btrfs: Replace fs_info->delayed_workers workqueue with btrfs_workqueue.
[cascardo/linux.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work_struct *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61                                     int read_only);
62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63                                              struct btrfs_root *root);
64 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66                                       struct btrfs_root *root);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69                                         struct extent_io_tree *dirty_pages,
70                                         int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72                                        struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
75
76 /*
77  * end_io_wq structs are used to do processing in task context when an IO is
78  * complete.  This is used during reads to verify checksums, and it is used
79  * by writes to insert metadata for new file extents after IO is complete.
80  */
81 struct end_io_wq {
82         struct bio *bio;
83         bio_end_io_t *end_io;
84         void *private;
85         struct btrfs_fs_info *info;
86         int error;
87         int metadata;
88         struct list_head list;
89         struct btrfs_work_struct work;
90 };
91
92 /*
93  * async submit bios are used to offload expensive checksumming
94  * onto the worker threads.  They checksum file and metadata bios
95  * just before they are sent down the IO stack.
96  */
97 struct async_submit_bio {
98         struct inode *inode;
99         struct bio *bio;
100         struct list_head list;
101         extent_submit_bio_hook_t *submit_bio_start;
102         extent_submit_bio_hook_t *submit_bio_done;
103         int rw;
104         int mirror_num;
105         unsigned long bio_flags;
106         /*
107          * bio_offset is optional, can be used if the pages in the bio
108          * can't tell us where in the file the bio should go
109          */
110         u64 bio_offset;
111         struct btrfs_work_struct work;
112         int error;
113 };
114
115 /*
116  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
117  * eb, the lockdep key is determined by the btrfs_root it belongs to and
118  * the level the eb occupies in the tree.
119  *
120  * Different roots are used for different purposes and may nest inside each
121  * other and they require separate keysets.  As lockdep keys should be
122  * static, assign keysets according to the purpose of the root as indicated
123  * by btrfs_root->objectid.  This ensures that all special purpose roots
124  * have separate keysets.
125  *
126  * Lock-nesting across peer nodes is always done with the immediate parent
127  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
128  * subclass to avoid triggering lockdep warning in such cases.
129  *
130  * The key is set by the readpage_end_io_hook after the buffer has passed
131  * csum validation but before the pages are unlocked.  It is also set by
132  * btrfs_init_new_buffer on freshly allocated blocks.
133  *
134  * We also add a check to make sure the highest level of the tree is the
135  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
136  * needs update as well.
137  */
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 #  error
141 # endif
142
143 static struct btrfs_lockdep_keyset {
144         u64                     id;             /* root objectid */
145         const char              *name_stem;     /* lock name stem */
146         char                    names[BTRFS_MAX_LEVEL + 1][20];
147         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
150         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
151         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
152         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
153         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
154         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
155         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
156         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
157         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
158         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
159         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
160         { .id = 0,                              .name_stem = "tree"     },
161 };
162
163 void __init btrfs_init_lockdep(void)
164 {
165         int i, j;
166
167         /* initialize lockdep class names */
168         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
170
171                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172                         snprintf(ks->names[j], sizeof(ks->names[j]),
173                                  "btrfs-%s-%02d", ks->name_stem, j);
174         }
175 }
176
177 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178                                     int level)
179 {
180         struct btrfs_lockdep_keyset *ks;
181
182         BUG_ON(level >= ARRAY_SIZE(ks->keys));
183
184         /* find the matching keyset, id 0 is the default entry */
185         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186                 if (ks->id == objectid)
187                         break;
188
189         lockdep_set_class_and_name(&eb->lock,
190                                    &ks->keys[level], ks->names[level]);
191 }
192
193 #endif
194
195 /*
196  * extents on the btree inode are pretty simple, there's one extent
197  * that covers the entire device
198  */
199 static struct extent_map *btree_get_extent(struct inode *inode,
200                 struct page *page, size_t pg_offset, u64 start, u64 len,
201                 int create)
202 {
203         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204         struct extent_map *em;
205         int ret;
206
207         read_lock(&em_tree->lock);
208         em = lookup_extent_mapping(em_tree, start, len);
209         if (em) {
210                 em->bdev =
211                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
212                 read_unlock(&em_tree->lock);
213                 goto out;
214         }
215         read_unlock(&em_tree->lock);
216
217         em = alloc_extent_map();
218         if (!em) {
219                 em = ERR_PTR(-ENOMEM);
220                 goto out;
221         }
222         em->start = 0;
223         em->len = (u64)-1;
224         em->block_len = (u64)-1;
225         em->block_start = 0;
226         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
227
228         write_lock(&em_tree->lock);
229         ret = add_extent_mapping(em_tree, em, 0);
230         if (ret == -EEXIST) {
231                 free_extent_map(em);
232                 em = lookup_extent_mapping(em_tree, start, len);
233                 if (!em)
234                         em = ERR_PTR(-EIO);
235         } else if (ret) {
236                 free_extent_map(em);
237                 em = ERR_PTR(ret);
238         }
239         write_unlock(&em_tree->lock);
240
241 out:
242         return em;
243 }
244
245 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
246 {
247         return btrfs_crc32c(seed, data, len);
248 }
249
250 void btrfs_csum_final(u32 crc, char *result)
251 {
252         put_unaligned_le32(~crc, result);
253 }
254
255 /*
256  * compute the csum for a btree block, and either verify it or write it
257  * into the csum field of the block.
258  */
259 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260                            int verify)
261 {
262         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
263         char *result = NULL;
264         unsigned long len;
265         unsigned long cur_len;
266         unsigned long offset = BTRFS_CSUM_SIZE;
267         char *kaddr;
268         unsigned long map_start;
269         unsigned long map_len;
270         int err;
271         u32 crc = ~(u32)0;
272         unsigned long inline_result;
273
274         len = buf->len - offset;
275         while (len > 0) {
276                 err = map_private_extent_buffer(buf, offset, 32,
277                                         &kaddr, &map_start, &map_len);
278                 if (err)
279                         return 1;
280                 cur_len = min(len, map_len - (offset - map_start));
281                 crc = btrfs_csum_data(kaddr + offset - map_start,
282                                       crc, cur_len);
283                 len -= cur_len;
284                 offset += cur_len;
285         }
286         if (csum_size > sizeof(inline_result)) {
287                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
288                 if (!result)
289                         return 1;
290         } else {
291                 result = (char *)&inline_result;
292         }
293
294         btrfs_csum_final(crc, result);
295
296         if (verify) {
297                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
298                         u32 val;
299                         u32 found = 0;
300                         memcpy(&found, result, csum_size);
301
302                         read_extent_buffer(buf, &val, 0, csum_size);
303                         printk_ratelimited(KERN_INFO
304                                 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
305                                 "level %d\n",
306                                 root->fs_info->sb->s_id, buf->start,
307                                 val, found, btrfs_header_level(buf));
308                         if (result != (char *)&inline_result)
309                                 kfree(result);
310                         return 1;
311                 }
312         } else {
313                 write_extent_buffer(buf, result, 0, csum_size);
314         }
315         if (result != (char *)&inline_result)
316                 kfree(result);
317         return 0;
318 }
319
320 /*
321  * we can't consider a given block up to date unless the transid of the
322  * block matches the transid in the parent node's pointer.  This is how we
323  * detect blocks that either didn't get written at all or got written
324  * in the wrong place.
325  */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327                                  struct extent_buffer *eb, u64 parent_transid,
328                                  int atomic)
329 {
330         struct extent_state *cached_state = NULL;
331         int ret;
332
333         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334                 return 0;
335
336         if (atomic)
337                 return -EAGAIN;
338
339         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340                          0, &cached_state);
341         if (extent_buffer_uptodate(eb) &&
342             btrfs_header_generation(eb) == parent_transid) {
343                 ret = 0;
344                 goto out;
345         }
346         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347                        "found %llu\n",
348                        eb->start, parent_transid, btrfs_header_generation(eb));
349         ret = 1;
350         clear_extent_buffer_uptodate(eb);
351 out:
352         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
353                              &cached_state, GFP_NOFS);
354         return ret;
355 }
356
357 /*
358  * Return 0 if the superblock checksum type matches the checksum value of that
359  * algorithm. Pass the raw disk superblock data.
360  */
361 static int btrfs_check_super_csum(char *raw_disk_sb)
362 {
363         struct btrfs_super_block *disk_sb =
364                 (struct btrfs_super_block *)raw_disk_sb;
365         u16 csum_type = btrfs_super_csum_type(disk_sb);
366         int ret = 0;
367
368         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
369                 u32 crc = ~(u32)0;
370                 const int csum_size = sizeof(crc);
371                 char result[csum_size];
372
373                 /*
374                  * The super_block structure does not span the whole
375                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
376                  * is filled with zeros and is included in the checkum.
377                  */
378                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
379                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
380                 btrfs_csum_final(crc, result);
381
382                 if (memcmp(raw_disk_sb, result, csum_size))
383                         ret = 1;
384
385                 if (ret && btrfs_super_generation(disk_sb) < 10) {
386                         printk(KERN_WARNING
387                                 "BTRFS: super block crcs don't match, older mkfs detected\n");
388                         ret = 0;
389                 }
390         }
391
392         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
393                 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
394                                 csum_type);
395                 ret = 1;
396         }
397
398         return ret;
399 }
400
401 /*
402  * helper to read a given tree block, doing retries as required when
403  * the checksums don't match and we have alternate mirrors to try.
404  */
405 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
406                                           struct extent_buffer *eb,
407                                           u64 start, u64 parent_transid)
408 {
409         struct extent_io_tree *io_tree;
410         int failed = 0;
411         int ret;
412         int num_copies = 0;
413         int mirror_num = 0;
414         int failed_mirror = 0;
415
416         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
417         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
418         while (1) {
419                 ret = read_extent_buffer_pages(io_tree, eb, start,
420                                                WAIT_COMPLETE,
421                                                btree_get_extent, mirror_num);
422                 if (!ret) {
423                         if (!verify_parent_transid(io_tree, eb,
424                                                    parent_transid, 0))
425                                 break;
426                         else
427                                 ret = -EIO;
428                 }
429
430                 /*
431                  * This buffer's crc is fine, but its contents are corrupted, so
432                  * there is no reason to read the other copies, they won't be
433                  * any less wrong.
434                  */
435                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
436                         break;
437
438                 num_copies = btrfs_num_copies(root->fs_info,
439                                               eb->start, eb->len);
440                 if (num_copies == 1)
441                         break;
442
443                 if (!failed_mirror) {
444                         failed = 1;
445                         failed_mirror = eb->read_mirror;
446                 }
447
448                 mirror_num++;
449                 if (mirror_num == failed_mirror)
450                         mirror_num++;
451
452                 if (mirror_num > num_copies)
453                         break;
454         }
455
456         if (failed && !ret && failed_mirror)
457                 repair_eb_io_failure(root, eb, failed_mirror);
458
459         return ret;
460 }
461
462 /*
463  * checksum a dirty tree block before IO.  This has extra checks to make sure
464  * we only fill in the checksum field in the first page of a multi-page block
465  */
466
467 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
468 {
469         u64 start = page_offset(page);
470         u64 found_start;
471         struct extent_buffer *eb;
472
473         eb = (struct extent_buffer *)page->private;
474         if (page != eb->pages[0])
475                 return 0;
476         found_start = btrfs_header_bytenr(eb);
477         if (WARN_ON(found_start != start || !PageUptodate(page)))
478                 return 0;
479         csum_tree_block(root, eb, 0);
480         return 0;
481 }
482
483 static int check_tree_block_fsid(struct btrfs_root *root,
484                                  struct extent_buffer *eb)
485 {
486         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
487         u8 fsid[BTRFS_UUID_SIZE];
488         int ret = 1;
489
490         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
491         while (fs_devices) {
492                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
493                         ret = 0;
494                         break;
495                 }
496                 fs_devices = fs_devices->seed;
497         }
498         return ret;
499 }
500
501 #define CORRUPT(reason, eb, root, slot)                         \
502         btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
503                    "root=%llu, slot=%d", reason,                        \
504                btrfs_header_bytenr(eb), root->objectid, slot)
505
506 static noinline int check_leaf(struct btrfs_root *root,
507                                struct extent_buffer *leaf)
508 {
509         struct btrfs_key key;
510         struct btrfs_key leaf_key;
511         u32 nritems = btrfs_header_nritems(leaf);
512         int slot;
513
514         if (nritems == 0)
515                 return 0;
516
517         /* Check the 0 item */
518         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
519             BTRFS_LEAF_DATA_SIZE(root)) {
520                 CORRUPT("invalid item offset size pair", leaf, root, 0);
521                 return -EIO;
522         }
523
524         /*
525          * Check to make sure each items keys are in the correct order and their
526          * offsets make sense.  We only have to loop through nritems-1 because
527          * we check the current slot against the next slot, which verifies the
528          * next slot's offset+size makes sense and that the current's slot
529          * offset is correct.
530          */
531         for (slot = 0; slot < nritems - 1; slot++) {
532                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
533                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
534
535                 /* Make sure the keys are in the right order */
536                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
537                         CORRUPT("bad key order", leaf, root, slot);
538                         return -EIO;
539                 }
540
541                 /*
542                  * Make sure the offset and ends are right, remember that the
543                  * item data starts at the end of the leaf and grows towards the
544                  * front.
545                  */
546                 if (btrfs_item_offset_nr(leaf, slot) !=
547                         btrfs_item_end_nr(leaf, slot + 1)) {
548                         CORRUPT("slot offset bad", leaf, root, slot);
549                         return -EIO;
550                 }
551
552                 /*
553                  * Check to make sure that we don't point outside of the leaf,
554                  * just incase all the items are consistent to eachother, but
555                  * all point outside of the leaf.
556                  */
557                 if (btrfs_item_end_nr(leaf, slot) >
558                     BTRFS_LEAF_DATA_SIZE(root)) {
559                         CORRUPT("slot end outside of leaf", leaf, root, slot);
560                         return -EIO;
561                 }
562         }
563
564         return 0;
565 }
566
567 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
568                                       u64 phy_offset, struct page *page,
569                                       u64 start, u64 end, int mirror)
570 {
571         u64 found_start;
572         int found_level;
573         struct extent_buffer *eb;
574         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
575         int ret = 0;
576         int reads_done;
577
578         if (!page->private)
579                 goto out;
580
581         eb = (struct extent_buffer *)page->private;
582
583         /* the pending IO might have been the only thing that kept this buffer
584          * in memory.  Make sure we have a ref for all this other checks
585          */
586         extent_buffer_get(eb);
587
588         reads_done = atomic_dec_and_test(&eb->io_pages);
589         if (!reads_done)
590                 goto err;
591
592         eb->read_mirror = mirror;
593         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
594                 ret = -EIO;
595                 goto err;
596         }
597
598         found_start = btrfs_header_bytenr(eb);
599         if (found_start != eb->start) {
600                 printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
601                                "%llu %llu\n",
602                                found_start, eb->start);
603                 ret = -EIO;
604                 goto err;
605         }
606         if (check_tree_block_fsid(root, eb)) {
607                 printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
608                                eb->start);
609                 ret = -EIO;
610                 goto err;
611         }
612         found_level = btrfs_header_level(eb);
613         if (found_level >= BTRFS_MAX_LEVEL) {
614                 btrfs_info(root->fs_info, "bad tree block level %d",
615                            (int)btrfs_header_level(eb));
616                 ret = -EIO;
617                 goto err;
618         }
619
620         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
621                                        eb, found_level);
622
623         ret = csum_tree_block(root, eb, 1);
624         if (ret) {
625                 ret = -EIO;
626                 goto err;
627         }
628
629         /*
630          * If this is a leaf block and it is corrupt, set the corrupt bit so
631          * that we don't try and read the other copies of this block, just
632          * return -EIO.
