Merge branch 'for-john' of git://git.kernel.org/pub/scm/linux/kernel/git/iwlwifi...
[cascardo/linux.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52 #include "qgroup.h"
53
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57
58 static struct extent_io_ops btree_extent_io_ops;
59 static void end_workqueue_fn(struct btrfs_work *work);
60 static void free_fs_root(struct btrfs_root *root);
61 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
62                                     int read_only);
63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65                                       struct btrfs_root *root);
66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
67 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
68                                         struct extent_io_tree *dirty_pages,
69                                         int mark);
70 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
71                                        struct extent_io_tree *pinned_extents);
72 static int btrfs_cleanup_transaction(struct btrfs_root *root);
73 static void btrfs_error_commit_super(struct btrfs_root *root);
74
75 /*
76  * end_io_wq structs are used to do processing in task context when an IO is
77  * complete.  This is used during reads to verify checksums, and it is used
78  * by writes to insert metadata for new file extents after IO is complete.
79  */
80 struct end_io_wq {
81         struct bio *bio;
82         bio_end_io_t *end_io;
83         void *private;
84         struct btrfs_fs_info *info;
85         int error;
86         int metadata;
87         struct list_head list;
88         struct btrfs_work work;
89 };
90
91 /*
92  * async submit bios are used to offload expensive checksumming
93  * onto the worker threads.  They checksum file and metadata bios
94  * just before they are sent down the IO stack.
95  */
96 struct async_submit_bio {
97         struct inode *inode;
98         struct bio *bio;
99         struct list_head list;
100         extent_submit_bio_hook_t *submit_bio_start;
101         extent_submit_bio_hook_t *submit_bio_done;
102         int rw;
103         int mirror_num;
104         unsigned long bio_flags;
105         /*
106          * bio_offset is optional, can be used if the pages in the bio
107          * can't tell us where in the file the bio should go
108          */
109         u64 bio_offset;
110         struct btrfs_work work;
111         int error;
112 };
113
114 /*
115  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
116  * eb, the lockdep key is determined by the btrfs_root it belongs to and
117  * the level the eb occupies in the tree.
118  *
119  * Different roots are used for different purposes and may nest inside each
120  * other and they require separate keysets.  As lockdep keys should be
121  * static, assign keysets according to the purpose of the root as indicated
122  * by btrfs_root->objectid.  This ensures that all special purpose roots
123  * have separate keysets.
124  *
125  * Lock-nesting across peer nodes is always done with the immediate parent
126  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
127  * subclass to avoid triggering lockdep warning in such cases.
128  *
129  * The key is set by the readpage_end_io_hook after the buffer has passed
130  * csum validation but before the pages are unlocked.  It is also set by
131  * btrfs_init_new_buffer on freshly allocated blocks.
132  *
133  * We also add a check to make sure the highest level of the tree is the
134  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
135  * needs update as well.
136  */
137 #ifdef CONFIG_DEBUG_LOCK_ALLOC
138 # if BTRFS_MAX_LEVEL != 8
139 #  error
140 # endif
141
142 static struct btrfs_lockdep_keyset {
143         u64                     id;             /* root objectid */
144         const char              *name_stem;     /* lock name stem */
145         char                    names[BTRFS_MAX_LEVEL + 1][20];
146         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
147 } btrfs_lockdep_keysets[] = {
148         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
149         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
150         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
151         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
152         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
153         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
154         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
155         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
156         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
157         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
158         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
159         { .id = 0,                              .name_stem = "tree"     },
160 };
161
162 void __init btrfs_init_lockdep(void)
163 {
164         int i, j;
165
166         /* initialize lockdep class names */
167         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
168                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
169
170                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
171                         snprintf(ks->names[j], sizeof(ks->names[j]),
172                                  "btrfs-%s-%02d", ks->name_stem, j);
173         }
174 }
175
176 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
177                                     int level)
178 {
179         struct btrfs_lockdep_keyset *ks;
180
181         BUG_ON(level >= ARRAY_SIZE(ks->keys));
182
183         /* find the matching keyset, id 0 is the default entry */
184         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
185                 if (ks->id == objectid)
186                         break;
187
188         lockdep_set_class_and_name(&eb->lock,
189                                    &ks->keys[level], ks->names[level]);
190 }
191
192 #endif
193
194 /*
195  * extents on the btree inode are pretty simple, there's one extent
196  * that covers the entire device
197  */
198 static struct extent_map *btree_get_extent(struct inode *inode,
199                 struct page *page, size_t pg_offset, u64 start, u64 len,
200                 int create)
201 {
202         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
203         struct extent_map *em;
204         int ret;
205
206         read_lock(&em_tree->lock);
207         em = lookup_extent_mapping(em_tree, start, len);
208         if (em) {
209                 em->bdev =
210                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
211                 read_unlock(&em_tree->lock);
212                 goto out;
213         }
214         read_unlock(&em_tree->lock);
215
216         em = alloc_extent_map();
217         if (!em) {
218                 em = ERR_PTR(-ENOMEM);
219                 goto out;
220         }
221         em->start = 0;
222         em->len = (u64)-1;
223         em->block_len = (u64)-1;
224         em->block_start = 0;
225         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
226
227         write_lock(&em_tree->lock);
228         ret = add_extent_mapping(em_tree, em, 0);
229         if (ret == -EEXIST) {
230                 free_extent_map(em);
231                 em = lookup_extent_mapping(em_tree, start, len);
232                 if (!em)
233                         em = ERR_PTR(-EIO);
234         } else if (ret) {
235                 free_extent_map(em);
236                 em = ERR_PTR(ret);
237         }
238         write_unlock(&em_tree->lock);
239
240 out:
241         return em;
242 }
243
244 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
245 {
246         return btrfs_crc32c(seed, data, len);
247 }
248
249 void btrfs_csum_final(u32 crc, char *result)
250 {
251         put_unaligned_le32(~crc, result);
252 }
253
254 /*
255  * compute the csum for a btree block, and either verify it or write it
256  * into the csum field of the block.
257  */
258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259                            int verify)
260 {
261         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
262         char *result = NULL;
263         unsigned long len;
264         unsigned long cur_len;
265         unsigned long offset = BTRFS_CSUM_SIZE;
266         char *kaddr;
267         unsigned long map_start;
268         unsigned long map_len;
269         int err;
270         u32 crc = ~(u32)0;
271         unsigned long inline_result;
272
273         len = buf->len - offset;
274         while (len > 0) {
275                 err = map_private_extent_buffer(buf, offset, 32,
276                                         &kaddr, &map_start, &map_len);
277                 if (err)
278                         return 1;
279                 cur_len = min(len, map_len - (offset - map_start));
280                 crc = btrfs_csum_data(kaddr + offset - map_start,
281                                       crc, cur_len);
282                 len -= cur_len;
283                 offset += cur_len;
284         }
285         if (csum_size > sizeof(inline_result)) {
286                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287                 if (!result)
288                         return 1;
289         } else {
290                 result = (char *)&inline_result;
291         }
292
293         btrfs_csum_final(crc, result);
294
295         if (verify) {
296                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
297                         u32 val;
298                         u32 found = 0;
299                         memcpy(&found, result, csum_size);
300
301                         read_extent_buffer(buf, &val, 0, csum_size);
302                         printk_ratelimited(KERN_INFO
303                                 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
304                                 "level %d\n",
305                                 root->fs_info->sb->s_id, buf->start,
306                                 val, found, btrfs_header_level(buf));
307                         if (result != (char *)&inline_result)
308                                 kfree(result);
309                         return 1;
310                 }
311         } else {
312                 write_extent_buffer(buf, result, 0, csum_size);
313         }
314         if (result != (char *)&inline_result)
315                 kfree(result);
316         return 0;
317 }
318
319 /*
320  * we can't consider a given block up to date unless the transid of the
321  * block matches the transid in the parent node's pointer.  This is how we
322  * detect blocks that either didn't get written at all or got written
323  * in the wrong place.
324  */
325 static int verify_parent_transid(struct extent_io_tree *io_tree,
326                                  struct extent_buffer *eb, u64 parent_transid,
327                                  int atomic)
328 {
329         struct extent_state *cached_state = NULL;
330         int ret;
331         bool need_lock = (current->journal_info ==
332                           (void *)BTRFS_SEND_TRANS_STUB);
333
334         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
335                 return 0;
336
337         if (atomic)
338                 return -EAGAIN;
339
340         if (need_lock) {
341                 btrfs_tree_read_lock(eb);
342                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
343         }
344
345         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
346                          0, &cached_state);
347         if (extent_buffer_uptodate(eb) &&
348             btrfs_header_generation(eb) == parent_transid) {
349                 ret = 0;
350                 goto out;
351         }
352         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
353                        "found %llu\n",
354                        eb->start, parent_transid, btrfs_header_generation(eb));
355         ret = 1;
356
357         /*
358          * Things reading via commit roots that don't have normal protection,
359          * like send, can have a really old block in cache that may point at a
360          * block that has been free'd and re-allocated.  So don't clear uptodate
361          * if we find an eb that is under IO (dirty/writeback) because we could
362          * end up reading in the stale data and then writing it back out and
363          * making everybody very sad.
364          */
365         if (!extent_buffer_under_io(eb))
366                 clear_extent_buffer_uptodate(eb);
367 out:
368         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
369                              &cached_state, GFP_NOFS);
370         if (need_lock)
371                 btrfs_tree_read_unlock_blocking(eb);
372         return ret;
373 }
374
375 /*
376  * Return 0 if the superblock checksum type matches the checksum value of that
377  * algorithm. Pass the raw disk superblock data.
378  */
379 static int btrfs_check_super_csum(char *raw_disk_sb)
380 {
381         struct btrfs_super_block *disk_sb =
382                 (struct btrfs_super_block *)raw_disk_sb;
383         u16 csum_type = btrfs_super_csum_type(disk_sb);
384         int ret = 0;
385
386         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
387                 u32 crc = ~(u32)0;
388                 const int csum_size = sizeof(crc);
389                 char result[csum_size];
390
391                 /*
392                  * The super_block structure does not span the whole
393                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
394                  * is filled with zeros and is included in the checkum.
395                  */
396                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
397                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
398                 btrfs_csum_final(crc, result);
399
400                 if (memcmp(raw_disk_sb, result, csum_size))
401                         ret = 1;
402
403                 if (ret && btrfs_super_generation(disk_sb) < 10) {
404                         printk(KERN_WARNING
405                                 "BTRFS: super block crcs don't match, older mkfs detected\n");
406                         ret = 0;
407                 }
408         }
409
410         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
411                 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
412                                 csum_type);
413                 ret = 1;
414         }
415
416         return ret;
417 }
418
419 /*
420  * helper to read a given tree block, doing retries as required when
421  * the checksums don't match and we have alternate mirrors to try.
422  */
423 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
424                                           struct extent_buffer *eb,
425                                           u64 start, u64 parent_transid)
426 {
427         struct extent_io_tree *io_tree;
428         int failed = 0;
429         int ret;
430         int num_copies = 0;
431         int mirror_num = 0;
432         int failed_mirror = 0;
433
434         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
435         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
436         while (1) {
437                 ret = read_extent_buffer_pages(io_tree, eb, start,
438                                                WAIT_COMPLETE,
439                                                btree_get_extent, mirror_num);
440                 if (!ret) {
441                         if (!verify_parent_transid(io_tree, eb,
442                                                    parent_transid, 0))
443                                 break;
444                         else
445                                 ret = -EIO;
446                 }
447
448                 /*
449                  * This buffer's crc is fine, but its contents are corrupted, so
450                  * there is no reason to read the other copies, they won't be
451                  * any less wrong.
452                  */
453                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
454                         break;
455
456                 num_copies = btrfs_num_copies(root->fs_info,
457                                               eb->start, eb->len);
458                 if (num_copies == 1)
459                         break;
460
461                 if (!failed_mirror) {
462                         failed = 1;
463                         failed_mirror = eb->read_mirror;
464                 }
465
466                 mirror_num++;
467                 if (mirror_num == failed_mirror)
468                         mirror_num++;
469
470                 if (mirror_num > num_copies)
471                         break;
472         }
473
474         if (failed && !ret && failed_mirror)
475                 repair_eb_io_failure(root, eb, failed_mirror);
476
477         return ret;
478 }
479
480 /*
481  * checksum a dirty tree block before IO.  This has extra checks to make sure
482  * we only fill in the checksum field in the first page of a multi-page block
483  */
484
485 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
486 {
487         u64 start = page_offset(page);
488         u64 found_start;
489         struct extent_buffer *eb;
490
491         eb = (struct extent_buffer *)page->private;
492         if (page != eb->pages[0])
493                 return 0;
494         found_start = btrfs_header_bytenr(eb);
495         if (WARN_ON(found_start != start || !PageUptodate(page)))
496                 return 0;
497         csum_tree_block(root, eb, 0);
498         return 0;
499 }
500
501 static int check_tree_block_fsid(struct btrfs_root *root,
502                                  struct extent_buffer *eb)
503 {
504         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
505         u8 fsid[BTRFS_UUID_SIZE];
506         int ret = 1;
507
508         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
509         while (fs_devices) {
510                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
511                         ret = 0;
512                         break;
513                 }
514                 fs_devices = fs_devices->seed;
515         }
516         return ret;
517 }
518
519 #define CORRUPT(reason, eb, root, slot)                         \
520         btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
521                    "root=%llu, slot=%d", reason,                        \
522                btrfs_header_bytenr(eb), root->objectid, slot)
523
524 static noinline int check_leaf(struct btrfs_root *root,
525                                struct extent_buffer *leaf)
526 {
527         struct btrfs_key key;
528         struct btrfs_key leaf_key;
529         u32 nritems = btrfs_header_nritems(leaf);
530         int slot;
531
532         if (nritems == 0)
533                 return 0;
534
535         /* Check the 0 item */
536         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
537             BTRFS_LEAF_DATA_SIZE(root)) {
538                 CORRUPT("invalid item offset size pair", leaf, root, 0);
539                 return -EIO;
540         }
541
542         /*
543          * Check to make sure each items keys are in the correct order and their
544          * offsets make sense.  We only have to loop through nritems-1 because
545          * we check the current slot against the next slot, which verifies the
546          * next slot's offset+size makes sense and that the current's slot
547          * offset is correct.
548          */
549         for (slot = 0; slot < nritems - 1; slot++) {
550                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
551                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
552
553                 /* Make sure the keys are in the right order */
554                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
555                         CORRUPT("bad key order", leaf, root, slot);
556                         return -EIO;
557                 }
558
559                 /*
560                  * Make sure the offset and ends are right, remember that the
561                  * item data starts at the end of the leaf and grows towards the
562                  * front.
563                  */
564                 if (btrfs_item_offset_nr(leaf, slot) !=
565                         btrfs_item_end_nr(leaf, slot + 1)) {
566                         CORRUPT("slot offset bad", leaf, root, slot);
567                         return -EIO;
568                 }
569
570                 /*
571                  * Check to make sure that we don't point outside of the leaf,
572                  * just incase all the items are consistent to eachother, but
573                  * all point outside of the leaf.
