btrfs: remove unused variables from disk-io.c
[cascardo/linux.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <linux/semaphore.h>
35 #include <asm/unaligned.h>
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61                                     int read_only);
62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63                                              struct btrfs_root *root);
64 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66                                       struct btrfs_root *root);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69                                         struct extent_io_tree *dirty_pages,
70                                         int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72                                        struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
75
76 /*
77  * end_io_wq structs are used to do processing in task context when an IO is
78  * complete.  This is used during reads to verify checksums, and it is used
79  * by writes to insert metadata for new file extents after IO is complete.
80  */
81 struct end_io_wq {
82         struct bio *bio;
83         bio_end_io_t *end_io;
84         void *private;
85         struct btrfs_fs_info *info;
86         int error;
87         int metadata;
88         struct list_head list;
89         struct btrfs_work work;
90 };
91
92 /*
93  * async submit bios are used to offload expensive checksumming
94  * onto the worker threads.  They checksum file and metadata bios
95  * just before they are sent down the IO stack.
96  */
97 struct async_submit_bio {
98         struct inode *inode;
99         struct bio *bio;
100         struct list_head list;
101         extent_submit_bio_hook_t *submit_bio_start;
102         extent_submit_bio_hook_t *submit_bio_done;
103         int rw;
104         int mirror_num;
105         unsigned long bio_flags;
106         /*
107          * bio_offset is optional, can be used if the pages in the bio
108          * can't tell us where in the file the bio should go
109          */
110         u64 bio_offset;
111         struct btrfs_work work;
112         int error;
113 };
114
115 /*
116  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
117  * eb, the lockdep key is determined by the btrfs_root it belongs to and
118  * the level the eb occupies in the tree.
119  *
120  * Different roots are used for different purposes and may nest inside each
121  * other and they require separate keysets.  As lockdep keys should be
122  * static, assign keysets according to the purpose of the root as indicated
123  * by btrfs_root->objectid.  This ensures that all special purpose roots
124  * have separate keysets.
125  *
126  * Lock-nesting across peer nodes is always done with the immediate parent
127  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
128  * subclass to avoid triggering lockdep warning in such cases.
129  *
130  * The key is set by the readpage_end_io_hook after the buffer has passed
131  * csum validation but before the pages are unlocked.  It is also set by
132  * btrfs_init_new_buffer on freshly allocated blocks.
133  *
134  * We also add a check to make sure the highest level of the tree is the
135  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
136  * needs update as well.
137  */
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 #  error
141 # endif
142
143 static struct btrfs_lockdep_keyset {
144         u64                     id;             /* root objectid */
145         const char              *name_stem;     /* lock name stem */
146         char                    names[BTRFS_MAX_LEVEL + 1][20];
147         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
150         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
151         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
152         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
153         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
154         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
155         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
156         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
157         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
158         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
159         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
160         { .id = 0,                              .name_stem = "tree"     },
161 };
162
163 void __init btrfs_init_lockdep(void)
164 {
165         int i, j;
166
167         /* initialize lockdep class names */
168         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
170
171                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172                         snprintf(ks->names[j], sizeof(ks->names[j]),
173                                  "btrfs-%s-%02d", ks->name_stem, j);
174         }
175 }
176
177 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178                                     int level)
179 {
180         struct btrfs_lockdep_keyset *ks;
181
182         BUG_ON(level >= ARRAY_SIZE(ks->keys));
183
184         /* find the matching keyset, id 0 is the default entry */
185         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186                 if (ks->id == objectid)
187                         break;
188
189         lockdep_set_class_and_name(&eb->lock,
190                                    &ks->keys[level], ks->names[level]);
191 }
192
193 #endif
194
195 /*
196  * extents on the btree inode are pretty simple, there's one extent
197  * that covers the entire device
198  */
199 static struct extent_map *btree_get_extent(struct inode *inode,
200                 struct page *page, size_t pg_offset, u64 start, u64 len,
201                 int create)
202 {
203         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204         struct extent_map *em;
205         int ret;
206
207         read_lock(&em_tree->lock);
208         em = lookup_extent_mapping(em_tree, start, len);
209         if (em) {
210                 em->bdev =
211                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
212                 read_unlock(&em_tree->lock);
213                 goto out;
214         }
215         read_unlock(&em_tree->lock);
216
217         em = alloc_extent_map();
218         if (!em) {
219                 em = ERR_PTR(-ENOMEM);
220                 goto out;
221         }
222         em->start = 0;
223         em->len = (u64)-1;
224         em->block_len = (u64)-1;
225         em->block_start = 0;
226         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
227
228         write_lock(&em_tree->lock);
229         ret = add_extent_mapping(em_tree, em, 0);
230         if (ret == -EEXIST) {
231                 free_extent_map(em);
232                 em = lookup_extent_mapping(em_tree, start, len);
233                 if (!em)
234                         em = ERR_PTR(-EIO);
235         } else if (ret) {
236                 free_extent_map(em);
237                 em = ERR_PTR(ret);
238         }
239         write_unlock(&em_tree->lock);
240
241 out:
242         return em;
243 }
244
245 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
246 {
247         return crc32c(seed, data, len);
248 }
249
250 void btrfs_csum_final(u32 crc, char *result)
251 {
252         put_unaligned_le32(~crc, result);
253 }
254
255 /*
256  * compute the csum for a btree block, and either verify it or write it
257  * into the csum field of the block.
258  */
259 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260                            int verify)
261 {
262         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
263         char *result = NULL;
264         unsigned long len;
265         unsigned long cur_len;
266         unsigned long offset = BTRFS_CSUM_SIZE;
267         char *kaddr;
268         unsigned long map_start;
269         unsigned long map_len;
270         int err;
271         u32 crc = ~(u32)0;
272         unsigned long inline_result;
273
274         len = buf->len - offset;
275         while (len > 0) {
276                 err = map_private_extent_buffer(buf, offset, 32,
277                                         &kaddr, &map_start, &map_len);
278                 if (err)
279                         return 1;
280                 cur_len = min(len, map_len - (offset - map_start));
281                 crc = btrfs_csum_data(kaddr + offset - map_start,
282                                       crc, cur_len);
283                 len -= cur_len;
284                 offset += cur_len;
285         }
286         if (csum_size > sizeof(inline_result)) {
287                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
288                 if (!result)
289                         return 1;
290         } else {
291                 result = (char *)&inline_result;
292         }
293
294         btrfs_csum_final(crc, result);
295
296         if (verify) {
297                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
298                         u32 val;
299                         u32 found = 0;
300                         memcpy(&found, result, csum_size);
301
302                         read_extent_buffer(buf, &val, 0, csum_size);
303                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
304                                        "failed on %llu wanted %X found %X "
305                                        "level %d\n",
306                                        root->fs_info->sb->s_id, buf->start,
307                                        val, found, btrfs_header_level(buf));
308                         if (result != (char *)&inline_result)
309                                 kfree(result);
310                         return 1;
311                 }
312         } else {
313                 write_extent_buffer(buf, result, 0, csum_size);
314         }
315         if (result != (char *)&inline_result)
316                 kfree(result);
317         return 0;
318 }
319
320 /*
321  * we can't consider a given block up to date unless the transid of the
322  * block matches the transid in the parent node's pointer.  This is how we
323  * detect blocks that either didn't get written at all or got written
324  * in the wrong place.
325  */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327                                  struct extent_buffer *eb, u64 parent_transid,
328                                  int atomic)
329 {
330         struct extent_state *cached_state = NULL;
331         int ret;
332
333         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334                 return 0;
335
336         if (atomic)
337                 return -EAGAIN;
338
339         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340                          0, &cached_state);
341         if (extent_buffer_uptodate(eb) &&
342             btrfs_header_generation(eb) == parent_transid) {
343                 ret = 0;
344                 goto out;
345         }
346         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347                        "found %llu\n",
348                        eb->start, parent_transid, btrfs_header_generation(eb));
349         ret = 1;
350         clear_extent_buffer_uptodate(eb);
351 out:
352         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
353                              &cached_state, GFP_NOFS);
354         return ret;
355 }
356
357 /*
358  * Return 0 if the superblock checksum type matches the checksum value of that
359  * algorithm. Pass the raw disk superblock data.
360  */
361 static int btrfs_check_super_csum(char *raw_disk_sb)
362 {
363         struct btrfs_super_block *disk_sb =
364                 (struct btrfs_super_block *)raw_disk_sb;
365         u16 csum_type = btrfs_super_csum_type(disk_sb);
366         int ret = 0;
367
368         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
369                 u32 crc = ~(u32)0;
370                 const int csum_size = sizeof(crc);
371                 char result[csum_size];
372
373                 /*
374                  * The super_block structure does not span the whole
375                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
376                  * is filled with zeros and is included in the checkum.
377                  */
378                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
379                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
380                 btrfs_csum_final(crc, result);
381
382                 if (memcmp(raw_disk_sb, result, csum_size))
383                         ret = 1;
384
385                 if (ret && btrfs_super_generation(disk_sb) < 10) {
386                         printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
387                         ret = 0;
388                 }
389         }
390
391         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
392                 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
393                                 csum_type);
394                 ret = 1;
395         }
396
397         return ret;
398 }
399
400 /*
401  * helper to read a given tree block, doing retries as required when
402  * the checksums don't match and we have alternate mirrors to try.
403  */
404 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
405                                           struct extent_buffer *eb,
406                                           u64 start, u64 parent_transid)
407 {
408         struct extent_io_tree *io_tree;
409         int failed = 0;
410         int ret;
411         int num_copies = 0;
412         int mirror_num = 0;
413         int failed_mirror = 0;
414
415         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
416         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
417         while (1) {
418                 ret = read_extent_buffer_pages(io_tree, eb, start,
419                                                WAIT_COMPLETE,
420                                                btree_get_extent, mirror_num);
421                 if (!ret) {
422                         if (!verify_parent_transid(io_tree, eb,
423                                                    parent_transid, 0))
424                                 break;
425                         else
426                                 ret = -EIO;
427                 }
428
429                 /*
430                  * This buffer's crc is fine, but its contents are corrupted, so
431                  * there is no reason to read the other copies, they won't be
432                  * any less wrong.
433                  */
434                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
435                         break;
436
437                 num_copies = btrfs_num_copies(root->fs_info,
438                                               eb->start, eb->len);
439                 if (num_copies == 1)
440                         break;
441
442                 if (!failed_mirror) {
443                         failed = 1;
444                         failed_mirror = eb->read_mirror;
445                 }
446
447                 mirror_num++;
448                 if (mirror_num == failed_mirror)
449                         mirror_num++;
450
451                 if (mirror_num > num_copies)
452                         break;
453         }
454
455         if (failed && !ret && failed_mirror)
456                 repair_eb_io_failure(root, eb, failed_mirror);
457
458         return ret;
459 }
460
461 /*
462  * checksum a dirty tree block before IO.  This has extra checks to make sure
463  * we only fill in the checksum field in the first page of a multi-page block
464  */
465
466 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
467 {
468         u64 start = page_offset(page);
469         u64 found_start;
470         struct extent_buffer *eb;
471
472         eb = (struct extent_buffer *)page->private;
473         if (page != eb->pages[0])
474                 return 0;
475         found_start = btrfs_header_bytenr(eb);
476         if (WARN_ON(found_start != start || !PageUptodate(page)))
477                 return 0;
478         csum_tree_block(root, eb, 0);
479         return 0;
480 }
481
482 static int check_tree_block_fsid(struct btrfs_root *root,
483                                  struct extent_buffer *eb)
484 {
485         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
486         u8 fsid[BTRFS_UUID_SIZE];
487         int ret = 1;
488
489         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
490         while (fs_devices) {
491                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
492                         ret = 0;
493                         break;
494                 }
495                 fs_devices = fs_devices->seed;
496         }
497         return ret;
498 }
499
500 #define CORRUPT(reason, eb, root, slot)                         \
501         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
502                "root=%llu, slot=%d\n", reason,                  \
503                btrfs_header_bytenr(eb), root->objectid, slot)
504
505 static noinline int check_leaf(struct btrfs_root *root,
506                                struct extent_buffer *leaf)
507 {
508         struct btrfs_key key;
509         struct btrfs_key leaf_key;
510         u32 nritems = btrfs_header_nritems(leaf);
511         int slot;
512
513         if (nritems == 0)
514                 return 0;
515
516         /* Check the 0 item */
517         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
518             BTRFS_LEAF_DATA_SIZE(root)) {
519                 CORRUPT("invalid item offset size pair", leaf, root, 0);
520                 return -EIO;
521         }
522
523         /*
524          * Check to make sure each items keys are in the correct order and their
525          * offsets make sense.  We only have to loop through nritems-1 because
526          * we check the current slot against the next slot, which verifies the
527          * next slot's offset+size makes sense and that the current's slot
528          * offset is correct.
529          */
530         for (slot = 0; slot < nritems - 1; slot++) {
531                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
532                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
533
534                 /* Make sure the keys are in the right order */
535                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
536                         CORRUPT("bad key order", leaf, root, slot);
537                         return -EIO;
538                 }
539
540                 /*
541                  * Make sure the offset and ends are right, remember that the
542                  * item data starts at the end of the leaf and grows towards the
543                  * front.
544                  */
545                 if (btrfs_item_offset_nr(leaf, slot) !=
546                         btrfs_item_end_nr(leaf, slot + 1)) {
547                         CORRUPT("slot offset bad", leaf, root, slot);
548                         return -EIO;
549                 }
550
551                 /*
552                  * Check to make sure that we don't point outside of the leaf,
553                  * just incase all the items are consistent to eachother, but
554                  * all point outside of the leaf.
555                  */
556                 if (btrfs_item_end_nr(leaf, slot) >
557                     BTRFS_LEAF_DATA_SIZE(root)) {
558                         CORRUPT("slot end outside of leaf", leaf, root, slot);
559                         return -EIO;
560                 }
561         }
562
563         return 0;
564 }
565
566 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
567                                       u64 phy_offset, struct page *page,
568                                       u64 start, u64 end, int mirror)
569 {
570         u64 found_start;
571         int found_level;
572         struct extent_buffer *eb;
573         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
574         int ret = 0;
575         int reads_done;
576
577         if (!page->private)
578                 goto out;
579
580         eb = (struct extent_buffer *)page->private;
581
582         /* the pending IO might have been the only thing that kept this buffer
583          * in memory.  Make sure we have a ref for all this other checks
584          */
585         extent_buffer_get(eb);
586
587         reads_done = atomic_dec_and_test(&eb->io_pages);
588         if (!reads_done)
589                 goto err;
590
591         eb->read_mirror = mirror;
592         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
593                 ret = -EIO;
594                 goto err;
595         }
596
597         found_start = btrfs_header_bytenr(eb);
598         if (found_start != eb->start) {
599                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
600                                "%llu %llu\n",
601                                found_start, eb->start);
602                 ret = -EIO;
603                 goto err;
604         }
605         if (check_tree_block_fsid(root, eb)) {
606                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
607                                eb->start);
608                 ret = -EIO;
609                 goto err;
610         }
611         found_level = btrfs_header_level(eb);
612         if (found_level >= BTRFS_MAX_LEVEL) {
613                 btrfs_info(root->fs_info, "bad tree block level %d\n",
614                            (int)btrfs_header_level(eb));
615                 ret = -EIO;
616                 goto err;
617         }
618
619         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
620                                        eb, found_level);
621
622         ret = csum_tree_block(root, eb, 1);
623         if (ret) {
624                 ret = -EIO;
625                 goto err;
626         }
627
628         /*
629          * If this is a leaf block and it is corrupt, set the corrupt bit so
630          * that we don't try and read the other copies of this block, just
631          * return -EIO.
