
1878          * make sure all of our padding and empty slots get zero filled
1879          * regardless of which ones we use today
1880          */
1881         memset(root_backup, 0, sizeof(*root_backup));
1882
1883         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1884
1885         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1886         btrfs_set_backup_tree_root_gen(root_backup,
1887                                btrfs_header_generation(info->tree_root->node));
1888
1889         btrfs_set_backup_tree_root_level(root_backup,
1890                                btrfs_header_level(info->tree_root->node));
1891
1892         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1893         btrfs_set_backup_chunk_root_gen(root_backup,
1894                                btrfs_header_generation(info->chunk_root->node));
1895         btrfs_set_backup_chunk_root_level(root_backup,
1896                                btrfs_header_level(info->chunk_root->node));
1897
1898         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1899         btrfs_set_backup_extent_root_gen(root_backup,
1900                                btrfs_header_generation(info->extent_root->node));
1901         btrfs_set_backup_extent_root_level(root_backup,
1902                                btrfs_header_level(info->extent_root->node));
1903
1904         /*
1905          * we might commit during log recovery, which happens before we set
1906          * the fs_root.  Make sure it is valid before we fill it in.
1907          */
1908         if (info->fs_root && info->fs_root->node) {
1909                 btrfs_set_backup_fs_root(root_backup,
1910                                          info->fs_root->node->start);
1911                 btrfs_set_backup_fs_root_gen(root_backup,
1912                                btrfs_header_generation(info->fs_root->node));
1913                 btrfs_set_backup_fs_root_level(root_backup,
1914                                btrfs_header_level(info->fs_root->node));
1915         }
1916
1917         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1918         btrfs_set_backup_dev_root_gen(root_backup,
1919                                btrfs_header_generation(info->dev_root->node));
1920         btrfs_set_backup_dev_root_level(root_backup,
1921                                        btrfs_header_level(info->dev_root->node));
1922
1923         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1924         btrfs_set_backup_csum_root_gen(root_backup,
1925                                btrfs_header_generation(info->csum_root->node));
1926         btrfs_set_backup_csum_root_level(root_backup,
1927                                btrfs_header_level(info->csum_root->node));
1928
1929         btrfs_set_backup_total_bytes(root_backup,
1930                              btrfs_super_total_bytes(info->super_copy));
1931         btrfs_set_backup_bytes_used(root_backup,
1932                              btrfs_super_bytes_used(info->super_copy));
1933         btrfs_set_backup_num_devices(root_backup,
1934                              btrfs_super_num_devices(info->super_copy));
1935
1936         /*
1937          * if we don't copy this out to the super_copy, it won't get remembered
1938          * for the next commit
1939          */
1940         memcpy(&info->super_copy->super_roots,
1941                &info->super_for_commit->super_roots,
1942                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1943 }
1944
1945 /*
1946  * this copies info out of the root backup array and back into
1947  * the in-memory super block.  It is meant to help iterate through
1948  * the array, so you send it the number of backups you've already
1949  * tried and the last backup index you used.
1950  *
1951  * this returns -1 when it has tried all the backups
1952  */
1953 static noinline int next_root_backup(struct btrfs_fs_info *info,
1954                                      struct btrfs_super_block *super,
1955                                      int *num_backups_tried, int *backup_index)
1956 {
1957         struct btrfs_root_backup *root_backup;
1958         int newest = *backup_index;
1959
1960         if (*num_backups_tried == 0) {
1961                 u64 gen = btrfs_super_generation(super);
1962
1963                 newest = find_newest_super_backup(info, gen);
1964                 if (newest == -1)
1965                         return -1;
1966
1967                 *backup_index = newest;
1968                 *num_backups_tried = 1;
1969         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1970                 /* we've tried all the backups, all done */
1971                 return -1;
1972         } else {
1973                 /* jump to the next oldest backup */
1974                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1975                         BTRFS_NUM_BACKUP_ROOTS;
1976                 *backup_index = newest;
1977                 *num_backups_tried += 1;
1978         }
1979         root_backup = super->super_roots + newest;
1980
1981         btrfs_set_super_generation(super,
1982                                    btrfs_backup_tree_root_gen(root_backup));
1983         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1984         btrfs_set_super_root_level(super,
1985                                    btrfs_backup_tree_root_level(root_backup));
1986         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1987
1988         /*
1989          * fixme: the total bytes and num_devices need to match or we should
1990          * need a fsck
1991          */
1992         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1993         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1994         return 0;
1995 }
1996
1997 /* helper to cleanup workers */
1998 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1999 {
2000         btrfs_stop_workers(&fs_info->generic_worker);
2001         btrfs_stop_workers(&fs_info->fixup_workers);
2002         btrfs_stop_workers(&fs_info->delalloc_workers);
2003         btrfs_stop_workers(&fs_info->workers);
2004         btrfs_stop_workers(&fs_info->endio_workers);
2005         btrfs_stop_workers(&fs_info->endio_meta_workers);
2006         btrfs_stop_workers(&fs_info->endio_raid56_workers);
2007         btrfs_stop_workers(&fs_info->rmw_workers);
2008         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2009         btrfs_stop_workers(&fs_info->endio_write_workers);
2010         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2011         btrfs_stop_workers(&fs_info->submit_workers);
2012         btrfs_stop_workers(&fs_info->delayed_workers);
2013         btrfs_stop_workers(&fs_info->caching_workers);
2014         btrfs_stop_workers(&fs_info->readahead_workers);
2015         btrfs_stop_workers(&fs_info->flush_workers);
2016         btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
2017 }
2018
2019 static void free_root_extent_buffers(struct btrfs_root *root)
2020 {
2021         if (root) {
2022                 free_extent_buffer(root->node);
2023                 free_extent_buffer(root->commit_root);
2024                 root->node = NULL;
2025                 root->commit_root = NULL;
2026         }
2027 }
2028
2029 /* helper to cleanup tree roots */
2030 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2031 {
2032         free_root_extent_buffers(info->tree_root);
2033
2034         free_root_extent_buffers(info->dev_root);
2035         free_root_extent_buffers(info->extent_root);
2036         free_root_extent_buffers(info->csum_root);
2037         free_root_extent_buffers(info->quota_root);
2038         free_root_extent_buffers(info->uuid_root);
2039         if (chunk_root)
2040                 free_root_extent_buffers(info->chunk_root);
2041 }
2042
2043 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2044 {
2045         int ret;
2046         struct btrfs_root *gang[8];
2047         int i;
2048
2049         while (!list_empty(&fs_info->dead_roots)) {
2050                 gang[0] = list_entry(fs_info->dead_roots.next,
2051                                      struct btrfs_root, root_list);
2052                 list_del(&gang[0]->root_list);
2053
2054                 if (gang[0]->in_radix) {
2055                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2056                 } else {
2057                         free_extent_buffer(gang[0]->node);
2058                         free_extent_buffer(gang[0]->commit_root);
2059                         btrfs_put_fs_root(gang[0]);
2060                 }
2061         }
2062
2063         while (1) {
2064                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2065                                              (void **)gang, 0,
2066                                              ARRAY_SIZE(gang));
2067                 if (!ret)
2068                         break;
2069                 for (i = 0; i < ret; i++)
2070                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2071         }
2072
2073         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2074                 btrfs_free_log_root_tree(NULL, fs_info);
2075                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2076                                             fs_info->pinned_extents);
2077         }
2078 }
2079
2080 int open_ctree(struct super_block *sb,
2081                struct btrfs_fs_devices *fs_devices,
2082                char *options)
2083 {
2084         u32 sectorsize;
2085         u32 nodesize;
2086         u32 leafsize;
2087         u32 blocksize;
2088         u32 stripesize;
2089         u64 generation;
2090         u64 features;
2091         struct btrfs_key location;
2092         struct buffer_head *bh;
2093         struct btrfs_super_block *disk_super;
2094         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2095         struct btrfs_root *tree_root;
2096         struct btrfs_root *extent_root;
2097         struct btrfs_root *csum_root;
2098         struct btrfs_root *chunk_root;
2099         struct btrfs_root *dev_root;
2100         struct btrfs_root *quota_root;
2101         struct btrfs_root *uuid_root;
2102         struct btrfs_root *log_tree_root;
2103         int ret;
2104         int err = -EINVAL;
2105         int num_backups_tried = 0;
2106         int backup_index = 0;
2107         bool create_uuid_tree;
2108         bool check_uuid_tree;
2109
2110         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2111         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2112         if (!tree_root || !chunk_root) {
2113                 err = -ENOMEM;
2114                 goto fail;
2115         }
2116
2117         ret = init_srcu_struct(&fs_info->subvol_srcu);
2118         if (ret) {
2119                 err = ret;
2120                 goto fail;
2121         }
2122
2123         ret = setup_bdi(fs_info, &fs_info->bdi);
2124         if (ret) {
2125                 err = ret;
2126                 goto fail_srcu;
2127         }
2128
2129         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2130         if (ret) {
2131                 err = ret;
2132                 goto fail_bdi;
2133         }
2134         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2135                                         (1 + ilog2(nr_cpu_ids));
2136
