Btrfs: fix skipped error handle when log sync failed
[cascardo/linux.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61                                     int read_only);
62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63                                              struct btrfs_root *root);
64 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66                                       struct btrfs_root *root);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69                                         struct extent_io_tree *dirty_pages,
70                                         int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72                                        struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
75
76 /*
77  * end_io_wq structs are used to do processing in task context when an IO is
78  * complete.  This is used during reads to verify checksums, and it is used
79  * by writes to insert metadata for new file extents after IO is complete.
80  */
81 struct end_io_wq {
82         struct bio *bio;
83         bio_end_io_t *end_io;
84         void *private;
85         struct btrfs_fs_info *info;
86         int error;
87         int metadata;
88         struct list_head list;
89         struct btrfs_work work;
90 };
91
92 /*
93  * async submit bios are used to offload expensive checksumming
94  * onto the worker threads.  They checksum file and metadata bios
95  * just before they are sent down the IO stack.
96  */
97 struct async_submit_bio {
98         struct inode *inode;
99         struct bio *bio;
100         struct list_head list;
101         extent_submit_bio_hook_t *submit_bio_start;
102         extent_submit_bio_hook_t *submit_bio_done;
103         int rw;
104         int mirror_num;
105         unsigned long bio_flags;
106         /*
107          * bio_offset is optional, can be used if the pages in the bio
108          * can't tell us where in the file the bio should go
109          */
110         u64 bio_offset;
111         struct btrfs_work work;
112         int error;
113 };
114
115 /*
116  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
117  * eb, the lockdep key is determined by the btrfs_root it belongs to and
118  * the level the eb occupies in the tree.
119  *
120  * Different roots are used for different purposes and may nest inside each
121  * other and they require separate keysets.  As lockdep keys should be
122  * static, assign keysets according to the purpose of the root as indicated
123  * by btrfs_root->objectid.  This ensures that all special purpose roots
124  * have separate keysets.
125  *
126  * Lock-nesting across peer nodes is always done with the immediate parent
127  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
128  * subclass to avoid triggering lockdep warning in such cases.
129  *
130  * The key is set by the readpage_end_io_hook after the buffer has passed
131  * csum validation but before the pages are unlocked.  It is also set by
132  * btrfs_init_new_buffer on freshly allocated blocks.
133  *
134  * We also add a check to make sure the highest level of the tree is the
135  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
136  * needs update as well.
137  */
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 #  error
141 # endif
142
143 static struct btrfs_lockdep_keyset {
144         u64                     id;             /* root objectid */
145         const char              *name_stem;     /* lock name stem */
146         char                    names[BTRFS_MAX_LEVEL + 1][20];
147         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
150         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
151         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
152         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
153         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
154         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
155         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
156         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
157         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
158         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
159         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
160         { .id = 0,                              .name_stem = "tree"     },
161 };
162
163 void __init btrfs_init_lockdep(void)
164 {
165         int i, j;
166
167         /* initialize lockdep class names */
168         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
170
171                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172                         snprintf(ks->names[j], sizeof(ks->names[j]),
173                                  "btrfs-%s-%02d", ks->name_stem, j);
174         }
175 }
176
177 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178                                     int level)
179 {
180         struct btrfs_lockdep_keyset *ks;
181
182         BUG_ON(level >= ARRAY_SIZE(ks->keys));
183
184         /* find the matching keyset, id 0 is the default entry */
185         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186                 if (ks->id == objectid)
187                         break;
188
189         lockdep_set_class_and_name(&eb->lock,
190                                    &ks->keys[level], ks->names[level]);
191 }
192
193 #endif
194
195 /*
196  * extents on the btree inode are pretty simple, there's one extent
197  * that covers the entire device
198  */
199 static struct extent_map *btree_get_extent(struct inode *inode,
200                 struct page *page, size_t pg_offset, u64 start, u64 len,
201                 int create)
202 {
203         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204         struct extent_map *em;
205         int ret;
206
207         read_lock(&em_tree->lock);
208         em = lookup_extent_mapping(em_tree, start, len);
209         if (em) {
210                 em->bdev =
211                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
212                 read_unlock(&em_tree->lock);
213                 goto out;
214         }
215         read_unlock(&em_tree->lock);
216
217         em = alloc_extent_map();
218         if (!em) {
219                 em = ERR_PTR(-ENOMEM);
220                 goto out;
221         }
222         em->start = 0;
223         em->len = (u64)-1;
224         em->block_len = (u64)-1;
225         em->block_start = 0;
226         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
227
228         write_lock(&em_tree->lock);
229         ret = add_extent_mapping(em_tree, em, 0);
230         if (ret == -EEXIST) {
231                 free_extent_map(em);
232                 em = lookup_extent_mapping(em_tree, start, len);
233                 if (!em)
234                         em = ERR_PTR(-EIO);
235         } else if (ret) {
236                 free_extent_map(em);
237                 em = ERR_PTR(ret);
238         }
239         write_unlock(&em_tree->lock);
240
241 out:
242         return em;
243 }
244
245 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
246 {
247         return btrfs_crc32c(seed, data, len);
248 }
249
250 void btrfs_csum_final(u32 crc, char *result)
251 {
252         put_unaligned_le32(~crc, result);
253 }
254
255 /*
256  * compute the csum for a btree block, and either verify it or write it
257  * into the csum field of the block.
258  */
259 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260                            int verify)
261 {
262         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
263         char *result = NULL;
264         unsigned long len;
265         unsigned long cur_len;
266         unsigned long offset = BTRFS_CSUM_SIZE;
267         char *kaddr;
268         unsigned long map_start;
269         unsigned long map_len;
270         int err;
271         u32 crc = ~(u32)0;
272         unsigned long inline_result;
273
274         len = buf->len - offset;
275         while (len > 0) {
276                 err = map_private_extent_buffer(buf, offset, 32,
277                                         &kaddr, &map_start, &map_len);
278                 if (err)
279                         return 1;
280                 cur_len = min(len, map_len - (offset - map_start));
281                 crc = btrfs_csum_data(kaddr + offset - map_start,
282                                       crc, cur_len);
283                 len -= cur_len;
284                 offset += cur_len;
285         }
286         if (csum_size > sizeof(inline_result)) {
287                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
288                 if (!result)
289                         return 1;
290         } else {
291                 result = (char *)&inline_result;
292         }
293
294         btrfs_csum_final(crc, result);
295
296         if (verify) {
297                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
298                         u32 val;
299                         u32 found = 0;
300                         memcpy(&found, result, csum_size);
301
302                         read_extent_buffer(buf, &val, 0, csum_size);
303                         printk_ratelimited(KERN_INFO
304                                 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
305                                 "level %d\n",
306                                 root->fs_info->sb->s_id, buf->start,
307                                 val, found, btrfs_header_level(buf));
308                         if (result != (char *)&inline_result)
309                                 kfree(result);
310                         return 1;
311                 }
312         } else {
313                 write_extent_buffer(buf, result, 0, csum_size);
314         }
315         if (result != (char *)&inline_result)
316                 kfree(result);
317         return 0;
318 }
319
320 /*
321  * we can't consider a given block up to date unless the transid of the
322  * block matches the transid in the parent node's pointer.  This is how we
323  * detect blocks that either didn't get written at all or got written
324  * in the wrong place.
325  */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327                                  struct extent_buffer *eb, u64 parent_transid,
328                                  int atomic)
329 {
330         struct extent_state *cached_state = NULL;
331         int ret;
332
333         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334                 return 0;
335
336         if (atomic)
337                 return -EAGAIN;
338
339         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340                          0, &cached_state);
341         if (extent_buffer_uptodate(eb) &&
342             btrfs_header_generation(eb) == parent_transid) {
343                 ret = 0;
344                 goto out;
345         }
346         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347                        "found %llu\n",
348                        eb->start, parent_transid, btrfs_header_generation(eb));
349         ret = 1;
350         clear_extent_buffer_uptodate(eb);
351 out:
352         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
353                              &cached_state, GFP_NOFS);
354         return ret;
355 }
356
357 /*
358  * Return 0 if the superblock checksum type matches the checksum value of that
359  * algorithm. Pass the raw disk superblock data.
360  */
361 static int btrfs_check_super_csum(char *raw_disk_sb)
362 {
363         struct btrfs_super_block *disk_sb =
364                 (struct btrfs_super_block *)raw_disk_sb;
365         u16 csum_type = btrfs_super_csum_type(disk_sb);
366         int ret = 0;
367
368         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
369                 u32 crc = ~(u32)0;
370                 const int csum_size = sizeof(crc);
371                 char result[csum_size];
372
373                 /*
374                  * The super_block structure does not span the whole
375                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
376                  * is filled with zeros and is included in the checkum.
377                  */
378                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
379                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
380                 btrfs_csum_final(crc, result);
381
382                 if (memcmp(raw_disk_sb, result, csum_size))
383                         ret = 1;
384
385                 if (ret && btrfs_super_generation(disk_sb) < 10) {
386                         printk(KERN_WARNING
387                                 "BTRFS: super block crcs don't match, older mkfs detected\n");
388                         ret = 0;
389                 }
390         }
391
392         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
393                 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
394                                 csum_type);
395                 ret = 1;
396         }
397
398         return ret;
399 }
400
401 /*
402  * helper to read a given tree block, doing retries as required when
403  * the checksums don't match and we have alternate mirrors to try.
404  */
405 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
406                                           struct extent_buffer *eb,
407                                           u64 start, u64 parent_transid)
408 {
409         struct extent_io_tree *io_tree;
410         int failed = 0;
411         int ret;
412         int num_copies = 0;
413         int mirror_num = 0;
414         int failed_mirror = 0;
415
416         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
417         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
418         while (1) {
419                 ret = read_extent_buffer_pages(io_tree, eb, start,
420                                                WAIT_COMPLETE,
421                                                btree_get_extent, mirror_num);
422                 if (!ret) {
423                         if (!verify_parent_transid(io_tree, eb,
424                                                    parent_transid, 0))
425                                 break;
426                         else
427                                 ret = -EIO;
428                 }
429
430                 /*
431                  * This buffer's crc is fine, but its contents are corrupted, so
432                  * there is no reason to read the other copies, they won't be
433                  * any less wrong.
434                  */
435                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
436                         break;
437
438                 num_copies = btrfs_num_copies(root->fs_info,
439                                               eb->start, eb->len);
440                 if (num_copies == 1)
441                         break;
442
443                 if (!failed_mirror) {
444                         failed = 1;
445                         failed_mirror = eb->read_mirror;
446                 }
447
448                 mirror_num++;
449                 if (mirror_num == failed_mirror)
450                         mirror_num++;
451
452                 if (mirror_num > num_copies)
453                         break;
454         }
455
456         if (failed && !ret && failed_mirror)
457                 repair_eb_io_failure(root, eb, failed_mirror);
458
459         return ret;
460 }
461
462 /*
463  * checksum a dirty tree block before IO.  This has extra checks to make sure
464  * we only fill in the checksum field in the first page of a multi-page block
465  */
466
467 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
468 {
469         u64 start = page_offset(page);
470         u64 found_start;
471         struct extent_buffer *eb;
472
473         eb = (struct extent_buffer *)page->private;
474         if (page != eb->pages[0])
475                 return 0;
476         found_start = btrfs_header_bytenr(eb);
477         if (WARN_ON(found_start != start || !PageUptodate(page)))
478                 return 0;
479         csum_tree_block(root, eb, 0);
480         return 0;
481 }
482
483 static int check_tree_block_fsid(struct btrfs_root *root,
484                                  struct extent_buffer *eb)
485 {
486         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
487         u8 fsid[BTRFS_UUID_SIZE];
488         int ret = 1;
489
490         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
491         while (fs_devices) {
492                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
493                         ret = 0;
494                         break;
495                 }
496                 fs_devices = fs_devices->seed;
497         }
498         return ret;
499 }
500
501 #define CORRUPT(reason, eb, root, slot)                         \
502         btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
503                    "root=%llu, slot=%d", reason,                        \
504                btrfs_header_bytenr(eb), root->objectid, slot)
505
506 static noinline int check_leaf(struct btrfs_root *root,
507                                struct extent_buffer *leaf)
508 {
509         struct btrfs_key key;
510         struct btrfs_key leaf_key;
511         u32 nritems = btrfs_header_nritems(leaf);
512         int slot;
513
514         if (nritems == 0)
515                 return 0;
516
517         /* Check the 0 item */
518         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
519             BTRFS_LEAF_DATA_SIZE(root)) {
520                 CORRUPT("invalid item offset size pair", leaf, root, 0);
521                 return -EIO;
522         }
523
524         /*
525          * Check to make sure each items keys are in the correct order and their
526          * offsets make sense.  We only have to loop through nritems-1 because
527          * we check the current slot against the next slot, which verifies the
528          * next slot's offset+size makes sense and that the current's slot
529          * offset is correct.
530          */
531         for (slot = 0; slot < nritems - 1; slot++) {
532                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
533                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
534
535                 /* Make sure the keys are in the right order */
536                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
537                         CORRUPT("bad key order", leaf, root, slot);
538                         return -EIO;
539                 }
540
541                 /*
542                  * Make sure the offset and ends are right, remember that the
543                  * item data starts at the end of the leaf and grows towards the
544                  * front.
545                  */
546                 if (btrfs_item_offset_nr(leaf, slot) !=
547                         btrfs_item_end_nr(leaf, slot + 1)) {
548                         CORRUPT("slot offset bad", leaf, root, slot);
549                         return -EIO;
550                 }
551
552                 /*
553                  * Check to make sure that we don't point outside of the leaf,
554                  * just incase all the items are consistent to eachother, but
555                  * all point outside of the leaf.
556                  */
557                 if (btrfs_item_end_nr(leaf, slot) >
558                     BTRFS_LEAF_DATA_SIZE(root)) {
559                         CORRUPT("slot end outside of leaf", leaf, root, slot);
560                         return -EIO;
561                 }
562         }
563
564         return 0;
565 }
566
567 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
568                                       u64 phy_offset, struct page *page,
569                                       u64 start, u64 end, int mirror)
570 {
571         u64 found_start;
572         int found_level;
573         struct extent_buffer *eb;
574         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
575         int ret = 0;
576         int reads_done;
577
578         if (!page->private)
579                 goto out;
580
581         eb = (struct extent_buffer *)page->private;
582
583         /* the pending IO might have been the only thing that kept this buffer
584          * in memory.  Make sure we have a ref for all this other checks
585          */
586         extent_buffer_get(eb);
587
588         reads_done = atomic_dec_and_test(&eb->io_pages);
589         if (!reads_done)
590                 goto err;
591
592         eb->read_mirror = mirror;
593         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
594                 ret = -EIO;
595                 goto err;
596         }
597
598         found_start = btrfs_header_bytenr(eb);
599         if (found_start != eb->start) {
600                 printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
601                                "%llu %llu\n",
602                                found_start, eb->start);
603                 ret = -EIO;
604                 goto err;
605         }
606         if (check_tree_block_fsid(root, eb)) {
607                 printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
608                                eb->start);
609                 ret = -EIO;
610                 goto err;
611         }
612         found_level = btrfs_header_level(eb);
613         if (found_level >= BTRFS_MAX_LEVEL) {
614                 btrfs_info(root->fs_info, "bad tree block level %d",
615                            (int)btrfs_header_level(eb));
616                 ret = -EIO;
617                 goto err;
618         }
619
620         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
621                                        eb, found_level);
622
623         ret = csum_tree_block(root, eb, 1);
624         if (ret) {
625                 ret = -EIO;
626                 goto err;
627         }
628
629         /*
630          * If this is a leaf block and it is corrupt, set the corrupt bit so
631          * that we don't try and read the other copies of this block, just
632          * return -EIO.