632          */
633         if (found_level == 0 && check_leaf(root, eb)) {
634                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
635                 ret = -EIO;
636         }
637
638         if (!ret)
639                 set_extent_buffer_uptodate(eb);
640 err:
641         if (reads_done &&
642             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
643                 btree_readahead_hook(root, eb, eb->start, ret);
644
645         if (ret) {
646                 /*
647                  * our io error hook is going to dec the io pages
648                  * again, we have to make sure it has something
649                  * to decrement
650                  */
651                 atomic_inc(&eb->io_pages);
652                 clear_extent_buffer_uptodate(eb);
653         }
654         free_extent_buffer(eb);
655 out:
656         return ret;
657 }
658
659 static int btree_io_failed_hook(struct page *page, int failed_mirror)
660 {
661         struct extent_buffer *eb;
662         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
663
664         eb = (struct extent_buffer *)page->private;
665         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
666         eb->read_mirror = failed_mirror;
667         atomic_dec(&eb->io_pages);
668         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
669                 btree_readahead_hook(root, eb, eb->start, -EIO);
670         return -EIO;    /* we fixed nothing */
671 }
672
673 static void end_workqueue_bio(struct bio *bio, int err)
674 {
675         struct end_io_wq *end_io_wq = bio->bi_private;
676         struct btrfs_fs_info *fs_info;
677
678         fs_info = end_io_wq->info;
679         end_io_wq->error = err;
680         end_io_wq->work.func = end_workqueue_fn;
681         end_io_wq->work.flags = 0;
682
683         if (bio->bi_rw & REQ_WRITE) {
684                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
685                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
686                                            &end_io_wq->work);
687                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
688                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
689                                            &end_io_wq->work);
690                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
691                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
692                                            &end_io_wq->work);
693                 else
694                         btrfs_queue_worker(&fs_info->endio_write_workers,
695                                            &end_io_wq->work);
696         } else {
697                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
698                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
699                                            &end_io_wq->work);
700                 else if (end_io_wq->metadata)
701                         btrfs_queue_worker(&fs_info->endio_meta_workers,
702                                            &end_io_wq->work);
703                 else
704                         btrfs_queue_worker(&fs_info->endio_workers,
705                                            &end_io_wq->work);
706         }
707 }
708
709 /*
710  * For the metadata arg you want
711  *
712  * 0 - if data
713  * 1 - if normal metadta
714  * 2 - if writing to the free space cache area
715  * 3 - raid parity work
716  */
717 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
718                         int metadata)
719 {
720         struct end_io_wq *end_io_wq;
721         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
722         if (!end_io_wq)
723                 return -ENOMEM;
724
725         end_io_wq->private = bio->bi_private;
726         end_io_wq->end_io = bio->bi_end_io;
727         end_io_wq->info = info;
728         end_io_wq->error = 0;
729         end_io_wq->bio = bio;
730         end_io_wq->metadata = metadata;
731
732         bio->bi_private = end_io_wq;
733         bio->bi_end_io = end_workqueue_bio;
734         return 0;
735 }
736
737 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
738 {
739         unsigned long limit = min_t(unsigned long,
740                                     info->workers.max_workers,
741                                     info->fs_devices->open_devices);
742         return 256 * limit;
743 }
744
745 static void run_one_async_start(struct btrfs_work *work)
746 {
747         struct async_submit_bio *async;
748         int ret;
749
750         async = container_of(work, struct  async_submit_bio, work);
751         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
752                                       async->mirror_num, async->bio_flags,
753                                       async->bio_offset);
754         if (ret)
755                 async->error = ret;
756 }
757
758 static void run_one_async_done(struct btrfs_work *work)
759 {
760         struct btrfs_fs_info *fs_info;
761         struct async_submit_bio *async;
762         int limit;
763
764         async = container_of(work, struct  async_submit_bio, work);
765         fs_info = BTRFS_I(async->inode)->root->fs_info;
766
767         limit = btrfs_async_submit_limit(fs_info);
768         limit = limit * 2 / 3;
769
770         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
771             waitqueue_active(&fs_info->async_submit_wait))
772                 wake_up(&fs_info->async_submit_wait);
773
774         /* If an error occured we just want to clean up the bio and move on */
775         if (async->error) {
776                 bio_endio(async->bio, async->error);
777                 return;
778         }
779
780         async->submit_bio_done(async->inode, async->rw, async->bio,
781                                async->mirror_num, async->bio_flags,
782                                async->bio_offset);
783 }
784
785 static void run_one_async_free(struct btrfs_work *work)
786 {
787         struct async_submit_bio *async;
788
789         async = container_of(work, struct  async_submit_bio, work);
790         kfree(async);
791 }
792
793 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
794                         int rw, struct bio *bio, int mirror_num,
795                         unsigned long bio_flags,
796                         u64 bio_offset,
797                         extent_submit_bio_hook_t *submit_bio_start,
798                         extent_submit_bio_hook_t *submit_bio_done)
799 {
800         struct async_submit_bio *async;
801
802         async = kmalloc(sizeof(*async), GFP_NOFS);
803         if (!async)
804                 return -ENOMEM;
805
806         async->inode = inode;
807         async->rw = rw;
808         async->bio = bio;
809         async->mirror_num = mirror_num;
810         async->submit_bio_start = submit_bio_start;
811         async->submit_bio_done = submit_bio_done;
812
813         async->work.func = run_one_async_start;
814         async->work.ordered_func = run_one_async_done;
815         async->work.ordered_free = run_one_async_free;
816
817         async->work.flags = 0;
818         async->bio_flags = bio_flags;
819         async->bio_offset = bio_offset;
820
821         async->error = 0;
822
823         atomic_inc(&fs_info->nr_async_submits);
824
825         if (rw & REQ_SYNC)
826                 btrfs_set_work_high_prio(&async->work);
827
828         btrfs_queue_worker(&fs_info->workers, &async->work);
829
830         while (atomic_read(&fs_info->async_submit_draining) &&
831               atomic_read(&fs_info->nr_async_submits)) {
832                 wait_event(fs_info->async_submit_wait,
833                            (atomic_read(&fs_info->nr_async_submits) == 0));
834         }
835
836         return 0;
837 }
838
839 static int btree_csum_one_bio(struct bio *bio)
840 {
841         struct bio_vec *bvec = bio->bi_io_vec;
842         int bio_index = 0;
843         struct btrfs_root *root;
844         int ret = 0;
845
846         WARN_ON(bio->bi_vcnt <= 0);
847         while (bio_index < bio->bi_vcnt) {
848                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
849                 ret = csum_dirty_buffer(root, bvec->bv_page);
850                 if (ret)
851                         break;
852                 bio_index++;
853                 bvec++;
854         }
855         return ret;
856 }
857
858 static int __btree_submit_bio_start(struct inode *inode, int rw,
859                                     struct bio *bio, int mirror_num,
860                                     unsigned long bio_flags,
861                                     u64 bio_offset)
862 {
863         /*
864          * when we're called for a write, we're already in the async
865          * submission context.  Just jump into btrfs_map_bio
866          */
867         return btree_csum_one_bio(bio);
868 }
869
870 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
871                                  int mirror_num, unsigned long bio_flags,
872                                  u64 bio_offset)
873 {
874         int ret;
875
876         /*
877          * when we're called for a write, we're already in the async
878          * submission context.  Just jump into btrfs_map_bio
879          */
880         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
881         if (ret)
882                 bio_endio(bio, ret);
883         return ret;
884 }
885
886 static int check_async_write(struct inode *inode, unsigned long bio_flags)
887 {
888         if (bio_flags & EXTENT_BIO_TREE_LOG)
889                 return 0;
890 #ifdef CONFIG_X86
891         if (cpu_has_xmm4_2)
892                 return 0;
893 #endif
894         return 1;
895 }
896
897 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
898                                  int mirror_num, unsigned long bio_flags,
899                                  u64 bio_offset)
900 {
901         int async = check_async_write(inode, bio_flags);
902         int ret;
903
904         if (!(rw & REQ_WRITE)) {
905                 /*
906                  * called for a read, do the setup so that checksum validation
907                  * can happen in the async kernel threads
908                  */
909                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
910                                           bio, 1);
911                 if (ret)
912                         goto out_w_error;
913                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
914                                     mirror_num, 0);
915         } else if (!async) {
916                 ret = btree_csum_one_bio(bio);
917                 if (ret)
918                         goto out_w_error;
919                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
920                                     mirror_num, 0);
921         } else {
922                 /*
923                  * kthread helpers are used to submit writes so that
924                  * checksumming can happen in parallel across all CPUs
925                  */
926                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
927                                           inode, rw, bio, mirror_num, 0,
928                                           bio_offset,
929                                           __btree_submit_bio_start,
930                                           __btree_submit_bio_done);
931         }
932
933         if (ret) {
934 out_w_error:
935                 bio_endio(bio, ret);
936         }
937         return ret;
938 }
939
940 #ifdef CONFIG_MIGRATION
941 static int btree_migratepage(struct address_space *mapping,
942                         struct page *newpage, struct page *page,
943                         enum migrate_mode mode)
944 {
945         /*
946          * we can't safely write a btree page from here,
947          * we haven't done the locking hook
948          */
949         if (PageDirty(page))
950                 return -EAGAIN;
951         /*
952          * Buffers may be managed in a filesystem specific way.
953          * We must have no buffers or drop them.
954          */
955         if (page_has_private(page) &&
956             !try_to_release_page(page, GFP_KERNEL))
957                 return -EAGAIN;
958         return migrate_page(mapping, newpage, page, mode);
959 }
960 #endif
961
962
963 static int btree_writepages(struct address_space *mapping,
964                             struct writeback_control *wbc)
965 {
966         struct btrfs_fs_info *fs_info;
967         int ret;
968
969         if (wbc->sync_mode == WB_SYNC_NONE) {
970
971                 if (wbc->for_kupdate)
972                         return 0;
973
974                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
975                 /* this is a bit racy, but that's ok */
976                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
977                                              BTRFS_DIRTY_METADATA_THRESH);
978                 if (ret < 0)
979                         return 0;
980         }
981         return btree_write_cache_pages(mapping, wbc);
982 }
983
984 static int btree_readpage(struct file *file, struct page *page)
985 {
986         struct extent_io_tree *tree;
987         tree = &BTRFS_I(page->mapping->host)->io_tree;
988         return extent_read_full_page(tree, page, btree_get_extent, 0);
989 }
990
991 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
992 {
993         if (PageWriteback(page) || PageDirty(page))
994                 return 0;
995
996         return try_release_extent_buffer(page);
997 }
998
999 static void btree_invalidatepage(struct page *page, unsigned int offset,
1000                                  unsigned int length)
1001 {
1002         struct extent_io_tree *tree;
1003         tree = &BTRFS_I(page->mapping->host)->io_tree;
1004         extent_invalidatepage(tree, page, offset);
1005         btree_releasepage(page, GFP_NOFS);
1006         if (PagePrivate(page)) {
1007                 printk(KERN_WARNING "btrfs warning page private not zero "
1008                        "on page %llu\n", (unsigned long long)page_offset(page));
1009                 ClearPagePrivate(page);
1010                 set_page_private(page, 0);
1011                 page_cache_release(page);
1012         }
1013 }
1014
1015 static int btree_set_page_dirty(struct page *page)
1016 {
1017 #ifdef DEBUG
1018         struct extent_buffer *eb;
1019
1020         BUG_ON(!PagePrivate(page));
1021         eb = (struct extent_buffer *)page->private;
1022         BUG_ON(!eb);
1023         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1024         BUG_ON(!atomic_read(&eb->refs));
1025         btrfs_assert_tree_locked(eb);
1026 #endif
1027         return __set_page_dirty_nobuffers(page);
1028 }
1029
1030 static const struct address_space_operations btree_aops = {
1031         .readpage       = btree_readpage,
1032         .writepages     = btree_writepages,
1033         .releasepage    = btree_releasepage,
1034         .invalidatepage = btree_invalidatepage,
1035 #ifdef CONFIG_MIGRATION
1036         .migratepage    = btree_migratepage,
1037 #endif
1038         .set_page_dirty = btree_set_page_dirty,
1039 };
1040
1041 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1042                          u64 parent_transid)
1043 {
1044         struct extent_buffer *buf = NULL;
1045         struct inode *btree_inode = root->fs_info->btree_inode;
1046         int ret = 0;
1047
1048         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1049         if (!buf)
1050                 return 0;
1051         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1052                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1053         free_extent_buffer(buf);
1054         return ret;
1055 }
1056
1057 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1058                          int mirror_num, struct extent_buffer **eb)
1059 {
1060         struct extent_buffer *buf = NULL;
1061         struct inode *btree_inode = root->fs_info->btree_inode;
1062         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1063         int ret;
1064
1065         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1066         if (!buf)
1067                 return 0;
1068
1069         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1070
1071         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1072                                        btree_get_extent, mirror_num);
1073         if (ret) {
1074                 free_extent_buffer(buf);
1075                 return ret;
1076         }
1077
1078         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1079                 free_extent_buffer(buf);
1080                 return -EIO;
1081         } else if (extent_buffer_uptodate(buf)) {
1082                 *eb = buf;
1083         } else {
1084                 free_extent_buffer(buf);
1085         }
1086         return 0;
1087 }
1088
1089 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1090                                             u64 bytenr, u32 blocksize)
1091 {
1092         struct inode *btree_inode = root->fs_info->btree_inode;
1093         struct extent_buffer *eb;
1094         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, bytenr);
1095         return eb;
1096 }
1097
1098 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1099                                                  u64 bytenr, u32 blocksize)
1100 {
1101         struct inode *btree_inode = root->fs_info->btree_inode;
1102         struct extent_buffer *eb;
1103
1104         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1105                                  bytenr, blocksize);
1106         return eb;
1107 }
1108
1109
1110 int btrfs_write_tree_block(struct extent_buffer *buf)
1111 {
1112         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1113                                         buf->start + buf->len - 1);
1114 }
1115
1116 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1117 {
1118         return filemap_fdatawait_range(buf->pages[0]->mapping,
1119                                        buf->start, buf->start + buf->len - 1);
1120 }
1121
1122 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1123                                       u32 blocksize, u64 parent_transid)
1124 {
1125         struct extent_buffer *buf = NULL;
1126         int ret;
1127
1128         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1129         if (!buf)
1130                 return NULL;
1131
1132         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1133         if (ret) {
1134                 free_extent_buffer(buf);
1135                 return NULL;
1136         }
1137         return buf;
1138
1139 }
1140
1141 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1142                       struct extent_buffer *buf)
1143 {
1144         struct btrfs_fs_info *fs_info = root->fs_info;
1145
1146         if (btrfs_header_generation(buf) ==
1147             fs_info->running_transaction->transid) {
1148                 btrfs_assert_tree_locked(buf);
1149
1150                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1151                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1152                                              -buf->len,
1153                                              fs_info->dirty_metadata_batch);
1154                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1155                         btrfs_set_lock_blocking(buf);
1156                         clear_extent_buffer_dirty(buf);
1157                 }
1158         }
1159 }
1160
1161 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1162                          u32 stripesize, struct btrfs_root *root,
1163                          struct btrfs_fs_info *fs_info,
1164                          u64 objectid)
1165 {
1166         root->node = NULL;
1167         root->commit_root = NULL;
1168         root->sectorsize = sectorsize;
1169         root->nodesize = nodesize;
1170         root->leafsize = leafsize;
1171         root->stripesize = stripesize;
1172         root->ref_cows = 0;