633          */
634         if (found_level == 0 && check_leaf(root, eb)) {
635                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
636                 ret = -EIO;
637         }
638
639         if (!ret)
640                 set_extent_buffer_uptodate(eb);
641 err:
642         if (reads_done &&
643             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
644                 btree_readahead_hook(root, eb, eb->start, ret);
645
646         if (ret) {
647                 /*
648                  * our io error hook is going to dec the io pages
649                  * again, we have to make sure it has something
650                  * to decrement
651                  */
652                 atomic_inc(&eb->io_pages);
653                 clear_extent_buffer_uptodate(eb);
654         }
655         free_extent_buffer(eb);
656 out:
657         return ret;
658 }
659
660 static int btree_io_failed_hook(struct page *page, int failed_mirror)
661 {
662         struct extent_buffer *eb;
663         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
664
665         eb = (struct extent_buffer *)page->private;
666         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
667         eb->read_mirror = failed_mirror;
668         atomic_dec(&eb->io_pages);
669         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
670                 btree_readahead_hook(root, eb, eb->start, -EIO);
671         return -EIO;    /* we fixed nothing */
672 }
673
674 static void end_workqueue_bio(struct bio *bio, int err)
675 {
676         struct end_io_wq *end_io_wq = bio->bi_private;
677         struct btrfs_fs_info *fs_info;
678
679         fs_info = end_io_wq->info;
680         end_io_wq->error = err;
681         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
682
683         if (bio->bi_rw & REQ_WRITE) {
684                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
685                         btrfs_queue_work(fs_info->endio_meta_write_workers,
686                                          &end_io_wq->work);
687                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
688                         btrfs_queue_work(fs_info->endio_freespace_worker,
689                                          &end_io_wq->work);
690                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
691                         btrfs_queue_work(fs_info->endio_raid56_workers,
692                                          &end_io_wq->work);
693                 else
694                         btrfs_queue_work(fs_info->endio_write_workers,
695                                          &end_io_wq->work);
696         } else {
697                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
698                         btrfs_queue_work(fs_info->endio_raid56_workers,
699                                          &end_io_wq->work);
700                 else if (end_io_wq->metadata)
701                         btrfs_queue_work(fs_info->endio_meta_workers,
702                                          &end_io_wq->work);
703                 else
704                         btrfs_queue_work(fs_info->endio_workers,
705                                          &end_io_wq->work);
706         }
707 }
708
709 /*
710  * For the metadata arg you want
711  *
712  * 0 - if data
713  * 1 - if normal metadta
714  * 2 - if writing to the free space cache area
715  * 3 - raid parity work
716  */
717 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
718                         int metadata)
719 {
720         struct end_io_wq *end_io_wq;
721         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
722         if (!end_io_wq)
723                 return -ENOMEM;
724
725         end_io_wq->private = bio->bi_private;
726         end_io_wq->end_io = bio->bi_end_io;
727         end_io_wq->info = info;
728         end_io_wq->error = 0;
729         end_io_wq->bio = bio;
730         end_io_wq->metadata = metadata;
731
732         bio->bi_private = end_io_wq;
733         bio->bi_end_io = end_workqueue_bio;
734         return 0;
735 }
736
737 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
738 {
739         unsigned long limit = min_t(unsigned long,
740                                     info->thread_pool_size,
741                                     info->fs_devices->open_devices);
742         return 256 * limit;
743 }
744
745 static void run_one_async_start(struct btrfs_work_struct *work)
746 {
747         struct async_submit_bio *async;
748         int ret;
749
750         async = container_of(work, struct  async_submit_bio, work);
751         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
752                                       async->mirror_num, async->bio_flags,
753                                       async->bio_offset);
754         if (ret)
755                 async->error = ret;
756 }
757
758 static void run_one_async_done(struct btrfs_work_struct *work)
759 {
760         struct btrfs_fs_info *fs_info;
761         struct async_submit_bio *async;
762         int limit;
763
764         async = container_of(work, struct  async_submit_bio, work);
765         fs_info = BTRFS_I(async->inode)->root->fs_info;
766
767         limit = btrfs_async_submit_limit(fs_info);
768         limit = limit * 2 / 3;
769
770         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
771             waitqueue_active(&fs_info->async_submit_wait))
772                 wake_up(&fs_info->async_submit_wait);
773
774         /* If an error occured we just want to clean up the bio and move on */
775         if (async->error) {
776                 bio_endio(async->bio, async->error);
777                 return;
778         }
779
780         async->submit_bio_done(async->inode, async->rw, async->bio,
781                                async->mirror_num, async->bio_flags,
782                                async->bio_offset);
783 }
784
785 static void run_one_async_free(struct btrfs_work_struct *work)
786 {
787         struct async_submit_bio *async;
788
789         async = container_of(work, struct  async_submit_bio, work);
790         kfree(async);
791 }
792
793 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
794                         int rw, struct bio *bio, int mirror_num,
795                         unsigned long bio_flags,
796                         u64 bio_offset,
797                         extent_submit_bio_hook_t *submit_bio_start,
798                         extent_submit_bio_hook_t *submit_bio_done)
799 {
800         struct async_submit_bio *async;
801
802         async = kmalloc(sizeof(*async), GFP_NOFS);
803         if (!async)
804                 return -ENOMEM;
805
806         async->inode = inode;
807         async->rw = rw;
808         async->bio = bio;
809         async->mirror_num = mirror_num;
810         async->submit_bio_start = submit_bio_start;
811         async->submit_bio_done = submit_bio_done;
812
813         btrfs_init_work(&async->work, run_one_async_start,
814                         run_one_async_done, run_one_async_free);
815
816         async->bio_flags = bio_flags;
817         async->bio_offset = bio_offset;
818
819         async->error = 0;
820
821         atomic_inc(&fs_info->nr_async_submits);
822
823         if (rw & REQ_SYNC)
824                 btrfs_set_work_high_priority(&async->work);
825
826         btrfs_queue_work(fs_info->workers, &async->work);
827
828         while (atomic_read(&fs_info->async_submit_draining) &&
829               atomic_read(&fs_info->nr_async_submits)) {
830                 wait_event(fs_info->async_submit_wait,
831                            (atomic_read(&fs_info->nr_async_submits) == 0));
832         }
833
834         return 0;
835 }
836
837 static int btree_csum_one_bio(struct bio *bio)
838 {
839         struct bio_vec *bvec = bio->bi_io_vec;
840         int bio_index = 0;
841         struct btrfs_root *root;
842         int ret = 0;
843
844         WARN_ON(bio->bi_vcnt <= 0);
845         while (bio_index < bio->bi_vcnt) {
846                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
847                 ret = csum_dirty_buffer(root, bvec->bv_page);
848                 if (ret)
849                         break;
850                 bio_index++;
851                 bvec++;
852         }
853         return ret;
854 }
855
856 static int __btree_submit_bio_start(struct inode *inode, int rw,
857                                     struct bio *bio, int mirror_num,
858                                     unsigned long bio_flags,
859                                     u64 bio_offset)
860 {
861         /*
862          * when we're called for a write, we're already in the async
863          * submission context.  Just jump into btrfs_map_bio
864          */
865         return btree_csum_one_bio(bio);
866 }
867
868 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
869                                  int mirror_num, unsigned long bio_flags,
870                                  u64 bio_offset)
871 {
872         int ret;
873
874         /*
875          * when we're called for a write, we're already in the async
876          * submission context.  Just jump into btrfs_map_bio
877          */
878         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
879         if (ret)
880                 bio_endio(bio, ret);
881         return ret;
882 }
883
884 static int check_async_write(struct inode *inode, unsigned long bio_flags)
885 {
886         if (bio_flags & EXTENT_BIO_TREE_LOG)
887                 return 0;
888 #ifdef CONFIG_X86
889         if (cpu_has_xmm4_2)
890                 return 0;
891 #endif
892         return 1;
893 }
894
895 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
896                                  int mirror_num, unsigned long bio_flags,
897                                  u64 bio_offset)
898 {
899         int async = check_async_write(inode, bio_flags);
900         int ret;
901
902         if (!(rw & REQ_WRITE)) {
903                 /*
904                  * called for a read, do the setup so that checksum validation
905                  * can happen in the async kernel threads
906                  */
907                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
908                                           bio, 1);
909                 if (ret)
910                         goto out_w_error;
911                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
912                                     mirror_num, 0);
913         } else if (!async) {
914                 ret = btree_csum_one_bio(bio);
915                 if (ret)
916                         goto out_w_error;
917                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
918                                     mirror_num, 0);
919         } else {
920                 /*
921                  * kthread helpers are used to submit writes so that
922                  * checksumming can happen in parallel across all CPUs
923                  */
924                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
925                                           inode, rw, bio, mirror_num, 0,
926                                           bio_offset,
927                                           __btree_submit_bio_start,
928                                           __btree_submit_bio_done);
929         }
930
931         if (ret) {
932 out_w_error:
933                 bio_endio(bio, ret);
934         }
935         return ret;
936 }
937
938 #ifdef CONFIG_MIGRATION
939 static int btree_migratepage(struct address_space *mapping,
940                         struct page *newpage, struct page *page,
941                         enum migrate_mode mode)
942 {
943         /*
944          * we can't safely write a btree page from here,
945          * we haven't done the locking hook
946          */
947         if (PageDirty(page))
948                 return -EAGAIN;
949         /*
950          * Buffers may be managed in a filesystem specific way.
951          * We must have no buffers or drop them.
952          */
953         if (page_has_private(page) &&
954             !try_to_release_page(page, GFP_KERNEL))
955                 return -EAGAIN;
956         return migrate_page(mapping, newpage, page, mode);
957 }
958 #endif
959
960
961 static int btree_writepages(struct address_space *mapping,
962                             struct writeback_control *wbc)
963 {
964         struct btrfs_fs_info *fs_info;
965         int ret;
966
967         if (wbc->sync_mode == WB_SYNC_NONE) {
968
969                 if (wbc->for_kupdate)
970                         return 0;
971
972                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
973                 /* this is a bit racy, but that's ok */
974                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
975                                              BTRFS_DIRTY_METADATA_THRESH);
976                 if (ret < 0)
977                         return 0;
978         }
979         return btree_write_cache_pages(mapping, wbc);
980 }
981
982 static int btree_readpage(struct file *file, struct page *page)
983 {
984         struct extent_io_tree *tree;
985         tree = &BTRFS_I(page->mapping->host)->io_tree;
986         return extent_read_full_page(tree, page, btree_get_extent, 0);
987 }
988
989 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
990 {
991         if (PageWriteback(page) || PageDirty(page))
992                 return 0;
993
994         return try_release_extent_buffer(page);
995 }
996
997 static void btree_invalidatepage(struct page *page, unsigned int offset,
998                                  unsigned int length)
999 {
1000         struct extent_io_tree *tree;
1001         tree = &BTRFS_I(page->mapping->host)->io_tree;
1002         extent_invalidatepage(tree, page, offset);
1003         btree_releasepage(page, GFP_NOFS);
1004         if (PagePrivate(page)) {
1005                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1006                            "page private not zero on page %llu",
1007                            (unsigned long long)page_offset(page));
1008                 ClearPagePrivate(page);
1009                 set_page_private(page, 0);
1010                 page_cache_release(page);
1011         }
1012 }
1013
1014 static int btree_set_page_dirty(struct page *page)
1015 {
1016 #ifdef DEBUG
1017         struct extent_buffer *eb;
1018
1019         BUG_ON(!PagePrivate(page));
1020         eb = (struct extent_buffer *)page->private;
1021         BUG_ON(!eb);
1022         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1023         BUG_ON(!atomic_read(&eb->refs));
1024         btrfs_assert_tree_locked(eb);
1025 #endif
1026         return __set_page_dirty_nobuffers(page);
1027 }
1028
1029 static const struct address_space_operations btree_aops = {
1030         .readpage       = btree_readpage,
1031         .writepages     = btree_writepages,
1032         .releasepage    = btree_releasepage,
1033         .invalidatepage = btree_invalidatepage,
1034 #ifdef CONFIG_MIGRATION
1035         .migratepage    = btree_migratepage,
1036 #endif
1037         .set_page_dirty = btree_set_page_dirty,
1038 };
1039
1040 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1041                          u64 parent_transid)
1042 {
1043         struct extent_buffer *buf = NULL;
1044         struct inode *btree_inode = root->fs_info->btree_inode;
1045         int ret = 0;
1046
1047         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1048         if (!buf)
1049                 return 0;
1050         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1051                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1052         free_extent_buffer(buf);
1053         return ret;
1054 }
1055
1056 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1057                          int mirror_num, struct extent_buffer **eb)
1058 {
1059         struct extent_buffer *buf = NULL;
1060         struct inode *btree_inode = root->fs_info->btree_inode;
1061         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1062         int ret;
1063
1064         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1065         if (!buf)
1066                 return 0;
1067
1068         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1069
1070         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1071                                        btree_get_extent, mirror_num);
1072         if (ret) {
1073                 free_extent_buffer(buf);
1074                 return ret;
1075         }
1076
1077         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1078                 free_extent_buffer(buf);
1079                 return -EIO;
1080         } else if (extent_buffer_uptodate(buf)) {
1081                 *eb = buf;
1082         } else {
1083                 free_extent_buffer(buf);
1084         }
1085         return 0;
1086 }
1087
1088 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1089                                             u64 bytenr, u32 blocksize)
1090 {
1091         return find_extent_buffer(root->fs_info, bytenr);
1092 }
1093
1094 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1095                                                  u64 bytenr, u32 blocksize)
1096 {
1097         return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1098 }
1099
1100
1101 int btrfs_write_tree_block(struct extent_buffer *buf)
1102 {
1103         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1104                                         buf->start + buf->len - 1);
1105 }
1106
1107 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1108 {
1109         return filemap_fdatawait_range(buf->pages[0]->mapping,
1110                                        buf->start, buf->start + buf->len - 1);
1111 }
1112
1113 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1114                                       u32 blocksize, u64 parent_transid)
1115 {
1116         struct extent_buffer *buf = NULL;
1117         int ret;
1118
1119         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1120         if (!buf)
1121                 return NULL;
1122
1123         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1124         if (ret) {
1125                 free_extent_buffer(buf);
1126                 return NULL;
1127         }
1128         return buf;
1129
1130 }
1131
1132 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1133                       struct extent_buffer *buf)
1134 {
1135         struct btrfs_fs_info *fs_info = root->fs_info;
1136
1137         if (btrfs_header_generation(buf) ==
1138             fs_info->running_transaction->transid) {
1139                 btrfs_assert_tree_locked(buf);
1140
1141                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1142                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1143                                              -buf->len,
1144                                              fs_info->dirty_metadata_batch);
1145                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1146                         btrfs_set_lock_blocking(buf);
1147                         clear_extent_buffer_dirty(buf);
1148                 }
1149         }
1150 }
1151
1152 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1153                          u32 stripesize, struct btrfs_root *root,
1154                          struct btrfs_fs_info *fs_info,
1155                          u64 objectid)
1156 {
1157         root->node = NULL;
1158         root->commit_root = NULL;
1159         root->sectorsize = sectorsize;
1160         root->nodesize = nodesize;
1161         root->leafsize = leafsize;
1162         root->stripesize = stripesize;
1163         root->ref_cows = 0;
1164         root->track_dirty = 0;
1165         root->in_radix = 0;
1166         root->orphan_item_inserted = 0;
1167         root->orphan_cleanup_state = 0;
1168
1169         root->objectid = objectid;
1170         root->last_trans = 0;
1171         root->highest_objectid = 0;
1172         root->nr_delalloc_inodes = 0;