2137         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2138         if (ret) {
2139                 err = ret;
2140                 goto fail_dirty_metadata_bytes;
2141         }
2142
2143         ret = percpu_counter_init(&fs_info->bio_counter, 0);
2144         if (ret) {
2145                 err = ret;
2146                 goto fail_delalloc_bytes;
2147         }
2148
2149         fs_info->btree_inode = new_inode(sb);
2150         if (!fs_info->btree_inode) {
2151                 err = -ENOMEM;
2152                 goto fail_bio_counter;
2153         }
2154
2155         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2156
2157         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2158         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2159         INIT_LIST_HEAD(&fs_info->trans_list);
2160         INIT_LIST_HEAD(&fs_info->dead_roots);
2161         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2162         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2163         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2164         spin_lock_init(&fs_info->delalloc_root_lock);
2165         spin_lock_init(&fs_info->trans_lock);
2166         spin_lock_init(&fs_info->fs_roots_radix_lock);
2167         spin_lock_init(&fs_info->delayed_iput_lock);
2168         spin_lock_init(&fs_info->defrag_inodes_lock);
2169         spin_lock_init(&fs_info->free_chunk_lock);
2170         spin_lock_init(&fs_info->tree_mod_seq_lock);
2171         spin_lock_init(&fs_info->super_lock);
2172         spin_lock_init(&fs_info->buffer_lock);
2173         rwlock_init(&fs_info->tree_mod_log_lock);
2174         mutex_init(&fs_info->reloc_mutex);
2175         seqlock_init(&fs_info->profiles_lock);
2176
2177         init_completion(&fs_info->kobj_unregister);
2178         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2179         INIT_LIST_HEAD(&fs_info->space_info);
2180         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2181         btrfs_mapping_init(&fs_info->mapping_tree);
2182         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2183                              BTRFS_BLOCK_RSV_GLOBAL);
2184         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2185                              BTRFS_BLOCK_RSV_DELALLOC);
2186         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2187         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2188         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2189         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2190                              BTRFS_BLOCK_RSV_DELOPS);
2191         atomic_set(&fs_info->nr_async_submits, 0);
2192         atomic_set(&fs_info->async_delalloc_pages, 0);
2193         atomic_set(&fs_info->async_submit_draining, 0);
2194         atomic_set(&fs_info->nr_async_bios, 0);
2195         atomic_set(&fs_info->defrag_running, 0);
2196         atomic64_set(&fs_info->tree_mod_seq, 0);
2197         fs_info->sb = sb;
2198         fs_info->max_inline = 8192 * 1024;
2199         fs_info->metadata_ratio = 0;
2200         fs_info->defrag_inodes = RB_ROOT;
2201         fs_info->free_chunk_space = 0;
2202         fs_info->tree_mod_log = RB_ROOT;
2203         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2204         fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2205         /* readahead state */
2206         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2207         spin_lock_init(&fs_info->reada_lock);
2208
2209         fs_info->thread_pool_size = min_t(unsigned long,
2210                                           num_online_cpus() + 2, 8);
2211
2212         INIT_LIST_HEAD(&fs_info->ordered_roots);
2213         spin_lock_init(&fs_info->ordered_root_lock);
2214         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2215                                         GFP_NOFS);
2216         if (!fs_info->delayed_root) {
2217                 err = -ENOMEM;
2218                 goto fail_iput;
2219         }
2220         btrfs_init_delayed_root(fs_info->delayed_root);
2221
2222         mutex_init(&fs_info->scrub_lock);
2223         atomic_set(&fs_info->scrubs_running, 0);
2224         atomic_set(&fs_info->scrub_pause_req, 0);
2225         atomic_set(&fs_info->scrubs_paused, 0);
2226         atomic_set(&fs_info->scrub_cancel_req, 0);
2227         init_waitqueue_head(&fs_info->replace_wait);
2228         init_waitqueue_head(&fs_info->scrub_pause_wait);
2229         fs_info->scrub_workers_refcnt = 0;
2230 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2231         fs_info->check_integrity_print_mask = 0;
2232 #endif
2233
2234         spin_lock_init(&fs_info->balance_lock);
2235         mutex_init(&fs_info->balance_mutex);
2236         atomic_set(&fs_info->balance_running, 0);
2237         atomic_set(&fs_info->balance_pause_req, 0);
2238         atomic_set(&fs_info->balance_cancel_req, 0);
2239         fs_info->balance_ctl = NULL;
2240         init_waitqueue_head(&fs_info->balance_wait_q);
2241
2242         sb->s_blocksize = 4096;
2243         sb->s_blocksize_bits = blksize_bits(4096);
2244         sb->s_bdi = &fs_info->bdi;
2245
2246         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2247         set_nlink(fs_info->btree_inode, 1);
2248         /*
2249          * we set the i_size on the btree inode to the max possible int.
2250          * the real end of the address space is determined by all of
2251          * the devices in the system
2252          */
2253         fs_info->btree_inode->i_size = OFFSET_MAX;
2254         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2255         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2256
2257         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2258         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2259                              fs_info->btree_inode->i_mapping);
2260         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2261         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2262
2263         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2264
2265         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2266         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2267                sizeof(struct btrfs_key));
2268         set_bit(BTRFS_INODE_DUMMY,
2269                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2270         btrfs_insert_inode_hash(fs_info->btree_inode);
2271
2272         spin_lock_init(&fs_info->block_group_cache_lock);
2273         fs_info->block_group_cache_tree = RB_ROOT;
2274         fs_info->first_logical_byte = (u64)-1;
2275
2276         extent_io_tree_init(&fs_info->freed_extents[0],
2277                              fs_info->btree_inode->i_mapping);
2278         extent_io_tree_init(&fs_info->freed_extents[1],
2279                              fs_info->btree_inode->i_mapping);
2280         fs_info->pinned_extents = &fs_info->freed_extents[0];
2281         fs_info->do_barriers = 1;
2282
2283
2284         mutex_init(&fs_info->ordered_operations_mutex);
2285         mutex_init(&fs_info->ordered_extent_flush_mutex);
2286         mutex_init(&fs_info->tree_log_mutex);
2287         mutex_init(&fs_info->chunk_mutex);
2288         mutex_init(&fs_info->transaction_kthread_mutex);
2289         mutex_init(&fs_info->cleaner_mutex);
2290         mutex_init(&fs_info->volume_mutex);
2291         init_rwsem(&fs_info->extent_commit_sem);
2292         init_rwsem(&fs_info->cleanup_work_sem);
2293         init_rwsem(&fs_info->subvol_sem);
2294         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2295         fs_info->dev_replace.lock_owner = 0;
2296         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2297         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2298         mutex_init(&fs_info->dev_replace.lock_management_lock);
2299         mutex_init(&fs_info->dev_replace.lock);
2300
2301         spin_lock_init(&fs_info->qgroup_lock);
2302         mutex_init(&fs_info->qgroup_ioctl_lock);
2303         fs_info->qgroup_tree = RB_ROOT;
2304         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2305         fs_info->qgroup_seq = 1;
2306         fs_info->quota_enabled = 0;
2307         fs_info->pending_quota_state = 0;
2308         fs_info->qgroup_ulist = NULL;
2309         mutex_init(&fs_info->qgroup_rescan_lock);
2310
2311         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2312         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2313
2314         init_waitqueue_head(&fs_info->transaction_throttle);
2315         init_waitqueue_head(&fs_info->transaction_wait);
2316         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2317         init_waitqueue_head(&fs_info->async_submit_wait);
2318
2319         ret = btrfs_alloc_stripe_hash_table(fs_info);
2320         if (ret) {
2321                 err = ret;
2322                 goto fail_alloc;
2323         }
2324
2325         __setup_root(4096, 4096, 4096, 4096, tree_root,
2326                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2327
2328         invalidate_bdev(fs_devices->latest_bdev);
2329
2330         /*
2331          * Read super block and check the signature bytes only
2332          */
2333         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2334         if (!bh) {
2335                 err = -EINVAL;
2336                 goto fail_alloc;
2337         }
2338
2339         /*
2340          * We want to check superblock checksum, the type is stored inside.
2341          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2342          */
2343         if (btrfs_check_super_csum(bh->b_data)) {
2344                 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2345                 err = -EINVAL;
2346                 goto fail_alloc;
2347         }
2348
2349         /*
2350          * super_copy is zeroed at allocation time and we never touch the
2351          * following bytes up to INFO_SIZE, the checksum is calculated from
2352          * the whole block of INFO_SIZE
2353          */
2354         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2355         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2356                sizeof(*fs_info->super_for_commit));
2357         brelse(bh);
2358
2359         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2360
2361         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2362         if (ret) {
2363                 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2364                 err = -EINVAL;
2365                 goto fail_alloc;
2366         }
2367
2368         disk_super = fs_info->super_copy;
2369         if (!btrfs_super_root(disk_super))
2370                 goto fail_alloc;
2371
2372         /* check FS state, whether FS is broken. */
2373         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2374                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2375
2376         /*
2377          * run through our array of backup supers and setup
2378          * our ring pointer to the oldest one
2379          */
2380         generation = btrfs_super_generation(disk_super);
2381         find_oldest_super_backup(fs_info, generation);
2382
2383         /*
2384          * In the long term, we'll store the compression type in the super
2385          * block, and it'll be used for per file compression control.