574                  */
575                 if (btrfs_item_end_nr(leaf, slot) >
576                     BTRFS_LEAF_DATA_SIZE(root)) {
577                         CORRUPT("slot end outside of leaf", leaf, root, slot);
578                         return -EIO;
579                 }
580         }
581
582         return 0;
583 }
584
585 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
586                                       u64 phy_offset, struct page *page,
587                                       u64 start, u64 end, int mirror)
588 {
589         u64 found_start;
590         int found_level;
591         struct extent_buffer *eb;
592         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
593         int ret = 0;
594         int reads_done;
595
596         if (!page->private)
597                 goto out;
598
599         eb = (struct extent_buffer *)page->private;
600
601         /* the pending IO might have been the only thing that kept this buffer
602          * in memory.  Make sure we have a ref for all this other checks
603          */
604         extent_buffer_get(eb);
605
606         reads_done = atomic_dec_and_test(&eb->io_pages);
607         if (!reads_done)
608                 goto err;
609
610         eb->read_mirror = mirror;
611         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
612                 ret = -EIO;
613                 goto err;
614         }
615
616         found_start = btrfs_header_bytenr(eb);
617         if (found_start != eb->start) {
618                 printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
619                                "%llu %llu\n",
620                                found_start, eb->start);
621                 ret = -EIO;
622                 goto err;
623         }
624         if (check_tree_block_fsid(root, eb)) {
625                 printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
626                                eb->start);
627                 ret = -EIO;
628                 goto err;
629         }
630         found_level = btrfs_header_level(eb);
631         if (found_level >= BTRFS_MAX_LEVEL) {
632                 btrfs_info(root->fs_info, "bad tree block level %d",
633                            (int)btrfs_header_level(eb));
634                 ret = -EIO;
635                 goto err;
636         }
637
638         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
639                                        eb, found_level);
640
641         ret = csum_tree_block(root, eb, 1);
642         if (ret) {
643                 ret = -EIO;
644                 goto err;
645         }
646
647         /*
648          * If this is a leaf block and it is corrupt, set the corrupt bit so
649          * that we don't try and read the other copies of this block, just
650          * return -EIO.
651          */
652         if (found_level == 0 && check_leaf(root, eb)) {
653                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
654                 ret = -EIO;
655         }
656
657         if (!ret)
658                 set_extent_buffer_uptodate(eb);
659 err:
660         if (reads_done &&
661             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
662                 btree_readahead_hook(root, eb, eb->start, ret);
663
664         if (ret) {
665                 /*
666                  * our io error hook is going to dec the io pages
667                  * again, we have to make sure it has something
668                  * to decrement
669                  */
670                 atomic_inc(&eb->io_pages);
671                 clear_extent_buffer_uptodate(eb);
672         }
673         free_extent_buffer(eb);
674 out:
675         return ret;
676 }
677
678 static int btree_io_failed_hook(struct page *page, int failed_mirror)
679 {
680         struct extent_buffer *eb;
681         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
682
683         eb = (struct extent_buffer *)page->private;
684         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
685         eb->read_mirror = failed_mirror;
686         atomic_dec(&eb->io_pages);
687         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
688                 btree_readahead_hook(root, eb, eb->start, -EIO);
689         return -EIO;    /* we fixed nothing */
690 }
691
692 static void end_workqueue_bio(struct bio *bio, int err)
693 {
694         struct end_io_wq *end_io_wq = bio->bi_private;
695         struct btrfs_fs_info *fs_info;
696
697         fs_info = end_io_wq->info;
698         end_io_wq->error = err;
699         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
700
701         if (bio->bi_rw & REQ_WRITE) {
702                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
703                         btrfs_queue_work(fs_info->endio_meta_write_workers,
704                                          &end_io_wq->work);
705                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
706                         btrfs_queue_work(fs_info->endio_freespace_worker,
707                                          &end_io_wq->work);
708                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
709                         btrfs_queue_work(fs_info->endio_raid56_workers,
710                                          &end_io_wq->work);
711                 else
712                         btrfs_queue_work(fs_info->endio_write_workers,
713                                          &end_io_wq->work);
714         } else {
715                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
716                         btrfs_queue_work(fs_info->endio_raid56_workers,
717                                          &end_io_wq->work);
718                 else if (end_io_wq->metadata)
719                         btrfs_queue_work(fs_info->endio_meta_workers,
720                                          &end_io_wq->work);
721                 else
722                         btrfs_queue_work(fs_info->endio_workers,
723                                          &end_io_wq->work);
724         }
725 }
726
727 /*
728  * For the metadata arg you want
729  *
730  * 0 - if data
731  * 1 - if normal metadta
732  * 2 - if writing to the free space cache area
733  * 3 - raid parity work
734  */
735 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
736                         int metadata)
737 {
738         struct end_io_wq *end_io_wq;
739         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
740         if (!end_io_wq)
741                 return -ENOMEM;
742
743         end_io_wq->private = bio->bi_private;
744         end_io_wq->end_io = bio->bi_end_io;
745         end_io_wq->info = info;
746         end_io_wq->error = 0;
747         end_io_wq->bio = bio;
748         end_io_wq->metadata = metadata;
749
750         bio->bi_private = end_io_wq;
751         bio->bi_end_io = end_workqueue_bio;
752         return 0;
753 }
754
755 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
756 {
757         unsigned long limit = min_t(unsigned long,
758                                     info->thread_pool_size,
759                                     info->fs_devices->open_devices);
760         return 256 * limit;
761 }
762
763 static void run_one_async_start(struct btrfs_work *work)
764 {
765         struct async_submit_bio *async;
766         int ret;
767
768         async = container_of(work, struct  async_submit_bio, work);
769         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
770                                       async->mirror_num, async->bio_flags,
771                                       async->bio_offset);
772         if (ret)
773                 async->error = ret;
774 }
775
776 static void run_one_async_done(struct btrfs_work *work)
777 {
778         struct btrfs_fs_info *fs_info;
779         struct async_submit_bio *async;
780         int limit;
781
782         async = container_of(work, struct  async_submit_bio, work);
783         fs_info = BTRFS_I(async->inode)->root->fs_info;
784
785         limit = btrfs_async_submit_limit(fs_info);
786         limit = limit * 2 / 3;
787
788         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
789             waitqueue_active(&fs_info->async_submit_wait))
790                 wake_up(&fs_info->async_submit_wait);
791
792         /* If an error occured we just want to clean up the bio and move on */
793         if (async->error) {
794                 bio_endio(async->bio, async->error);
795                 return;
796         }
797
798         async->submit_bio_done(async->inode, async->rw, async->bio,
799                                async->mirror_num, async->bio_flags,
800                                async->bio_offset);
801 }
802
803 static void run_one_async_free(struct btrfs_work *work)
804 {
805         struct async_submit_bio *async;
806
807         async = container_of(work, struct  async_submit_bio, work);
808         kfree(async);
809 }
810
811 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
812                         int rw, struct bio *bio, int mirror_num,
813                         unsigned long bio_flags,
814                         u64 bio_offset,
815                         extent_submit_bio_hook_t *submit_bio_start,
816                         extent_submit_bio_hook_t *submit_bio_done)
817 {
818         struct async_submit_bio *async;
819
820         async = kmalloc(sizeof(*async), GFP_NOFS);
821         if (!async)
822                 return -ENOMEM;
823
824         async->inode = inode;
825         async->rw = rw;
826         async->bio = bio;
827         async->mirror_num = mirror_num;
828         async->submit_bio_start = submit_bio_start;
829         async->submit_bio_done = submit_bio_done;
830
831         btrfs_init_work(&async->work, run_one_async_start,
832                         run_one_async_done, run_one_async_free);
833
834         async->bio_flags = bio_flags;
835         async->bio_offset = bio_offset;
836
837         async->error = 0;
838
839         atomic_inc(&fs_info->nr_async_submits);
840
841         if (rw & REQ_SYNC)
842                 btrfs_set_work_high_priority(&async->work);
843
844         btrfs_queue_work(fs_info->workers, &async->work);
845
846         while (atomic_read(&fs_info->async_submit_draining) &&
847               atomic_read(&fs_info->nr_async_submits)) {
848                 wait_event(fs_info->async_submit_wait,
849                            (atomic_read(&fs_info->nr_async_submits) == 0));
850         }
851
852         return 0;
853 }
854
855 static int btree_csum_one_bio(struct bio *bio)
856 {
857         struct bio_vec *bvec;
858         struct btrfs_root *root;
859         int i, ret = 0;
860
861         bio_for_each_segment_all(bvec, bio, i) {
862                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
863                 ret = csum_dirty_buffer(root, bvec->bv_page);
864                 if (ret)
865                         break;
866         }
867
868         return ret;
869 }
870
871 static int __btree_submit_bio_start(struct inode *inode, int rw,
872                                     struct bio *bio, int mirror_num,
873                                     unsigned long bio_flags,
874                                     u64 bio_offset)
875 {
876         /*
877          * when we're called for a write, we're already in the async
878          * submission context.  Just jump into btrfs_map_bio
879          */
880         return btree_csum_one_bio(bio);
881 }
882
883 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
884                                  int mirror_num, unsigned long bio_flags,
885                                  u64 bio_offset)
886 {
887         int ret;
888
889         /*
890          * when we're called for a write, we're already in the async
891          * submission context.  Just jump into btrfs_map_bio
892          */
893         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
894         if (ret)
895                 bio_endio(bio, ret);
896         return ret;
897 }
898
899 static int check_async_write(struct inode *inode, unsigned long bio_flags)
900 {
901         if (bio_flags & EXTENT_BIO_TREE_LOG)
902                 return 0;
903 #ifdef CONFIG_X86
904         if (cpu_has_xmm4_2)
905                 return 0;
906 #endif
907         return 1;
908 }
909
910 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
911                                  int mirror_num, unsigned long bio_flags,
912                                  u64 bio_offset)
913 {
914         int async = check_async_write(inode, bio_flags);
915         int ret;
916
917         if (!(rw & REQ_WRITE)) {
918                 /*
919                  * called for a read, do the setup so that checksum validation
920                  * can happen in the async kernel threads
921                  */
922                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
923                                           bio, 1);
924                 if (ret)
925                         goto out_w_error;
926                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
927                                     mirror_num, 0);
928         } else if (!async) {
929                 ret = btree_csum_one_bio(bio);
930                 if (ret)
931                         goto out_w_error;
932                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
933                                     mirror_num, 0);
934         } else {
935                 /*
936                  * kthread helpers are used to submit writes so that
937                  * checksumming can happen in parallel across all CPUs
938                  */
939                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
940                                           inode, rw, bio, mirror_num, 0,
941                                           bio_offset,
942                                           __btree_submit_bio_start,
943                                           __btree_submit_bio_done);
944         }
945
946         if (ret) {
947 out_w_error:
948                 bio_endio(bio, ret);
949         }
950         return ret;
951 }
952
953 #ifdef CONFIG_MIGRATION
954 static int btree_migratepage(struct address_space *mapping,
955                         struct page *newpage, struct page *page,
956                         enum migrate_mode mode)
957 {
958         /*
959          * we can't safely write a btree page from here,
960          * we haven't done the locking hook
961          */
962         if (PageDirty(page))
963                 return -EAGAIN;
964         /*
965          * Buffers may be managed in a filesystem specific way.
966          * We must have no buffers or drop them.
967          */
968         if (page_has_private(page) &&
969             !try_to_release_page(page, GFP_KERNEL))
970                 return -EAGAIN;
971         return migrate_page(mapping, newpage, page, mode);
972 }
973 #endif
974
975
976 static int btree_writepages(struct address_space *mapping,
977                             struct writeback_control *wbc)
978 {
979         struct btrfs_fs_info *fs_info;
980         int ret;
981
982         if (wbc->sync_mode == WB_SYNC_NONE) {
983
984                 if (wbc->for_kupdate)
985                         return 0;
986
987                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
988                 /* this is a bit racy, but that's ok */
989                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
990                                              BTRFS_DIRTY_METADATA_THRESH);
991                 if (ret < 0)
992                         return 0;
993         }
994         return btree_write_cache_pages(mapping, wbc);
995 }
996
997 static int btree_readpage(struct file *file, struct page *page)
998 {
999         struct extent_io_tree *tree;
1000         tree = &BTRFS_I(page->mapping->host)->io_tree;
1001         return extent_read_full_page(tree, page, btree_get_extent, 0);
1002 }
1003
1004 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1005 {
1006         if (PageWriteback(page) || PageDirty(page))
1007                 return 0;
1008
1009         return try_release_extent_buffer(page);
1010 }
1011
1012 static void btree_invalidatepage(struct page *page, unsigned int offset,
1013                                  unsigned int length)
1014 {
1015         struct extent_io_tree *tree;
1016         tree = &BTRFS_I(page->mapping->host)->io_tree;
1017         extent_invalidatepage(tree, page, offset);
1018         btree_releasepage(page, GFP_NOFS);
1019         if (PagePrivate(page)) {
1020                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1021                            "page private not zero on page %llu",
1022                            (unsigned long long)page_offset(page));
1023                 ClearPagePrivate(page);
1024                 set_page_private(page, 0);
1025                 page_cache_release(page);
1026         }
1027 }
1028
1029 static int btree_set_page_dirty(struct page *page)
1030 {
1031 #ifdef DEBUG
1032         struct extent_buffer *eb;
1033
1034         BUG_ON(!PagePrivate(page));
1035         eb = (struct extent_buffer *)page->private;
1036         BUG_ON(!eb);
1037         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1038         BUG_ON(!atomic_read(&eb->refs));
1039         btrfs_assert_tree_locked(eb);
1040 #endif
1041         return __set_page_dirty_nobuffers(page);
1042 }
1043
1044 static const struct address_space_operations btree_aops = {
1045         .readpage       = btree_readpage,
1046         .writepages     = btree_writepages,
1047         .releasepage    = btree_releasepage,
1048         .invalidatepage = btree_invalidatepage,
1049 #ifdef CONFIG_MIGRATION
1050         .migratepage    = btree_migratepage,
1051 #endif
1052         .set_page_dirty = btree_set_page_dirty,
1053 };
1054
1055 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1056                          u64 parent_transid)
1057 {
1058         struct extent_buffer *buf = NULL;
1059         struct inode *btree_inode = root->fs_info->btree_inode;
1060         int ret = 0;
1061
1062         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1063         if (!buf)
1064                 return 0;
1065         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1066                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1067         free_extent_buffer(buf);
1068         return ret;
1069 }
1070
1071 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1072                          int mirror_num, struct extent_buffer **eb)
1073 {
1074         struct extent_buffer *buf = NULL;
1075         struct inode *btree_inode = root->fs_info->btree_inode;
1076         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1077         int ret;
1078
1079         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1080         if (!buf)
1081                 return 0;
1082
1083         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1084
1085         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1086                                        btree_get_extent, mirror_num);
1087         if (ret) {
1088                 free_extent_buffer(buf);
1089                 return ret;
1090         }
1091
1092         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1093                 free_extent_buffer(buf);
1094                 return -EIO;
1095         } else if (extent_buffer_uptodate(buf)) {
1096                 *eb = buf;
1097         } else {
1098                 free_extent_buffer(buf);
1099         }
1100         return 0;
1101 }
1102
1103 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1104                                             u64 bytenr, u32 blocksize)
1105 {
1106         return find_extent_buffer(root->fs_info, bytenr);
1107 }
1108
1109 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1110                                                  u64 bytenr, u32 blocksize)
1111 {
1112 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1113         if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
1114                 return alloc_test_extent_buffer(root->fs_info, bytenr,
1115                                                 blocksize);
1116 #endif
1117         return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1118 }
1119
1120
1121 int btrfs_write_tree_block(struct extent_buffer *buf)
1122 {
1123         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1124                                         buf->start + buf->len - 1);
1125 }
1126
1127 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1128 {
1129         return filemap_fdatawait_range(buf->pages[0]->mapping,
1130                                        buf->start, buf->start + buf->len - 1);
1131 }
1132
1133 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1134                                       u32 blocksize, u64 parent_transid)
1135 {
1136         struct extent_buffer *buf = NULL;
1137         int ret;
1138
1139         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1140         if (!buf)
1141                 return NULL;
1142
1143         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1144         if (ret) {
1145                 free_extent_buffer(buf);
1146                 return NULL;
1147         }
1148         return buf;
1149
1150 }
1151