1173         root->track_dirty = 0;
1174         root->in_radix = 0;
1175         root->orphan_item_inserted = 0;
1176         root->orphan_cleanup_state = 0;
1177
1178         root->objectid = objectid;
1179         root->last_trans = 0;
1180         root->highest_objectid = 0;
1181         root->nr_delalloc_inodes = 0;
1182         root->nr_ordered_extents = 0;
1183         root->name = NULL;
1184         root->inode_tree = RB_ROOT;
1185         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1186         root->block_rsv = NULL;
1187         root->orphan_block_rsv = NULL;
1188
1189         INIT_LIST_HEAD(&root->dirty_list);
1190         INIT_LIST_HEAD(&root->root_list);
1191         INIT_LIST_HEAD(&root->delalloc_inodes);
1192         INIT_LIST_HEAD(&root->delalloc_root);
1193         INIT_LIST_HEAD(&root->ordered_extents);
1194         INIT_LIST_HEAD(&root->ordered_root);
1195         INIT_LIST_HEAD(&root->logged_list[0]);
1196         INIT_LIST_HEAD(&root->logged_list[1]);
1197         spin_lock_init(&root->orphan_lock);
1198         spin_lock_init(&root->inode_lock);
1199         spin_lock_init(&root->delalloc_lock);
1200         spin_lock_init(&root->ordered_extent_lock);
1201         spin_lock_init(&root->accounting_lock);
1202         spin_lock_init(&root->log_extents_lock[0]);
1203         spin_lock_init(&root->log_extents_lock[1]);
1204         mutex_init(&root->objectid_mutex);
1205         mutex_init(&root->log_mutex);
1206         init_waitqueue_head(&root->log_writer_wait);
1207         init_waitqueue_head(&root->log_commit_wait[0]);
1208         init_waitqueue_head(&root->log_commit_wait[1]);
1209         atomic_set(&root->log_commit[0], 0);
1210         atomic_set(&root->log_commit[1], 0);
1211         atomic_set(&root->log_writers, 0);
1212         atomic_set(&root->log_batch, 0);
1213         atomic_set(&root->orphan_inodes, 0);
1214         atomic_set(&root->refs, 1);
1215         root->log_transid = 0;
1216         root->last_log_commit = 0;
1217         if (fs_info)
1218                 extent_io_tree_init(&root->dirty_log_pages,
1219                                      fs_info->btree_inode->i_mapping);
1220
1221         memset(&root->root_key, 0, sizeof(root->root_key));
1222         memset(&root->root_item, 0, sizeof(root->root_item));
1223         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1224         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1225         if (fs_info)
1226                 root->defrag_trans_start = fs_info->generation;
1227         else
1228                 root->defrag_trans_start = 0;
1229         init_completion(&root->kobj_unregister);
1230         root->defrag_running = 0;
1231         root->root_key.objectid = objectid;
1232         root->anon_dev = 0;
1233
1234         spin_lock_init(&root->root_item_lock);
1235 }
1236
1237 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1238 {
1239         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1240         if (root)
1241                 root->fs_info = fs_info;
1242         return root;
1243 }
1244
1245 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1246 /* Should only be used by the testing infrastructure */
1247 struct btrfs_root *btrfs_alloc_dummy_root(void)
1248 {
1249         struct btrfs_root *root;
1250
1251         root = btrfs_alloc_root(NULL);
1252         if (!root)
1253                 return ERR_PTR(-ENOMEM);
1254         __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1255         root->dummy_root = 1;
1256
1257         return root;
1258 }
1259 #endif
1260
1261 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1262                                      struct btrfs_fs_info *fs_info,
1263                                      u64 objectid)
1264 {
1265         struct extent_buffer *leaf;
1266         struct btrfs_root *tree_root = fs_info->tree_root;
1267         struct btrfs_root *root;
1268         struct btrfs_key key;
1269         int ret = 0;
1270         uuid_le uuid;
1271
1272         root = btrfs_alloc_root(fs_info);
1273         if (!root)
1274                 return ERR_PTR(-ENOMEM);
1275
1276         __setup_root(tree_root->nodesize, tree_root->leafsize,
1277                      tree_root->sectorsize, tree_root->stripesize,
1278                      root, fs_info, objectid);
1279         root->root_key.objectid = objectid;
1280         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1281         root->root_key.offset = 0;
1282
1283         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1284                                       0, objectid, NULL, 0, 0, 0);
1285         if (IS_ERR(leaf)) {
1286                 ret = PTR_ERR(leaf);
1287                 leaf = NULL;
1288                 goto fail;
1289         }
1290
1291         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1292         btrfs_set_header_bytenr(leaf, leaf->start);
1293         btrfs_set_header_generation(leaf, trans->transid);
1294         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1295         btrfs_set_header_owner(leaf, objectid);
1296         root->node = leaf;
1297
1298         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1299                             BTRFS_FSID_SIZE);
1300         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1301                             btrfs_header_chunk_tree_uuid(leaf),
1302                             BTRFS_UUID_SIZE);
1303         btrfs_mark_buffer_dirty(leaf);
1304
1305         root->commit_root = btrfs_root_node(root);
1306         root->track_dirty = 1;
1307
1308
1309         root->root_item.flags = 0;
1310         root->root_item.byte_limit = 0;
1311         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1312         btrfs_set_root_generation(&root->root_item, trans->transid);
1313         btrfs_set_root_level(&root->root_item, 0);
1314         btrfs_set_root_refs(&root->root_item, 1);
1315         btrfs_set_root_used(&root->root_item, leaf->len);
1316         btrfs_set_root_last_snapshot(&root->root_item, 0);
1317         btrfs_set_root_dirid(&root->root_item, 0);
1318         uuid_le_gen(&uuid);
1319         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1320         root->root_item.drop_level = 0;
1321
1322         key.objectid = objectid;
1323         key.type = BTRFS_ROOT_ITEM_KEY;
1324         key.offset = 0;
1325         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1326         if (ret)
1327                 goto fail;
1328
1329         btrfs_tree_unlock(leaf);
1330
1331         return root;
1332
1333 fail:
1334         if (leaf) {
1335                 btrfs_tree_unlock(leaf);
1336                 free_extent_buffer(leaf);
1337         }
1338         kfree(root);
1339
1340         return ERR_PTR(ret);
1341 }
1342
1343 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1344                                          struct btrfs_fs_info *fs_info)
1345 {
1346         struct btrfs_root *root;
1347         struct btrfs_root *tree_root = fs_info->tree_root;
1348         struct extent_buffer *leaf;
1349
1350         root = btrfs_alloc_root(fs_info);
1351         if (!root)
1352                 return ERR_PTR(-ENOMEM);
1353
1354         __setup_root(tree_root->nodesize, tree_root->leafsize,
1355                      tree_root->sectorsize, tree_root->stripesize,
1356                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1357
1358         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1359         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1360         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1361         /*
1362          * log trees do not get reference counted because they go away
1363          * before a real commit is actually done.  They do store pointers
1364          * to file data extents, and those reference counts still get
1365          * updated (along with back refs to the log tree).
1366          */
1367         root->ref_cows = 0;
1368
1369         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1370                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1371                                       0, 0, 0);
1372         if (IS_ERR(leaf)) {
1373                 kfree(root);
1374                 return ERR_CAST(leaf);
1375         }
1376
1377         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1378         btrfs_set_header_bytenr(leaf, leaf->start);
1379         btrfs_set_header_generation(leaf, trans->transid);
1380         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1381         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1382         root->node = leaf;
1383
1384         write_extent_buffer(root->node, root->fs_info->fsid,
1385                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1386         btrfs_mark_buffer_dirty(root->node);
1387         btrfs_tree_unlock(root->node);
1388         return root;
1389 }
1390
1391 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1392                              struct btrfs_fs_info *fs_info)
1393 {
1394         struct btrfs_root *log_root;
1395
1396         log_root = alloc_log_tree(trans, fs_info);
1397         if (IS_ERR(log_root))
1398                 return PTR_ERR(log_root);
1399         WARN_ON(fs_info->log_root_tree);
1400         fs_info->log_root_tree = log_root;
1401         return 0;
1402 }
1403
1404 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1405                        struct btrfs_root *root)
1406 {
1407         struct btrfs_root *log_root;
1408         struct btrfs_inode_item *inode_item;
1409
1410         log_root = alloc_log_tree(trans, root->fs_info);
1411         if (IS_ERR(log_root))
1412                 return PTR_ERR(log_root);
1413
1414         log_root->last_trans = trans->transid;
1415         log_root->root_key.offset = root->root_key.objectid;
1416
1417         inode_item = &log_root->root_item.inode;
1418         btrfs_set_stack_inode_generation(inode_item, 1);
1419         btrfs_set_stack_inode_size(inode_item, 3);
1420         btrfs_set_stack_inode_nlink(inode_item, 1);
1421         btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1422         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1423
1424         btrfs_set_root_node(&log_root->root_item, log_root->node);
1425
1426         WARN_ON(root->log_root);
1427         root->log_root = log_root;
1428         root->log_transid = 0;
1429         root->last_log_commit = 0;
1430         return 0;
1431 }
1432
1433 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1434                                                struct btrfs_key *key)
1435 {
1436         struct btrfs_root *root;
1437         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1438         struct btrfs_path *path;
1439         u64 generation;
1440         u32 blocksize;
1441         int ret;
1442
1443         path = btrfs_alloc_path();
1444         if (!path)
1445                 return ERR_PTR(-ENOMEM);
1446
1447         root = btrfs_alloc_root(fs_info);
1448         if (!root) {
1449                 ret = -ENOMEM;
1450                 goto alloc_fail;
1451         }
1452
1453         __setup_root(tree_root->nodesize, tree_root->leafsize,
1454                      tree_root->sectorsize, tree_root->stripesize,
1455                      root, fs_info, key->objectid);
1456
1457         ret = btrfs_find_root(tree_root, key, path,
1458                               &root->root_item, &root->root_key);
1459         if (ret) {
1460                 if (ret > 0)
1461                         ret = -ENOENT;
1462                 goto find_fail;
1463         }
1464
1465         generation = btrfs_root_generation(&root->root_item);
1466         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1467         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1468                                      blocksize, generation);
1469         if (!root->node) {
1470                 ret = -ENOMEM;
1471                 goto find_fail;
1472         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1473                 ret = -EIO;
1474                 goto read_fail;
1475         }
1476         root->commit_root = btrfs_root_node(root);
1477 out:
1478         btrfs_free_path(path);
1479         return root;
1480
1481 read_fail:
1482         free_extent_buffer(root->node);
1483 find_fail:
1484         kfree(root);
1485 alloc_fail:
1486         root = ERR_PTR(ret);
1487         goto out;
1488 }
1489
1490 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1491                                       struct btrfs_key *location)
1492 {
1493         struct btrfs_root *root;
1494
1495         root = btrfs_read_tree_root(tree_root, location);
1496         if (IS_ERR(root))
1497                 return root;
1498
1499         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1500                 root->ref_cows = 1;
1501                 btrfs_check_and_init_root_item(&root->root_item);
1502         }
1503
1504         return root;
1505 }
1506
1507 int btrfs_init_fs_root(struct btrfs_root *root)
1508 {
1509         int ret;
1510
1511         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1512         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1513                                         GFP_NOFS);
1514         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1515                 ret = -ENOMEM;
1516                 goto fail;
1517         }
1518
1519         btrfs_init_free_ino_ctl(root);
1520         mutex_init(&root->fs_commit_mutex);
1521         spin_lock_init(&root->cache_lock);
1522         init_waitqueue_head(&root->cache_wait);
1523
1524         ret = get_anon_bdev(&root->anon_dev);
1525         if (ret)
1526                 goto fail;
1527         return 0;
1528 fail:
1529         kfree(root->free_ino_ctl);
1530         kfree(root->free_ino_pinned);
1531         return ret;
1532 }
1533
1534 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1535                                                u64 root_id)
1536 {
1537         struct btrfs_root *root;
1538
1539         spin_lock(&fs_info->fs_roots_radix_lock);
1540         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1541                                  (unsigned long)root_id);
1542         spin_unlock(&fs_info->fs_roots_radix_lock);
1543         return root;
1544 }
1545
1546 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1547                          struct btrfs_root *root)
1548 {
1549         int ret;
1550
1551         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1552         if (ret)
1553                 return ret;
1554
1555         spin_lock(&fs_info->fs_roots_radix_lock);
1556         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1557                                 (unsigned long)root->root_key.objectid,
1558                                 root);
1559         if (ret == 0)
1560                 root->in_radix = 1;
1561         spin_unlock(&fs_info->fs_roots_radix_lock);
1562         radix_tree_preload_end();
1563
1564         return ret;
1565 }
1566
1567 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1568                                      struct btrfs_key *location,
1569                                      bool check_ref)
1570 {
1571         struct btrfs_root *root;
1572         int ret;
1573
1574         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1575                 return fs_info->tree_root;
1576         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1577                 return fs_info->extent_root;
1578         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1579                 return fs_info->chunk_root;
1580         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1581                 return fs_info->dev_root;
1582         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1583                 return fs_info->csum_root;
1584         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1585                 return fs_info->quota_root ? fs_info->quota_root :
1586                                              ERR_PTR(-ENOENT);
1587         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1588                 return fs_info->uuid_root ? fs_info->uuid_root :
1589                                             ERR_PTR(-ENOENT);
1590 again:
1591         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1592         if (root) {
1593                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1594                         return ERR_PTR(-ENOENT);
1595                 return root;
1596         }
1597
1598         root = btrfs_read_fs_root(fs_info->tree_root, location);
1599         if (IS_ERR(root))
1600                 return root;
1601
1602         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1603                 ret = -ENOENT;
1604                 goto fail;
1605         }
1606
1607         ret = btrfs_init_fs_root(root);
1608         if (ret)
1609                 goto fail;
1610
1611         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1612         if (ret < 0)
1613                 goto fail;
1614         if (ret == 0)
1615                 root->orphan_item_inserted = 1;
1616
1617         ret = btrfs_insert_fs_root(fs_info, root);
1618         if (ret) {
1619                 if (ret == -EEXIST) {
1620                         free_fs_root(root);
1621                         goto again;
1622                 }
1623                 goto fail;
1624         }
1625         return root;
1626 fail:
1627         free_fs_root(root);
1628         return ERR_PTR(ret);
1629 }
1630
1631 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1632 {
1633         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1634         int ret = 0;
1635         struct btrfs_device *device;
1636         struct backing_dev_info *bdi;
1637
1638         rcu_read_lock();
1639         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1640                 if (!device->bdev)
1641                         continue;
1642                 bdi = blk_get_backing_dev_info(device->bdev);
1643                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1644                         ret = 1;
1645                         break;
1646                 }
1647         }
1648         rcu_read_unlock();
1649         return ret;
1650 }
1651
1652 /*
1653  * If this fails, caller must call bdi_destroy() to get rid of the
1654  * bdi again.
1655  */
1656 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1657 {
1658         int err;
1659
1660         bdi->capabilities = BDI_CAP_MAP_COPY;
1661         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1662         if (err)
1663                 return err;
1664
1665         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1666         bdi->congested_fn       = btrfs_congested_fn;
1667         bdi->congested_data     = info;
1668         return 0;
1669 }
1670
1671 /*
1672  * called by the kthread helper functions to finally call the bio end_io
1673  * functions.  This is where read checksum verification actually happens
1674  */
1675 static void end_workqueue_fn(struct btrfs_work *work)
1676 {
1677         struct bio *bio;
1678         struct end_io_wq *end_io_wq;
1679         int error;
1680
1681         end_io_wq = container_of(work, struct end_io_wq, work);
1682         bio = end_io_wq->bio;
1683
1684         error = end_io_wq->error;
1685         bio->bi_private = end_io_wq->private;
1686         bio->bi_end_io = end_io_wq->end_io;
1687         kfree(end_io_wq);
1688         bio_endio(bio, error);
1689 }
1690
1691 static int cleaner_kthread(void *arg)
1692 {
1693         struct btrfs_root *root = arg;
1694         int again;
1695
1696         do {
1697                 again = 0;
1698
1699                 /* Make the cleaner go to sleep early. */
1700                 if (btrfs_need_cleaner_sleep(root))
1701                         goto sleep;
1702
1703                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1704                         goto sleep;
1705
1706                 /*
1707                  * Avoid the problem that we change the status of the fs
1708                  * during the above check and trylock.