633          */
634         if (found_level == 0 && check_leaf(root, eb)) {
635                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
636                 ret = -EIO;
637         }
638
639         if (!ret)
640                 set_extent_buffer_uptodate(eb);
641 err:
642         if (reads_done &&
643             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
644                 btree_readahead_hook(root, eb, eb->start, ret);
645
646         if (ret) {
647                 /*
648                  * our io error hook is going to dec the io pages
649                  * again, we have to make sure it has something
650                  * to decrement
651                  */
652                 atomic_inc(&eb->io_pages);
653                 clear_extent_buffer_uptodate(eb);
654         }
655         free_extent_buffer(eb);
656 out:
657         return ret;
658 }
659
660 static int btree_io_failed_hook(struct page *page, int failed_mirror)
661 {
662         struct extent_buffer *eb;
663         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
664
665         eb = (struct extent_buffer *)page->private;
666         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
667         eb->read_mirror = failed_mirror;
668         atomic_dec(&eb->io_pages);
669         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
670                 btree_readahead_hook(root, eb, eb->start, -EIO);
671         return -EIO;    /* we fixed nothing */
672 }
673
674 static void end_workqueue_bio(struct bio *bio, int err)
675 {
676         struct end_io_wq *end_io_wq = bio->bi_private;
677         struct btrfs_fs_info *fs_info;
678
679         fs_info = end_io_wq->info;
680         end_io_wq->error = err;
681         end_io_wq->work.func = end_workqueue_fn;
682         end_io_wq->work.flags = 0;
683
684         if (bio->bi_rw & REQ_WRITE) {
685                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
686                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
687                                            &end_io_wq->work);
688                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
689                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
690                                            &end_io_wq->work);
691                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
692                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
693                                            &end_io_wq->work);
694                 else
695                         btrfs_queue_worker(&fs_info->endio_write_workers,
696                                            &end_io_wq->work);
697         } else {
698                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
699                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
700                                            &end_io_wq->work);
701                 else if (end_io_wq->metadata)
702                         btrfs_queue_worker(&fs_info->endio_meta_workers,
703                                            &end_io_wq->work);
704                 else
705                         btrfs_queue_worker(&fs_info->endio_workers,
706                                            &end_io_wq->work);
707         }
708 }
709
710 /*
711  * For the metadata arg you want
712  *
713  * 0 - if data
714  * 1 - if normal metadta
715  * 2 - if writing to the free space cache area
716  * 3 - raid parity work
717  */
718 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
719                         int metadata)
720 {
721         struct end_io_wq *end_io_wq;
722         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
723         if (!end_io_wq)
724                 return -ENOMEM;
725
726         end_io_wq->private = bio->bi_private;
727         end_io_wq->end_io = bio->bi_end_io;
728         end_io_wq->info = info;
729         end_io_wq->error = 0;
730         end_io_wq->bio = bio;
731         end_io_wq->metadata = metadata;
732
733         bio->bi_private = end_io_wq;
734         bio->bi_end_io = end_workqueue_bio;
735         return 0;
736 }
737
738 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
739 {
740         unsigned long limit = min_t(unsigned long,
741                                     info->workers.max_workers,
742                                     info->fs_devices->open_devices);
743         return 256 * limit;
744 }
745
746 static void run_one_async_start(struct btrfs_work *work)
747 {
748         struct async_submit_bio *async;
749         int ret;
750
751         async = container_of(work, struct  async_submit_bio, work);
752         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
753                                       async->mirror_num, async->bio_flags,
754                                       async->bio_offset);
755         if (ret)
756                 async->error = ret;
757 }
758
759 static void run_one_async_done(struct btrfs_work *work)
760 {
761         struct btrfs_fs_info *fs_info;
762         struct async_submit_bio *async;
763         int limit;
764
765         async = container_of(work, struct  async_submit_bio, work);
766         fs_info = BTRFS_I(async->inode)->root->fs_info;
767
768         limit = btrfs_async_submit_limit(fs_info);
769         limit = limit * 2 / 3;
770
771         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
772             waitqueue_active(&fs_info->async_submit_wait))
773                 wake_up(&fs_info->async_submit_wait);
774
775         /* If an error occured we just want to clean up the bio and move on */
776         if (async->error) {
777                 bio_endio(async->bio, async->error);
778                 return;
779         }
780
781         async->submit_bio_done(async->inode, async->rw, async->bio,
782                                async->mirror_num, async->bio_flags,
783                                async->bio_offset);
784 }
785
786 static void run_one_async_free(struct btrfs_work *work)
787 {
788         struct async_submit_bio *async;
789
790         async = container_of(work, struct  async_submit_bio, work);
791         kfree(async);
792 }
793
794 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
795                         int rw, struct bio *bio, int mirror_num,
796                         unsigned long bio_flags,
797                         u64 bio_offset,
798                         extent_submit_bio_hook_t *submit_bio_start,
799                         extent_submit_bio_hook_t *submit_bio_done)
800 {
801         struct async_submit_bio *async;
802
803         async = kmalloc(sizeof(*async), GFP_NOFS);
804         if (!async)
805                 return -ENOMEM;
806
807         async->inode = inode;
808         async->rw = rw;
809         async->bio = bio;
810         async->mirror_num = mirror_num;
811         async->submit_bio_start = submit_bio_start;
812         async->submit_bio_done = submit_bio_done;
813
814         async->work.func = run_one_async_start;
815         async->work.ordered_func = run_one_async_done;
816         async->work.ordered_free = run_one_async_free;
817
818         async->work.flags = 0;
819         async->bio_flags = bio_flags;
820         async->bio_offset = bio_offset;
821
822         async->error = 0;
823
824         atomic_inc(&fs_info->nr_async_submits);
825
826         if (rw & REQ_SYNC)
827                 btrfs_set_work_high_prio(&async->work);
828
829         btrfs_queue_worker(&fs_info->workers, &async->work);
830
831         while (atomic_read(&fs_info->async_submit_draining) &&
832               atomic_read(&fs_info->nr_async_submits)) {
833                 wait_event(fs_info->async_submit_wait,
834                            (atomic_read(&fs_info->nr_async_submits) == 0));
835         }
836
837         return 0;
838 }
839
840 static int btree_csum_one_bio(struct bio *bio)
841 {
842         struct bio_vec *bvec = bio->bi_io_vec;
843         int bio_index = 0;
844         struct btrfs_root *root;
845         int ret = 0;
846
847         WARN_ON(bio->bi_vcnt <= 0);
848         while (bio_index < bio->bi_vcnt) {
849                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
850                 ret = csum_dirty_buffer(root, bvec->bv_page);
851                 if (ret)
852                         break;
853                 bio_index++;
854                 bvec++;
855         }
856         return ret;
857 }
858
859 static int __btree_submit_bio_start(struct inode *inode, int rw,
860                                     struct bio *bio, int mirror_num,
861                                     unsigned long bio_flags,
862                                     u64 bio_offset)
863 {
864         /*
865          * when we're called for a write, we're already in the async
866          * submission context.  Just jump into btrfs_map_bio
867          */
868         return btree_csum_one_bio(bio);
869 }
870
871 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
872                                  int mirror_num, unsigned long bio_flags,
873                                  u64 bio_offset)
874 {
875         int ret;
876
877         /*
878          * when we're called for a write, we're already in the async
879          * submission context.  Just jump into btrfs_map_bio
880          */
881         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
882         if (ret)
883                 bio_endio(bio, ret);
884         return ret;
885 }
886
887 static int check_async_write(struct inode *inode, unsigned long bio_flags)
888 {
889         if (bio_flags & EXTENT_BIO_TREE_LOG)
890                 return 0;
891 #ifdef CONFIG_X86
892         if (cpu_has_xmm4_2)
893                 return 0;
894 #endif
895         return 1;
896 }
897
898 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
899                                  int mirror_num, unsigned long bio_flags,
900                                  u64 bio_offset)
901 {
902         int async = check_async_write(inode, bio_flags);
903         int ret;
904
905         if (!(rw & REQ_WRITE)) {
906                 /*
907                  * called for a read, do the setup so that checksum validation
908                  * can happen in the async kernel threads
909                  */
910                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
911                                           bio, 1);
912                 if (ret)
913                         goto out_w_error;
914                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
915                                     mirror_num, 0);
916         } else if (!async) {
917                 ret = btree_csum_one_bio(bio);
918                 if (ret)
919                         goto out_w_error;
920                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
921                                     mirror_num, 0);
922         } else {
923                 /*
924                  * kthread helpers are used to submit writes so that
925                  * checksumming can happen in parallel across all CPUs
926                  */
927                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
928                                           inode, rw, bio, mirror_num, 0,
929                                           bio_offset,
930                                           __btree_submit_bio_start,
931                                           __btree_submit_bio_done);
932         }
933
934         if (ret) {
935 out_w_error:
936                 bio_endio(bio, ret);
937         }
938         return ret;
939 }
940
941 #ifdef CONFIG_MIGRATION
942 static int btree_migratepage(struct address_space *mapping,
943                         struct page *newpage, struct page *page,
944                         enum migrate_mode mode)
945 {
946         /*
947          * we can't safely write a btree page from here,
948          * we haven't done the locking hook
949          */
950         if (PageDirty(page))
951                 return -EAGAIN;
952         /*
953          * Buffers may be managed in a filesystem specific way.
954          * We must have no buffers or drop them.
955          */
956         if (page_has_private(page) &&
957             !try_to_release_page(page, GFP_KERNEL))
958                 return -EAGAIN;
959         return migrate_page(mapping, newpage, page, mode);
960 }
961 #endif
962
963
964 static int btree_writepages(struct address_space *mapping,
965                             struct writeback_control *wbc)
966 {
967         struct btrfs_fs_info *fs_info;
968         int ret;
969
970         if (wbc->sync_mode == WB_SYNC_NONE) {
971
972                 if (wbc->for_kupdate)
973                         return 0;
974
975                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
976                 /* this is a bit racy, but that's ok */
977                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
978                                              BTRFS_DIRTY_METADATA_THRESH);
979                 if (ret < 0)
980                         return 0;
981         }
982         return btree_write_cache_pages(mapping, wbc);
983 }
984
985 static int btree_readpage(struct file *file, struct page *page)
986 {
987         struct extent_io_tree *tree;
988         tree = &BTRFS_I(page->mapping->host)->io_tree;
989         return extent_read_full_page(tree, page, btree_get_extent, 0);
990 }
991
992 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
993 {
994         if (PageWriteback(page) || PageDirty(page))
995                 return 0;
996
997         return try_release_extent_buffer(page);
998 }
999
1000 static void btree_invalidatepage(struct page *page, unsigned int offset,
1001                                  unsigned int length)
1002 {
1003         struct extent_io_tree *tree;
1004         tree = &BTRFS_I(page->mapping->host)->io_tree;
1005         extent_invalidatepage(tree, page, offset);
1006         btree_releasepage(page, GFP_NOFS);
1007         if (PagePrivate(page)) {
1008                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1009                            "page private not zero on page %llu",
1010                            (unsigned long long)page_offset(page));
1011                 ClearPagePrivate(page);
1012                 set_page_private(page, 0);
1013                 page_cache_release(page);
1014         }
1015 }
1016
1017 static int btree_set_page_dirty(struct page *page)
1018 {
1019 #ifdef DEBUG
1020         struct extent_buffer *eb;
1021
1022         BUG_ON(!PagePrivate(page));
1023         eb = (struct extent_buffer *)page->private;
1024         BUG_ON(!eb);
1025         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1026         BUG_ON(!atomic_read(&eb->refs));
1027         btrfs_assert_tree_locked(eb);
1028 #endif
1029         return __set_page_dirty_nobuffers(page);
1030 }
1031
1032 static const struct address_space_operations btree_aops = {
1033         .readpage       = btree_readpage,
1034         .writepages     = btree_writepages,
1035         .releasepage    = btree_releasepage,
1036         .invalidatepage = btree_invalidatepage,
1037 #ifdef CONFIG_MIGRATION
1038         .migratepage    = btree_migratepage,
1039 #endif
1040         .set_page_dirty = btree_set_page_dirty,
1041 };
1042
1043 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1044                          u64 parent_transid)
1045 {
1046         struct extent_buffer *buf = NULL;
1047         struct inode *btree_inode = root->fs_info->btree_inode;
1048         int ret = 0;
1049
1050         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1051         if (!buf)
1052                 return 0;
1053         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1054                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1055         free_extent_buffer(buf);
1056         return ret;
1057 }
1058
1059 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1060                          int mirror_num, struct extent_buffer **eb)
1061 {
1062         struct extent_buffer *buf = NULL;
1063         struct inode *btree_inode = root->fs_info->btree_inode;
1064         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1065         int ret;
1066
1067         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1068         if (!buf)
1069                 return 0;
1070
1071         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1072
1073         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1074                                        btree_get_extent, mirror_num);
1075         if (ret) {
1076                 free_extent_buffer(buf);
1077                 return ret;
1078         }
1079
1080         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1081                 free_extent_buffer(buf);
1082                 return -EIO;
1083         } else if (extent_buffer_uptodate(buf)) {
1084                 *eb = buf;
1085         } else {
1086                 free_extent_buffer(buf);
1087         }
1088         return 0;
1089 }
1090
1091 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1092                                             u64 bytenr, u32 blocksize)
1093 {
1094         return find_extent_buffer(root->fs_info, bytenr);
1095 }
1096
1097 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1098                                                  u64 bytenr, u32 blocksize)
1099 {
1100         return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1101 }
1102
1103
1104 int btrfs_write_tree_block(struct extent_buffer *buf)
1105 {
1106         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1107                                         buf->start + buf->len - 1);
1108 }
1109
1110 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1111 {
1112         return filemap_fdatawait_range(buf->pages[0]->mapping,
1113                                        buf->start, buf->start + buf->len - 1);
1114 }
1115
1116 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1117                                       u32 blocksize, u64 parent_transid)
1118 {
1119         struct extent_buffer *buf = NULL;
1120         int ret;
1121
1122         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1123         if (!buf)
1124                 return NULL;
1125
1126         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1127         if (ret) {
1128                 free_extent_buffer(buf);
1129                 return NULL;
1130         }
1131         return buf;
1132
1133 }
1134
1135 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1136                       struct extent_buffer *buf)
1137 {
1138         struct btrfs_fs_info *fs_info = root->fs_info;
1139
1140         if (btrfs_header_generation(buf) ==
1141             fs_info->running_transaction->transid) {
1142                 btrfs_assert_tree_locked(buf);
1143
1144                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1145                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1146                                              -buf->len,
1147                                              fs_info->dirty_metadata_batch);
1148                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1149                         btrfs_set_lock_blocking(buf);
1150                         clear_extent_buffer_dirty(buf);
1151                 }
1152         }
1153 }
1154
1155 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1156                          u32 stripesize, struct btrfs_root *root,
1157                          struct btrfs_fs_info *fs_info,
1158                          u64 objectid)
1159 {
1160         root->node = NULL;
1161         root->commit_root = NULL;
1162         root->sectorsize = sectorsize;
1163         root->nodesize = nodesize;
1164         root->leafsize = leafsize;
1165         root->stripesize = stripesize;
1166         root->ref_cows = 0;
1167         root->track_dirty = 0;
1168         root->in_radix = 0;
1169         root->orphan_item_inserted = 0;
1170         root->orphan_cleanup_state = 0;
1171
1172         root->objectid = objectid;
1173         root->last_trans = 0;