2386          */
2387         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2388
2389         ret = btrfs_parse_options(tree_root, options);
2390         if (ret) {
2391                 err = ret;
2392                 goto fail_alloc;
2393         }
2394
2395         features = btrfs_super_incompat_flags(disk_super) &
2396                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2397         if (features) {
2398                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2399                        "unsupported optional features (%Lx).\n",
2400                        features);
2401                 err = -EINVAL;
2402                 goto fail_alloc;
2403         }
2404
2405         if (btrfs_super_leafsize(disk_super) !=
2406             btrfs_super_nodesize(disk_super)) {
2407                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2408                        "blocksizes don't match.  node %d leaf %d\n",
2409                        btrfs_super_nodesize(disk_super),
2410                        btrfs_super_leafsize(disk_super));
2411                 err = -EINVAL;
2412                 goto fail_alloc;
2413         }
2414         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2415                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2416                        "blocksize (%d) was too large\n",
2417                        btrfs_super_leafsize(disk_super));
2418                 err = -EINVAL;
2419                 goto fail_alloc;
2420         }
2421
2422         features = btrfs_super_incompat_flags(disk_super);
2423         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2424         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2425                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2426
2427         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2428                 printk(KERN_ERR "BTRFS: has skinny extents\n");
2429
2430         /*
2431          * flag our filesystem as having big metadata blocks if
2432          * they are bigger than the page size
2433          */
2434         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2435                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2436                         printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2437                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2438         }
2439
2440         nodesize = btrfs_super_nodesize(disk_super);
2441         leafsize = btrfs_super_leafsize(disk_super);
2442         sectorsize = btrfs_super_sectorsize(disk_super);
2443         stripesize = btrfs_super_stripesize(disk_super);
2444         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2445         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2446
2447         /*
2448          * mixed block groups end up with duplicate but slightly offset
2449          * extent buffers for the same range.  It leads to corruptions
2450          */
2451         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2452             (sectorsize != leafsize)) {
2453                 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2454                                 "are not allowed for mixed block groups on %s\n",
2455                                 sb->s_id);
2456                 goto fail_alloc;
2457         }
2458
2459         /*
2460          * Needn't use the lock because there is no other task which will
2461          * update the flag.
2462          */
2463         btrfs_set_super_incompat_flags(disk_super, features);
2464
2465         features = btrfs_super_compat_ro_flags(disk_super) &
2466                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2467         if (!(sb->s_flags & MS_RDONLY) && features) {
2468                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2469                        "unsupported option features (%Lx).\n",
2470                        features);
2471                 err = -EINVAL;
2472                 goto fail_alloc;
2473         }
2474
2475         btrfs_init_workers(&fs_info->generic_worker,
2476                            "genwork", 1, NULL);
2477
2478         btrfs_init_workers(&fs_info->workers, "worker",
2479                            fs_info->thread_pool_size,
2480                            &fs_info->generic_worker);
2481
2482         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2483                            fs_info->thread_pool_size, NULL);
2484
2485         btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2486                            fs_info->thread_pool_size, NULL);
2487
2488         btrfs_init_workers(&fs_info->submit_workers, "submit",
2489                            min_t(u64, fs_devices->num_devices,
2490                            fs_info->thread_pool_size), NULL);
2491
2492         btrfs_init_workers(&fs_info->caching_workers, "cache",
2493                            fs_info->thread_pool_size, NULL);
2494
2495         /* a higher idle thresh on the submit workers makes it much more
2496          * likely that bios will be send down in a sane order to the
2497          * devices
2498          */
2499         fs_info->submit_workers.idle_thresh = 64;
2500
2501         fs_info->workers.idle_thresh = 16;
2502         fs_info->workers.ordered = 1;
2503
2504         fs_info->delalloc_workers.idle_thresh = 2;
2505         fs_info->delalloc_workers.ordered = 1;
2506
2507         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2508                            &fs_info->generic_worker);
2509         btrfs_init_workers(&fs_info->endio_workers, "endio",
2510                            fs_info->thread_pool_size,
2511                            &fs_info->generic_worker);
2512         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2513                            fs_info->thread_pool_size,
2514                            &fs_info->generic_worker);
2515         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2516                            "endio-meta-write", fs_info->thread_pool_size,
2517                            &fs_info->generic_worker);
2518         btrfs_init_workers(&fs_info->endio_raid56_workers,
2519                            "endio-raid56", fs_info->thread_pool_size,
2520                            &fs_info->generic_worker);
2521         btrfs_init_workers(&fs_info->rmw_workers,
2522                            "rmw", fs_info->thread_pool_size,
2523                            &fs_info->generic_worker);
2524         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2525                            fs_info->thread_pool_size,
2526                            &fs_info->generic_worker);
2527         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2528                            1, &fs_info->generic_worker);
2529         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2530                            fs_info->thread_pool_size,
2531                            &fs_info->generic_worker);
2532         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2533                            fs_info->thread_pool_size,
2534                            &fs_info->generic_worker);
2535         btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2536                            &fs_info->generic_worker);
2537
2538         /*
2539          * endios are largely parallel and should have a very
2540          * low idle thresh
2541          */
2542         fs_info->endio_workers.idle_thresh = 4;
2543         fs_info->endio_meta_workers.idle_thresh = 4;
2544         fs_info->endio_raid56_workers.idle_thresh = 4;
2545         fs_info->rmw_workers.idle_thresh = 2;
2546
2547         fs_info->endio_write_workers.idle_thresh = 2;
2548         fs_info->endio_meta_write_workers.idle_thresh = 2;
2549         fs_info->readahead_workers.idle_thresh = 2;
2550
2551         /*
2552          * btrfs_start_workers can really only fail because of ENOMEM so just
2553          * return -ENOMEM if any of these fail.
2554          */
2555         ret = btrfs_start_workers(&fs_info->workers);
2556         ret |= btrfs_start_workers(&fs_info->generic_worker);
2557         ret |= btrfs_start_workers(&fs_info->submit_workers);
2558         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2559         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2560         ret |= btrfs_start_workers(&fs_info->endio_workers);
2561         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2562         ret |= btrfs_start_workers(&fs_info->rmw_workers);
2563         ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2564         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2565         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2566         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2567         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2568         ret |= btrfs_start_workers(&fs_info->caching_workers);
2569         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2570         ret |= btrfs_start_workers(&fs_info->flush_workers);
2571         ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2572         if (ret) {
2573                 err = -ENOMEM;
2574                 goto fail_sb_buffer;
2575         }
2576
2577         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2578         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2579                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2580
2581         tree_root->nodesize = nodesize;
2582         tree_root->leafsize = leafsize;
2583         tree_root->sectorsize = sectorsize;
2584         tree_root->stripesize = stripesize;
2585
2586         sb->s_blocksize = sectorsize;
2587         sb->s_blocksize_bits = blksize_bits(sectorsize);
2588
2589         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2590                 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2591                 goto fail_sb_buffer;
2592         }
2593
2594         if (sectorsize != PAGE_SIZE) {
2595                 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2596                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2597                 goto fail_sb_buffer;
2598         }
2599
2600         mutex_lock(&fs_info->chunk_mutex);
2601         ret = btrfs_read_sys_array(tree_root);
2602         mutex_unlock(&fs_info->chunk_mutex);
2603         if (ret) {
2604                 printk(KERN_WARNING "BTRFS: failed to read the system "
2605                        "array on %s\n", sb->s_id);
2606                 goto fail_sb_buffer;
2607         }
2608
2609         blocksize = btrfs_level_size(tree_root,
2610                                      btrfs_super_chunk_root_level(disk_super));
2611         generation = btrfs_super_chunk_root_generation(disk_super);
2612
2613         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2614                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2615
2616         chunk_root->node = read_tree_block(chunk_root,
2617                                            btrfs_super_chunk_root(disk_super),
2618                                            blocksize, generation);
2619         if (!chunk_root->node ||
2620             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2621                 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2622                        sb->s_id);
2623                 goto fail_tree_roots;
2624         }
2625         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2626         chunk_root->commit_root = btrfs_root_node(chunk_root);
2627