1709                  */
1710                 if (btrfs_need_cleaner_sleep(root)) {
1711                         mutex_unlock(&root->fs_info->cleaner_mutex);
1712                         goto sleep;
1713                 }
1714
1715                 btrfs_run_delayed_iputs(root);
1716                 again = btrfs_clean_one_deleted_snapshot(root);
1717                 mutex_unlock(&root->fs_info->cleaner_mutex);
1718
1719                 /*
1720                  * The defragger has dealt with the R/O remount and umount,
1721                  * needn't do anything special here.
1722                  */
1723                 btrfs_run_defrag_inodes(root->fs_info);
1724 sleep:
1725                 if (!try_to_freeze() && !again) {
1726                         set_current_state(TASK_INTERRUPTIBLE);
1727                         if (!kthread_should_stop())
1728                                 schedule();
1729                         __set_current_state(TASK_RUNNING);
1730                 }
1731         } while (!kthread_should_stop());
1732         return 0;
1733 }
1734
1735 static int transaction_kthread(void *arg)
1736 {
1737         struct btrfs_root *root = arg;
1738         struct btrfs_trans_handle *trans;
1739         struct btrfs_transaction *cur;
1740         u64 transid;
1741         unsigned long now;
1742         unsigned long delay;
1743         bool cannot_commit;
1744
1745         do {
1746                 cannot_commit = false;
1747                 delay = HZ * root->fs_info->commit_interval;
1748                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1749
1750                 spin_lock(&root->fs_info->trans_lock);
1751                 cur = root->fs_info->running_transaction;
1752                 if (!cur) {
1753                         spin_unlock(&root->fs_info->trans_lock);
1754                         goto sleep;
1755                 }
1756
1757                 now = get_seconds();
1758                 if (cur->state < TRANS_STATE_BLOCKED &&
1759                     (now < cur->start_time ||
1760                      now - cur->start_time < root->fs_info->commit_interval)) {
1761                         spin_unlock(&root->fs_info->trans_lock);
1762                         delay = HZ * 5;
1763                         goto sleep;
1764                 }
1765                 transid = cur->transid;
1766                 spin_unlock(&root->fs_info->trans_lock);
1767
1768                 /* If the file system is aborted, this will always fail. */
1769                 trans = btrfs_attach_transaction(root);
1770                 if (IS_ERR(trans)) {
1771                         if (PTR_ERR(trans) != -ENOENT)
1772                                 cannot_commit = true;
1773                         goto sleep;
1774                 }
1775                 if (transid == trans->transid) {
1776                         btrfs_commit_transaction(trans, root);
1777                 } else {
1778                         btrfs_end_transaction(trans, root);
1779                 }
1780 sleep:
1781                 wake_up_process(root->fs_info->cleaner_kthread);
1782                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1783
1784                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1785                                       &root->fs_info->fs_state)))
1786                         btrfs_cleanup_transaction(root);
1787                 if (!try_to_freeze()) {
1788                         set_current_state(TASK_INTERRUPTIBLE);
1789                         if (!kthread_should_stop() &&
1790                             (!btrfs_transaction_blocked(root->fs_info) ||
1791                              cannot_commit))
1792                                 schedule_timeout(delay);
1793                         __set_current_state(TASK_RUNNING);
1794                 }
1795         } while (!kthread_should_stop());
1796         return 0;
1797 }
1798
1799 /*
1800  * this will find the highest generation in the array of
1801  * root backups.  The index of the highest array is returned,
1802  * or -1 if we can't find anything.
1803  *
1804  * We check to make sure the array is valid by comparing the
1805  * generation of the latest  root in the array with the generation
1806  * in the super block.  If they don't match we pitch it.
1807  */
1808 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1809 {
1810         u64 cur;
1811         int newest_index = -1;
1812         struct btrfs_root_backup *root_backup;
1813         int i;
1814
1815         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1816                 root_backup = info->super_copy->super_roots + i;
1817                 cur = btrfs_backup_tree_root_gen(root_backup);
1818                 if (cur == newest_gen)
1819                         newest_index = i;
1820         }
1821
1822         /* check to see if we actually wrapped around */
1823         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1824                 root_backup = info->super_copy->super_roots;
1825                 cur = btrfs_backup_tree_root_gen(root_backup);
1826                 if (cur == newest_gen)
1827                         newest_index = 0;
1828         }
1829         return newest_index;
1830 }
1831
1832
1833 /*
1834  * find the oldest backup so we know where to store new entries
1835  * in the backup array.  This will set the backup_root_index
1836  * field in the fs_info struct
1837  */
1838 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1839                                      u64 newest_gen)
1840 {
1841         int newest_index = -1;
1842
1843         newest_index = find_newest_super_backup(info, newest_gen);
1844         /* if there was garbage in there, just move along */
1845         if (newest_index == -1) {
1846                 info->backup_root_index = 0;
1847         } else {
1848                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1849         }
1850 }
1851
1852 /*
1853  * copy all the root pointers into the super backup array.
1854  * this will bump the backup pointer by one when it is
1855  * done
1856  */
1857 static void backup_super_roots(struct btrfs_fs_info *info)
1858 {
1859         int next_backup;
1860         struct btrfs_root_backup *root_backup;
1861         int last_backup;
1862
1863         next_backup = info->backup_root_index;
1864         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1865                 BTRFS_NUM_BACKUP_ROOTS;
1866
1867         /*
1868          * just overwrite the last backup if we're at the same generation
1869          * this happens only at umount
1870          */
1871         root_backup = info->super_for_commit->super_roots + last_backup;
1872         if (btrfs_backup_tree_root_gen(root_backup) ==
1873             btrfs_header_generation(info->tree_root->node))
1874                 next_backup = last_backup;
1875
1876         root_backup = info->super_for_commit->super_roots + next_backup;
1877
1878         /*
1879          * make sure all of our padding and empty slots get zero filled
1880          * regardless of which ones we use today
1881          */
1882         memset(root_backup, 0, sizeof(*root_backup));
1883
1884         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1885
1886         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1887         btrfs_set_backup_tree_root_gen(root_backup,
1888                                btrfs_header_generation(info->tree_root->node));
1889
1890         btrfs_set_backup_tree_root_level(root_backup,
1891                                btrfs_header_level(info->tree_root->node));
1892
1893         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1894         btrfs_set_backup_chunk_root_gen(root_backup,
1895                                btrfs_header_generation(info->chunk_root->node));
1896         btrfs_set_backup_chunk_root_level(root_backup,
1897                                btrfs_header_level(info->chunk_root->node));
1898
1899         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1900         btrfs_set_backup_extent_root_gen(root_backup,
1901                                btrfs_header_generation(info->extent_root->node));
1902         btrfs_set_backup_extent_root_level(root_backup,
1903                                btrfs_header_level(info->extent_root->node));
1904
1905         /*
1906          * we might commit during log recovery, which happens before we set
1907          * the fs_root.  Make sure it is valid before we fill it in.
1908          */
1909         if (info->fs_root && info->fs_root->node) {
1910                 btrfs_set_backup_fs_root(root_backup,
1911                                          info->fs_root->node->start);
1912                 btrfs_set_backup_fs_root_gen(root_backup,
1913                                btrfs_header_generation(info->fs_root->node));
1914                 btrfs_set_backup_fs_root_level(root_backup,
1915                                btrfs_header_level(info->fs_root->node));
1916         }
1917
1918         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1919         btrfs_set_backup_dev_root_gen(root_backup,
1920                                btrfs_header_generation(info->dev_root->node));
1921         btrfs_set_backup_dev_root_level(root_backup,
1922                                        btrfs_header_level(info->dev_root->node));
1923
1924         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1925         btrfs_set_backup_csum_root_gen(root_backup,
1926                                btrfs_header_generation(info->csum_root->node));
1927         btrfs_set_backup_csum_root_level(root_backup,
1928                                btrfs_header_level(info->csum_root->node));
1929
1930         btrfs_set_backup_total_bytes(root_backup,
1931                              btrfs_super_total_bytes(info->super_copy));
1932         btrfs_set_backup_bytes_used(root_backup,
1933                              btrfs_super_bytes_used(info->super_copy));
1934         btrfs_set_backup_num_devices(root_backup,
1935                              btrfs_super_num_devices(info->super_copy));
1936
1937         /*
1938          * if we don't copy this out to the super_copy, it won't get remembered
1939          * for the next commit
1940          */
1941         memcpy(&info->super_copy->super_roots,
1942                &info->super_for_commit->super_roots,
1943                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1944 }
1945
1946 /*
1947  * this copies info out of the root backup array and back into
1948  * the in-memory super block.  It is meant to help iterate through
1949  * the array, so you send it the number of backups you've already
1950  * tried and the last backup index you used.
1951  *
1952  * this returns -1 when it has tried all the backups
1953  */
1954 static noinline int next_root_backup(struct btrfs_fs_info *info,
1955                                      struct btrfs_super_block *super,
1956                                      int *num_backups_tried, int *backup_index)
1957 {
1958         struct btrfs_root_backup *root_backup;
1959         int newest = *backup_index;
1960
1961         if (*num_backups_tried == 0) {
1962                 u64 gen = btrfs_super_generation(super);
1963
1964                 newest = find_newest_super_backup(info, gen);
1965                 if (newest == -1)
1966                         return -1;
1967
1968                 *backup_index = newest;
1969                 *num_backups_tried = 1;
1970         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1971                 /* we've tried all the backups, all done */
1972                 return -1;
1973         } else {
1974                 /* jump to the next oldest backup */
1975                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1976                         BTRFS_NUM_BACKUP_ROOTS;
1977                 *backup_index = newest;
1978                 *num_backups_tried += 1;
1979         }
1980         root_backup = super->super_roots + newest;
1981
1982         btrfs_set_super_generation(super,
1983                                    btrfs_backup_tree_root_gen(root_backup));
1984         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1985         btrfs_set_super_root_level(super,
1986                                    btrfs_backup_tree_root_level(root_backup));
1987         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1988
1989         /*
1990          * fixme: the total bytes and num_devices need to match or we should
1991          * need a fsck
1992          */
1993         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1994         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1995         return 0;
1996 }
1997
1998 /* helper to cleanup workers */
1999 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2000 {
2001         btrfs_stop_workers(&fs_info->generic_worker);
2002         btrfs_stop_workers(&fs_info->fixup_workers);
2003         btrfs_stop_workers(&fs_info->delalloc_workers);
2004         btrfs_stop_workers(&fs_info->workers);
2005         btrfs_stop_workers(&fs_info->endio_workers);
2006         btrfs_stop_workers(&fs_info->endio_meta_workers);
2007         btrfs_stop_workers(&fs_info->endio_raid56_workers);
2008         btrfs_stop_workers(&fs_info->rmw_workers);
2009         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2010         btrfs_stop_workers(&fs_info->endio_write_workers);
2011         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2012         btrfs_stop_workers(&fs_info->submit_workers);
2013         btrfs_stop_workers(&fs_info->delayed_workers);
2014         btrfs_stop_workers(&fs_info->caching_workers);
2015         btrfs_stop_workers(&fs_info->readahead_workers);
2016         btrfs_stop_workers(&fs_info->flush_workers);
2017         btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
2018 }
2019
2020 static void free_root_extent_buffers(struct btrfs_root *root)
2021 {
2022         if (root) {
2023                 free_extent_buffer(root->node);
2024                 free_extent_buffer(root->commit_root);
2025                 root->node = NULL;
2026                 root->commit_root = NULL;
2027         }
2028 }
2029
2030 /* helper to cleanup tree roots */
2031 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2032 {
2033         free_root_extent_buffers(info->tree_root);
2034
2035         free_root_extent_buffers(info->dev_root);
2036         free_root_extent_buffers(info->extent_root);
2037         free_root_extent_buffers(info->csum_root);
2038         free_root_extent_buffers(info->quota_root);
2039         free_root_extent_buffers(info->uuid_root);
2040         if (chunk_root)
2041                 free_root_extent_buffers(info->chunk_root);
2042 }
2043
2044 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2045 {
2046         int ret;
2047         struct btrfs_root *gang[8];
2048         int i;
2049
2050         while (!list_empty(&fs_info->dead_roots)) {
2051                 gang[0] = list_entry(fs_info->dead_roots.next,
2052                                      struct btrfs_root, root_list);
2053                 list_del(&gang[0]->root_list);
2054
2055                 if (gang[0]->in_radix) {
2056                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2057                 } else {
2058                         free_extent_buffer(gang[0]->node);
2059                         free_extent_buffer(gang[0]->commit_root);
2060                         btrfs_put_fs_root(gang[0]);
2061                 }
2062         }
2063
2064         while (1) {
2065                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2066                                              (void **)gang, 0,
2067                                              ARRAY_SIZE(gang));
2068                 if (!ret)
2069                         break;
2070                 for (i = 0; i < ret; i++)
2071                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2072         }
2073 }
2074
2075 int open_ctree(struct super_block *sb,
2076                struct btrfs_fs_devices *fs_devices,
2077                char *options)
2078 {
2079         u32 sectorsize;
2080         u32 nodesize;
2081         u32 leafsize;
2082         u32 blocksize;
2083         u32 stripesize;
2084         u64 generation;
2085         u64 features;
2086         struct btrfs_key location;
2087         struct buffer_head *bh;
2088         struct btrfs_super_block *disk_super;
2089         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2090         struct btrfs_root *tree_root;
2091         struct btrfs_root *extent_root;
2092         struct btrfs_root *csum_root;
2093         struct btrfs_root *chunk_root;
2094         struct btrfs_root *dev_root;
2095         struct btrfs_root *quota_root;
2096         struct btrfs_root *uuid_root;
2097         struct btrfs_root *log_tree_root;
2098         int ret;
2099         int err = -EINVAL;
2100         int num_backups_tried = 0;
2101         int backup_index = 0;
2102         bool create_uuid_tree;
2103         bool check_uuid_tree;
2104
2105         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2106         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2107         if (!tree_root || !chunk_root) {
2108                 err = -ENOMEM;
2109                 goto fail;
2110         }
2111
2112         ret = init_srcu_struct(&fs_info->subvol_srcu);
2113         if (ret) {
2114                 err = ret;
2115                 goto fail;
2116         }
2117
2118         ret = setup_bdi(fs_info, &fs_info->bdi);
2119         if (ret) {
2120                 err = ret;
2121                 goto fail_srcu;
2122         }
2123
2124         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2125         if (ret) {
2126                 err = ret;
2127                 goto fail_bdi;
2128         }
2129         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2130                                         (1 + ilog2(nr_cpu_ids));
2131
2132         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2133         if (ret) {
2134                 err = ret;
2135                 goto fail_dirty_metadata_bytes;
2136         }
2137
2138         fs_info->btree_inode = new_inode(sb);
2139         if (!fs_info->btree_inode) {
2140                 err = -ENOMEM;
2141                 goto fail_delalloc_bytes;
2142         }
2143
2144         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2145
2146         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2147         INIT_LIST_HEAD(&fs_info->trans_list);
2148         INIT_LIST_HEAD(&fs_info->dead_roots);
2149         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2150         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2151         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2152         spin_lock_init(&fs_info->delalloc_root_lock);
2153         spin_lock_init(&fs_info->trans_lock);
2154         spin_lock_init(&fs_info->fs_roots_radix_lock);
2155         spin_lock_init(&fs_info->delayed_iput_lock);
2156         spin_lock_init(&fs_info->defrag_inodes_lock);
2157         spin_lock_init(&fs_info->free_chunk_lock);
2158         spin_lock_init(&fs_info->tree_mod_seq_lock);
2159         spin_lock_init(&fs_info->super_lock);
2160         rwlock_init(&fs_info->tree_mod_log_lock);
2161         mutex_init(&fs_info->reloc_mutex);
2162         seqlock_init(&fs_info->profiles_lock);
2163
2164         init_completion(&fs_info->kobj_unregister);
2165         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2166         INIT_LIST_HEAD(&fs_info->space_info);
2167         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2168         btrfs_mapping_init(&fs_info->mapping_tree);
2169         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2170                              BTRFS_BLOCK_RSV_GLOBAL);
2171         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2172                              BTRFS_BLOCK_RSV_DELALLOC);
2173         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2174         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2175         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2176         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2177                              BTRFS_BLOCK_RSV_DELOPS);
2178         atomic_set(&fs_info->nr_async_submits, 0);
2179         atomic_set(&fs_info->async_delalloc_pages, 0);
2180         atomic_set(&fs_info->async_submit_draining, 0);
2181         atomic_set(&fs_info->nr_async_bios, 0);
2182         atomic_set(&fs_info->defrag_running, 0);
2183         atomic64_set(&fs_info->tree_mod_seq, 0);
2184         fs_info->sb = sb;
2185         fs_info->max_inline = 8192 * 1024;
2186         fs_info->metadata_ratio = 0;
2187         fs_info->defrag_inodes = RB_ROOT;
2188         fs_info->free_chunk_space = 0;
2189         fs_info->tree_mod_log = RB_ROOT;
2190         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2191
2192         /* readahead state */
2193         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2194         spin_lock_init(&fs_info->reada_lock);
2195
2196         fs_info->thread_pool_size = min_t(unsigned long,
2197                                           num_online_cpus() + 2, 8);
2198
2199         INIT_LIST_HEAD(&fs_info->ordered_roots);
2200         spin_lock_init(&fs_info->ordered_root_lock);
2201         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2202                                         GFP_NOFS);
2203         if (!fs_info->delayed_root) {
2204                 err = -ENOMEM;
2205                 goto fail_iput;
2206         }
2207         btrfs_init_delayed_root(fs_info->delayed_root);
2208
2209         mutex_init(&fs_info->scrub_lock);
2210         atomic_set(&fs_info->scrubs_running, 0);
2211         atomic_set(&fs_info->scrub_pause_req, 0);
2212         atomic_set(&fs_info->scrubs_paused, 0);
2213         atomic_set(&fs_info->scrub_cancel_req, 0);
2214         init_waitqueue_head(&fs_info->scrub_pause_wait);
2215         fs_info->scrub_workers_refcnt = 0;
2216 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2217         fs_info->check_integrity_print_mask = 0;
2218 #endif
2219
2220         spin_lock_init(&fs_info->balance_lock);
2221         mutex_init(&fs_info->balance_mutex);
2222         atomic_set(&fs_info->balance_running, 0);
2223         atomic_set(&fs_info->balance_pause_req, 0);
2224         atomic_set(&fs_info->balance_cancel_req, 0);
2225         fs_info->balance_ctl = NULL;
2226         init_waitqueue_head(&fs_info->balance_wait_q);
2227
2228         sb->s_blocksize = 4096;
2229         sb->s_blocksize_bits = blksize_bits(4096);
2230         sb->s_bdi = &fs_info->bdi;
2231
2232         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2233         set_nlink(fs_info->btree_inode, 1);
2234         /*
2235          * we set the i_size on the btree inode to the max possible int.