1174         root->highest_objectid = 0;
1175         root->nr_delalloc_inodes = 0;
1176         root->nr_ordered_extents = 0;
1177         root->name = NULL;
1178         root->inode_tree = RB_ROOT;
1179         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1180         root->block_rsv = NULL;
1181         root->orphan_block_rsv = NULL;
1182
1183         INIT_LIST_HEAD(&root->dirty_list);
1184         INIT_LIST_HEAD(&root->root_list);
1185         INIT_LIST_HEAD(&root->delalloc_inodes);
1186         INIT_LIST_HEAD(&root->delalloc_root);
1187         INIT_LIST_HEAD(&root->ordered_extents);
1188         INIT_LIST_HEAD(&root->ordered_root);
1189         INIT_LIST_HEAD(&root->logged_list[0]);
1190         INIT_LIST_HEAD(&root->logged_list[1]);
1191         spin_lock_init(&root->orphan_lock);
1192         spin_lock_init(&root->inode_lock);
1193         spin_lock_init(&root->delalloc_lock);
1194         spin_lock_init(&root->ordered_extent_lock);
1195         spin_lock_init(&root->accounting_lock);
1196         spin_lock_init(&root->log_extents_lock[0]);
1197         spin_lock_init(&root->log_extents_lock[1]);
1198         mutex_init(&root->objectid_mutex);
1199         mutex_init(&root->log_mutex);
1200         init_waitqueue_head(&root->log_writer_wait);
1201         init_waitqueue_head(&root->log_commit_wait[0]);
1202         init_waitqueue_head(&root->log_commit_wait[1]);
1203         INIT_LIST_HEAD(&root->log_ctxs[0]);
1204         INIT_LIST_HEAD(&root->log_ctxs[1]);
1205         atomic_set(&root->log_commit[0], 0);
1206         atomic_set(&root->log_commit[1], 0);
1207         atomic_set(&root->log_writers, 0);
1208         atomic_set(&root->log_batch, 0);
1209         atomic_set(&root->orphan_inodes, 0);
1210         atomic_set(&root->refs, 1);
1211         root->log_transid = 0;
1212         root->last_log_commit = 0;
1213         if (fs_info)
1214                 extent_io_tree_init(&root->dirty_log_pages,
1215                                      fs_info->btree_inode->i_mapping);
1216
1217         memset(&root->root_key, 0, sizeof(root->root_key));
1218         memset(&root->root_item, 0, sizeof(root->root_item));
1219         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1220         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1221         if (fs_info)
1222                 root->defrag_trans_start = fs_info->generation;
1223         else
1224                 root->defrag_trans_start = 0;
1225         init_completion(&root->kobj_unregister);
1226         root->defrag_running = 0;
1227         root->root_key.objectid = objectid;
1228         root->anon_dev = 0;
1229
1230         spin_lock_init(&root->root_item_lock);
1231 }
1232
1233 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1234 {
1235         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1236         if (root)
1237                 root->fs_info = fs_info;
1238         return root;
1239 }
1240
1241 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1242 /* Should only be used by the testing infrastructure */
1243 struct btrfs_root *btrfs_alloc_dummy_root(void)
1244 {
1245         struct btrfs_root *root;
1246
1247         root = btrfs_alloc_root(NULL);
1248         if (!root)
1249                 return ERR_PTR(-ENOMEM);
1250         __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1251         root->dummy_root = 1;
1252
1253         return root;
1254 }
1255 #endif
1256
1257 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1258                                      struct btrfs_fs_info *fs_info,
1259                                      u64 objectid)
1260 {
1261         struct extent_buffer *leaf;
1262         struct btrfs_root *tree_root = fs_info->tree_root;
1263         struct btrfs_root *root;
1264         struct btrfs_key key;
1265         int ret = 0;
1266         uuid_le uuid;
1267
1268         root = btrfs_alloc_root(fs_info);
1269         if (!root)
1270                 return ERR_PTR(-ENOMEM);
1271
1272         __setup_root(tree_root->nodesize, tree_root->leafsize,
1273                      tree_root->sectorsize, tree_root->stripesize,
1274                      root, fs_info, objectid);
1275         root->root_key.objectid = objectid;
1276         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1277         root->root_key.offset = 0;
1278
1279         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1280                                       0, objectid, NULL, 0, 0, 0);
1281         if (IS_ERR(leaf)) {
1282                 ret = PTR_ERR(leaf);
1283                 leaf = NULL;
1284                 goto fail;
1285         }
1286
1287         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1288         btrfs_set_header_bytenr(leaf, leaf->start);
1289         btrfs_set_header_generation(leaf, trans->transid);
1290         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1291         btrfs_set_header_owner(leaf, objectid);
1292         root->node = leaf;
1293
1294         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1295                             BTRFS_FSID_SIZE);
1296         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1297                             btrfs_header_chunk_tree_uuid(leaf),
1298                             BTRFS_UUID_SIZE);
1299         btrfs_mark_buffer_dirty(leaf);
1300
1301         root->commit_root = btrfs_root_node(root);
1302         root->track_dirty = 1;
1303
1304
1305         root->root_item.flags = 0;
1306         root->root_item.byte_limit = 0;
1307         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1308         btrfs_set_root_generation(&root->root_item, trans->transid);
1309         btrfs_set_root_level(&root->root_item, 0);
1310         btrfs_set_root_refs(&root->root_item, 1);
1311         btrfs_set_root_used(&root->root_item, leaf->len);
1312         btrfs_set_root_last_snapshot(&root->root_item, 0);
1313         btrfs_set_root_dirid(&root->root_item, 0);
1314         uuid_le_gen(&uuid);
1315         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1316         root->root_item.drop_level = 0;
1317
1318         key.objectid = objectid;
1319         key.type = BTRFS_ROOT_ITEM_KEY;
1320         key.offset = 0;
1321         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1322         if (ret)
1323                 goto fail;
1324
1325         btrfs_tree_unlock(leaf);
1326
1327         return root;
1328
1329 fail:
1330         if (leaf) {
1331                 btrfs_tree_unlock(leaf);
1332                 free_extent_buffer(leaf);
1333         }
1334         kfree(root);
1335
1336         return ERR_PTR(ret);
1337 }
1338
1339 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1340                                          struct btrfs_fs_info *fs_info)
1341 {
1342         struct btrfs_root *root;
1343         struct btrfs_root *tree_root = fs_info->tree_root;
1344         struct extent_buffer *leaf;
1345
1346         root = btrfs_alloc_root(fs_info);
1347         if (!root)
1348                 return ERR_PTR(-ENOMEM);
1349
1350         __setup_root(tree_root->nodesize, tree_root->leafsize,
1351                      tree_root->sectorsize, tree_root->stripesize,
1352                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1353
1354         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1355         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1356         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1357         /*
1358          * log trees do not get reference counted because they go away
1359          * before a real commit is actually done.  They do store pointers
1360          * to file data extents, and those reference counts still get
1361          * updated (along with back refs to the log tree).
1362          */
1363         root->ref_cows = 0;
1364
1365         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1366                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1367                                       0, 0, 0);
1368         if (IS_ERR(leaf)) {
1369                 kfree(root);
1370                 return ERR_CAST(leaf);
1371         }
1372
1373         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1374         btrfs_set_header_bytenr(leaf, leaf->start);
1375         btrfs_set_header_generation(leaf, trans->transid);
1376         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1377         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1378         root->node = leaf;
1379
1380         write_extent_buffer(root->node, root->fs_info->fsid,
1381                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1382         btrfs_mark_buffer_dirty(root->node);
1383         btrfs_tree_unlock(root->node);
1384         return root;
1385 }
1386
1387 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1388                              struct btrfs_fs_info *fs_info)
1389 {
1390         struct btrfs_root *log_root;
1391
1392         log_root = alloc_log_tree(trans, fs_info);
1393         if (IS_ERR(log_root))
1394                 return PTR_ERR(log_root);
1395         WARN_ON(fs_info->log_root_tree);
1396         fs_info->log_root_tree = log_root;
1397         return 0;
1398 }
1399
1400 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1401                        struct btrfs_root *root)
1402 {
1403         struct btrfs_root *log_root;
1404         struct btrfs_inode_item *inode_item;
1405
1406         log_root = alloc_log_tree(trans, root->fs_info);
1407         if (IS_ERR(log_root))
1408                 return PTR_ERR(log_root);
1409
1410         log_root->last_trans = trans->transid;
1411         log_root->root_key.offset = root->root_key.objectid;
1412
1413         inode_item = &log_root->root_item.inode;
1414         btrfs_set_stack_inode_generation(inode_item, 1);
1415         btrfs_set_stack_inode_size(inode_item, 3);
1416         btrfs_set_stack_inode_nlink(inode_item, 1);
1417         btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1418         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1419
1420         btrfs_set_root_node(&log_root->root_item, log_root->node);
1421
1422         WARN_ON(root->log_root);
1423         root->log_root = log_root;
1424         root->log_transid = 0;
1425         root->last_log_commit = 0;
1426         return 0;
1427 }
1428
1429 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1430                                                struct btrfs_key *key)
1431 {
1432         struct btrfs_root *root;
1433         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1434         struct btrfs_path *path;
1435         u64 generation;
1436         u32 blocksize;
1437         int ret;
1438
1439         path = btrfs_alloc_path();
1440         if (!path)
1441                 return ERR_PTR(-ENOMEM);
1442
1443         root = btrfs_alloc_root(fs_info);
1444         if (!root) {
1445                 ret = -ENOMEM;
1446                 goto alloc_fail;
1447         }
1448
1449         __setup_root(tree_root->nodesize, tree_root->leafsize,
1450                      tree_root->sectorsize, tree_root->stripesize,
1451                      root, fs_info, key->objectid);
1452
1453         ret = btrfs_find_root(tree_root, key, path,
1454                               &root->root_item, &root->root_key);
1455         if (ret) {
1456                 if (ret > 0)
1457                         ret = -ENOENT;
1458                 goto find_fail;
1459         }
1460
1461         generation = btrfs_root_generation(&root->root_item);
1462         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1463         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1464                                      blocksize, generation);
1465         if (!root->node) {
1466                 ret = -ENOMEM;
1467                 goto find_fail;
1468         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1469                 ret = -EIO;
1470                 goto read_fail;
1471         }
1472         root->commit_root = btrfs_root_node(root);
1473 out:
1474         btrfs_free_path(path);
1475         return root;
1476
1477 read_fail:
1478         free_extent_buffer(root->node);
1479 find_fail:
1480         kfree(root);
1481 alloc_fail:
1482         root = ERR_PTR(ret);
1483         goto out;
1484 }
1485
1486 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1487                                       struct btrfs_key *location)
1488 {
1489         struct btrfs_root *root;
1490
1491         root = btrfs_read_tree_root(tree_root, location);
1492         if (IS_ERR(root))
1493                 return root;
1494
1495         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1496                 root->ref_cows = 1;
1497                 btrfs_check_and_init_root_item(&root->root_item);
1498         }
1499
1500         return root;
1501 }
1502
1503 int btrfs_init_fs_root(struct btrfs_root *root)
1504 {
1505         int ret;
1506
1507         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1508         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1509                                         GFP_NOFS);
1510         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1511                 ret = -ENOMEM;
1512                 goto fail;
1513         }
1514
1515         btrfs_init_free_ino_ctl(root);
1516         mutex_init(&root->fs_commit_mutex);
1517         spin_lock_init(&root->cache_lock);
1518         init_waitqueue_head(&root->cache_wait);
1519
1520         ret = get_anon_bdev(&root->anon_dev);
1521         if (ret)
1522                 goto fail;
1523         return 0;
1524 fail:
1525         kfree(root->free_ino_ctl);
1526         kfree(root->free_ino_pinned);
1527         return ret;
1528 }
1529
1530 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1531                                                u64 root_id)
1532 {
1533         struct btrfs_root *root;
1534
1535         spin_lock(&fs_info->fs_roots_radix_lock);
1536         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1537                                  (unsigned long)root_id);
1538         spin_unlock(&fs_info->fs_roots_radix_lock);
1539         return root;
1540 }
1541
1542 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1543                          struct btrfs_root *root)
1544 {
1545         int ret;
1546
1547         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1548         if (ret)
1549                 return ret;
1550
1551         spin_lock(&fs_info->fs_roots_radix_lock);
1552         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1553                                 (unsigned long)root->root_key.objectid,
1554                                 root);
1555         if (ret == 0)
1556                 root->in_radix = 1;
1557         spin_unlock(&fs_info->fs_roots_radix_lock);
1558         radix_tree_preload_end();
1559
1560         return ret;
1561 }
1562
1563 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1564                                      struct btrfs_key *location,
1565                                      bool check_ref)
1566 {
1567         struct btrfs_root *root;
1568         int ret;
1569
1570         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1571                 return fs_info->tree_root;
1572         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1573                 return fs_info->extent_root;
1574         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1575                 return fs_info->chunk_root;
1576         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1577                 return fs_info->dev_root;
1578         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1579                 return fs_info->csum_root;
1580         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1581                 return fs_info->quota_root ? fs_info->quota_root :
1582                                              ERR_PTR(-ENOENT);
1583         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1584                 return fs_info->uuid_root ? fs_info->uuid_root :
1585                                             ERR_PTR(-ENOENT);
1586 again:
1587         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1588         if (root) {
1589                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1590                         return ERR_PTR(-ENOENT);
1591                 return root;
1592         }
1593
1594         root = btrfs_read_fs_root(fs_info->tree_root, location);
1595         if (IS_ERR(root))
1596                 return root;
1597
1598         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1599                 ret = -ENOENT;
1600                 goto fail;
1601         }
1602
1603         ret = btrfs_init_fs_root(root);
1604         if (ret)
1605                 goto fail;
1606
1607         ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1608                         location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1609         if (ret < 0)
1610                 goto fail;
1611         if (ret == 0)
1612                 root->orphan_item_inserted = 1;
1613
1614         ret = btrfs_insert_fs_root(fs_info, root);
1615         if (ret) {
1616                 if (ret == -EEXIST) {
1617                         free_fs_root(root);
1618                         goto again;
1619                 }
1620                 goto fail;
1621         }
1622         return root;
1623 fail:
1624         free_fs_root(root);
1625         return ERR_PTR(ret);
1626 }
1627
1628 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1629 {
1630         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1631         int ret = 0;
1632         struct btrfs_device *device;
1633         struct backing_dev_info *bdi;
1634
1635         rcu_read_lock();
1636         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1637                 if (!device->bdev)
1638                         continue;
1639                 bdi = blk_get_backing_dev_info(device->bdev);
1640                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1641                         ret = 1;
1642                         break;
1643                 }
1644         }
1645         rcu_read_unlock();
1646         return ret;
1647 }
1648
1649 /*
1650  * If this fails, caller must call bdi_destroy() to get rid of the
1651  * bdi again.
1652  */
1653 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1654 {
1655         int err;
1656
1657         bdi->capabilities = BDI_CAP_MAP_COPY;
1658         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1659         if (err)
1660                 return err;
1661
1662         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1663         bdi->congested_fn       = btrfs_congested_fn;
1664         bdi->congested_data     = info;
1665         return 0;
1666 }
1667
1668 /*
1669  * called by the kthread helper functions to finally call the bio end_io
1670  * functions.  This is where read checksum verification actually happens
1671  */
1672 static void end_workqueue_fn(struct btrfs_work *work)
1673 {
1674         struct bio *bio;
1675         struct end_io_wq *end_io_wq;
1676         int error;
1677
1678         end_io_wq = container_of(work, struct end_io_wq, work);
1679         bio = end_io_wq->bio;
1680
1681         error = end_io_wq->error;
1682         bio->bi_private = end_io_wq->private;
1683         bio->bi_end_io = end_io_wq->end_io;
1684         kfree(end_io_wq);
1685         bio_endio(bio, error);
1686 }
1687
1688 static int cleaner_kthread(void *arg)
1689 {
1690         struct btrfs_root *root = arg;
1691         int again;
1692
1693         do {
1694                 again = 0;
1695
1696                 /* Make the cleaner go to sleep early. */
1697                 if (btrfs_need_cleaner_sleep(root))
1698                         goto sleep;
1699
1700                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1701                         goto sleep;
1702
1703                 /*
1704                  * Avoid the problem that we change the status of the fs
1705                  * during the above check and trylock.