1173         root->nr_ordered_extents = 0;
1174         root->name = NULL;
1175         root->inode_tree = RB_ROOT;
1176         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1177         root->block_rsv = NULL;
1178         root->orphan_block_rsv = NULL;
1179
1180         INIT_LIST_HEAD(&root->dirty_list);
1181         INIT_LIST_HEAD(&root->root_list);
1182         INIT_LIST_HEAD(&root->delalloc_inodes);
1183         INIT_LIST_HEAD(&root->delalloc_root);
1184         INIT_LIST_HEAD(&root->ordered_extents);
1185         INIT_LIST_HEAD(&root->ordered_root);
1186         INIT_LIST_HEAD(&root->logged_list[0]);
1187         INIT_LIST_HEAD(&root->logged_list[1]);
1188         spin_lock_init(&root->orphan_lock);
1189         spin_lock_init(&root->inode_lock);
1190         spin_lock_init(&root->delalloc_lock);
1191         spin_lock_init(&root->ordered_extent_lock);
1192         spin_lock_init(&root->accounting_lock);
1193         spin_lock_init(&root->log_extents_lock[0]);
1194         spin_lock_init(&root->log_extents_lock[1]);
1195         mutex_init(&root->objectid_mutex);
1196         mutex_init(&root->log_mutex);
1197         init_waitqueue_head(&root->log_writer_wait);
1198         init_waitqueue_head(&root->log_commit_wait[0]);
1199         init_waitqueue_head(&root->log_commit_wait[1]);
1200         INIT_LIST_HEAD(&root->log_ctxs[0]);
1201         INIT_LIST_HEAD(&root->log_ctxs[1]);
1202         atomic_set(&root->log_commit[0], 0);
1203         atomic_set(&root->log_commit[1], 0);
1204         atomic_set(&root->log_writers, 0);
1205         atomic_set(&root->log_batch, 0);
1206         atomic_set(&root->orphan_inodes, 0);
1207         atomic_set(&root->refs, 1);
1208         root->log_transid = 0;
1209         root->log_transid_committed = -1;
1210         root->last_log_commit = 0;
1211         if (fs_info)
1212                 extent_io_tree_init(&root->dirty_log_pages,
1213                                      fs_info->btree_inode->i_mapping);
1214
1215         memset(&root->root_key, 0, sizeof(root->root_key));
1216         memset(&root->root_item, 0, sizeof(root->root_item));
1217         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1218         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1219         if (fs_info)
1220                 root->defrag_trans_start = fs_info->generation;
1221         else
1222                 root->defrag_trans_start = 0;
1223         init_completion(&root->kobj_unregister);
1224         root->defrag_running = 0;
1225         root->root_key.objectid = objectid;
1226         root->anon_dev = 0;
1227
1228         spin_lock_init(&root->root_item_lock);
1229 }
1230
1231 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1232 {
1233         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1234         if (root)
1235                 root->fs_info = fs_info;
1236         return root;
1237 }
1238
1239 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1240 /* Should only be used by the testing infrastructure */
1241 struct btrfs_root *btrfs_alloc_dummy_root(void)
1242 {
1243         struct btrfs_root *root;
1244
1245         root = btrfs_alloc_root(NULL);
1246         if (!root)
1247                 return ERR_PTR(-ENOMEM);
1248         __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1249         root->dummy_root = 1;
1250
1251         return root;
1252 }
1253 #endif
1254
1255 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1256                                      struct btrfs_fs_info *fs_info,
1257                                      u64 objectid)
1258 {
1259         struct extent_buffer *leaf;
1260         struct btrfs_root *tree_root = fs_info->tree_root;
1261         struct btrfs_root *root;
1262         struct btrfs_key key;
1263         int ret = 0;
1264         uuid_le uuid;
1265
1266         root = btrfs_alloc_root(fs_info);
1267         if (!root)
1268                 return ERR_PTR(-ENOMEM);
1269
1270         __setup_root(tree_root->nodesize, tree_root->leafsize,
1271                      tree_root->sectorsize, tree_root->stripesize,
1272                      root, fs_info, objectid);
1273         root->root_key.objectid = objectid;
1274         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1275         root->root_key.offset = 0;
1276
1277         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1278                                       0, objectid, NULL, 0, 0, 0);
1279         if (IS_ERR(leaf)) {
1280                 ret = PTR_ERR(leaf);
1281                 leaf = NULL;
1282                 goto fail;
1283         }
1284
1285         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1286         btrfs_set_header_bytenr(leaf, leaf->start);
1287         btrfs_set_header_generation(leaf, trans->transid);
1288         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1289         btrfs_set_header_owner(leaf, objectid);
1290         root->node = leaf;
1291
1292         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1293                             BTRFS_FSID_SIZE);
1294         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1295                             btrfs_header_chunk_tree_uuid(leaf),
1296                             BTRFS_UUID_SIZE);
1297         btrfs_mark_buffer_dirty(leaf);
1298
1299         root->commit_root = btrfs_root_node(root);
1300         root->track_dirty = 1;
1301
1302
1303         root->root_item.flags = 0;
1304         root->root_item.byte_limit = 0;
1305         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1306         btrfs_set_root_generation(&root->root_item, trans->transid);
1307         btrfs_set_root_level(&root->root_item, 0);
1308         btrfs_set_root_refs(&root->root_item, 1);
1309         btrfs_set_root_used(&root->root_item, leaf->len);
1310         btrfs_set_root_last_snapshot(&root->root_item, 0);
1311         btrfs_set_root_dirid(&root->root_item, 0);
1312         uuid_le_gen(&uuid);
1313         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1314         root->root_item.drop_level = 0;
1315
1316         key.objectid = objectid;
1317         key.type = BTRFS_ROOT_ITEM_KEY;
1318         key.offset = 0;
1319         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1320         if (ret)
1321                 goto fail;
1322
1323         btrfs_tree_unlock(leaf);
1324
1325         return root;
1326
1327 fail:
1328         if (leaf) {
1329                 btrfs_tree_unlock(leaf);
1330                 free_extent_buffer(leaf);
1331         }
1332         kfree(root);
1333
1334         return ERR_PTR(ret);
1335 }
1336
1337 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1338                                          struct btrfs_fs_info *fs_info)
1339 {
1340         struct btrfs_root *root;
1341         struct btrfs_root *tree_root = fs_info->tree_root;
1342         struct extent_buffer *leaf;
1343
1344         root = btrfs_alloc_root(fs_info);
1345         if (!root)
1346                 return ERR_PTR(-ENOMEM);
1347
1348         __setup_root(tree_root->nodesize, tree_root->leafsize,
1349                      tree_root->sectorsize, tree_root->stripesize,
1350                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1351
1352         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1353         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1354         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1355         /*
1356          * log trees do not get reference counted because they go away
1357          * before a real commit is actually done.  They do store pointers
1358          * to file data extents, and those reference counts still get
1359          * updated (along with back refs to the log tree).
1360          */
1361         root->ref_cows = 0;
1362
1363         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1364                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1365                                       0, 0, 0);
1366         if (IS_ERR(leaf)) {
1367                 kfree(root);
1368                 return ERR_CAST(leaf);
1369         }
1370
1371         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1372         btrfs_set_header_bytenr(leaf, leaf->start);
1373         btrfs_set_header_generation(leaf, trans->transid);
1374         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1375         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1376         root->node = leaf;
1377
1378         write_extent_buffer(root->node, root->fs_info->fsid,
1379                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1380         btrfs_mark_buffer_dirty(root->node);
1381         btrfs_tree_unlock(root->node);
1382         return root;
1383 }
1384
1385 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1386                              struct btrfs_fs_info *fs_info)
1387 {
1388         struct btrfs_root *log_root;
1389
1390         log_root = alloc_log_tree(trans, fs_info);
1391         if (IS_ERR(log_root))
1392                 return PTR_ERR(log_root);
1393         WARN_ON(fs_info->log_root_tree);
1394         fs_info->log_root_tree = log_root;
1395         return 0;
1396 }
1397
1398 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1399                        struct btrfs_root *root)
1400 {
1401         struct btrfs_root *log_root;
1402         struct btrfs_inode_item *inode_item;
1403
1404         log_root = alloc_log_tree(trans, root->fs_info);
1405         if (IS_ERR(log_root))
1406                 return PTR_ERR(log_root);
1407
1408         log_root->last_trans = trans->transid;
1409         log_root->root_key.offset = root->root_key.objectid;
1410
1411         inode_item = &log_root->root_item.inode;
1412         btrfs_set_stack_inode_generation(inode_item, 1);
1413         btrfs_set_stack_inode_size(inode_item, 3);
1414         btrfs_set_stack_inode_nlink(inode_item, 1);
1415         btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1416         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1417
1418         btrfs_set_root_node(&log_root->root_item, log_root->node);
1419
1420         WARN_ON(root->log_root);
1421         root->log_root = log_root;
1422         root->log_transid = 0;
1423         root->log_transid_committed = -1;
1424         root->last_log_commit = 0;
1425         return 0;
1426 }
1427
1428 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1429                                                struct btrfs_key *key)
1430 {
1431         struct btrfs_root *root;
1432         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1433         struct btrfs_path *path;
1434         u64 generation;
1435         u32 blocksize;
1436         int ret;
1437
1438         path = btrfs_alloc_path();
1439         if (!path)
1440                 return ERR_PTR(-ENOMEM);
1441
1442         root = btrfs_alloc_root(fs_info);
1443         if (!root) {
1444                 ret = -ENOMEM;
1445                 goto alloc_fail;
1446         }
1447
1448         __setup_root(tree_root->nodesize, tree_root->leafsize,
1449                      tree_root->sectorsize, tree_root->stripesize,
1450                      root, fs_info, key->objectid);
1451
1452         ret = btrfs_find_root(tree_root, key, path,
1453                               &root->root_item, &root->root_key);
1454         if (ret) {
1455                 if (ret > 0)
1456                         ret = -ENOENT;
1457                 goto find_fail;
1458         }
1459
1460         generation = btrfs_root_generation(&root->root_item);
1461         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1462         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1463                                      blocksize, generation);
1464         if (!root->node) {
1465                 ret = -ENOMEM;
1466                 goto find_fail;
1467         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1468                 ret = -EIO;
1469                 goto read_fail;
1470         }
1471         root->commit_root = btrfs_root_node(root);
1472 out:
1473         btrfs_free_path(path);
1474         return root;
1475
1476 read_fail:
1477         free_extent_buffer(root->node);
1478 find_fail:
1479         kfree(root);
1480 alloc_fail:
1481         root = ERR_PTR(ret);
1482         goto out;
1483 }
1484
1485 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1486                                       struct btrfs_key *location)
1487 {
1488         struct btrfs_root *root;
1489
1490         root = btrfs_read_tree_root(tree_root, location);
1491         if (IS_ERR(root))
1492                 return root;
1493
1494         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1495                 root->ref_cows = 1;
1496                 btrfs_check_and_init_root_item(&root->root_item);
1497         }
1498
1499         return root;
1500 }
1501
1502 int btrfs_init_fs_root(struct btrfs_root *root)
1503 {
1504         int ret;
1505
1506         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1507         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1508                                         GFP_NOFS);
1509         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1510                 ret = -ENOMEM;
1511                 goto fail;
1512         }
1513
1514         btrfs_init_free_ino_ctl(root);
1515         mutex_init(&root->fs_commit_mutex);
1516         spin_lock_init(&root->cache_lock);
1517         init_waitqueue_head(&root->cache_wait);
1518
1519         ret = get_anon_bdev(&root->anon_dev);
1520         if (ret)
1521                 goto fail;
1522         return 0;
1523 fail:
1524         kfree(root->free_ino_ctl);
1525         kfree(root->free_ino_pinned);
1526         return ret;
1527 }
1528
1529 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1530                                                u64 root_id)
1531 {
1532         struct btrfs_root *root;
1533
1534         spin_lock(&fs_info->fs_roots_radix_lock);
1535         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1536                                  (unsigned long)root_id);
1537         spin_unlock(&fs_info->fs_roots_radix_lock);
1538         return root;
1539 }
1540
1541 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1542                          struct btrfs_root *root)
1543 {
1544         int ret;
1545
1546         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1547         if (ret)
1548                 return ret;
1549
1550         spin_lock(&fs_info->fs_roots_radix_lock);
1551         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1552                                 (unsigned long)root->root_key.objectid,
1553                                 root);
1554         if (ret == 0)
1555                 root->in_radix = 1;
1556         spin_unlock(&fs_info->fs_roots_radix_lock);
1557         radix_tree_preload_end();
1558
1559         return ret;
1560 }
1561
1562 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1563                                      struct btrfs_key *location,
1564                                      bool check_ref)
1565 {
1566         struct btrfs_root *root;
1567         int ret;
1568
1569         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1570                 return fs_info->tree_root;
1571         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1572                 return fs_info->extent_root;
1573         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1574                 return fs_info->chunk_root;
1575         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1576                 return fs_info->dev_root;
1577         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1578                 return fs_info->csum_root;
1579         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1580                 return fs_info->quota_root ? fs_info->quota_root :
1581                                              ERR_PTR(-ENOENT);
1582         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1583                 return fs_info->uuid_root ? fs_info->uuid_root :
1584                                             ERR_PTR(-ENOENT);
1585 again:
1586         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1587         if (root) {
1588                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1589                         return ERR_PTR(-ENOENT);
1590                 return root;
1591         }
1592
1593         root = btrfs_read_fs_root(fs_info->tree_root, location);
1594         if (IS_ERR(root))
1595                 return root;
1596
1597         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1598                 ret = -ENOENT;
1599                 goto fail;
1600         }
1601
1602         ret = btrfs_init_fs_root(root);
1603         if (ret)
1604                 goto fail;
1605
1606         ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1607                         location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1608         if (ret < 0)
1609                 goto fail;
1610         if (ret == 0)
1611                 root->orphan_item_inserted = 1;
1612
1613         ret = btrfs_insert_fs_root(fs_info, root);
1614         if (ret) {
1615                 if (ret == -EEXIST) {
1616                         free_fs_root(root);
1617                         goto again;
1618                 }
1619                 goto fail;
1620         }
1621         return root;
1622 fail:
1623         free_fs_root(root);
1624         return ERR_PTR(ret);
1625 }
1626
1627 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1628 {
1629         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1630         int ret = 0;
1631         struct btrfs_device *device;
1632         struct backing_dev_info *bdi;
1633
1634         rcu_read_lock();
1635         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1636                 if (!device->bdev)
1637                         continue;
1638                 bdi = blk_get_backing_dev_info(device->bdev);
1639                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1640                         ret = 1;
1641                         break;
1642                 }
1643         }
1644         rcu_read_unlock();
1645         return ret;
1646 }
1647
1648 /*
1649  * If this fails, caller must call bdi_destroy() to get rid of the
1650  * bdi again.
1651  */
1652 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1653 {
1654         int err;
1655
1656         bdi->capabilities = BDI_CAP_MAP_COPY;
1657         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1658         if (err)
1659                 return err;
1660
1661         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1662         bdi->congested_fn       = btrfs_congested_fn;
1663         bdi->congested_data     = info;
1664         return 0;
1665 }
1666
1667 /*
1668  * called by the kthread helper functions to finally call the bio end_io
1669  * functions.  This is where read checksum verification actually happens
1670  */
1671 static void end_workqueue_fn(struct btrfs_work_struct *work)
1672 {
1673         struct bio *bio;
1674         struct end_io_wq *end_io_wq;
1675         int error;
1676
1677         end_io_wq = container_of(work, struct end_io_wq, work);
1678         bio = end_io_wq->bio;
1679
1680         error = end_io_wq->error;
1681         bio->bi_private = end_io_wq->private;
1682         bio->bi_end_io = end_io_wq->end_io;
1683         kfree(end_io_wq);
1684         bio_endio(bio, error);
1685 }
1686
1687 static int cleaner_kthread(void *arg)
1688 {
1689         struct btrfs_root *root = arg;
1690         int again;
1691
1692         do {
1693                 again = 0;
1694
1695                 /* Make the cleaner go to sleep early. */
1696                 if (btrfs_need_cleaner_sleep(root))
1697                         goto sleep;
1698
1699                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1700                         goto sleep;
1701
1702                 /*
1703                  * Avoid the problem that we change the status of the fs
1704                  * during the above check and trylock.