2236          * the real end of the address space is determined by all of
2237          * the devices in the system
2238          */
2239         fs_info->btree_inode->i_size = OFFSET_MAX;
2240         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2241         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2242
2243         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2244         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2245                              fs_info->btree_inode->i_mapping);
2246         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2247         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2248
2249         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2250
2251         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2252         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2253                sizeof(struct btrfs_key));
2254         set_bit(BTRFS_INODE_DUMMY,
2255                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2256         btrfs_insert_inode_hash(fs_info->btree_inode);
2257
2258         spin_lock_init(&fs_info->block_group_cache_lock);
2259         fs_info->block_group_cache_tree = RB_ROOT;
2260         fs_info->first_logical_byte = (u64)-1;
2261
2262         extent_io_tree_init(&fs_info->freed_extents[0],
2263                              fs_info->btree_inode->i_mapping);
2264         extent_io_tree_init(&fs_info->freed_extents[1],
2265                              fs_info->btree_inode->i_mapping);
2266         fs_info->pinned_extents = &fs_info->freed_extents[0];
2267         fs_info->do_barriers = 1;
2268
2269
2270         mutex_init(&fs_info->ordered_operations_mutex);
2271         mutex_init(&fs_info->ordered_extent_flush_mutex);
2272         mutex_init(&fs_info->tree_log_mutex);
2273         mutex_init(&fs_info->chunk_mutex);
2274         mutex_init(&fs_info->transaction_kthread_mutex);
2275         mutex_init(&fs_info->cleaner_mutex);
2276         mutex_init(&fs_info->volume_mutex);
2277         init_rwsem(&fs_info->extent_commit_sem);
2278         init_rwsem(&fs_info->cleanup_work_sem);
2279         init_rwsem(&fs_info->subvol_sem);
2280         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2281         fs_info->dev_replace.lock_owner = 0;
2282         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2283         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2284         mutex_init(&fs_info->dev_replace.lock_management_lock);
2285         mutex_init(&fs_info->dev_replace.lock);
2286
2287         spin_lock_init(&fs_info->qgroup_lock);
2288         mutex_init(&fs_info->qgroup_ioctl_lock);
2289         fs_info->qgroup_tree = RB_ROOT;
2290         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2291         fs_info->qgroup_seq = 1;
2292         fs_info->quota_enabled = 0;
2293         fs_info->pending_quota_state = 0;
2294         fs_info->qgroup_ulist = NULL;
2295         mutex_init(&fs_info->qgroup_rescan_lock);
2296
2297         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2298         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2299
2300         init_waitqueue_head(&fs_info->transaction_throttle);
2301         init_waitqueue_head(&fs_info->transaction_wait);
2302         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2303         init_waitqueue_head(&fs_info->async_submit_wait);
2304
2305         ret = btrfs_alloc_stripe_hash_table(fs_info);
2306         if (ret) {
2307                 err = ret;
2308                 goto fail_alloc;
2309         }
2310
2311         __setup_root(4096, 4096, 4096, 4096, tree_root,
2312                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2313
2314         invalidate_bdev(fs_devices->latest_bdev);
2315
2316         /*
2317          * Read super block and check the signature bytes only
2318          */
2319         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2320         if (!bh) {
2321                 err = -EINVAL;
2322                 goto fail_alloc;
2323         }
2324
2325         /*
2326          * We want to check superblock checksum, the type is stored inside.
2327          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2328          */
2329         if (btrfs_check_super_csum(bh->b_data)) {
2330                 printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2331                 err = -EINVAL;
2332                 goto fail_alloc;
2333         }
2334
2335         /*
2336          * super_copy is zeroed at allocation time and we never touch the
2337          * following bytes up to INFO_SIZE, the checksum is calculated from
2338          * the whole block of INFO_SIZE
2339          */
2340         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2341         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2342                sizeof(*fs_info->super_for_commit));
2343         brelse(bh);
2344
2345         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2346
2347         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2348         if (ret) {
2349                 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2350                 err = -EINVAL;
2351                 goto fail_alloc;
2352         }
2353
2354         disk_super = fs_info->super_copy;
2355         if (!btrfs_super_root(disk_super))
2356                 goto fail_alloc;
2357
2358         /* check FS state, whether FS is broken. */
2359         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2360                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2361
2362         /*
2363          * run through our array of backup supers and setup
2364          * our ring pointer to the oldest one
2365          */
2366         generation = btrfs_super_generation(disk_super);
2367         find_oldest_super_backup(fs_info, generation);
2368
2369         /*
2370          * In the long term, we'll store the compression type in the super
2371          * block, and it'll be used for per file compression control.
2372          */
2373         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2374
2375         ret = btrfs_parse_options(tree_root, options);
2376         if (ret) {
2377                 err = ret;
2378                 goto fail_alloc;
2379         }
2380
2381         features = btrfs_super_incompat_flags(disk_super) &
2382                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2383         if (features) {
2384                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2385                        "unsupported optional features (%Lx).\n",
2386                        features);
2387                 err = -EINVAL;
2388                 goto fail_alloc;
2389         }
2390
2391         if (btrfs_super_leafsize(disk_super) !=
2392             btrfs_super_nodesize(disk_super)) {
2393                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2394                        "blocksizes don't match.  node %d leaf %d\n",
2395                        btrfs_super_nodesize(disk_super),
2396                        btrfs_super_leafsize(disk_super));
2397                 err = -EINVAL;
2398                 goto fail_alloc;
2399         }
2400         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2401                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2402                        "blocksize (%d) was too large\n",
2403                        btrfs_super_leafsize(disk_super));
2404                 err = -EINVAL;
2405                 goto fail_alloc;
2406         }
2407
2408         features = btrfs_super_incompat_flags(disk_super);
2409         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2410         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2411                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2412
2413         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2414                 printk(KERN_ERR "btrfs: has skinny extents\n");
2415
2416         /*
2417          * flag our filesystem as having big metadata blocks if
2418          * they are bigger than the page size
2419          */
2420         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2421                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2422                         printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2423                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2424         }
2425
2426         nodesize = btrfs_super_nodesize(disk_super);
2427         leafsize = btrfs_super_leafsize(disk_super);
2428         sectorsize = btrfs_super_sectorsize(disk_super);
2429         stripesize = btrfs_super_stripesize(disk_super);
2430         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2431         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2432
2433         /*
2434          * mixed block groups end up with duplicate but slightly offset
2435          * extent buffers for the same range.  It leads to corruptions
2436          */
2437         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2438             (sectorsize != leafsize)) {
2439                 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2440                                 "are not allowed for mixed block groups on %s\n",
2441                                 sb->s_id);
2442                 goto fail_alloc;
2443         }
2444
2445         /*
2446          * Needn't use the lock because there is no other task which will
2447          * update the flag.
2448          */
2449         btrfs_set_super_incompat_flags(disk_super, features);
2450
2451         features = btrfs_super_compat_ro_flags(disk_super) &
2452                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2453         if (!(sb->s_flags & MS_RDONLY) && features) {
2454                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2455                        "unsupported option features (%Lx).\n",
2456                        features);
2457                 err = -EINVAL;
2458                 goto fail_alloc;
2459         }
2460
2461         btrfs_init_workers(&fs_info->generic_worker,
2462                            "genwork", 1, NULL);
2463
2464         btrfs_init_workers(&fs_info->workers, "worker",
2465                            fs_info->thread_pool_size,
2466                            &fs_info->generic_worker);
2467
2468         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2469                            fs_info->thread_pool_size, NULL);
2470
2471         btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2472                            fs_info->thread_pool_size, NULL);
2473
2474         btrfs_init_workers(&fs_info->submit_workers, "submit",
2475                            min_t(u64, fs_devices->num_devices,
2476                            fs_info->thread_pool_size), NULL);
2477
2478         btrfs_init_workers(&fs_info->caching_workers, "cache",
2479                            fs_info->thread_pool_size, NULL);
2480
2481         /* a higher idle thresh on the submit workers makes it much more
2482          * likely that bios will be send down in a sane order to the
2483          * devices
2484          */
2485         fs_info->submit_workers.idle_thresh = 64;
2486
2487         fs_info->workers.idle_thresh = 16;
2488         fs_info->workers.ordered = 1;
2489
2490         fs_info->delalloc_workers.idle_thresh = 2;
2491         fs_info->delalloc_workers.ordered = 1;
2492
2493         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2494                            &fs_info->generic_worker);
2495         btrfs_init_workers(&fs_info->endio_workers, "endio",
2496                            fs_info->thread_pool_size,
2497                            &fs_info->generic_worker);
2498         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2499                            fs_info->thread_pool_size,
2500                            &fs_info->generic_worker);
2501         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2502                            "endio-meta-write", fs_info->thread_pool_size,
2503                            &fs_info->generic_worker);
2504         btrfs_init_workers(&fs_info->endio_raid56_workers,
2505                            "endio-raid56", fs_info->thread_pool_size,
2506                            &fs_info->generic_worker);
2507         btrfs_init_workers(&fs_info->rmw_workers,
2508                            "rmw", fs_info->thread_pool_size,
2509                            &fs_info->generic_worker);
2510         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2511                            fs_info->thread_pool_size,
2512                            &fs_info->generic_worker);
2513         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2514                            1, &fs_info->generic_worker);
2515         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2516                            fs_info->thread_pool_size,
2517                            &fs_info->generic_worker);
2518         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2519                            fs_info->thread_pool_size,
2520                            &fs_info->generic_worker);
2521         btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2522                            &fs_info->generic_worker);
2523
2524         /*
2525          * endios are largely parallel and should have a very
2526          * low idle thresh
2527          */
2528         fs_info->endio_workers.idle_thresh = 4;
2529         fs_info->endio_meta_workers.idle_thresh = 4;
2530         fs_info->endio_raid56_workers.idle_thresh = 4;
2531         fs_info->rmw_workers.idle_thresh = 2;
2532
2533         fs_info->endio_write_workers.idle_thresh = 2;
2534         fs_info->endio_meta_write_workers.idle_thresh = 2;
2535         fs_info->readahead_workers.idle_thresh = 2;
2536
2537         /*
2538          * btrfs_start_workers can really only fail because of ENOMEM so just
2539          * return -ENOMEM if any of these fail.