1152 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1153                       struct extent_buffer *buf)
1154 {
1155         struct btrfs_fs_info *fs_info = root->fs_info;
1156
1157         if (btrfs_header_generation(buf) ==
1158             fs_info->running_transaction->transid) {
1159                 btrfs_assert_tree_locked(buf);
1160
1161                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1162                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1163                                              -buf->len,
1164                                              fs_info->dirty_metadata_batch);
1165                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1166                         btrfs_set_lock_blocking(buf);
1167                         clear_extent_buffer_dirty(buf);
1168                 }
1169         }
1170 }
1171
1172 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1173 {
1174         struct btrfs_subvolume_writers *writers;
1175         int ret;
1176
1177         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1178         if (!writers)
1179                 return ERR_PTR(-ENOMEM);
1180
1181         ret = percpu_counter_init(&writers->counter, 0);
1182         if (ret < 0) {
1183                 kfree(writers);
1184                 return ERR_PTR(ret);
1185         }
1186
1187         init_waitqueue_head(&writers->wait);
1188         return writers;
1189 }
1190
1191 static void
1192 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1193 {
1194         percpu_counter_destroy(&writers->counter);
1195         kfree(writers);
1196 }
1197
1198 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1199                          u32 stripesize, struct btrfs_root *root,
1200                          struct btrfs_fs_info *fs_info,
1201                          u64 objectid)
1202 {
1203         root->node = NULL;
1204         root->commit_root = NULL;
1205         root->sectorsize = sectorsize;
1206         root->nodesize = nodesize;
1207         root->leafsize = leafsize;
1208         root->stripesize = stripesize;
1209         root->state = 0;
1210         root->orphan_cleanup_state = 0;
1211
1212         root->objectid = objectid;
1213         root->last_trans = 0;
1214         root->highest_objectid = 0;
1215         root->nr_delalloc_inodes = 0;
1216         root->nr_ordered_extents = 0;
1217         root->name = NULL;
1218         root->inode_tree = RB_ROOT;
1219         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1220         root->block_rsv = NULL;
1221         root->orphan_block_rsv = NULL;
1222
1223         INIT_LIST_HEAD(&root->dirty_list);
1224         INIT_LIST_HEAD(&root->root_list);
1225         INIT_LIST_HEAD(&root->delalloc_inodes);
1226         INIT_LIST_HEAD(&root->delalloc_root);
1227         INIT_LIST_HEAD(&root->ordered_extents);
1228         INIT_LIST_HEAD(&root->ordered_root);
1229         INIT_LIST_HEAD(&root->logged_list[0]);
1230         INIT_LIST_HEAD(&root->logged_list[1]);
1231         spin_lock_init(&root->orphan_lock);
1232         spin_lock_init(&root->inode_lock);
1233         spin_lock_init(&root->delalloc_lock);
1234         spin_lock_init(&root->ordered_extent_lock);
1235         spin_lock_init(&root->accounting_lock);
1236         spin_lock_init(&root->log_extents_lock[0]);
1237         spin_lock_init(&root->log_extents_lock[1]);
1238         mutex_init(&root->objectid_mutex);
1239         mutex_init(&root->log_mutex);
1240         mutex_init(&root->ordered_extent_mutex);
1241         mutex_init(&root->delalloc_mutex);
1242         init_waitqueue_head(&root->log_writer_wait);
1243         init_waitqueue_head(&root->log_commit_wait[0]);
1244         init_waitqueue_head(&root->log_commit_wait[1]);
1245         INIT_LIST_HEAD(&root->log_ctxs[0]);
1246         INIT_LIST_HEAD(&root->log_ctxs[1]);
1247         atomic_set(&root->log_commit[0], 0);
1248         atomic_set(&root->log_commit[1], 0);
1249         atomic_set(&root->log_writers, 0);
1250         atomic_set(&root->log_batch, 0);
1251         atomic_set(&root->orphan_inodes, 0);
1252         atomic_set(&root->refs, 1);
1253         atomic_set(&root->will_be_snapshoted, 0);
1254         root->log_transid = 0;
1255         root->log_transid_committed = -1;
1256         root->last_log_commit = 0;
1257         if (fs_info)
1258                 extent_io_tree_init(&root->dirty_log_pages,
1259                                      fs_info->btree_inode->i_mapping);
1260
1261         memset(&root->root_key, 0, sizeof(root->root_key));
1262         memset(&root->root_item, 0, sizeof(root->root_item));
1263         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1264         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1265         if (fs_info)
1266                 root->defrag_trans_start = fs_info->generation;
1267         else
1268                 root->defrag_trans_start = 0;
1269         init_completion(&root->kobj_unregister);
1270         root->root_key.objectid = objectid;
1271         root->anon_dev = 0;
1272
1273         spin_lock_init(&root->root_item_lock);
1274 }
1275
1276 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1277 {
1278         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1279         if (root)
1280                 root->fs_info = fs_info;
1281         return root;
1282 }
1283
1284 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1285 /* Should only be used by the testing infrastructure */
1286 struct btrfs_root *btrfs_alloc_dummy_root(void)
1287 {
1288         struct btrfs_root *root;
1289
1290         root = btrfs_alloc_root(NULL);
1291         if (!root)
1292                 return ERR_PTR(-ENOMEM);
1293         __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1294         set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1295         root->alloc_bytenr = 0;
1296
1297         return root;
1298 }
1299 #endif
1300
1301 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1302                                      struct btrfs_fs_info *fs_info,
1303                                      u64 objectid)
1304 {
1305         struct extent_buffer *leaf;
1306         struct btrfs_root *tree_root = fs_info->tree_root;
1307         struct btrfs_root *root;
1308         struct btrfs_key key;
1309         int ret = 0;
1310         uuid_le uuid;
1311
1312         root = btrfs_alloc_root(fs_info);
1313         if (!root)
1314                 return ERR_PTR(-ENOMEM);
1315
1316         __setup_root(tree_root->nodesize, tree_root->leafsize,
1317                      tree_root->sectorsize, tree_root->stripesize,
1318                      root, fs_info, objectid);
1319         root->root_key.objectid = objectid;
1320         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1321         root->root_key.offset = 0;
1322
1323         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1324                                       0, objectid, NULL, 0, 0, 0);
1325         if (IS_ERR(leaf)) {
1326                 ret = PTR_ERR(leaf);
1327                 leaf = NULL;
1328                 goto fail;
1329         }
1330
1331         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1332         btrfs_set_header_bytenr(leaf, leaf->start);
1333         btrfs_set_header_generation(leaf, trans->transid);
1334         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1335         btrfs_set_header_owner(leaf, objectid);
1336         root->node = leaf;
1337
1338         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1339                             BTRFS_FSID_SIZE);
1340         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1341                             btrfs_header_chunk_tree_uuid(leaf),
1342                             BTRFS_UUID_SIZE);
1343         btrfs_mark_buffer_dirty(leaf);
1344
1345         root->commit_root = btrfs_root_node(root);
1346         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1347
1348         root->root_item.flags = 0;
1349         root->root_item.byte_limit = 0;
1350         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1351         btrfs_set_root_generation(&root->root_item, trans->transid);
1352         btrfs_set_root_level(&root->root_item, 0);
1353         btrfs_set_root_refs(&root->root_item, 1);
1354         btrfs_set_root_used(&root->root_item, leaf->len);
1355         btrfs_set_root_last_snapshot(&root->root_item, 0);
1356         btrfs_set_root_dirid(&root->root_item, 0);
1357         uuid_le_gen(&uuid);
1358         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1359         root->root_item.drop_level = 0;
1360
1361         key.objectid = objectid;
1362         key.type = BTRFS_ROOT_ITEM_KEY;
1363         key.offset = 0;
1364         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1365         if (ret)
1366                 goto fail;
1367
1368         btrfs_tree_unlock(leaf);
1369
1370         return root;
1371
1372 fail:
1373         if (leaf) {
1374                 btrfs_tree_unlock(leaf);
1375                 free_extent_buffer(root->commit_root);
1376                 free_extent_buffer(leaf);
1377         }
1378         kfree(root);
1379
1380         return ERR_PTR(ret);
1381 }
1382
1383 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1384                                          struct btrfs_fs_info *fs_info)
1385 {
1386         struct btrfs_root *root;
1387         struct btrfs_root *tree_root = fs_info->tree_root;
1388         struct extent_buffer *leaf;
1389
1390         root = btrfs_alloc_root(fs_info);
1391         if (!root)
1392                 return ERR_PTR(-ENOMEM);
1393
1394         __setup_root(tree_root->nodesize, tree_root->leafsize,
1395                      tree_root->sectorsize, tree_root->stripesize,
1396                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1397
1398         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1399         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1400         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1401
1402         /*
1403          * DON'T set REF_COWS for log trees
1404          *
1405          * log trees do not get reference counted because they go away
1406          * before a real commit is actually done.  They do store pointers
1407          * to file data extents, and those reference counts still get
1408          * updated (along with back refs to the log tree).
1409          */
1410
1411         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1412                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1413                                       0, 0, 0);
1414         if (IS_ERR(leaf)) {
1415                 kfree(root);
1416                 return ERR_CAST(leaf);
1417         }
1418
1419         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1420         btrfs_set_header_bytenr(leaf, leaf->start);
1421         btrfs_set_header_generation(leaf, trans->transid);
1422         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1423         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1424         root->node = leaf;
1425
1426         write_extent_buffer(root->node, root->fs_info->fsid,
1427                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1428         btrfs_mark_buffer_dirty(root->node);
1429         btrfs_tree_unlock(root->node);
1430         return root;
1431 }
1432
1433 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1434                              struct btrfs_fs_info *fs_info)
1435 {
1436         struct btrfs_root *log_root;
1437
1438         log_root = alloc_log_tree(trans, fs_info);
1439         if (IS_ERR(log_root))
1440                 return PTR_ERR(log_root);
1441         WARN_ON(fs_info->log_root_tree);
1442         fs_info->log_root_tree = log_root;
1443         return 0;
1444 }
1445
1446 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1447                        struct btrfs_root *root)
1448 {
1449         struct btrfs_root *log_root;
1450         struct btrfs_inode_item *inode_item;
1451
1452         log_root = alloc_log_tree(trans, root->fs_info);
1453         if (IS_ERR(log_root))
1454                 return PTR_ERR(log_root);
1455
1456         log_root->last_trans = trans->transid;
1457         log_root->root_key.offset = root->root_key.objectid;
1458
1459         inode_item = &log_root->root_item.inode;
1460         btrfs_set_stack_inode_generation(inode_item, 1);
1461         btrfs_set_stack_inode_size(inode_item, 3);
1462         btrfs_set_stack_inode_nlink(inode_item, 1);
1463         btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1464         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1465
1466         btrfs_set_root_node(&log_root->root_item, log_root->node);
1467
1468         WARN_ON(root->log_root);
1469         root->log_root = log_root;
1470         root->log_transid = 0;
1471         root->log_transid_committed = -1;
1472         root->last_log_commit = 0;
1473         return 0;
1474 }
1475
1476 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1477                                                struct btrfs_key *key)
1478 {
1479         struct btrfs_root *root;
1480         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1481         struct btrfs_path *path;
1482         u64 generation;
1483         u32 blocksize;
1484         int ret;
1485
1486         path = btrfs_alloc_path();
1487         if (!path)
1488                 return ERR_PTR(-ENOMEM);
1489
1490         root = btrfs_alloc_root(fs_info);
1491         if (!root) {
1492                 ret = -ENOMEM;
1493                 goto alloc_fail;
1494         }
1495
1496         __setup_root(tree_root->nodesize, tree_root->leafsize,
1497                      tree_root->sectorsize, tree_root->stripesize,
1498                      root, fs_info, key->objectid);
1499
1500         ret = btrfs_find_root(tree_root, key, path,
1501                               &root->root_item, &root->root_key);
1502         if (ret) {
1503                 if (ret > 0)
1504                         ret = -ENOENT;
1505                 goto find_fail;
1506         }
1507
1508         generation = btrfs_root_generation(&root->root_item);
1509         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1510         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1511                                      blocksize, generation);
1512         if (!root->node) {
1513                 ret = -ENOMEM;
1514                 goto find_fail;
1515         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1516                 ret = -EIO;
1517                 goto read_fail;
1518         }
1519         root->commit_root = btrfs_root_node(root);
1520 out:
1521         btrfs_free_path(path);
1522         return root;
1523
1524 read_fail:
1525         free_extent_buffer(root->node);
1526 find_fail:
1527         kfree(root);
1528 alloc_fail:
1529         root = ERR_PTR(ret);
1530         goto out;
1531 }
1532
1533 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1534                                       struct btrfs_key *location)
1535 {
1536         struct btrfs_root *root;
1537
1538         root = btrfs_read_tree_root(tree_root, location);
1539         if (IS_ERR(root))
1540                 return root;
1541
1542         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1543                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1544                 btrfs_check_and_init_root_item(&root->root_item);
1545         }
1546
1547         return root;
1548 }
1549
1550 int btrfs_init_fs_root(struct btrfs_root *root)
1551 {
1552         int ret;
1553         struct btrfs_subvolume_writers *writers;
1554
1555         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1556         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1557                                         GFP_NOFS);
1558         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1559                 ret = -ENOMEM;
1560                 goto fail;
1561         }
1562
1563         writers = btrfs_alloc_subvolume_writers();
1564         if (IS_ERR(writers)) {
1565                 ret = PTR_ERR(writers);
1566                 goto fail;
1567         }
1568         root->subv_writers = writers;
1569
1570         btrfs_init_free_ino_ctl(root);
1571         spin_lock_init(&root->cache_lock);
1572         init_waitqueue_head(&root->cache_wait);
1573
1574         ret = get_anon_bdev(&root->anon_dev);
1575         if (ret)
1576                 goto free_writers;
1577         return 0;
1578
1579 free_writers:
1580         btrfs_free_subvolume_writers(root->subv_writers);
1581 fail:
1582         kfree(root->free_ino_ctl);
1583         kfree(root->free_ino_pinned);
1584         return ret;
1585 }
1586
1587 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1588                                                u64 root_id)
1589 {
1590         struct btrfs_root *root;
1591
1592         spin_lock(&fs_info->fs_roots_radix_lock);
1593         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1594                                  (unsigned long)root_id);
1595         spin_unlock(&fs_info->fs_roots_radix_lock);
1596         return root;
1597 }
1598
1599 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1600                          struct btrfs_root *root)
1601 {
1602         int ret;
1603
1604         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1605         if (ret)
1606                 return ret;
1607
1608         spin_lock(&fs_info->fs_roots_radix_lock);
1609         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1610                                 (unsigned long)root->root_key.objectid,
1611                                 root);
1612         if (ret == 0)
1613                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1614         spin_unlock(&fs_info->fs_roots_radix_lock);
1615         radix_tree_preload_end();
1616
1617         return ret;
1618 }
1619
1620 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1621                                      struct btrfs_key *location,
1622                                      bool check_ref)
1623 {
1624         struct btrfs_root *root;
1625         int ret;
1626
1627         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1628                 return fs_info->tree_root;
1629         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1630                 return fs_info->extent_root;
1631         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1632                 return fs_info->chunk_root;
1633         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1634                 return fs_info->dev_root;
1635         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1636                 return fs_info->csum_root;
1637         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1638                 return fs_info->quota_root ? fs_info->quota_root :
1639                                              ERR_PTR(-ENOENT);
1640         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1641                 return fs_info->uuid_root ? fs_info->uuid_root :
1642                                             ERR_PTR(-ENOENT);
1643 again:
1644         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1645         if (root) {
1646                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1647                         return ERR_PTR(-ENOENT);
1648                 return root;
1649         }
1650
1651         root = btrfs_read_fs_root(fs_info->tree_root, location);
1652         if (IS_ERR(root))
1653                 return root;
1654
1655         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1656                 ret = -ENOENT;
1657                 goto fail;
1658         }
1659
1660         ret = btrfs_init_fs_root(root);
1661         if (ret)
1662                 goto fail;
1663
1664         ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1665                         location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1666         if (ret < 0)
1667                 goto fail;
1668         if (ret == 0)
1669                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1670
1671         ret = btrfs_insert_fs_root(fs_info, root);
1672         if (ret) {
1673                 if (ret == -EEXIST) {
1674                         free_fs_root(root);
1675                         goto again;
1676                 }
1677                 goto fail;
1678         }
1679         return root;
1680 fail:
1681         free_fs_root(root);
1682         return ERR_PTR(ret);
1683 }
1684
1685 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1686 {
1687         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1688         int ret = 0;
1689         struct btrfs_device *device;
1690         struct backing_dev_info *bdi;
1691
1692         rcu_read_lock();
1693         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1694                 if (!device->bdev)
1695                         continue;
1696                 bdi = blk_get_backing_dev_info(device->bdev);
1697                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1698                         ret = 1;
1699                         break;
1700                 }
1701         }
1702         rcu_read_unlock();
1703         return ret;
1704 }
1705
1706 /*
1707  * If this fails, caller must call bdi_destroy() to get rid of the
1708  * bdi again.