1705                  */
1706                 if (btrfs_need_cleaner_sleep(root)) {
1707                         mutex_unlock(&root->fs_info->cleaner_mutex);
1708                         goto sleep;
1709                 }
1710
1711                 btrfs_run_delayed_iputs(root);
1712                 again = btrfs_clean_one_deleted_snapshot(root);
1713                 mutex_unlock(&root->fs_info->cleaner_mutex);
1714
1715                 /*
1716                  * The defragger has dealt with the R/O remount and umount,
1717                  * needn't do anything special here.
1718                  */
1719                 btrfs_run_defrag_inodes(root->fs_info);
1720 sleep:
1721                 if (!try_to_freeze() && !again) {
1722                         set_current_state(TASK_INTERRUPTIBLE);
1723                         if (!kthread_should_stop())
1724                                 schedule();
1725                         __set_current_state(TASK_RUNNING);
1726                 }
1727         } while (!kthread_should_stop());
1728         return 0;
1729 }
1730
1731 static int transaction_kthread(void *arg)
1732 {
1733         struct btrfs_root *root = arg;
1734         struct btrfs_trans_handle *trans;
1735         struct btrfs_transaction *cur;
1736         u64 transid;
1737         unsigned long now;
1738         unsigned long delay;
1739         bool cannot_commit;
1740
1741         do {
1742                 cannot_commit = false;
1743                 delay = HZ * root->fs_info->commit_interval;
1744                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1745
1746                 spin_lock(&root->fs_info->trans_lock);
1747                 cur = root->fs_info->running_transaction;
1748                 if (!cur) {
1749                         spin_unlock(&root->fs_info->trans_lock);
1750                         goto sleep;
1751                 }
1752
1753                 now = get_seconds();
1754                 if (cur->state < TRANS_STATE_BLOCKED &&
1755                     (now < cur->start_time ||
1756                      now - cur->start_time < root->fs_info->commit_interval)) {
1757                         spin_unlock(&root->fs_info->trans_lock);
1758                         delay = HZ * 5;
1759                         goto sleep;
1760                 }
1761                 transid = cur->transid;
1762                 spin_unlock(&root->fs_info->trans_lock);
1763
1764                 /* If the file system is aborted, this will always fail. */
1765                 trans = btrfs_attach_transaction(root);
1766                 if (IS_ERR(trans)) {
1767                         if (PTR_ERR(trans) != -ENOENT)
1768                                 cannot_commit = true;
1769                         goto sleep;
1770                 }
1771                 if (transid == trans->transid) {
1772                         btrfs_commit_transaction(trans, root);
1773                 } else {
1774                         btrfs_end_transaction(trans, root);
1775                 }
1776 sleep:
1777                 wake_up_process(root->fs_info->cleaner_kthread);
1778                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1779
1780                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1781                                       &root->fs_info->fs_state)))
1782                         btrfs_cleanup_transaction(root);
1783                 if (!try_to_freeze()) {
1784                         set_current_state(TASK_INTERRUPTIBLE);
1785                         if (!kthread_should_stop() &&
1786                             (!btrfs_transaction_blocked(root->fs_info) ||
1787                              cannot_commit))
1788                                 schedule_timeout(delay);
1789                         __set_current_state(TASK_RUNNING);
1790                 }
1791         } while (!kthread_should_stop());
1792         return 0;
1793 }
1794
1795 /*
1796  * this will find the highest generation in the array of
1797  * root backups.  The index of the highest array is returned,
1798  * or -1 if we can't find anything.
1799  *
1800  * We check to make sure the array is valid by comparing the
1801  * generation of the latest  root in the array with the generation
1802  * in the super block.  If they don't match we pitch it.
1803  */
1804 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1805 {
1806         u64 cur;
1807         int newest_index = -1;
1808         struct btrfs_root_backup *root_backup;
1809         int i;
1810
1811         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1812                 root_backup = info->super_copy->super_roots + i;
1813                 cur = btrfs_backup_tree_root_gen(root_backup);
1814                 if (cur == newest_gen)
1815                         newest_index = i;
1816         }
1817
1818         /* check to see if we actually wrapped around */
1819         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1820                 root_backup = info->super_copy->super_roots;
1821                 cur = btrfs_backup_tree_root_gen(root_backup);
1822                 if (cur == newest_gen)
1823                         newest_index = 0;
1824         }
1825         return newest_index;
1826 }
1827
1828
1829 /*
1830  * find the oldest backup so we know where to store new entries
1831  * in the backup array.  This will set the backup_root_index
1832  * field in the fs_info struct
1833  */
1834 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1835                                      u64 newest_gen)
1836 {
1837         int newest_index = -1;
1838
1839         newest_index = find_newest_super_backup(info, newest_gen);
1840         /* if there was garbage in there, just move along */
1841         if (newest_index == -1) {
1842                 info->backup_root_index = 0;
1843         } else {
1844                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1845         }
1846 }
1847
1848 /*
1849  * copy all the root pointers into the super backup array.
1850  * this will bump the backup pointer by one when it is
1851  * done
1852  */
1853 static void backup_super_roots(struct btrfs_fs_info *info)
1854 {
1855         int next_backup;
1856         struct btrfs_root_backup *root_backup;
1857         int last_backup;
1858
1859         next_backup = info->backup_root_index;
1860         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1861                 BTRFS_NUM_BACKUP_ROOTS;
1862
1863         /*
1864          * just overwrite the last backup if we're at the same generation
1865          * this happens only at umount
1866          */
1867         root_backup = info->super_for_commit->super_roots + last_backup;
1868         if (btrfs_backup_tree_root_gen(root_backup) ==
1869             btrfs_header_generation(info->tree_root->node))
1870                 next_backup = last_backup;
1871
1872         root_backup = info->super_for_commit->super_roots + next_backup;
1873
1874         /*
1875          * make sure all of our padding and empty slots get zero filled
1876          * regardless of which ones we use today
1877          */
1878         memset(root_backup, 0, sizeof(*root_backup));
1879
1880         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1881
1882         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1883         btrfs_set_backup_tree_root_gen(root_backup,
1884                                btrfs_header_generation(info->tree_root->node));
1885
1886         btrfs_set_backup_tree_root_level(root_backup,
1887                                btrfs_header_level(info->tree_root->node));
1888
1889         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1890         btrfs_set_backup_chunk_root_gen(root_backup,
1891                                btrfs_header_generation(info->chunk_root->node));
1892         btrfs_set_backup_chunk_root_level(root_backup,
1893                                btrfs_header_level(info->chunk_root->node));
1894
1895         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1896         btrfs_set_backup_extent_root_gen(root_backup,
1897                                btrfs_header_generation(info->extent_root->node));
1898         btrfs_set_backup_extent_root_level(root_backup,
1899                                btrfs_header_level(info->extent_root->node));
1900
1901         /*
1902          * we might commit during log recovery, which happens before we set
1903          * the fs_root.  Make sure it is valid before we fill it in.
1904          */
1905         if (info->fs_root && info->fs_root->node) {
1906                 btrfs_set_backup_fs_root(root_backup,
1907                                          info->fs_root->node->start);
1908                 btrfs_set_backup_fs_root_gen(root_backup,
1909                                btrfs_header_generation(info->fs_root->node));
1910                 btrfs_set_backup_fs_root_level(root_backup,
1911                                btrfs_header_level(info->fs_root->node));
1912         }
1913
1914         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1915         btrfs_set_backup_dev_root_gen(root_backup,
1916                                btrfs_header_generation(info->dev_root->node));
1917         btrfs_set_backup_dev_root_level(root_backup,
1918                                        btrfs_header_level(info->dev_root->node));
1919
1920         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1921         btrfs_set_backup_csum_root_gen(root_backup,
1922                                btrfs_header_generation(info->csum_root->node));
1923         btrfs_set_backup_csum_root_level(root_backup,
1924                                btrfs_header_level(info->csum_root->node));
1925
1926         btrfs_set_backup_total_bytes(root_backup,
1927                              btrfs_super_total_bytes(info->super_copy));
1928         btrfs_set_backup_bytes_used(root_backup,
1929                              btrfs_super_bytes_used(info->super_copy));
1930         btrfs_set_backup_num_devices(root_backup,
1931                              btrfs_super_num_devices(info->super_copy));
1932
1933         /*
1934          * if we don't copy this out to the super_copy, it won't get remembered
1935          * for the next commit
1936          */
1937         memcpy(&info->super_copy->super_roots,
1938                &info->super_for_commit->super_roots,
1939                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1940 }
1941
1942 /*
1943  * this copies info out of the root backup array and back into
1944  * the in-memory super block.  It is meant to help iterate through
1945  * the array, so you send it the number of backups you've already
1946  * tried and the last backup index you used.
1947  *
1948  * this returns -1 when it has tried all the backups
1949  */
1950 static noinline int next_root_backup(struct btrfs_fs_info *info,
1951                                      struct btrfs_super_block *super,
1952                                      int *num_backups_tried, int *backup_index)
1953 {
1954         struct btrfs_root_backup *root_backup;
1955         int newest = *backup_index;
1956
1957         if (*num_backups_tried == 0) {
1958                 u64 gen = btrfs_super_generation(super);
1959
1960                 newest = find_newest_super_backup(info, gen);
1961                 if (newest == -1)
1962                         return -1;
1963
1964                 *backup_index = newest;
1965                 *num_backups_tried = 1;
1966         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1967                 /* we've tried all the backups, all done */
1968                 return -1;
1969         } else {
1970                 /* jump to the next oldest backup */
1971                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1972                         BTRFS_NUM_BACKUP_ROOTS;
1973                 *backup_index = newest;
1974                 *num_backups_tried += 1;
1975         }
1976         root_backup = super->super_roots + newest;
1977
1978         btrfs_set_super_generation(super,
1979                                    btrfs_backup_tree_root_gen(root_backup));
1980         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1981         btrfs_set_super_root_level(super,
1982                                    btrfs_backup_tree_root_level(root_backup));
1983         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1984
1985         /*
1986          * fixme: the total bytes and num_devices need to match or we should
1987          * need a fsck
1988          */
1989         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1990         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1991         return 0;
1992 }
1993
1994 /* helper to cleanup workers */
1995 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1996 {
1997         btrfs_stop_workers(&fs_info->generic_worker);
1998         btrfs_destroy_workqueue(fs_info->fixup_workers);
1999         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2000         btrfs_destroy_workqueue(fs_info->workers);
2001         btrfs_destroy_workqueue(fs_info->endio_workers);
2002         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2003         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2004         btrfs_destroy_workqueue(fs_info->rmw_workers);
2005         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2006         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2007         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2008         btrfs_destroy_workqueue(fs_info->submit_workers);
2009         btrfs_destroy_workqueue(fs_info->delayed_workers);
2010         btrfs_destroy_workqueue(fs_info->caching_workers);
2011         btrfs_destroy_workqueue(fs_info->readahead_workers);
2012         btrfs_destroy_workqueue(fs_info->flush_workers);
2013         btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
2014 }
2015
2016 static void free_root_extent_buffers(struct btrfs_root *root)
2017 {
2018         if (root) {
2019                 free_extent_buffer(root->node);
2020                 free_extent_buffer(root->commit_root);
2021                 root->node = NULL;
2022                 root->commit_root = NULL;
2023         }
2024 }
2025
2026 /* helper to cleanup tree roots */
2027 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2028 {
2029         free_root_extent_buffers(info->tree_root);
2030
2031         free_root_extent_buffers(info->dev_root);
2032         free_root_extent_buffers(info->extent_root);
2033         free_root_extent_buffers(info->csum_root);
2034         free_root_extent_buffers(info->quota_root);
2035         free_root_extent_buffers(info->uuid_root);
2036         if (chunk_root)
2037                 free_root_extent_buffers(info->chunk_root);
2038 }
2039
2040 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2041 {
2042         int ret;
2043         struct btrfs_root *gang[8];
2044         int i;
2045
2046         while (!list_empty(&fs_info->dead_roots)) {
2047                 gang[0] = list_entry(fs_info->dead_roots.next,
2048                                      struct btrfs_root, root_list);
2049                 list_del(&gang[0]->root_list);
2050
2051                 if (gang[0]->in_radix) {
2052                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2053                 } else {
2054                         free_extent_buffer(gang[0]->node);
2055                         free_extent_buffer(gang[0]->commit_root);
2056                         btrfs_put_fs_root(gang[0]);
2057                 }
2058         }
2059
2060         while (1) {
2061                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2062                                              (void **)gang, 0,
2063                                              ARRAY_SIZE(gang));
2064                 if (!ret)
2065                         break;
2066                 for (i = 0; i < ret; i++)
2067                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2068         }
2069
2070         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2071                 btrfs_free_log_root_tree(NULL, fs_info);
2072                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2073                                             fs_info->pinned_extents);
2074         }
2075 }
2076
2077 int open_ctree(struct super_block *sb,
2078                struct btrfs_fs_devices *fs_devices,
2079                char *options)
2080 {
2081         u32 sectorsize;
2082         u32 nodesize;
2083         u32 leafsize;
2084         u32 blocksize;
2085         u32 stripesize;
2086         u64 generation;
2087         u64 features;
2088         struct btrfs_key location;
2089         struct buffer_head *bh;
2090         struct btrfs_super_block *disk_super;
2091         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2092         struct btrfs_root *tree_root;
2093         struct btrfs_root *extent_root;
2094         struct btrfs_root *csum_root;
2095         struct btrfs_root *chunk_root;
2096         struct btrfs_root *dev_root;
2097         struct btrfs_root *quota_root;
2098         struct btrfs_root *uuid_root;
2099         struct btrfs_root *log_tree_root;
2100         int ret;
2101         int err = -EINVAL;
2102         int num_backups_tried = 0;
2103         int backup_index = 0;
2104         int max_active;
2105         int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2106         bool create_uuid_tree;
2107         bool check_uuid_tree;
2108
2109         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2110         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2111         if (!tree_root || !chunk_root) {
2112                 err = -ENOMEM;
2113                 goto fail;
2114         }
2115
2116         ret = init_srcu_struct(&fs_info->subvol_srcu);
2117         if (ret) {
2118                 err = ret;
2119                 goto fail;
2120         }
2121
2122         ret = setup_bdi(fs_info, &fs_info->bdi);
2123         if (ret) {
2124                 err = ret;
2125                 goto fail_srcu;
2126         }
2127
2128         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2129         if (ret) {
2130                 err = ret;
2131                 goto fail_bdi;
2132         }
2133         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2134                                         (1 + ilog2(nr_cpu_ids));
2135
2136         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2137         if (ret) {
2138                 err = ret;
2139                 goto fail_dirty_metadata_bytes;
2140         }
2141
2142         ret = percpu_counter_init(&fs_info->bio_counter, 0);
2143         if (ret) {
2144                 err = ret;
2145                 goto fail_delalloc_bytes;
2146         }
2147
2148         fs_info->btree_inode = new_inode(sb);
2149         if (!fs_info->btree_inode) {
2150                 err = -ENOMEM;
2151                 goto fail_bio_counter;
2152         }
2153
2154         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2155
2156         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2157         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2158         INIT_LIST_HEAD(&fs_info->trans_list);
2159         INIT_LIST_HEAD(&fs_info->dead_roots);
2160         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2161         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2162         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2163         spin_lock_init(&fs_info->delalloc_root_lock);
2164         spin_lock_init(&fs_info->trans_lock);
2165         spin_lock_init(&fs_info->fs_roots_radix_lock);
2166         spin_lock_init(&fs_info->delayed_iput_lock);
2167         spin_lock_init(&fs_info->defrag_inodes_lock);
2168         spin_lock_init(&fs_info->free_chunk_lock);
2169         spin_lock_init(&fs_info->tree_mod_seq_lock);
2170         spin_lock_init(&fs_info->super_lock);
2171         spin_lock_init(&fs_info->buffer_lock);
2172         rwlock_init(&fs_info->tree_mod_log_lock);
2173         mutex_init(&fs_info->reloc_mutex);
2174         seqlock_init(&fs_info->profiles_lock);
2175
2176         init_completion(&fs_info->kobj_unregister);
2177         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2178         INIT_LIST_HEAD(&fs_info->space_info);
2179         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2180         btrfs_mapping_init(&fs_info->mapping_tree);
2181         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2182                              BTRFS_BLOCK_RSV_GLOBAL);
2183         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2184                              BTRFS_BLOCK_RSV_DELALLOC);
2185         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2186         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2187         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2188         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2189                              BTRFS_BLOCK_RSV_DELOPS);
2190         atomic_set(&fs_info->nr_async_submits, 0);
2191         atomic_set(&fs_info->async_delalloc_pages, 0);
2192         atomic_set(&fs_info->async_submit_draining, 0);
2193         atomic_set(&fs_info->nr_async_bios, 0);
2194         atomic_set(&fs_info->defrag_running, 0);
2195         atomic64_set(&fs_info->tree_mod_seq, 0);
2196         fs_info->sb = sb;
2197         fs_info->max_inline = 8192 * 1024;
2198         fs_info->metadata_ratio = 0;
2199         fs_info->defrag_inodes = RB_ROOT;
2200         fs_info->free_chunk_space = 0;
2201         fs_info->tree_mod_log = RB_ROOT;
2202         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2203         fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2204         /* readahead state */
2205         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2206         spin_lock_init(&fs_info->reada_lock);
2207
2208         fs_info->thread_pool_size = min_t(unsigned long,
2209                                           num_online_cpus() + 2, 8);
2210
2211         INIT_LIST_HEAD(&fs_info->ordered_roots);
2212         spin_lock_init(&fs_info->ordered_root_lock);
2213         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2214                                         GFP_NOFS);
2215         if (!fs_info->delayed_root) {
2216                 err = -ENOMEM;
2217                 goto fail_iput;
2218         }
2219         btrfs_init_delayed_root(fs_info->delayed_root);
2220
2221         mutex_init(&fs_info->scrub_lock);
2222         atomic_set(&fs_info->scrubs_running, 0);
2223         atomic_set(&fs_info->scrub_pause_req, 0);
2224         atomic_set(&fs_info->scrubs_paused, 0);
2225         atomic_set(&fs_info->scrub_cancel_req, 0);
2226         init_waitqueue_head(&fs_info->replace_wait);
2227         init_waitqueue_head(&fs_info->scrub_pause_wait);
2228         fs_info->scrub_workers_refcnt = 0;
2229 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2230         fs_info->check_integrity_print_mask = 0;
2231 #endif
2232
2233         spin_lock_init(&fs_info->balance_lock);
2234         mutex_init(&fs_info->balance_mutex);
2235         atomic_set(&fs_info->balance_running, 0);
2236         atomic_set(&fs_info->balance_pause_req, 0);
2237         atomic_set(&fs_info->balance_cancel_req, 0);
2238         fs_info->balance_ctl = NULL;
2239         init_waitqueue_head(&fs_info->balance_wait_q);
2240
2241         sb->s_blocksize = 4096;
2242         sb->s_blocksize_bits = blksize_bits(4096);
2243         sb->s_bdi = &fs_info->bdi;
2244
2245         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2246         set_nlink(fs_info->btree_inode, 1);
2247         /*
2248          * we set the i_size on the btree inode to the max possible int.