2628         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2629            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2630
2631         ret = btrfs_read_chunk_tree(chunk_root);
2632         if (ret) {
2633                 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2634                        sb->s_id);
2635                 goto fail_tree_roots;
2636         }
2637
2638         /*
2639          * keep the device that is marked to be the target device for the
2640          * dev_replace procedure
2641          */
2642         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2643
2644         if (!fs_devices->latest_bdev) {
2645                 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2646                        sb->s_id);
2647                 goto fail_tree_roots;
2648         }
2649
2650 retry_root_backup:
2651         blocksize = btrfs_level_size(tree_root,
2652                                      btrfs_super_root_level(disk_super));
2653         generation = btrfs_super_generation(disk_super);
2654
2655         tree_root->node = read_tree_block(tree_root,
2656                                           btrfs_super_root(disk_super),
2657                                           blocksize, generation);
2658         if (!tree_root->node ||
2659             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2660                 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2661                        sb->s_id);
2662
2663                 goto recovery_tree_root;
2664         }
2665
2666         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2667         tree_root->commit_root = btrfs_root_node(tree_root);
2668         btrfs_set_root_refs(&tree_root->root_item, 1);
2669
2670         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2671         location.type = BTRFS_ROOT_ITEM_KEY;
2672         location.offset = 0;
2673
2674         extent_root = btrfs_read_tree_root(tree_root, &location);
2675         if (IS_ERR(extent_root)) {
2676                 ret = PTR_ERR(extent_root);
2677                 goto recovery_tree_root;
2678         }
2679         extent_root->track_dirty = 1;
2680         fs_info->extent_root = extent_root;
2681
2682         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2683         dev_root = btrfs_read_tree_root(tree_root, &location);
2684         if (IS_ERR(dev_root)) {
2685                 ret = PTR_ERR(dev_root);
2686                 goto recovery_tree_root;
2687         }
2688         dev_root->track_dirty = 1;
2689         fs_info->dev_root = dev_root;
2690         btrfs_init_devices_late(fs_info);
2691
2692         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2693         csum_root = btrfs_read_tree_root(tree_root, &location);
2694         if (IS_ERR(csum_root)) {
2695                 ret = PTR_ERR(csum_root);
2696                 goto recovery_tree_root;
2697         }
2698         csum_root->track_dirty = 1;
2699         fs_info->csum_root = csum_root;
2700
2701         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2702         quota_root = btrfs_read_tree_root(tree_root, &location);
2703         if (!IS_ERR(quota_root)) {
2704                 quota_root->track_dirty = 1;
2705                 fs_info->quota_enabled = 1;
2706                 fs_info->pending_quota_state = 1;
2707                 fs_info->quota_root = quota_root;
2708         }
2709
2710         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2711         uuid_root = btrfs_read_tree_root(tree_root, &location);
2712         if (IS_ERR(uuid_root)) {
2713                 ret = PTR_ERR(uuid_root);
2714                 if (ret != -ENOENT)
2715                         goto recovery_tree_root;
2716                 create_uuid_tree = true;
2717                 check_uuid_tree = false;
2718         } else {
2719                 uuid_root->track_dirty = 1;
2720                 fs_info->uuid_root = uuid_root;
2721                 create_uuid_tree = false;
2722                 check_uuid_tree =
2723                     generation != btrfs_super_uuid_tree_generation(disk_super);
2724         }
2725
2726         fs_info->generation = generation;
2727         fs_info->last_trans_committed = generation;
2728
2729         ret = btrfs_recover_balance(fs_info);
2730         if (ret) {
2731                 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2732                 goto fail_block_groups;
2733         }
2734
2735         ret = btrfs_init_dev_stats(fs_info);
2736         if (ret) {
2737                 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2738                        ret);
2739                 goto fail_block_groups;
2740         }
2741
2742         ret = btrfs_init_dev_replace(fs_info);
2743         if (ret) {
2744                 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2745                 goto fail_block_groups;
2746         }
2747
2748         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2749
2750         ret = btrfs_sysfs_add_one(fs_info);
2751         if (ret) {
2752                 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2753                 goto fail_block_groups;
2754         }
2755
2756         ret = btrfs_init_space_info(fs_info);
2757         if (ret) {
2758                 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2759                 goto fail_sysfs;
2760         }
2761
2762         ret = btrfs_read_block_groups(extent_root);
2763         if (ret) {
2764                 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2765                 goto fail_sysfs;
2766         }
2767         fs_info->num_tolerated_disk_barrier_failures =
2768                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2769         if (fs_info->fs_devices->missing_devices >
2770              fs_info->num_tolerated_disk_barrier_failures &&
2771             !(sb->s_flags & MS_RDONLY)) {
2772                 printk(KERN_WARNING "BTRFS: "
2773                         "too many missing devices, writeable mount is not allowed\n");
2774                 goto fail_sysfs;
2775         }
2776
2777         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2778                                                "btrfs-cleaner");
2779         if (IS_ERR(fs_info->cleaner_kthread))
2780                 goto fail_sysfs;
2781
2782         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2783                                                    tree_root,
2784                                                    "btrfs-transaction");
2785         if (IS_ERR(fs_info->transaction_kthread))
2786                 goto fail_cleaner;
2787
2788         if (!btrfs_test_opt(tree_root, SSD) &&
2789             !btrfs_test_opt(tree_root, NOSSD) &&
2790             !fs_info->fs_devices->rotating) {
2791                 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2792                        "mode\n");
2793                 btrfs_set_opt(fs_info->mount_opt, SSD);
2794         }
2795
2796         /* Set the real inode map cache flag */
2797         if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2798                 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2799
2800 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2801         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2802                 ret = btrfsic_mount(tree_root, fs_devices,
2803                                     btrfs_test_opt(tree_root,
2804                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2805                                     1 : 0,
2806                                     fs_info->check_integrity_print_mask);
2807                 if (ret)
2808                         printk(KERN_WARNING "BTRFS: failed to initialize"
2809                                " integrity check module %s\n", sb->s_id);
2810         }
2811 #endif
2812         ret = btrfs_read_qgroup_config(fs_info);
2813         if (ret)
2814                 goto fail_trans_kthread;
2815
2816         /* do not make disk changes in broken FS */
2817         if (btrfs_super_log_root(disk_super) != 0) {
2818                 u64 bytenr = btrfs_super_log_root(disk_super);
2819
2820                 if (fs_devices->rw_devices == 0) {
2821                         printk(KERN_WARNING "BTRFS: log replay required "
2822                                "on RO media\n");
2823                         err = -EIO;
2824                         goto fail_qgroup;
2825                 }
2826                 blocksize =
2827                      btrfs_level_size(tree_root,
2828                                       btrfs_super_log_root_level(disk_super));
2829
2830                 log_tree_root = btrfs_alloc_root(fs_info);
2831                 if (!log_tree_root) {
2832                         err = -ENOMEM;
2833                         goto fail_qgroup;
2834                 }
2835
2836                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2837                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2838
2839                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2840                                                       blocksize,
2841                                                       generation + 1);
2842                 if (!log_tree_root->node ||
2843                     !extent_buffer_uptodate(log_tree_root->node)) {
2844                         printk(KERN_ERR "BTRFS: failed to read log tree\n");
2845                         free_extent_buffer(log_tree_root->node);
2846                         kfree(log_tree_root);
2847                         goto fail_trans_kthread;
2848                 }
2849                 /* returns with log_tree_root freed on success */
2850                 ret = btrfs_recover_log_trees(log_tree_root);
2851                 if (ret) {
2852                         btrfs_error(tree_root->fs_info, ret,
2853                                     "Failed to recover log tree");
2854                         free_extent_buffer(log_tree_root->node);
2855                         kfree(log_tree_root);
2856                         goto fail_trans_kthread;
2857                 }
2858
2859                 if (sb->s_flags & MS_RDONLY) {
2860                         ret = btrfs_commit_super(tree_root);
2861                         if (ret)
2862                                 goto fail_trans_kthread;
2863                 }
2864         }
2865
2866         ret = btrfs_find_orphan_roots(tree_root);
2867         if (ret)
2868                 goto fail_trans_kthread;
2869
2870         if (!(sb->s_flags & MS_RDONLY)) {
2871                 ret = btrfs_cleanup_fs_roots(fs_info);
2872                 if (ret)
2873                         goto fail_trans_kthread;
2874
2875                 ret = btrfs_recover_relocation(tree_root);
2876                 if (ret < 0) {
2877                         printk(KERN_WARNING
2878                                "BTRFS: failed to recover relocation\n");
2879                         err = -EINVAL;
2880                         goto fail_qgroup;
2881                 }
2882         }
2883
2884         location.objectid = BTRFS_FS_TREE_OBJECTID;
2885         location.type = BTRFS_ROOT_ITEM_KEY;
2886         location.offset = 0;
2887
2888         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2889         if (IS_ERR(fs_info->fs_root)) {
2890                 err = PTR_ERR(fs_info->fs_root);
2891                 goto fail_qgroup;
2892         }
2893
2894         if (sb->s_flags & MS_RDONLY)
2895                 return 0;
2896