1706                  */
1707                 if (btrfs_need_cleaner_sleep(root)) {
1708                         mutex_unlock(&root->fs_info->cleaner_mutex);
1709                         goto sleep;
1710                 }
1711
1712                 btrfs_run_delayed_iputs(root);
1713                 again = btrfs_clean_one_deleted_snapshot(root);
1714                 mutex_unlock(&root->fs_info->cleaner_mutex);
1715
1716                 /*
1717                  * The defragger has dealt with the R/O remount and umount,
1718                  * needn't do anything special here.
1719                  */
1720                 btrfs_run_defrag_inodes(root->fs_info);
1721 sleep:
1722                 if (!try_to_freeze() && !again) {
1723                         set_current_state(TASK_INTERRUPTIBLE);
1724                         if (!kthread_should_stop())
1725                                 schedule();
1726                         __set_current_state(TASK_RUNNING);
1727                 }
1728         } while (!kthread_should_stop());
1729         return 0;
1730 }
1731
1732 static int transaction_kthread(void *arg)
1733 {
1734         struct btrfs_root *root = arg;
1735         struct btrfs_trans_handle *trans;
1736         struct btrfs_transaction *cur;
1737         u64 transid;
1738         unsigned long now;
1739         unsigned long delay;
1740         bool cannot_commit;
1741
1742         do {
1743                 cannot_commit = false;
1744                 delay = HZ * root->fs_info->commit_interval;
1745                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1746
1747                 spin_lock(&root->fs_info->trans_lock);
1748                 cur = root->fs_info->running_transaction;
1749                 if (!cur) {
1750                         spin_unlock(&root->fs_info->trans_lock);
1751                         goto sleep;
1752                 }
1753
1754                 now = get_seconds();
1755                 if (cur->state < TRANS_STATE_BLOCKED &&
1756                     (now < cur->start_time ||
1757                      now - cur->start_time < root->fs_info->commit_interval)) {
1758                         spin_unlock(&root->fs_info->trans_lock);
1759                         delay = HZ * 5;
1760                         goto sleep;
1761                 }
1762                 transid = cur->transid;
1763                 spin_unlock(&root->fs_info->trans_lock);
1764
1765                 /* If the file system is aborted, this will always fail. */
1766                 trans = btrfs_attach_transaction(root);
1767                 if (IS_ERR(trans)) {
1768                         if (PTR_ERR(trans) != -ENOENT)
1769                                 cannot_commit = true;
1770                         goto sleep;
1771                 }
1772                 if (transid == trans->transid) {
1773                         btrfs_commit_transaction(trans, root);
1774                 } else {
1775                         btrfs_end_transaction(trans, root);
1776                 }
1777 sleep:
1778                 wake_up_process(root->fs_info->cleaner_kthread);
1779                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1780
1781                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1782                                       &root->fs_info->fs_state)))
1783                         btrfs_cleanup_transaction(root);
1784                 if (!try_to_freeze()) {
1785                         set_current_state(TASK_INTERRUPTIBLE);
1786                         if (!kthread_should_stop() &&
1787                             (!btrfs_transaction_blocked(root->fs_info) ||
1788                              cannot_commit))
1789                                 schedule_timeout(delay);
1790                         __set_current_state(TASK_RUNNING);
1791                 }
1792         } while (!kthread_should_stop());
1793         return 0;
1794 }
1795
1796 /*
1797  * this will find the highest generation in the array of
1798  * root backups.  The index of the highest array is returned,
1799  * or -1 if we can't find anything.
1800  *
1801  * We check to make sure the array is valid by comparing the
1802  * generation of the latest  root in the array with the generation
1803  * in the super block.  If they don't match we pitch it.
1804  */
1805 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1806 {
1807         u64 cur;
1808         int newest_index = -1;
1809         struct btrfs_root_backup *root_backup;
1810         int i;
1811
1812         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1813                 root_backup = info->super_copy->super_roots + i;
1814                 cur = btrfs_backup_tree_root_gen(root_backup);
1815                 if (cur == newest_gen)
1816                         newest_index = i;
1817         }
1818
1819         /* check to see if we actually wrapped around */
1820         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1821                 root_backup = info->super_copy->super_roots;
1822                 cur = btrfs_backup_tree_root_gen(root_backup);
1823                 if (cur == newest_gen)
1824                         newest_index = 0;
1825         }
1826         return newest_index;
1827 }
1828
1829
1830 /*
1831  * find the oldest backup so we know where to store new entries
1832  * in the backup array.  This will set the backup_root_index
1833  * field in the fs_info struct
1834  */
1835 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1836                                      u64 newest_gen)
1837 {
1838         int newest_index = -1;
1839
1840         newest_index = find_newest_super_backup(info, newest_gen);
1841         /* if there was garbage in there, just move along */
1842         if (newest_index == -1) {
1843                 info->backup_root_index = 0;
1844         } else {
1845                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1846         }
1847 }
1848
1849 /*
1850  * copy all the root pointers into the super backup array.
1851  * this will bump the backup pointer by one when it is
1852  * done
1853  */
1854 static void backup_super_roots(struct btrfs_fs_info *info)
1855 {
1856         int next_backup;
1857         struct btrfs_root_backup *root_backup;
1858         int last_backup;
1859
1860         next_backup = info->backup_root_index;
1861         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1862                 BTRFS_NUM_BACKUP_ROOTS;
1863
1864         /*
1865          * just overwrite the last backup if we're at the same generation
1866          * this happens only at umount
1867          */
1868         root_backup = info->super_for_commit->super_roots + last_backup;
1869         if (btrfs_backup_tree_root_gen(root_backup) ==
1870             btrfs_header_generation(info->tree_root->node))
1871                 next_backup = last_backup;
1872
1873         root_backup = info->super_for_commit->super_roots + next_backup;
1874
1875         /*
1876          * make sure all of our padding and empty slots get zero filled
1877          * regardless of which ones we use today
1878          */
1879         memset(root_backup, 0, sizeof(*root_backup));
1880
1881         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1882
1883         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1884         btrfs_set_backup_tree_root_gen(root_backup,
1885                                btrfs_header_generation(info->tree_root->node));
1886
1887         btrfs_set_backup_tree_root_level(root_backup,
1888                                btrfs_header_level(info->tree_root->node));
1889
1890         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1891         btrfs_set_backup_chunk_root_gen(root_backup,
1892                                btrfs_header_generation(info->chunk_root->node));
1893         btrfs_set_backup_chunk_root_level(root_backup,
1894                                btrfs_header_level(info->chunk_root->node));
1895
1896         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1897         btrfs_set_backup_extent_root_gen(root_backup,
1898                                btrfs_header_generation(info->extent_root->node));
1899         btrfs_set_backup_extent_root_level(root_backup,
1900                                btrfs_header_level(info->extent_root->node));
1901
1902         /*
1903          * we might commit during log recovery, which happens before we set
1904          * the fs_root.  Make sure it is valid before we fill it in.
1905          */
1906         if (info->fs_root && info->fs_root->node) {
1907                 btrfs_set_backup_fs_root(root_backup,
1908                                          info->fs_root->node->start);
1909                 btrfs_set_backup_fs_root_gen(root_backup,
1910                                btrfs_header_generation(info->fs_root->node));
1911                 btrfs_set_backup_fs_root_level(root_backup,
1912                                btrfs_header_level(info->fs_root->node));
1913         }
1914
1915         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1916         btrfs_set_backup_dev_root_gen(root_backup,
1917                                btrfs_header_generation(info->dev_root->node));
1918         btrfs_set_backup_dev_root_level(root_backup,
1919                                        btrfs_header_level(info->dev_root->node));
1920
1921         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1922         btrfs_set_backup_csum_root_gen(root_backup,
1923                                btrfs_header_generation(info->csum_root->node));
1924         btrfs_set_backup_csum_root_level(root_backup,
1925                                btrfs_header_level(info->csum_root->node));
1926
1927         btrfs_set_backup_total_bytes(root_backup,
1928                              btrfs_super_total_bytes(info->super_copy));
1929         btrfs_set_backup_bytes_used(root_backup,
1930                              btrfs_super_bytes_used(info->super_copy));
1931         btrfs_set_backup_num_devices(root_backup,
1932                              btrfs_super_num_devices(info->super_copy));
1933
1934         /*
1935          * if we don't copy this out to the super_copy, it won't get remembered
1936          * for the next commit
1937          */
1938         memcpy(&info->super_copy->super_roots,
1939                &info->super_for_commit->super_roots,
1940                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1941 }
1942
1943 /*
1944  * this copies info out of the root backup array and back into
1945  * the in-memory super block.  It is meant to help iterate through
1946  * the array, so you send it the number of backups you've already
1947  * tried and the last backup index you used.
1948  *
1949  * this returns -1 when it has tried all the backups
1950  */
1951 static noinline int next_root_backup(struct btrfs_fs_info *info,
1952                                      struct btrfs_super_block *super,
1953                                      int *num_backups_tried, int *backup_index)
1954 {
1955         struct btrfs_root_backup *root_backup;
1956         int newest = *backup_index;
1957
1958         if (*num_backups_tried == 0) {
1959                 u64 gen = btrfs_super_generation(super);
1960
1961                 newest = find_newest_super_backup(info, gen);
1962                 if (newest == -1)
1963                         return -1;
1964
1965                 *backup_index = newest;
1966                 *num_backups_tried = 1;
1967         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1968                 /* we've tried all the backups, all done */
1969                 return -1;
1970         } else {
1971                 /* jump to the next oldest backup */
1972                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1973                         BTRFS_NUM_BACKUP_ROOTS;
1974                 *backup_index = newest;
1975                 *num_backups_tried += 1;
1976         }
1977         root_backup = super->super_roots + newest;
1978
1979         btrfs_set_super_generation(super,
1980                                    btrfs_backup_tree_root_gen(root_backup));
1981         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1982         btrfs_set_super_root_level(super,
1983                                    btrfs_backup_tree_root_level(root_backup));
1984         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1985
1986         /*
1987          * fixme: the total bytes and num_devices need to match or we should
1988          * need a fsck
1989          */
1990         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1991         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1992         return 0;
1993 }
1994
1995 /* helper to cleanup workers */
1996 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1997 {
1998         btrfs_stop_workers(&fs_info->generic_worker);
1999         btrfs_stop_workers(&fs_info->fixup_workers);
2000         btrfs_stop_workers(&fs_info->delalloc_workers);
2001         btrfs_stop_workers(&fs_info->workers);
2002         btrfs_stop_workers(&fs_info->endio_workers);
2003         btrfs_stop_workers(&fs_info->endio_meta_workers);
2004         btrfs_stop_workers(&fs_info->endio_raid56_workers);
2005         btrfs_stop_workers(&fs_info->rmw_workers);
2006         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2007         btrfs_stop_workers(&fs_info->endio_write_workers);
2008         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2009         btrfs_stop_workers(&fs_info->submit_workers);
2010         btrfs_stop_workers(&fs_info->delayed_workers);
2011         btrfs_stop_workers(&fs_info->caching_workers);
2012         btrfs_stop_workers(&fs_info->readahead_workers);
2013         btrfs_stop_workers(&fs_info->flush_workers);
2014         btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
2015 }
2016
2017 static void free_root_extent_buffers(struct btrfs_root *root)
2018 {
2019         if (root) {
2020                 free_extent_buffer(root->node);
2021                 free_extent_buffer(root->commit_root);
2022                 root->node = NULL;
2023                 root->commit_root = NULL;
2024         }
2025 }
2026
2027 /* helper to cleanup tree roots */
2028 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2029 {
2030         free_root_extent_buffers(info->tree_root);
2031
2032         free_root_extent_buffers(info->dev_root);
2033         free_root_extent_buffers(info->extent_root);
2034         free_root_extent_buffers(info->csum_root);
2035         free_root_extent_buffers(info->quota_root);
2036         free_root_extent_buffers(info->uuid_root);
2037         if (chunk_root)
2038                 free_root_extent_buffers(info->chunk_root);
2039 }
2040
2041 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2042 {
2043         int ret;
2044         struct btrfs_root *gang[8];
2045         int i;
2046
2047         while (!list_empty(&fs_info->dead_roots)) {
2048                 gang[0] = list_entry(fs_info->dead_roots.next,
2049                                      struct btrfs_root, root_list);
2050                 list_del(&gang[0]->root_list);
2051
2052                 if (gang[0]->in_radix) {
2053                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2054                 } else {
2055                         free_extent_buffer(gang[0]->node);
2056                         free_extent_buffer(gang[0]->commit_root);
2057                         btrfs_put_fs_root(gang[0]);
2058                 }
2059         }
2060
2061         while (1) {
2062                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2063                                              (void **)gang, 0,
2064                                              ARRAY_SIZE(gang));
2065                 if (!ret)
2066                         break;
2067                 for (i = 0; i < ret; i++)
2068                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2069         }
2070
2071         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2072                 btrfs_free_log_root_tree(NULL, fs_info);
2073                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2074                                             fs_info->pinned_extents);
2075         }
2076 }
2077
2078 int open_ctree(struct super_block *sb,
2079                struct btrfs_fs_devices *fs_devices,
2080                char *options)
2081 {
2082         u32 sectorsize;
2083         u32 nodesize;
2084         u32 leafsize;
2085         u32 blocksize;
2086         u32 stripesize;
2087         u64 generation;
2088         u64 features;
2089         struct btrfs_key location;
2090         struct buffer_head *bh;
2091         struct btrfs_super_block *disk_super;
2092         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2093         struct btrfs_root *tree_root;
2094         struct btrfs_root *extent_root;
2095         struct btrfs_root *csum_root;
2096         struct btrfs_root *chunk_root;
2097         struct btrfs_root *dev_root;
2098         struct btrfs_root *quota_root;
2099         struct btrfs_root *uuid_root;
2100         struct btrfs_root *log_tree_root;
2101         int ret;
2102         int err = -EINVAL;
2103         int num_backups_tried = 0;
2104         int backup_index = 0;
2105         bool create_uuid_tree;
2106         bool check_uuid_tree;
2107
2108         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2109         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2110         if (!tree_root || !chunk_root) {
2111                 err = -ENOMEM;
2112                 goto fail;
2113         }
2114
2115         ret = init_srcu_struct(&fs_info->subvol_srcu);
2116         if (ret) {
2117                 err = ret;
2118                 goto fail;
2119         }
2120
2121         ret = setup_bdi(fs_info, &fs_info->bdi);
2122         if (ret) {
2123                 err = ret;
2124                 goto fail_srcu;
2125         }
2126
2127         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2128         if (ret) {
2129                 err = ret;
2130                 goto fail_bdi;
2131         }
2132         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2133                                         (1 + ilog2(nr_cpu_ids));
2134
2135         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2136         if (ret) {
2137                 err = ret;
2138                 goto fail_dirty_metadata_bytes;
2139         }
2140
2141         ret = percpu_counter_init(&fs_info->bio_counter, 0);
2142         if (ret) {
2143                 err = ret;
2144                 goto fail_delalloc_bytes;
2145         }
2146
2147         fs_info->btree_inode = new_inode(sb);
2148         if (!fs_info->btree_inode) {
2149                 err = -ENOMEM;
2150                 goto fail_bio_counter;
2151         }
2152
2153         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2154
2155         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2156         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2157         INIT_LIST_HEAD(&fs_info->trans_list);
2158         INIT_LIST_HEAD(&fs_info->dead_roots);
2159         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2160         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2161         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2162         spin_lock_init(&fs_info->delalloc_root_lock);
2163         spin_lock_init(&fs_info->trans_lock);
2164         spin_lock_init(&fs_info->fs_roots_radix_lock);
2165         spin_lock_init(&fs_info->delayed_iput_lock);
2166         spin_lock_init(&fs_info->defrag_inodes_lock);
2167         spin_lock_init(&fs_info->free_chunk_lock);
2168         spin_lock_init(&fs_info->tree_mod_seq_lock);
2169         spin_lock_init(&fs_info->super_lock);
2170         spin_lock_init(&fs_info->buffer_lock);
2171         rwlock_init(&fs_info->tree_mod_log_lock);
2172         mutex_init(&fs_info->reloc_mutex);
2173         seqlock_init(&fs_info->profiles_lock);
2174
2175         init_completion(&fs_info->kobj_unregister);
2176         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2177         INIT_LIST_HEAD(&fs_info->space_info);
2178         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2179         btrfs_mapping_init(&fs_info->mapping_tree);
2180         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2181                              BTRFS_BLOCK_RSV_GLOBAL);
2182         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2183                              BTRFS_BLOCK_RSV_DELALLOC);
2184         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2185         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2186         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2187         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2188                              BTRFS_BLOCK_RSV_DELOPS);
2189         atomic_set(&fs_info->nr_async_submits, 0);
2190         atomic_set(&fs_info->async_delalloc_pages, 0);
2191         atomic_set(&fs_info->async_submit_draining, 0);
2192         atomic_set(&fs_info->nr_async_bios, 0);
2193         atomic_set(&fs_info->defrag_running, 0);
2194         atomic64_set(&fs_info->tree_mod_seq, 0);
2195         fs_info->sb = sb;
2196         fs_info->max_inline = 8192 * 1024;
2197         fs_info->metadata_ratio = 0;
2198         fs_info->defrag_inodes = RB_ROOT;
2199         fs_info->free_chunk_space = 0;
2200         fs_info->tree_mod_log = RB_ROOT;
2201         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2202         fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2203         /* readahead state */
2204         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2205         spin_lock_init(&fs_info->reada_lock);
2206
2207         fs_info->thread_pool_size = min_t(unsigned long,
2208                                           num_online_cpus() + 2, 8);
2209
2210         INIT_LIST_HEAD(&fs_info->ordered_roots);
2211         spin_lock_init(&fs_info->ordered_root_lock);
2212         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2213                                         GFP_NOFS);
2214         if (!fs_info->delayed_root) {
2215                 err = -ENOMEM;
2216                 goto fail_iput;
2217         }
2218         btrfs_init_delayed_root(fs_info->delayed_root);
2219
2220         mutex_init(&fs_info->scrub_lock);
2221         atomic_set(&fs_info->scrubs_running, 0);
2222         atomic_set(&fs_info->scrub_pause_req, 0);
2223         atomic_set(&fs_info->scrubs_paused, 0);
2224         atomic_set(&fs_info->scrub_cancel_req, 0);
2225         init_waitqueue_head(&fs_info->replace_wait);
2226         init_waitqueue_head(&fs_info->scrub_pause_wait);
2227         fs_info->scrub_workers_refcnt = 0;
2228 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2229         fs_info->check_integrity_print_mask = 0;
2230 #endif
2231
2232         spin_lock_init(&fs_info->balance_lock);
2233         mutex_init(&fs_info->balance_mutex);
2234         atomic_set(&fs_info->balance_running, 0);
2235         atomic_set(&fs_info->balance_pause_req, 0);
2236         atomic_set(&fs_info->balance_cancel_req, 0);
2237         fs_info->balance_ctl = NULL;
2238         init_waitqueue_head(&fs_info->balance_wait_q);
2239
2240         sb->s_blocksize = 4096;
2241         sb->s_blocksize_bits = blksize_bits(4096);
2242         sb->s_bdi = &fs_info->bdi;
2243
2244         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2245         set_nlink(fs_info->btree_inode, 1);
2246         /*
2247          * we set the i_size on the btree inode to the max possible int.