2249          * the real end of the address space is determined by all of
2250          * the devices in the system
2251          */
2252         fs_info->btree_inode->i_size = OFFSET_MAX;
2253         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2254         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2255
2256         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2257         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2258                              fs_info->btree_inode->i_mapping);
2259         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2260         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2261
2262         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2263
2264         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2265         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2266                sizeof(struct btrfs_key));
2267         set_bit(BTRFS_INODE_DUMMY,
2268                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2269         btrfs_insert_inode_hash(fs_info->btree_inode);
2270
2271         spin_lock_init(&fs_info->block_group_cache_lock);
2272         fs_info->block_group_cache_tree = RB_ROOT;
2273         fs_info->first_logical_byte = (u64)-1;
2274
2275         extent_io_tree_init(&fs_info->freed_extents[0],
2276                              fs_info->btree_inode->i_mapping);
2277         extent_io_tree_init(&fs_info->freed_extents[1],
2278                              fs_info->btree_inode->i_mapping);
2279         fs_info->pinned_extents = &fs_info->freed_extents[0];
2280         fs_info->do_barriers = 1;
2281
2282
2283         mutex_init(&fs_info->ordered_operations_mutex);
2284         mutex_init(&fs_info->ordered_extent_flush_mutex);
2285         mutex_init(&fs_info->tree_log_mutex);
2286         mutex_init(&fs_info->chunk_mutex);
2287         mutex_init(&fs_info->transaction_kthread_mutex);
2288         mutex_init(&fs_info->cleaner_mutex);
2289         mutex_init(&fs_info->volume_mutex);
2290         init_rwsem(&fs_info->extent_commit_sem);
2291         init_rwsem(&fs_info->cleanup_work_sem);
2292         init_rwsem(&fs_info->subvol_sem);
2293         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2294         fs_info->dev_replace.lock_owner = 0;
2295         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2296         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2297         mutex_init(&fs_info->dev_replace.lock_management_lock);
2298         mutex_init(&fs_info->dev_replace.lock);
2299
2300         spin_lock_init(&fs_info->qgroup_lock);
2301         mutex_init(&fs_info->qgroup_ioctl_lock);
2302         fs_info->qgroup_tree = RB_ROOT;
2303         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2304         fs_info->qgroup_seq = 1;
2305         fs_info->quota_enabled = 0;
2306         fs_info->pending_quota_state = 0;
2307         fs_info->qgroup_ulist = NULL;
2308         mutex_init(&fs_info->qgroup_rescan_lock);
2309
2310         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2311         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2312
2313         init_waitqueue_head(&fs_info->transaction_throttle);
2314         init_waitqueue_head(&fs_info->transaction_wait);
2315         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2316         init_waitqueue_head(&fs_info->async_submit_wait);
2317
2318         ret = btrfs_alloc_stripe_hash_table(fs_info);
2319         if (ret) {
2320                 err = ret;
2321                 goto fail_alloc;
2322         }
2323
2324         __setup_root(4096, 4096, 4096, 4096, tree_root,
2325                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2326
2327         invalidate_bdev(fs_devices->latest_bdev);
2328
2329         /*
2330          * Read super block and check the signature bytes only
2331          */
2332         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2333         if (!bh) {
2334                 err = -EINVAL;
2335                 goto fail_alloc;
2336         }
2337
2338         /*
2339          * We want to check superblock checksum, the type is stored inside.
2340          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2341          */
2342         if (btrfs_check_super_csum(bh->b_data)) {
2343                 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2344                 err = -EINVAL;
2345                 goto fail_alloc;
2346         }
2347
2348         /*
2349          * super_copy is zeroed at allocation time and we never touch the
2350          * following bytes up to INFO_SIZE, the checksum is calculated from
2351          * the whole block of INFO_SIZE
2352          */
2353         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2354         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2355                sizeof(*fs_info->super_for_commit));
2356         brelse(bh);
2357
2358         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2359
2360         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2361         if (ret) {
2362                 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2363                 err = -EINVAL;
2364                 goto fail_alloc;
2365         }
2366
2367         disk_super = fs_info->super_copy;
2368         if (!btrfs_super_root(disk_super))
2369                 goto fail_alloc;
2370
2371         /* check FS state, whether FS is broken. */
2372         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2373                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2374
2375         /*
2376          * run through our array of backup supers and setup
2377          * our ring pointer to the oldest one
2378          */
2379         generation = btrfs_super_generation(disk_super);
2380         find_oldest_super_backup(fs_info, generation);
2381
2382         /*
2383          * In the long term, we'll store the compression type in the super
2384          * block, and it'll be used for per file compression control.
2385          */
2386         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2387
2388         ret = btrfs_parse_options(tree_root, options);
2389         if (ret) {
2390                 err = ret;
2391                 goto fail_alloc;
2392         }
2393
2394         features = btrfs_super_incompat_flags(disk_super) &
2395                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2396         if (features) {
2397                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2398                        "unsupported optional features (%Lx).\n",
2399                        features);
2400                 err = -EINVAL;
2401                 goto fail_alloc;
2402         }
2403
2404         if (btrfs_super_leafsize(disk_super) !=
2405             btrfs_super_nodesize(disk_super)) {
2406                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2407                        "blocksizes don't match.  node %d leaf %d\n",
2408                        btrfs_super_nodesize(disk_super),
2409                        btrfs_super_leafsize(disk_super));
2410                 err = -EINVAL;
2411                 goto fail_alloc;
2412         }
2413         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2414                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2415                        "blocksize (%d) was too large\n",
2416                        btrfs_super_leafsize(disk_super));
2417                 err = -EINVAL;
2418                 goto fail_alloc;
2419         }
2420
2421         features = btrfs_super_incompat_flags(disk_super);
2422         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2423         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2424                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2425
2426         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2427                 printk(KERN_ERR "BTRFS: has skinny extents\n");
2428
2429         /*
2430          * flag our filesystem as having big metadata blocks if
2431          * they are bigger than the page size
2432          */
2433         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2434                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2435                         printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2436                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2437         }
2438
2439         nodesize = btrfs_super_nodesize(disk_super);
2440         leafsize = btrfs_super_leafsize(disk_super);
2441         sectorsize = btrfs_super_sectorsize(disk_super);
2442         stripesize = btrfs_super_stripesize(disk_super);
2443         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2444         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2445
2446         /*
2447          * mixed block groups end up with duplicate but slightly offset
2448          * extent buffers for the same range.  It leads to corruptions
2449          */
2450         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2451             (sectorsize != leafsize)) {
2452                 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2453                                 "are not allowed for mixed block groups on %s\n",
2454                                 sb->s_id);
2455                 goto fail_alloc;
2456         }
2457
2458         /*
2459          * Needn't use the lock because there is no other task which will
2460          * update the flag.
2461          */
2462         btrfs_set_super_incompat_flags(disk_super, features);
2463
2464         features = btrfs_super_compat_ro_flags(disk_super) &
2465                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2466         if (!(sb->s_flags & MS_RDONLY) && features) {
2467                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2468                        "unsupported option features (%Lx).\n",
2469                        features);
2470                 err = -EINVAL;
2471                 goto fail_alloc;
2472         }
2473
2474         max_active = fs_info->thread_pool_size;
2475         btrfs_init_workers(&fs_info->generic_worker,
2476                            "genwork", 1, NULL);
2477
2478         fs_info->workers =
2479                 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2480                                       max_active, 16);
2481
2482         fs_info->delalloc_workers =
2483                 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2484
2485         fs_info->flush_workers =
2486                 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2487
2488         fs_info->caching_workers =
2489                 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2490
2491         /*
2492          * a higher idle thresh on the submit workers makes it much more
2493          * likely that bios will be send down in a sane order to the
2494          * devices
2495          */
2496         fs_info->submit_workers =
2497                 btrfs_alloc_workqueue("submit", flags,
2498                                       min_t(u64, fs_devices->num_devices,
2499                                             max_active), 64);
2500
2501         fs_info->fixup_workers =
2502                 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2503
2504         /*
2505          * endios are largely parallel and should have a very
2506          * low idle thresh
2507          */
2508         fs_info->endio_workers =
2509                 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2510         fs_info->endio_meta_workers =
2511                 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2512         fs_info->endio_meta_write_workers =
2513                 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2514         fs_info->endio_raid56_workers =
2515                 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2516         fs_info->rmw_workers =
2517                 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2518         fs_info->endio_write_workers =
2519                 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2520         fs_info->endio_freespace_worker =
2521                 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2522         fs_info->delayed_workers =
2523                 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2524         fs_info->readahead_workers =
2525                 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2526         btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2527                            &fs_info->generic_worker);
2528
2529         /*
2530          * btrfs_start_workers can really only fail because of ENOMEM so just
2531          * return -ENOMEM if any of these fail.