2897         down_read(&fs_info->cleanup_work_sem);
2898         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2899             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2900                 up_read(&fs_info->cleanup_work_sem);
2901                 close_ctree(tree_root);
2902                 return ret;
2903         }
2904         up_read(&fs_info->cleanup_work_sem);
2905
2906         ret = btrfs_resume_balance_async(fs_info);
2907         if (ret) {
2908                 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2909                 close_ctree(tree_root);
2910                 return ret;
2911         }
2912
2913         ret = btrfs_resume_dev_replace_async(fs_info);
2914         if (ret) {
2915                 pr_warn("BTRFS: failed to resume dev_replace\n");
2916                 close_ctree(tree_root);
2917                 return ret;
2918         }
2919
2920         btrfs_qgroup_rescan_resume(fs_info);
2921
2922         if (create_uuid_tree) {
2923                 pr_info("BTRFS: creating UUID tree\n");
2924                 ret = btrfs_create_uuid_tree(fs_info);
2925                 if (ret) {
2926                         pr_warn("BTRFS: failed to create the UUID tree %d\n",
2927                                 ret);
2928                         close_ctree(tree_root);
2929                         return ret;
2930                 }
2931         } else if (check_uuid_tree ||
2932                    btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2933                 pr_info("BTRFS: checking UUID tree\n");
2934                 ret = btrfs_check_uuid_tree(fs_info);
2935                 if (ret) {
2936                         pr_warn("BTRFS: failed to check the UUID tree %d\n",
2937                                 ret);
2938                         close_ctree(tree_root);
2939                         return ret;
2940                 }
2941         } else {
2942                 fs_info->update_uuid_tree_gen = 1;
2943         }
2944
2945         return 0;
2946
2947 fail_qgroup:
2948         btrfs_free_qgroup_config(fs_info);
2949 fail_trans_kthread:
2950         kthread_stop(fs_info->transaction_kthread);
2951         btrfs_cleanup_transaction(fs_info->tree_root);
2952         del_fs_roots(fs_info);
2953 fail_cleaner:
2954         kthread_stop(fs_info->cleaner_kthread);
2955
2956         /*
2957          * make sure we're done with the btree inode before we stop our
2958          * kthreads
2959          */
2960         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2961
2962 fail_sysfs:
2963         btrfs_sysfs_remove_one(fs_info);
2964
2965 fail_block_groups:
2966         btrfs_put_block_group_cache(fs_info);
2967         btrfs_free_block_groups(fs_info);
2968
2969 fail_tree_roots:
2970         free_root_pointers(fs_info, 1);
2971         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2972
2973 fail_sb_buffer:
2974         btrfs_stop_all_workers(fs_info);
2975 fail_alloc:
2976 fail_iput:
2977         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2978
2979         iput(fs_info->btree_inode);
2980 fail_bio_counter:
2981         percpu_counter_destroy(&fs_info->bio_counter);
2982 fail_delalloc_bytes:
2983         percpu_counter_destroy(&fs_info->delalloc_bytes);
2984 fail_dirty_metadata_bytes:
2985         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2986 fail_bdi:
2987         bdi_destroy(&fs_info->bdi);
2988 fail_srcu:
2989         cleanup_srcu_struct(&fs_info->subvol_srcu);
2990 fail:
2991         btrfs_free_stripe_hash_table(fs_info);
2992         btrfs_close_devices(fs_info->fs_devices);
2993         return err;
2994
2995 recovery_tree_root:
2996         if (!btrfs_test_opt(tree_root, RECOVERY))
2997                 goto fail_tree_roots;
2998
2999         free_root_pointers(fs_info, 0);
3000
3001         /* don't use the log in recovery mode, it won't be valid */
3002         btrfs_set_super_log_root(disk_super, 0);
3003
3004         /* we can't trust the free space cache either */
3005         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3006
3007         ret = next_root_backup(fs_info, fs_info->super_copy,
3008                                &num_backups_tried, &backup_index);
3009         if (ret == -1)
3010                 goto fail_block_groups;
3011         goto retry_root_backup;
3012 }
3013
3014 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3015 {
3016         if (uptodate) {
3017                 set_buffer_uptodate(bh);
3018         } else {
3019                 struct btrfs_device *device = (struct btrfs_device *)
3020                         bh->b_private;
3021
3022                 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3023                                           "I/O error on %s\n",
3024                                           rcu_str_deref(device->name));
3025                 /* note, we dont' set_buffer_write_io_error because we have
3026                  * our own ways of dealing with the IO errors
3027                  */
3028                 clear_buffer_uptodate(bh);
3029                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3030         }
3031         unlock_buffer(bh);
3032         put_bh(bh);
3033 }
3034
3035 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3036 {
3037         struct buffer_head *bh;
3038         struct buffer_head *latest = NULL;
3039         struct btrfs_super_block *super;
3040         int i;
3041         u64 transid = 0;
3042         u64 bytenr;
3043
3044         /* we would like to check all the supers, but that would make
3045          * a btrfs mount succeed after a mkfs from a different FS.
3046          * So, we need to add a special mount option to scan for
3047          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3048          */
3049         for (i = 0; i < 1; i++) {
3050                 bytenr = btrfs_sb_offset(i);
3051                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3052                                         i_size_read(bdev->bd_inode))
3053                         break;
3054                 bh = __bread(bdev, bytenr / 4096,
3055                                         BTRFS_SUPER_INFO_SIZE);
3056                 if (!bh)
3057                         continue;
3058
3059                 super = (struct btrfs_super_block *)bh->b_data;
3060                 if (btrfs_super_bytenr(super) != bytenr ||
3061                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3062                         brelse(bh);
3063                         continue;
3064                 }
3065
3066                 if (!latest || btrfs_super_generation(super) > transid) {
3067                         brelse(latest);
3068                         latest = bh;
3069                         transid = btrfs_super_generation(super);
3070                 } else {
3071                         brelse(bh);
3072                 }
3073         }
3074         return latest;
3075 }
3076
3077 /*
3078  * this should be called twice, once with wait == 0 and
3079  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3080  * we write are pinned.
3081  *
3082  * They are released when wait == 1 is done.
3083  * max_mirrors must be the same for both runs, and it indicates how
3084  * many supers on this one device should be written.
3085  *
3086  * max_mirrors == 0 means to write them all.
3087  */
3088 static int write_dev_supers(struct btrfs_device *device,
3089                             struct btrfs_super_block *sb,
3090                             int do_barriers, int wait, int max_mirrors)
3091 {
3092         struct buffer_head *bh;
3093         int i;
3094         int ret;
3095         int errors = 0;
3096         u32 crc;
3097         u64 bytenr;
3098
3099         if (max_mirrors == 0)
3100                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3101
3102         for (i = 0; i < max_mirrors; i++) {
3103                 bytenr = btrfs_sb_offset(i);
3104                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3105                         break;
3106
3107                 if (wait) {
3108                         bh = __find_get_block(device->bdev, bytenr / 4096,
3109                                               BTRFS_SUPER_INFO_SIZE);
3110                         if (!bh) {
3111                                 errors++;
3112                                 continue;
3113                         }
3114                         wait_on_buffer(bh);
3115                         if (!buffer_uptodate(bh))
3116                                 errors++;
3117
3118                         /* drop our reference */
3119                         brelse(bh);
3120
3121                         /* drop the reference from the wait == 0 run */
3122                         brelse(bh);
3123                         continue;
3124                 } else {
3125                         btrfs_set_super_bytenr(sb, bytenr);
3126
3127                         crc = ~(u32)0;
3128                         crc = btrfs_csum_data((char *)sb +
3129                                               BTRFS_CSUM_SIZE, crc,
3130                                               BTRFS_SUPER_INFO_SIZE -
3131                                               BTRFS_CSUM_SIZE);
3132                         btrfs_csum_final(crc, sb->csum);
3133
3134                         /*
3135                          * one reference for us, and we leave it for the
3136                          * caller
3137                          */
3138                         bh = __getblk(device->bdev, bytenr / 4096,
3139                                       BTRFS_SUPER_INFO_SIZE);
3140                         if (!bh) {
3141                                 printk(KERN_ERR "BTRFS: couldn't get super "
3142                                        "buffer head for bytenr %Lu\n", bytenr);
3143                                 errors++;
3144                                 continue;
3145                         }
3146
3147                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3148
3149                         /* one reference for submit_bh */
3150                         get_bh(bh);
3151
3152                         set_buffer_uptodate(bh);
3153                         lock_buffer(bh);
3154                         bh->b_end_io = btrfs_end_buffer_write_sync;
3155                         bh->b_private = device;
3156                 }
3157
3158                 /*
3159                  * we fua the first super.  The others we allow
3160                  * to go down lazy.
3161                  */
3162                 if (i == 0)
3163                         ret = btrfsic_submit_bh(WRITE_FUA, bh);
3164                 else
3165                         ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3166                 if (ret)
3167                         errors++;
3168         }
3169         return errors < i ? 0 : -1;
3170 }
3171
3172 /*
3173  * endio for the write_dev_flush, this will wake anyone waiting
3174  * for the barrier when it is done
3175  */
3176 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3177 {
3178         if (err) {
3179                 if (err == -EOPNOTSUPP)
3180                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3181                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3182         }
3183         if (bio->bi_private)
3184                 complete(bio->bi_private);
3185         bio_put(bio);
3186 }
3187
3188 /*
3189  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3190  * sent down.  With wait == 1, it waits for the previous flush.