2248          * the real end of the address space is determined by all of
2249          * the devices in the system
2250          */
2251         fs_info->btree_inode->i_size = OFFSET_MAX;
2252         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2253         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2254
2255         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2256         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2257                              fs_info->btree_inode->i_mapping);
2258         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2259         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2260
2261         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2262
2263         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2264         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2265                sizeof(struct btrfs_key));
2266         set_bit(BTRFS_INODE_DUMMY,
2267                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2268         btrfs_insert_inode_hash(fs_info->btree_inode);
2269
2270         spin_lock_init(&fs_info->block_group_cache_lock);
2271         fs_info->block_group_cache_tree = RB_ROOT;
2272         fs_info->first_logical_byte = (u64)-1;
2273
2274         extent_io_tree_init(&fs_info->freed_extents[0],
2275                              fs_info->btree_inode->i_mapping);
2276         extent_io_tree_init(&fs_info->freed_extents[1],
2277                              fs_info->btree_inode->i_mapping);
2278         fs_info->pinned_extents = &fs_info->freed_extents[0];
2279         fs_info->do_barriers = 1;
2280
2281
2282         mutex_init(&fs_info->ordered_operations_mutex);
2283         mutex_init(&fs_info->ordered_extent_flush_mutex);
2284         mutex_init(&fs_info->tree_log_mutex);
2285         mutex_init(&fs_info->chunk_mutex);
2286         mutex_init(&fs_info->transaction_kthread_mutex);
2287         mutex_init(&fs_info->cleaner_mutex);
2288         mutex_init(&fs_info->volume_mutex);
2289         init_rwsem(&fs_info->extent_commit_sem);
2290         init_rwsem(&fs_info->cleanup_work_sem);
2291         init_rwsem(&fs_info->subvol_sem);
2292         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2293         fs_info->dev_replace.lock_owner = 0;
2294         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2295         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2296         mutex_init(&fs_info->dev_replace.lock_management_lock);
2297         mutex_init(&fs_info->dev_replace.lock);
2298
2299         spin_lock_init(&fs_info->qgroup_lock);
2300         mutex_init(&fs_info->qgroup_ioctl_lock);
2301         fs_info->qgroup_tree = RB_ROOT;
2302         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2303         fs_info->qgroup_seq = 1;
2304         fs_info->quota_enabled = 0;
2305         fs_info->pending_quota_state = 0;
2306         fs_info->qgroup_ulist = NULL;
2307         mutex_init(&fs_info->qgroup_rescan_lock);
2308
2309         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2310         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2311
2312         init_waitqueue_head(&fs_info->transaction_throttle);
2313         init_waitqueue_head(&fs_info->transaction_wait);
2314         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2315         init_waitqueue_head(&fs_info->async_submit_wait);
2316
2317         ret = btrfs_alloc_stripe_hash_table(fs_info);
2318         if (ret) {
2319                 err = ret;
2320                 goto fail_alloc;
2321         }
2322
2323         __setup_root(4096, 4096, 4096, 4096, tree_root,
2324                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2325
2326         invalidate_bdev(fs_devices->latest_bdev);
2327
2328         /*
2329          * Read super block and check the signature bytes only
2330          */
2331         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2332         if (!bh) {
2333                 err = -EINVAL;
2334                 goto fail_alloc;
2335         }
2336
2337         /*
2338          * We want to check superblock checksum, the type is stored inside.
2339          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2340          */
2341         if (btrfs_check_super_csum(bh->b_data)) {
2342                 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2343                 err = -EINVAL;
2344                 goto fail_alloc;
2345         }
2346
2347         /*
2348          * super_copy is zeroed at allocation time and we never touch the
2349          * following bytes up to INFO_SIZE, the checksum is calculated from
2350          * the whole block of INFO_SIZE
2351          */
2352         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2353         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2354                sizeof(*fs_info->super_for_commit));
2355         brelse(bh);
2356
2357         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2358
2359         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2360         if (ret) {
2361                 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2362                 err = -EINVAL;
2363                 goto fail_alloc;
2364         }
2365
2366         disk_super = fs_info->super_copy;
2367         if (!btrfs_super_root(disk_super))
2368                 goto fail_alloc;
2369
2370         /* check FS state, whether FS is broken. */
2371         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2372                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2373
2374         /*
2375          * run through our array of backup supers and setup
2376          * our ring pointer to the oldest one
2377          */
2378         generation = btrfs_super_generation(disk_super);
2379         find_oldest_super_backup(fs_info, generation);
2380
2381         /*
2382          * In the long term, we'll store the compression type in the super
2383          * block, and it'll be used for per file compression control.
2384          */
2385         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2386
2387         ret = btrfs_parse_options(tree_root, options);
2388         if (ret) {
2389                 err = ret;
2390                 goto fail_alloc;
2391         }
2392
2393         features = btrfs_super_incompat_flags(disk_super) &
2394                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2395         if (features) {
2396                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2397                        "unsupported optional features (%Lx).\n",
2398                        features);
2399                 err = -EINVAL;
2400                 goto fail_alloc;
2401         }
2402
2403         if (btrfs_super_leafsize(disk_super) !=
2404             btrfs_super_nodesize(disk_super)) {
2405                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2406                        "blocksizes don't match.  node %d leaf %d\n",
2407                        btrfs_super_nodesize(disk_super),
2408                        btrfs_super_leafsize(disk_super));
2409                 err = -EINVAL;
2410                 goto fail_alloc;
2411         }
2412         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2413                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2414                        "blocksize (%d) was too large\n",
2415                        btrfs_super_leafsize(disk_super));
2416                 err = -EINVAL;
2417                 goto fail_alloc;
2418         }
2419
2420         features = btrfs_super_incompat_flags(disk_super);
2421         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2422         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2423                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2424
2425         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2426                 printk(KERN_ERR "BTRFS: has skinny extents\n");
2427
2428         /*
2429          * flag our filesystem as having big metadata blocks if
2430          * they are bigger than the page size
2431          */
2432         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2433                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2434                         printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2435                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2436         }
2437
2438         nodesize = btrfs_super_nodesize(disk_super);
2439         leafsize = btrfs_super_leafsize(disk_super);
2440         sectorsize = btrfs_super_sectorsize(disk_super);
2441         stripesize = btrfs_super_stripesize(disk_super);
2442         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2443         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2444
2445         /*
2446          * mixed block groups end up with duplicate but slightly offset
2447          * extent buffers for the same range.  It leads to corruptions
2448          */
2449         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2450             (sectorsize != leafsize)) {
2451                 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2452                                 "are not allowed for mixed block groups on %s\n",
2453                                 sb->s_id);
2454                 goto fail_alloc;
2455         }
2456
2457         /*
2458          * Needn't use the lock because there is no other task which will
2459          * update the flag.
2460          */
2461         btrfs_set_super_incompat_flags(disk_super, features);
2462
2463         features = btrfs_super_compat_ro_flags(disk_super) &
2464                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2465         if (!(sb->s_flags & MS_RDONLY) && features) {
2466                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2467                        "unsupported option features (%Lx).\n",
2468                        features);
2469                 err = -EINVAL;
2470                 goto fail_alloc;
2471         }
2472
2473         btrfs_init_workers(&fs_info->generic_worker,
2474                            "genwork", 1, NULL);
2475
2476         btrfs_init_workers(&fs_info->workers, "worker",
2477                            fs_info->thread_pool_size,
2478                            &fs_info->generic_worker);
2479
2480         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2481                            fs_info->thread_pool_size, NULL);
2482
2483         btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2484                            fs_info->thread_pool_size, NULL);
2485
2486         btrfs_init_workers(&fs_info->submit_workers, "submit",
2487                            min_t(u64, fs_devices->num_devices,
2488                            fs_info->thread_pool_size), NULL);
2489
2490         btrfs_init_workers(&fs_info->caching_workers, "cache",
2491                            fs_info->thread_pool_size, NULL);
2492
2493         /* a higher idle thresh on the submit workers makes it much more
2494          * likely that bios will be send down in a sane order to the
2495          * devices
2496          */
2497         fs_info->submit_workers.idle_thresh = 64;
2498
2499         fs_info->workers.idle_thresh = 16;
2500         fs_info->workers.ordered = 1;
2501
2502         fs_info->delalloc_workers.idle_thresh = 2;
2503         fs_info->delalloc_workers.ordered = 1;
2504
2505         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2506                            &fs_info->generic_worker);
2507         btrfs_init_workers(&fs_info->endio_workers, "endio",
2508                            fs_info->thread_pool_size,
2509                            &fs_info->generic_worker);
2510         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2511                            fs_info->thread_pool_size,
2512                            &fs_info->generic_worker);
2513         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2514                            "endio-meta-write", fs_info->thread_pool_size,
2515                            &fs_info->generic_worker);
2516         btrfs_init_workers(&fs_info->endio_raid56_workers,
2517                            "endio-raid56", fs_info->thread_pool_size,
2518                            &fs_info->generic_worker);
2519         btrfs_init_workers(&fs_info->rmw_workers,
2520                            "rmw", fs_info->thread_pool_size,
2521                            &fs_info->generic_worker);
2522         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2523                            fs_info->thread_pool_size,
2524                            &fs_info->generic_worker);
2525         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2526                            1, &fs_info->generic_worker);
2527         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2528                            fs_info->thread_pool_size,
2529                            &fs_info->generic_worker);
2530         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2531                            fs_info->thread_pool_size,
2532                            &fs_info->generic_worker);
2533         btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2534                            &fs_info->generic_worker);
2535
2536         /*
2537          * endios are largely parallel and should have a very
2538          * low idle thresh
2539          */
2540         fs_info->endio_workers.idle_thresh = 4;
2541         fs_info->endio_meta_workers.idle_thresh = 4;
2542         fs_info->endio_raid56_workers.idle_thresh = 4;
2543         fs_info->rmw_workers.idle_thresh = 2;
2544
2545         fs_info->endio_write_workers.idle_thresh = 2;
2546         fs_info->endio_meta_write_workers.idle_thresh = 2;
2547         fs_info->readahead_workers.idle_thresh = 2;
2548
2549         /*
2550          * btrfs_start_workers can really only fail because of ENOMEM so just
2551          * return -ENOMEM if any of these fail.