2532          */
2533         ret = btrfs_start_workers(&fs_info->generic_worker);
2534         ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2535         if (ret) {
2536                 err = -ENOMEM;
2537                 goto fail_sb_buffer;
2538         }
2539         if (!(fs_info->workers && fs_info->delalloc_workers &&
2540               fs_info->submit_workers && fs_info->flush_workers &&
2541               fs_info->endio_workers && fs_info->endio_meta_workers &&
2542               fs_info->endio_meta_write_workers &&
2543               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2544               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2545               fs_info->caching_workers && fs_info->readahead_workers &&
2546               fs_info->fixup_workers && fs_info->delayed_workers)) {
2547                 err = -ENOMEM;
2548                 goto fail_sb_buffer;
2549         }
2550
2551         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2552         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2553                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2554
2555         tree_root->nodesize = nodesize;
2556         tree_root->leafsize = leafsize;
2557         tree_root->sectorsize = sectorsize;
2558         tree_root->stripesize = stripesize;
2559
2560         sb->s_blocksize = sectorsize;
2561         sb->s_blocksize_bits = blksize_bits(sectorsize);
2562
2563         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2564                 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2565                 goto fail_sb_buffer;
2566         }
2567
2568         if (sectorsize != PAGE_SIZE) {
2569                 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2570                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2571                 goto fail_sb_buffer;
2572         }
2573
2574         mutex_lock(&fs_info->chunk_mutex);
2575         ret = btrfs_read_sys_array(tree_root);
2576         mutex_unlock(&fs_info->chunk_mutex);
2577         if (ret) {
2578                 printk(KERN_WARNING "BTRFS: failed to read the system "
2579                        "array on %s\n", sb->s_id);
2580                 goto fail_sb_buffer;
2581         }
2582
2583         blocksize = btrfs_level_size(tree_root,
2584                                      btrfs_super_chunk_root_level(disk_super));
2585         generation = btrfs_super_chunk_root_generation(disk_super);
2586
2587         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2588                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2589
2590         chunk_root->node = read_tree_block(chunk_root,
2591                                            btrfs_super_chunk_root(disk_super),
2592                                            blocksize, generation);
2593         if (!chunk_root->node ||
2594             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2595                 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2596                        sb->s_id);
2597                 goto fail_tree_roots;
2598         }
2599         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2600         chunk_root->commit_root = btrfs_root_node(chunk_root);
2601
2602         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2603            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2604
2605         ret = btrfs_read_chunk_tree(chunk_root);
2606         if (ret) {
2607                 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2608                        sb->s_id);
2609                 goto fail_tree_roots;
2610         }
2611
2612         /*
2613          * keep the device that is marked to be the target device for the
2614          * dev_replace procedure
2615          */
2616         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2617
2618         if (!fs_devices->latest_bdev) {
2619                 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2620                        sb->s_id);
2621                 goto fail_tree_roots;
2622         }
2623
2624 retry_root_backup:
2625         blocksize = btrfs_level_size(tree_root,
2626                                      btrfs_super_root_level(disk_super));
2627         generation = btrfs_super_generation(disk_super);
2628
2629         tree_root->node = read_tree_block(tree_root,
2630                                           btrfs_super_root(disk_super),
2631                                           blocksize, generation);
2632         if (!tree_root->node ||
2633             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2634                 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2635                        sb->s_id);
2636
2637                 goto recovery_tree_root;
2638         }
2639
2640         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2641         tree_root->commit_root = btrfs_root_node(tree_root);
2642         btrfs_set_root_refs(&tree_root->root_item, 1);
2643
2644         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2645         location.type = BTRFS_ROOT_ITEM_KEY;
2646         location.offset = 0;
2647
2648         extent_root = btrfs_read_tree_root(tree_root, &location);
2649         if (IS_ERR(extent_root)) {
2650                 ret = PTR_ERR(extent_root);
2651                 goto recovery_tree_root;
2652         }
2653         extent_root->track_dirty = 1;
2654         fs_info->extent_root = extent_root;
2655
2656         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2657         dev_root = btrfs_read_tree_root(tree_root, &location);
2658         if (IS_ERR(dev_root)) {
2659                 ret = PTR_ERR(dev_root);
2660                 goto recovery_tree_root;
2661         }
2662         dev_root->track_dirty = 1;
2663         fs_info->dev_root = dev_root;
2664         btrfs_init_devices_late(fs_info);
2665
2666         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2667         csum_root = btrfs_read_tree_root(tree_root, &location);
2668         if (IS_ERR(csum_root)) {
2669                 ret = PTR_ERR(csum_root);
2670                 goto recovery_tree_root;
2671         }
2672         csum_root->track_dirty = 1;
2673         fs_info->csum_root = csum_root;
2674
2675         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2676         quota_root = btrfs_read_tree_root(tree_root, &location);
2677         if (!IS_ERR(quota_root)) {
2678                 quota_root->track_dirty = 1;
2679                 fs_info->quota_enabled = 1;
2680                 fs_info->pending_quota_state = 1;
2681                 fs_info->quota_root = quota_root;
2682         }
2683
2684         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2685         uuid_root = btrfs_read_tree_root(tree_root, &location);
2686         if (IS_ERR(uuid_root)) {
2687                 ret = PTR_ERR(uuid_root);
2688                 if (ret != -ENOENT)
2689                         goto recovery_tree_root;
2690                 create_uuid_tree = true;
2691                 check_uuid_tree = false;
2692         } else {
2693                 uuid_root->track_dirty = 1;
2694                 fs_info->uuid_root = uuid_root;
2695                 create_uuid_tree = false;
2696                 check_uuid_tree =
2697                     generation != btrfs_super_uuid_tree_generation(disk_super);
2698         }
2699
2700         fs_info->generation = generation;
2701         fs_info->last_trans_committed = generation;
2702
2703         ret = btrfs_recover_balance(fs_info);
2704         if (ret) {
2705                 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2706                 goto fail_block_groups;
2707         }
2708
2709         ret = btrfs_init_dev_stats(fs_info);
2710         if (ret) {
2711                 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2712                        ret);
2713                 goto fail_block_groups;
2714         }
2715
2716         ret = btrfs_init_dev_replace(fs_info);
2717         if (ret) {
2718                 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2719                 goto fail_block_groups;
2720         }
2721
2722         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2723
2724         ret = btrfs_sysfs_add_one(fs_info);
2725         if (ret) {
2726                 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2727                 goto fail_block_groups;
2728         }
2729
2730         ret = btrfs_init_space_info(fs_info);
2731         if (ret) {
2732                 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2733                 goto fail_sysfs;
2734         }
2735
2736         ret = btrfs_read_block_groups(extent_root);
2737         if (ret) {
2738                 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2739                 goto fail_sysfs;
2740         }
2741         fs_info->num_tolerated_disk_barrier_failures =
2742                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2743         if (fs_info->fs_devices->missing_devices >
2744              fs_info->num_tolerated_disk_barrier_failures &&
2745             !(sb->s_flags & MS_RDONLY)) {
2746                 printk(KERN_WARNING "BTRFS: "
2747                         "too many missing devices, writeable mount is not allowed\n");
2748                 goto fail_sysfs;
2749         }
2750
2751         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2752                                                "btrfs-cleaner");
2753         if (IS_ERR(fs_info->cleaner_kthread))
2754                 goto fail_sysfs;
2755
2756         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2757                                                    tree_root,
2758                                                    "btrfs-transaction");
2759         if (IS_ERR(fs_info->transaction_kthread))
2760                 goto fail_cleaner;
2761
2762         if (!btrfs_test_opt(tree_root, SSD) &&
2763             !btrfs_test_opt(tree_root, NOSSD) &&
2764             !fs_info->fs_devices->rotating) {
2765                 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2766                        "mode\n");
2767                 btrfs_set_opt(fs_info->mount_opt, SSD);
2768         }
2769
2770         /* Set the real inode map cache flag */
2771         if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2772                 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2773
2774 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2775         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2776                 ret = btrfsic_mount(tree_root, fs_devices,
2777                                     btrfs_test_opt(tree_root,
2778                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2779                                     1 : 0,
2780                                     fs_info->check_integrity_print_mask);
2781                 if (ret)
2782                         printk(KERN_WARNING "BTRFS: failed to initialize"
2783                                " integrity check module %s\n", sb->s_id);
2784         }
2785 #endif
2786         ret = btrfs_read_qgroup_config(fs_info);
2787         if (ret)
2788                 goto fail_trans_kthread;
2789
2790         /* do not make disk changes in broken FS */
2791         if (btrfs_super_log_root(disk_super) != 0) {
2792                 u64 bytenr = btrfs_super_log_root(disk_super);
2793
2794                 if (fs_devices->rw_devices == 0) {
2795                         printk(KERN_WARNING "BTRFS: log replay required "
2796                                "on RO media\n");
2797                         err = -EIO;
2798                         goto fail_qgroup;
2799                 }
2800                 blocksize =
2801                      btrfs_level_size(tree_root,
2802                                       btrfs_super_log_root_level(disk_super));
2803
2804                 log_tree_root = btrfs_alloc_root(fs_info);
2805                 if (!log_tree_root) {
2806                         err = -ENOMEM;
2807                         goto fail_qgroup;
2808                 }
2809
2810                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2811                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2812
2813                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2814                                                       blocksize,
2815                                                       generation + 1);
2816                 if (!log_tree_root->node ||
2817                     !extent_buffer_uptodate(log_tree_root->node)) {
2818                         printk(KERN_ERR "BTRFS: failed to read log tree\n");
2819                         free_extent_buffer(log_tree_root->node);
2820                         kfree(log_tree_root);
2821                         goto fail_trans_kthread;
2822                 }
2823                 /* returns with log_tree_root freed on success */
2824                 ret = btrfs_recover_log_trees(log_tree_root);
2825                 if (ret) {
2826                         btrfs_error(tree_root->fs_info, ret,
2827                                     "Failed to recover log tree");
2828                         free_extent_buffer(log_tree_root->node);
2829                         kfree(log_tree_root);
2830                         goto fail_trans_kthread;
2831                 }
2832
2833                 if (sb->s_flags & MS_RDONLY) {
2834                         ret = btrfs_commit_super(tree_root);
2835                         if (ret)
2836                                 goto fail_trans_kthread;
2837                 }
2838         }
2839
2840         ret = btrfs_find_orphan_roots(tree_root);
2841         if (ret)
2842                 goto fail_trans_kthread;
2843
2844         if (!(sb->s_flags & MS_RDONLY)) {
2845                 ret = btrfs_cleanup_fs_roots(fs_info);
2846                 if (ret)
2847                         goto fail_trans_kthread;
2848
2849                 ret = btrfs_recover_relocation(tree_root);
2850                 if (ret < 0) {
2851                         printk(KERN_WARNING
2852                                "BTRFS: failed to recover relocation\n");
2853                         err = -EINVAL;
2854                         goto fail_qgroup;
2855                 }
2856         }
2857
2858         location.objectid = BTRFS_FS_TREE_OBJECTID;
2859         location.type = BTRFS_ROOT_ITEM_KEY;
2860         location.offset = 0;
2861
2862         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2863         if (IS_ERR(fs_info->fs_root)) {
2864                 err = PTR_ERR(fs_info->fs_root);
2865                 goto fail_qgroup;
2866         }
2867
2868         if (sb->s_flags & MS_RDONLY)
2869                 return 0;
2870
2871         down_read(&fs_info->cleanup_work_sem);
2872         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2873             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2874                 up_read(&fs_info->cleanup_work_sem);
2875                 close_ctree(tree_root);
2876                 return ret;
2877         }
2878         up_read(&fs_info->cleanup_work_sem);
2879
2880         ret = btrfs_resume_balance_async(fs_info);
2881         if (ret) {
2882                 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2883                 close_ctree(tree_root);
2884                 return ret;
2885         }
2886
2887         ret = btrfs_resume_dev_replace_async(fs_info);
2888         if (ret) {
2889                 pr_warn("BTRFS: failed to resume dev_replace\n");
2890                 close_ctree(tree_root);
2891                 return ret;
2892         }
2893
2894         btrfs_qgroup_rescan_resume(fs_info);
2895
2896         if (create_uuid_tree) {
2897                 pr_info("BTRFS: creating UUID tree\n");
2898                 ret = btrfs_create_uuid_tree(fs_info);
2899                 if (ret) {
2900                         pr_warn("BTRFS: failed to create the UUID tree %d\n",
2901                                 ret);
2902                         close_ctree(tree_root);
2903                         return ret;
2904                 }
2905         } else if (check_uuid_tree ||
2906                    btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2907                 pr_info("BTRFS: checking UUID tree\n");
2908                 ret = btrfs_check_uuid_tree(fs_info);
2909                 if (ret) {
2910                         pr_warn("BTRFS: failed to check the UUID tree %d\n",
2911                                 ret);
2912                         close_ctree(tree_root);
2913                         return ret;
2914                 }
2915         } else {
2916                 fs_info->update_uuid_tree_gen = 1;
2917         }
2918
2919         return 0;
2920
2921 fail_qgroup:
2922         btrfs_free_qgroup_config(fs_info);
2923 fail_trans_kthread:
2924         kthread_stop(fs_info->transaction_kthread);
2925         btrfs_cleanup_transaction(fs_info->tree_root);
2926         del_fs_roots(fs_info);
2927 fail_cleaner:
2928         kthread_stop(fs_info->cleaner_kthread);
2929
2930         /*
2931          * make sure we're done with the btree inode before we stop our
2932          * kthreads
2933          */
2934         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2935
2936 fail_sysfs:
2937         btrfs_sysfs_remove_one(fs_info);
2938
2939 fail_block_groups:
2940         btrfs_put_block_group_cache(fs_info);
2941         btrfs_free_block_groups(fs_info);
2942
2943 fail_tree_roots:
2944         free_root_pointers(fs_info, 1);
2945         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2946
2947 fail_sb_buffer:
2948         btrfs_stop_all_workers(fs_info);
2949 fail_alloc:
2950 fail_iput:
2951         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2952
2953         iput(fs_info->btree_inode);
2954 fail_bio_counter:
2955         percpu_counter_destroy(&fs_info->bio_counter);
2956 fail_delalloc_bytes:
2957         percpu_counter_destroy(&fs_info->delalloc_bytes);
2958 fail_dirty_metadata_bytes:
2959         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2960 fail_bdi:
2961         bdi_destroy(&fs_info->bdi);
2962 fail_srcu:
2963         cleanup_srcu_struct(&fs_info->subvol_srcu);
2964 fail:
2965         btrfs_free_stripe_hash_table(fs_info);
2966         btrfs_close_devices(fs_info->fs_devices);
2967         return err;
2968
2969 recovery_tree_root:
2970         if (!btrfs_test_opt(tree_root, RECOVERY))
2971                 goto fail_tree_roots;
2972
2973         free_root_pointers(fs_info, 0);
2974
2975         /* don't use the log in recovery mode, it won't be valid */
2976         btrfs_set_super_log_root(disk_super, 0);
2977
2978         /* we can't trust the free space cache either */
2979         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2980
2981         ret = next_root_backup(fs_info, fs_info->super_copy,
2982                                &num_backups_tried, &backup_index);
2983         if (ret == -1)
2984                 goto fail_block_groups;
2985         goto retry_root_backup;
2986 }
2987
2988 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2989 {
2990         if (uptodate) {
2991                 set_buffer_uptodate(bh);
2992         } else {
2993                 struct btrfs_device *device = (struct btrfs_device *)
2994                         bh->b_private;
2995
2996                 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
2997                                           "I/O error on %s\n",
2998                                           rcu_str_deref(device->name));
2999                 /* note, we dont' set_buffer_write_io_error because we have
3000                  * our own ways of dealing with the IO errors
3001                  */
3002                 clear_buffer_uptodate(bh);
3003                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3004         }
3005         unlock_buffer(bh);
3006         put_bh(bh);
3007 }
3008
3009 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3010 {
3011         struct buffer_head *bh;
3012         struct buffer_head *latest = NULL;
3013         struct btrfs_super_block *super;
3014         int i;
3015         u64 transid = 0;
3016         u64 bytenr;
3017
3018         /* we would like to check all the supers, but that would make
3019          * a btrfs mount succeed after a mkfs from a different FS.
3020          * So, we need to add a special mount option to scan for
3021          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3022          */
3023         for (i = 0; i < 1; i++) {
3024                 bytenr = btrfs_sb_offset(i);
3025                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3026                                         i_size_read(bdev->bd_inode))
3027                         break;
3028                 bh = __bread(bdev, bytenr / 4096,
3029                                         BTRFS_SUPER_INFO_SIZE);
3030                 if (!bh)
3031                         continue;
3032
3033                 super = (struct btrfs_super_block *)bh->b_data;
3034                 if (btrfs_super_bytenr(super) != bytenr ||
3035                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3036                         brelse(bh);
3037                         continue;
3038                 }
3039
3040                 if (!latest || btrfs_super_generation(super) > transid) {
3041                         brelse(latest);
3042                         latest = bh;
3043                         transid = btrfs_super_generation(super);
3044                 } else {
3045                         brelse(bh);
3046                 }
3047         }
3048         return latest;
3049 }
3050
3051 /*
3052  * this should be called twice, once with wait == 0 and
3053  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3054  * we write are pinned.
3055  *
3056  * They are released when wait == 1 is done.
3057  * max_mirrors must be the same for both runs, and it indicates how
3058  * many supers on this one device should be written.
3059  *
3060  * max_mirrors == 0 means to write them all.