2540          */
2541         ret = btrfs_start_workers(&fs_info->workers);
2542         ret |= btrfs_start_workers(&fs_info->generic_worker);
2543         ret |= btrfs_start_workers(&fs_info->submit_workers);
2544         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2545         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2546         ret |= btrfs_start_workers(&fs_info->endio_workers);
2547         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2548         ret |= btrfs_start_workers(&fs_info->rmw_workers);
2549         ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2550         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2551         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2552         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2553         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2554         ret |= btrfs_start_workers(&fs_info->caching_workers);
2555         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2556         ret |= btrfs_start_workers(&fs_info->flush_workers);
2557         ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2558         if (ret) {
2559                 err = -ENOMEM;
2560                 goto fail_sb_buffer;
2561         }
2562
2563         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2564         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2565                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2566
2567         tree_root->nodesize = nodesize;
2568         tree_root->leafsize = leafsize;
2569         tree_root->sectorsize = sectorsize;
2570         tree_root->stripesize = stripesize;
2571
2572         sb->s_blocksize = sectorsize;
2573         sb->s_blocksize_bits = blksize_bits(sectorsize);
2574
2575         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2576                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2577                 goto fail_sb_buffer;
2578         }
2579
2580         if (sectorsize != PAGE_SIZE) {
2581                 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2582                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2583                 goto fail_sb_buffer;
2584         }
2585
2586         mutex_lock(&fs_info->chunk_mutex);
2587         ret = btrfs_read_sys_array(tree_root);
2588         mutex_unlock(&fs_info->chunk_mutex);
2589         if (ret) {
2590                 printk(KERN_WARNING "btrfs: failed to read the system "
2591                        "array on %s\n", sb->s_id);
2592                 goto fail_sb_buffer;
2593         }
2594
2595         blocksize = btrfs_level_size(tree_root,
2596                                      btrfs_super_chunk_root_level(disk_super));
2597         generation = btrfs_super_chunk_root_generation(disk_super);
2598
2599         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2600                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2601
2602         chunk_root->node = read_tree_block(chunk_root,
2603                                            btrfs_super_chunk_root(disk_super),
2604                                            blocksize, generation);
2605         if (!chunk_root->node ||
2606             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2607                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2608                        sb->s_id);
2609                 goto fail_tree_roots;
2610         }
2611         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2612         chunk_root->commit_root = btrfs_root_node(chunk_root);
2613
2614         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2615            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2616
2617         ret = btrfs_read_chunk_tree(chunk_root);
2618         if (ret) {
2619                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2620                        sb->s_id);
2621                 goto fail_tree_roots;
2622         }
2623
2624         /*
2625          * keep the device that is marked to be the target device for the
2626          * dev_replace procedure
2627          */
2628         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2629
2630         if (!fs_devices->latest_bdev) {
2631                 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2632                        sb->s_id);
2633                 goto fail_tree_roots;
2634         }
2635
2636 retry_root_backup:
2637         blocksize = btrfs_level_size(tree_root,
2638                                      btrfs_super_root_level(disk_super));
2639         generation = btrfs_super_generation(disk_super);
2640
2641         tree_root->node = read_tree_block(tree_root,
2642                                           btrfs_super_root(disk_super),
2643                                           blocksize, generation);
2644         if (!tree_root->node ||
2645             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2646                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2647                        sb->s_id);
2648
2649                 goto recovery_tree_root;
2650         }
2651
2652         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2653         tree_root->commit_root = btrfs_root_node(tree_root);
2654         btrfs_set_root_refs(&tree_root->root_item, 1);
2655
2656         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2657         location.type = BTRFS_ROOT_ITEM_KEY;
2658         location.offset = 0;
2659
2660         extent_root = btrfs_read_tree_root(tree_root, &location);
2661         if (IS_ERR(extent_root)) {
2662                 ret = PTR_ERR(extent_root);
2663                 goto recovery_tree_root;
2664         }
2665         extent_root->track_dirty = 1;
2666         fs_info->extent_root = extent_root;
2667
2668         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2669         dev_root = btrfs_read_tree_root(tree_root, &location);
2670         if (IS_ERR(dev_root)) {
2671                 ret = PTR_ERR(dev_root);
2672                 goto recovery_tree_root;
2673         }
2674         dev_root->track_dirty = 1;
2675         fs_info->dev_root = dev_root;
2676         btrfs_init_devices_late(fs_info);
2677
2678         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2679         csum_root = btrfs_read_tree_root(tree_root, &location);
2680         if (IS_ERR(csum_root)) {
2681                 ret = PTR_ERR(csum_root);
2682                 goto recovery_tree_root;
2683         }
2684         csum_root->track_dirty = 1;
2685         fs_info->csum_root = csum_root;
2686
2687         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2688         quota_root = btrfs_read_tree_root(tree_root, &location);
2689         if (!IS_ERR(quota_root)) {
2690                 quota_root->track_dirty = 1;
2691                 fs_info->quota_enabled = 1;
2692                 fs_info->pending_quota_state = 1;
2693                 fs_info->quota_root = quota_root;
2694         }
2695
2696         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2697         uuid_root = btrfs_read_tree_root(tree_root, &location);
2698         if (IS_ERR(uuid_root)) {
2699                 ret = PTR_ERR(uuid_root);
2700                 if (ret != -ENOENT)
2701                         goto recovery_tree_root;
2702                 create_uuid_tree = true;
2703                 check_uuid_tree = false;
2704         } else {
2705                 uuid_root->track_dirty = 1;
2706                 fs_info->uuid_root = uuid_root;
2707                 create_uuid_tree = false;
2708                 check_uuid_tree =
2709                     generation != btrfs_super_uuid_tree_generation(disk_super);
2710         }
2711
2712         fs_info->generation = generation;
2713         fs_info->last_trans_committed = generation;
2714
2715         ret = btrfs_recover_balance(fs_info);
2716         if (ret) {
2717                 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2718                 goto fail_block_groups;
2719         }
2720
2721         ret = btrfs_init_dev_stats(fs_info);
2722         if (ret) {
2723                 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2724                        ret);
2725                 goto fail_block_groups;
2726         }
2727
2728         ret = btrfs_init_dev_replace(fs_info);
2729         if (ret) {
2730                 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2731                 goto fail_block_groups;
2732         }
2733
2734         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2735
2736         ret = btrfs_sysfs_add_one(fs_info);
2737         if (ret) {
2738                 pr_err("btrfs: failed to init sysfs interface: %d\n", ret);
2739                 goto fail_block_groups;
2740         }
2741
2742         ret = btrfs_init_space_info(fs_info);
2743         if (ret) {
2744                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2745                 goto fail_block_groups;
2746         }
2747
2748         ret = btrfs_read_block_groups(extent_root);
2749         if (ret) {
2750                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2751                 goto fail_block_groups;
2752         }
2753         fs_info->num_tolerated_disk_barrier_failures =
2754                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2755         if (fs_info->fs_devices->missing_devices >
2756              fs_info->num_tolerated_disk_barrier_failures &&
2757             !(sb->s_flags & MS_RDONLY)) {
2758                 printk(KERN_WARNING
2759                        "Btrfs: too many missing devices, writeable mount is not allowed\n");
2760                 goto fail_block_groups;
2761         }
2762
2763         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2764                                                "btrfs-cleaner");
2765         if (IS_ERR(fs_info->cleaner_kthread))
2766                 goto fail_block_groups;
2767
2768         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2769                                                    tree_root,
2770                                                    "btrfs-transaction");
2771         if (IS_ERR(fs_info->transaction_kthread))
2772                 goto fail_cleaner;
2773
2774         if (!btrfs_test_opt(tree_root, SSD) &&
2775             !btrfs_test_opt(tree_root, NOSSD) &&
2776             !fs_info->fs_devices->rotating) {
2777                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2778                        "mode\n");
2779                 btrfs_set_opt(fs_info->mount_opt, SSD);
2780         }
2781
2782 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2783         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2784                 ret = btrfsic_mount(tree_root, fs_devices,
2785                                     btrfs_test_opt(tree_root,
2786                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2787                                     1 : 0,
2788                                     fs_info->check_integrity_print_mask);
2789                 if (ret)
2790                         printk(KERN_WARNING "btrfs: failed to initialize"
2791                                " integrity check module %s\n", sb->s_id);
2792         }
2793 #endif
2794         ret = btrfs_read_qgroup_config(fs_info);
2795         if (ret)
2796                 goto fail_trans_kthread;
2797
2798         /* do not make disk changes in broken FS */
2799         if (btrfs_super_log_root(disk_super) != 0) {
2800                 u64 bytenr = btrfs_super_log_root(disk_super);
2801
2802                 if (fs_devices->rw_devices == 0) {
2803                         printk(KERN_WARNING "Btrfs log replay required "
2804                                "on RO media\n");
2805                         err = -EIO;
2806                         goto fail_qgroup;
2807                 }
2808                 blocksize =
2809                      btrfs_level_size(tree_root,
2810                                       btrfs_super_log_root_level(disk_super));
2811
2812                 log_tree_root = btrfs_alloc_root(fs_info);
2813                 if (!log_tree_root) {
2814                         err = -ENOMEM;
2815                         goto fail_qgroup;
2816                 }
2817
2818                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2819                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2820
2821                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2822                                                       blocksize,
2823                                                       generation + 1);
2824                 if (!log_tree_root->node ||
2825                     !extent_buffer_uptodate(log_tree_root->node)) {
2826                         printk(KERN_ERR "btrfs: failed to read log tree\n");
2827                         free_extent_buffer(log_tree_root->node);
2828                         kfree(log_tree_root);
2829                         goto fail_trans_kthread;
2830                 }
2831                 /* returns with log_tree_root freed on success */
2832                 ret = btrfs_recover_log_trees(log_tree_root);
2833                 if (ret) {
2834                         btrfs_error(tree_root->fs_info, ret,
2835                                     "Failed to recover log tree");
2836                         free_extent_buffer(log_tree_root->node);
2837                         kfree(log_tree_root);
2838                         goto fail_trans_kthread;
2839                 }
2840
2841                 if (sb->s_flags & MS_RDONLY) {
2842                         ret = btrfs_commit_super(tree_root);
2843                         if (ret)
2844                                 goto fail_trans_kthread;
2845                 }
2846         }
2847
2848         ret = btrfs_find_orphan_roots(tree_root);
2849         if (ret)
2850                 goto fail_trans_kthread;
2851
2852         if (!(sb->s_flags & MS_RDONLY)) {
2853                 ret = btrfs_cleanup_fs_roots(fs_info);
2854                 if (ret)
2855                         goto fail_trans_kthread;
2856
2857                 ret = btrfs_recover_relocation(tree_root);
2858                 if (ret < 0) {
2859                         printk(KERN_WARNING
2860                                "btrfs: failed to recover relocation\n");
2861                         err = -EINVAL;
2862                         goto fail_qgroup;
2863                 }
2864         }
2865
2866         location.objectid = BTRFS_FS_TREE_OBJECTID;
2867         location.type = BTRFS_ROOT_ITEM_KEY;
2868         location.offset = 0;
2869
2870         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2871         if (IS_ERR(fs_info->fs_root)) {
2872                 err = PTR_ERR(fs_info->fs_root);
2873                 goto fail_qgroup;
2874         }
2875
2876         if (sb->s_flags & MS_RDONLY)
2877                 return 0;
2878
2879         down_read(&fs_info->cleanup_work_sem);
2880         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2881             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2882                 up_read(&fs_info->cleanup_work_sem);
2883                 close_ctree(tree_root);
2884                 return ret;
2885         }
2886         up_read(&fs_info->cleanup_work_sem);
2887
2888         ret = btrfs_resume_balance_async(fs_info);
2889         if (ret) {
2890                 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2891                 close_ctree(tree_root);
2892                 return ret;
2893         }
2894
2895         ret = btrfs_resume_dev_replace_async(fs_info);
2896         if (ret) {
2897                 pr_warn("btrfs: failed to resume dev_replace\n");
2898                 close_ctree(tree_root);
2899                 return ret;
2900         }
2901
2902         btrfs_qgroup_rescan_resume(fs_info);
2903
2904         if (create_uuid_tree) {
2905                 pr_info("btrfs: creating UUID tree\n");
2906                 ret = btrfs_create_uuid_tree(fs_info);
2907                 if (ret) {
2908                         pr_warn("btrfs: failed to create the UUID tree %d\n",
2909                                 ret);
2910                         close_ctree(tree_root);
2911                         return ret;
2912                 }
2913         } else if (check_uuid_tree ||
2914                    btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2915                 pr_info("btrfs: checking UUID tree\n");
2916                 ret = btrfs_check_uuid_tree(fs_info);
2917                 if (ret) {
2918                         pr_warn("btrfs: failed to check the UUID tree %d\n",
2919                                 ret);
2920                         close_ctree(tree_root);
2921                         return ret;
2922                 }
2923         } else {
2924                 fs_info->update_uuid_tree_gen = 1;
2925         }
2926
2927         return 0;
2928
2929 fail_qgroup:
2930         btrfs_free_qgroup_config(fs_info);
2931 fail_trans_kthread:
2932         kthread_stop(fs_info->transaction_kthread);
2933         btrfs_cleanup_transaction(fs_info->tree_root);
2934         del_fs_roots(fs_info);
2935 fail_cleaner:
2936         kthread_stop(fs_info->cleaner_kthread);
2937
2938         /*
2939          * make sure we're done with the btree inode before we stop our
2940          * kthreads
2941          */
2942         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2943
2944 fail_block_groups:
2945         btrfs_put_block_group_cache(fs_info);
2946         btrfs_free_block_groups(fs_info);
2947
2948 fail_tree_roots:
2949         free_root_pointers(fs_info, 1);
2950         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2951
2952 fail_sb_buffer:
2953         btrfs_stop_all_workers(fs_info);
2954 fail_alloc:
2955 fail_iput:
2956         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2957
2958         iput(fs_info->btree_inode);
2959 fail_delalloc_bytes:
2960         percpu_counter_destroy(&fs_info->delalloc_bytes);
2961 fail_dirty_metadata_bytes:
2962         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2963 fail_bdi:
2964         bdi_destroy(&fs_info->bdi);
2965 fail_srcu:
2966         cleanup_srcu_struct(&fs_info->subvol_srcu);
2967 fail:
2968         btrfs_free_stripe_hash_table(fs_info);
2969         btrfs_close_devices(fs_info->fs_devices);
2970         return err;
2971
2972 recovery_tree_root:
2973         if (!btrfs_test_opt(tree_root, RECOVERY))
2974                 goto fail_tree_roots;
2975
2976         free_root_pointers(fs_info, 0);
2977
2978         /* don't use the log in recovery mode, it won't be valid */
2979         btrfs_set_super_log_root(disk_super, 0);
2980
2981         /* we can't trust the free space cache either */
2982         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2983
2984         ret = next_root_backup(fs_info, fs_info->super_copy,
2985                                &num_backups_tried, &backup_index);
2986         if (ret == -1)
2987                 goto fail_block_groups;
2988         goto retry_root_backup;
2989 }
2990
2991 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2992 {
2993         if (uptodate) {
2994                 set_buffer_uptodate(bh);
2995         } else {
2996                 struct btrfs_device *device = (struct btrfs_device *)
2997                         bh->b_private;
2998
2999                 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
3000                                           "I/O error on %s\n",
3001                                           rcu_str_deref(device->name));
3002                 /* note, we dont' set_buffer_write_io_error because we have
3003                  * our own ways of dealing with the IO errors
3004                  */
3005                 clear_buffer_uptodate(bh);
3006                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3007         }
3008         unlock_buffer(bh);
3009         put_bh(bh);
3010 }
3011
3012 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3013 {
3014         struct buffer_head *bh;
3015         struct buffer_head *latest = NULL;
3016         struct btrfs_super_block *super;
3017         int i;
3018         u64 transid = 0;
3019         u64 bytenr;
3020
3021         /* we would like to check all the supers, but that would make
3022          * a btrfs mount succeed after a mkfs from a different FS.
3023          * So, we need to add a special mount option to scan for
3024          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3025          */
3026         for (i = 0; i < 1; i++) {
3027                 bytenr = btrfs_sb_offset(i);
3028                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3029                                         i_size_read(bdev->bd_inode))
3030                         break;
3031                 bh = __bread(bdev, bytenr / 4096,
3032                                         BTRFS_SUPER_INFO_SIZE);
3033                 if (!bh)
3034                         continue;
3035
3036                 super = (struct btrfs_super_block *)bh->b_data;
3037                 if (btrfs_super_bytenr(super) != bytenr ||
3038                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3039                         brelse(bh);
3040                         continue;
3041                 }
3042
3043                 if (!latest || btrfs_super_generation(super) > transid) {
3044                         brelse(latest);
3045                         latest = bh;
3046                         transid = btrfs_super_generation(super);
3047                 } else {
3048                         brelse(bh);
3049                 }
3050         }
3051         return latest;
3052 }
3053
3054 /*
3055  * this should be called twice, once with wait == 0 and
3056  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3057  * we write are pinned.
3058  *
3059  * They are released when wait == 1 is done.
3060  * max_mirrors must be the same for both runs, and it indicates how
3061  * many supers on this one device should be written.
3062  *
3063  * max_mirrors == 0 means to write them all.