1709  */
1710 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1711 {
1712         int err;
1713
1714         bdi->capabilities = BDI_CAP_MAP_COPY;
1715         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1716         if (err)
1717                 return err;
1718
1719         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1720         bdi->congested_fn       = btrfs_congested_fn;
1721         bdi->congested_data     = info;
1722         return 0;
1723 }
1724
1725 /*
1726  * called by the kthread helper functions to finally call the bio end_io
1727  * functions.  This is where read checksum verification actually happens
1728  */
1729 static void end_workqueue_fn(struct btrfs_work *work)
1730 {
1731         struct bio *bio;
1732         struct end_io_wq *end_io_wq;
1733         int error;
1734
1735         end_io_wq = container_of(work, struct end_io_wq, work);
1736         bio = end_io_wq->bio;
1737
1738         error = end_io_wq->error;
1739         bio->bi_private = end_io_wq->private;
1740         bio->bi_end_io = end_io_wq->end_io;
1741         kfree(end_io_wq);
1742         bio_endio_nodec(bio, error);
1743 }
1744
1745 static int cleaner_kthread(void *arg)
1746 {
1747         struct btrfs_root *root = arg;
1748         int again;
1749
1750         do {
1751                 again = 0;
1752
1753                 /* Make the cleaner go to sleep early. */
1754                 if (btrfs_need_cleaner_sleep(root))
1755                         goto sleep;
1756
1757                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1758                         goto sleep;
1759
1760                 /*
1761                  * Avoid the problem that we change the status of the fs
1762                  * during the above check and trylock.
1763                  */
1764                 if (btrfs_need_cleaner_sleep(root)) {
1765                         mutex_unlock(&root->fs_info->cleaner_mutex);
1766                         goto sleep;
1767                 }
1768
1769                 btrfs_run_delayed_iputs(root);
1770                 again = btrfs_clean_one_deleted_snapshot(root);
1771                 mutex_unlock(&root->fs_info->cleaner_mutex);
1772
1773                 /*
1774                  * The defragger has dealt with the R/O remount and umount,
1775                  * needn't do anything special here.
1776                  */
1777                 btrfs_run_defrag_inodes(root->fs_info);
1778 sleep:
1779                 if (!try_to_freeze() && !again) {
1780                         set_current_state(TASK_INTERRUPTIBLE);
1781                         if (!kthread_should_stop())
1782                                 schedule();
1783                         __set_current_state(TASK_RUNNING);
1784                 }
1785         } while (!kthread_should_stop());
1786         return 0;
1787 }
1788
1789 static int transaction_kthread(void *arg)
1790 {
1791         struct btrfs_root *root = arg;
1792         struct btrfs_trans_handle *trans;
1793         struct btrfs_transaction *cur;
1794         u64 transid;
1795         unsigned long now;
1796         unsigned long delay;
1797         bool cannot_commit;
1798
1799         do {
1800                 cannot_commit = false;
1801                 delay = HZ * root->fs_info->commit_interval;
1802                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1803
1804                 spin_lock(&root->fs_info->trans_lock);
1805                 cur = root->fs_info->running_transaction;
1806                 if (!cur) {
1807                         spin_unlock(&root->fs_info->trans_lock);
1808                         goto sleep;
1809                 }
1810
1811                 now = get_seconds();
1812                 if (cur->state < TRANS_STATE_BLOCKED &&
1813                     (now < cur->start_time ||
1814                      now - cur->start_time < root->fs_info->commit_interval)) {
1815                         spin_unlock(&root->fs_info->trans_lock);
1816                         delay = HZ * 5;
1817                         goto sleep;
1818                 }
1819                 transid = cur->transid;
1820                 spin_unlock(&root->fs_info->trans_lock);
1821
1822                 /* If the file system is aborted, this will always fail. */
1823                 trans = btrfs_attach_transaction(root);
1824                 if (IS_ERR(trans)) {
1825                         if (PTR_ERR(trans) != -ENOENT)
1826                                 cannot_commit = true;
1827                         goto sleep;
1828                 }
1829                 if (transid == trans->transid) {
1830                         btrfs_commit_transaction(trans, root);
1831                 } else {
1832                         btrfs_end_transaction(trans, root);
1833                 }
1834 sleep:
1835                 wake_up_process(root->fs_info->cleaner_kthread);
1836                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1837
1838                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1839                                       &root->fs_info->fs_state)))
1840                         btrfs_cleanup_transaction(root);
1841                 if (!try_to_freeze()) {
1842                         set_current_state(TASK_INTERRUPTIBLE);
1843                         if (!kthread_should_stop() &&
1844                             (!btrfs_transaction_blocked(root->fs_info) ||
1845                              cannot_commit))
1846                                 schedule_timeout(delay);
1847                         __set_current_state(TASK_RUNNING);
1848                 }
1849         } while (!kthread_should_stop());
1850         return 0;
1851 }
1852
1853 /*
1854  * this will find the highest generation in the array of
1855  * root backups.  The index of the highest array is returned,
1856  * or -1 if we can't find anything.
1857  *
1858  * We check to make sure the array is valid by comparing the
1859  * generation of the latest  root in the array with the generation
1860  * in the super block.  If they don't match we pitch it.
1861  */
1862 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1863 {
1864         u64 cur;
1865         int newest_index = -1;
1866         struct btrfs_root_backup *root_backup;
1867         int i;
1868
1869         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1870                 root_backup = info->super_copy->super_roots + i;
1871                 cur = btrfs_backup_tree_root_gen(root_backup);
1872                 if (cur == newest_gen)
1873                         newest_index = i;
1874         }
1875
1876         /* check to see if we actually wrapped around */
1877         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1878                 root_backup = info->super_copy->super_roots;
1879                 cur = btrfs_backup_tree_root_gen(root_backup);
1880                 if (cur == newest_gen)
1881                         newest_index = 0;
1882         }
1883         return newest_index;
1884 }
1885
1886
1887 /*
1888  * find the oldest backup so we know where to store new entries
1889  * in the backup array.  This will set the backup_root_index
1890  * field in the fs_info struct
1891  */
1892 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1893                                      u64 newest_gen)
1894 {
1895         int newest_index = -1;
1896
1897         newest_index = find_newest_super_backup(info, newest_gen);
1898         /* if there was garbage in there, just move along */
1899         if (newest_index == -1) {
1900                 info->backup_root_index = 0;
1901         } else {
1902                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1903         }
1904 }
1905
1906 /*
1907  * copy all the root pointers into the super backup array.
1908  * this will bump the backup pointer by one when it is
1909  * done
1910  */
1911 static void backup_super_roots(struct btrfs_fs_info *info)
1912 {
1913         int next_backup;
1914         struct btrfs_root_backup *root_backup;
1915         int last_backup;
1916
1917         next_backup = info->backup_root_index;
1918         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1919                 BTRFS_NUM_BACKUP_ROOTS;
1920
1921         /*
1922          * just overwrite the last backup if we're at the same generation
1923          * this happens only at umount
1924          */
1925         root_backup = info->super_for_commit->super_roots + last_backup;
1926         if (btrfs_backup_tree_root_gen(root_backup) ==
1927             btrfs_header_generation(info->tree_root->node))
1928                 next_backup = last_backup;
1929
1930         root_backup = info->super_for_commit->super_roots + next_backup;
1931
1932         /*
1933          * make sure all of our padding and empty slots get zero filled
1934          * regardless of which ones we use today
1935          */
1936         memset(root_backup, 0, sizeof(*root_backup));
1937
1938         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1939
1940         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1941         btrfs_set_backup_tree_root_gen(root_backup,
1942                                btrfs_header_generation(info->tree_root->node));
1943
1944         btrfs_set_backup_tree_root_level(root_backup,
1945                                btrfs_header_level(info->tree_root->node));
1946
1947         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1948         btrfs_set_backup_chunk_root_gen(root_backup,
1949                                btrfs_header_generation(info->chunk_root->node));
1950         btrfs_set_backup_chunk_root_level(root_backup,
1951                                btrfs_header_level(info->chunk_root->node));
1952
1953         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1954         btrfs_set_backup_extent_root_gen(root_backup,
1955                                btrfs_header_generation(info->extent_root->node));
1956         btrfs_set_backup_extent_root_level(root_backup,
1957                                btrfs_header_level(info->extent_root->node));
1958
1959         /*
1960          * we might commit during log recovery, which happens before we set
1961          * the fs_root.  Make sure it is valid before we fill it in.
1962          */
1963         if (info->fs_root && info->fs_root->node) {
1964                 btrfs_set_backup_fs_root(root_backup,
1965                                          info->fs_root->node->start);
1966                 btrfs_set_backup_fs_root_gen(root_backup,
1967                                btrfs_header_generation(info->fs_root->node));
1968                 btrfs_set_backup_fs_root_level(root_backup,
1969                                btrfs_header_level(info->fs_root->node));
1970         }
1971
1972         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1973         btrfs_set_backup_dev_root_gen(root_backup,
1974                                btrfs_header_generation(info->dev_root->node));
1975         btrfs_set_backup_dev_root_level(root_backup,
1976                                        btrfs_header_level(info->dev_root->node));
1977
1978         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1979         btrfs_set_backup_csum_root_gen(root_backup,
1980                                btrfs_header_generation(info->csum_root->node));
1981         btrfs_set_backup_csum_root_level(root_backup,
1982                                btrfs_header_level(info->csum_root->node));
1983
1984         btrfs_set_backup_total_bytes(root_backup,
1985                              btrfs_super_total_bytes(info->super_copy));
1986         btrfs_set_backup_bytes_used(root_backup,
1987                              btrfs_super_bytes_used(info->super_copy));
1988         btrfs_set_backup_num_devices(root_backup,
1989                              btrfs_super_num_devices(info->super_copy));
1990
1991         /*
1992          * if we don't copy this out to the super_copy, it won't get remembered
1993          * for the next commit
1994          */
1995         memcpy(&info->super_copy->super_roots,
1996                &info->super_for_commit->super_roots,
1997                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1998 }
1999
2000 /*
2001  * this copies info out of the root backup array and back into
2002  * the in-memory super block.  It is meant to help iterate through
2003  * the array, so you send it the number of backups you've already
2004  * tried and the last backup index you used.
2005  *
2006  * this returns -1 when it has tried all the backups
2007  */
2008 static noinline int next_root_backup(struct btrfs_fs_info *info,
2009                                      struct btrfs_super_block *super,
2010                                      int *num_backups_tried, int *backup_index)
2011 {
2012         struct btrfs_root_backup *root_backup;
2013         int newest = *backup_index;
2014
2015         if (*num_backups_tried == 0) {
2016                 u64 gen = btrfs_super_generation(super);
2017
2018                 newest = find_newest_super_backup(info, gen);
2019                 if (newest == -1)
2020                         return -1;
2021
2022                 *backup_index = newest;
2023                 *num_backups_tried = 1;
2024         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2025                 /* we've tried all the backups, all done */
2026                 return -1;
2027         } else {
2028                 /* jump to the next oldest backup */
2029                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2030                         BTRFS_NUM_BACKUP_ROOTS;
2031                 *backup_index = newest;
2032                 *num_backups_tried += 1;
2033         }
2034         root_backup = super->super_roots + newest;
2035
2036         btrfs_set_super_generation(super,
2037                                    btrfs_backup_tree_root_gen(root_backup));
2038         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2039         btrfs_set_super_root_level(super,
2040                                    btrfs_backup_tree_root_level(root_backup));
2041         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2042
2043         /*
2044          * fixme: the total bytes and num_devices need to match or we should
2045          * need a fsck
2046          */
2047         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2048         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2049         return 0;
2050 }
2051
2052 /* helper to cleanup workers */
2053 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2054 {
2055         btrfs_destroy_workqueue(fs_info->fixup_workers);
2056         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2057         btrfs_destroy_workqueue(fs_info->workers);
2058         btrfs_destroy_workqueue(fs_info->endio_workers);
2059         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2060         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2061         btrfs_destroy_workqueue(fs_info->rmw_workers);
2062         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2063         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2064         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2065         btrfs_destroy_workqueue(fs_info->submit_workers);
2066         btrfs_destroy_workqueue(fs_info->delayed_workers);
2067         btrfs_destroy_workqueue(fs_info->caching_workers);
2068         btrfs_destroy_workqueue(fs_info->readahead_workers);
2069         btrfs_destroy_workqueue(fs_info->flush_workers);
2070         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2071         btrfs_destroy_workqueue(fs_info->extent_workers);
2072 }
2073
2074 static void free_root_extent_buffers(struct btrfs_root *root)
2075 {
2076         if (root) {
2077                 free_extent_buffer(root->node);
2078                 free_extent_buffer(root->commit_root);
2079                 root->node = NULL;
2080                 root->commit_root = NULL;
2081         }
2082 }
2083
2084 /* helper to cleanup tree roots */
2085 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2086 {
2087         free_root_extent_buffers(info->tree_root);
2088
2089         free_root_extent_buffers(info->dev_root);
2090         free_root_extent_buffers(info->extent_root);
2091         free_root_extent_buffers(info->csum_root);
2092         free_root_extent_buffers(info->quota_root);
2093         free_root_extent_buffers(info->uuid_root);
2094         if (chunk_root)
2095                 free_root_extent_buffers(info->chunk_root);
2096 }
2097
2098 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2099 {
2100         int ret;
2101         struct btrfs_root *gang[8];
2102         int i;
2103
2104         while (!list_empty(&fs_info->dead_roots)) {
2105                 gang[0] = list_entry(fs_info->dead_roots.next,
2106                                      struct btrfs_root, root_list);
2107                 list_del(&gang[0]->root_list);
2108
2109                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2110                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2111                 } else {
2112                         free_extent_buffer(gang[0]->node);
2113                         free_extent_buffer(gang[0]->commit_root);
2114                         btrfs_put_fs_root(gang[0]);
2115                 }
2116         }
2117
2118         while (1) {
2119                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2120                                              (void **)gang, 0,
2121                                              ARRAY_SIZE(gang));
2122                 if (!ret)