2552          */
2553         ret = btrfs_start_workers(&fs_info->workers);
2554         ret |= btrfs_start_workers(&fs_info->generic_worker);
2555         ret |= btrfs_start_workers(&fs_info->submit_workers);
2556         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2557         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2558         ret |= btrfs_start_workers(&fs_info->endio_workers);
2559         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2560         ret |= btrfs_start_workers(&fs_info->rmw_workers);
2561         ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2562         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2563         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2564         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2565         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2566         ret |= btrfs_start_workers(&fs_info->caching_workers);
2567         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2568         ret |= btrfs_start_workers(&fs_info->flush_workers);
2569         ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2570         if (ret) {
2571                 err = -ENOMEM;
2572                 goto fail_sb_buffer;
2573         }
2574
2575         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2576         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2577                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2578
2579         tree_root->nodesize = nodesize;
2580         tree_root->leafsize = leafsize;
2581         tree_root->sectorsize = sectorsize;
2582         tree_root->stripesize = stripesize;
2583
2584         sb->s_blocksize = sectorsize;
2585         sb->s_blocksize_bits = blksize_bits(sectorsize);
2586
2587         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2588                 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2589                 goto fail_sb_buffer;
2590         }
2591
2592         if (sectorsize != PAGE_SIZE) {
2593                 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2594                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2595                 goto fail_sb_buffer;
2596         }
2597
2598         mutex_lock(&fs_info->chunk_mutex);
2599         ret = btrfs_read_sys_array(tree_root);
2600         mutex_unlock(&fs_info->chunk_mutex);
2601         if (ret) {
2602                 printk(KERN_WARNING "BTRFS: failed to read the system "
2603                        "array on %s\n", sb->s_id);
2604                 goto fail_sb_buffer;
2605         }
2606
2607         blocksize = btrfs_level_size(tree_root,
2608                                      btrfs_super_chunk_root_level(disk_super));
2609         generation = btrfs_super_chunk_root_generation(disk_super);
2610
2611         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2612                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2613
2614         chunk_root->node = read_tree_block(chunk_root,
2615                                            btrfs_super_chunk_root(disk_super),
2616                                            blocksize, generation);
2617         if (!chunk_root->node ||
2618             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2619                 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2620                        sb->s_id);
2621                 goto fail_tree_roots;
2622         }
2623         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2624         chunk_root->commit_root = btrfs_root_node(chunk_root);
2625
2626         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2627            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2628
2629         ret = btrfs_read_chunk_tree(chunk_root);
2630         if (ret) {
2631                 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2632                        sb->s_id);
2633                 goto fail_tree_roots;
2634         }
2635
2636         /*
2637          * keep the device that is marked to be the target device for the
2638          * dev_replace procedure
2639          */
2640         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2641
2642         if (!fs_devices->latest_bdev) {
2643                 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2644                        sb->s_id);
2645                 goto fail_tree_roots;
2646         }
2647
2648 retry_root_backup:
2649         blocksize = btrfs_level_size(tree_root,
2650                                      btrfs_super_root_level(disk_super));
2651         generation = btrfs_super_generation(disk_super);
2652
2653         tree_root->node = read_tree_block(tree_root,
2654                                           btrfs_super_root(disk_super),
2655                                           blocksize, generation);
2656         if (!tree_root->node ||
2657             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2658                 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2659                        sb->s_id);
2660
2661                 goto recovery_tree_root;
2662         }
2663
2664         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2665         tree_root->commit_root = btrfs_root_node(tree_root);
2666         btrfs_set_root_refs(&tree_root->root_item, 1);
2667
2668         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2669         location.type = BTRFS_ROOT_ITEM_KEY;
2670         location.offset = 0;
2671
2672         extent_root = btrfs_read_tree_root(tree_root, &location);
2673         if (IS_ERR(extent_root)) {
2674                 ret = PTR_ERR(extent_root);
2675                 goto recovery_tree_root;
2676         }
2677         extent_root->track_dirty = 1;
2678         fs_info->extent_root = extent_root;
2679
2680         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2681         dev_root = btrfs_read_tree_root(tree_root, &location);
2682         if (IS_ERR(dev_root)) {
2683                 ret = PTR_ERR(dev_root);
2684                 goto recovery_tree_root;
2685         }
2686         dev_root->track_dirty = 1;
2687         fs_info->dev_root = dev_root;
2688         btrfs_init_devices_late(fs_info);
2689
2690         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2691         csum_root = btrfs_read_tree_root(tree_root, &location);
2692         if (IS_ERR(csum_root)) {
2693                 ret = PTR_ERR(csum_root);
2694                 goto recovery_tree_root;
2695         }
2696         csum_root->track_dirty = 1;
2697         fs_info->csum_root = csum_root;
2698
2699         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2700         quota_root = btrfs_read_tree_root(tree_root, &location);
2701         if (!IS_ERR(quota_root)) {
2702                 quota_root->track_dirty = 1;
2703                 fs_info->quota_enabled = 1;
2704                 fs_info->pending_quota_state = 1;
2705                 fs_info->quota_root = quota_root;
2706         }
2707
2708         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2709         uuid_root = btrfs_read_tree_root(tree_root, &location);
2710         if (IS_ERR(uuid_root)) {
2711                 ret = PTR_ERR(uuid_root);
2712                 if (ret != -ENOENT)
2713                         goto recovery_tree_root;
2714                 create_uuid_tree = true;
2715                 check_uuid_tree = false;
2716         } else {
2717                 uuid_root->track_dirty = 1;
2718                 fs_info->uuid_root = uuid_root;
2719                 create_uuid_tree = false;
2720                 check_uuid_tree =
2721                     generation != btrfs_super_uuid_tree_generation(disk_super);
2722         }
2723
2724         fs_info->generation = generation;
2725         fs_info->last_trans_committed = generation;
2726
2727         ret = btrfs_recover_balance(fs_info);
2728         if (ret) {
2729                 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2730                 goto fail_block_groups;
2731         }
2732
2733         ret = btrfs_init_dev_stats(fs_info);
2734         if (ret) {
2735                 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2736                        ret);
2737                 goto fail_block_groups;
2738         }
2739
2740         ret = btrfs_init_dev_replace(fs_info);
2741         if (ret) {
2742                 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2743                 goto fail_block_groups;
2744         }
2745
2746         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2747
2748         ret = btrfs_sysfs_add_one(fs_info);
2749         if (ret) {
2750                 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2751                 goto fail_block_groups;
2752         }
2753
2754         ret = btrfs_init_space_info(fs_info);
2755         if (ret) {
2756                 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2757                 goto fail_sysfs;
2758         }
2759
2760         ret = btrfs_read_block_groups(extent_root);
2761         if (ret) {
2762                 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2763                 goto fail_sysfs;
2764         }
2765         fs_info->num_tolerated_disk_barrier_failures =
2766                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2767         if (fs_info->fs_devices->missing_devices >
2768              fs_info->num_tolerated_disk_barrier_failures &&
2769             !(sb->s_flags & MS_RDONLY)) {
2770                 printk(KERN_WARNING "BTRFS: "
2771                         "too many missing devices, writeable mount is not allowed\n");
2772                 goto fail_sysfs;
2773         }
2774
2775         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2776                                                "btrfs-cleaner");
2777         if (IS_ERR(fs_info->cleaner_kthread))
2778                 goto fail_sysfs;
2779
2780         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2781                                                    tree_root,
2782                                                    "btrfs-transaction");
2783         if (IS_ERR(fs_info->transaction_kthread))
2784                 goto fail_cleaner;
2785
2786         if (!btrfs_test_opt(tree_root, SSD) &&
2787             !btrfs_test_opt(tree_root, NOSSD) &&
2788             !fs_info->fs_devices->rotating) {
2789                 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2790                        "mode\n");
2791                 btrfs_set_opt(fs_info->mount_opt, SSD);
2792         }
2793
2794         /* Set the real inode map cache flag */
2795         if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2796                 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2797
2798 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2799         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2800                 ret = btrfsic_mount(tree_root, fs_devices,
2801                                     btrfs_test_opt(tree_root,
2802                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2803                                     1 : 0,
2804                                     fs_info->check_integrity_print_mask);
2805                 if (ret)
2806                         printk(KERN_WARNING "BTRFS: failed to initialize"
2807                                " integrity check module %s\n", sb->s_id);
2808         }
2809 #endif
2810         ret = btrfs_read_qgroup_config(fs_info);
2811         if (ret)
2812                 goto fail_trans_kthread;
2813
2814         /* do not make disk changes in broken FS */
2815         if (btrfs_super_log_root(disk_super) != 0) {
2816                 u64 bytenr = btrfs_super_log_root(disk_super);
2817
2818                 if (fs_devices->rw_devices == 0) {
2819                         printk(KERN_WARNING "BTRFS: log replay required "
2820                                "on RO media\n");
2821                         err = -EIO;
2822                         goto fail_qgroup;
2823                 }
2824                 blocksize =
2825                      btrfs_level_size(tree_root,
2826                                       btrfs_super_log_root_level(disk_super));
2827
2828                 log_tree_root = btrfs_alloc_root(fs_info);
2829                 if (!log_tree_root) {
2830                         err = -ENOMEM;
2831                         goto fail_qgroup;
2832                 }
2833
2834                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2835                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2836
2837                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2838                                                       blocksize,
2839                                                       generation + 1);
2840                 if (!log_tree_root->node ||
2841                     !extent_buffer_uptodate(log_tree_root->node)) {
2842                         printk(KERN_ERR "BTRFS: failed to read log tree\n");
2843                         free_extent_buffer(log_tree_root->node);
2844                         kfree(log_tree_root);
2845                         goto fail_trans_kthread;
2846                 }
2847                 /* returns with log_tree_root freed on success */
2848                 ret = btrfs_recover_log_trees(log_tree_root);
2849                 if (ret) {
2850                         btrfs_error(tree_root->fs_info, ret,
2851                                     "Failed to recover log tree");
2852                         free_extent_buffer(log_tree_root->node);
2853                         kfree(log_tree_root);
2854                         goto fail_trans_kthread;
2855                 }
2856
2857                 if (sb->s_flags & MS_RDONLY) {
2858                         ret = btrfs_commit_super(tree_root);
2859                         if (ret)
2860                                 goto fail_trans_kthread;
2861                 }
2862         }
2863
2864         ret = btrfs_find_orphan_roots(tree_root);
2865         if (ret)
2866                 goto fail_trans_kthread;
2867
2868         if (!(sb->s_flags & MS_RDONLY)) {
2869                 ret = btrfs_cleanup_fs_roots(fs_info);
2870                 if (ret)
2871                         goto fail_trans_kthread;
2872
2873                 ret = btrfs_recover_relocation(tree_root);
2874                 if (ret < 0) {
2875                         printk(KERN_WARNING
2876                                "BTRFS: failed to recover relocation\n");
2877                         err = -EINVAL;
2878                         goto fail_qgroup;
2879                 }
2880         }
2881
2882         location.objectid = BTRFS_FS_TREE_OBJECTID;
2883         location.type = BTRFS_ROOT_ITEM_KEY;
2884         location.offset = 0;
2885
2886         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2887         if (IS_ERR(fs_info->fs_root)) {
2888                 err = PTR_ERR(fs_info->fs_root);
2889                 goto fail_qgroup;
2890         }
2891
2892         if (sb->s_flags & MS_RDONLY)
2893                 return 0;
2894
2895         down_read(&fs_info->cleanup_work_sem);
2896         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2897             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2898                 up_read(&fs_info->cleanup_work_sem);
2899                 close_ctree(tree_root);
2900                 return ret;
2901         }
2902         up_read(&fs_info->cleanup_work_sem);
2903
2904         ret = btrfs_resume_balance_async(fs_info);
2905         if (ret) {
2906                 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2907                 close_ctree(tree_root);
2908                 return ret;
2909         }
2910
2911         ret = btrfs_resume_dev_replace_async(fs_info);
2912         if (ret) {
2913                 pr_warn("BTRFS: failed to resume dev_replace\n");
2914                 close_ctree(tree_root);
2915                 return ret;
2916         }
2917
2918         btrfs_qgroup_rescan_resume(fs_info);
2919
2920         if (create_uuid_tree) {
2921                 pr_info("BTRFS: creating UUID tree\n");
2922                 ret = btrfs_create_uuid_tree(fs_info);
2923                 if (ret) {
2924                         pr_warn("BTRFS: failed to create the UUID tree %d\n",
2925                                 ret);
2926                         close_ctree(tree_root);
2927                         return ret;
2928                 }
2929         } else if (check_uuid_tree ||
2930                    btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2931                 pr_info("BTRFS: checking UUID tree\n");
2932                 ret = btrfs_check_uuid_tree(fs_info);
2933                 if (ret) {
2934                         pr_warn("BTRFS: failed to check the UUID tree %d\n",
2935                                 ret);
2936                         close_ctree(tree_root);
2937                         return ret;
2938                 }
2939         } else {
2940                 fs_info->update_uuid_tree_gen = 1;
2941         }
2942
2943         return 0;
2944
2945 fail_qgroup:
2946         btrfs_free_qgroup_config(fs_info);
2947 fail_trans_kthread:
2948         kthread_stop(fs_info->transaction_kthread);
2949         btrfs_cleanup_transaction(fs_info->tree_root);
2950         del_fs_roots(fs_info);
2951 fail_cleaner:
2952         kthread_stop(fs_info->cleaner_kthread);
2953
2954         /*
2955          * make sure we're done with the btree inode before we stop our
2956          * kthreads
2957          */
2958         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2959
2960 fail_sysfs:
2961         btrfs_sysfs_remove_one(fs_info);
2962
2963 fail_block_groups:
2964         btrfs_put_block_group_cache(fs_info);
2965         btrfs_free_block_groups(fs_info);
2966
2967 fail_tree_roots:
2968         free_root_pointers(fs_info, 1);
2969         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2970
2971 fail_sb_buffer:
2972         btrfs_stop_all_workers(fs_info);
2973 fail_alloc:
2974 fail_iput:
2975         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2976
2977         iput(fs_info->btree_inode);
2978 fail_bio_counter:
2979         percpu_counter_destroy(&fs_info->bio_counter);
2980 fail_delalloc_bytes:
2981         percpu_counter_destroy(&fs_info->delalloc_bytes);
2982 fail_dirty_metadata_bytes:
2983         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2984 fail_bdi:
2985         bdi_destroy(&fs_info->bdi);
2986 fail_srcu:
2987         cleanup_srcu_struct(&fs_info->subvol_srcu);
2988 fail:
2989         btrfs_free_stripe_hash_table(fs_info);
2990         btrfs_close_devices(fs_info->fs_devices);
2991         return err;
2992
2993 recovery_tree_root:
2994         if (!btrfs_test_opt(tree_root, RECOVERY))
2995                 goto fail_tree_roots;
2996
2997         free_root_pointers(fs_info, 0);
2998
2999         /* don't use the log in recovery mode, it won't be valid */
3000         btrfs_set_super_log_root(disk_super, 0);
3001
3002         /* we can't trust the free space cache either */
3003         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3004
3005         ret = next_root_backup(fs_info, fs_info->super_copy,
3006                                &num_backups_tried, &backup_index);
3007         if (ret == -1)
3008                 goto fail_block_groups;
3009         goto retry_root_backup;
3010 }
3011
3012 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3013 {
3014         if (uptodate) {
3015                 set_buffer_uptodate(bh);
3016         } else {
3017                 struct btrfs_device *device = (struct btrfs_device *)
3018                         bh->b_private;
3019
3020                 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3021                                           "I/O error on %s\n",
3022                                           rcu_str_deref(device->name));
3023                 /* note, we dont' set_buffer_write_io_error because we have
3024                  * our own ways of dealing with the IO errors
3025                  */
3026                 clear_buffer_uptodate(bh);
3027                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3028         }
3029         unlock_buffer(bh);
3030         put_bh(bh);
3031 }
3032
3033 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3034 {
3035         struct buffer_head *bh;
3036         struct buffer_head *latest = NULL;
3037         struct btrfs_super_block *super;
3038         int i;
3039         u64 transid = 0;
3040         u64 bytenr;
3041
3042         /* we would like to check all the supers, but that would make
3043          * a btrfs mount succeed after a mkfs from a different FS.
3044          * So, we need to add a special mount option to scan for
3045          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3046          */
3047         for (i = 0; i < 1; i++) {
3048                 bytenr = btrfs_sb_offset(i);
3049                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3050                                         i_size_read(bdev->bd_inode))
3051                         break;
3052                 bh = __bread(bdev, bytenr / 4096,
3053                                         BTRFS_SUPER_INFO_SIZE);
3054                 if (!bh)
3055                         continue;
3056
3057                 super = (struct btrfs_super_block *)bh->b_data;
3058                 if (btrfs_super_bytenr(super) != bytenr ||
3059                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3060                         brelse(bh);
3061                         continue;
3062                 }
3063
3064                 if (!latest || btrfs_super_generation(super) > transid) {
3065                         brelse(latest);
3066                         latest = bh;
3067                         transid = btrfs_super_generation(super);
3068                 } else {
3069                         brelse(bh);
3070                 }
3071         }
3072         return latest;
3073 }
3074
3075 /*
3076  * this should be called twice, once with wait == 0 and
3077  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3078  * we write are pinned.
3079  *
3080  * They are released when wait == 1 is done.
3081  * max_mirrors must be the same for both runs, and it indicates how
3082  * many supers on this one device should be written.
3083  *
3084  * max_mirrors == 0 means to write them all.