3191  *
3192  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3193  * capable
3194  */
3195 static int write_dev_flush(struct btrfs_device *device, int wait)
3196 {
3197         struct bio *bio;
3198         int ret = 0;
3199
3200         if (device->nobarriers)
3201                 return 0;
3202
3203         if (wait) {
3204                 bio = device->flush_bio;
3205                 if (!bio)
3206                         return 0;
3207
3208                 wait_for_completion(&device->flush_wait);
3209
3210                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3211                         printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3212                                       rcu_str_deref(device->name));
3213                         device->nobarriers = 1;
3214                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3215                         ret = -EIO;
3216                         btrfs_dev_stat_inc_and_print(device,
3217                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3218                 }
3219
3220                 /* drop the reference from the wait == 0 run */
3221                 bio_put(bio);
3222                 device->flush_bio = NULL;
3223
3224                 return ret;
3225         }
3226
3227         /*
3228          * one reference for us, and we leave it for the
3229          * caller
3230          */
3231         device->flush_bio = NULL;
3232         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3233         if (!bio)
3234                 return -ENOMEM;
3235
3236         bio->bi_end_io = btrfs_end_empty_barrier;
3237         bio->bi_bdev = device->bdev;
3238         init_completion(&device->flush_wait);
3239         bio->bi_private = &device->flush_wait;
3240         device->flush_bio = bio;
3241
3242         bio_get(bio);
3243         btrfsic_submit_bio(WRITE_FLUSH, bio);
3244
3245         return 0;
3246 }
3247
3248 /*
3249  * send an empty flush down to each device in parallel,
3250  * then wait for them
3251  */
3252 static int barrier_all_devices(struct btrfs_fs_info *info)
3253 {
3254         struct list_head *head;
3255         struct btrfs_device *dev;
3256         int errors_send = 0;
3257         int errors_wait = 0;
3258         int ret;
3259
3260         /* send down all the barriers */
3261         head = &info->fs_devices->devices;
3262         list_for_each_entry_rcu(dev, head, dev_list) {
3263                 if (dev->missing)
3264                         continue;
3265                 if (!dev->bdev) {
3266                         errors_send++;
3267                         continue;
3268                 }
3269                 if (!dev->in_fs_metadata || !dev->writeable)
3270                         continue;
3271
3272                 ret = write_dev_flush(dev, 0);
3273                 if (ret)
3274                         errors_send++;
3275         }
3276
3277         /* wait for all the barriers */
3278         list_for_each_entry_rcu(dev, head, dev_list) {
3279                 if (dev->missing)
3280                         continue;
3281                 if (!dev->bdev) {
3282                         errors_wait++;
3283                         continue;
3284                 }
3285                 if (!dev->in_fs_metadata || !dev->writeable)
3286                         continue;
3287
3288                 ret = write_dev_flush(dev, 1);
3289                 if (ret)
3290                         errors_wait++;
3291         }
3292         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3293             errors_wait > info->num_tolerated_disk_barrier_failures)
3294                 return -EIO;
3295         return 0;
3296 }
3297
3298 int btrfs_calc_num_tolerated_disk_barrier_failures(
3299         struct btrfs_fs_info *fs_info)
3300 {
3301         struct btrfs_ioctl_space_info space;
3302         struct btrfs_space_info *sinfo;
3303         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3304                        BTRFS_BLOCK_GROUP_SYSTEM,
3305                        BTRFS_BLOCK_GROUP_METADATA,
3306                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3307         int num_types = 4;
3308         int i;
3309         int c;
3310         int num_tolerated_disk_barrier_failures =
3311                 (int)fs_info->fs_devices->num_devices;
3312
3313         for (i = 0; i < num_types; i++) {
3314                 struct btrfs_space_info *tmp;
3315
3316                 sinfo = NULL;
3317                 rcu_read_lock();
3318                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3319                         if (tmp->flags == types[i]) {
3320                                 sinfo = tmp;
3321                                 break;
3322                         }
3323                 }
3324                 rcu_read_unlock();
3325
3326                 if (!sinfo)
3327                         continue;
3328
3329                 down_read(&sinfo->groups_sem);
3330                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3331                         if (!list_empty(&sinfo->block_groups[c])) {
3332                                 u64 flags;
3333
3334                                 btrfs_get_block_group_info(
3335                                         &sinfo->block_groups[c], &space);
3336                                 if (space.total_bytes == 0 ||
3337                                     space.used_bytes == 0)
3338                                         continue;
3339                                 flags = space.flags;
3340                                 /*
3341                                  * return
3342                                  * 0: if dup, single or RAID0 is configured for
3343                                  *    any of metadata, system or data, else
3344                                  * 1: if RAID5 is configured, or if RAID1 or
3345                                  *    RAID10 is configured and only two mirrors
3346                                  *    are used, else
3347                                  * 2: if RAID6 is configured, else
3348                                  * num_mirrors - 1: if RAID1 or RAID10 is
3349                                  *                  configured and more than
3350                                  *                  2 mirrors are used.
3351                                  */
3352                                 if (num_tolerated_disk_barrier_failures > 0 &&
3353                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3354                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3355                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3356                                       == 0)))
3357                                         num_tolerated_disk_barrier_failures = 0;
3358                                 else if (num_tolerated_disk_barrier_failures > 1) {
3359                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3360                                             BTRFS_BLOCK_GROUP_RAID5 |
3361                                             BTRFS_BLOCK_GROUP_RAID10)) {
3362                                                 num_tolerated_disk_barrier_failures = 1;
3363                                         } else if (flags &
3364                                                    BTRFS_BLOCK_GROUP_RAID6) {
3365                                                 num_tolerated_disk_barrier_failures = 2;
3366                                         }
3367                                 }
3368                         }
3369                 }
3370                 up_read(&sinfo->groups_sem);
3371         }
3372
3373         return num_tolerated_disk_barrier_failures;
3374 }
3375
3376 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3377 {
3378         struct list_head *head;
3379         struct btrfs_device *dev;
3380         struct btrfs_super_block *sb;
3381         struct btrfs_dev_item *dev_item;
3382         int ret;
3383         int do_barriers;
3384         int max_errors;
3385         int total_errors = 0;
3386         u64 flags;
3387
3388         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3389         backup_super_roots(root->fs_info);
3390
3391         sb = root->fs_info->super_for_commit;
3392         dev_item = &sb->dev_item;
3393
3394         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3395         head = &root->fs_info->fs_devices->devices;
3396         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3397
3398         if (do_barriers) {
3399                 ret = barrier_all_devices(root->fs_info);
3400                 if (ret) {
3401                         mutex_unlock(
3402                                 &root->fs_info->fs_devices->device_list_mutex);
3403                         btrfs_error(root->fs_info, ret,
3404                                     "errors while submitting device barriers.");
3405                         return ret;
3406                 }
3407         }
3408
3409         list_for_each_entry_rcu(dev, head, dev_list) {
3410                 if (!dev->bdev) {
3411                         total_errors++;
3412                         continue;
3413                 }
3414                 if (!dev->in_fs_metadata || !dev->writeable)
3415                         continue;
3416
3417                 btrfs_set_stack_device_generation(dev_item, 0);
3418                 btrfs_set_stack_device_type(dev_item, dev->type);
3419                 btrfs_set_stack_device_id(dev_item, dev->devid);
3420                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3421                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3422                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3423                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3424                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3425                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3426                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3427
3428                 flags = btrfs_super_flags(sb);
3429                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3430
3431                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3432                 if (ret)
3433                         total_errors++;
3434         }
3435         if (total_errors > max_errors) {
3436                 btrfs_err(root->fs_info, "%d errors while writing supers",
3437                        total_errors);
3438                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3439
3440                 /* FUA is masked off if unsupported and can't be the reason */
3441                 btrfs_error(root->fs_info, -EIO,
3442                             "%d errors while writing supers", total_errors);
3443                 return -EIO;
3444         }
3445
3446         total_errors = 0;
3447         list_for_each_entry_rcu(dev, head, dev_list) {
3448                 if (!dev->bdev)
3449                         continue;
3450                 if (!dev->in_fs_metadata || !dev->writeable)
3451                         continue;
3452
3453                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3454                 if (ret)
3455                         total_errors++;
3456         }
3457         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3458         if (total_errors > max_errors) {
3459                 btrfs_error(root->fs_info, -EIO,
3460                             "%d errors while writing supers", total_errors);
3461                 return -EIO;
3462         }
3463         return 0;
3464 }
3465
3466 int write_ctree_super(struct btrfs_trans_handle *trans,
3467                       struct btrfs_root *root, int max_mirrors)