2123                         break;
2124                 for (i = 0; i < ret; i++)
2125                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2126         }
2127
2128         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2129                 btrfs_free_log_root_tree(NULL, fs_info);
2130                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2131                                             fs_info->pinned_extents);
2132         }
2133 }
2134
2135 int open_ctree(struct super_block *sb,
2136                struct btrfs_fs_devices *fs_devices,
2137                char *options)
2138 {
2139         u32 sectorsize;
2140         u32 nodesize;
2141         u32 leafsize;
2142         u32 blocksize;
2143         u32 stripesize;
2144         u64 generation;
2145         u64 features;
2146         struct btrfs_key location;
2147         struct buffer_head *bh;
2148         struct btrfs_super_block *disk_super;
2149         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2150         struct btrfs_root *tree_root;
2151         struct btrfs_root *extent_root;
2152         struct btrfs_root *csum_root;
2153         struct btrfs_root *chunk_root;
2154         struct btrfs_root *dev_root;
2155         struct btrfs_root *quota_root;
2156         struct btrfs_root *uuid_root;
2157         struct btrfs_root *log_tree_root;
2158         int ret;
2159         int err = -EINVAL;
2160         int num_backups_tried = 0;
2161         int backup_index = 0;
2162         int max_active;
2163         int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2164         bool create_uuid_tree;
2165         bool check_uuid_tree;
2166
2167         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2168         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2169         if (!tree_root || !chunk_root) {
2170                 err = -ENOMEM;
2171                 goto fail;
2172         }
2173
2174         ret = init_srcu_struct(&fs_info->subvol_srcu);
2175         if (ret) {
2176                 err = ret;
2177                 goto fail;
2178         }
2179
2180         ret = setup_bdi(fs_info, &fs_info->bdi);
2181         if (ret) {
2182                 err = ret;
2183                 goto fail_srcu;
2184         }
2185
2186         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2187         if (ret) {
2188                 err = ret;
2189                 goto fail_bdi;
2190         }
2191         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2192                                         (1 + ilog2(nr_cpu_ids));
2193
2194         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2195         if (ret) {
2196                 err = ret;
2197                 goto fail_dirty_metadata_bytes;
2198         }
2199
2200         ret = percpu_counter_init(&fs_info->bio_counter, 0);
2201         if (ret) {
2202                 err = ret;
2203                 goto fail_delalloc_bytes;
2204         }
2205
2206         fs_info->btree_inode = new_inode(sb);
2207         if (!fs_info->btree_inode) {
2208                 err = -ENOMEM;
2209                 goto fail_bio_counter;
2210         }
2211
2212         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2213
2214         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2215         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2216         INIT_LIST_HEAD(&fs_info->trans_list);
2217         INIT_LIST_HEAD(&fs_info->dead_roots);
2218         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2219         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2220         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2221         spin_lock_init(&fs_info->delalloc_root_lock);
2222         spin_lock_init(&fs_info->trans_lock);
2223         spin_lock_init(&fs_info->fs_roots_radix_lock);
2224         spin_lock_init(&fs_info->delayed_iput_lock);
2225         spin_lock_init(&fs_info->defrag_inodes_lock);
2226         spin_lock_init(&fs_info->free_chunk_lock);
2227         spin_lock_init(&fs_info->tree_mod_seq_lock);
2228         spin_lock_init(&fs_info->super_lock);
2229         spin_lock_init(&fs_info->qgroup_op_lock);
2230         spin_lock_init(&fs_info->buffer_lock);
2231         rwlock_init(&fs_info->tree_mod_log_lock);
2232         mutex_init(&fs_info->reloc_mutex);
2233         mutex_init(&fs_info->delalloc_root_mutex);
2234         seqlock_init(&fs_info->profiles_lock);
2235
2236         init_completion(&fs_info->kobj_unregister);
2237         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2238         INIT_LIST_HEAD(&fs_info->space_info);
2239         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2240         btrfs_mapping_init(&fs_info->mapping_tree);
2241         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2242                              BTRFS_BLOCK_RSV_GLOBAL);
2243         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2244                              BTRFS_BLOCK_RSV_DELALLOC);
2245         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2246         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2247         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2248         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2249                              BTRFS_BLOCK_RSV_DELOPS);
2250         atomic_set(&fs_info->nr_async_submits, 0);
2251         atomic_set(&fs_info->async_delalloc_pages, 0);
2252         atomic_set(&fs_info->async_submit_draining, 0);
2253         atomic_set(&fs_info->nr_async_bios, 0);
2254         atomic_set(&fs_info->defrag_running, 0);
2255         atomic_set(&fs_info->qgroup_op_seq, 0);
2256         atomic64_set(&fs_info->tree_mod_seq, 0);
2257         fs_info->sb = sb;
2258         fs_info->max_inline = 8192 * 1024;
2259         fs_info->metadata_ratio = 0;
2260         fs_info->defrag_inodes = RB_ROOT;
2261         fs_info->free_chunk_space = 0;
2262         fs_info->tree_mod_log = RB_ROOT;
2263         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2264         fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2265         /* readahead state */
2266         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2267         spin_lock_init(&fs_info->reada_lock);
2268
2269         fs_info->thread_pool_size = min_t(unsigned long,
2270                                           num_online_cpus() + 2, 8);
2271
2272         INIT_LIST_HEAD(&fs_info->ordered_roots);
2273         spin_lock_init(&fs_info->ordered_root_lock);
2274         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2275                                         GFP_NOFS);
2276         if (!fs_info->delayed_root) {
2277                 err = -ENOMEM;
2278                 goto fail_iput;
2279         }
2280         btrfs_init_delayed_root(fs_info->delayed_root);
2281
2282         mutex_init(&fs_info->scrub_lock);
2283         atomic_set(&fs_info->scrubs_running, 0);
2284         atomic_set(&fs_info->scrub_pause_req, 0);
2285         atomic_set(&fs_info->scrubs_paused, 0);
2286         atomic_set(&fs_info->scrub_cancel_req, 0);
2287         init_waitqueue_head(&fs_info->replace_wait);
2288         init_waitqueue_head(&fs_info->scrub_pause_wait);
2289         fs_info->scrub_workers_refcnt = 0;
2290 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2291         fs_info->check_integrity_print_mask = 0;
2292 #endif
2293
2294         spin_lock_init(&fs_info->balance_lock);
2295         mutex_init(&fs_info->balance_mutex);
2296         atomic_set(&fs_info->balance_running, 0);
2297         atomic_set(&fs_info->balance_pause_req, 0);
2298         atomic_set(&fs_info->balance_cancel_req, 0);
2299         fs_info->balance_ctl = NULL;
2300         init_waitqueue_head(&fs_info->balance_wait_q);
2301         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2302
2303         sb->s_blocksize = 4096;
2304         sb->s_blocksize_bits = blksize_bits(4096);
2305         sb->s_bdi = &fs_info->bdi;
2306
2307         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2308         set_nlink(fs_info->btree_inode, 1);
2309         /*
2310          * we set the i_size on the btree inode to the max possible int.
2311          * the real end of the address space is determined by all of
2312          * the devices in the system
2313          */
2314         fs_info->btree_inode->i_size = OFFSET_MAX;
2315         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2316         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2317
2318         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2319         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2320                              fs_info->btree_inode->i_mapping);
2321         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2322         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2323
2324         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2325
2326         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2327         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2328                sizeof(struct btrfs_key));
2329         set_bit(BTRFS_INODE_DUMMY,
2330                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2331         btrfs_insert_inode_hash(fs_info->btree_inode);
2332
2333         spin_lock_init(&fs_info->block_group_cache_lock);
2334         fs_info->block_group_cache_tree = RB_ROOT;
2335         fs_info->first_logical_byte = (u64)-1;
2336
2337         extent_io_tree_init(&fs_info->freed_extents[0],
2338                              fs_info->btree_inode->i_mapping);
2339         extent_io_tree_init(&fs_info->freed_extents[1],
2340                              fs_info->btree_inode->i_mapping);
2341         fs_info->pinned_extents = &fs_info->freed_extents[0];
2342         fs_info->do_barriers = 1;
2343
2344
2345         mutex_init(&fs_info->ordered_operations_mutex);
2346         mutex_init(&fs_info->ordered_extent_flush_mutex);
2347         mutex_init(&fs_info->tree_log_mutex);
2348         mutex_init(&fs_info->chunk_mutex);
2349         mutex_init(&fs_info->transaction_kthread_mutex);
2350         mutex_init(&fs_info->cleaner_mutex);
2351         mutex_init(&fs_info->volume_mutex);
2352         init_rwsem(&fs_info->commit_root_sem);
2353         init_rwsem(&fs_info->cleanup_work_sem);
2354         init_rwsem(&fs_info->subvol_sem);
2355         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2356         fs_info->dev_replace.lock_owner = 0;
2357         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2358         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2359         mutex_init(&fs_info->dev_replace.lock_management_lock);
2360         mutex_init(&fs_info->dev_replace.lock);
2361
2362         spin_lock_init(&fs_info->qgroup_lock);
2363         mutex_init(&fs_info->qgroup_ioctl_lock);
2364         fs_info->qgroup_tree = RB_ROOT;
2365         fs_info->qgroup_op_tree = RB_ROOT;
2366         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2367         fs_info->qgroup_seq = 1;
2368         fs_info->quota_enabled = 0;
2369         fs_info->pending_quota_state = 0;
2370         fs_info->qgroup_ulist = NULL;
2371         mutex_init(&fs_info->qgroup_rescan_lock);
2372
2373         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2374         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2375
2376         init_waitqueue_head(&fs_info->transaction_throttle);
2377         init_waitqueue_head(&fs_info->transaction_wait);
2378         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2379         init_waitqueue_head(&fs_info->async_submit_wait);
2380
2381         ret = btrfs_alloc_stripe_hash_table(fs_info);
2382         if (ret) {
2383                 err = ret;
2384                 goto fail_alloc;
2385         }
2386
2387         __setup_root(4096, 4096, 4096, 4096, tree_root,
2388                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2389
2390         invalidate_bdev(fs_devices->latest_bdev);
2391
2392         /*
2393          * Read super block and check the signature bytes only
2394          */
2395         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2396         if (!bh) {
2397                 err = -EINVAL;
2398                 goto fail_alloc;
2399         }
2400
2401         /*
2402          * We want to check superblock checksum, the type is stored inside.
2403          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2404          */
2405         if (btrfs_check_super_csum(bh->b_data)) {
2406                 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2407                 err = -EINVAL;
2408                 goto fail_alloc;
2409         }
2410
2411         /*
2412          * super_copy is zeroed at allocation time and we never touch the
2413          * following bytes up to INFO_SIZE, the checksum is calculated from
2414          * the whole block of INFO_SIZE
2415          */
2416         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2417         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2418                sizeof(*fs_info->super_for_commit));
2419         brelse(bh);
2420
2421         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2422
2423         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2424         if (ret) {
2425                 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2426                 err = -EINVAL;
2427                 goto fail_alloc;
2428         }
2429
2430         disk_super = fs_info->super_copy;
2431         if (!btrfs_super_root(disk_super))
2432                 goto fail_alloc;
2433
2434         /* check FS state, whether FS is broken. */
2435         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2436                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2437
2438         /*
2439          * run through our array of backup supers and setup
2440          * our ring pointer to the oldest one
2441          */
2442         generation = btrfs_super_generation(disk_super);
2443         find_oldest_super_backup(fs_info, generation);
2444
2445         /*
2446          * In the long term, we'll store the compression type in the super
2447          * block, and it'll be used for per file compression control.
2448          */
2449         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2450
2451         ret = btrfs_parse_options(tree_root, options);
2452         if (ret) {
2453                 err = ret;
2454                 goto fail_alloc;
2455         }
2456
2457         features = btrfs_super_incompat_flags(disk_super) &
2458                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2459         if (features) {
2460                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2461                        "unsupported optional features (%Lx).\n",
2462                        features);
2463                 err = -EINVAL;
2464                 goto fail_alloc;
2465         }
2466
2467         if (btrfs_super_leafsize(disk_super) !=
2468             btrfs_super_nodesize(disk_super)) {
2469                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2470                        "blocksizes don't match.  node %d leaf %d\n",
2471                        btrfs_super_nodesize(disk_super),
2472                        btrfs_super_leafsize(disk_super));
2473                 err = -EINVAL;
2474                 goto fail_alloc;
2475         }
2476         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2477                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2478                        "blocksize (%d) was too large\n",
2479                        btrfs_super_leafsize(disk_super));
2480                 err = -EINVAL;
2481                 goto fail_alloc;
2482         }
2483
2484         features = btrfs_super_incompat_flags(disk_super);
2485         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2486         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2487                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2488
2489         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2490                 printk(KERN_ERR "BTRFS: has skinny extents\n");
2491
2492         /*
2493          * flag our filesystem as having big metadata blocks if
2494          * they are bigger than the page size
2495          */
2496         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2497                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2498                         printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2499                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2500         }
2501
2502         nodesize = btrfs_super_nodesize(disk_super);
2503         leafsize = btrfs_super_leafsize(disk_super);
2504         sectorsize = btrfs_super_sectorsize(disk_super);
2505         stripesize = btrfs_super_stripesize(disk_super);
2506         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2507         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2508
2509         /*
2510          * mixed block groups end up with duplicate but slightly offset
2511          * extent buffers for the same range.  It leads to corruptions
2512          */
2513         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2514             (sectorsize != leafsize)) {
2515                 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2516                                 "are not allowed for mixed block groups on %s\n",
2517                                 sb->s_id);
2518                 goto fail_alloc;
2519         }
2520
2521         /*
2522          * Needn't use the lock because there is no other task which will
2523          * update the flag.