3085  */
3086 static int write_dev_supers(struct btrfs_device *device,
3087                             struct btrfs_super_block *sb,
3088                             int do_barriers, int wait, int max_mirrors)
3089 {
3090         struct buffer_head *bh;
3091         int i;
3092         int ret;
3093         int errors = 0;
3094         u32 crc;
3095         u64 bytenr;
3096
3097         if (max_mirrors == 0)
3098                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3099
3100         for (i = 0; i < max_mirrors; i++) {
3101                 bytenr = btrfs_sb_offset(i);
3102                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3103                         break;
3104
3105                 if (wait) {
3106                         bh = __find_get_block(device->bdev, bytenr / 4096,
3107                                               BTRFS_SUPER_INFO_SIZE);
3108                         if (!bh) {
3109                                 errors++;
3110                                 continue;
3111                         }
3112                         wait_on_buffer(bh);
3113                         if (!buffer_uptodate(bh))
3114                                 errors++;
3115
3116                         /* drop our reference */
3117                         brelse(bh);
3118
3119                         /* drop the reference from the wait == 0 run */
3120                         brelse(bh);
3121                         continue;
3122                 } else {
3123                         btrfs_set_super_bytenr(sb, bytenr);
3124
3125                         crc = ~(u32)0;
3126                         crc = btrfs_csum_data((char *)sb +
3127                                               BTRFS_CSUM_SIZE, crc,
3128                                               BTRFS_SUPER_INFO_SIZE -
3129                                               BTRFS_CSUM_SIZE);
3130                         btrfs_csum_final(crc, sb->csum);
3131
3132                         /*
3133                          * one reference for us, and we leave it for the
3134                          * caller
3135                          */
3136                         bh = __getblk(device->bdev, bytenr / 4096,
3137                                       BTRFS_SUPER_INFO_SIZE);
3138                         if (!bh) {
3139                                 printk(KERN_ERR "BTRFS: couldn't get super "
3140                                        "buffer head for bytenr %Lu\n", bytenr);
3141                                 errors++;
3142                                 continue;
3143                         }
3144
3145                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3146
3147                         /* one reference for submit_bh */
3148                         get_bh(bh);
3149
3150                         set_buffer_uptodate(bh);
3151                         lock_buffer(bh);
3152                         bh->b_end_io = btrfs_end_buffer_write_sync;
3153                         bh->b_private = device;
3154                 }
3155
3156                 /*
3157                  * we fua the first super.  The others we allow
3158                  * to go down lazy.
3159                  */
3160                 if (i == 0)
3161                         ret = btrfsic_submit_bh(WRITE_FUA, bh);
3162                 else
3163                         ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3164                 if (ret)
3165                         errors++;
3166         }
3167         return errors < i ? 0 : -1;
3168 }
3169
3170 /*
3171  * endio for the write_dev_flush, this will wake anyone waiting
3172  * for the barrier when it is done
3173  */
3174 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3175 {
3176         if (err) {
3177                 if (err == -EOPNOTSUPP)
3178                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3179                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3180         }
3181         if (bio->bi_private)
3182                 complete(bio->bi_private);
3183         bio_put(bio);
3184 }
3185
3186 /*
3187  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3188  * sent down.  With wait == 1, it waits for the previous flush.
3189  *
3190  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3191  * capable
3192  */
3193 static int write_dev_flush(struct btrfs_device *device, int wait)
3194 {
3195         struct bio *bio;
3196         int ret = 0;
3197
3198         if (device->nobarriers)
3199                 return 0;
3200
3201         if (wait) {
3202                 bio = device->flush_bio;
3203                 if (!bio)
3204                         return 0;
3205
3206                 wait_for_completion(&device->flush_wait);
3207
3208                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3209                         printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3210                                       rcu_str_deref(device->name));
3211                         device->nobarriers = 1;
3212                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3213                         ret = -EIO;
3214                         btrfs_dev_stat_inc_and_print(device,
3215                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3216                 }
3217
3218                 /* drop the reference from the wait == 0 run */
3219                 bio_put(bio);
3220                 device->flush_bio = NULL;
3221
3222                 return ret;
3223         }
3224
3225         /*
3226          * one reference for us, and we leave it for the
3227          * caller
3228          */
3229         device->flush_bio = NULL;
3230         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3231         if (!bio)
3232                 return -ENOMEM;
3233
3234         bio->bi_end_io = btrfs_end_empty_barrier;
3235         bio->bi_bdev = device->bdev;
3236         init_completion(&device->flush_wait);
3237         bio->bi_private = &device->flush_wait;
3238         device->flush_bio = bio;
3239
3240         bio_get(bio);
3241         btrfsic_submit_bio(WRITE_FLUSH, bio);
3242
3243         return 0;
3244 }
3245
3246 /*
3247  * send an empty flush down to each device in parallel,
3248  * then wait for them
3249  */
3250 static int barrier_all_devices(struct btrfs_fs_info *info)
3251 {
3252         struct list_head *head;
3253         struct btrfs_device *dev;
3254         int errors_send = 0;
3255         int errors_wait = 0;
3256         int ret;
3257
3258         /* send down all the barriers */
3259         head = &info->fs_devices->devices;
3260         list_for_each_entry_rcu(dev, head, dev_list) {
3261                 if (dev->missing)
3262                         continue;
3263                 if (!dev->bdev) {
3264                         errors_send++;
3265                         continue;
3266                 }
3267                 if (!dev->in_fs_metadata || !dev->writeable)
3268                         continue;
3269
3270                 ret = write_dev_flush(dev, 0);
3271                 if (ret)
3272                         errors_send++;
3273         }
3274
3275         /* wait for all the barriers */
3276         list_for_each_entry_rcu(dev, head, dev_list) {
3277                 if (dev->missing)
3278                         continue;
3279                 if (!dev->bdev) {
3280                         errors_wait++;
3281                         continue;
3282                 }
3283                 if (!dev->in_fs_metadata || !dev->writeable)
3284                         continue;
3285
3286                 ret = write_dev_flush(dev, 1);
3287                 if (ret)
3288                         errors_wait++;
3289         }
3290         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3291             errors_wait > info->num_tolerated_disk_barrier_failures)
3292                 return -EIO;
3293         return 0;
3294 }
3295
3296 int btrfs_calc_num_tolerated_disk_barrier_failures(
3297         struct btrfs_fs_info *fs_info)
3298 {
3299         struct btrfs_ioctl_space_info space;
3300         struct btrfs_space_info *sinfo;
3301         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3302                        BTRFS_BLOCK_GROUP_SYSTEM,
3303                        BTRFS_BLOCK_GROUP_METADATA,
3304                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3305         int num_types = 4;
3306         int i;
3307         int c;
3308         int num_tolerated_disk_barrier_failures =
3309                 (int)fs_info->fs_devices->num_devices;
3310
3311         for (i = 0; i < num_types; i++) {
3312                 struct btrfs_space_info *tmp;
3313
3314                 sinfo = NULL;
3315                 rcu_read_lock();
3316                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3317                         if (tmp->flags == types[i]) {
3318                                 sinfo = tmp;
3319                                 break;
3320                         }
3321                 }
3322                 rcu_read_unlock();
3323
3324                 if (!sinfo)
3325                         continue;
3326
3327                 down_read(&sinfo->groups_sem);
3328                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3329                         if (!list_empty(&sinfo->block_groups[c])) {
3330                                 u64 flags;
3331
3332                                 btrfs_get_block_group_info(
3333                                         &sinfo->block_groups[c], &space);
3334                                 if (space.total_bytes == 0 ||
3335                                     space.used_bytes == 0)
3336                                         continue;
3337                                 flags = space.flags;
3338                                 /*
3339                                  * return
3340                                  * 0: if dup, single or RAID0 is configured for
3341                                  *    any of metadata, system or data, else
3342                                  * 1: if RAID5 is configured, or if RAID1 or
3343                                  *    RAID10 is configured and only two mirrors
3344                                  *    are used, else
3345                                  * 2: if RAID6 is configured, else
3346                                  * num_mirrors - 1: if RAID1 or RAID10 is
3347                                  *                  configured and more than
3348                                  *                  2 mirrors are used.
3349                                  */
3350                                 if (num_tolerated_disk_barrier_failures > 0 &&
3351                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3352                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3353                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3354                                       == 0)))
3355                                         num_tolerated_disk_barrier_failures = 0;
3356                                 else if (num_tolerated_disk_barrier_failures > 1) {
3357                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3358                                             BTRFS_BLOCK_GROUP_RAID5 |
3359                                             BTRFS_BLOCK_GROUP_RAID10)) {
3360                                                 num_tolerated_disk_barrier_failures = 1;
3361                                         } else if (flags &
3362                                                    BTRFS_BLOCK_GROUP_RAID6) {
3363                                                 num_tolerated_disk_barrier_failures = 2;
3364                                         }
3365                                 }
3366                         }
3367                 }
3368                 up_read(&sinfo->groups_sem);
3369         }
3370
3371         return num_tolerated_disk_barrier_failures;
3372 }
3373
3374 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3375 {
3376         struct list_head *head;
3377         struct btrfs_device *dev;
3378         struct btrfs_super_block *sb;
3379         struct btrfs_dev_item *dev_item;
3380         int ret;
3381         int do_barriers;
3382         int max_errors;
3383         int total_errors = 0;
3384         u64 flags;
3385
3386         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3387         backup_super_roots(root->fs_info);
3388
3389         sb = root->fs_info->super_for_commit;
3390         dev_item = &sb->dev_item;
3391
3392         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3393         head = &root->fs_info->fs_devices->devices;
3394         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3395
3396         if (do_barriers) {
3397                 ret = barrier_all_devices(root->fs_info);
3398                 if (ret) {
3399                         mutex_unlock(
3400                                 &root->fs_info->fs_devices->device_list_mutex);
3401                         btrfs_error(root->fs_info, ret,
3402                                     "errors while submitting device barriers.");
3403                         return ret;
3404                 }
3405         }
3406
3407         list_for_each_entry_rcu(dev, head, dev_list) {
3408                 if (!dev->bdev) {
3409                         total_errors++;
3410                         continue;
3411                 }
3412                 if (!dev->in_fs_metadata || !dev->writeable)
3413                         continue;
3414
3415                 btrfs_set_stack_device_generation(dev_item, 0);
3416                 btrfs_set_stack_device_type(dev_item, dev->type);
3417                 btrfs_set_stack_device_id(dev_item, dev->devid);
3418                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3419                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3420                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3421                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3422                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3423                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3424                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3425
3426                 flags = btrfs_super_flags(sb);
3427                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3428
3429                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3430                 if (ret)
3431                         total_errors++;
3432         }
3433         if (total_errors > max_errors) {
3434                 btrfs_err(root->fs_info, "%d errors while writing supers",
3435                        total_errors);
3436                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3437
3438                 /* FUA is masked off if unsupported and can't be the reason */
3439                 btrfs_error(root->fs_info, -EIO,
3440                             "%d errors while writing supers", total_errors);
3441                 return -EIO;
3442         }
3443
3444         total_errors = 0;
3445         list_for_each_entry_rcu(dev, head, dev_list) {
3446                 if (!dev->bdev)
3447                         continue;
3448                 if (!dev->in_fs_metadata || !dev->writeable)
3449                         continue;
3450
3451                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3452                 if (ret)
3453                         total_errors++;
3454         }
3455         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3456         if (total_errors > max_errors) {
3457                 btrfs_error(root->fs_info, -EIO,
3458                             "%d errors while writing supers", total_errors);
3459                 return -EIO;
3460         }
3461         return 0;
3462 }
3463
3464 int write_ctree_super(struct btrfs_trans_handle *trans,
3465                       struct btrfs_root *root, int max_mirrors)
3466 {
3467         return write_all_supers(root, max_mirrors);
3468 }
3469
3470 /* Drop a fs root from the radix tree and free it. */
3471 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3472                                   struct btrfs_root *root)
3473 {
3474         spin_lock(&fs_info->fs_roots_radix_lock);
3475         radix_tree_delete(&fs_info->fs_roots_radix,
3476                           (unsigned long)root->root_key.objectid);
3477         spin_unlock(&fs_info->fs_roots_radix_lock);
3478
3479         if (btrfs_root_refs(&root->root_item) == 0)
3480                 synchronize_srcu(&fs_info->subvol_srcu);
3481
3482         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3483                 btrfs_free_log(NULL, root);
3484
3485         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3486         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3487         free_fs_root(root);
3488 }
3489
3490 static void free_fs_root(struct btrfs_root *root)
3491 {
3492         iput(root->cache_inode);
3493         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3494         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3495         root->orphan_block_rsv = NULL;
3496         if (root->anon_dev)
3497                 free_anon_bdev(root->anon_dev);
3498         free_extent_buffer(root->node);
3499         free_extent_buffer(root->commit_root);
3500         kfree(root->free_ino_ctl);
3501         kfree(root->free_ino_pinned);
3502         kfree(root->name);
3503         btrfs_put_fs_root(root);
3504 }
3505
3506 void btrfs_free_fs_root(struct btrfs_root *root)
3507 {
3508         free_fs_root(root);
3509 }
3510
3511 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3512 {
3513         u64 root_objectid = 0;
3514         struct btrfs_root *gang[8];
3515         int i;
3516         int ret;
3517
3518         while (1) {
3519                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3520                                              (void **)gang, root_objectid,
3521                                              ARRAY_SIZE(gang));
3522                 if (!ret)
3523                         break;
3524
3525                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3526                 for (i = 0; i < ret; i++) {
3527                         int err;
3528
3529                         root_objectid = gang[i]->root_key.objectid;
3530                         err = btrfs_orphan_cleanup(gang[i]);
3531                         if (err)
3532                                 return err;
3533                 }
3534                 root_objectid++;
3535         }
3536         return 0;
3537 }
3538
3539 int btrfs_commit_super(struct btrfs_root *root)
3540 {
3541         struct btrfs_trans_handle *trans;
3542
3543         mutex_lock(&root->fs_info->cleaner_mutex);
3544         btrfs_run_delayed_iputs(root);
3545         mutex_unlock(&root->fs_info->cleaner_mutex);
3546         wake_up_process(root->fs_info->cleaner_kthread);
3547
3548         /* wait until ongoing cleanup work done */
3549         down_write(&root->fs_info->cleanup_work_sem);
3550         up_write(&root->fs_info->cleanup_work_sem);
3551
3552         trans = btrfs_join_transaction(root);
3553         if (IS_ERR(trans))
3554                 return PTR_ERR(trans);
3555         return btrfs_commit_transaction(trans, root);
3556 }
3557
3558 int close_ctree(struct btrfs_root *root)
3559 {
3560         struct btrfs_fs_info *fs_info = root->fs_info;
3561         int ret;
3562
3563         fs_info->closing = 1;
3564         smp_mb();
3565
3566         /* wait for the uuid_scan task to finish */
3567         down(&fs_info->uuid_tree_rescan_sem);
3568         /* avoid complains from lockdep et al., set sem back to initial state */
3569         up(&fs_info->uuid_tree_rescan_sem);
3570
3571         /* pause restriper - we want to resume on mount */
3572         btrfs_pause_balance(fs_info);
3573
3574         btrfs_dev_replace_suspend_for_unmount(fs_info);
3575
3576         btrfs_scrub_cancel(fs_info);
3577
3578         /* wait for any defraggers to finish */
3579         wait_event(fs_info->transaction_wait,
3580                    (atomic_read(&fs_info->defrag_running) == 0));
3581
3582         /* clear out the rbtree of defraggable inodes */
3583         btrfs_cleanup_defrag_inodes(fs_info);
3584
3585         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3586                 ret = btrfs_commit_super(root);
3587                 if (ret)
3588                         btrfs_err(root->fs_info, "commit super ret %d", ret);
3589         }
3590
3591         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3592                 btrfs_error_commit_super(root);
3593
3594         kthread_stop(fs_info->transaction_kthread);
3595         kthread_stop(fs_info->cleaner_kthread);
3596
3597         fs_info->closing = 2;
3598         smp_mb();
3599
3600         btrfs_free_qgroup_config(root->fs_info);
3601
3602         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3603                 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3604                        percpu_counter_sum(&fs_info->delalloc_bytes));
3605         }
3606
3607         btrfs_sysfs_remove_one(fs_info);
3608
3609         del_fs_roots(fs_info);
3610
3611         btrfs_put_block_group_cache(fs_info);
3612
3613         btrfs_free_block_groups(fs_info);
3614
3615         btrfs_stop_all_workers(fs_info);
3616
3617         free_root_pointers(fs_info, 1);
3618
3619         iput(fs_info->btree_inode);
3620
3621 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3622         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3623                 btrfsic_unmount(root, fs_info->fs_devices);
3624 #endif
3625
3626         btrfs_close_devices(fs_info->fs_devices);
3627         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3628
3629         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3630         percpu_counter_destroy(&fs_info->delalloc_bytes);
3631         percpu_counter_destroy(&fs_info->bio_counter);
3632         bdi_destroy(&fs_info->bdi);
3633         cleanup_srcu_struct(&fs_info->subvol_srcu);
3634
3635         btrfs_free_stripe_hash_table(fs_info);
3636
3637         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3638         root->orphan_block_rsv = NULL;
3639
3640         return 0;
3641 }
3642
3643 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3644                           int atomic)
3645 {
3646         int ret;
3647         struct inode *btree_inode = buf->pages[0]->mapping->host;
3648
3649         ret = extent_buffer_uptodate(buf);
3650         if (!ret)
3651                 return ret;
3652
3653         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3654                                     parent_transid, atomic);
3655         if (ret == -EAGAIN)
3656                 return ret;
3657         return !ret;
3658 }
3659
3660 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3661 {
3662         return set_extent_buffer_uptodate(buf);
3663 }
3664
3665 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3666 {
3667         struct btrfs_root *root;
3668         u64 transid = btrfs_header_generation(buf);
3669         int was_dirty;
3670
3671 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3672         /*
3673          * This is a fast path so only do this check if we have sanity tests
3674          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3675          * outside of the sanity tests.