3061  */
3062 static int write_dev_supers(struct btrfs_device *device,
3063                             struct btrfs_super_block *sb,
3064                             int do_barriers, int wait, int max_mirrors)
3065 {
3066         struct buffer_head *bh;
3067         int i;
3068         int ret;
3069         int errors = 0;
3070         u32 crc;
3071         u64 bytenr;
3072
3073         if (max_mirrors == 0)
3074                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3075
3076         for (i = 0; i < max_mirrors; i++) {
3077                 bytenr = btrfs_sb_offset(i);
3078                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3079                         break;
3080
3081                 if (wait) {
3082                         bh = __find_get_block(device->bdev, bytenr / 4096,
3083                                               BTRFS_SUPER_INFO_SIZE);
3084                         if (!bh) {
3085                                 errors++;
3086                                 continue;
3087                         }
3088                         wait_on_buffer(bh);
3089                         if (!buffer_uptodate(bh))
3090                                 errors++;
3091
3092                         /* drop our reference */
3093                         brelse(bh);
3094
3095                         /* drop the reference from the wait == 0 run */
3096                         brelse(bh);
3097                         continue;
3098                 } else {
3099                         btrfs_set_super_bytenr(sb, bytenr);
3100
3101                         crc = ~(u32)0;
3102                         crc = btrfs_csum_data((char *)sb +
3103                                               BTRFS_CSUM_SIZE, crc,
3104                                               BTRFS_SUPER_INFO_SIZE -
3105                                               BTRFS_CSUM_SIZE);
3106                         btrfs_csum_final(crc, sb->csum);
3107
3108                         /*
3109                          * one reference for us, and we leave it for the
3110                          * caller
3111                          */
3112                         bh = __getblk(device->bdev, bytenr / 4096,
3113                                       BTRFS_SUPER_INFO_SIZE);
3114                         if (!bh) {
3115                                 printk(KERN_ERR "BTRFS: couldn't get super "
3116                                        "buffer head for bytenr %Lu\n", bytenr);
3117                                 errors++;
3118                                 continue;
3119                         }
3120
3121                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3122
3123                         /* one reference for submit_bh */
3124                         get_bh(bh);
3125
3126                         set_buffer_uptodate(bh);
3127                         lock_buffer(bh);
3128                         bh->b_end_io = btrfs_end_buffer_write_sync;
3129                         bh->b_private = device;
3130                 }
3131
3132                 /*
3133                  * we fua the first super.  The others we allow
3134                  * to go down lazy.
3135                  */
3136                 if (i == 0)
3137                         ret = btrfsic_submit_bh(WRITE_FUA, bh);
3138                 else
3139                         ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3140                 if (ret)
3141                         errors++;
3142         }
3143         return errors < i ? 0 : -1;
3144 }
3145
3146 /*
3147  * endio for the write_dev_flush, this will wake anyone waiting
3148  * for the barrier when it is done
3149  */
3150 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3151 {
3152         if (err) {
3153                 if (err == -EOPNOTSUPP)
3154                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3155                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3156         }
3157         if (bio->bi_private)
3158                 complete(bio->bi_private);
3159         bio_put(bio);
3160 }
3161
3162 /*
3163  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3164  * sent down.  With wait == 1, it waits for the previous flush.
3165  *
3166  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3167  * capable
3168  */
3169 static int write_dev_flush(struct btrfs_device *device, int wait)
3170 {
3171         struct bio *bio;
3172         int ret = 0;
3173
3174         if (device->nobarriers)
3175                 return 0;
3176
3177         if (wait) {
3178                 bio = device->flush_bio;
3179                 if (!bio)
3180                         return 0;
3181
3182                 wait_for_completion(&device->flush_wait);
3183
3184                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3185                         printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3186                                       rcu_str_deref(device->name));
3187                         device->nobarriers = 1;
3188                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3189                         ret = -EIO;
3190                         btrfs_dev_stat_inc_and_print(device,
3191                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3192                 }
3193
3194                 /* drop the reference from the wait == 0 run */
3195                 bio_put(bio);
3196                 device->flush_bio = NULL;
3197
3198                 return ret;
3199         }
3200
3201         /*
3202          * one reference for us, and we leave it for the
3203          * caller
3204          */
3205         device->flush_bio = NULL;
3206         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3207         if (!bio)
3208                 return -ENOMEM;
3209
3210         bio->bi_end_io = btrfs_end_empty_barrier;
3211         bio->bi_bdev = device->bdev;
3212         init_completion(&device->flush_wait);
3213         bio->bi_private = &device->flush_wait;
3214         device->flush_bio = bio;
3215
3216         bio_get(bio);
3217         btrfsic_submit_bio(WRITE_FLUSH, bio);
3218
3219         return 0;
3220 }
3221
3222 /*
3223  * send an empty flush down to each device in parallel,
3224  * then wait for them
3225  */
3226 static int barrier_all_devices(struct btrfs_fs_info *info)
3227 {
3228         struct list_head *head;
3229         struct btrfs_device *dev;
3230         int errors_send = 0;
3231         int errors_wait = 0;
3232         int ret;
3233
3234         /* send down all the barriers */
3235         head = &info->fs_devices->devices;
3236         list_for_each_entry_rcu(dev, head, dev_list) {
3237                 if (dev->missing)
3238                         continue;
3239                 if (!dev->bdev) {
3240                         errors_send++;
3241                         continue;
3242                 }
3243                 if (!dev->in_fs_metadata || !dev->writeable)
3244                         continue;
3245
3246                 ret = write_dev_flush(dev, 0);
3247                 if (ret)
3248                         errors_send++;
3249         }
3250
3251         /* wait for all the barriers */
3252         list_for_each_entry_rcu(dev, head, dev_list) {
3253                 if (dev->missing)
3254                         continue;
3255                 if (!dev->bdev) {
3256                         errors_wait++;
3257                         continue;
3258                 }
3259                 if (!dev->in_fs_metadata || !dev->writeable)
3260                         continue;
3261
3262                 ret = write_dev_flush(dev, 1);
3263                 if (ret)
3264                         errors_wait++;
3265         }
3266         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3267             errors_wait > info->num_tolerated_disk_barrier_failures)
3268                 return -EIO;
3269         return 0;
3270 }
3271
3272 int btrfs_calc_num_tolerated_disk_barrier_failures(
3273         struct btrfs_fs_info *fs_info)
3274 {
3275         struct btrfs_ioctl_space_info space;
3276         struct btrfs_space_info *sinfo;
3277         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3278                        BTRFS_BLOCK_GROUP_SYSTEM,
3279                        BTRFS_BLOCK_GROUP_METADATA,
3280                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3281         int num_types = 4;
3282         int i;
3283         int c;
3284         int num_tolerated_disk_barrier_failures =
3285                 (int)fs_info->fs_devices->num_devices;
3286
3287         for (i = 0; i < num_types; i++) {
3288                 struct btrfs_space_info *tmp;
3289
3290                 sinfo = NULL;
3291                 rcu_read_lock();
3292                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3293                         if (tmp->flags == types[i]) {
3294                                 sinfo = tmp;
3295                                 break;
3296                         }
3297                 }
3298                 rcu_read_unlock();
3299
3300                 if (!sinfo)
3301                         continue;
3302
3303                 down_read(&sinfo->groups_sem);
3304                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3305                         if (!list_empty(&sinfo->block_groups[c])) {
3306                                 u64 flags;
3307
3308                                 btrfs_get_block_group_info(
3309                                         &sinfo->block_groups[c], &space);
3310                                 if (space.total_bytes == 0 ||
3311                                     space.used_bytes == 0)
3312                                         continue;
3313                                 flags = space.flags;
3314                                 /*
3315                                  * return
3316                                  * 0: if dup, single or RAID0 is configured for
3317                                  *    any of metadata, system or data, else
3318                                  * 1: if RAID5 is configured, or if RAID1 or
3319                                  *    RAID10 is configured and only two mirrors
3320                                  *    are used, else
3321                                  * 2: if RAID6 is configured, else
3322                                  * num_mirrors - 1: if RAID1 or RAID10 is
3323                                  *                  configured and more than
3324                                  *                  2 mirrors are used.
3325                                  */
3326                                 if (num_tolerated_disk_barrier_failures > 0 &&
3327                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3328                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3329                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3330                                       == 0)))
3331                                         num_tolerated_disk_barrier_failures = 0;
3332                                 else if (num_tolerated_disk_barrier_failures > 1) {
3333                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3334                                             BTRFS_BLOCK_GROUP_RAID5 |
3335                                             BTRFS_BLOCK_GROUP_RAID10)) {
3336                                                 num_tolerated_disk_barrier_failures = 1;
3337                                         } else if (flags &
3338                                                    BTRFS_BLOCK_GROUP_RAID6) {
3339                                                 num_tolerated_disk_barrier_failures = 2;
3340                                         }
3341                                 }
3342                         }
3343                 }
3344                 up_read(&sinfo->groups_sem);
3345         }
3346
3347         return num_tolerated_disk_barrier_failures;
3348 }
3349
3350 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3351 {
3352         struct list_head *head;
3353         struct btrfs_device *dev;
3354         struct btrfs_super_block *sb;
3355         struct btrfs_dev_item *dev_item;
3356         int ret;
3357         int do_barriers;
3358         int max_errors;
3359         int total_errors = 0;
3360         u64 flags;
3361
3362         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3363         backup_super_roots(root->fs_info);
3364
3365         sb = root->fs_info->super_for_commit;
3366         dev_item = &sb->dev_item;
3367
3368         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3369         head = &root->fs_info->fs_devices->devices;
3370         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3371
3372         if (do_barriers) {
3373                 ret = barrier_all_devices(root->fs_info);
3374                 if (ret) {
3375                         mutex_unlock(
3376                                 &root->fs_info->fs_devices->device_list_mutex);
3377                         btrfs_error(root->fs_info, ret,
3378                                     "errors while submitting device barriers.");
3379                         return ret;
3380                 }
3381         }
3382
3383         list_for_each_entry_rcu(dev, head, dev_list) {
3384                 if (!dev->bdev) {
3385                         total_errors++;
3386                         continue;
3387                 }
3388                 if (!dev->in_fs_metadata || !dev->writeable)
3389                         continue;
3390
3391                 btrfs_set_stack_device_generation(dev_item, 0);
3392                 btrfs_set_stack_device_type(dev_item, dev->type);
3393                 btrfs_set_stack_device_id(dev_item, dev->devid);
3394                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3395                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3396                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3397                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3398                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3399                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3400                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3401
3402                 flags = btrfs_super_flags(sb);
3403                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3404
3405                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3406                 if (ret)
3407                         total_errors++;
3408         }
3409         if (total_errors > max_errors) {
3410                 btrfs_err(root->fs_info, "%d errors while writing supers",
3411                        total_errors);
3412                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3413
3414                 /* FUA is masked off if unsupported and can't be the reason */
3415                 btrfs_error(root->fs_info, -EIO,
3416                             "%d errors while writing supers", total_errors);
3417                 return -EIO;
3418         }
3419
3420         total_errors = 0;
3421         list_for_each_entry_rcu(dev, head, dev_list) {
3422                 if (!dev->bdev)
3423                         continue;
3424                 if (!dev->in_fs_metadata || !dev->writeable)
3425                         continue;
3426
3427                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3428                 if (ret)
3429                         total_errors++;
3430         }
3431         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3432         if (total_errors > max_errors) {
3433                 btrfs_error(root->fs_info, -EIO,
3434                             "%d errors while writing supers", total_errors);
3435                 return -EIO;
3436         }
3437         return 0;
3438 }
3439
3440 int write_ctree_super(struct btrfs_trans_handle *trans,
3441                       struct btrfs_root *root, int max_mirrors)
3442 {
3443         return write_all_supers(root, max_mirrors);
3444 }
3445
3446 /* Drop a fs root from the radix tree and free it. */
3447 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3448                                   struct btrfs_root *root)
3449 {
3450         spin_lock(&fs_info->fs_roots_radix_lock);
3451         radix_tree_delete(&fs_info->fs_roots_radix,
3452                           (unsigned long)root->root_key.objectid);
3453         spin_unlock(&fs_info->fs_roots_radix_lock);
3454
3455         if (btrfs_root_refs(&root->root_item) == 0)
3456                 synchronize_srcu(&fs_info->subvol_srcu);
3457
3458         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3459                 btrfs_free_log(NULL, root);
3460
3461         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3462         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3463         free_fs_root(root);
3464 }
3465
3466 static void free_fs_root(struct btrfs_root *root)
3467 {
3468         iput(root->cache_inode);
3469         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3470         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3471         root->orphan_block_rsv = NULL;
3472         if (root->anon_dev)
3473                 free_anon_bdev(root->anon_dev);
3474         free_extent_buffer(root->node);
3475         free_extent_buffer(root->commit_root);
3476         kfree(root->free_ino_ctl);
3477         kfree(root->free_ino_pinned);
3478         kfree(root->name);
3479         btrfs_put_fs_root(root);
3480 }
3481
3482 void btrfs_free_fs_root(struct btrfs_root *root)
3483 {
3484         free_fs_root(root);
3485 }
3486
3487 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3488 {
3489         u64 root_objectid = 0;
3490         struct btrfs_root *gang[8];
3491         int i;
3492         int ret;
3493
3494         while (1) {
3495                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3496                                              (void **)gang, root_objectid,
3497                                              ARRAY_SIZE(gang));
3498                 if (!ret)
3499                         break;
3500
3501                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3502                 for (i = 0; i < ret; i++) {
3503                         int err;
3504
3505                         root_objectid = gang[i]->root_key.objectid;
3506                         err = btrfs_orphan_cleanup(gang[i]);
3507                         if (err)
3508                                 return err;
3509                 }
3510                 root_objectid++;
3511         }
3512         return 0;
3513 }
3514
3515 int btrfs_commit_super(struct btrfs_root *root)
3516 {
3517         struct btrfs_trans_handle *trans;
3518
3519         mutex_lock(&root->fs_info->cleaner_mutex);
3520         btrfs_run_delayed_iputs(root);
3521         mutex_unlock(&root->fs_info->cleaner_mutex);
3522         wake_up_process(root->fs_info->cleaner_kthread);
3523
3524         /* wait until ongoing cleanup work done */
3525         down_write(&root->fs_info->cleanup_work_sem);
3526         up_write(&root->fs_info->cleanup_work_sem);
3527
3528         trans = btrfs_join_transaction(root);
3529         if (IS_ERR(trans))
3530                 return PTR_ERR(trans);
3531         return btrfs_commit_transaction(trans, root);
3532 }
3533
3534 int close_ctree(struct btrfs_root *root)
3535 {
3536         struct btrfs_fs_info *fs_info = root->fs_info;
3537         int ret;
3538
3539         fs_info->closing = 1;
3540         smp_mb();
3541
3542         /* wait for the uuid_scan task to finish */
3543         down(&fs_info->uuid_tree_rescan_sem);
3544         /* avoid complains from lockdep et al., set sem back to initial state */
3545         up(&fs_info->uuid_tree_rescan_sem);
3546
3547         /* pause restriper - we want to resume on mount */
3548         btrfs_pause_balance(fs_info);
3549
3550         btrfs_dev_replace_suspend_for_unmount(fs_info);
3551
3552         btrfs_scrub_cancel(fs_info);
3553
3554         /* wait for any defraggers to finish */
3555         wait_event(fs_info->transaction_wait,
3556                    (atomic_read(&fs_info->defrag_running) == 0));
3557
3558         /* clear out the rbtree of defraggable inodes */
3559         btrfs_cleanup_defrag_inodes(fs_info);
3560
3561         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3562                 ret = btrfs_commit_super(root);
3563                 if (ret)
3564                         btrfs_err(root->fs_info, "commit super ret %d", ret);
3565         }
3566
3567         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3568                 btrfs_error_commit_super(root);
3569
3570         kthread_stop(fs_info->transaction_kthread);
3571         kthread_stop(fs_info->cleaner_kthread);
3572
3573         fs_info->closing = 2;
3574         smp_mb();
3575
3576         btrfs_free_qgroup_config(root->fs_info);
3577
3578         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3579                 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3580                        percpu_counter_sum(&fs_info->delalloc_bytes));
3581         }
3582
3583         btrfs_sysfs_remove_one(fs_info);
3584
3585         del_fs_roots(fs_info);
3586
3587         btrfs_put_block_group_cache(fs_info);
3588
3589         btrfs_free_block_groups(fs_info);
3590
3591         btrfs_stop_all_workers(fs_info);
3592
3593         free_root_pointers(fs_info, 1);
3594
3595         iput(fs_info->btree_inode);
3596
3597 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3598         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3599                 btrfsic_unmount(root, fs_info->fs_devices);
3600 #endif
3601
3602         btrfs_close_devices(fs_info->fs_devices);
3603         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3604
3605         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3606         percpu_counter_destroy(&fs_info->delalloc_bytes);
3607         percpu_counter_destroy(&fs_info->bio_counter);
3608         bdi_destroy(&fs_info->bdi);
3609         cleanup_srcu_struct(&fs_info->subvol_srcu);
3610
3611         btrfs_free_stripe_hash_table(fs_info);
3612
3613         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3614         root->orphan_block_rsv = NULL;
3615
3616         return 0;
3617 }
3618
3619 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3620                           int atomic)
3621 {
3622         int ret;
3623         struct inode *btree_inode = buf->pages[0]->mapping->host;
3624
3625         ret = extent_buffer_uptodate(buf);
3626         if (!ret)
3627                 return ret;
3628
3629         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3630                                     parent_transid, atomic);
3631         if (ret == -EAGAIN)
3632                 return ret;
3633         return !ret;
3634 }
3635
3636 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3637 {
3638         return set_extent_buffer_uptodate(buf);
3639 }
3640
3641 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3642 {
3643         struct btrfs_root *root;
3644         u64 transid = btrfs_header_generation(buf);
3645         int was_dirty;
3646
3647 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3648         /*
3649          * This is a fast path so only do this check if we have sanity tests
3650          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3651          * outside of the sanity tests.