2524          */
2525         btrfs_set_super_incompat_flags(disk_super, features);
2526
2527         features = btrfs_super_compat_ro_flags(disk_super) &
2528                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2529         if (!(sb->s_flags & MS_RDONLY) && features) {
2530                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2531                        "unsupported option features (%Lx).\n",
2532                        features);
2533                 err = -EINVAL;
2534                 goto fail_alloc;
2535         }
2536
2537         max_active = fs_info->thread_pool_size;
2538
2539         fs_info->workers =
2540                 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2541                                       max_active, 16);
2542
2543         fs_info->delalloc_workers =
2544                 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2545
2546         fs_info->flush_workers =
2547                 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2548
2549         fs_info->caching_workers =
2550                 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2551
2552         /*
2553          * a higher idle thresh on the submit workers makes it much more
2554          * likely that bios will be send down in a sane order to the
2555          * devices
2556          */
2557         fs_info->submit_workers =
2558                 btrfs_alloc_workqueue("submit", flags,
2559                                       min_t(u64, fs_devices->num_devices,
2560                                             max_active), 64);
2561
2562         fs_info->fixup_workers =
2563                 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2564
2565         /*
2566          * endios are largely parallel and should have a very
2567          * low idle thresh
2568          */
2569         fs_info->endio_workers =
2570                 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2571         fs_info->endio_meta_workers =
2572                 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2573         fs_info->endio_meta_write_workers =
2574                 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2575         fs_info->endio_raid56_workers =
2576                 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2577         fs_info->rmw_workers =
2578                 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2579         fs_info->endio_write_workers =
2580                 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2581         fs_info->endio_freespace_worker =
2582                 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2583         fs_info->delayed_workers =
2584                 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2585         fs_info->readahead_workers =
2586                 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2587         fs_info->qgroup_rescan_workers =
2588                 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2589         fs_info->extent_workers =
2590                 btrfs_alloc_workqueue("extent-refs", flags,
2591                                       min_t(u64, fs_devices->num_devices,
2592                                             max_active), 8);
2593
2594         if (!(fs_info->workers && fs_info->delalloc_workers &&
2595               fs_info->submit_workers && fs_info->flush_workers &&
2596               fs_info->endio_workers && fs_info->endio_meta_workers &&
2597               fs_info->endio_meta_write_workers &&
2598               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2599               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2600               fs_info->caching_workers && fs_info->readahead_workers &&
2601               fs_info->fixup_workers && fs_info->delayed_workers &&
2602               fs_info->fixup_workers && fs_info->extent_workers &&
2603               fs_info->qgroup_rescan_workers)) {
2604                 err = -ENOMEM;
2605                 goto fail_sb_buffer;
2606         }
2607
2608         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2609         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2610                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2611
2612         tree_root->nodesize = nodesize;
2613         tree_root->leafsize = leafsize;
2614         tree_root->sectorsize = sectorsize;
2615         tree_root->stripesize = stripesize;
2616
2617         sb->s_blocksize = sectorsize;
2618         sb->s_blocksize_bits = blksize_bits(sectorsize);
2619
2620         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2621                 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2622                 goto fail_sb_buffer;
2623         }
2624
2625         if (sectorsize != PAGE_SIZE) {
2626                 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2627                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2628                 goto fail_sb_buffer;
2629         }
2630
2631         mutex_lock(&fs_info->chunk_mutex);
2632         ret = btrfs_read_sys_array(tree_root);
2633         mutex_unlock(&fs_info->chunk_mutex);
2634         if (ret) {
2635                 printk(KERN_WARNING "BTRFS: failed to read the system "
2636                        "array on %s\n", sb->s_id);
2637                 goto fail_sb_buffer;
2638         }
2639
2640         blocksize = btrfs_level_size(tree_root,
2641                                      btrfs_super_chunk_root_level(disk_super));
2642         generation = btrfs_super_chunk_root_generation(disk_super);
2643
2644         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2645                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2646
2647         chunk_root->node = read_tree_block(chunk_root,
2648                                            btrfs_super_chunk_root(disk_super),
2649                                            blocksize, generation);
2650         if (!chunk_root->node ||
2651             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2652                 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2653                        sb->s_id);
2654                 goto fail_tree_roots;
2655         }
2656         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2657         chunk_root->commit_root = btrfs_root_node(chunk_root);
2658
2659         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2660            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2661
2662         ret = btrfs_read_chunk_tree(chunk_root);
2663         if (ret) {
2664                 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2665                        sb->s_id);
2666                 goto fail_tree_roots;
2667         }
2668
2669         /*
2670          * keep the device that is marked to be the target device for the
2671          * dev_replace procedure
2672          */
2673         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2674
2675         if (!fs_devices->latest_bdev) {
2676                 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2677                        sb->s_id);
2678                 goto fail_tree_roots;
2679         }
2680
2681 retry_root_backup:
2682         blocksize = btrfs_level_size(tree_root,
2683                                      btrfs_super_root_level(disk_super));
2684         generation = btrfs_super_generation(disk_super);
2685
2686         tree_root->node = read_tree_block(tree_root,
2687                                           btrfs_super_root(disk_super),
2688                                           blocksize, generation);
2689         if (!tree_root->node ||
2690             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2691                 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2692                        sb->s_id);
2693
2694                 goto recovery_tree_root;
2695         }
2696
2697         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2698         tree_root->commit_root = btrfs_root_node(tree_root);
2699         btrfs_set_root_refs(&tree_root->root_item, 1);
2700
2701         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2702         location.type = BTRFS_ROOT_ITEM_KEY;
2703         location.offset = 0;
2704
2705         extent_root = btrfs_read_tree_root(tree_root, &location);
2706         if (IS_ERR(extent_root)) {
2707                 ret = PTR_ERR(extent_root);
2708                 goto recovery_tree_root;
2709         }
2710         set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
2711         fs_info->extent_root = extent_root;
2712
2713         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2714         dev_root = btrfs_read_tree_root(tree_root, &location);
2715         if (IS_ERR(dev_root)) {
2716                 ret = PTR_ERR(dev_root);
2717                 goto recovery_tree_root;
2718         }
2719         set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
2720         fs_info->dev_root = dev_root;
2721         btrfs_init_devices_late(fs_info);
2722
2723         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2724         csum_root = btrfs_read_tree_root(tree_root, &location);
2725         if (IS_ERR(csum_root)) {
2726                 ret = PTR_ERR(csum_root);
2727                 goto recovery_tree_root;
2728         }
2729         set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
2730         fs_info->csum_root = csum_root;
2731
2732         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2733         quota_root = btrfs_read_tree_root(tree_root, &location);
2734         if (!IS_ERR(quota_root)) {
2735                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
2736                 fs_info->quota_enabled = 1;
2737                 fs_info->pending_quota_state = 1;
2738                 fs_info->quota_root = quota_root;
2739         }
2740
2741         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2742         uuid_root = btrfs_read_tree_root(tree_root, &location);
2743         if (IS_ERR(uuid_root)) {
2744                 ret = PTR_ERR(uuid_root);
2745                 if (ret != -ENOENT)
2746                         goto recovery_tree_root;
2747                 create_uuid_tree = true;
2748                 check_uuid_tree = false;
2749         } else {
2750                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
2751                 fs_info->uuid_root = uuid_root;
2752                 create_uuid_tree = false;
2753                 check_uuid_tree =
2754                     generation != btrfs_super_uuid_tree_generation(disk_super);
2755         }
2756
2757         fs_info->generation = generation;
2758         fs_info->last_trans_committed = generation;
2759
2760         ret = btrfs_recover_balance(fs_info);
2761         if (ret) {
2762                 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2763                 goto fail_block_groups;
2764         }
2765
2766         ret = btrfs_init_dev_stats(fs_info);
2767         if (ret) {
2768                 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2769                        ret);
2770                 goto fail_block_groups;
2771         }
2772
2773         ret = btrfs_init_dev_replace(fs_info);
2774         if (ret) {
2775                 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2776                 goto fail_block_groups;
2777         }
2778
2779         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2780
2781         ret = btrfs_sysfs_add_one(fs_info);
2782         if (ret) {
2783                 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2784                 goto fail_block_groups;
2785         }
2786
2787         ret = btrfs_init_space_info(fs_info);
2788         if (ret) {
2789                 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2790                 goto fail_sysfs;
2791         }
2792
2793         ret = btrfs_read_block_groups(extent_root);
2794         if (ret) {
2795                 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2796                 goto fail_sysfs;
2797         }
2798         fs_info->num_tolerated_disk_barrier_failures =
2799                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2800         if (fs_info->fs_devices->missing_devices >
2801              fs_info->num_tolerated_disk_barrier_failures &&
2802             !(sb->s_flags & MS_RDONLY)) {
2803                 printk(KERN_WARNING "BTRFS: "
2804                         "too many missing devices, writeable mount is not allowed\n");
2805                 goto fail_sysfs;
2806         }
2807
2808         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2809                                                "btrfs-cleaner");
2810         if (IS_ERR(fs_info->cleaner_kthread))
2811                 goto fail_sysfs;
2812
2813         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2814                                                    tree_root,
2815                                                    "btrfs-transaction");
2816         if (IS_ERR(fs_info->transaction_kthread))
2817                 goto fail_cleaner;
2818
2819         if (!btrfs_test_opt(tree_root, SSD) &&
2820             !btrfs_test_opt(tree_root, NOSSD) &&
2821             !fs_info->fs_devices->rotating) {
2822                 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2823                        "mode\n");
2824                 btrfs_set_opt(fs_info->mount_opt, SSD);
2825         }
2826
2827         /* Set the real inode map cache flag */
2828         if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2829                 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2830
2831 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2832         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2833                 ret = btrfsic_mount(tree_root, fs_devices,
2834                                     btrfs_test_opt(tree_root,
2835                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2836                                     1 : 0,
2837                                     fs_info->check_integrity_print_mask);
2838                 if (ret)
2839                         printk(KERN_WARNING "BTRFS: failed to initialize"
2840                                " integrity check module %s\n", sb->s_id);
2841         }
2842 #endif
2843         ret = btrfs_read_qgroup_config(fs_info);
2844         if (ret)
2845                 goto fail_trans_kthread;
2846
2847         /* do not make disk changes in broken FS */
2848         if (btrfs_super_log_root(disk_super) != 0) {
2849                 u64 bytenr = btrfs_super_log_root(disk_super);
2850
2851                 if (fs_devices->rw_devices == 0) {
2852                         printk(KERN_WARNING "BTRFS: log replay required "
2853                                "on RO media\n");
2854                         err = -EIO;
2855                         goto fail_qgroup;
2856                 }
2857                 blocksize =
2858                      btrfs_level_size(tree_root,
2859                                       btrfs_super_log_root_level(disk_super));
2860
2861                 log_tree_root = btrfs_alloc_root(fs_info);
2862                 if (!log_tree_root) {
2863                         err = -ENOMEM;
2864                         goto fail_qgroup;
2865                 }
2866
2867                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2868                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2869
2870                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2871                                                       blocksize,
2872                                                       generation + 1);
2873                 if (!log_tree_root->node ||
2874                     !extent_buffer_uptodate(log_tree_root->node)) {
2875                         printk(KERN_ERR "BTRFS: failed to read log tree\n");
2876                         free_extent_buffer(log_tree_root->node);
2877                         kfree(log_tree_root);
2878                         goto fail_qgroup;
2879                 }
2880                 /* returns with log_tree_root freed on success */
2881                 ret = btrfs_recover_log_trees(log_tree_root);
2882                 if (ret) {
2883                         btrfs_error(tree_root->fs_info, ret,
2884                                     "Failed to recover log tree");
2885                         free_extent_buffer(log_tree_root->node);
2886                         kfree(log_tree_root);
2887                         goto fail_qgroup;
2888                 }
2889
2890                 if (sb->s_flags & MS_RDONLY) {
2891                         ret = btrfs_commit_super(tree_root);
2892                         if (ret)
2893                                 goto fail_qgroup;
2894                 }
2895         }
2896
2897         ret = btrfs_find_orphan_roots(tree_root);
2898         if (ret)
2899                 goto fail_qgroup;
2900
2901         if (!(sb->s_flags & MS_RDONLY)) {
2902                 ret = btrfs_cleanup_fs_roots(fs_info);
2903                 if (ret)
2904                         goto fail_qgroup;
2905
2906                 mutex_lock(&fs_info->cleaner_mutex);
2907                 ret = btrfs_recover_relocation(tree_root);
2908                 mutex_unlock(&fs_info->cleaner_mutex);
2909                 if (ret < 0) {
2910                         printk(KERN_WARNING
2911                                "BTRFS: failed to recover relocation\n");
2912                         err = -EINVAL;
2913                         goto fail_qgroup;
2914                 }
2915         }
2916
2917         location.objectid = BTRFS_FS_TREE_OBJECTID;
2918         location.type = BTRFS_ROOT_ITEM_KEY;
2919         location.offset = 0;
2920
2921         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2922         if (IS_ERR(fs_info->fs_root)) {
2923                 err = PTR_ERR(fs_info->fs_root);
2924                 goto fail_qgroup;
2925         }
2926
2927         if (sb->s_flags & MS_RDONLY)
2928                 return 0;
2929
2930         down_read(&fs_info->cleanup_work_sem);
2931         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2932             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2933                 up_read(&fs_info->cleanup_work_sem);
2934                 close_ctree(tree_root);
2935                 return ret;
2936         }
2937         up_read(&fs_info->cleanup_work_sem);
2938
2939         ret = btrfs_resume_balance_async(fs_info);
2940         if (ret) {
2941                 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2942                 close_ctree(tree_root);
2943                 return ret;
2944         }
2945
2946         ret = btrfs_resume_dev_replace_async(fs_info);
2947         if (ret) {
2948                 pr_warn("BTRFS: failed to resume dev_replace\n");
2949                 close_ctree(tree_root);
2950                 return ret;
2951         }
2952
2953         btrfs_qgroup_rescan_resume(fs_info);
2954
2955         if (create_uuid_tree) {
2956                 pr_info("BTRFS: creating UUID tree\n");
2957                 ret = btrfs_create_uuid_tree(fs_info);
2958                 if (ret) {
2959                         pr_warn("BTRFS: failed to create the UUID tree %d\n",
2960                                 ret);
2961                         close_ctree(tree_root);
2962                         return ret;
2963                 }
2964         } else if (check_uuid_tree ||
2965                    btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2966                 pr_info("BTRFS: checking UUID tree\n");
2967                 ret = btrfs_check_uuid_tree(fs_info);
2968                 if (ret) {
2969                         pr_warn("BTRFS: failed to check the UUID tree %d\n",
2970                                 ret);
2971                         close_ctree(tree_root);
2972                         return ret;
2973                 }
2974         } else {
2975                 fs_info->update_uuid_tree_gen = 1;
2976         }
2977
2978         return 0;
2979
2980 fail_qgroup:
2981         btrfs_free_qgroup_config(fs_info);
2982 fail_trans_kthread:
2983         kthread_stop(fs_info->transaction_kthread);
2984         btrfs_cleanup_transaction(fs_info->tree_root);
2985         btrfs_free_fs_roots(fs_info);
2986 fail_cleaner:
2987         kthread_stop(fs_info->cleaner_kthread);
2988
2989         /*
2990          * make sure we're done with the btree inode before we stop our
2991          * kthreads
2992          */
2993         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2994
2995 fail_sysfs:
2996         btrfs_sysfs_remove_one(fs_info);
2997
2998 fail_block_groups:
2999         btrfs_put_block_group_cache(fs_info);
3000         btrfs_free_block_groups(fs_info);
3001
3002 fail_tree_roots:
3003         free_root_pointers(fs_info, 1);
3004         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3005
3006 fail_sb_buffer:
3007         btrfs_stop_all_workers(fs_info);
3008 fail_alloc:
3009 fail_iput:
3010         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3011
3012         iput(fs_info->btree_inode);
3013 fail_bio_counter:
3014         percpu_counter_destroy(&fs_info->bio_counter);
3015 fail_delalloc_bytes:
3016         percpu_counter_destroy(&fs_info->delalloc_bytes);
3017 fail_dirty_metadata_bytes:
3018         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3019 fail_bdi:
3020         bdi_destroy(&fs_info->bdi);
3021 fail_srcu:
3022         cleanup_srcu_struct(&fs_info->subvol_srcu);
3023 fail:
3024         btrfs_free_stripe_hash_table(fs_info);
3025         btrfs_close_devices(fs_info->fs_devices);
3026         return err;
3027
3028 recovery_tree_root:
3029         if (!btrfs_test_opt(tree_root, RECOVERY))
3030                 goto fail_tree_roots;
3031
3032         free_root_pointers(fs_info, 0);
3033
3034         /* don't use the log in recovery mode, it won't be valid */
3035         btrfs_set_super_log_root(disk_super, 0);
3036
3037         /* we can't trust the free space cache either */
3038         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3039
3040         ret = next_root_backup(fs_info, fs_info->super_copy,
3041                                &num_backups_tried, &backup_index);
3042         if (ret == -1)
3043                 goto fail_block_groups;
3044         goto retry_root_backup;
3045 }
3046
3047 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3048 {
3049         if (uptodate) {
3050                 set_buffer_uptodate(bh);
3051         } else {
3052                 struct btrfs_device *device = (struct btrfs_device *)
3053                         bh->b_private;
3054
3055                 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3056                                           "I/O error on %s\n",
3057                                           rcu_str_deref(device->name));
3058                 /* note, we dont' set_buffer_write_io_error because we have
3059                  * our own ways of dealing with the IO errors
3060                  */
3061                 clear_buffer_uptodate(bh);
3062                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3063         }
3064         unlock_buffer(bh);
3065         put_bh(bh);
3066 }
3067
3068 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3069 {
3070         struct buffer_head *bh;
3071         struct buffer_head *latest = NULL;
3072         struct btrfs_super_block *super;
3073         int i;
3074         u64 transid = 0;
3075         u64 bytenr;
3076
3077         /* we would like to check all the supers, but that would make
3078          * a btrfs mount succeed after a mkfs from a different FS.
3079          * So, we need to add a special mount option to scan for
3080          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3081          */
3082         for (i = 0; i < 1; i++) {
3083                 bytenr = btrfs_sb_offset(i);
3084                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3085                                         i_size_read(bdev->bd_inode))
3086                         break;
3087                 bh = __bread(bdev, bytenr / 4096,
3088                                         BTRFS_SUPER_INFO_SIZE);
3089                 if (!bh)
3090                         continue;
3091
3092                 super = (struct btrfs_super_block *)bh->b_data;
3093                 if (btrfs_super_bytenr(super) != bytenr ||
3094                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3095                         brelse(bh);
3096                         continue;
3097                 }
3098
3099                 if (!latest || btrfs_super_generation(super) > transid) {
3100                         brelse(latest);
3101                         latest = bh;
3102                         transid = btrfs_super_generation(super);
3103                 } else {
3104                         brelse(bh);
3105                 }
3106         }
3107         return latest;
3108 }
3109
3110 /*
3111  * this should be called twice, once with wait == 0 and
3112  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3113  * we write are pinned.
3114  *
3115  * They are released when wait == 1 is done.
3116  * max_mirrors must be the same for both runs, and it indicates how
3117  * many supers on this one device should be written.
3118  *
3119  * max_mirrors == 0 means to write them all.