3064  */
3065 static int write_dev_supers(struct btrfs_device *device,
3066                             struct btrfs_super_block *sb,
3067                             int do_barriers, int wait, int max_mirrors)
3068 {
3069         struct buffer_head *bh;
3070         int i;
3071         int ret;
3072         int errors = 0;
3073         u32 crc;
3074         u64 bytenr;
3075
3076         if (max_mirrors == 0)
3077                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3078
3079         for (i = 0; i < max_mirrors; i++) {
3080                 bytenr = btrfs_sb_offset(i);
3081                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3082                         break;
3083
3084                 if (wait) {
3085                         bh = __find_get_block(device->bdev, bytenr / 4096,
3086                                               BTRFS_SUPER_INFO_SIZE);
3087                         if (!bh) {
3088                                 errors++;
3089                                 continue;
3090                         }
3091                         wait_on_buffer(bh);
3092                         if (!buffer_uptodate(bh))
3093                                 errors++;
3094
3095                         /* drop our reference */
3096                         brelse(bh);
3097
3098                         /* drop the reference from the wait == 0 run */
3099                         brelse(bh);
3100                         continue;
3101                 } else {
3102                         btrfs_set_super_bytenr(sb, bytenr);
3103
3104                         crc = ~(u32)0;
3105                         crc = btrfs_csum_data((char *)sb +
3106                                               BTRFS_CSUM_SIZE, crc,
3107                                               BTRFS_SUPER_INFO_SIZE -
3108                                               BTRFS_CSUM_SIZE);
3109                         btrfs_csum_final(crc, sb->csum);
3110
3111                         /*
3112                          * one reference for us, and we leave it for the
3113                          * caller
3114                          */
3115                         bh = __getblk(device->bdev, bytenr / 4096,
3116                                       BTRFS_SUPER_INFO_SIZE);
3117                         if (!bh) {
3118                                 printk(KERN_ERR "btrfs: couldn't get super "
3119                                        "buffer head for bytenr %Lu\n", bytenr);
3120                                 errors++;
3121                                 continue;
3122                         }
3123
3124                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3125
3126                         /* one reference for submit_bh */
3127                         get_bh(bh);
3128
3129                         set_buffer_uptodate(bh);
3130                         lock_buffer(bh);
3131                         bh->b_end_io = btrfs_end_buffer_write_sync;
3132                         bh->b_private = device;
3133                 }
3134
3135                 /*
3136                  * we fua the first super.  The others we allow
3137                  * to go down lazy.
3138                  */
3139                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3140                 if (ret)
3141                         errors++;
3142         }
3143         return errors < i ? 0 : -1;
3144 }
3145
3146 /*
3147  * endio for the write_dev_flush, this will wake anyone waiting
3148  * for the barrier when it is done
3149  */
3150 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3151 {
3152         if (err) {
3153                 if (err == -EOPNOTSUPP)
3154                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3155                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3156         }
3157         if (bio->bi_private)
3158                 complete(bio->bi_private);
3159         bio_put(bio);
3160 }
3161
3162 /*
3163  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3164  * sent down.  With wait == 1, it waits for the previous flush.
3165  *
3166  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3167  * capable
3168  */
3169 static int write_dev_flush(struct btrfs_device *device, int wait)
3170 {
3171         struct bio *bio;
3172         int ret = 0;
3173
3174         if (device->nobarriers)
3175                 return 0;
3176
3177         if (wait) {
3178                 bio = device->flush_bio;
3179                 if (!bio)
3180                         return 0;
3181
3182                 wait_for_completion(&device->flush_wait);
3183
3184                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3185                         printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3186                                       rcu_str_deref(device->name));
3187                         device->nobarriers = 1;
3188                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3189                         ret = -EIO;
3190                         btrfs_dev_stat_inc_and_print(device,
3191                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3192                 }
3193
3194                 /* drop the reference from the wait == 0 run */
3195                 bio_put(bio);
3196                 device->flush_bio = NULL;
3197
3198                 return ret;
3199         }
3200
3201         /*
3202          * one reference for us, and we leave it for the
3203          * caller
3204          */
3205         device->flush_bio = NULL;
3206         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3207         if (!bio)
3208                 return -ENOMEM;
3209
3210         bio->bi_end_io = btrfs_end_empty_barrier;
3211         bio->bi_bdev = device->bdev;
3212         init_completion(&device->flush_wait);
3213         bio->bi_private = &device->flush_wait;
3214         device->flush_bio = bio;
3215
3216         bio_get(bio);
3217         btrfsic_submit_bio(WRITE_FLUSH, bio);
3218
3219         return 0;
3220 }
3221
3222 /*
3223  * send an empty flush down to each device in parallel,
3224  * then wait for them
3225  */
3226 static int barrier_all_devices(struct btrfs_fs_info *info)
3227 {
3228         struct list_head *head;
3229         struct btrfs_device *dev;
3230         int errors_send = 0;
3231         int errors_wait = 0;
3232         int ret;
3233
3234         /* send down all the barriers */
3235         head = &info->fs_devices->devices;
3236         list_for_each_entry_rcu(dev, head, dev_list) {
3237                 if (!dev->bdev) {
3238                         errors_send++;
3239                         continue;
3240                 }
3241                 if (!dev->in_fs_metadata || !dev->writeable)
3242                         continue;
3243
3244                 ret = write_dev_flush(dev, 0);
3245                 if (ret)
3246                         errors_send++;
3247         }
3248
3249         /* wait for all the barriers */
3250         list_for_each_entry_rcu(dev, head, dev_list) {
3251                 if (!dev->bdev) {
3252                         errors_wait++;
3253                         continue;
3254                 }
3255                 if (!dev->in_fs_metadata || !dev->writeable)
3256                         continue;
3257
3258                 ret = write_dev_flush(dev, 1);
3259                 if (ret)
3260                         errors_wait++;
3261         }
3262         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3263             errors_wait > info->num_tolerated_disk_barrier_failures)
3264                 return -EIO;
3265         return 0;
3266 }
3267
3268 int btrfs_calc_num_tolerated_disk_barrier_failures(
3269         struct btrfs_fs_info *fs_info)
3270 {
3271         struct btrfs_ioctl_space_info space;
3272         struct btrfs_space_info *sinfo;
3273         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3274                        BTRFS_BLOCK_GROUP_SYSTEM,
3275                        BTRFS_BLOCK_GROUP_METADATA,
3276                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3277         int num_types = 4;
3278         int i;
3279         int c;
3280         int num_tolerated_disk_barrier_failures =
3281                 (int)fs_info->fs_devices->num_devices;
3282
3283         for (i = 0; i < num_types; i++) {
3284                 struct btrfs_space_info *tmp;
3285
3286                 sinfo = NULL;
3287                 rcu_read_lock();
3288                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3289                         if (tmp->flags == types[i]) {
3290                                 sinfo = tmp;
3291                                 break;
3292                         }
3293                 }
3294                 rcu_read_unlock();
3295
3296                 if (!sinfo)
3297                         continue;
3298
3299                 down_read(&sinfo->groups_sem);
3300                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3301                         if (!list_empty(&sinfo->block_groups[c])) {
3302                                 u64 flags;
3303
3304                                 btrfs_get_block_group_info(
3305                                         &sinfo->block_groups[c], &space);
3306                                 if (space.total_bytes == 0 ||
3307                                     space.used_bytes == 0)
3308                                         continue;
3309                                 flags = space.flags;
3310                                 /*
3311                                  * return
3312                                  * 0: if dup, single or RAID0 is configured for
3313                                  *    any of metadata, system or data, else
3314                                  * 1: if RAID5 is configured, or if RAID1 or
3315                                  *    RAID10 is configured and only two mirrors
3316                                  *    are used, else
3317                                  * 2: if RAID6 is configured, else
3318                                  * num_mirrors - 1: if RAID1 or RAID10 is
3319                                  *                  configured and more than
3320                                  *                  2 mirrors are used.
3321                                  */
3322                                 if (num_tolerated_disk_barrier_failures > 0 &&
3323                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3324                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3325                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3326                                       == 0)))
3327                                         num_tolerated_disk_barrier_failures = 0;
3328                                 else if (num_tolerated_disk_barrier_failures > 1) {
3329                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3330                                             BTRFS_BLOCK_GROUP_RAID5 |
3331                                             BTRFS_BLOCK_GROUP_RAID10)) {
3332                                                 num_tolerated_disk_barrier_failures = 1;
3333                                         } else if (flags &
3334                                                    BTRFS_BLOCK_GROUP_RAID6) {
3335                                                 num_tolerated_disk_barrier_failures = 2;
3336                                         }
3337                                 }
3338                         }
3339                 }
3340                 up_read(&sinfo->groups_sem);
3341         }
3342
3343         return num_tolerated_disk_barrier_failures;
3344 }
3345
3346 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3347 {
3348         struct list_head *head;
3349         struct btrfs_device *dev;
3350         struct btrfs_super_block *sb;
3351         struct btrfs_dev_item *dev_item;
3352         int ret;
3353         int do_barriers;
3354         int max_errors;
3355         int total_errors = 0;
3356         u64 flags;
3357
3358         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3359         backup_super_roots(root->fs_info);
3360
3361         sb = root->fs_info->super_for_commit;
3362         dev_item = &sb->dev_item;
3363
3364         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3365         head = &root->fs_info->fs_devices->devices;
3366         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3367
3368         if (do_barriers) {
3369                 ret = barrier_all_devices(root->fs_info);
3370                 if (ret) {
3371                         mutex_unlock(
3372                                 &root->fs_info->fs_devices->device_list_mutex);
3373                         btrfs_error(root->fs_info, ret,
3374                                     "errors while submitting device barriers.");
3375                         return ret;
3376                 }
3377         }
3378
3379         list_for_each_entry_rcu(dev, head, dev_list) {
3380                 if (!dev->bdev) {
3381                         total_errors++;
3382                         continue;
3383                 }
3384                 if (!dev->in_fs_metadata || !dev->writeable)
3385                         continue;
3386
3387                 btrfs_set_stack_device_generation(dev_item, 0);
3388                 btrfs_set_stack_device_type(dev_item, dev->type);
3389                 btrfs_set_stack_device_id(dev_item, dev->devid);
3390                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3391                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3392                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3393                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3394                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3395                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3396                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3397
3398                 flags = btrfs_super_flags(sb);
3399                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3400
3401                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3402                 if (ret)
3403                         total_errors++;
3404         }
3405         if (total_errors > max_errors) {
3406                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3407                        total_errors);
3408                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3409
3410                 /* FUA is masked off if unsupported and can't be the reason */
3411                 btrfs_error(root->fs_info, -EIO,
3412                             "%d errors while writing supers", total_errors);
3413                 return -EIO;
3414         }
3415
3416         total_errors = 0;
3417         list_for_each_entry_rcu(dev, head, dev_list) {
3418                 if (!dev->bdev)
3419                         continue;
3420                 if (!dev->in_fs_metadata || !dev->writeable)
3421                         continue;
3422
3423                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3424                 if (ret)
3425                         total_errors++;
3426         }
3427         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3428         if (total_errors > max_errors) {
3429                 btrfs_error(root->fs_info, -EIO,
3430                             "%d errors while writing supers", total_errors);
3431                 return -EIO;
3432         }
3433         return 0;
3434 }
3435
3436 int write_ctree_super(struct btrfs_trans_handle *trans,
3437                       struct btrfs_root *root, int max_mirrors)
3438 {
3439         return write_all_supers(root, max_mirrors);
3440 }
3441
3442 /* Drop a fs root from the radix tree and free it. */
3443 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3444                                   struct btrfs_root *root)
3445 {
3446         spin_lock(&fs_info->fs_roots_radix_lock);
3447         radix_tree_delete(&fs_info->fs_roots_radix,
3448                           (unsigned long)root->root_key.objectid);
3449         spin_unlock(&fs_info->fs_roots_radix_lock);
3450
3451         if (btrfs_root_refs(&root->root_item) == 0)
3452                 synchronize_srcu(&fs_info->subvol_srcu);
3453
3454         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3455                 btrfs_free_log(NULL, root);
3456                 btrfs_free_log_root_tree(NULL, fs_info);
3457         }
3458
3459         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3460         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3461         free_fs_root(root);
3462 }
3463
3464 static void free_fs_root(struct btrfs_root *root)
3465 {
3466         iput(root->cache_inode);
3467         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3468         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3469         root->orphan_block_rsv = NULL;
3470         if (root->anon_dev)
3471                 free_anon_bdev(root->anon_dev);
3472         free_extent_buffer(root->node);
3473         free_extent_buffer(root->commit_root);
3474         kfree(root->free_ino_ctl);
3475         kfree(root->free_ino_pinned);
3476         kfree(root->name);
3477         btrfs_put_fs_root(root);
3478 }
3479
3480 void btrfs_free_fs_root(struct btrfs_root *root)
3481 {
3482         free_fs_root(root);
3483 }
3484
3485 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3486 {
3487         u64 root_objectid = 0;
3488         struct btrfs_root *gang[8];
3489         int i;
3490         int ret;
3491
3492         while (1) {
3493                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3494                                              (void **)gang, root_objectid,
3495                                              ARRAY_SIZE(gang));
3496                 if (!ret)
3497                         break;
3498
3499                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3500                 for (i = 0; i < ret; i++) {
3501                         int err;
3502
3503                         root_objectid = gang[i]->root_key.objectid;
3504                         err = btrfs_orphan_cleanup(gang[i]);
3505                         if (err)
3506                                 return err;
3507                 }
3508                 root_objectid++;
3509         }
3510         return 0;
3511 }
3512
3513 int btrfs_commit_super(struct btrfs_root *root)
3514 {
3515         struct btrfs_trans_handle *trans;
3516
3517         mutex_lock(&root->fs_info->cleaner_mutex);
3518         btrfs_run_delayed_iputs(root);
3519         mutex_unlock(&root->fs_info->cleaner_mutex);
3520         wake_up_process(root->fs_info->cleaner_kthread);
3521
3522         /* wait until ongoing cleanup work done */
3523         down_write(&root->fs_info->cleanup_work_sem);
3524         up_write(&root->fs_info->cleanup_work_sem);
3525
3526         trans = btrfs_join_transaction(root);
3527         if (IS_ERR(trans))
3528                 return PTR_ERR(trans);
3529         return btrfs_commit_transaction(trans, root);
3530 }
3531
3532 int close_ctree(struct btrfs_root *root)
3533 {
3534         struct btrfs_fs_info *fs_info = root->fs_info;
3535         int ret;
3536
3537         fs_info->closing = 1;
3538         smp_mb();
3539
3540         /* wait for the uuid_scan task to finish */
3541         down(&fs_info->uuid_tree_rescan_sem);
3542         /* avoid complains from lockdep et al., set sem back to initial state */
3543         up(&fs_info->uuid_tree_rescan_sem);
3544
3545         /* pause restriper - we want to resume on mount */
3546         btrfs_pause_balance(fs_info);
3547
3548         btrfs_dev_replace_suspend_for_unmount(fs_info);
3549
3550         btrfs_scrub_cancel(fs_info);
3551
3552         /* wait for any defraggers to finish */
3553         wait_event(fs_info->transaction_wait,
3554                    (atomic_read(&fs_info->defrag_running) == 0));
3555
3556         /* clear out the rbtree of defraggable inodes */
3557         btrfs_cleanup_defrag_inodes(fs_info);
3558
3559         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3560                 ret = btrfs_commit_super(root);
3561                 if (ret)
3562                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3563         }
3564
3565         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3566                 btrfs_error_commit_super(root);
3567
3568         btrfs_put_block_group_cache(fs_info);
3569
3570         kthread_stop(fs_info->transaction_kthread);
3571         kthread_stop(fs_info->cleaner_kthread);
3572
3573         fs_info->closing = 2;
3574         smp_mb();
3575
3576         btrfs_free_qgroup_config(root->fs_info);
3577
3578         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3579                 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3580                        percpu_counter_sum(&fs_info->delalloc_bytes));
3581         }
3582
3583         btrfs_sysfs_remove_one(fs_info);
3584
3585         del_fs_roots(fs_info);
3586
3587         btrfs_free_block_groups(fs_info);
3588
3589         btrfs_stop_all_workers(fs_info);
3590
3591         free_root_pointers(fs_info, 1);
3592
3593         iput(fs_info->btree_inode);
3594
3595 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3596         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3597                 btrfsic_unmount(root, fs_info->fs_devices);
3598 #endif
3599
3600         btrfs_close_devices(fs_info->fs_devices);
3601         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3602
3603         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3604         percpu_counter_destroy(&fs_info->delalloc_bytes);
3605         bdi_destroy(&fs_info->bdi);
3606         cleanup_srcu_struct(&fs_info->subvol_srcu);
3607
3608         btrfs_free_stripe_hash_table(fs_info);
3609
3610         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3611         root->orphan_block_rsv = NULL;
3612
3613         return 0;
3614 }
3615
3616 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3617                           int atomic)
3618 {
3619         int ret;
3620         struct inode *btree_inode = buf->pages[0]->mapping->host;
3621
3622         ret = extent_buffer_uptodate(buf);
3623         if (!ret)
3624                 return ret;
3625
3626         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3627                                     parent_transid, atomic);
3628         if (ret == -EAGAIN)
3629                 return ret;
3630         return !ret;
3631 }
3632
3633 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3634 {
3635         return set_extent_buffer_uptodate(buf);
3636 }
3637
3638 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3639 {
3640         struct btrfs_root *root;
3641         u64 transid = btrfs_header_generation(buf);
3642         int was_dirty;
3643
3644 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3645         /*
3646          * This is a fast path so only do this check if we have sanity tests
3647          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3648          * outside of the sanity tests.