3676          */
3677         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3678                 return;
3679 #endif
3680         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3681         btrfs_assert_tree_locked(buf);
3682         if (transid != root->fs_info->generation)
3683                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3684                        "found %llu running %llu\n",
3685                         buf->start, transid, root->fs_info->generation);
3686         was_dirty = set_extent_buffer_dirty(buf);
3687         if (!was_dirty)
3688                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3689                                      buf->len,
3690                                      root->fs_info->dirty_metadata_batch);
3691 }
3692
3693 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3694                                         int flush_delayed)
3695 {
3696         /*
3697          * looks as though older kernels can get into trouble with
3698          * this code, they end up stuck in balance_dirty_pages forever
3699          */
3700         int ret;
3701
3702         if (current->flags & PF_MEMALLOC)
3703                 return;
3704
3705         if (flush_delayed)
3706                 btrfs_balance_delayed_items(root);
3707
3708         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3709                                      BTRFS_DIRTY_METADATA_THRESH);
3710         if (ret > 0) {
3711                 balance_dirty_pages_ratelimited(
3712                                    root->fs_info->btree_inode->i_mapping);
3713         }
3714         return;
3715 }
3716
3717 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3718 {
3719         __btrfs_btree_balance_dirty(root, 1);
3720 }
3721
3722 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3723 {
3724         __btrfs_btree_balance_dirty(root, 0);
3725 }
3726
3727 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3728 {
3729         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3730         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3731 }
3732
3733 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3734                               int read_only)
3735 {
3736         /*
3737          * Placeholder for checks
3738          */
3739         return 0;
3740 }
3741
3742 static void btrfs_error_commit_super(struct btrfs_root *root)
3743 {
3744         mutex_lock(&root->fs_info->cleaner_mutex);
3745         btrfs_run_delayed_iputs(root);
3746         mutex_unlock(&root->fs_info->cleaner_mutex);
3747
3748         down_write(&root->fs_info->cleanup_work_sem);
3749         up_write(&root->fs_info->cleanup_work_sem);
3750
3751         /* cleanup FS via transaction */
3752         btrfs_cleanup_transaction(root);
3753 }
3754
3755 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3756                                              struct btrfs_root *root)
3757 {
3758         struct btrfs_inode *btrfs_inode;
3759         struct list_head splice;
3760
3761         INIT_LIST_HEAD(&splice);
3762
3763         mutex_lock(&root->fs_info->ordered_operations_mutex);
3764         spin_lock(&root->fs_info->ordered_root_lock);
3765
3766         list_splice_init(&t->ordered_operations, &splice);
3767         while (!list_empty(&splice)) {
3768                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3769                                          ordered_operations);
3770
3771                 list_del_init(&btrfs_inode->ordered_operations);
3772                 spin_unlock(&root->fs_info->ordered_root_lock);
3773
3774                 btrfs_invalidate_inodes(btrfs_inode->root);
3775
3776                 spin_lock(&root->fs_info->ordered_root_lock);
3777         }
3778
3779         spin_unlock(&root->fs_info->ordered_root_lock);
3780         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3781 }
3782
3783 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3784 {
3785         struct btrfs_ordered_extent *ordered;
3786
3787         spin_lock(&root->ordered_extent_lock);
3788         /*
3789          * This will just short circuit the ordered completion stuff which will
3790          * make sure the ordered extent gets properly cleaned up.
3791          */
3792         list_for_each_entry(ordered, &root->ordered_extents,
3793                             root_extent_list)
3794                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3795         spin_unlock(&root->ordered_extent_lock);
3796 }
3797
3798 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3799 {
3800         struct btrfs_root *root;
3801         struct list_head splice;
3802
3803         INIT_LIST_HEAD(&splice);
3804
3805         spin_lock(&fs_info->ordered_root_lock);
3806         list_splice_init(&fs_info->ordered_roots, &splice);
3807         while (!list_empty(&splice)) {
3808                 root = list_first_entry(&splice, struct btrfs_root,
3809                                         ordered_root);
3810                 list_move_tail(&root->ordered_root,
3811                                &fs_info->ordered_roots);
3812
3813                 spin_unlock(&fs_info->ordered_root_lock);
3814                 btrfs_destroy_ordered_extents(root);
3815
3816                 cond_resched();
3817                 spin_lock(&fs_info->ordered_root_lock);
3818         }
3819         spin_unlock(&fs_info->ordered_root_lock);
3820 }
3821
3822 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3823                                       struct btrfs_root *root)
3824 {
3825         struct rb_node *node;
3826         struct btrfs_delayed_ref_root *delayed_refs;
3827         struct btrfs_delayed_ref_node *ref;
3828         int ret = 0;
3829
3830         delayed_refs = &trans->delayed_refs;
3831
3832         spin_lock(&delayed_refs->lock);
3833         if (atomic_read(&delayed_refs->num_entries) == 0) {
3834                 spin_unlock(&delayed_refs->lock);
3835                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
3836                 return ret;
3837         }
3838
3839         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3840                 struct btrfs_delayed_ref_head *head;
3841                 bool pin_bytes = false;
3842
3843                 head = rb_entry(node, struct btrfs_delayed_ref_head,
3844                                 href_node);
3845                 if (!mutex_trylock(&head->mutex)) {
3846                         atomic_inc(&head->node.refs);
3847                         spin_unlock(&delayed_refs->lock);
3848
3849                         mutex_lock(&head->mutex);
3850                         mutex_unlock(&head->mutex);
3851                         btrfs_put_delayed_ref(&head->node);
3852                         spin_lock(&delayed_refs->lock);
3853                         continue;
3854                 }
3855                 spin_lock(&head->lock);
3856                 while ((node = rb_first(&head->ref_root)) != NULL) {
3857                         ref = rb_entry(node, struct btrfs_delayed_ref_node,
3858                                        rb_node);
3859                         ref->in_tree = 0;
3860                         rb_erase(&ref->rb_node, &head->ref_root);
3861                         atomic_dec(&delayed_refs->num_entries);
3862                         btrfs_put_delayed_ref(ref);
3863                 }
3864                 if (head->must_insert_reserved)
3865                         pin_bytes = true;
3866                 btrfs_free_delayed_extent_op(head->extent_op);
3867                 delayed_refs->num_heads--;
3868                 if (head->processing == 0)
3869                         delayed_refs->num_heads_ready--;
3870                 atomic_dec(&delayed_refs->num_entries);
3871                 head->node.in_tree = 0;
3872                 rb_erase(&head->href_node, &delayed_refs->href_root);
3873                 spin_unlock(&head->lock);
3874                 spin_unlock(&delayed_refs->lock);
3875                 mutex_unlock(&head->mutex);
3876
3877                 if (pin_bytes)
3878                         btrfs_pin_extent(root, head->node.bytenr,
3879                                          head->node.num_bytes, 1);
3880                 btrfs_put_delayed_ref(&head->node);
3881                 cond_resched();
3882                 spin_lock(&delayed_refs->lock);
3883         }
3884
3885         spin_unlock(&delayed_refs->lock);
3886
3887         return ret;
3888 }
3889
3890 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3891 {
3892         struct btrfs_inode *btrfs_inode;
3893         struct list_head splice;
3894
3895         INIT_LIST_HEAD(&splice);
3896
3897         spin_lock(&root->delalloc_lock);
3898         list_splice_init(&root->delalloc_inodes, &splice);
3899
3900         while (!list_empty(&splice)) {
3901                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3902                                                delalloc_inodes);
3903
3904                 list_del_init(&btrfs_inode->delalloc_inodes);
3905                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3906                           &btrfs_inode->runtime_flags);
3907                 spin_unlock(&root->delalloc_lock);
3908
3909                 btrfs_invalidate_inodes(btrfs_inode->root);
3910
3911                 spin_lock(&root->delalloc_lock);
3912         }
3913
3914         spin_unlock(&root->delalloc_lock);
3915 }
3916
3917 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3918 {
3919         struct btrfs_root *root;
3920         struct list_head splice;
3921
3922         INIT_LIST_HEAD(&splice);
3923
3924         spin_lock(&fs_info->delalloc_root_lock);
3925         list_splice_init(&fs_info->delalloc_roots, &splice);
3926         while (!list_empty(&splice)) {
3927                 root = list_first_entry(&splice, struct btrfs_root,
3928                                          delalloc_root);
3929                 list_del_init(&root->delalloc_root);
3930                 root = btrfs_grab_fs_root(root);
3931                 BUG_ON(!root);
3932                 spin_unlock(&fs_info->delalloc_root_lock);
3933
3934                 btrfs_destroy_delalloc_inodes(root);
3935                 btrfs_put_fs_root(root);
3936
3937                 spin_lock(&fs_info->delalloc_root_lock);
3938         }
3939         spin_unlock(&fs_info->delalloc_root_lock);
3940 }
3941
3942 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3943                                         struct extent_io_tree *dirty_pages,
3944                                         int mark)
3945 {
3946         int ret;
3947         struct extent_buffer *eb;
3948         u64 start = 0;
3949         u64 end;
3950
3951         while (1) {
3952                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3953                                             mark, NULL);
3954                 if (ret)
3955                         break;
3956
3957                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3958                 while (start <= end) {
3959                         eb = btrfs_find_tree_block(root, start,
3960                                                    root->leafsize);
3961                         start += root->leafsize;
3962                         if (!eb)
3963                                 continue;
3964                         wait_on_extent_buffer_writeback(eb);
3965
3966                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3967                                                &eb->bflags))
3968                                 clear_extent_buffer_dirty(eb);
3969                         free_extent_buffer_stale(eb);
3970                 }
3971         }
3972
3973         return ret;
3974 }
3975
3976 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3977                                        struct extent_io_tree *pinned_extents)
3978 {
3979         struct extent_io_tree *unpin;
3980         u64 start;
3981         u64 end;
3982         int ret;
3983         bool loop = true;
3984
3985         unpin = pinned_extents;
3986 again:
3987         while (1) {
3988                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3989                                             EXTENT_DIRTY, NULL);
3990                 if (ret)
3991                         break;
3992
3993                 /* opt_discard */
3994                 if (btrfs_test_opt(root, DISCARD))
3995                         ret = btrfs_error_discard_extent(root, start,
3996                                                          end + 1 - start,
3997                                                          NULL);
3998
3999                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4000                 btrfs_error_unpin_extent_range(root, start, end);
4001                 cond_resched();
4002         }
4003
4004         if (loop) {
4005                 if (unpin == &root->fs_info->freed_extents[0])
4006                         unpin = &root->fs_info->freed_extents[1];
4007                 else
4008                         unpin = &root->fs_info->freed_extents[0];
4009                 loop = false;
4010                 goto again;
4011         }
4012
4013         return 0;
4014 }
4015
4016 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4017                                    struct btrfs_root *root)
4018 {
4019         btrfs_destroy_ordered_operations(cur_trans, root);
4020
4021         btrfs_destroy_delayed_refs(cur_trans, root);
4022
4023         cur_trans->state = TRANS_STATE_COMMIT_START;
4024         wake_up(&root->fs_info->transaction_blocked_wait);
4025
4026         cur_trans->state = TRANS_STATE_UNBLOCKED;
4027         wake_up(&root->fs_info->transaction_wait);
4028
4029         btrfs_destroy_delayed_inodes(root);
4030         btrfs_assert_delayed_root_empty(root);
4031
4032         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4033                                      EXTENT_DIRTY);
4034         btrfs_destroy_pinned_extent(root,
4035                                     root->fs_info->pinned_extents);
4036
4037         cur_trans->state =TRANS_STATE_COMPLETED;
4038         wake_up(&cur_trans->commit_wait);
4039
4040         /*
4041         memset(cur_trans, 0, sizeof(*cur_trans));
4042         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4043         */
4044 }
4045
4046 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4047 {
4048         struct btrfs_transaction *t;
4049
4050         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4051
4052         spin_lock(&root->fs_info->trans_lock);
4053         while (!list_empty(&root->fs_info->trans_list)) {
4054                 t = list_first_entry(&root->fs_info->trans_list,
4055                                      struct btrfs_transaction, list);
4056                 if (t->state >= TRANS_STATE_COMMIT_START) {
4057                         atomic_inc(&t->use_count);
4058                         spin_unlock(&root->fs_info->trans_lock);
4059                         btrfs_wait_for_commit(root, t->transid);
4060                         btrfs_put_transaction(t);
4061                         spin_lock(&root->fs_info->trans_lock);
4062                         continue;
4063                 }
4064                 if (t == root->fs_info->running_transaction) {
4065                         t->state = TRANS_STATE_COMMIT_DOING;
4066                         spin_unlock(&root->fs_info->trans_lock);
4067                         /*
4068                          * We wait for 0 num_writers since we don't hold a trans
4069                          * handle open currently for this transaction.
4070                          */
4071                         wait_event(t->writer_wait,
4072                                    atomic_read(&t->num_writers) == 0);
4073                 } else {
4074                         spin_unlock(&root->fs_info->trans_lock);
4075                 }
4076                 btrfs_cleanup_one_transaction(t, root);
4077
4078                 spin_lock(&root->fs_info->trans_lock);
4079                 if (t == root->fs_info->running_transaction)
4080                         root->fs_info->running_transaction = NULL;
4081                 list_del_init(&t->list);
4082                 spin_unlock(&root->fs_info->trans_lock);
4083
4084                 btrfs_put_transaction(t);
4085                 trace_btrfs_transaction_commit(root);
4086                 spin_lock(&root->fs_info->trans_lock);
4087         }
4088         spin_unlock(&root->fs_info->trans_lock);
4089         btrfs_destroy_all_ordered_extents(root->fs_info);
4090         btrfs_destroy_delayed_inodes(root);
4091         btrfs_assert_delayed_root_empty(root);
4092         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4093         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4094         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4095
4096         return 0;
4097 }
4098
4099 static struct extent_io_ops btree_extent_io_ops = {
4100         .readpage_end_io_hook = btree_readpage_end_io_hook,
4101         .readpage_io_failed_hook = btree_io_failed_hook,
4102         .submit_bio_hook = btree_submit_bio_hook,
4103         /* note we're sharing with inode.c for the merge bio hook */
4104         .merge_bio_hook = btrfs_merge_bio_hook,
4105 };