3468 {
3469         return write_all_supers(root, max_mirrors);
3470 }
3471
3472 /* Drop a fs root from the radix tree and free it. */
3473 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3474                                   struct btrfs_root *root)
3475 {
3476         spin_lock(&fs_info->fs_roots_radix_lock);
3477         radix_tree_delete(&fs_info->fs_roots_radix,
3478                           (unsigned long)root->root_key.objectid);
3479         spin_unlock(&fs_info->fs_roots_radix_lock);
3480
3481         if (btrfs_root_refs(&root->root_item) == 0)
3482                 synchronize_srcu(&fs_info->subvol_srcu);
3483
3484         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3485                 btrfs_free_log(NULL, root);
3486
3487         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3488         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3489         free_fs_root(root);
3490 }
3491
3492 static void free_fs_root(struct btrfs_root *root)
3493 {
3494         iput(root->cache_inode);
3495         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3496         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3497         root->orphan_block_rsv = NULL;
3498         if (root->anon_dev)
3499                 free_anon_bdev(root->anon_dev);
3500         free_extent_buffer(root->node);
3501         free_extent_buffer(root->commit_root);
3502         kfree(root->free_ino_ctl);
3503         kfree(root->free_ino_pinned);
3504         kfree(root->name);
3505         btrfs_put_fs_root(root);
3506 }
3507
3508 void btrfs_free_fs_root(struct btrfs_root *root)
3509 {
3510         free_fs_root(root);
3511 }
3512
3513 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3514 {
3515         u64 root_objectid = 0;
3516         struct btrfs_root *gang[8];
3517         int i;
3518         int ret;
3519
3520         while (1) {
3521                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3522                                              (void **)gang, root_objectid,
3523                                              ARRAY_SIZE(gang));
3524                 if (!ret)
3525                         break;
3526
3527                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3528                 for (i = 0; i < ret; i++) {
3529                         int err;
3530
3531                         root_objectid = gang[i]->root_key.objectid;
3532                         err = btrfs_orphan_cleanup(gang[i]);
3533                         if (err)
3534                                 return err;
3535                 }
3536                 root_objectid++;
3537         }
3538         return 0;
3539 }
3540
3541 int btrfs_commit_super(struct btrfs_root *root)
3542 {
3543         struct btrfs_trans_handle *trans;
3544
3545         mutex_lock(&root->fs_info->cleaner_mutex);
3546         btrfs_run_delayed_iputs(root);
3547         mutex_unlock(&root->fs_info->cleaner_mutex);
3548         wake_up_process(root->fs_info->cleaner_kthread);
3549
3550         /* wait until ongoing cleanup work done */
3551         down_write(&root->fs_info->cleanup_work_sem);
3552         up_write(&root->fs_info->cleanup_work_sem);
3553
3554         trans = btrfs_join_transaction(root);
3555         if (IS_ERR(trans))
3556                 return PTR_ERR(trans);
3557         return btrfs_commit_transaction(trans, root);
3558 }
3559
3560 int close_ctree(struct btrfs_root *root)
3561 {
3562         struct btrfs_fs_info *fs_info = root->fs_info;
3563         int ret;
3564
3565         fs_info->closing = 1;
3566         smp_mb();
3567
3568         /* wait for the uuid_scan task to finish */
3569         down(&fs_info->uuid_tree_rescan_sem);
3570         /* avoid complains from lockdep et al., set sem back to initial state */
3571         up(&fs_info->uuid_tree_rescan_sem);
3572
3573         /* pause restriper - we want to resume on mount */
3574         btrfs_pause_balance(fs_info);
3575
3576         btrfs_dev_replace_suspend_for_unmount(fs_info);
3577
3578         btrfs_scrub_cancel(fs_info);
3579
3580         /* wait for any defraggers to finish */
3581         wait_event(fs_info->transaction_wait,
3582                    (atomic_read(&fs_info->defrag_running) == 0));
3583
3584         /* clear out the rbtree of defraggable inodes */
3585         btrfs_cleanup_defrag_inodes(fs_info);
3586
3587         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3588                 ret = btrfs_commit_super(root);
3589                 if (ret)
3590                         btrfs_err(root->fs_info, "commit super ret %d", ret);
3591         }
3592
3593         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3594                 btrfs_error_commit_super(root);
3595
3596         kthread_stop(fs_info->transaction_kthread);
3597         kthread_stop(fs_info->cleaner_kthread);
3598
3599         fs_info->closing = 2;
3600         smp_mb();
3601
3602         btrfs_free_qgroup_config(root->fs_info);
3603
3604         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3605                 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3606                        percpu_counter_sum(&fs_info->delalloc_bytes));
3607         }
3608
3609         btrfs_sysfs_remove_one(fs_info);
3610
3611         del_fs_roots(fs_info);
3612
3613         btrfs_put_block_group_cache(fs_info);
3614
3615         btrfs_free_block_groups(fs_info);
3616
3617         btrfs_stop_all_workers(fs_info);
3618
3619         free_root_pointers(fs_info, 1);
3620
3621         iput(fs_info->btree_inode);
3622
3623 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3624         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3625                 btrfsic_unmount(root, fs_info->fs_devices);
3626 #endif
3627
3628         btrfs_close_devices(fs_info->fs_devices);
3629         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3630
3631         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3632         percpu_counter_destroy(&fs_info->delalloc_bytes);
3633         percpu_counter_destroy(&fs_info->bio_counter);
3634         bdi_destroy(&fs_info->bdi);
3635         cleanup_srcu_struct(&fs_info->subvol_srcu);
3636
3637         btrfs_free_stripe_hash_table(fs_info);
3638
3639         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3640         root->orphan_block_rsv = NULL;
3641
3642         return 0;
3643 }
3644
3645 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3646                           int atomic)
3647 {
3648         int ret;
3649         struct inode *btree_inode = buf->pages[0]->mapping->host;
3650
3651         ret = extent_buffer_uptodate(buf);
3652         if (!ret)
3653                 return ret;
3654
3655         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3656                                     parent_transid, atomic);
3657         if (ret == -EAGAIN)
3658                 return ret;
3659         return !ret;
3660 }
3661
3662 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3663 {
3664         return set_extent_buffer_uptodate(buf);
3665 }
3666
3667 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3668 {
3669         struct btrfs_root *root;
3670         u64 transid = btrfs_header_generation(buf);
3671         int was_dirty;
3672
3673 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3674         /*
3675          * This is a fast path so only do this check if we have sanity tests
3676          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3677          * outside of the sanity tests.
3678          */
3679         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3680                 return;
3681 #endif
3682         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3683         btrfs_assert_tree_locked(buf);
3684         if (transid != root->fs_info->generation)
3685                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3686                        "found %llu running %llu\n",
3687                         buf->start, transid, root->fs_info->generation);
3688         was_dirty = set_extent_buffer_dirty(buf);
3689         if (!was_dirty)
3690                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3691                                      buf->len,
3692                                      root->fs_info->dirty_metadata_batch);
3693 }
3694
3695 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3696                                         int flush_delayed)
3697 {
3698         /*
3699          * looks as though older kernels can get into trouble with
3700          * this code, they end up stuck in balance_dirty_pages forever
3701          */
3702         int ret;
3703
3704         if (current->flags & PF_MEMALLOC)
3705                 return;
3706
3707         if (flush_delayed)
3708                 btrfs_balance_delayed_items(root);
3709
3710         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3711                                      BTRFS_DIRTY_METADATA_THRESH);
3712         if (ret > 0) {
3713                 balance_dirty_pages_ratelimited(
3714                                    root->fs_info->btree_inode->i_mapping);
3715         }
3716         return;
3717 }
3718
3719 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3720 {
3721         __btrfs_btree_balance_dirty(root, 1);
3722 }
3723
3724 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3725 {
3726         __btrfs_btree_balance_dirty(root, 0);
3727 }
3728
3729 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3730 {
3731         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3732         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3733 }
3734
3735 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3736                               int read_only)
3737 {
3738         /*
3739          * Placeholder for checks
3740          */
3741         return 0;
3742 }
3743
3744 static void btrfs_error_commit_super(struct btrfs_root *root)
3745 {
3746         mutex_lock(&root->fs_info->cleaner_mutex);
3747         btrfs_run_delayed_iputs(root);
3748         mutex_unlock(&root->fs_info->cleaner_mutex);
3749
3750         down_write(&root->fs_info->cleanup_work_sem);
3751         up_write(&root->fs_info->cleanup_work_sem);
3752
3753         /* cleanup FS via transaction */
3754         btrfs_cleanup_transaction(root);
3755 }
3756
3757 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3758                                              struct btrfs_root *root)
3759 {
3760         struct btrfs_inode *btrfs_inode;
3761         struct list_head splice;
3762
3763         INIT_LIST_HEAD(&splice);
3764
3765         mutex_lock(&root->fs_info->ordered_operations_mutex);
3766         spin_lock(&root->fs_info->ordered_root_lock);
3767
3768         list_splice_init(&t->ordered_operations, &splice);
3769         while (!list_empty(&splice)) {
3770                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3771                                          ordered_operations);
3772
3773                 list_del_init(&btrfs_inode->ordered_operations);
3774                 spin_unlock(&root->fs_info->ordered_root_lock);
3775
3776                 btrfs_invalidate_inodes(btrfs_inode->root);
3777
3778                 spin_lock(&root->fs_info->ordered_root_lock);
3779         }
3780
3781         spin_unlock(&root->fs_info->ordered_root_lock);
3782         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3783 }
3784
3785 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3786 {
3787         struct btrfs_ordered_extent *ordered;
3788
3789         spin_lock(&root->ordered_extent_lock);
3790         /*
3791          * This will just short circuit the ordered completion stuff which will
3792          * make sure the ordered extent gets properly cleaned up.