3120  */
3121 static int write_dev_supers(struct btrfs_device *device,
3122                             struct btrfs_super_block *sb,
3123                             int do_barriers, int wait, int max_mirrors)
3124 {
3125         struct buffer_head *bh;
3126         int i;
3127         int ret;
3128         int errors = 0;
3129         u32 crc;
3130         u64 bytenr;
3131
3132         if (max_mirrors == 0)
3133                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3134
3135         for (i = 0; i < max_mirrors; i++) {
3136                 bytenr = btrfs_sb_offset(i);
3137                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3138                         break;
3139
3140                 if (wait) {
3141                         bh = __find_get_block(device->bdev, bytenr / 4096,
3142                                               BTRFS_SUPER_INFO_SIZE);
3143                         if (!bh) {
3144                                 errors++;
3145                                 continue;
3146                         }
3147                         wait_on_buffer(bh);
3148                         if (!buffer_uptodate(bh))
3149                                 errors++;
3150
3151                         /* drop our reference */
3152                         brelse(bh);
3153
3154                         /* drop the reference from the wait == 0 run */
3155                         brelse(bh);
3156                         continue;
3157                 } else {
3158                         btrfs_set_super_bytenr(sb, bytenr);
3159
3160                         crc = ~(u32)0;
3161                         crc = btrfs_csum_data((char *)sb +
3162                                               BTRFS_CSUM_SIZE, crc,
3163                                               BTRFS_SUPER_INFO_SIZE -
3164                                               BTRFS_CSUM_SIZE);
3165                         btrfs_csum_final(crc, sb->csum);
3166
3167                         /*
3168                          * one reference for us, and we leave it for the
3169                          * caller
3170                          */
3171                         bh = __getblk(device->bdev, bytenr / 4096,
3172                                       BTRFS_SUPER_INFO_SIZE);
3173                         if (!bh) {
3174                                 printk(KERN_ERR "BTRFS: couldn't get super "
3175                                        "buffer head for bytenr %Lu\n", bytenr);
3176                                 errors++;
3177                                 continue;
3178                         }
3179
3180                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3181
3182                         /* one reference for submit_bh */
3183                         get_bh(bh);
3184
3185                         set_buffer_uptodate(bh);
3186                         lock_buffer(bh);
3187                         bh->b_end_io = btrfs_end_buffer_write_sync;
3188                         bh->b_private = device;
3189                 }
3190
3191                 /*
3192                  * we fua the first super.  The others we allow
3193                  * to go down lazy.
3194                  */
3195                 if (i == 0)
3196                         ret = btrfsic_submit_bh(WRITE_FUA, bh);
3197                 else
3198                         ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3199                 if (ret)
3200                         errors++;
3201         }
3202         return errors < i ? 0 : -1;
3203 }
3204
3205 /*
3206  * endio for the write_dev_flush, this will wake anyone waiting
3207  * for the barrier when it is done
3208  */
3209 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3210 {
3211         if (err) {
3212                 if (err == -EOPNOTSUPP)
3213                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3214                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3215         }
3216         if (bio->bi_private)
3217                 complete(bio->bi_private);
3218         bio_put(bio);
3219 }
3220
3221 /*
3222  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3223  * sent down.  With wait == 1, it waits for the previous flush.
3224  *
3225  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3226  * capable
3227  */
3228 static int write_dev_flush(struct btrfs_device *device, int wait)
3229 {
3230         struct bio *bio;
3231         int ret = 0;
3232
3233         if (device->nobarriers)
3234                 return 0;
3235
3236         if (wait) {
3237                 bio = device->flush_bio;
3238                 if (!bio)
3239                         return 0;
3240
3241                 wait_for_completion(&device->flush_wait);
3242
3243                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3244                         printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3245                                       rcu_str_deref(device->name));
3246                         device->nobarriers = 1;
3247                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3248                         ret = -EIO;
3249                         btrfs_dev_stat_inc_and_print(device,
3250                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3251                 }
3252
3253                 /* drop the reference from the wait == 0 run */
3254                 bio_put(bio);
3255                 device->flush_bio = NULL;
3256
3257                 return ret;
3258         }
3259
3260         /*
3261          * one reference for us, and we leave it for the
3262          * caller
3263          */
3264         device->flush_bio = NULL;
3265         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3266         if (!bio)
3267                 return -ENOMEM;
3268
3269         bio->bi_end_io = btrfs_end_empty_barrier;
3270         bio->bi_bdev = device->bdev;
3271         init_completion(&device->flush_wait);
3272         bio->bi_private = &device->flush_wait;
3273         device->flush_bio = bio;
3274
3275         bio_get(bio);
3276         btrfsic_submit_bio(WRITE_FLUSH, bio);
3277
3278         return 0;
3279 }
3280
3281 /*
3282  * send an empty flush down to each device in parallel,
3283  * then wait for them
3284  */
3285 static int barrier_all_devices(struct btrfs_fs_info *info)
3286 {
3287         struct list_head *head;
3288         struct btrfs_device *dev;
3289         int errors_send = 0;
3290         int errors_wait = 0;
3291         int ret;
3292
3293         /* send down all the barriers */
3294         head = &info->fs_devices->devices;
3295         list_for_each_entry_rcu(dev, head, dev_list) {
3296                 if (dev->missing)
3297                         continue;
3298                 if (!dev->bdev) {
3299                         errors_send++;
3300                         continue;
3301                 }
3302                 if (!dev->in_fs_metadata || !dev->writeable)
3303                         continue;
3304
3305                 ret = write_dev_flush(dev, 0);
3306                 if (ret)
3307                         errors_send++;
3308         }
3309
3310         /* wait for all the barriers */
3311         list_for_each_entry_rcu(dev, head, dev_list) {
3312                 if (dev->missing)
3313                         continue;
3314                 if (!dev->bdev) {
3315                         errors_wait++;
3316                         continue;
3317                 }
3318                 if (!dev->in_fs_metadata || !dev->writeable)
3319                         continue;
3320
3321                 ret = write_dev_flush(dev, 1);
3322                 if (ret)
3323                         errors_wait++;
3324         }
3325         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3326             errors_wait > info->num_tolerated_disk_barrier_failures)
3327                 return -EIO;
3328         return 0;
3329 }
3330
3331 int btrfs_calc_num_tolerated_disk_barrier_failures(
3332         struct btrfs_fs_info *fs_info)
3333 {
3334         struct btrfs_ioctl_space_info space;
3335         struct btrfs_space_info *sinfo;
3336         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3337                        BTRFS_BLOCK_GROUP_SYSTEM,
3338                        BTRFS_BLOCK_GROUP_METADATA,
3339                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3340         int num_types = 4;
3341         int i;
3342         int c;
3343         int num_tolerated_disk_barrier_failures =
3344                 (int)fs_info->fs_devices->num_devices;
3345
3346         for (i = 0; i < num_types; i++) {
3347                 struct btrfs_space_info *tmp;
3348
3349                 sinfo = NULL;
3350                 rcu_read_lock();
3351                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3352                         if (tmp->flags == types[i]) {
3353                                 sinfo = tmp;
3354                                 break;
3355                         }
3356                 }
3357                 rcu_read_unlock();
3358
3359                 if (!sinfo)
3360                         continue;
3361
3362                 down_read(&sinfo->groups_sem);
3363                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3364                         if (!list_empty(&sinfo->block_groups[c])) {
3365                                 u64 flags;
3366
3367                                 btrfs_get_block_group_info(
3368                                         &sinfo->block_groups[c], &space);
3369                                 if (space.total_bytes == 0 ||
3370                                     space.used_bytes == 0)
3371                                         continue;
3372                                 flags = space.flags;
3373                                 /*
3374                                  * return
3375                                  * 0: if dup, single or RAID0 is configured for
3376                                  *    any of metadata, system or data, else
3377                                  * 1: if RAID5 is configured, or if RAID1 or
3378                                  *    RAID10 is configured and only two mirrors
3379                                  *    are used, else
3380                                  * 2: if RAID6 is configured, else
3381                                  * num_mirrors - 1: if RAID1 or RAID10 is
3382                                  *                  configured and more than
3383                                  *                  2 mirrors are used.
3384                                  */
3385                                 if (num_tolerated_disk_barrier_failures > 0 &&
3386                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3387                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3388                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3389                                       == 0)))
3390                                         num_tolerated_disk_barrier_failures = 0;
3391                                 else if (num_tolerated_disk_barrier_failures > 1) {
3392                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3393                                             BTRFS_BLOCK_GROUP_RAID5 |
3394                                             BTRFS_BLOCK_GROUP_RAID10)) {
3395                                                 num_tolerated_disk_barrier_failures = 1;
3396                                         } else if (flags &
3397                                                    BTRFS_BLOCK_GROUP_RAID6) {
3398                                                 num_tolerated_disk_barrier_failures = 2;
3399                                         }
3400                                 }
3401                         }
3402                 }
3403                 up_read(&sinfo->groups_sem);
3404         }
3405
3406         return num_tolerated_disk_barrier_failures;
3407 }
3408
3409 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3410 {
3411         struct list_head *head;
3412         struct btrfs_device *dev;
3413         struct btrfs_super_block *sb;
3414         struct btrfs_dev_item *dev_item;
3415         int ret;
3416         int do_barriers;
3417         int max_errors;
3418         int total_errors = 0;
3419         u64 flags;
3420
3421         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3422         backup_super_roots(root->fs_info);
3423
3424         sb = root->fs_info->super_for_commit;
3425         dev_item = &sb->dev_item;
3426
3427         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3428         head = &root->fs_info->fs_devices->devices;
3429         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3430
3431         if (do_barriers) {
3432                 ret = barrier_all_devices(root->fs_info);
3433                 if (ret) {
3434                         mutex_unlock(
3435                                 &root->fs_info->fs_devices->device_list_mutex);
3436                         btrfs_error(root->fs_info, ret,
3437                                     "errors while submitting device barriers.");
3438                         return ret;
3439                 }
3440         }
3441
3442         list_for_each_entry_rcu(dev, head, dev_list) {
3443                 if (!dev->bdev) {
3444                         total_errors++;
3445                         continue;
3446                 }
3447                 if (!dev->in_fs_metadata || !dev->writeable)
3448                         continue;
3449
3450                 btrfs_set_stack_device_generation(dev_item, 0);
3451                 btrfs_set_stack_device_type(dev_item, dev->type);
3452                 btrfs_set_stack_device_id(dev_item, dev->devid);
3453                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3454                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3455                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3456                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3457                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3458                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3459                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3460
3461                 flags = btrfs_super_flags(sb);
3462                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3463
3464                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3465                 if (ret)
3466                         total_errors++;
3467         }
3468         if (total_errors > max_errors) {
3469                 btrfs_err(root->fs_info, "%d errors while writing supers",
3470                        total_errors);
3471                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3472
3473                 /* FUA is masked off if unsupported and can't be the reason */
3474                 btrfs_error(root->fs_info, -EIO,
3475                             "%d errors while writing supers", total_errors);
3476                 return -EIO;
3477         }
3478
3479         total_errors = 0;
3480         list_for_each_entry_rcu(dev, head, dev_list) {
3481                 if (!dev->bdev)
3482                         continue;
3483                 if (!dev->in_fs_metadata || !dev->writeable)
3484                         continue;
3485
3486                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3487                 if (ret)
3488                         total_errors++;
3489         }
3490         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3491         if (total_errors > max_errors) {
3492                 btrfs_error(root->fs_info, -EIO,
3493                             "%d errors while writing supers", total_errors);
3494                 return -EIO;
3495         }
3496         return 0;
3497 }
3498
3499 int write_ctree_super(struct btrfs_trans_handle *trans,
3500                       struct btrfs_root *root, int max_mirrors)
3501 {
3502         return write_all_supers(root, max_mirrors);
3503 }
3504
3505 /* Drop a fs root from the radix tree and free it. */
3506 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3507                                   struct btrfs_root *root)
3508 {
3509         spin_lock(&fs_info->fs_roots_radix_lock);
3510         radix_tree_delete(&fs_info->fs_roots_radix,
3511                           (unsigned long)root->root_key.objectid);
3512         spin_unlock(&fs_info->fs_roots_radix_lock);
3513
3514         if (btrfs_root_refs(&root->root_item) == 0)
3515                 synchronize_srcu(&fs_info->subvol_srcu);
3516
3517         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3518                 btrfs_free_log(NULL, root);
3519
3520         if (root->free_ino_pinned)
3521                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3522         if (root->free_ino_ctl)
3523                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3524         free_fs_root(root);
3525 }
3526
3527 static void free_fs_root(struct btrfs_root *root)
3528 {
3529         iput(root->cache_inode);
3530         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3531         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3532         root->orphan_block_rsv = NULL;
3533         if (root->anon_dev)
3534                 free_anon_bdev(root->anon_dev);
3535         if (root->subv_writers)
3536                 btrfs_free_subvolume_writers(root->subv_writers);
3537         free_extent_buffer(root->node);
3538         free_extent_buffer(root->commit_root);
3539         kfree(root->free_ino_ctl);
3540         kfree(root->free_ino_pinned);
3541         kfree(root->name);
3542         btrfs_put_fs_root(root);
3543 }
3544
3545 void btrfs_free_fs_root(struct btrfs_root *root)
3546 {
3547         free_fs_root(root);
3548 }
3549
3550 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3551 {
3552         u64 root_objectid = 0;
3553         struct btrfs_root *gang[8];
3554         int i = 0;
3555         int err = 0;
3556         unsigned int ret = 0;
3557         int index;
3558
3559         while (1) {
3560                 index = srcu_read_lock(&fs_info->subvol_srcu);
3561                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3562                                              (void **)gang, root_objectid,
3563                                              ARRAY_SIZE(gang));
3564                 if (!ret) {
3565                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3566                         break;
3567                 }
3568                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3569
3570                 for (i = 0; i < ret; i++) {
3571                         /* Avoid to grab roots in dead_roots */
3572                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3573                                 gang[i] = NULL;
3574                                 continue;
3575                         }
3576                         /* grab all the search result for later use */
3577                         gang[i] = btrfs_grab_fs_root(gang[i]);
3578                 }
3579                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3580
3581                 for (i = 0; i < ret; i++) {
3582                         if (!gang[i])
3583                                 continue;
3584                         root_objectid = gang[i]->root_key.objectid;
3585                         err = btrfs_orphan_cleanup(gang[i]);
3586                         if (err)
3587                                 break;
3588                         btrfs_put_fs_root(gang[i]);
3589                 }
3590                 root_objectid++;
3591         }
3592
3593         /* release the uncleaned roots due to error */
3594         for (; i < ret; i++) {
3595                 if (gang[i])
3596                         btrfs_put_fs_root(gang[i]);
3597         }
3598         return err;
3599 }
3600
3601 int btrfs_commit_super(struct btrfs_root *root)
3602 {
3603         struct btrfs_trans_handle *trans;
3604
3605         mutex_lock(&root->fs_info->cleaner_mutex);
3606         btrfs_run_delayed_iputs(root);
3607         mutex_unlock(&root->fs_info->cleaner_mutex);
3608         wake_up_process(root->fs_info->cleaner_kthread);
3609
3610         /* wait until ongoing cleanup work done */
3611         down_write(&root->fs_info->cleanup_work_sem);
3612         up_write(&root->fs_info->cleanup_work_sem);
3613
3614         trans = btrfs_join_transaction(root);
3615         if (IS_ERR(trans))
3616                 return PTR_ERR(trans);
3617         return btrfs_commit_transaction(trans, root);
3618 }
3619
3620 int close_ctree(struct btrfs_root *root)
3621 {
3622         struct btrfs_fs_info *fs_info = root->fs_info;
3623         int ret;
3624
3625         fs_info->closing = 1;
3626         smp_mb();
3627
3628         /* wait for the uuid_scan task to finish */
3629         down(&fs_info->uuid_tree_rescan_sem);
3630         /* avoid complains from lockdep et al., set sem back to initial state */
3631         up(&fs_info->uuid_tree_rescan_sem);
3632
3633         /* pause restriper - we want to resume on mount */
3634         btrfs_pause_balance(fs_info);
3635
3636         btrfs_dev_replace_suspend_for_unmount(fs_info);
3637
3638         btrfs_scrub_cancel(fs_info);
3639
3640         /* wait for any defraggers to finish */
3641         wait_event(fs_info->transaction_wait,
3642                    (atomic_read(&fs_info->defrag_running) == 0));
3643
3644         /* clear out the rbtree of defraggable inodes */
3645         btrfs_cleanup_defrag_inodes(fs_info);
3646
3647         cancel_work_sync(&fs_info->async_reclaim_work);
3648
3649         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3650                 ret = btrfs_commit_super(root);
3651                 if (ret)
3652                         btrfs_err(root->fs_info, "commit super ret %d", ret);
3653         }
3654
3655         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3656                 btrfs_error_commit_super(root);
3657
3658         kthread_stop(fs_info->transaction_kthread);
3659         kthread_stop(fs_info->cleaner_kthread);
3660
3661         fs_info->closing = 2;
3662         smp_mb();
3663
3664         btrfs_free_qgroup_config(root->fs_info);
3665
3666         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3667                 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3668                        percpu_counter_sum(&fs_info->delalloc_bytes));
3669         }
3670
3671         btrfs_sysfs_remove_one(fs_info);
3672
3673         btrfs_free_fs_roots(fs_info);
3674
3675         btrfs_put_block_group_cache(fs_info);
3676
3677         btrfs_free_block_groups(fs_info);
3678
3679         /*
3680          * we must make sure there is not any read request to
3681          * submit after we stopping all workers.