3649          */
3650         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3651                 return;
3652 #endif
3653         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3654         btrfs_assert_tree_locked(buf);
3655         if (transid != root->fs_info->generation)
3656                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3657                        "found %llu running %llu\n",
3658                         buf->start, transid, root->fs_info->generation);
3659         was_dirty = set_extent_buffer_dirty(buf);
3660         if (!was_dirty)
3661                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3662                                      buf->len,
3663                                      root->fs_info->dirty_metadata_batch);
3664 }
3665
3666 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3667                                         int flush_delayed)
3668 {
3669         /*
3670          * looks as though older kernels can get into trouble with
3671          * this code, they end up stuck in balance_dirty_pages forever
3672          */
3673         int ret;
3674
3675         if (current->flags & PF_MEMALLOC)
3676                 return;
3677
3678         if (flush_delayed)
3679                 btrfs_balance_delayed_items(root);
3680
3681         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3682                                      BTRFS_DIRTY_METADATA_THRESH);
3683         if (ret > 0) {
3684                 balance_dirty_pages_ratelimited(
3685                                    root->fs_info->btree_inode->i_mapping);
3686         }
3687         return;
3688 }
3689
3690 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3691 {
3692         __btrfs_btree_balance_dirty(root, 1);
3693 }
3694
3695 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3696 {
3697         __btrfs_btree_balance_dirty(root, 0);
3698 }
3699
3700 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3701 {
3702         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3703         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3704 }
3705
3706 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3707                               int read_only)
3708 {
3709         /*
3710          * Placeholder for checks
3711          */
3712         return 0;
3713 }
3714
3715 static void btrfs_error_commit_super(struct btrfs_root *root)
3716 {
3717         mutex_lock(&root->fs_info->cleaner_mutex);
3718         btrfs_run_delayed_iputs(root);
3719         mutex_unlock(&root->fs_info->cleaner_mutex);
3720
3721         down_write(&root->fs_info->cleanup_work_sem);
3722         up_write(&root->fs_info->cleanup_work_sem);
3723
3724         /* cleanup FS via transaction */
3725         btrfs_cleanup_transaction(root);
3726 }
3727
3728 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3729                                              struct btrfs_root *root)
3730 {
3731         struct btrfs_inode *btrfs_inode;
3732         struct list_head splice;
3733
3734         INIT_LIST_HEAD(&splice);
3735
3736         mutex_lock(&root->fs_info->ordered_operations_mutex);
3737         spin_lock(&root->fs_info->ordered_root_lock);
3738
3739         list_splice_init(&t->ordered_operations, &splice);
3740         while (!list_empty(&splice)) {
3741                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3742                                          ordered_operations);
3743
3744                 list_del_init(&btrfs_inode->ordered_operations);
3745                 spin_unlock(&root->fs_info->ordered_root_lock);
3746
3747                 btrfs_invalidate_inodes(btrfs_inode->root);
3748
3749                 spin_lock(&root->fs_info->ordered_root_lock);
3750         }
3751
3752         spin_unlock(&root->fs_info->ordered_root_lock);
3753         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3754 }
3755
3756 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3757 {
3758         struct btrfs_ordered_extent *ordered;
3759
3760         spin_lock(&root->ordered_extent_lock);
3761         /*
3762          * This will just short circuit the ordered completion stuff which will
3763          * make sure the ordered extent gets properly cleaned up.
3764          */
3765         list_for_each_entry(ordered, &root->ordered_extents,
3766                             root_extent_list)
3767                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3768         spin_unlock(&root->ordered_extent_lock);
3769 }
3770
3771 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3772 {
3773         struct btrfs_root *root;
3774         struct list_head splice;
3775
3776         INIT_LIST_HEAD(&splice);
3777
3778         spin_lock(&fs_info->ordered_root_lock);
3779         list_splice_init(&fs_info->ordered_roots, &splice);
3780         while (!list_empty(&splice)) {
3781                 root = list_first_entry(&splice, struct btrfs_root,
3782                                         ordered_root);
3783                 list_move_tail(&root->ordered_root,
3784                                &fs_info->ordered_roots);
3785
3786                 btrfs_destroy_ordered_extents(root);
3787
3788                 cond_resched_lock(&fs_info->ordered_root_lock);
3789         }
3790         spin_unlock(&fs_info->ordered_root_lock);
3791 }
3792
3793 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3794                                       struct btrfs_root *root)
3795 {
3796         struct rb_node *node;
3797         struct btrfs_delayed_ref_root *delayed_refs;
3798         struct btrfs_delayed_ref_node *ref;
3799         int ret = 0;
3800
3801         delayed_refs = &trans->delayed_refs;
3802
3803         spin_lock(&delayed_refs->lock);
3804         if (delayed_refs->num_entries == 0) {
3805                 spin_unlock(&delayed_refs->lock);
3806                 printk(KERN_INFO "delayed_refs has NO entry\n");
3807                 return ret;
3808         }
3809
3810         while ((node = rb_first(&delayed_refs->root)) != NULL) {
3811                 struct btrfs_delayed_ref_head *head = NULL;
3812                 bool pin_bytes = false;
3813
3814                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3815                 atomic_set(&ref->refs, 1);
3816                 if (btrfs_delayed_ref_is_head(ref)) {
3817
3818                         head = btrfs_delayed_node_to_head(ref);
3819                         if (!mutex_trylock(&head->mutex)) {
3820                                 atomic_inc(&ref->refs);
3821                                 spin_unlock(&delayed_refs->lock);
3822
3823                                 /* Need to wait for the delayed ref to run */
3824                                 mutex_lock(&head->mutex);
3825                                 mutex_unlock(&head->mutex);
3826                                 btrfs_put_delayed_ref(ref);
3827
3828                                 spin_lock(&delayed_refs->lock);
3829                                 continue;
3830                         }
3831
3832                         if (head->must_insert_reserved)
3833                                 pin_bytes = true;
3834                         btrfs_free_delayed_extent_op(head->extent_op);
3835                         delayed_refs->num_heads--;
3836                         if (list_empty(&head->cluster))
3837                                 delayed_refs->num_heads_ready--;
3838                         list_del_init(&head->cluster);
3839                 }
3840
3841                 ref->in_tree = 0;
3842                 rb_erase(&ref->rb_node, &delayed_refs->root);
3843                 if (head)
3844                         rb_erase(&head->href_node, &delayed_refs->href_root);
3845
3846                 delayed_refs->num_entries--;
3847                 spin_unlock(&delayed_refs->lock);
3848                 if (head) {
3849                         if (pin_bytes)
3850                                 btrfs_pin_extent(root, ref->bytenr,
3851                                                  ref->num_bytes, 1);
3852                         mutex_unlock(&head->mutex);
3853                 }
3854                 btrfs_put_delayed_ref(ref);
3855
3856                 cond_resched();
3857                 spin_lock(&delayed_refs->lock);
3858         }
3859
3860         spin_unlock(&delayed_refs->lock);
3861
3862         return ret;
3863 }
3864
3865 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3866 {
3867         struct btrfs_inode *btrfs_inode;
3868         struct list_head splice;
3869
3870         INIT_LIST_HEAD(&splice);
3871
3872         spin_lock(&root->delalloc_lock);
3873         list_splice_init(&root->delalloc_inodes, &splice);
3874
3875         while (!list_empty(&splice)) {
3876                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3877                                                delalloc_inodes);
3878
3879                 list_del_init(&btrfs_inode->delalloc_inodes);
3880                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3881                           &btrfs_inode->runtime_flags);
3882                 spin_unlock(&root->delalloc_lock);
3883
3884                 btrfs_invalidate_inodes(btrfs_inode->root);
3885
3886                 spin_lock(&root->delalloc_lock);
3887         }
3888
3889         spin_unlock(&root->delalloc_lock);
3890 }
3891
3892 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3893 {
3894         struct btrfs_root *root;
3895         struct list_head splice;
3896
3897         INIT_LIST_HEAD(&splice);
3898
3899         spin_lock(&fs_info->delalloc_root_lock);
3900         list_splice_init(&fs_info->delalloc_roots, &splice);
3901         while (!list_empty(&splice)) {
3902                 root = list_first_entry(&splice, struct btrfs_root,
3903                                          delalloc_root);
3904                 list_del_init(&root->delalloc_root);
3905                 root = btrfs_grab_fs_root(root);
3906                 BUG_ON(!root);
3907                 spin_unlock(&fs_info->delalloc_root_lock);
3908
3909                 btrfs_destroy_delalloc_inodes(root);
3910                 btrfs_put_fs_root(root);
3911
3912                 spin_lock(&fs_info->delalloc_root_lock);
3913         }
3914         spin_unlock(&fs_info->delalloc_root_lock);
3915 }
3916
3917 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3918                                         struct extent_io_tree *dirty_pages,
3919                                         int mark)
3920 {
3921         int ret;
3922         struct extent_buffer *eb;
3923         u64 start = 0;
3924         u64 end;
3925
3926         while (1) {
3927                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3928                                             mark, NULL);
3929                 if (ret)
3930                         break;
3931
3932                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3933                 while (start <= end) {
3934                         eb = btrfs_find_tree_block(root, start,
3935                                                    root->leafsize);
3936                         start += root->leafsize;
3937                         if (!eb)
3938                                 continue;
3939                         wait_on_extent_buffer_writeback(eb);
3940
3941                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3942                                                &eb->bflags))
3943                                 clear_extent_buffer_dirty(eb);
3944                         free_extent_buffer_stale(eb);
3945                 }
3946         }
3947
3948         return ret;
3949 }
3950
3951 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3952                                        struct extent_io_tree *pinned_extents)
3953 {
3954         struct extent_io_tree *unpin;
3955         u64 start;
3956         u64 end;
3957         int ret;
3958         bool loop = true;
3959
3960         unpin = pinned_extents;
3961 again:
3962         while (1) {
3963                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3964                                             EXTENT_DIRTY, NULL);
3965                 if (ret)
3966                         break;
3967
3968                 /* opt_discard */
3969                 if (btrfs_test_opt(root, DISCARD))
3970                         ret = btrfs_error_discard_extent(root, start,
3971                                                          end + 1 - start,
3972                                                          NULL);
3973
3974                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3975                 btrfs_error_unpin_extent_range(root, start, end);
3976                 cond_resched();
3977         }
3978
3979         if (loop) {
3980                 if (unpin == &root->fs_info->freed_extents[0])
3981                         unpin = &root->fs_info->freed_extents[1];
3982                 else
3983                         unpin = &root->fs_info->freed_extents[0];
3984                 loop = false;
3985                 goto again;
3986         }
3987
3988         return 0;
3989 }
3990
3991 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3992                                    struct btrfs_root *root)
3993 {
3994         btrfs_destroy_ordered_operations(cur_trans, root);
3995
3996         btrfs_destroy_delayed_refs(cur_trans, root);
3997
3998         cur_trans->state = TRANS_STATE_COMMIT_START;
3999         wake_up(&root->fs_info->transaction_blocked_wait);
4000
4001         cur_trans->state = TRANS_STATE_UNBLOCKED;
4002         wake_up(&root->fs_info->transaction_wait);
4003
4004         btrfs_destroy_delayed_inodes(root);
4005         btrfs_assert_delayed_root_empty(root);
4006
4007         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4008                                      EXTENT_DIRTY);
4009         btrfs_destroy_pinned_extent(root,
4010                                     root->fs_info->pinned_extents);
4011
4012         cur_trans->state =TRANS_STATE_COMPLETED;
4013         wake_up(&cur_trans->commit_wait);
4014
4015         /*
4016         memset(cur_trans, 0, sizeof(*cur_trans));
4017         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4018         */
4019 }
4020
4021 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4022 {
4023         struct btrfs_transaction *t;
4024
4025         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4026
4027         spin_lock(&root->fs_info->trans_lock);
4028         while (!list_empty(&root->fs_info->trans_list)) {
4029                 t = list_first_entry(&root->fs_info->trans_list,
4030                                      struct btrfs_transaction, list);
4031                 if (t->state >= TRANS_STATE_COMMIT_START) {
4032                         atomic_inc(&t->use_count);
4033                         spin_unlock(&root->fs_info->trans_lock);
4034                         btrfs_wait_for_commit(root, t->transid);
4035                         btrfs_put_transaction(t);
4036                         spin_lock(&root->fs_info->trans_lock);
4037                         continue;
4038                 }
4039                 if (t == root->fs_info->running_transaction) {
4040                         t->state = TRANS_STATE_COMMIT_DOING;
4041                         spin_unlock(&root->fs_info->trans_lock);
4042                         /*
4043                          * We wait for 0 num_writers since we don't hold a trans
4044                          * handle open currently for this transaction.
4045                          */
4046                         wait_event(t->writer_wait,
4047                                    atomic_read(&t->num_writers) == 0);
4048                 } else {
4049                         spin_unlock(&root->fs_info->trans_lock);
4050                 }
4051                 btrfs_cleanup_one_transaction(t, root);
4052
4053                 spin_lock(&root->fs_info->trans_lock);
4054                 if (t == root->fs_info->running_transaction)
4055                         root->fs_info->running_transaction = NULL;
4056                 list_del_init(&t->list);
4057                 spin_unlock(&root->fs_info->trans_lock);
4058
4059                 btrfs_put_transaction(t);
4060                 trace_btrfs_transaction_commit(root);
4061                 spin_lock(&root->fs_info->trans_lock);
4062         }
4063         spin_unlock(&root->fs_info->trans_lock);
4064         btrfs_destroy_all_ordered_extents(root->fs_info);
4065         btrfs_destroy_delayed_inodes(root);
4066         btrfs_assert_delayed_root_empty(root);
4067         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4068         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4069         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4070
4071         return 0;
4072 }
4073
4074 static struct extent_io_ops btree_extent_io_ops = {
4075         .readpage_end_io_hook = btree_readpage_end_io_hook,
4076         .readpage_io_failed_hook = btree_io_failed_hook,
4077         .submit_bio_hook = btree_submit_bio_hook,
4078         /* note we're sharing with inode.c for the merge bio hook */
4079         .merge_bio_hook = btrfs_merge_bio_hook,
4080 };