3793          */
3794         list_for_each_entry(ordered, &root->ordered_extents,
3795                             root_extent_list)
3796                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3797         spin_unlock(&root->ordered_extent_lock);
3798 }
3799
3800 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3801 {
3802         struct btrfs_root *root;
3803         struct list_head splice;
3804
3805         INIT_LIST_HEAD(&splice);
3806
3807         spin_lock(&fs_info->ordered_root_lock);
3808         list_splice_init(&fs_info->ordered_roots, &splice);
3809         while (!list_empty(&splice)) {
3810                 root = list_first_entry(&splice, struct btrfs_root,
3811                                         ordered_root);
3812                 list_move_tail(&root->ordered_root,
3813                                &fs_info->ordered_roots);
3814
3815                 spin_unlock(&fs_info->ordered_root_lock);
3816                 btrfs_destroy_ordered_extents(root);
3817
3818                 cond_resched();
3819                 spin_lock(&fs_info->ordered_root_lock);
3820         }
3821         spin_unlock(&fs_info->ordered_root_lock);
3822 }
3823
3824 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3825                                       struct btrfs_root *root)
3826 {
3827         struct rb_node *node;
3828         struct btrfs_delayed_ref_root *delayed_refs;
3829         struct btrfs_delayed_ref_node *ref;
3830         int ret = 0;
3831
3832         delayed_refs = &trans->delayed_refs;
3833
3834         spin_lock(&delayed_refs->lock);
3835         if (atomic_read(&delayed_refs->num_entries) == 0) {
3836                 spin_unlock(&delayed_refs->lock);
3837                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
3838                 return ret;
3839         }
3840
3841         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3842                 struct btrfs_delayed_ref_head *head;
3843                 bool pin_bytes = false;
3844
3845                 head = rb_entry(node, struct btrfs_delayed_ref_head,
3846                                 href_node);
3847                 if (!mutex_trylock(&head->mutex)) {
3848                         atomic_inc(&head->node.refs);
3849                         spin_unlock(&delayed_refs->lock);
3850
3851                         mutex_lock(&head->mutex);
3852                         mutex_unlock(&head->mutex);
3853                         btrfs_put_delayed_ref(&head->node);
3854                         spin_lock(&delayed_refs->lock);
3855                         continue;
3856                 }
3857                 spin_lock(&head->lock);
3858                 while ((node = rb_first(&head->ref_root)) != NULL) {
3859                         ref = rb_entry(node, struct btrfs_delayed_ref_node,
3860                                        rb_node);
3861                         ref->in_tree = 0;
3862                         rb_erase(&ref->rb_node, &head->ref_root);
3863                         atomic_dec(&delayed_refs->num_entries);
3864                         btrfs_put_delayed_ref(ref);
3865                 }
3866                 if (head->must_insert_reserved)
3867                         pin_bytes = true;
3868                 btrfs_free_delayed_extent_op(head->extent_op);
3869                 delayed_refs->num_heads--;
3870                 if (head->processing == 0)
3871                         delayed_refs->num_heads_ready--;
3872                 atomic_dec(&delayed_refs->num_entries);
3873                 head->node.in_tree = 0;
3874                 rb_erase(&head->href_node, &delayed_refs->href_root);
3875                 spin_unlock(&head->lock);
3876                 spin_unlock(&delayed_refs->lock);
3877                 mutex_unlock(&head->mutex);
3878
3879                 if (pin_bytes)
3880                         btrfs_pin_extent(root, head->node.bytenr,
3881                                          head->node.num_bytes, 1);
3882                 btrfs_put_delayed_ref(&head->node);
3883                 cond_resched();
3884                 spin_lock(&delayed_refs->lock);
3885         }
3886
3887         spin_unlock(&delayed_refs->lock);
3888
3889         return ret;
3890 }
3891
3892 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3893 {
3894         struct btrfs_inode *btrfs_inode;
3895         struct list_head splice;
3896
3897         INIT_LIST_HEAD(&splice);
3898
3899         spin_lock(&root->delalloc_lock);
3900         list_splice_init(&root->delalloc_inodes, &splice);
3901
3902         while (!list_empty(&splice)) {
3903                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3904                                                delalloc_inodes);
3905
3906                 list_del_init(&btrfs_inode->delalloc_inodes);
3907                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3908                           &btrfs_inode->runtime_flags);
3909                 spin_unlock(&root->delalloc_lock);
3910
3911                 btrfs_invalidate_inodes(btrfs_inode->root);
3912
3913                 spin_lock(&root->delalloc_lock);
3914         }
3915
3916         spin_unlock(&root->delalloc_lock);
3917 }
3918
3919 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3920 {
3921         struct btrfs_root *root;
3922         struct list_head splice;
3923
3924         INIT_LIST_HEAD(&splice);
3925
3926         spin_lock(&fs_info->delalloc_root_lock);
3927         list_splice_init(&fs_info->delalloc_roots, &splice);
3928         while (!list_empty(&splice)) {
3929                 root = list_first_entry(&splice, struct btrfs_root,
3930                                          delalloc_root);
3931                 list_del_init(&root->delalloc_root);
3932                 root = btrfs_grab_fs_root(root);
3933                 BUG_ON(!root);
3934                 spin_unlock(&fs_info->delalloc_root_lock);
3935
3936                 btrfs_destroy_delalloc_inodes(root);
3937                 btrfs_put_fs_root(root);
3938
3939                 spin_lock(&fs_info->delalloc_root_lock);
3940         }
3941         spin_unlock(&fs_info->delalloc_root_lock);
3942 }
3943
3944 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3945                                         struct extent_io_tree *dirty_pages,
3946                                         int mark)
3947 {
3948         int ret;
3949         struct extent_buffer *eb;
3950         u64 start = 0;
3951         u64 end;
3952
3953         while (1) {
3954                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3955                                             mark, NULL);
3956                 if (ret)
3957                         break;
3958
3959                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3960                 while (start <= end) {
3961                         eb = btrfs_find_tree_block(root, start,
3962                                                    root->leafsize);
3963                         start += root->leafsize;
3964                         if (!eb)
3965                                 continue;
3966                         wait_on_extent_buffer_writeback(eb);
3967
3968                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3969                                                &eb->bflags))
3970                                 clear_extent_buffer_dirty(eb);
3971                         free_extent_buffer_stale(eb);
3972                 }
3973         }
3974
3975         return ret;
3976 }
3977
3978 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3979                                        struct extent_io_tree *pinned_extents)
3980 {
3981         struct extent_io_tree *unpin;
3982         u64 start;
3983         u64 end;
3984         int ret;
3985         bool loop = true;
3986
3987         unpin = pinned_extents;
3988 again:
3989         while (1) {
3990                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3991                                             EXTENT_DIRTY, NULL);
3992                 if (ret)
3993                         break;
3994
3995                 /* opt_discard */
3996                 if (btrfs_test_opt(root, DISCARD))
3997                         ret = btrfs_error_discard_extent(root, start,
3998                                                          end + 1 - start,
3999                                                          NULL);
4000
4001                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4002                 btrfs_error_unpin_extent_range(root, start, end);
4003                 cond_resched();
4004         }
4005
4006         if (loop) {
4007                 if (unpin == &root->fs_info->freed_extents[0])
4008                         unpin = &root->fs_info->freed_extents[1];
4009                 else
4010                         unpin = &root->fs_info->freed_extents[0];
4011                 loop = false;
4012                 goto again;
4013         }
4014
4015         return 0;
4016 }
4017
4018 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4019                                    struct btrfs_root *root)
4020 {
4021         btrfs_destroy_ordered_operations(cur_trans, root);
4022
4023         btrfs_destroy_delayed_refs(cur_trans, root);
4024
4025         cur_trans->state = TRANS_STATE_COMMIT_START;
4026         wake_up(&root->fs_info->transaction_blocked_wait);
4027
4028         cur_trans->state = TRANS_STATE_UNBLOCKED;
4029         wake_up(&root->fs_info->transaction_wait);
4030
4031         btrfs_destroy_delayed_inodes(root);
4032         btrfs_assert_delayed_root_empty(root);
4033
4034         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4035                                      EXTENT_DIRTY);
4036         btrfs_destroy_pinned_extent(root,
4037                                     root->fs_info->pinned_extents);
4038
4039         cur_trans->state =TRANS_STATE_COMPLETED;
4040         wake_up(&cur_trans->commit_wait);
4041
4042         /*
4043         memset(cur_trans, 0, sizeof(*cur_trans));
4044         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4045         */
4046 }
4047
4048 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4049 {
4050         struct btrfs_transaction *t;
4051
4052         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4053
4054         spin_lock(&root->fs_info->trans_lock);
4055         while (!list_empty(&root->fs_info->trans_list)) {
4056                 t = list_first_entry(&root->fs_info->trans_list,
4057                                      struct btrfs_transaction, list);
4058                 if (t->state >= TRANS_STATE_COMMIT_START) {
4059                         atomic_inc(&t->use_count);
4060                         spin_unlock(&root->fs_info->trans_lock);
4061                         btrfs_wait_for_commit(root, t->transid);
4062                         btrfs_put_transaction(t);
4063                         spin_lock(&root->fs_info->trans_lock);
4064                         continue;
4065                 }
4066                 if (t == root->fs_info->running_transaction) {
4067                         t->state = TRANS_STATE_COMMIT_DOING;
4068                         spin_unlock(&root->fs_info->trans_lock);
4069                         /*
4070                          * We wait for 0 num_writers since we don't hold a trans
4071                          * handle open currently for this transaction.
4072                          */
4073                         wait_event(t->writer_wait,
4074                                    atomic_read(&t->num_writers) == 0);
4075                 } else {
4076                         spin_unlock(&root->fs_info->trans_lock);
4077                 }
4078                 btrfs_cleanup_one_transaction(t, root);
4079
4080                 spin_lock(&root->fs_info->trans_lock);
4081                 if (t == root->fs_info->running_transaction)
4082                         root->fs_info->running_transaction = NULL;
4083                 list_del_init(&t->list);
4084                 spin_unlock(&root->fs_info->trans_lock);
4085
4086                 btrfs_put_transaction(t);
4087                 trace_btrfs_transaction_commit(root);
4088                 spin_lock(&root->fs_info->trans_lock);
4089         }
4090         spin_unlock(&root->fs_info->trans_lock);
4091         btrfs_destroy_all_ordered_extents(root->fs_info);
4092         btrfs_destroy_delayed_inodes(root);
4093         btrfs_assert_delayed_root_empty(root);
4094         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4095         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4096         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4097
4098         return 0;
4099 }
4100
4101 static struct extent_io_ops btree_extent_io_ops = {
4102         .readpage_end_io_hook = btree_readpage_end_io_hook,
4103         .readpage_io_failed_hook = btree_io_failed_hook,
4104         .submit_bio_hook = btree_submit_bio_hook,
4105         /* note we're sharing with inode.c for the merge bio hook */
4106         .merge_bio_hook = btrfs_merge_bio_hook,
4107 };