3682          */
3683         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3684         btrfs_stop_all_workers(fs_info);
3685
3686         free_root_pointers(fs_info, 1);
3687
3688         iput(fs_info->btree_inode);
3689
3690 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3691         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3692                 btrfsic_unmount(root, fs_info->fs_devices);
3693 #endif
3694
3695         btrfs_close_devices(fs_info->fs_devices);
3696         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3697
3698         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3699         percpu_counter_destroy(&fs_info->delalloc_bytes);
3700         percpu_counter_destroy(&fs_info->bio_counter);
3701         bdi_destroy(&fs_info->bdi);
3702         cleanup_srcu_struct(&fs_info->subvol_srcu);
3703
3704         btrfs_free_stripe_hash_table(fs_info);
3705
3706         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3707         root->orphan_block_rsv = NULL;
3708
3709         return 0;
3710 }
3711
3712 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3713                           int atomic)
3714 {
3715         int ret;
3716         struct inode *btree_inode = buf->pages[0]->mapping->host;
3717
3718         ret = extent_buffer_uptodate(buf);
3719         if (!ret)
3720                 return ret;
3721
3722         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3723                                     parent_transid, atomic);
3724         if (ret == -EAGAIN)
3725                 return ret;
3726         return !ret;
3727 }
3728
3729 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3730 {
3731         return set_extent_buffer_uptodate(buf);
3732 }
3733
3734 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3735 {
3736         struct btrfs_root *root;
3737         u64 transid = btrfs_header_generation(buf);
3738         int was_dirty;
3739
3740 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3741         /*
3742          * This is a fast path so only do this check if we have sanity tests
3743          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3744          * outside of the sanity tests.
3745          */
3746         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3747                 return;
3748 #endif
3749         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3750         btrfs_assert_tree_locked(buf);
3751         if (transid != root->fs_info->generation)
3752                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3753                        "found %llu running %llu\n",
3754                         buf->start, transid, root->fs_info->generation);
3755         was_dirty = set_extent_buffer_dirty(buf);
3756         if (!was_dirty)
3757                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3758                                      buf->len,
3759                                      root->fs_info->dirty_metadata_batch);
3760 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3761         if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3762                 btrfs_print_leaf(root, buf);
3763                 ASSERT(0);
3764         }
3765 #endif
3766 }
3767
3768 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3769                                         int flush_delayed)
3770 {
3771         /*
3772          * looks as though older kernels can get into trouble with
3773          * this code, they end up stuck in balance_dirty_pages forever
3774          */
3775         int ret;
3776
3777         if (current->flags & PF_MEMALLOC)
3778                 return;
3779
3780         if (flush_delayed)
3781                 btrfs_balance_delayed_items(root);
3782
3783         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3784                                      BTRFS_DIRTY_METADATA_THRESH);
3785         if (ret > 0) {
3786                 balance_dirty_pages_ratelimited(
3787                                    root->fs_info->btree_inode->i_mapping);
3788         }
3789         return;
3790 }
3791
3792 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3793 {
3794         __btrfs_btree_balance_dirty(root, 1);
3795 }
3796
3797 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3798 {
3799         __btrfs_btree_balance_dirty(root, 0);
3800 }
3801
3802 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3803 {
3804         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3805         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3806 }
3807
3808 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3809                               int read_only)
3810 {
3811         /*
3812          * Placeholder for checks
3813          */
3814         return 0;
3815 }
3816
3817 static void btrfs_error_commit_super(struct btrfs_root *root)
3818 {
3819         mutex_lock(&root->fs_info->cleaner_mutex);
3820         btrfs_run_delayed_iputs(root);
3821         mutex_unlock(&root->fs_info->cleaner_mutex);
3822
3823         down_write(&root->fs_info->cleanup_work_sem);
3824         up_write(&root->fs_info->cleanup_work_sem);
3825
3826         /* cleanup FS via transaction */
3827         btrfs_cleanup_transaction(root);
3828 }
3829
3830 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3831 {
3832         struct btrfs_ordered_extent *ordered;
3833
3834         spin_lock(&root->ordered_extent_lock);
3835         /*
3836          * This will just short circuit the ordered completion stuff which will
3837          * make sure the ordered extent gets properly cleaned up.
3838          */
3839         list_for_each_entry(ordered, &root->ordered_extents,
3840                             root_extent_list)
3841                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3842         spin_unlock(&root->ordered_extent_lock);
3843 }
3844
3845 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3846 {
3847         struct btrfs_root *root;
3848         struct list_head splice;
3849
3850         INIT_LIST_HEAD(&splice);
3851
3852         spin_lock(&fs_info->ordered_root_lock);
3853         list_splice_init(&fs_info->ordered_roots, &splice);
3854         while (!list_empty(&splice)) {
3855                 root = list_first_entry(&splice, struct btrfs_root,
3856                                         ordered_root);
3857                 list_move_tail(&root->ordered_root,
3858                                &fs_info->ordered_roots);
3859
3860                 spin_unlock(&fs_info->ordered_root_lock);
3861                 btrfs_destroy_ordered_extents(root);
3862
3863                 cond_resched();
3864                 spin_lock(&fs_info->ordered_root_lock);
3865         }
3866         spin_unlock(&fs_info->ordered_root_lock);
3867 }
3868
3869 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3870                                       struct btrfs_root *root)
3871 {
3872         struct rb_node *node;
3873         struct btrfs_delayed_ref_root *delayed_refs;
3874         struct btrfs_delayed_ref_node *ref;
3875         int ret = 0;
3876
3877         delayed_refs = &trans->delayed_refs;
3878
3879         spin_lock(&delayed_refs->lock);
3880         if (atomic_read(&delayed_refs->num_entries) == 0) {
3881                 spin_unlock(&delayed_refs->lock);
3882                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
3883                 return ret;
3884         }
3885
3886         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3887                 struct btrfs_delayed_ref_head *head;
3888                 bool pin_bytes = false;
3889
3890                 head = rb_entry(node, struct btrfs_delayed_ref_head,
3891                                 href_node);
3892                 if (!mutex_trylock(&head->mutex)) {
3893                         atomic_inc(&head->node.refs);
3894                         spin_unlock(&delayed_refs->lock);
3895
3896                         mutex_lock(&head->mutex);
3897                         mutex_unlock(&head->mutex);
3898                         btrfs_put_delayed_ref(&head->node);
3899                         spin_lock(&delayed_refs->lock);
3900                         continue;
3901                 }
3902                 spin_lock(&head->lock);
3903                 while ((node = rb_first(&head->ref_root)) != NULL) {
3904                         ref = rb_entry(node, struct btrfs_delayed_ref_node,
3905                                        rb_node);
3906                         ref->in_tree = 0;
3907                         rb_erase(&ref->rb_node, &head->ref_root);
3908                         atomic_dec(&delayed_refs->num_entries);
3909                         btrfs_put_delayed_ref(ref);
3910                 }
3911                 if (head->must_insert_reserved)
3912                         pin_bytes = true;
3913                 btrfs_free_delayed_extent_op(head->extent_op);
3914                 delayed_refs->num_heads--;
3915                 if (head->processing == 0)
3916                         delayed_refs->num_heads_ready--;
3917                 atomic_dec(&delayed_refs->num_entries);
3918                 head->node.in_tree = 0;
3919                 rb_erase(&head->href_node, &delayed_refs->href_root);
3920                 spin_unlock(&head->lock);
3921                 spin_unlock(&delayed_refs->lock);
3922                 mutex_unlock(&head->mutex);
3923
3924                 if (pin_bytes)
3925                         btrfs_pin_extent(root, head->node.bytenr,
3926                                          head->node.num_bytes, 1);
3927                 btrfs_put_delayed_ref(&head->node);
3928                 cond_resched();
3929                 spin_lock(&delayed_refs->lock);
3930         }
3931
3932         spin_unlock(&delayed_refs->lock);
3933
3934         return ret;
3935 }
3936
3937 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3938 {
3939         struct btrfs_inode *btrfs_inode;
3940         struct list_head splice;
3941
3942         INIT_LIST_HEAD(&splice);
3943
3944         spin_lock(&root->delalloc_lock);
3945         list_splice_init(&root->delalloc_inodes, &splice);
3946
3947         while (!list_empty(&splice)) {
3948                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3949                                                delalloc_inodes);
3950
3951                 list_del_init(&btrfs_inode->delalloc_inodes);
3952                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3953                           &btrfs_inode->runtime_flags);
3954                 spin_unlock(&root->delalloc_lock);
3955
3956                 btrfs_invalidate_inodes(btrfs_inode->root);
3957
3958                 spin_lock(&root->delalloc_lock);
3959         }
3960
3961         spin_unlock(&root->delalloc_lock);
3962 }
3963
3964 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3965 {
3966         struct btrfs_root *root;
3967         struct list_head splice;
3968
3969         INIT_LIST_HEAD(&splice);
3970
3971         spin_lock(&fs_info->delalloc_root_lock);
3972         list_splice_init(&fs_info->delalloc_roots, &splice);
3973         while (!list_empty(&splice)) {
3974                 root = list_first_entry(&splice, struct btrfs_root,
3975                                          delalloc_root);
3976                 list_del_init(&root->delalloc_root);
3977                 root = btrfs_grab_fs_root(root);
3978                 BUG_ON(!root);
3979                 spin_unlock(&fs_info->delalloc_root_lock);
3980
3981                 btrfs_destroy_delalloc_inodes(root);
3982                 btrfs_put_fs_root(root);
3983
3984                 spin_lock(&fs_info->delalloc_root_lock);
3985         }
3986         spin_unlock(&fs_info->delalloc_root_lock);
3987 }
3988
3989 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3990                                         struct extent_io_tree *dirty_pages,
3991                                         int mark)
3992 {
3993         int ret;
3994         struct extent_buffer *eb;
3995         u64 start = 0;
3996         u64 end;
3997
3998         while (1) {
3999                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4000                                             mark, NULL);
4001                 if (ret)
4002                         break;
4003
4004                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4005                 while (start <= end) {
4006                         eb = btrfs_find_tree_block(root, start,
4007                                                    root->leafsize);
4008                         start += root->leafsize;
4009                         if (!eb)
4010                                 continue;
4011                         wait_on_extent_buffer_writeback(eb);
4012
4013                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4014                                                &eb->bflags))
4015                                 clear_extent_buffer_dirty(eb);
4016                         free_extent_buffer_stale(eb);
4017                 }
4018         }
4019
4020         return ret;
4021 }
4022
4023 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4024                                        struct extent_io_tree *pinned_extents)
4025 {
4026         struct extent_io_tree *unpin;
4027         u64 start;
4028         u64 end;
4029         int ret;
4030         bool loop = true;
4031
4032         unpin = pinned_extents;
4033 again:
4034         while (1) {
4035                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4036                                             EXTENT_DIRTY, NULL);
4037                 if (ret)
4038                         break;
4039
4040                 /* opt_discard */
4041                 if (btrfs_test_opt(root, DISCARD))
4042                         ret = btrfs_error_discard_extent(root, start,
4043                                                          end + 1 - start,
4044                                                          NULL);
4045
4046                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4047                 btrfs_error_unpin_extent_range(root, start, end);
4048                 cond_resched();
4049         }
4050
4051         if (loop) {
4052                 if (unpin == &root->fs_info->freed_extents[0])
4053                         unpin = &root->fs_info->freed_extents[1];
4054                 else
4055                         unpin = &root->fs_info->freed_extents[0];
4056                 loop = false;
4057                 goto again;
4058         }
4059
4060         return 0;
4061 }
4062
4063 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4064                                    struct btrfs_root *root)
4065 {
4066         btrfs_destroy_delayed_refs(cur_trans, root);
4067
4068         cur_trans->state = TRANS_STATE_COMMIT_START;
4069         wake_up(&root->fs_info->transaction_blocked_wait);
4070
4071         cur_trans->state = TRANS_STATE_UNBLOCKED;
4072         wake_up(&root->fs_info->transaction_wait);
4073
4074         btrfs_destroy_delayed_inodes(root);
4075         btrfs_assert_delayed_root_empty(root);
4076
4077         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4078                                      EXTENT_DIRTY);
4079         btrfs_destroy_pinned_extent(root,
4080                                     root->fs_info->pinned_extents);
4081
4082         cur_trans->state =TRANS_STATE_COMPLETED;
4083         wake_up(&cur_trans->commit_wait);
4084
4085         /*
4086         memset(cur_trans, 0, sizeof(*cur_trans));
4087         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4088         */
4089 }
4090
4091 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4092 {
4093         struct btrfs_transaction *t;
4094
4095         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4096
4097         spin_lock(&root->fs_info->trans_lock);
4098         while (!list_empty(&root->fs_info->trans_list)) {
4099                 t = list_first_entry(&root->fs_info->trans_list,
4100                                      struct btrfs_transaction, list);
4101                 if (t->state >= TRANS_STATE_COMMIT_START) {
4102                         atomic_inc(&t->use_count);
4103                         spin_unlock(&root->fs_info->trans_lock);
4104                         btrfs_wait_for_commit(root, t->transid);
4105                         btrfs_put_transaction(t);
4106                         spin_lock(&root->fs_info->trans_lock);
4107                         continue;
4108                 }
4109                 if (t == root->fs_info->running_transaction) {
4110                         t->state = TRANS_STATE_COMMIT_DOING;
4111                         spin_unlock(&root->fs_info->trans_lock);
4112                         /*
4113                          * We wait for 0 num_writers since we don't hold a trans
4114                          * handle open currently for this transaction.
4115                          */
4116                         wait_event(t->writer_wait,
4117                                    atomic_read(&t->num_writers) == 0);
4118                 } else {
4119                         spin_unlock(&root->fs_info->trans_lock);
4120                 }
4121                 btrfs_cleanup_one_transaction(t, root);
4122
4123                 spin_lock(&root->fs_info->trans_lock);
4124                 if (t == root->fs_info->running_transaction)
4125                         root->fs_info->running_transaction = NULL;
4126                 list_del_init(&t->list);
4127                 spin_unlock(&root->fs_info->trans_lock);
4128
4129                 btrfs_put_transaction(t);
4130                 trace_btrfs_transaction_commit(root);
4131                 spin_lock(&root->fs_info->trans_lock);
4132         }
4133         spin_unlock(&root->fs_info->trans_lock);
4134         btrfs_destroy_all_ordered_extents(root->fs_info);
4135         btrfs_destroy_delayed_inodes(root);
4136         btrfs_assert_delayed_root_empty(root);
4137         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4138         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4139         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4140
4141         return 0;
4142 }
4143
4144 static struct extent_io_ops btree_extent_io_ops = {
4145         .readpage_end_io_hook = btree_readpage_end_io_hook,
4146         .readpage_io_failed_hook = btree_io_failed_hook,
4147         .submit_bio_hook = btree_submit_bio_hook,
4148         /* note we're sharing with inode.c for the merge bio hook */
4149         .merge_bio_hook = btrfs_merge_bio_hook,
4150 };