3652          */
3653         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3654                 return;
3655 #endif
3656         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3657         btrfs_assert_tree_locked(buf);
3658         if (transid != root->fs_info->generation)
3659                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3660                        "found %llu running %llu\n",
3661                         buf->start, transid, root->fs_info->generation);
3662         was_dirty = set_extent_buffer_dirty(buf);
3663         if (!was_dirty)
3664                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3665                                      buf->len,
3666                                      root->fs_info->dirty_metadata_batch);
3667 }
3668
3669 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3670                                         int flush_delayed)
3671 {
3672         /*
3673          * looks as though older kernels can get into trouble with
3674          * this code, they end up stuck in balance_dirty_pages forever
3675          */
3676         int ret;
3677
3678         if (current->flags & PF_MEMALLOC)
3679                 return;
3680
3681         if (flush_delayed)
3682                 btrfs_balance_delayed_items(root);
3683
3684         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3685                                      BTRFS_DIRTY_METADATA_THRESH);
3686         if (ret > 0) {
3687                 balance_dirty_pages_ratelimited(
3688                                    root->fs_info->btree_inode->i_mapping);
3689         }
3690         return;
3691 }
3692
3693 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3694 {
3695         __btrfs_btree_balance_dirty(root, 1);
3696 }
3697
3698 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3699 {
3700         __btrfs_btree_balance_dirty(root, 0);
3701 }
3702
3703 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3704 {
3705         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3706         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3707 }
3708
3709 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3710                               int read_only)
3711 {
3712         /*
3713          * Placeholder for checks
3714          */
3715         return 0;
3716 }
3717
3718 static void btrfs_error_commit_super(struct btrfs_root *root)
3719 {
3720         mutex_lock(&root->fs_info->cleaner_mutex);
3721         btrfs_run_delayed_iputs(root);
3722         mutex_unlock(&root->fs_info->cleaner_mutex);
3723
3724         down_write(&root->fs_info->cleanup_work_sem);
3725         up_write(&root->fs_info->cleanup_work_sem);
3726
3727         /* cleanup FS via transaction */
3728         btrfs_cleanup_transaction(root);
3729 }
3730
3731 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3732                                              struct btrfs_root *root)
3733 {
3734         struct btrfs_inode *btrfs_inode;
3735         struct list_head splice;
3736
3737         INIT_LIST_HEAD(&splice);
3738
3739         mutex_lock(&root->fs_info->ordered_operations_mutex);
3740         spin_lock(&root->fs_info->ordered_root_lock);
3741
3742         list_splice_init(&t->ordered_operations, &splice);
3743         while (!list_empty(&splice)) {
3744                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3745                                          ordered_operations);
3746
3747                 list_del_init(&btrfs_inode->ordered_operations);
3748                 spin_unlock(&root->fs_info->ordered_root_lock);
3749
3750                 btrfs_invalidate_inodes(btrfs_inode->root);
3751
3752                 spin_lock(&root->fs_info->ordered_root_lock);
3753         }
3754
3755         spin_unlock(&root->fs_info->ordered_root_lock);
3756         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3757 }
3758
3759 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3760 {
3761         struct btrfs_ordered_extent *ordered;
3762
3763         spin_lock(&root->ordered_extent_lock);
3764         /*
3765          * This will just short circuit the ordered completion stuff which will
3766          * make sure the ordered extent gets properly cleaned up.
3767          */
3768         list_for_each_entry(ordered, &root->ordered_extents,
3769                             root_extent_list)
3770                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3771         spin_unlock(&root->ordered_extent_lock);
3772 }
3773
3774 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3775 {
3776         struct btrfs_root *root;
3777         struct list_head splice;
3778
3779         INIT_LIST_HEAD(&splice);
3780
3781         spin_lock(&fs_info->ordered_root_lock);
3782         list_splice_init(&fs_info->ordered_roots, &splice);
3783         while (!list_empty(&splice)) {
3784                 root = list_first_entry(&splice, struct btrfs_root,
3785                                         ordered_root);
3786                 list_move_tail(&root->ordered_root,
3787                                &fs_info->ordered_roots);
3788
3789                 spin_unlock(&fs_info->ordered_root_lock);
3790                 btrfs_destroy_ordered_extents(root);
3791
3792                 cond_resched();
3793                 spin_lock(&fs_info->ordered_root_lock);
3794         }
3795         spin_unlock(&fs_info->ordered_root_lock);
3796 }
3797
3798 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3799                                       struct btrfs_root *root)
3800 {
3801         struct rb_node *node;
3802         struct btrfs_delayed_ref_root *delayed_refs;
3803         struct btrfs_delayed_ref_node *ref;
3804         int ret = 0;
3805
3806         delayed_refs = &trans->delayed_refs;
3807
3808         spin_lock(&delayed_refs->lock);
3809         if (atomic_read(&delayed_refs->num_entries) == 0) {
3810                 spin_unlock(&delayed_refs->lock);
3811                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
3812                 return ret;
3813         }
3814
3815         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3816                 struct btrfs_delayed_ref_head *head;
3817                 bool pin_bytes = false;
3818
3819                 head = rb_entry(node, struct btrfs_delayed_ref_head,
3820                                 href_node);
3821                 if (!mutex_trylock(&head->mutex)) {
3822                         atomic_inc(&head->node.refs);
3823                         spin_unlock(&delayed_refs->lock);
3824
3825                         mutex_lock(&head->mutex);
3826                         mutex_unlock(&head->mutex);
3827                         btrfs_put_delayed_ref(&head->node);
3828                         spin_lock(&delayed_refs->lock);
3829                         continue;
3830                 }
3831                 spin_lock(&head->lock);
3832                 while ((node = rb_first(&head->ref_root)) != NULL) {
3833                         ref = rb_entry(node, struct btrfs_delayed_ref_node,
3834                                        rb_node);
3835                         ref->in_tree = 0;
3836                         rb_erase(&ref->rb_node, &head->ref_root);
3837                         atomic_dec(&delayed_refs->num_entries);
3838                         btrfs_put_delayed_ref(ref);
3839                 }
3840                 if (head->must_insert_reserved)
3841                         pin_bytes = true;
3842                 btrfs_free_delayed_extent_op(head->extent_op);
3843                 delayed_refs->num_heads--;
3844                 if (head->processing == 0)
3845                         delayed_refs->num_heads_ready--;
3846                 atomic_dec(&delayed_refs->num_entries);
3847                 head->node.in_tree = 0;
3848                 rb_erase(&head->href_node, &delayed_refs->href_root);
3849                 spin_unlock(&head->lock);
3850                 spin_unlock(&delayed_refs->lock);
3851                 mutex_unlock(&head->mutex);
3852
3853                 if (pin_bytes)
3854                         btrfs_pin_extent(root, head->node.bytenr,
3855                                          head->node.num_bytes, 1);
3856                 btrfs_put_delayed_ref(&head->node);
3857                 cond_resched();
3858                 spin_lock(&delayed_refs->lock);
3859         }
3860
3861         spin_unlock(&delayed_refs->lock);
3862
3863         return ret;
3864 }
3865
3866 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3867 {
3868         struct btrfs_inode *btrfs_inode;
3869         struct list_head splice;
3870
3871         INIT_LIST_HEAD(&splice);
3872
3873         spin_lock(&root->delalloc_lock);
3874         list_splice_init(&root->delalloc_inodes, &splice);
3875
3876         while (!list_empty(&splice)) {
3877                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3878                                                delalloc_inodes);
3879
3880                 list_del_init(&btrfs_inode->delalloc_inodes);
3881                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3882                           &btrfs_inode->runtime_flags);
3883                 spin_unlock(&root->delalloc_lock);
3884
3885                 btrfs_invalidate_inodes(btrfs_inode->root);
3886
3887                 spin_lock(&root->delalloc_lock);
3888         }
3889
3890         spin_unlock(&root->delalloc_lock);
3891 }
3892
3893 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3894 {
3895         struct btrfs_root *root;
3896         struct list_head splice;
3897
3898         INIT_LIST_HEAD(&splice);
3899
3900         spin_lock(&fs_info->delalloc_root_lock);
3901         list_splice_init(&fs_info->delalloc_roots, &splice);
3902         while (!list_empty(&splice)) {
3903                 root = list_first_entry(&splice, struct btrfs_root,
3904                                          delalloc_root);
3905                 list_del_init(&root->delalloc_root);
3906                 root = btrfs_grab_fs_root(root);
3907                 BUG_ON(!root);
3908                 spin_unlock(&fs_info->delalloc_root_lock);
3909
3910                 btrfs_destroy_delalloc_inodes(root);
3911                 btrfs_put_fs_root(root);
3912
3913                 spin_lock(&fs_info->delalloc_root_lock);
3914         }
3915         spin_unlock(&fs_info->delalloc_root_lock);
3916 }
3917
3918 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3919                                         struct extent_io_tree *dirty_pages,
3920                                         int mark)
3921 {
3922         int ret;
3923         struct extent_buffer *eb;
3924         u64 start = 0;
3925         u64 end;
3926
3927         while (1) {
3928                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3929                                             mark, NULL);
3930                 if (ret)
3931                         break;
3932
3933                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3934                 while (start <= end) {
3935                         eb = btrfs_find_tree_block(root, start,
3936                                                    root->leafsize);
3937                         start += root->leafsize;
3938                         if (!eb)
3939                                 continue;
3940                         wait_on_extent_buffer_writeback(eb);
3941
3942                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3943                                                &eb->bflags))
3944                                 clear_extent_buffer_dirty(eb);
3945                         free_extent_buffer_stale(eb);
3946                 }
3947         }
3948
3949         return ret;
3950 }
3951
3952 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3953                                        struct extent_io_tree *pinned_extents)
3954 {
3955         struct extent_io_tree *unpin;
3956         u64 start;
3957         u64 end;
3958         int ret;
3959         bool loop = true;
3960
3961         unpin = pinned_extents;
3962 again:
3963         while (1) {
3964                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3965                                             EXTENT_DIRTY, NULL);
3966                 if (ret)
3967                         break;
3968
3969                 /* opt_discard */
3970                 if (btrfs_test_opt(root, DISCARD))
3971                         ret = btrfs_error_discard_extent(root, start,
3972                                                          end + 1 - start,
3973                                                          NULL);
3974
3975                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3976                 btrfs_error_unpin_extent_range(root, start, end);
3977                 cond_resched();
3978         }
3979
3980         if (loop) {
3981                 if (unpin == &root->fs_info->freed_extents[0])
3982                         unpin = &root->fs_info->freed_extents[1];
3983                 else
3984                         unpin = &root->fs_info->freed_extents[0];
3985                 loop = false;
3986                 goto again;
3987         }
3988
3989         return 0;
3990 }
3991
3992 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3993                                    struct btrfs_root *root)
3994 {
3995         btrfs_destroy_ordered_operations(cur_trans, root);
3996
3997         btrfs_destroy_delayed_refs(cur_trans, root);
3998
3999         cur_trans->state = TRANS_STATE_COMMIT_START;
4000         wake_up(&root->fs_info->transaction_blocked_wait);
4001
4002         cur_trans->state = TRANS_STATE_UNBLOCKED;
4003         wake_up(&root->fs_info->transaction_wait);
4004
4005         btrfs_destroy_delayed_inodes(root);
4006         btrfs_assert_delayed_root_empty(root);
4007
4008         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4009                                      EXTENT_DIRTY);
4010         btrfs_destroy_pinned_extent(root,
4011                                     root->fs_info->pinned_extents);
4012
4013         cur_trans->state =TRANS_STATE_COMPLETED;
4014         wake_up(&cur_trans->commit_wait);
4015
4016         /*
4017         memset(cur_trans, 0, sizeof(*cur_trans));
4018         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4019         */
4020 }
4021
4022 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4023 {
4024         struct btrfs_transaction *t;
4025
4026         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4027
4028         spin_lock(&root->fs_info->trans_lock);
4029         while (!list_empty(&root->fs_info->trans_list)) {
4030                 t = list_first_entry(&root->fs_info->trans_list,
4031                                      struct btrfs_transaction, list);
4032                 if (t->state >= TRANS_STATE_COMMIT_START) {
4033                         atomic_inc(&t->use_count);
4034                         spin_unlock(&root->fs_info->trans_lock);
4035                         btrfs_wait_for_commit(root, t->transid);
4036                         btrfs_put_transaction(t);
4037                         spin_lock(&root->fs_info->trans_lock);
4038                         continue;
4039                 }
4040                 if (t == root->fs_info->running_transaction) {
4041                         t->state = TRANS_STATE_COMMIT_DOING;
4042                         spin_unlock(&root->fs_info->trans_lock);
4043                         /*
4044                          * We wait for 0 num_writers since we don't hold a trans
4045                          * handle open currently for this transaction.
4046                          */
4047                         wait_event(t->writer_wait,
4048                                    atomic_read(&t->num_writers) == 0);
4049                 } else {
4050                         spin_unlock(&root->fs_info->trans_lock);
4051                 }
4052                 btrfs_cleanup_one_transaction(t, root);
4053
4054                 spin_lock(&root->fs_info->trans_lock);
4055                 if (t == root->fs_info->running_transaction)
4056                         root->fs_info->running_transaction = NULL;
4057                 list_del_init(&t->list);
4058                 spin_unlock(&root->fs_info->trans_lock);
4059
4060                 btrfs_put_transaction(t);
4061                 trace_btrfs_transaction_commit(root);
4062                 spin_lock(&root->fs_info->trans_lock);
4063         }
4064         spin_unlock(&root->fs_info->trans_lock);
4065         btrfs_destroy_all_ordered_extents(root->fs_info);
4066         btrfs_destroy_delayed_inodes(root);
4067         btrfs_assert_delayed_root_empty(root);
4068         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4069         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4070         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4071
4072         return 0;
4073 }
4074
4075 static struct extent_io_ops btree_extent_io_ops = {
4076         .readpage_end_io_hook = btree_readpage_end_io_hook,
4077         .readpage_io_failed_hook = btree_io_failed_hook,
4078         .submit_bio_hook = btree_submit_bio_hook,
4079         /* note we're sharing with inode.c for the merge bio hook */
4080         .merge_bio_hook = btrfs_merge_bio_hook,
4081 };